1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // MachineScheduler schedules machine instructions after phi elimination. It 11 // preserves LiveIntervals so it can be invoked before register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "misched" 16 17 #include "llvm/CodeGen/MachineScheduler.h" 18 #include "llvm/ADT/OwningPtr.h" 19 #include "llvm/ADT/PriorityQueue.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 22 #include "llvm/CodeGen/Passes.h" 23 #include "llvm/CodeGen/RegisterClassInfo.h" 24 #include "llvm/CodeGen/ScheduleDFS.h" 25 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include <queue> 31 32 using namespace llvm; 33 34 namespace llvm { 35 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 36 cl::desc("Force top-down list scheduling")); 37 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 38 cl::desc("Force bottom-up list scheduling")); 39 } 40 41 #ifndef NDEBUG 42 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 43 cl::desc("Pop up a window to show MISched dags after they are processed")); 44 45 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 46 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 47 #else 48 static bool ViewMISchedDAGs = false; 49 #endif // NDEBUG 50 51 // Threshold to very roughly model an out-of-order processor's instruction 52 // buffers. If the actual value of this threshold matters much in practice, then 53 // it can be specified by the machine model. For now, it's an experimental 54 // tuning knob to determine when and if it matters. 55 static cl::opt<unsigned> ILPWindow("ilp-window", cl::Hidden, 56 cl::desc("Allow expected latency to exceed the critical path by N cycles " 57 "before attempting to balance ILP"), 58 cl::init(10U)); 59 60 // Experimental heuristics 61 static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden, 62 cl::desc("Enable load clustering."), cl::init(true)); 63 64 // Experimental heuristics 65 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden, 66 cl::desc("Enable scheduling for macro fusion."), cl::init(true)); 67 68 //===----------------------------------------------------------------------===// 69 // Machine Instruction Scheduling Pass and Registry 70 //===----------------------------------------------------------------------===// 71 72 MachineSchedContext::MachineSchedContext(): 73 MF(0), MLI(0), MDT(0), PassConfig(0), AA(0), LIS(0) { 74 RegClassInfo = new RegisterClassInfo(); 75 } 76 77 MachineSchedContext::~MachineSchedContext() { 78 delete RegClassInfo; 79 } 80 81 namespace { 82 /// MachineScheduler runs after coalescing and before register allocation. 83 class MachineScheduler : public MachineSchedContext, 84 public MachineFunctionPass { 85 public: 86 MachineScheduler(); 87 88 virtual void getAnalysisUsage(AnalysisUsage &AU) const; 89 90 virtual void releaseMemory() {} 91 92 virtual bool runOnMachineFunction(MachineFunction&); 93 94 virtual void print(raw_ostream &O, const Module* = 0) const; 95 96 static char ID; // Class identification, replacement for typeinfo 97 }; 98 } // namespace 99 100 char MachineScheduler::ID = 0; 101 102 char &llvm::MachineSchedulerID = MachineScheduler::ID; 103 104 INITIALIZE_PASS_BEGIN(MachineScheduler, "misched", 105 "Machine Instruction Scheduler", false, false) 106 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 107 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 108 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 109 INITIALIZE_PASS_END(MachineScheduler, "misched", 110 "Machine Instruction Scheduler", false, false) 111 112 MachineScheduler::MachineScheduler() 113 : MachineFunctionPass(ID) { 114 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 115 } 116 117 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 118 AU.setPreservesCFG(); 119 AU.addRequiredID(MachineDominatorsID); 120 AU.addRequired<MachineLoopInfo>(); 121 AU.addRequired<AliasAnalysis>(); 122 AU.addRequired<TargetPassConfig>(); 123 AU.addRequired<SlotIndexes>(); 124 AU.addPreserved<SlotIndexes>(); 125 AU.addRequired<LiveIntervals>(); 126 AU.addPreserved<LiveIntervals>(); 127 MachineFunctionPass::getAnalysisUsage(AU); 128 } 129 130 MachinePassRegistry MachineSchedRegistry::Registry; 131 132 /// A dummy default scheduler factory indicates whether the scheduler 133 /// is overridden on the command line. 134 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 135 return 0; 136 } 137 138 /// MachineSchedOpt allows command line selection of the scheduler. 139 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 140 RegisterPassParser<MachineSchedRegistry> > 141 MachineSchedOpt("misched", 142 cl::init(&useDefaultMachineSched), cl::Hidden, 143 cl::desc("Machine instruction scheduler to use")); 144 145 static MachineSchedRegistry 146 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 147 useDefaultMachineSched); 148 149 /// Forward declare the standard machine scheduler. This will be used as the 150 /// default scheduler if the target does not set a default. 151 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C); 152 153 154 /// Decrement this iterator until reaching the top or a non-debug instr. 155 static MachineBasicBlock::iterator 156 priorNonDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Beg) { 157 assert(I != Beg && "reached the top of the region, cannot decrement"); 158 while (--I != Beg) { 159 if (!I->isDebugValue()) 160 break; 161 } 162 return I; 163 } 164 165 /// If this iterator is a debug value, increment until reaching the End or a 166 /// non-debug instruction. 167 static MachineBasicBlock::iterator 168 nextIfDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator End) { 169 for(; I != End; ++I) { 170 if (!I->isDebugValue()) 171 break; 172 } 173 return I; 174 } 175 176 /// Top-level MachineScheduler pass driver. 177 /// 178 /// Visit blocks in function order. Divide each block into scheduling regions 179 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 180 /// consistent with the DAG builder, which traverses the interior of the 181 /// scheduling regions bottom-up. 182 /// 183 /// This design avoids exposing scheduling boundaries to the DAG builder, 184 /// simplifying the DAG builder's support for "special" target instructions. 185 /// At the same time the design allows target schedulers to operate across 186 /// scheduling boundaries, for example to bundle the boudary instructions 187 /// without reordering them. This creates complexity, because the target 188 /// scheduler must update the RegionBegin and RegionEnd positions cached by 189 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 190 /// design would be to split blocks at scheduling boundaries, but LLVM has a 191 /// general bias against block splitting purely for implementation simplicity. 192 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 193 DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs())); 194 195 // Initialize the context of the pass. 196 MF = &mf; 197 MLI = &getAnalysis<MachineLoopInfo>(); 198 MDT = &getAnalysis<MachineDominatorTree>(); 199 PassConfig = &getAnalysis<TargetPassConfig>(); 200 AA = &getAnalysis<AliasAnalysis>(); 201 202 LIS = &getAnalysis<LiveIntervals>(); 203 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); 204 205 RegClassInfo->runOnMachineFunction(*MF); 206 207 // Select the scheduler, or set the default. 208 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 209 if (Ctor == useDefaultMachineSched) { 210 // Get the default scheduler set by the target. 211 Ctor = MachineSchedRegistry::getDefault(); 212 if (!Ctor) { 213 Ctor = createConvergingSched; 214 MachineSchedRegistry::setDefault(Ctor); 215 } 216 } 217 // Instantiate the selected scheduler. 218 OwningPtr<ScheduleDAGInstrs> Scheduler(Ctor(this)); 219 220 // Visit all machine basic blocks. 221 // 222 // TODO: Visit blocks in global postorder or postorder within the bottom-up 223 // loop tree. Then we can optionally compute global RegPressure. 224 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 225 MBB != MBBEnd; ++MBB) { 226 227 Scheduler->startBlock(MBB); 228 229 // Break the block into scheduling regions [I, RegionEnd), and schedule each 230 // region as soon as it is discovered. RegionEnd points the scheduling 231 // boundary at the bottom of the region. The DAG does not include RegionEnd, 232 // but the region does (i.e. the next RegionEnd is above the previous 233 // RegionBegin). If the current block has no terminator then RegionEnd == 234 // MBB->end() for the bottom region. 235 // 236 // The Scheduler may insert instructions during either schedule() or 237 // exitRegion(), even for empty regions. So the local iterators 'I' and 238 // 'RegionEnd' are invalid across these calls. 239 unsigned RemainingInstrs = MBB->size(); 240 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 241 RegionEnd != MBB->begin(); RegionEnd = Scheduler->begin()) { 242 243 // Avoid decrementing RegionEnd for blocks with no terminator. 244 if (RegionEnd != MBB->end() 245 || TII->isSchedulingBoundary(llvm::prior(RegionEnd), MBB, *MF)) { 246 --RegionEnd; 247 // Count the boundary instruction. 248 --RemainingInstrs; 249 } 250 251 // The next region starts above the previous region. Look backward in the 252 // instruction stream until we find the nearest boundary. 253 MachineBasicBlock::iterator I = RegionEnd; 254 for(;I != MBB->begin(); --I, --RemainingInstrs) { 255 if (TII->isSchedulingBoundary(llvm::prior(I), MBB, *MF)) 256 break; 257 } 258 // Notify the scheduler of the region, even if we may skip scheduling 259 // it. Perhaps it still needs to be bundled. 260 Scheduler->enterRegion(MBB, I, RegionEnd, RemainingInstrs); 261 262 // Skip empty scheduling regions (0 or 1 schedulable instructions). 263 if (I == RegionEnd || I == llvm::prior(RegionEnd)) { 264 // Close the current region. Bundle the terminator if needed. 265 // This invalidates 'RegionEnd' and 'I'. 266 Scheduler->exitRegion(); 267 continue; 268 } 269 DEBUG(dbgs() << "********** MI Scheduling **********\n"); 270 DEBUG(dbgs() << MF->getName() 271 << ":BB#" << MBB->getNumber() << "\n From: " << *I << " To: "; 272 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 273 else dbgs() << "End"; 274 dbgs() << " Remaining: " << RemainingInstrs << "\n"); 275 276 // Schedule a region: possibly reorder instructions. 