xref: /llvm-project/llvm/lib/CodeGen/MachineScheduler.cpp (revision 419eae2db7741b9186327fe3d2d8a7f6eef13c3a)
1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // MachineScheduler schedules machine instructions after phi elimination. It
11 // preserves LiveIntervals so it can be invoked before register allocation.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define DEBUG_TYPE "misched"
16 
17 #include "RegisterClassInfo.h"
18 #include "RegisterPressure.h"
19 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
20 #include "llvm/CodeGen/MachineScheduler.h"
21 #include "llvm/CodeGen/Passes.h"
22 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Target/TargetInstrInfo.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/ADT/OwningPtr.h"
30 #include "llvm/ADT/PriorityQueue.h"
31 
32 #include <queue>
33 
34 using namespace llvm;
35 
36 static cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
37                                   cl::desc("Force top-down list scheduling"));
38 static cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
39                                   cl::desc("Force bottom-up list scheduling"));
40 
41 #ifndef NDEBUG
42 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
43   cl::desc("Pop up a window to show MISched dags after they are processed"));
44 
45 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
46   cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
47 #else
48 static bool ViewMISchedDAGs = false;
49 #endif // NDEBUG
50 
51 //===----------------------------------------------------------------------===//
52 // Machine Instruction Scheduling Pass and Registry
53 //===----------------------------------------------------------------------===//
54 
55 MachineSchedContext::MachineSchedContext():
56     MF(0), MLI(0), MDT(0), PassConfig(0), AA(0), LIS(0) {
57   RegClassInfo = new RegisterClassInfo();
58 }
59 
60 MachineSchedContext::~MachineSchedContext() {
61   delete RegClassInfo;
62 }
63 
64 namespace {
65 /// MachineScheduler runs after coalescing and before register allocation.
66 class MachineScheduler : public MachineSchedContext,
67                          public MachineFunctionPass {
68 public:
69   MachineScheduler();
70 
71   virtual void getAnalysisUsage(AnalysisUsage &AU) const;
72 
73   virtual void releaseMemory() {}
74 
75   virtual bool runOnMachineFunction(MachineFunction&);
76 
77   virtual void print(raw_ostream &O, const Module* = 0) const;
78 
79   static char ID; // Class identification, replacement for typeinfo
80 };
81 } // namespace
82 
83 char MachineScheduler::ID = 0;
84 
85 char &llvm::MachineSchedulerID = MachineScheduler::ID;
86 
87 INITIALIZE_PASS_BEGIN(MachineScheduler, "misched",
88                       "Machine Instruction Scheduler", false, false)
89 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
90 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
91 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
92 INITIALIZE_PASS_END(MachineScheduler, "misched",
93                     "Machine Instruction Scheduler", false, false)
94 
95 MachineScheduler::MachineScheduler()
96 : MachineFunctionPass(ID) {
97   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
98 }
99 
100 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
101   AU.setPreservesCFG();
102   AU.addRequiredID(MachineDominatorsID);
103   AU.addRequired<MachineLoopInfo>();
104   AU.addRequired<AliasAnalysis>();
105   AU.addRequired<TargetPassConfig>();
106   AU.addRequired<SlotIndexes>();
107   AU.addPreserved<SlotIndexes>();
108   AU.addRequired<LiveIntervals>();
109   AU.addPreserved<LiveIntervals>();
110   MachineFunctionPass::getAnalysisUsage(AU);
111 }
112 
113 MachinePassRegistry MachineSchedRegistry::Registry;
114 
115 /// A dummy default scheduler factory indicates whether the scheduler
116 /// is overridden on the command line.
117 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
118   return 0;
119 }
120 
121 /// MachineSchedOpt allows command line selection of the scheduler.
122 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
123                RegisterPassParser<MachineSchedRegistry> >
124 MachineSchedOpt("misched",
125                 cl::init(&useDefaultMachineSched), cl::Hidden,
126                 cl::desc("Machine instruction scheduler to use"));
127 
128 static MachineSchedRegistry
129 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
130                      useDefaultMachineSched);
131 
132 /// Forward declare the standard machine scheduler. This will be used as the
133 /// default scheduler if the target does not set a default.
134 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C);
135 
136 
137 /// Decrement this iterator until reaching the top or a non-debug instr.