277 // This invalidates 'RegionEnd' and 'I'. 278 Scheduler->schedule(); 279 280 // Close the current region. 281 Scheduler->exitRegion(); 282 283 // Scheduling has invalidated the current iterator 'I'. Ask the 284 // scheduler for the top of it's scheduled region. 285 RegionEnd = Scheduler->begin(); 286 } 287 assert(RemainingInstrs == 0 && "Instruction count mismatch!"); 288 Scheduler->finishBlock(); 289 } 290 Scheduler->finalizeSchedule(); 291 DEBUG(LIS->print(dbgs())); 292 return true; 293 } 294 295 void MachineScheduler::print(raw_ostream &O, const Module* m) const { 296 // unimplemented 297 } 298 299 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 300 void ReadyQueue::dump() { 301 dbgs() << Name << ": "; 302 for (unsigned i = 0, e = Queue.size(); i < e; ++i) 303 dbgs() << Queue[i]->NodeNum << " "; 304 dbgs() << "\n"; 305 } 306 #endif 307 308 //===----------------------------------------------------------------------===// 309 // ScheduleDAGMI - Base class for MachineInstr scheduling with LiveIntervals 310 // preservation. 311 //===----------------------------------------------------------------------===// 312 313 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { 314 if (SuccSU != &ExitSU) { 315 // Do not use WillCreateCycle, it assumes SD scheduling. 316 // If Pred is reachable from Succ, then the edge creates a cycle. 317 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 318 return false; 319 Topo.AddPred(SuccSU, PredDep.getSUnit()); 320 } 321 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 322 // Return true regardless of whether a new edge needed to be inserted. 323 return true; 324 } 325 326 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 327 /// NumPredsLeft reaches zero, release the successor node. 328 /// 329 /// FIXME: Adjust SuccSU height based on MinLatency. 330 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 331 SUnit *SuccSU = SuccEdge->getSUnit(); 332 333 if (SuccEdge->isWeak()) { 334 --SuccSU->WeakPredsLeft; 335 if (SuccEdge->isCluster()) 336 NextClusterSucc = SuccSU; 337 return; 338 } 339 #ifndef NDEBUG 340 if (SuccSU->NumPredsLeft == 0) { 341 dbgs() << "*** Scheduling failed! ***\n"; 342 SuccSU->dump(this); 343 dbgs() << " has been released too many times!\n"; 344 llvm_unreachable(0); 345 } 346 #endif 347 --SuccSU->NumPredsLeft; 348 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 349 SchedImpl->releaseTopNode(SuccSU); 350 } 351 352 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 353 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 354 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 355 I != E; ++I) { 356 releaseSucc(SU, &*I); 357 } 358 } 359 360 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 361 /// NumSuccsLeft reaches zero, release the predecessor node. 362 /// 363 /// FIXME: Adjust PredSU height based on MinLatency. 364 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 365 SUnit *PredSU = PredEdge->getSUnit(); 366 367 if (PredEdge->isWeak()) { 368 --PredSU->WeakSuccsLeft; 369 if (PredEdge->isCluster()) 370 NextClusterPred = PredSU; 371 return; 372 } 373 #ifndef NDEBUG 374 if (PredSU->NumSuccsLeft == 0) { 375 dbgs() << "*** Scheduling failed! ***\n"; 376 PredSU->dump(this); 377 dbgs() << " has been released too many times!\n"; 378 llvm_unreachable(0); 379 } 380 #endif 381 --PredSU->NumSuccsLeft; 382 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 383 SchedImpl->releaseBottomNode(PredSU); 384 } 385 386 /// releasePredecessors - Call releasePred on each of SU's predecessors. 387 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 388 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 389 I != E; ++I) { 390 releasePred(SU, &*I); 391 } 392 } 393 394 void ScheduleDAGMI::moveInstruction(MachineInstr *MI, 395 MachineBasicBlock::iterator InsertPos) { 396 // Advance RegionBegin if the first instruction moves down. 397 if (&*RegionBegin == MI) 398 ++RegionBegin; 399 400 // Update the instruction stream. 401 BB->splice(InsertPos, BB, MI); 402 403 // Update LiveIntervals 404 LIS->handleMove(MI, /*UpdateFlags=*/true); 405 406 // Recede RegionBegin if an instruction moves above the first. 407 if (RegionBegin == InsertPos) 408 RegionBegin = MI; 409 } 410 411 bool ScheduleDAGMI::checkSchedLimit() { 412 #ifndef NDEBUG 413 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 414 CurrentTop = CurrentBottom; 415 return false; 416 } 417 ++NumInstrsScheduled; 418 #endif 419 return true; 420 } 421 422 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 423 /// crossing a scheduling boundary. [begin, end) includes all instructions in 424 /// the region, including the boundary itself and single-instruction regions 425 /// that don't get scheduled. 426 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 427 MachineBasicBlock::iterator begin, 428 MachineBasicBlock::iterator end, 429 unsigned endcount) 430 { 431 ScheduleDAGInstrs::enterRegion(bb, begin, end, endcount); 432 433 // For convenience remember the end of the liveness region. 434 LiveRegionEnd = 435 (RegionEnd == bb->end()) ? RegionEnd : llvm::next(RegionEnd); 436 } 437 438 // Setup the register pressure trackers for the top scheduled top and bottom 439 // scheduled regions. 440 void ScheduleDAGMI::initRegPressure() { 441 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin); 442 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd); 443 444 // Close the RPTracker to finalize live ins. 445 RPTracker.closeRegion(); 446 447 DEBUG(RPTracker.getPressure().dump(TRI)); 448 449 // Initialize the live ins and live outs. 450 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 451 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 452 453 // Close one end of the tracker so we can call 454 // getMaxUpward/DownwardPressureDelta before advancing across any 455 // instructions. This converts currently live regs into live ins/outs. 456 TopRPTracker.closeTop(); 457 BotRPTracker.closeBottom(); 458 459 // Account for liveness generated by the region boundary. 460 if (LiveRegionEnd != RegionEnd) 461 BotRPTracker.recede(); 462 463 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); 464 465 // Cache the list of excess pressure sets in this region. This will also track 466 // the max pressure in the scheduled code for these sets. 467 RegionCriticalPSets.clear(); 468 std::vector<unsigned> RegionPressure = RPTracker.getPressure().MaxSetPressure; 469 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 470 unsigned Limit = TRI->getRegPressureSetLimit(i); 471 DEBUG(dbgs() << TRI->getRegPressureSetName(i) 472 << "Limit " << Limit 473 << " Actual " << RegionPressure[i] << "\n"); 474 if (RegionPressure[i] > Limit) 475 RegionCriticalPSets.push_back(PressureElement(i, 0)); 476 } 477 DEBUG(dbgs() << "Excess PSets: "; 478 for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i) 479 dbgs() << TRI->getRegPressureSetName( 480 RegionCriticalPSets[i].PSetID) << " "; 481 dbgs() << "\n"); 482 } 483 484 // FIXME: When the pressure tracker deals in pressure differences then we won't 485 // iterate over all RegionCriticalPSets[i]. 486 void ScheduleDAGMI:: 487 updateScheduledPressure(std::vector<unsigned> NewMaxPressure) { 488 for (unsigned i = 0, e = RegionCriticalPSets.size(); i < e; ++i) { 489 unsigned ID = RegionCriticalPSets[i].PSetID; 490 int &MaxUnits = RegionCriticalPSets[i].UnitIncrease; 491 if ((int)NewMaxPressure[ID] > MaxUnits) 492 MaxUnits = NewMaxPressure[ID]; 493 } 494 } 495 496 /// schedule - Called back from MachineScheduler::runOnMachineFunction 497 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 498 /// only includes instructions that have DAG nodes, not scheduling boundaries. 499 /// 500 /// This is a skeletal driver, with all the functionality pushed into helpers, 501 /// so that it can be easilly extended by experimental schedulers. Generally, 502 /// implementing MachineSchedStrategy should be sufficient to implement a new 503 /// scheduling algorithm. However, if a scheduler further subclasses 504 /// ScheduleDAGMI then it will want to override this virtual method in order to 505 /// update any specialized state. 506 void ScheduleDAGMI::schedule() { 507 buildDAGWithRegPressure(); 508 509 Topo.InitDAGTopologicalSorting(); 510 511 postprocessDAG(); 512 513 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 514 SUnits[su].dumpAll(this)); 515 516 if (ViewMISchedDAGs) viewGraph(); 517 518 initQueues(); 519 520 bool IsTopNode = false; 521 while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) { 522 assert(!SU->isScheduled && "Node already scheduled"); 523 if (!checkSchedLimit()) 524 break; 525 526 scheduleMI(SU, IsTopNode); 527 528 updateQueues(SU, IsTopNode); 529 } 530 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 531 532 placeDebugValues(); 533 534 DEBUG({ 535 unsigned BBNum = begin()->getParent()->getNumber(); 536 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 537 dumpSchedule(); 538 dbgs() << '\n'; 539 }); 540 } 541 542 /// Build the DAG and setup three register pressure trackers. 543 void ScheduleDAGMI::buildDAGWithRegPressure() { 544 // Initialize the register pressure tracker used by buildSchedGraph. 545 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd); 546 547 // Account for liveness generate by the region boundary. 548 if (LiveRegionEnd != RegionEnd) 549 RPTracker.recede(); 550 551 // Build the DAG, and compute current register pressure. 552 buildSchedGraph(AA, &RPTracker); 553 if (ViewMISchedDAGs) viewGraph(); 554 555 // Initialize top/bottom trackers after computing region pressure. 556 initRegPressure(); 557 } 558 559 /// Apply each ScheduleDAGMutation step in order. 560 void ScheduleDAGMI::postprocessDAG() { 561 for (unsigned i = 0, e = Mutations.size(); i < e; ++i) { 562 Mutations[i]->apply(this); 563 } 564 } 565 566 // Release all DAG roots for scheduling. 567 // 568 // Nodes with unreleased weak edges can still be roots. 