138 static MachineBasicBlock::iterator
139 priorNonDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Beg) {
140   assert(I != Beg && "reached the top of the region, cannot decrement");
141   while (--I != Beg) {
142     if (!I->isDebugValue())
143       break;
144   }
145   return I;
146 }
147 
148 /// If this iterator is a debug value, increment until reaching the End or a
149 /// non-debug instruction.
150 static MachineBasicBlock::iterator
151 nextIfDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator End) {
152   while(I != End) {
153     if (!I->isDebugValue())
154       break;
155   }
156   return I;
157 }
158 
159 /// Top-level MachineScheduler pass driver.
160 ///
161 /// Visit blocks in function order. Divide each block into scheduling regions
162 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
163 /// consistent with the DAG builder, which traverses the interior of the
164 /// scheduling regions bottom-up.
165 ///
166 /// This design avoids exposing scheduling boundaries to the DAG builder,
167 /// simplifying the DAG builder's support for "special" target instructions.
168 /// At the same time the design allows target schedulers to operate across
169 /// scheduling boundaries, for example to bundle the boudary instructions
170 /// without reordering them. This creates complexity, because the target
171 /// scheduler must update the RegionBegin and RegionEnd positions cached by
172 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
173 /// design would be to split blocks at scheduling boundaries, but LLVM has a
174 /// general bias against block splitting purely for implementation simplicity.
175 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
176   // Initialize the context of the pass.
177   MF = &mf;
178   MLI = &getAnalysis<MachineLoopInfo>();
179   MDT = &getAnalysis<MachineDominatorTree>();
180   PassConfig = &getAnalysis<TargetPassConfig>();
181   AA = &getAnalysis<AliasAnalysis>();
182 
183   LIS = &getAnalysis<LiveIntervals>();
184   const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
185 
186   RegClassInfo->runOnMachineFunction(*MF);
187 
188   // Select the scheduler, or set the default.
189   MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
190   if (Ctor == useDefaultMachineSched) {
191     // Get the default scheduler set by the target.
192     Ctor = MachineSchedRegistry::getDefault();
193     if (!Ctor) {
194       Ctor = createConvergingSched;
195       MachineSchedRegistry::setDefault(Ctor);
196     }
197   }
198   // Instantiate the selected scheduler.
199   OwningPtr<ScheduleDAGInstrs> Scheduler(Ctor(this));
200 
201   // Visit all machine basic blocks.
202   //
203   // TODO: Visit blocks in global postorder or postorder within the bottom-up
204   // loop tree. Then we can optionally compute global RegPressure.
205   for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
206        MBB != MBBEnd; ++MBB) {
207 
208     Scheduler->startBlock(MBB);
209 
210     // Break the block into scheduling regions [I, RegionEnd), and schedule each
211     // region as soon as it is discovered. RegionEnd points the the scheduling
212     // boundary at the bottom of the region. The DAG does not include RegionEnd,
213     // but the region does (i.e. the next RegionEnd is above the previous
214     // RegionBegin). If the current block has no terminator then RegionEnd ==
215     // MBB->end() for the bottom region.
216     //
217     // The Scheduler may insert instructions during either schedule() or
218     // exitRegion(), even for empty regions. So the local iterators 'I' and
219     // 'RegionEnd' are invalid across these calls.
220     unsigned RemainingCount = MBB->size();
221     for(MachineBasicBlock::iterator RegionEnd = MBB->end();
222         RegionEnd != MBB->begin(); RegionEnd = Scheduler->begin()) {
223 
224       // Avoid decrementing RegionEnd for blocks with no terminator.
225       if (RegionEnd != MBB->end()
226           || TII->isSchedulingBoundary(llvm::prior(RegionEnd), MBB, *MF)) {
227         --RegionEnd;
228         // Count the boundary instruction.
229         --RemainingCount;
230       }
231 
232       // The next region starts above the previous region. Look backward in the
233       // instruction stream until we find the nearest boundary.
234       MachineBasicBlock::iterator I = RegionEnd;
235       for(;I != MBB->begin(); --I, --RemainingCount) {
236         if (TII->isSchedulingBoundary(llvm::prior(I), MBB, *MF))
237           break;
238       }
239       // Notify the scheduler of the region, even if we may skip scheduling
240       // it. Perhaps it still needs to be bundled.
241       Scheduler->enterRegion(MBB, I, RegionEnd, RemainingCount);
242 
243       // Skip empty scheduling regions (0 or 1 schedulable instructions).