569 void ScheduleDAGMI::releaseRoots() { 570 SmallVector<SUnit*, 16> BotRoots; 571 572 for (std::vector<SUnit>::iterator 573 I = SUnits.begin(), E = SUnits.end(); I != E; ++I) { 574 SUnit *SU = &(*I); 575 // A SUnit is ready to top schedule if it has no predecessors. 576 if (!I->NumPredsLeft && SU != &EntrySU) 577 SchedImpl->releaseTopNode(SU); 578 // A SUnit is ready to bottom schedule if it has no successors. 579 if (!I->NumSuccsLeft && SU != &ExitSU) 580 BotRoots.push_back(SU); 581 } 582 // Release bottom roots in reverse order so the higher priority nodes appear 583 // first. This is more natural and slightly more efficient. 584 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 585 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) 586 SchedImpl->releaseBottomNode(*I); 587 } 588 589 /// Identify DAG roots and setup scheduler queues. 590 void ScheduleDAGMI::initQueues() { 591 NextClusterSucc = NULL; 592 NextClusterPred = NULL; 593 594 // Initialize the strategy before modifying the DAG. 595 SchedImpl->initialize(this); 596 597 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 598 releaseRoots(); 599 600 releaseSuccessors(&EntrySU); 601 releasePredecessors(&ExitSU); 602 603 SchedImpl->registerRoots(); 604 605 // Advance past initial DebugValues. 606 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 607 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 608 TopRPTracker.setPos(CurrentTop); 609 610 CurrentBottom = RegionEnd; 611 } 612 613 /// Move an instruction and update register pressure. 614 void ScheduleDAGMI::scheduleMI(SUnit *SU, bool IsTopNode) { 615 // Move the instruction to its new location in the instruction stream. 616 MachineInstr *MI = SU->getInstr(); 617 618 if (IsTopNode) { 619 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 620 if (&*CurrentTop == MI) 621 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 622 else { 623 moveInstruction(MI, CurrentTop); 624 TopRPTracker.setPos(MI); 625 } 626 627 // Update top scheduled pressure. 628 TopRPTracker.advance(); 629 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 630 updateScheduledPressure(TopRPTracker.getPressure().MaxSetPressure); 631 } 632 else { 633 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 634 MachineBasicBlock::iterator priorII = 635 priorNonDebug(CurrentBottom, CurrentTop); 636 if (&*priorII == MI) 637 CurrentBottom = priorII; 638 else { 639 if (&*CurrentTop == MI) { 640 CurrentTop = nextIfDebug(++CurrentTop, priorII); 641 TopRPTracker.setPos(CurrentTop); 642 } 643 moveInstruction(MI, CurrentBottom); 644 CurrentBottom = MI; 645 } 646 // Update bottom scheduled pressure. 647 BotRPTracker.recede(); 648 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 649 updateScheduledPressure(BotRPTracker.getPressure().MaxSetPressure); 650 } 651 } 652 653 /// Update scheduler queues after scheduling an instruction. 654 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 655 // Release dependent instructions for scheduling. 656 if (IsTopNode) 657 releaseSuccessors(SU); 658 else 659 releasePredecessors(SU); 660 661 SU->isScheduled = true; 662 663 // Notify the scheduling strategy after updating the DAG. 664 SchedImpl->schedNode(SU, IsTopNode); 665 } 666 667 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 668 void ScheduleDAGMI::placeDebugValues() { 669 // If first instruction was a DBG_VALUE then put it back. 670 if (FirstDbgValue) { 671 BB->splice(RegionBegin, BB, FirstDbgValue); 672 RegionBegin = FirstDbgValue; 673 } 674 675 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator 676 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 677 std::pair<MachineInstr *, MachineInstr *> P = *prior(DI); 678 MachineInstr *DbgValue = P.first; 679 MachineBasicBlock::iterator OrigPrevMI = P.second; 680 if (&*RegionBegin == DbgValue) 681 ++RegionBegin; 682 BB->splice(++OrigPrevMI, BB, DbgValue); 683 if (OrigPrevMI == llvm::prior(RegionEnd)) 684 RegionEnd = DbgValue; 685 } 686 DbgValues.clear(); 687 FirstDbgValue = NULL; 688 } 689 690 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 691 void ScheduleDAGMI::dumpSchedule() const { 692 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 693 if (SUnit *SU = getSUnit(&(*MI))) 694 SU->dump(this); 695 else 696 dbgs() << "Missing SUnit\n"; 697 } 698 } 699 #endif 700 701 //===----------------------------------------------------------------------===// 702 // LoadClusterMutation - DAG post-processing to cluster loads. 703 //===----------------------------------------------------------------------===// 704 705 namespace { 706 /// \brief Post-process the DAG to create cluster edges between neighboring 707 /// loads. 708 class LoadClusterMutation : public ScheduleDAGMutation { 709 struct LoadInfo { 710 SUnit *SU; 711 unsigned BaseReg; 712 unsigned Offset; 713 LoadInfo(SUnit *su, unsigned reg, unsigned ofs) 714 : SU(su), BaseReg(reg), Offset(ofs) {} 715 }; 716 static bool LoadInfoLess(const LoadClusterMutation::LoadInfo &LHS, 717 const LoadClusterMutation::LoadInfo &RHS); 718 719 const TargetInstrInfo *TII; 720 const TargetRegisterInfo *TRI; 721 public: 722 LoadClusterMutation(const TargetInstrInfo *tii, 723 const TargetRegisterInfo *tri) 724 : TII(tii), TRI(tri) {} 725 726 virtual void apply(ScheduleDAGMI *DAG); 727 protected: 728 void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG); 729 }; 730 } // anonymous 731 732 bool LoadClusterMutation::LoadInfoLess( 733 const LoadClusterMutation::LoadInfo &LHS, 734 const LoadClusterMutation::LoadInfo &RHS) { 735 if (LHS.BaseReg != RHS.BaseReg) 736 return LHS.BaseReg < RHS.BaseReg; 737 return LHS.Offset < RHS.Offset; 738 } 739 740 void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads, 741 ScheduleDAGMI *DAG) { 742 SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords; 743 for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) { 744 SUnit *SU = Loads[Idx]; 745 unsigned BaseReg; 746 unsigned Offset; 747 if (TII->getLdStBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI)) 748 LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset)); 749 } 750 if (LoadRecords.size() < 2) 751 return; 752 std::sort(LoadRecords.begin(), LoadRecords.end(), LoadInfoLess); 753 unsigned ClusterLength = 1; 754 for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) { 755 if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) { 756 ClusterLength = 1; 757 continue; 758 } 759 760 SUnit *SUa = LoadRecords[Idx].SU; 761 SUnit *SUb = LoadRecords[Idx+1].SU; 762 if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength) 763 && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 764 765 DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU(" 766 << SUb->NodeNum << ")\n"); 767 // Copy successor edges from SUa to SUb. Interleaving computation 768 // dependent on SUa can prevent load combining due to register reuse. 769 // Predecessor edges do not need to be copied from SUb to SUa since nearby 770 // loads should have effectively the same inputs. 771 for (SUnit::const_succ_iterator 772 SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) { 773 if (SI->getSUnit() == SUb) 774 continue; 775 DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n"); 776 DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial)); 777 } 778 ++ClusterLength; 779 } 780 else 781 ClusterLength = 1; 782 } 783 } 784 785 /// \brief Callback from DAG postProcessing to create cluster edges for loads. 786 void LoadClusterMutation::apply(ScheduleDAGMI *DAG) { 787 // Map DAG NodeNum to store chain ID. 788 DenseMap<unsigned, unsigned> StoreChainIDs; 789 // Map each store chain to a set of dependent loads. 790 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 791 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 792 SUnit *SU = &DAG->SUnits[Idx]; 793 if (!SU->getInstr()->mayLoad()) 794 continue; 795 unsigned ChainPredID = DAG->SUnits.size(); 796 for (SUnit::const_pred_iterator 797 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 798 if (PI->isCtrl()) { 799 ChainPredID = PI->getSUnit()->NodeNum; 800 break; 801 } 802 } 803 // Check if this chain-like pred has been seen 804 // before. ChainPredID==MaxNodeID for loads at the top of the schedule. 805 unsigned NumChains = StoreChainDependents.size(); 806 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 807 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 808 if (Result.second) 809 StoreChainDependents.resize(NumChains + 1); 810 StoreChainDependents[Result.first->second].push_back(SU); 811 } 812 // Iterate over the store chains. 813 for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx) 814 clusterNeighboringLoads(StoreChainDependents[Idx], DAG); 815 } 816 817 //===----------------------------------------------------------------------===// 818 // MacroFusion - DAG post-processing to encourage fusion of macro ops. 819 //===----------------------------------------------------------------------===// 820 821 namespace { 822 /// \brief Post-process the DAG to create cluster edges between instructions 823 /// that may be fused by the processor into a single operation. 824 class MacroFusion : public ScheduleDAGMutation { 825 const TargetInstrInfo *TII; 826 public: 827 MacroFusion(const TargetInstrInfo *tii): TII(tii) {} 828 829 virtual void apply(ScheduleDAGMI *DAG); 830 }; 831 } // anonymous 832 833 /// \brief Callback from DAG postProcessing to create cluster edges to encourage 834 /// fused operations. 835 void MacroFusion::apply(ScheduleDAGMI *DAG) { 836 // For now, assume targets can only fuse with the branch. 837 MachineInstr *Branch = DAG->ExitSU.getInstr(); 838 if (!Branch) 839 return; 840 841 for (unsigned Idx = DAG->SUnits.size(); Idx > 0;) { 842 SUnit *SU = &DAG->SUnits[--Idx]; 843 if (!TII->shouldScheduleAdjacent(SU->getInstr(), Branch)) 844 continue; 845 846 // Create a single weak edge from SU to ExitSU. The only effect is to cause 847 // bottom-up scheduling to heavily prioritize the clustered SU. There is no 848 // need to copy predecessor edges from ExitSU to SU, since top-down 849 // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling 850 // of SU, we could create an artificial edge from the deepest root, but it 851 // hasn't been needed yet. 852 bool Success = DAG->addEdge(&DAG->ExitSU, SDep(SU, SDep::Cluster)); 853 (void)Success; 854 assert(Success && "No DAG nodes should be reachable from ExitSU"); 855 856 DEBUG(dbgs() << "Macro Fuse SU(" << SU->NodeNum << ")\n"); 857 break; 858 } 859 } 860 861 //===----------------------------------------------------------------------===// 862 // ConvergingScheduler - Implementation of the standard MachineSchedStrategy. 