244       if (I == RegionEnd || I == llvm::prior(RegionEnd)) {
245         // Close the current region. Bundle the terminator if needed.
246         // This invalidates 'RegionEnd' and 'I'.
247         Scheduler->exitRegion();
248         continue;
249       }
250       DEBUG(dbgs() << "MachineScheduling " << MF->getFunction()->getName()
251             << ":BB#" << MBB->getNumber() << "\n  From: " << *I << "    To: ";
252             if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
253             else dbgs() << "End";
254             dbgs() << " Remaining: " << RemainingCount << "\n");
255 
256       // Schedule a region: possibly reorder instructions.
257       // This invalidates 'RegionEnd' and 'I'.
258       Scheduler->schedule();
259 
260       // Close the current region.
261       Scheduler->exitRegion();
262 
263       // Scheduling has invalidated the current iterator 'I'. Ask the
264       // scheduler for the top of it's scheduled region.
265       RegionEnd = Scheduler->begin();
266     }
267     assert(RemainingCount == 0 && "Instruction count mismatch!");
268     Scheduler->finishBlock();
269   }
270   Scheduler->finalizeSchedule();
271   DEBUG(LIS->print(dbgs()));
272   return true;
273 }
274 
275 void MachineScheduler::print(raw_ostream &O, const Module* m) const {
276   // unimplemented
277 }
278 
279 //===----------------------------------------------------------------------===//
280 // MachineSchedStrategy - Interface to a machine scheduling algorithm.
281 //===----------------------------------------------------------------------===//
282 
283 namespace {
284 class ScheduleDAGMI;
285 
286 /// MachineSchedStrategy - Interface used by ScheduleDAGMI to drive the selected
287 /// scheduling algorithm.
288 ///
289 /// If this works well and targets wish to reuse ScheduleDAGMI, we may expose it
290 /// in ScheduleDAGInstrs.h
291 class MachineSchedStrategy {
292 public:
293   virtual ~MachineSchedStrategy() {}
294 
295   /// Initialize the strategy after building the DAG for a new region.
296   virtual void initialize(ScheduleDAGMI *DAG) = 0;
297 
298   /// Pick the next node to schedule, or return NULL. Set IsTopNode to true to
299   /// schedule the node at the top of the unscheduled region. Otherwise it will
300   /// be scheduled at the bottom.
301   virtual SUnit *pickNode(bool &IsTopNode) = 0;
302 
303   /// When all predecessor dependencies have been resolved, free this node for
304   /// top-down scheduling.
305   virtual void releaseTopNode(SUnit *SU) = 0;
306   /// When all successor dependencies have been resolved, free this node for
307   /// bottom-up scheduling.
308   virtual void releaseBottomNode(SUnit *SU) = 0;
309 };
310 } // namespace
311 
312 //===----------------------------------------------------------------------===//
313 // ScheduleDAGMI - Base class for MachineInstr scheduling with LiveIntervals
314 // preservation.
315 //===----------------------------------------------------------------------===//
316 
317 namespace {
318 /// ScheduleDAGMI is an implementation of ScheduleDAGInstrs that schedules
319 /// machine instructions while updating LiveIntervals.
320 class ScheduleDAGMI : public ScheduleDAGInstrs {
321   AliasAnalysis *AA;
322   RegisterClassInfo *RegClassInfo;
323   MachineSchedStrategy *SchedImpl;
324 
325   MachineBasicBlock::iterator LiveRegionEnd;
326 
327   // Register pressure in this region computed by buildSchedGraph.
328   IntervalPressure RegPressure;
329   RegPressureTracker RPTracker;
330 
331   /// The top of the unscheduled zone.
332   MachineBasicBlock::iterator CurrentTop;
333   IntervalPressure TopPressure;
334   RegPressureTracker TopRPTracker;
335 
336   /// The bottom of the unscheduled zone.
337   MachineBasicBlock::iterator CurrentBottom;
338   IntervalPressure BotPressure;
339   RegPressureTracker BotRPTracker;
340 
341   /// The number of instructions scheduled so far. Used to cut off the
342   /// scheduler at the point determined by misched-cutoff.