863 //===----------------------------------------------------------------------===// 864 865 namespace { 866 /// ConvergingScheduler shrinks the unscheduled zone using heuristics to balance 867 /// the schedule. 868 class ConvergingScheduler : public MachineSchedStrategy { 869 public: 870 /// Represent the type of SchedCandidate found within a single queue. 871 /// pickNodeBidirectional depends on these listed by decreasing priority. 872 enum CandReason { 873 NoCand, SingleExcess, SingleCritical, Cluster, 874 ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce, 875 TopDepthReduce, TopPathReduce, SingleMax, MultiPressure, NextDefUse, 876 NodeOrder}; 877 878 #ifndef NDEBUG 879 static const char *getReasonStr(ConvergingScheduler::CandReason Reason); 880 #endif 881 882 /// Policy for scheduling the next instruction in the candidate's zone. 883 struct CandPolicy { 884 bool ReduceLatency; 885 unsigned ReduceResIdx; 886 unsigned DemandResIdx; 887 888 CandPolicy(): ReduceLatency(false), ReduceResIdx(0), DemandResIdx(0) {} 889 }; 890 891 /// Status of an instruction's critical resource consumption. 892 struct SchedResourceDelta { 893 // Count critical resources in the scheduled region required by SU. 894 unsigned CritResources; 895 896 // Count critical resources from another region consumed by SU. 897 unsigned DemandedResources; 898 899 SchedResourceDelta(): CritResources(0), DemandedResources(0) {} 900 901 bool operator==(const SchedResourceDelta &RHS) const { 902 return CritResources == RHS.CritResources 903 && DemandedResources == RHS.DemandedResources; 904 } 905 bool operator!=(const SchedResourceDelta &RHS) const { 906 return !operator==(RHS); 907 } 908 }; 909 910 /// Store the state used by ConvergingScheduler heuristics, required for the 911 /// lifetime of one invocation of pickNode(). 912 struct SchedCandidate { 913 CandPolicy Policy; 914 915 // The best SUnit candidate. 916 SUnit *SU; 917 918 // The reason for this candidate. 919 CandReason Reason; 920 921 // Register pressure values for the best candidate. 922 RegPressureDelta RPDelta; 923 924 // Critical resource consumption of the best candidate. 925 SchedResourceDelta ResDelta; 926 927 SchedCandidate(const CandPolicy &policy) 928 : Policy(policy), SU(NULL), Reason(NoCand) {} 929 930 bool isValid() const { return SU; } 931 932 // Copy the status of another candidate without changing policy. 933 void setBest(SchedCandidate &Best) { 934 assert(Best.Reason != NoCand && "uninitialized Sched candidate"); 935 SU = Best.SU; 936 Reason = Best.Reason; 937 RPDelta = Best.RPDelta; 938 ResDelta = Best.ResDelta; 939 } 940 941 void initResourceDelta(const ScheduleDAGMI *DAG, 942 const TargetSchedModel *SchedModel); 943 }; 944 945 /// Summarize the unscheduled region. 946 struct SchedRemainder { 947 // Critical path through the DAG in expected latency. 948 unsigned CriticalPath; 949 950 // Unscheduled resources 951 SmallVector<unsigned, 16> RemainingCounts; 952 // Critical resource for the unscheduled zone. 953 unsigned CritResIdx; 954 // Number of micro-ops left to schedule. 955 unsigned RemainingMicroOps; 956 957 unsigned MaxRemainingCount; 958 959 void reset() { 960 CriticalPath = 0; 961 RemainingCounts.clear(); 962 CritResIdx = 0; 963 RemainingMicroOps = 0; 964 MaxRemainingCount = 0; 965 } 966 967 SchedRemainder() { reset(); } 968 969 void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel); 970 }; 971 972 /// Each Scheduling boundary is associated with ready queues. It tracks the 973 /// current cycle in the direction of movement, and maintains the state 974 /// of "hazards" and other interlocks at the current cycle. 975 struct SchedBoundary { 976 ScheduleDAGMI *DAG; 977 const TargetSchedModel *SchedModel; 978 SchedRemainder *Rem; 979 980 ReadyQueue Available; 981 ReadyQueue Pending; 982 bool CheckPending; 983 984 // For heuristics, keep a list of the nodes that immediately depend on the 985 // most recently scheduled node. 986 SmallPtrSet<const SUnit*, 8> NextSUs; 987 988 ScheduleHazardRecognizer *HazardRec; 989 990 unsigned CurrCycle; 991 unsigned IssueCount; 992 993 /// MinReadyCycle - Cycle of the soonest available instruction. 994 unsigned MinReadyCycle; 995 996 // The expected latency of the critical path in this scheduled zone. 997 unsigned ExpectedLatency; 998 999 // Resources used in the scheduled zone beyond this boundary. 1000 SmallVector<unsigned, 16> ResourceCounts; 1001 1002 // Cache the critical resources ID in this scheduled zone. 1003 unsigned CritResIdx; 1004 1005 // Is the scheduled region resource limited vs. latency limited. 1006 bool IsResourceLimited; 1007 1008 unsigned ExpectedCount; 1009 1010 // Policy flag: attempt to find ILP until expected latency is covered. 1011 bool ShouldIncreaseILP; 1012 1013 #ifndef NDEBUG 1014 // Remember the greatest min operand latency. 1015 unsigned MaxMinLatency; 1016 #endif 1017 1018 void reset() { 1019 Available.clear(); 1020 Pending.clear(); 1021 CheckPending = false; 1022 NextSUs.clear(); 1023 HazardRec = 0; 1024 CurrCycle = 0; 1025 IssueCount = 0; 1026 MinReadyCycle = UINT_MAX; 1027 ExpectedLatency = 0; 1028 ResourceCounts.resize(1); 1029 assert(!ResourceCounts[0] && "nonzero count for bad resource"); 1030 CritResIdx = 0; 1031 IsResourceLimited = false; 1032 ExpectedCount = 0; 1033 ShouldIncreaseILP = false; 1034 #ifndef NDEBUG 1035 MaxMinLatency = 0; 1036 #endif 1037 // Reserve a zero-count for invalid CritResIdx. 1038 ResourceCounts.resize(1); 1039 } 1040 1041 /// Pending queues extend the ready queues with the same ID and the 1042 /// PendingFlag set. 1043 SchedBoundary(unsigned ID, const Twine &Name): 1044 DAG(0), SchedModel(0), Rem(0), Available(ID, Name+".A"), 1045 Pending(ID << ConvergingScheduler::LogMaxQID, Name+".P") { 1046 reset(); 1047 } 1048 1049 ~SchedBoundary() { delete HazardRec; } 1050 1051 void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, 1052 SchedRemainder *rem); 1053 1054 bool isTop() const { 1055 return Available.getID() == ConvergingScheduler::TopQID; 1056 } 1057 1058 unsigned getUnscheduledLatency(SUnit *SU) const { 1059 if (isTop()) 1060 return SU->getHeight(); 1061 return SU->getDepth(); 1062 } 1063 1064 unsigned getCriticalCount() const { 1065 return ResourceCounts[CritResIdx]; 1066 } 1067 1068 bool checkHazard(SUnit *SU); 1069 1070 void checkILPPolicy(); 1071 1072 void releaseNode(SUnit *SU, unsigned ReadyCycle); 1073 1074 void bumpCycle(); 1075 1076 void countResource(unsigned PIdx, unsigned Cycles); 1077 1078 void bumpNode(SUnit *SU); 1079 1080 void releasePending(); 1081 1082 void removeReady(SUnit *SU); 1083 1084 SUnit *pickOnlyChoice(); 1085 }; 1086 1087 private: 1088 ScheduleDAGMI *DAG; 1089 const TargetSchedModel *SchedModel; 1090 const TargetRegisterInfo *TRI; 1091 1092 // State of the top and bottom scheduled instruction boundaries. 1093 SchedRemainder Rem; 1094 SchedBoundary Top; 1095 SchedBoundary Bot; 1096 1097 public: 1098 /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both) 1099 enum { 1100 TopQID = 1, 1101 BotQID = 2, 1102 LogMaxQID = 2 1103 }; 1104 1105 ConvergingScheduler(): 1106 DAG(0), SchedModel(0), TRI(0), Top(TopQID, "TopQ"), Bot(BotQID, "BotQ") {} 1107 1108 virtual void initialize(ScheduleDAGMI *dag); 1109 1110 virtual SUnit *pickNode(bool &IsTopNode); 1111 1112 virtual void schedNode(SUnit *SU, bool IsTopNode); 1113 1114 virtual void releaseTopNode(SUnit *SU); 1115 1116 virtual void releaseBottomNode(SUnit *SU); 1117 1118 virtual void registerRoots(); 1119 1120 protected: 1121 void balanceZones( 1122 ConvergingScheduler::SchedBoundary &CriticalZone, 1123 ConvergingScheduler::SchedCandidate &CriticalCand, 1124 ConvergingScheduler::SchedBoundary &OppositeZone, 1125 ConvergingScheduler::SchedCandidate &OppositeCand); 1126 1127 void checkResourceLimits(ConvergingScheduler::SchedCandidate &TopCand, 1128 ConvergingScheduler::SchedCandidate &BotCand); 1129 1130 void tryCandidate(SchedCandidate &Cand, 1131 SchedCandidate &TryCand, 1132 SchedBoundary &Zone, 1133 const RegPressureTracker &RPTracker, 1134 RegPressureTracker &TempTracker); 1135 1136 SUnit *pickNodeBidirectional(bool &IsTopNode); 1137 1138 void pickNodeFromQueue(SchedBoundary &Zone, 1139 const RegPressureTracker &RPTracker, 1140 SchedCandidate &Candidate); 1141 1142 #ifndef NDEBUG 1143 void traceCandidate(const SchedCandidate &Cand, const SchedBoundary &Zone); 1144 #endif 1145 }; 1146 } // namespace 1147 1148 void ConvergingScheduler::SchedRemainder:: 1149 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1150 reset(); 1151 if (!SchedModel->hasInstrSchedModel()) 1152 return; 1153 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1154 for (std::vector<SUnit>::iterator 1155 I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) { 1156 const MCSchedClassDesc *SC = DAG->getSchedClass(&*I); 1157 RemainingMicroOps += SchedModel->getNumMicroOps(I->getInstr(), SC); 1158 for (TargetSchedModel::ProcResIter 1159 PI = SchedModel->getWriteProcResBegin(SC), 1160 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1161 unsigned PIdx = PI->ProcResourceIdx; 1162 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1163 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1164 } 1165 } 1166 for (unsigned PIdx = 0, PEnd = SchedModel->getNumProcResourceKinds(); 1167 PIdx != PEnd; ++PIdx) { 1168 if ((int)(RemainingCounts[PIdx] - RemainingCounts[CritResIdx]) 1169 >= (int)SchedModel->getLatencyFactor()) { 1170 CritResIdx = PIdx; 1171 } 1172 } 1173 MaxRemainingCount = std::max( 1174 RemainingMicroOps * SchedModel->getMicroOpFactor(), 1175 RemainingCounts[CritResIdx]); 1176 } 1177 1178 void ConvergingScheduler::SchedBoundary:: 1179 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1180 reset(); 1181 DAG = dag; 1182 SchedModel = smodel; 1183 Rem = rem; 1184 if (SchedModel->hasInstrSchedModel()) 1185 ResourceCounts.resize(SchedModel->getNumProcResourceKinds()); 1186 } 1187 1188 void ConvergingScheduler::initialize(ScheduleDAGMI *dag) { 1189 DAG = dag; 1190 SchedModel = DAG->getSchedModel(); 1191 TRI = DAG->TRI; 1192 Rem.init(DAG, SchedModel); 1193 Top.init(DAG, SchedModel, &Rem); 1194 Bot.init(DAG, SchedModel, &Rem); 1195 1196 // Initialize resource counts. 