343   unsigned NumInstrsScheduled;
344 public:
345   ScheduleDAGMI(MachineSchedContext *C, MachineSchedStrategy *S):
346     ScheduleDAGInstrs(*C->MF, *C->MLI, *C->MDT, /*IsPostRA=*/false, C->LIS),
347     AA(C->AA), RegClassInfo(C->RegClassInfo), SchedImpl(S),
348     RPTracker(RegPressure), CurrentTop(), TopRPTracker(TopPressure),
349     CurrentBottom(), BotRPTracker(BotPressure), NumInstrsScheduled(0) {}
350 
351   ~ScheduleDAGMI() {
352     delete SchedImpl;
353   }
354 
355   MachineBasicBlock::iterator top() const { return CurrentTop; }
356   MachineBasicBlock::iterator bottom() const { return CurrentBottom; }
357 
358   /// Implement the ScheduleDAGInstrs interface for handling the next scheduling
359   /// region. This covers all instructions in a block, while schedule() may only
360   /// cover a subset.
361   void enterRegion(MachineBasicBlock *bb,
362                    MachineBasicBlock::iterator begin,
363                    MachineBasicBlock::iterator end,
364                    unsigned endcount);
365 
366   /// Implement ScheduleDAGInstrs interface for scheduling a sequence of
367   /// reorderable instructions.
368   void schedule();
369 
370   /// Get current register pressure for the top scheduled instructions.
371   const IntervalPressure &getTopPressure() const { return TopPressure; }
372   const RegPressureTracker &getTopRPTracker() const { return TopRPTracker; }
373 
374   /// Get current register pressure for the bottom scheduled instructions.
375   const IntervalPressure &getBotPressure() const { return BotPressure; }
376   const RegPressureTracker &getBotRPTracker() const { return BotRPTracker; }
377 
378   /// Get register pressure for the entire scheduling region before scheduling.
379   const IntervalPressure &getRegPressure() const { return RegPressure; }
380 
381 protected:
382   void initRegPressure();
383 
384   void moveInstruction(MachineInstr *MI, MachineBasicBlock::iterator InsertPos);
385   bool checkSchedLimit();
386 
387   void releaseSucc(SUnit *SU, SDep *SuccEdge);
388   void releaseSuccessors(SUnit *SU);
389   void releasePred(SUnit *SU, SDep *PredEdge);
390   void releasePredecessors(SUnit *SU);
391 
392   void placeDebugValues();
393 };
394 } // namespace
395 
396 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
397 /// NumPredsLeft reaches zero, release the successor node.
398 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
399   SUnit *SuccSU = SuccEdge->getSUnit();
400 
401 #ifndef NDEBUG
402   if (SuccSU->NumPredsLeft == 0) {
403     dbgs() << "*** Scheduling failed! ***\n";
404     SuccSU->dump(this);
405     dbgs() << " has been released too many times!\n";
406     llvm_unreachable(0);
407   }
408 #endif
409   --SuccSU->NumPredsLeft;
410   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
411     SchedImpl->releaseTopNode(SuccSU);
412 }
413 
414 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
415 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
416   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
417        I != E; ++I) {
418     releaseSucc(SU, &*I);
419   }
420 }
421 
422 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
423 /// NumSuccsLeft reaches zero, release the predecessor node.
424 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
425   SUnit *PredSU = PredEdge->getSUnit();
426 
427 #ifndef NDEBUG
428   if (PredSU->NumSuccsLeft == 0) {
429     dbgs() << "*** Scheduling failed! ***\n";
430     PredSU->dump(this);
431     dbgs() << " has been released too many times!\n";
432     llvm_unreachable(0);
433   }
434 #endif
435   --PredSU->NumSuccsLeft;
436   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
437     SchedImpl->releaseBottomNode(PredSU);
438 }
439 
440 /// releasePredecessors - Call releasePred on each of SU's predecessors.
441 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
442   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
443        I != E; ++I) {
444     releasePred(SU, &*I);
445   }
446 }
447 
448 void ScheduleDAGMI::moveInstruction(MachineInstr *MI,
449                                     MachineBasicBlock::iterator InsertPos) {
450   // Fix RegionBegin if the first instruction moves down.
451   if (&*RegionBegin == MI)
452     RegionBegin = llvm::next(RegionBegin);
453   BB->splice(InsertPos, BB, MI);
454   LIS->handleMove(MI);
455   // Fix RegionBegin if another instruction moves above the first instruction.
456   if (RegionBegin == InsertPos)
457     RegionBegin = MI;
458   // Fix TopRPTracker if we move something above CurrentTop.
459   if (CurrentTop == InsertPos)
460     TopRPTracker.setPos(MI);
461 }
462 
463 bool ScheduleDAGMI::checkSchedLimit() {
464 #ifndef NDEBUG
465   if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
466     CurrentTop = CurrentBottom;
467     return false;
468   }
469   ++NumInstrsScheduled;
470 #endif
471   return true;
472 }
473 
474 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
475 /// crossing a scheduling boundary. [begin, end) includes all instructions in
476 /// the region, including the boundary itself and single-instruction regions
477 /// that don't get scheduled.
478 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
479                                 MachineBasicBlock::iterator begin,
480                                 MachineBasicBlock::iterator end,
481                                 unsigned endcount)
482 {
483   ScheduleDAGInstrs::enterRegion(bb, begin, end, endcount);
484 
485   // For convenience remember the end of the liveness region.
486   LiveRegionEnd =
487     (RegionEnd == bb->end()) ? RegionEnd : llvm::next(RegionEnd);
488 }
489 
490 // Setup the register pressure trackers for the top scheduled top and bottom
491 // scheduled regions.
492 void ScheduleDAGMI::initRegPressure() {
493   TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin);
494   BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
495 
496   // Close the RPTracker to finalize live ins.
497   RPTracker.closeRegion();
498 
499   // Initialize the live ins and live outs.
500   TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
501   BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
502 
503   // Close one end of the tracker so we can call
504   // getMaxUpward/DownwardPressureDelta before advancing across any
505   // instructions. This converts currently live regs into live ins/outs.
506   TopRPTracker.closeTop();
507   BotRPTracker.closeBottom();
508 
509   // Account for liveness generated by the region boundary.
510   if (LiveRegionEnd != RegionEnd)
511     BotRPTracker.recede();
512 
513   assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
514 }
515 
516 /// schedule - Called back from MachineScheduler::runOnMachineFunction
517 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
518 /// only includes instructions that have DAG nodes, not scheduling boundaries.
519 void ScheduleDAGMI::schedule() {
520   // Initialize the register pressure tracker used by buildSchedGraph.
521   RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
522 
523   // Account for liveness generate by the region boundary.
524   if (LiveRegionEnd != RegionEnd)
525     RPTracker.recede();
526 
527   // Build the DAG, and compute current register pressure.
528   buildSchedGraph(AA, &RPTracker);
529 
530   // Initialize top/bottom trackers after computing region pressure.
531   initRegPressure();
532 
533   DEBUG(dbgs() << "********** MI Scheduling **********\n");
534   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
535           SUnits[su].dumpAll(this));
536 
537   if (ViewMISchedDAGs) viewGraph();
538 
539   SchedImpl->initialize(this);
540 
541   // Release edges from the special Entry node or to the special Exit node.
542   releaseSuccessors(&EntrySU);
543   releasePredecessors(&ExitSU);
544 
545   // Release all DAG roots for scheduling.
546   for (std::vector<SUnit>::iterator I = SUnits.begin(), E = SUnits.end();
547        I != E; ++I) {
548     // A SUnit is ready to top schedule if it has no predecessors.
549     if (I->Preds.empty())
550       SchedImpl->releaseTopNode(&(*I));
551     // A SUnit is ready to bottom schedule if it has no successors.
552     if (I->Succs.empty())
553       SchedImpl->releaseBottomNode(&(*I));
554   }
555 
556   CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
557   CurrentBottom = RegionEnd;
558   bool IsTopNode = false;
559   while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
560     DEBUG(dbgs() << "*** " << (IsTopNode ? "Top" : "Bottom")
561           << " Scheduling Instruction:\n"; SU->dump(this));
562     if (!checkSchedLimit())
563       break;
564 
565     // Move the instruction to its new location in the instruction stream.
566     MachineInstr *MI = SU->getInstr();
567 
568     if (IsTopNode) {
569       assert(SU->isTopReady() && "node still has unscheduled dependencies");
570       if (&*CurrentTop == MI)
571         CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
572       else
573         moveInstruction(MI, CurrentTop);
574 
575       // Update top scheduled pressure.
576       TopRPTracker.advance();
577       assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
578 
579       // Release dependent instructions for scheduling.