1197 1198 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 1199 // are disabled, then these HazardRecs will be disabled. 1200 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 1201 const TargetMachine &TM = DAG->MF.getTarget(); 1202 Top.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); 1203 Bot.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); 1204 1205 assert((!ForceTopDown || !ForceBottomUp) && 1206 "-misched-topdown incompatible with -misched-bottomup"); 1207 } 1208 1209 void ConvergingScheduler::releaseTopNode(SUnit *SU) { 1210 if (SU->isScheduled) 1211 return; 1212 1213 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 1214 I != E; ++I) { 1215 unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle; 1216 unsigned MinLatency = I->getMinLatency(); 1217 #ifndef NDEBUG 1218 Top.MaxMinLatency = std::max(MinLatency, Top.MaxMinLatency); 1219 #endif 1220 if (SU->TopReadyCycle < PredReadyCycle + MinLatency) 1221 SU->TopReadyCycle = PredReadyCycle + MinLatency; 1222 } 1223 Top.releaseNode(SU, SU->TopReadyCycle); 1224 } 1225 1226 void ConvergingScheduler::releaseBottomNode(SUnit *SU) { 1227 if (SU->isScheduled) 1228 return; 1229 1230 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 1231 1232 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 1233 I != E; ++I) { 1234 if (I->isWeak()) 1235 continue; 1236 unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle; 1237 unsigned MinLatency = I->getMinLatency(); 1238 #ifndef NDEBUG 1239 Bot.MaxMinLatency = std::max(MinLatency, Bot.MaxMinLatency); 1240 #endif 1241 if (SU->BotReadyCycle < SuccReadyCycle + MinLatency) 1242 SU->BotReadyCycle = SuccReadyCycle + MinLatency; 1243 } 1244 Bot.releaseNode(SU, SU->BotReadyCycle); 1245 } 1246 1247 void ConvergingScheduler::registerRoots() { 1248 Rem.CriticalPath = DAG->ExitSU.getDepth(); 1249 // Some roots may not feed into ExitSU. Check all of them in case. 1250 for (std::vector<SUnit*>::const_iterator 1251 I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) { 1252 if ((*I)->getDepth() > Rem.CriticalPath) 1253 Rem.CriticalPath = (*I)->getDepth(); 1254 } 1255 DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n'); 1256 } 1257 1258 /// Does this SU have a hazard within the current instruction group. 1259 /// 1260 /// The scheduler supports two modes of hazard recognition. The first is the 1261 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1262 /// supports highly complicated in-order reservation tables 1263 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. 1264 /// 1265 /// The second is a streamlined mechanism that checks for hazards based on 1266 /// simple counters that the scheduler itself maintains. It explicitly checks 1267 /// for instruction dispatch limitations, including the number of micro-ops that 1268 /// can dispatch per cycle. 1269 /// 1270 /// TODO: Also check whether the SU must start a new group. 1271 bool ConvergingScheduler::SchedBoundary::checkHazard(SUnit *SU) { 1272 if (HazardRec->isEnabled()) 1273 return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard; 1274 1275 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1276 if ((IssueCount > 0) && (IssueCount + uops > SchedModel->getIssueWidth())) { 1277 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1278 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1279 return true; 1280 } 1281 return false; 1282 } 1283 1284 /// If expected latency is covered, disable ILP policy. 1285 void ConvergingScheduler::SchedBoundary::checkILPPolicy() { 1286 if (ShouldIncreaseILP 1287 && (IsResourceLimited || ExpectedLatency <= CurrCycle)) { 1288 ShouldIncreaseILP = false; 1289 DEBUG(dbgs() << "Disable ILP: " << Available.getName() << '\n'); 1290 } 1291 } 1292 1293 void ConvergingScheduler::SchedBoundary::releaseNode(SUnit *SU, 1294 unsigned ReadyCycle) { 1295 1296 if (ReadyCycle < MinReadyCycle) 1297 MinReadyCycle = ReadyCycle; 1298 1299 // Check for interlocks first. For the purpose of other heuristics, an 1300 // instruction that cannot issue appears as if it's not in the ReadyQueue. 1301 if (ReadyCycle > CurrCycle || checkHazard(SU)) 1302 Pending.push(SU); 1303 else 1304 Available.push(SU); 1305 1306 // Record this node as an immediate dependent of the scheduled node. 1307 NextSUs.insert(SU); 1308 1309 // If CriticalPath has been computed, then check if the unscheduled nodes 1310 // exceed the ILP window. Before registerRoots, CriticalPath==0. 1311 if (Rem->CriticalPath && (ExpectedLatency + getUnscheduledLatency(SU) 1312 > Rem->CriticalPath + ILPWindow)) { 1313 ShouldIncreaseILP = true; 1314 DEBUG(dbgs() << "Increase ILP: " << Available.getName() << " " 1315 << ExpectedLatency << " + " << getUnscheduledLatency(SU) << '\n'); 1316 } 1317 } 1318 1319 /// Move the boundary of scheduled code by one cycle. 1320 void ConvergingScheduler::SchedBoundary::bumpCycle() { 1321 unsigned Width = SchedModel->getIssueWidth(); 1322 IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width; 1323 1324 unsigned NextCycle = CurrCycle + 1; 1325 assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized"); 1326 if (MinReadyCycle > NextCycle) { 1327 IssueCount = 0; 1328 NextCycle = MinReadyCycle; 1329 } 1330 1331 if (!HazardRec->isEnabled()) { 1332 // Bypass HazardRec virtual calls. 1333 CurrCycle = NextCycle; 1334 } 1335 else { 1336 // Bypass getHazardType calls in case of long latency. 1337 for (; CurrCycle != NextCycle; ++CurrCycle) { 1338 if (isTop()) 1339 HazardRec->AdvanceCycle(); 1340 else 1341 HazardRec->RecedeCycle(); 1342 } 1343 } 1344 CheckPending = true; 1345 IsResourceLimited = getCriticalCount() > std::max(ExpectedLatency, CurrCycle); 1346 1347 DEBUG(dbgs() << " *** " << Available.getName() << " cycle " 1348 << CurrCycle << '\n'); 1349 } 1350 1351 /// Add the given processor resource to this scheduled zone. 1352 void ConvergingScheduler::SchedBoundary::countResource(unsigned PIdx, 1353 unsigned Cycles) { 1354 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1355 DEBUG(dbgs() << " " << SchedModel->getProcResource(PIdx)->Name 1356 << " +(" << Cycles << "x" << Factor 1357 << ") / " << SchedModel->getLatencyFactor() << '\n'); 1358 1359 unsigned Count = Factor * Cycles; 1360 ResourceCounts[PIdx] += Count; 1361 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 1362 Rem->RemainingCounts[PIdx] -= Count; 1363 1364 // Reset MaxRemainingCount for sanity. 1365 Rem->MaxRemainingCount = 0; 1366 1367 // Check if this resource exceeds the current critical resource by a full 1368 // cycle. If so, it becomes the critical resource. 1369 if ((int)(ResourceCounts[PIdx] - ResourceCounts[CritResIdx]) 1370 >= (int)SchedModel->getLatencyFactor()) { 1371 CritResIdx = PIdx; 1372 DEBUG(dbgs() << " *** Critical resource " 1373 << SchedModel->getProcResource(PIdx)->Name << " x" 1374 << ResourceCounts[PIdx] << '\n'); 1375 } 1376 } 1377 1378 /// Move the boundary of scheduled code by one SUnit. 1379 void ConvergingScheduler::SchedBoundary::bumpNode(SUnit *SU) { 1380 // Update the reservation table. 1381 if (HazardRec->isEnabled()) { 1382 if (!isTop() && SU->isCall) { 1383 // Calls are scheduled with their preceding instructions. For bottom-up 1384 // scheduling, clear the pipeline state before emitting. 1385 HazardRec->Reset(); 1386 } 1387 HazardRec->EmitInstruction(SU); 1388 } 1389 // Update resource counts and critical resource. 1390 if (SchedModel->hasInstrSchedModel()) { 1391 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1392 Rem->RemainingMicroOps -= SchedModel->getNumMicroOps(SU->getInstr(), SC); 1393 for (TargetSchedModel::ProcResIter 1394 PI = SchedModel->getWriteProcResBegin(SC), 1395 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1396 countResource(PI->ProcResourceIdx, PI->Cycles); 1397 } 1398 } 1399 if (isTop()) { 1400 if (SU->getDepth() > ExpectedLatency) 1401 ExpectedLatency = SU->getDepth(); 1402 } 1403 else { 1404 if (SU->getHeight() > ExpectedLatency) 1405 ExpectedLatency = SU->getHeight(); 1406 } 1407 1408 IsResourceLimited = getCriticalCount() > std::max(ExpectedLatency, CurrCycle); 1409 1410 // Check the instruction group dispatch limit. 1411 // TODO: Check if this SU must end a dispatch group. 1412 IssueCount += SchedModel->getNumMicroOps(SU->getInstr()); 1413 1414 // checkHazard prevents scheduling multiple instructions per cycle that exceed 1415 // issue width. However, we commonly reach the maximum. In this case 1416 // opportunistically bump the cycle to avoid uselessly checking everything in 1417 // the readyQ. Furthermore, a single instruction may produce more than one 1418 // cycle's worth of micro-ops. 1419 if (IssueCount >= SchedModel->getIssueWidth()) { 1420 DEBUG(dbgs() << " *** Max instrs at cycle " << CurrCycle << '\n'); 1421 bumpCycle(); 1422 } 1423 } 1424 1425 /// Release pending ready nodes in to the available queue. This makes them 1426 /// visible to heuristics. 1427 void ConvergingScheduler::SchedBoundary::releasePending() { 1428 // If the available queue is empty, it is safe to reset MinReadyCycle. 1429 if (Available.empty()) 1430 MinReadyCycle = UINT_MAX; 1431 1432 // Check to see if any of the pending instructions are ready to issue. If 1433 // so, add them to the available queue. 1434 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 1435 SUnit *SU = *(Pending.begin()+i); 1436 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 1437 1438 if (ReadyCycle < MinReadyCycle) 1439 MinReadyCycle = ReadyCycle; 1440 1441 if (ReadyCycle > CurrCycle) 1442 continue; 1443 1444 if (checkHazard(SU)) 1445 continue; 1446 1447 Available.push(SU); 1448 Pending.remove(Pending.begin()+i); 1449 --i; --e; 1450 } 1451 DEBUG(if (!Pending.empty()) Pending.dump()); 1452 CheckPending = false; 1453 } 1454 1455 /// Remove SU from the ready set for this boundary. 1456 void ConvergingScheduler::SchedBoundary::removeReady(SUnit *SU) { 1457 if (Available.isInQueue(SU)) 1458 Available.remove(Available.find(SU)); 1459 else { 1460 assert(Pending.isInQueue(SU) && "bad ready count"); 1461 Pending.remove(Pending.find(SU)); 1462 } 1463 } 1464 1465 /// If this queue only has one ready candidate, return it. As a side effect, 1466 /// defer any nodes that now hit a hazard, and advance the cycle until at least 1467 /// one node is ready. If multiple instructions are ready, return NULL. 1468 SUnit *ConvergingScheduler::SchedBoundary::pickOnlyChoice() { 1469 if (CheckPending) 1470 releasePending(); 1471 1472 if (IssueCount > 0) { 1473 // Defer any ready instrs that now have a hazard. 1474 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 1475 if (checkHazard(*I)) { 1476 Pending.push(*I); 1477 I = Available.remove(I); 1478 continue; 1479 } 1480 ++I; 1481 } 1482 } 1483 for (unsigned i = 0; Available.empty(); ++i) { 1484 assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) && 1485 "permanent hazard"); (void)i; 1486 bumpCycle(); 1487 releasePending(); 1488 } 1489 if (Available.size() == 1) 1490 return *Available.begin(); 1491 return NULL; 1492 } 1493 1494 /// Record the candidate policy for opposite zones with different critical 1495 /// resources. 1496 /// 1497 /// If the CriticalZone is latency limited, don't force a policy for the 1498 /// candidates here. Instead, When releasing each candidate, releaseNode 1499 /// compares the region's critical path to the candidate's height or depth and 1500 /// the scheduled zone's expected latency then sets ShouldIncreaseILP. 1501 void ConvergingScheduler::balanceZones( 1502 ConvergingScheduler::SchedBoundary &CriticalZone, 1503 ConvergingScheduler::SchedCandidate &CriticalCand, 1504 ConvergingScheduler::SchedBoundary &OppositeZone, 1505 ConvergingScheduler::SchedCandidate &OppositeCand) { 1506 1507 if (!CriticalZone.IsResourceLimited) 1508 return; 1509 1510 SchedRemainder *Rem = CriticalZone.Rem; 1511 1512 // If the critical zone is overconsuming a resource relative to the 1513 // remainder, try to reduce it. 1514 unsigned RemainingCritCount = 1515 Rem->RemainingCounts[CriticalZone.CritResIdx]; 1516 if ((int)(Rem->MaxRemainingCount - RemainingCritCount) 1517 > (int)SchedModel->getLatencyFactor()) { 1518 CriticalCand.Policy.ReduceResIdx = CriticalZone.CritResIdx; 1519 DEBUG(dbgs() << "Balance " << CriticalZone.Available.getName() << " reduce " 1520 << SchedModel->getProcResource(CriticalZone.CritResIdx)->Name 1521 << '\n'); 1522 } 1523 // If the other zone is underconsuming a resource relative to the full zone, 1524 // try to increase it. 1525 unsigned OppositeCount = 1526 OppositeZone.ResourceCounts[CriticalZone.CritResIdx]; 1527 if ((int)(OppositeZone.ExpectedCount - OppositeCount) 1528 > (int)SchedModel->getLatencyFactor()) { 1529 OppositeCand.Policy.DemandResIdx = CriticalZone.CritResIdx; 1530 DEBUG(dbgs() << "Balance " << OppositeZone.Available.getName() << " demand " 1531 << SchedModel->getProcResource(OppositeZone.CritResIdx)->Name 1532 << '\n'); 1533 } 1534 } 1535 1536 /// Determine if the scheduled zones exceed resource limits or critical path and 1537 /// set each candidate's ReduceHeight policy accordingly. 1538 void ConvergingScheduler::checkResourceLimits( 1539 ConvergingScheduler::SchedCandidate &TopCand, 1540 ConvergingScheduler::SchedCandidate &BotCand) { 1541 1542 Bot.checkILPPolicy(); 1543 Top.checkILPPolicy(); 1544 if (Bot.ShouldIncreaseILP) 1545 BotCand.Policy.ReduceLatency = true; 1546 if (Top.ShouldIncreaseILP) 1547 TopCand.Policy.ReduceLatency = true; 1548 1549 // Handle resource-limited regions. 1550 if (Top.IsResourceLimited && Bot.IsResourceLimited 1551 && Top.CritResIdx == Bot.CritResIdx) { 1552 // If the scheduled critical resource in both zones is no longer the 1553 // critical remaining resource, attempt to reduce resource height both ways. 1554 if (Top.CritResIdx != Rem.CritResIdx) { 1555 TopCand.Policy.ReduceResIdx = Top.CritResIdx; 1556 BotCand.Policy.ReduceResIdx = Bot.CritResIdx; 1557 DEBUG(dbgs() << "Reduce scheduled " 1558 << SchedModel->getProcResource(Top.CritResIdx)->Name << '\n'); 1559 } 1560 return; 1561 } 1562 // Handle latency-limited regions. 1563 if (!Top.IsResourceLimited && !Bot.IsResourceLimited) { 1564 // If the total scheduled expected latency exceeds the region's critical 1565 // path then reduce latency both ways. 1566 // 1567 // Just because a zone is not resource limited does not mean it is latency 1568 // limited. Unbuffered resource, such as max micro-ops may cause CurrCycle 1569 // to exceed expected latency. 1570 if ((Top.ExpectedLatency + Bot.ExpectedLatency >= Rem.CriticalPath) 1571 && (Rem.CriticalPath > Top.CurrCycle + Bot.CurrCycle)) { 1572 TopCand.Policy.ReduceLatency = true; 1573 BotCand.Policy.ReduceLatency = true; 1574 DEBUG(dbgs() << "Reduce scheduled latency " << Top.ExpectedLatency 1575 << " + " << Bot.ExpectedLatency << '\n'); 1576 } 1577 return; 1578 } 1579 // The critical resource is different in each zone, so request balancing. 1580 1581 // Compute the cost of each zone. 1582 Rem.MaxRemainingCount = std::max( 1583 Rem.RemainingMicroOps * SchedModel->getMicroOpFactor(), 1584 Rem.RemainingCounts[Rem.CritResIdx]); 1585 Top.ExpectedCount = std::max(Top.ExpectedLatency, Top.CurrCycle); 1586 Top.ExpectedCount = std::max( 1587 Top.getCriticalCount(), 1588 Top.ExpectedCount * SchedModel->getLatencyFactor()); 1589 Bot.ExpectedCount = std::max(Bot.ExpectedLatency, Bot.CurrCycle); 1590 Bot.ExpectedCount = std::max( 1591 Bot.getCriticalCount(), 1592 Bot.ExpectedCount * SchedModel->getLatencyFactor()); 1593 1594 balanceZones(Top, TopCand, Bot, BotCand); 1595 balanceZones(Bot, BotCand, Top, TopCand); 1596 } 1597 1598 void ConvergingScheduler::SchedCandidate:: 1599 initResourceDelta(const ScheduleDAGMI *DAG, 1600 const TargetSchedModel *SchedModel) { 1601 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 1602 return; 1603 1604 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1605 for (TargetSchedModel::ProcResIter 1606 PI = SchedModel->getWriteProcResBegin(SC), 1607 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1608 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 1609 ResDelta.CritResources += PI->Cycles; 1610 if (PI->ProcResourceIdx == Policy.DemandResIdx) 1611 ResDelta.DemandedResources += PI->Cycles; 1612 } 1613 } 1614 1615 /// Return true if this heuristic determines order. 1616 static bool tryLess(unsigned TryVal, unsigned CandVal, 1617 ConvergingScheduler::SchedCandidate &TryCand, 1618 ConvergingScheduler::SchedCandidate &Cand, 1619 ConvergingScheduler::CandReason Reason) { 1620 if (TryVal < CandVal) { 1621 TryCand.Reason = Reason; 1622 return true; 1623 } 1624 if (TryVal > CandVal) { 1625 if (Cand.Reason > Reason) 1626 Cand.Reason = Reason; 1627 return true; 1628 } 1629 return false; 1630 } 1631 1632 static bool tryGreater(unsigned TryVal, unsigned CandVal, 1633 ConvergingScheduler::SchedCandidate &TryCand, 1634 ConvergingScheduler::SchedCandidate &Cand, 1635 ConvergingScheduler::CandReason Reason) { 1636 if (TryVal > CandVal) { 1637 TryCand.Reason = Reason; 1638 return true; 1639 } 1640 if (TryVal < CandVal) { 1641 if (Cand.Reason > Reason) 1642 Cand.Reason = Reason; 1643 return true; 1644 } 1645 return false; 1646 } 1647 1648 static unsigned getWeakLeft(const SUnit *SU, bool isTop) { 1649 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 1650 } 1651 1652 /// Apply a set of heursitics to a new candidate. Heuristics are currently 1653 /// hierarchical. This may be more efficient than a graduated cost model because 1654 /// we don't need to evaluate all aspects of the model for each node in the 1655 /// queue. But it's really done to make the heuristics easier to debug and 1656 /// statistically analyze. 1657 /// 1658 /// \param Cand provides the policy and current best candidate. 1659 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 1660 /// \param Zone describes the scheduled zone that we are extending. 1661 /// \param RPTracker describes reg pressure within the scheduled zone. 1662 /// \param TempTracker is a scratch pressure tracker to reuse in queries. 1663 void ConvergingScheduler::tryCandidate(SchedCandidate &Cand, 1664 SchedCandidate &TryCand, 1665 SchedBoundary &Zone, 1666 const RegPressureTracker &RPTracker, 1667 RegPressureTracker &TempTracker) { 1668 1669 // Always initialize TryCand's RPDelta. 1670 TempTracker.getMaxPressureDelta(TryCand.SU->getInstr(), TryCand.RPDelta, 1671 DAG->getRegionCriticalPSets(), 1672 DAG->getRegPressure().MaxSetPressure); 1673 1674 // Initialize the candidate if needed. 1675 if (!Cand.isValid()) { 1676 TryCand.Reason = NodeOrder; 1677 return; 1678 } 1679 // Avoid exceeding the target's limit. 1680 if (tryLess(TryCand.RPDelta.Excess.UnitIncrease, 1681 Cand.RPDelta.Excess.UnitIncrease, TryCand, Cand, SingleExcess)) 1682 return; 1683 if (Cand.Reason == SingleExcess) 1684 Cand.Reason = MultiPressure; 1685 1686 // Avoid increasing the max critical pressure in the scheduled region. 1687 if (tryLess(TryCand.RPDelta.CriticalMax.UnitIncrease, 1688 Cand.RPDelta.CriticalMax.UnitIncrease, 1689 TryCand, Cand, SingleCritical)) 1690 return; 1691 if (Cand.Reason == SingleCritical) 1692 Cand.Reason = MultiPressure; 1693 1694 // Keep clustered nodes together to encourage downstream peephole 1695 // optimizations which may reduce resource requirements. 1696 // 1697 // This is a best effort to set things up for a post-RA pass. Optimizations 1698 // like generating loads of multiple registers should ideally be done within 1699 // the scheduler pass by combining the loads during DAG postprocessing. 1700 const SUnit *NextClusterSU = 1701 Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 1702 if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU, 1703 TryCand, Cand, Cluster)) 1704 return; 1705 // Currently, weak edges are for clustering, so we hard-code that reason. 1706 // However, deferring the current TryCand will not change Cand's reason. 