580       releaseSuccessors(SU);
581     }
582     else {
583       assert(SU->isBottomReady() && "node still has unscheduled dependencies");
584       MachineBasicBlock::iterator priorII =
585         priorNonDebug(CurrentBottom, CurrentTop);
586       if (&*priorII == MI)
587         CurrentBottom = priorII;
588       else {
589         if (&*CurrentTop == MI)
590           CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
591         moveInstruction(MI, CurrentBottom);
592         CurrentBottom = MI;
593       }
594       // Update bottom scheduled pressure.
595       BotRPTracker.recede();
596       assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
597 
598       // Release dependent instructions for scheduling.
599       releasePredecessors(SU);
600     }
601     SU->isScheduled = true;
602   }
603   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
604 
605   placeDebugValues();
606 }
607 
608 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
609 void ScheduleDAGMI::placeDebugValues() {
610   // If first instruction was a DBG_VALUE then put it back.
611   if (FirstDbgValue) {
612     BB->splice(RegionBegin, BB, FirstDbgValue);
613     RegionBegin = FirstDbgValue;
614   }
615 
616   for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
617          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
618     std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
619     MachineInstr *DbgValue = P.first;
620     MachineBasicBlock::iterator OrigPrevMI = P.second;
621     BB->splice(++OrigPrevMI, BB, DbgValue);
622     if (OrigPrevMI == llvm::prior(RegionEnd))
623       RegionEnd = DbgValue;
624   }
625   DbgValues.clear();
626   FirstDbgValue = NULL;
627 }
628 
629 //===----------------------------------------------------------------------===//
630 // ConvergingScheduler - Implementation of the standard MachineSchedStrategy.
631 //===----------------------------------------------------------------------===//
632 
633 namespace {
634 /// Wrapper around a vector of SUnits with some basic convenience methods.
635 struct ReadyQ {
636   typedef std::vector<SUnit*>::iterator iterator;
637 
638   unsigned ID;
639   std::vector<SUnit*> Queue;
640 
641   ReadyQ(unsigned id): ID(id) {}
642 
643   bool isInQueue(SUnit *SU) const {
644     return SU->NodeQueueId & ID;
645   }
646 
647   bool empty() const { return Queue.empty(); }
648 
649   iterator begin() { return Queue.begin(); }
650 
651   iterator end() { return Queue.end(); }
652 
653   iterator find(SUnit *SU) {
654     return std::find(Queue.begin(), Queue.end(), SU);
655   }
656 
657   void push(SUnit *SU) {
658     Queue.push_back(SU);
659     SU->NodeQueueId |= ID;
660   }
661 
662   void remove(iterator I) {
663     (*I)->NodeQueueId &= ~ID;
664     *I = Queue.back();
665     Queue.pop_back();
666   }
667 };
668 
669 /// ConvergingScheduler shrinks the unscheduled zone using heuristics to balance
670 /// the schedule.
671 class ConvergingScheduler : public MachineSchedStrategy {
672 
673   /// Store the state used by ConvergingScheduler heuristics, required for the
674   /// lifetime of one invocation of pickNode().
675   struct SchedCandidate {
676     // The best SUnit candidate.
677     SUnit *SU;
678 
679     // Register pressure values for the best candidate.