1707 CandReason OrigReason = Cand.Reason; 1708 if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()), 1709 getWeakLeft(Cand.SU, Zone.isTop()), 1710 TryCand, Cand, Cluster)) { 1711 Cand.Reason = OrigReason; 1712 return; 1713 } 1714 // Avoid critical resource consumption and balance the schedule. 1715 TryCand.initResourceDelta(DAG, SchedModel); 1716 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 1717 TryCand, Cand, ResourceReduce)) 1718 return; 1719 if (tryGreater(TryCand.ResDelta.DemandedResources, 1720 Cand.ResDelta.DemandedResources, 1721 TryCand, Cand, ResourceDemand)) 1722 return; 1723 1724 // Avoid serializing long latency dependence chains. 1725 if (Cand.Policy.ReduceLatency) { 1726 if (Zone.isTop()) { 1727 if (Cand.SU->getDepth() * SchedModel->getLatencyFactor() 1728 > Zone.ExpectedCount) { 1729 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 1730 TryCand, Cand, TopDepthReduce)) 1731 return; 1732 } 1733 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 1734 TryCand, Cand, TopPathReduce)) 1735 return; 1736 } 1737 else { 1738 if (Cand.SU->getHeight() * SchedModel->getLatencyFactor() 1739 > Zone.ExpectedCount) { 1740 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 1741 TryCand, Cand, BotHeightReduce)) 1742 return; 1743 } 1744 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 1745 TryCand, Cand, BotPathReduce)) 1746 return; 1747 } 1748 } 1749 1750 // Avoid increasing the max pressure of the entire region. 1751 if (tryLess(TryCand.RPDelta.CurrentMax.UnitIncrease, 1752 Cand.RPDelta.CurrentMax.UnitIncrease, TryCand, Cand, SingleMax)) 1753 return; 1754 if (Cand.Reason == SingleMax) 1755 Cand.Reason = MultiPressure; 1756 1757 // Prefer immediate defs/users of the last scheduled instruction. This is a 1758 // nice pressure avoidance strategy that also conserves the processor's 1759 // register renaming resources and keeps the machine code readable. 1760 if (tryGreater(Zone.NextSUs.count(TryCand.SU), Zone.NextSUs.count(Cand.SU), 1761 TryCand, Cand, NextDefUse)) 1762 return; 1763 1764 // Fall through to original instruction order. 1765 if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 1766 || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 1767 TryCand.Reason = NodeOrder; 1768 } 1769 } 1770 1771 /// pickNodeFromQueue helper that returns true if the LHS reg pressure effect is 1772 /// more desirable than RHS from scheduling standpoint. 1773 static bool compareRPDelta(const RegPressureDelta &LHS, 1774 const RegPressureDelta &RHS) { 1775 // Compare each component of pressure in decreasing order of importance 1776 // without checking if any are valid. Invalid PressureElements are assumed to 1777 // have UnitIncrease==0, so are neutral. 1778 1779 // Avoid increasing the max critical pressure in the scheduled region. 1780 if (LHS.Excess.UnitIncrease != RHS.Excess.UnitIncrease) { 1781 DEBUG(dbgs() << "RP excess top - bot: " 1782 << (LHS.Excess.UnitIncrease - RHS.Excess.UnitIncrease) << '\n'); 1783 return LHS.Excess.UnitIncrease < RHS.Excess.UnitIncrease; 1784 } 1785 // Avoid increasing the max critical pressure in the scheduled region. 1786 if (LHS.CriticalMax.UnitIncrease != RHS.CriticalMax.UnitIncrease) { 1787 DEBUG(dbgs() << "RP critical top - bot: " 1788 << (LHS.CriticalMax.UnitIncrease - RHS.CriticalMax.UnitIncrease) 1789 << '\n'); 1790 return LHS.CriticalMax.UnitIncrease < RHS.CriticalMax.UnitIncrease; 1791 } 1792 // Avoid increasing the max pressure of the entire region. 1793 if (LHS.CurrentMax.UnitIncrease != RHS.CurrentMax.UnitIncrease) { 1794 DEBUG(dbgs() << "RP current top - bot: " 1795 << (LHS.CurrentMax.UnitIncrease - RHS.CurrentMax.UnitIncrease) 1796 << '\n'); 1797 return LHS.CurrentMax.UnitIncrease < RHS.CurrentMax.UnitIncrease; 1798 } 1799 return false; 1800 } 1801 1802 #ifndef NDEBUG 1803 const char *ConvergingScheduler::getReasonStr( 1804 ConvergingScheduler::CandReason Reason) { 1805 switch (Reason) { 1806 case NoCand: return "NOCAND "; 1807 case SingleExcess: return "REG-EXCESS"; 1808 case SingleCritical: return "REG-CRIT "; 1809 case Cluster: return "CLUSTER "; 1810 case SingleMax: return "REG-MAX "; 1811 case MultiPressure: return "REG-MULTI "; 1812 case ResourceReduce: return "RES-REDUCE"; 1813 case ResourceDemand: return "RES-DEMAND"; 1814 case TopDepthReduce: return "TOP-DEPTH "; 1815 case TopPathReduce: return "TOP-PATH "; 1816 case BotHeightReduce:return "BOT-HEIGHT"; 1817 case BotPathReduce: return "BOT-PATH "; 1818 case NextDefUse: return "DEF-USE "; 1819 case NodeOrder: return "ORDER "; 1820 }; 1821 llvm_unreachable("Unknown reason!"); 1822 } 1823 1824 void ConvergingScheduler::traceCandidate(const SchedCandidate &Cand, 1825 const SchedBoundary &Zone) { 1826 const char *Label = getReasonStr(Cand.Reason); 1827 PressureElement P; 1828 unsigned ResIdx = 0; 1829 unsigned Latency = 0; 1830 switch (Cand.Reason) { 1831 default: 1832 break; 1833 case SingleExcess: 1834 P = Cand.RPDelta.Excess; 1835 break; 1836 case SingleCritical: 1837 P = Cand.RPDelta.CriticalMax; 1838 break; 1839 case SingleMax: 1840 P = Cand.RPDelta.CurrentMax; 1841 break; 1842 case ResourceReduce: 1843 ResIdx = Cand.Policy.ReduceResIdx; 1844 break; 1845 case ResourceDemand: 1846 ResIdx = Cand.Policy.DemandResIdx; 1847 break; 1848 case TopDepthReduce: 1849 Latency = Cand.SU->getDepth(); 1850 break; 1851 case TopPathReduce: 1852 Latency = Cand.SU->getHeight(); 1853 break; 1854 case BotHeightReduce: 1855 Latency = Cand.SU->getHeight(); 1856 break; 1857 case BotPathReduce: 1858 Latency = Cand.SU->getDepth(); 1859 break; 1860 } 1861 dbgs() << Label << " " << Zone.Available.getName() << " "; 1862 if (P.isValid()) 1863 dbgs() << TRI->getRegPressureSetName(P.PSetID) << ":" << P.UnitIncrease 1864 << " "; 1865 else 1866 dbgs() << " "; 1867 if (ResIdx) 1868 dbgs() << SchedModel->getProcResource(ResIdx)->Name << " "; 1869 else 1870 dbgs() << " "; 1871 if (Latency) 1872 dbgs() << Latency << " cycles "; 1873 else 1874 dbgs() << " "; 1875 Cand.SU->dump(DAG); 1876 } 1877 #endif 1878 1879 /// Pick the best candidate from the top queue. 1880 /// 1881 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 1882 /// DAG building. To adjust for the current scheduling location we need to 1883 /// maintain the number of vreg uses remaining to be top-scheduled. 1884 void ConvergingScheduler::pickNodeFromQueue(SchedBoundary &Zone, 1885 const RegPressureTracker &RPTracker, 1886 SchedCandidate &Cand) { 1887 ReadyQueue &Q = Zone.Available; 1888 1889 DEBUG(Q.dump()); 1890 1891 // getMaxPressureDelta temporarily modifies the tracker. 1892 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 1893 1894 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 1895 1896 SchedCandidate TryCand(Cand.Policy); 1897 TryCand.SU = *I; 1898 tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker); 1899 if (TryCand.Reason != NoCand) { 1900 // Initialize resource delta if needed in case future heuristics query it. 1901 if (TryCand.ResDelta == SchedResourceDelta()) 1902 TryCand.initResourceDelta(DAG, SchedModel); 1903 Cand.setBest(TryCand); 1904 DEBUG(traceCandidate(Cand, Zone)); 1905 } 1906 TryCand.SU = *I; 1907 } 1908 } 1909 1910 static void tracePick(const ConvergingScheduler::SchedCandidate &Cand, 1911 bool IsTop) { 1912 DEBUG(dbgs() << "Pick " << (IsTop ? "top" : "bot") 1913 << " SU(" << Cand.SU->NodeNum << ") " 1914 << ConvergingScheduler::getReasonStr(Cand.Reason) << '\n'); 1915 } 1916 1917 /// Pick the best candidate node from either the top or bottom queue. 1918 SUnit *ConvergingScheduler::pickNodeBidirectional(bool &IsTopNode) { 1919 // Schedule as far as possible in the direction of no choice. This is most 1920 // efficient, but also provides the best heuristics for CriticalPSets. 1921 if (SUnit *SU = Bot.pickOnlyChoice()) { 1922 IsTopNode = false; 1923 return SU; 1924 } 1925 if (SUnit *SU = Top.pickOnlyChoice()) { 1926 IsTopNode = true; 1927 return SU; 1928 } 1929 CandPolicy NoPolicy; 1930 SchedCandidate BotCand(NoPolicy); 1931 SchedCandidate TopCand(NoPolicy); 1932 checkResourceLimits(TopCand, BotCand); 1933 1934 // Prefer bottom scheduling when heuristics are silent. 1935 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 1936 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 1937 1938 // If either Q has a single candidate that provides the least increase in 1939 // Excess pressure, we can immediately schedule from that Q. 1940 // 1941 // RegionCriticalPSets summarizes the pressure within the scheduled region and 1942 // affects picking from either Q. If scheduling in one direction must 1943 // increase pressure for one of the excess PSets, then schedule in that 1944 // direction first to provide more freedom in the other direction. 1945 if (BotCand.Reason == SingleExcess || BotCand.Reason == SingleCritical) { 1946 IsTopNode = false; 1947 tracePick(BotCand, IsTopNode); 1948 return BotCand.SU; 1949 } 1950 // Check if the top Q has a better candidate. 1951 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 1952 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 1953 1954 // If either Q has a single candidate that minimizes pressure above the 1955 // original region's pressure pick it. 1956 if (TopCand.Reason <= SingleMax || BotCand.Reason <= SingleMax) { 1957 if (TopCand.Reason < BotCand.Reason) { 1958 IsTopNode = true; 1959 tracePick(TopCand, IsTopNode); 1960 return TopCand.SU; 1961 } 1962 IsTopNode = false; 1963 tracePick(BotCand, IsTopNode); 1964 return BotCand.SU; 1965 } 1966 // Check for a salient pressure difference and pick the best from either side. 1967 if (compareRPDelta(TopCand.RPDelta, BotCand.RPDelta)) { 1968 IsTopNode = true; 1969 tracePick(TopCand, IsTopNode); 1970 return TopCand.SU; 1971 } 1972 // Otherwise prefer the bottom candidate, in node order if all else failed. 1973 if (TopCand.Reason < BotCand.Reason) { 1974 IsTopNode = true; 1975 tracePick(TopCand, IsTopNode); 1976 return TopCand.SU; 1977 } 1978 IsTopNode = false; 1979 tracePick(BotCand, IsTopNode); 1980 return BotCand.SU; 1981 } 1982 1983 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 1984 SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) { 1985 if (DAG->top() == DAG->bottom()) { 1986 assert(Top.Available.empty() && Top.Pending.empty() && 1987 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 1988 return NULL; 1989 } 1990 SUnit *SU; 1991 do { 1992 if (ForceTopDown) { 1993 SU = Top.pickOnlyChoice(); 1994 if (!SU) { 1995 CandPolicy NoPolicy; 1996 SchedCandidate TopCand(NoPolicy); 1997 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 1998 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 1999 SU = TopCand.SU; 2000 } 2001 IsTopNode = true; 2002 } 2003 else if (ForceBottomUp) { 2004 SU = Bot.pickOnlyChoice(); 2005 if (!SU) { 2006 CandPolicy NoPolicy; 2007 SchedCandidate BotCand(NoPolicy); 2008 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 2009 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 2010 SU = BotCand.SU; 2011 } 2012 IsTopNode = false; 2013 } 2014 else { 2015 SU = pickNodeBidirectional(IsTopNode); 2016 } 2017 } while (SU->isScheduled); 2018 2019 if (SU->isTopReady()) 2020 Top.removeReady(SU); 2021 if (SU->isBottomReady()) 2022 Bot.removeReady(SU); 2023 2024 DEBUG(dbgs() << "*** " << (IsTopNode ? "Top" : "Bottom") 2025 << " Scheduling Instruction in cycle " 2026 << (IsTopNode ? Top.CurrCycle : Bot.CurrCycle) << '\n'; 2027 SU->dump(DAG)); 2028 return SU; 2029 } 2030 2031 /// Update the scheduler's state after scheduling a node. This is the same node 2032 /// that was just returned by pickNode(). However, ScheduleDAGMI needs to update 2033 /// it's state based on the current cycle before MachineSchedStrategy does. 2034 void ConvergingScheduler::schedNode(SUnit *SU, bool IsTopNode) { 2035 if (IsTopNode) { 2036 SU->TopReadyCycle = Top.CurrCycle; 2037 Top.bumpNode(SU); 2038 } 2039 else { 2040 SU->BotReadyCycle = Bot.CurrCycle; 2041 Bot.bumpNode(SU); 2042 } 2043 } 2044 2045 /// Create the standard converging machine scheduler. This will be used as the 2046 /// default scheduler if the target does not set a default. 2047 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) { 2048 assert((!ForceTopDown || !ForceBottomUp) && 2049 "-misched-topdown incompatible with -misched-bottomup"); 2050 ScheduleDAGMI *DAG = new ScheduleDAGMI(C, new ConvergingScheduler()); 2051 // Register DAG post-processors. 2052 if (EnableLoadCluster) 2053 DAG->addMutation(new LoadClusterMutation(DAG->TII, DAG->TRI)); 2054 if (EnableMacroFusion) 2055 DAG->addMutation(new MacroFusion(DAG->TII)); 2056 return DAG; 2057 } 2058 static MachineSchedRegistry 2059 ConvergingSchedRegistry("converge", "Standard converging scheduler.", 2060 createConvergingSched); 2061 2062 //===----------------------------------------------------------------------===// 2063 // ILP Scheduler. Currently for experimental analysis of heuristics. 2064 //===----------------------------------------------------------------------===// 2065 2066 namespace { 2067 /// \brief Order nodes by the ILP metric. 2068 struct ILPOrder { 2069 SchedDFSResult *DFSResult; 2070 BitVector *ScheduledTrees; 2071 bool MaximizeILP; 2072 2073 ILPOrder(SchedDFSResult *dfs, BitVector *schedtrees, bool MaxILP) 2074 : DFSResult(dfs), ScheduledTrees(schedtrees), MaximizeILP(MaxILP) {} 2075 2076 /// \brief Apply a less-than relation on node priority. 2077 /// 2078 /// (Return true if A comes after B in the Q.) 2079 bool operator()(const SUnit *A, const SUnit *B) const { 2080 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 2081 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 2082 if (SchedTreeA != SchedTreeB) { 2083 // Unscheduled trees have lower priority. 2084 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 2085 return ScheduledTrees->test(SchedTreeB); 2086 2087 // Trees with shallower connections have have lower priority. 2088 if (DFSResult->getSubtreeLevel(SchedTreeA) 2089 != DFSResult->getSubtreeLevel(SchedTreeB)) { 2090 return DFSResult->getSubtreeLevel(SchedTreeA) 2091 < DFSResult->getSubtreeLevel(SchedTreeB); 2092 } 2093 } 2094 if (MaximizeILP) 2095 return DFSResult->getILP(A) < DFSResult->getILP(B); 2096 else 2097 return DFSResult->getILP(A) > DFSResult->getILP(B); 2098 } 2099 }; 2100 2101 /// \brief Schedule based on the ILP metric. 2102 class ILPScheduler : public MachineSchedStrategy { 2103 /// In case all subtrees are eventually connected to a common root through 2104 /// data dependence (e.g. reduction), place an upper limit on their size. 2105 /// 2106 /// FIXME: A subtree limit is generally good, but in the situation commented 2107 /// above, where multiple similar subtrees feed a common root, we should 2108 /// only split at a point where the resulting subtrees will be balanced. 2109 /// (a motivating test case must be found). 2110 static const unsigned SubtreeLimit = 16; 2111 2112 SchedDFSResult DFSResult; 2113 BitVector ScheduledTrees; 2114 ILPOrder Cmp; 2115 2116 std::vector<SUnit*> ReadyQ; 2117 public: 2118 ILPScheduler(bool MaximizeILP) 2119 : DFSResult(/*BottomUp=*/true, SubtreeLimit), 2120 Cmp(&DFSResult, &ScheduledTrees, MaximizeILP) {} 2121 2122 virtual void initialize(ScheduleDAGMI *DAG) { 2123 ReadyQ.clear(); 2124 DFSResult.clear(); 2125 DFSResult.resize(DAG->SUnits.size()); 2126 ScheduledTrees.clear(); 2127 } 2128 2129 virtual void registerRoots() { 2130 DFSResult.compute(ReadyQ); 2131 ScheduledTrees.resize(DFSResult.getNumSubtrees()); 2132 // Restore the heap in ReadyQ with the updated DFS results. 2133 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 2134 } 2135 2136 /// Implement MachineSchedStrategy interface. 2137 /// ----------------------------------------- 2138 2139 /// Callback to select the highest priority node from the ready Q. 2140 virtual SUnit *pickNode(bool &IsTopNode) { 2141 if (ReadyQ.empty()) return NULL; 2142 pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 2143 SUnit *SU = ReadyQ.back(); 2144 ReadyQ.pop_back(); 2145 IsTopNode = false; 2146 DEBUG(dbgs() << "*** Scheduling " << "SU(" << SU->NodeNum << "): " 2147 << *SU->getInstr() 2148 << " ILP: " << DFSResult.getILP(SU) 2149 << " Tree: " << DFSResult.getSubtreeID(SU) << " @" 2150 << DFSResult.getSubtreeLevel(DFSResult.getSubtreeID(SU))<< '\n'); 2151 return SU; 2152 } 2153 2154 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 2155 /// DFSResults, and resort the priority Q. 2156 virtual void schedNode(SUnit *SU, bool IsTopNode) { 2157 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 2158 if (!ScheduledTrees.test(DFSResult.getSubtreeID(SU))) { 2159 ScheduledTrees.set(DFSResult.getSubtreeID(SU)); 2160 DFSResult.scheduleTree(DFSResult.getSubtreeID(SU)); 2161 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 2162 } 2163 } 2164 2165 virtual void releaseTopNode(SUnit *) { /*only called for top roots*/ } 2166 2167 virtual void releaseBottomNode(SUnit *SU) { 2168 ReadyQ.push_back(SU); 2169 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 2170 } 2171 }; 2172 } // namespace 2173 2174 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 2175 return new ScheduleDAGMI(C, new ILPScheduler(true)); 2176 } 2177 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 2178 return new ScheduleDAGMI(C, new ILPScheduler(false)); 2179 } 2180 static MachineSchedRegistry ILPMaxRegistry( 2181 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 2182 static MachineSchedRegistry ILPMinRegistry( 2183 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 2184 2185 //===----------------------------------------------------------------------===// 2186 // Machine Instruction Shuffler for Correctness Testing 2187 //===----------------------------------------------------------------------===// 2188 2189 #ifndef NDEBUG 2190 namespace { 2191 /// Apply a less-than relation on the node order, which corresponds to the 2192 /// instruction order prior to scheduling. IsReverse implements greater-than. 2193 template<bool IsReverse> 2194 struct SUnitOrder { 2195 bool operator()(SUnit *A, SUnit *B) const { 2196 if (IsReverse) 2197 return A->NodeNum > B->NodeNum; 2198 else 2199 return A->NodeNum < B->NodeNum; 2200 } 2201 }; 2202 2203 /// Reorder instructions as much as possible. 2204 class InstructionShuffler : public MachineSchedStrategy { 2205 bool IsAlternating; 2206 bool IsTopDown; 2207 2208 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 2209 // gives nodes with a higher number higher priority causing the latest 2210 // instructions to be scheduled first. 2211 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> > 2212 TopQ; 2213 // When scheduling bottom-up, use greater-than as the queue priority. 2214 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> > 2215 BottomQ; 2216 public: 2217 InstructionShuffler(bool alternate, bool topdown) 2218 : IsAlternating(alternate), IsTopDown(topdown) {} 2219 2220 virtual void initialize(ScheduleDAGMI *) { 2221 TopQ.clear(); 2222 BottomQ.clear(); 2223 } 2224 2225 /// Implement MachineSchedStrategy interface. 2226 /// ----------------------------------------- 2227 2228 virtual SUnit *pickNode(bool &IsTopNode) { 2229 SUnit *SU; 2230 if (IsTopDown) { 2231 do { 2232 if (TopQ.empty()) return NULL; 2233 SU = TopQ.top(); 2234 TopQ.pop(); 2235 } while (SU->isScheduled); 2236 IsTopNode = true; 2237 } 2238 else { 2239 do { 2240 if (BottomQ.empty()) return NULL; 2241 SU = BottomQ.top(); 2242 BottomQ.pop(); 2243 } while (SU->isScheduled); 2244 IsTopNode = false; 2245 } 2246 if (IsAlternating) 2247 IsTopDown = !IsTopDown; 2248 return SU; 2249 } 2250 2251 virtual void schedNode(SUnit *SU, bool IsTopNode) {} 2252 2253 virtual void releaseTopNode(SUnit *SU) { 2254 TopQ.push(SU); 2255 } 2256 virtual void releaseBottomNode(SUnit *SU) { 2257 BottomQ.push(SU); 2258 } 2259 }; 2260 } // namespace 2261 2262 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 2263 bool Alternate = !ForceTopDown && !ForceBottomUp; 2264 bool TopDown = !ForceBottomUp; 2265 assert((TopDown || !ForceTopDown) && 2266 "-misched-topdown incompatible with -misched-bottomup"); 2267 return new ScheduleDAGMI(C, new InstructionShuffler(Alternate, TopDown)); 2268 } 2269 static MachineSchedRegistry ShufflerRegistry( 2270 "shuffle", "Shuffle machine instructions alternating directions", 2271 createInstructionShuffler); 2272 #endif // !NDEBUG 2273