680     RegPressureDelta RPDelta;
681 
682     SchedCandidate(): SU(NULL) {}
683   };
684 
685   ScheduleDAGMI *DAG;
686   const TargetRegisterInfo *TRI;
687 
688   ReadyQ TopQueue;
689   ReadyQ BotQueue;
690 
691 public:
692   /// SUnit::NodeQueueId = 0 (none), = 1 (top), = 2 (bottom), = 3 (both)
693   enum {
694     TopQID = 1,
695     BotQID = 2
696   };
697 
698   ConvergingScheduler(): DAG(0), TRI(0), TopQueue(TopQID), BotQueue(BotQID) {}
699 
700   static const char *getQName(unsigned ID) {
701     switch(ID) {
702     default: return "NoQ";
703     case TopQID: return "TopQ";
704     case BotQID: return "BotQ";
705     };
706   }
707 
708   virtual void initialize(ScheduleDAGMI *dag) {
709     DAG = dag;
710     TRI = DAG->TRI;
711 
712     assert((!ForceTopDown || !ForceBottomUp) &&
713            "-misched-topdown incompatible with -misched-bottomup");
714   }
715 
716   virtual SUnit *pickNode(bool &IsTopNode);
717 
718   virtual void releaseTopNode(SUnit *SU) {
719     if (!SU->isScheduled)
720       TopQueue.push(SU);
721   }
722   virtual void releaseBottomNode(SUnit *SU) {
723     if (!SU->isScheduled)
724       BotQueue.push(SU);
725   }
726 protected:
727 #ifndef NDEBUG
728   void traceCandidate(const char *Label, unsigned QID, SUnit *SU,
729                       int RPDiff, unsigned PSetID);
730 #endif
731   bool pickNodeFromQueue(ReadyQ &Q, const RegPressureTracker &RPTracker,
732                          SchedCandidate &Candidate);
733 };
734 } // namespace
735 
736 #ifndef NDEBUG
737 void ConvergingScheduler::
738 traceCandidate(const char *Label, unsigned QID, SUnit *SU,
739                int RPDiff, unsigned PSetID) {
740   dbgs() << Label << getQName(QID) << " ";
741   if (RPDiff)
742     dbgs() << TRI->getRegPressureSetName(PSetID) << ":" << RPDiff << " ";
743   else
744     dbgs() << "     ";
745   SU->dump(DAG);
746 }
747 #endif
748 
749 /// Pick the best candidate from the top queue.
750 ///
751 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
752 /// DAG building. To adjust for the current scheduling location we need to
753 /// maintain the number of vreg uses remaining to be top-scheduled.
754 bool ConvergingScheduler::pickNodeFromQueue(ReadyQ &Q,
755                                             const RegPressureTracker &RPTracker,
756                                             SchedCandidate &Candidate) {
757   // getMaxPressureDelta temporarily modifies the tracker.
758   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
759 
760   // BestSU remains NULL if no top candidates beat the best existing candidate.
761   bool FoundCandidate = false;
762   for (ReadyQ::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
763 
764     RegPressureDelta RPDelta;
765     TempTracker.getMaxPressureDelta((*I)->getInstr(), RPDelta);
766 
767     // Avoid exceeding the target's limit.
768     if (!Candidate.SU || RPDelta.ExcessUnits < Candidate.RPDelta.ExcessUnits) {
769       DEBUG(traceCandidate(Candidate.SU ? "PCAND" : "ACAND", Q.ID, *I,
770                            RPDelta.ExcessUnits, RPDelta.ExcessSetID));
771       Candidate.SU = *I;
772       Candidate.RPDelta = RPDelta;
773       FoundCandidate = true;
774       continue;
775     }
776     if (RPDelta.ExcessUnits > Candidate.RPDelta.ExcessUnits)
777       continue;
778 
779     // Avoid increasing the max pressure.
780     if (RPDelta.MaxUnitIncrease < Candidate.RPDelta.MaxUnitIncrease) {
781       DEBUG(traceCandidate("MCAND", Q.ID, *I,
782                            RPDelta.ExcessUnits, RPDelta.ExcessSetID));
783       Candidate.SU = *I;
784       Candidate.RPDelta = RPDelta;
785       FoundCandidate = true;
786       continue;
787     }
788     if (RPDelta.MaxUnitIncrease > Candidate.RPDelta.MaxUnitIncrease)
789       continue;
790 
791     // Fall through to original instruction order.
792     // Only consider node order if BestSU was chosen from this Q.
793     if (!FoundCandidate)
794       continue;
795 
796     if ((Q.ID == TopQID && (*I)->NodeNum < Candidate.SU->NodeNum)
797         || (Q.ID == BotQID && (*I)->NodeNum > Candidate.SU->NodeNum)) {
798       DEBUG(traceCandidate("NCAND", Q.ID, *I, 0, 0));
799       Candidate.SU = *I;
800       Candidate.RPDelta = RPDelta;
801       FoundCandidate = true;
802     }
803   }
804   return FoundCandidate;
805 }
806 
807 /// Pick the best node from either the top or bottom queue to balance the
808 /// schedule.
809 SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) {
810   if (DAG->top() == DAG->bottom()) {
811     assert(TopQueue.empty() && BotQueue.empty() && "ReadyQ garbage");
812     return NULL;
813   }
814   // As an initial placeholder heuristic, schedule in the direction that has
815   // the fewest choices.
816   SUnit *SU;
817   if (ForceTopDown) {
818     SU = DAG->getSUnit(DAG->top());
819     IsTopNode = true;
820   }
821   else if (ForceBottomUp) {
822     SU = DAG->getSUnit(priorNonDebug(DAG->bottom(), DAG->top()));
823     IsTopNode = false;
824   }
825   else {
826     SchedCandidate Candidate;
827     // Prefer picking from the bottom.
828     pickNodeFromQueue(BotQueue, DAG->getBotRPTracker(), Candidate);
829     IsTopNode =
830       pickNodeFromQueue(TopQueue, DAG->getTopRPTracker(), Candidate);
831     SU = Candidate.SU;
832   }
833   if (SU->isTopReady()) {
834     assert(!TopQueue.empty() && "bad ready count");
835     TopQueue.remove(TopQueue.find(SU));
836   }
837   if (SU->isBottomReady()) {
838     assert(!BotQueue.empty() && "bad ready count");
839     BotQueue.remove(BotQueue.find(SU));
840   }
841   return SU;
842 }
843 
844 /// Create the standard converging machine scheduler. This will be used as the
845 /// default scheduler if the target does not set a default.
846 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) {
847   assert((!ForceTopDown || !ForceBottomUp) &&
848          "-misched-topdown incompatible with -misched-bottomup");
849   return new ScheduleDAGMI(C, new ConvergingScheduler());
850 }
851 static MachineSchedRegistry
852 ConvergingSchedRegistry("converge", "Standard converging scheduler.",
853                         createConvergingSched);
854 
855 //===----------------------------------------------------------------------===//
856 // Machine Instruction Shuffler for Correctness Testing
857 //===----------------------------------------------------------------------===//
858 
859 #ifndef NDEBUG
860 namespace {
861 /// Apply a less-than relation on the node order, which corresponds to the
862 /// instruction order prior to scheduling. IsReverse implements greater-than.
863 template<bool IsReverse>
864 struct SUnitOrder {
865   bool operator()(SUnit *A, SUnit *B) const {
866     if (IsReverse)
867       return A->NodeNum > B->NodeNum;
868     else
869       return A->NodeNum < B->NodeNum;
870   }
871 };
872 
873 /// Reorder instructions as much as possible.
874 class InstructionShuffler : public MachineSchedStrategy {
875   bool IsAlternating;
876   bool IsTopDown;
877 
878   // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
879   // gives nodes with a higher number higher priority causing the latest
880   // instructions to be scheduled first.
881   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> >
882     TopQ;
883   // When scheduling bottom-up, use greater-than as the queue priority.
884   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> >
885     BottomQ;
886 public:
887   InstructionShuffler(bool alternate, bool topdown)
888     : IsAlternating(alternate), IsTopDown(topdown) {}
889 
890   virtual void initialize(ScheduleDAGMI *) {
891     TopQ.clear();
892     BottomQ.clear();
893   }
894 
895   /// Implement MachineSchedStrategy interface.
896   /// -----------------------------------------
897 
898   virtual SUnit *pickNode(bool &IsTopNode) {
899     SUnit *SU;
900     if (IsTopDown) {
901       do {
902         if (TopQ.empty()) return NULL;
903         SU = TopQ.top();
904         TopQ.pop();
905       } while (SU->isScheduled);
906       IsTopNode = true;
907     }
908     else {
909       do {
910         if (BottomQ.empty()) return NULL;
911         SU = BottomQ.top();
912         BottomQ.pop();
913       } while (SU->isScheduled);
914       IsTopNode = false;
915     }
916     if (IsAlternating)
917       IsTopDown = !IsTopDown;
918     return SU;
919   }
920 
921   virtual void releaseTopNode(SUnit *SU) {
922     TopQ.push(SU);
923   }
924   virtual void releaseBottomNode(SUnit *SU) {
925     BottomQ.push(SU);
926   }
927 };
928 } // namespace
929 
930 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
931   bool Alternate = !ForceTopDown && !ForceBottomUp;
932   bool TopDown = !ForceBottomUp;
933   assert((TopDown || !ForceTopDown) &&
934          "-misched-topdown incompatible with -misched-bottomup");
935   return new ScheduleDAGMI(C, new InstructionShuffler(Alternate, TopDown));
936 }
937 static MachineSchedRegistry ShufflerRegistry(
938   "shuffle", "Shuffle machine instructions alternating directions",
939   createInstructionShuffler);
940 #endif // !NDEBUG
941