1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // MachineScheduler schedules machine instructions after phi elimination. It 10 // preserves LiveIntervals so it can be invoked before register allocation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineScheduler.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/PriorityQueue.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/LiveInterval.h" 25 #include "llvm/CodeGen/LiveIntervals.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineDominators.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineLoopInfo.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/MachinePassRegistry.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/RegisterClassInfo.h" 36 #include "llvm/CodeGen/RegisterPressure.h" 37 #include "llvm/CodeGen/ScheduleDAG.h" 38 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 39 #include "llvm/CodeGen/ScheduleDAGMutation.h" 40 #include "llvm/CodeGen/ScheduleDFS.h" 41 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 42 #include "llvm/CodeGen/SlotIndexes.h" 43 #include "llvm/CodeGen/TargetFrameLowering.h" 44 #include "llvm/CodeGen/TargetInstrInfo.h" 45 #include "llvm/CodeGen/TargetLowering.h" 46 #include "llvm/CodeGen/TargetPassConfig.h" 47 #include "llvm/CodeGen/TargetRegisterInfo.h" 48 #include "llvm/CodeGen/TargetSchedule.h" 49 #include "llvm/CodeGen/TargetSubtargetInfo.h" 50 #include "llvm/CodeGenTypes/MachineValueType.h" 51 #include "llvm/Config/llvm-config.h" 52 #include "llvm/InitializePasses.h" 53 #include "llvm/MC/LaneBitmask.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Compiler.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/GraphWriter.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include <algorithm> 62 #include <cassert> 63 #include <cstdint> 64 #include <iterator> 65 #include <limits> 66 #include <memory> 67 #include <string> 68 #include <tuple> 69 #include <utility> 70 #include <vector> 71 72 using namespace llvm; 73 74 #define DEBUG_TYPE "machine-scheduler" 75 76 STATISTIC(NumClustered, "Number of load/store pairs clustered"); 77 78 namespace llvm { 79 80 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 81 cl::desc("Force top-down list scheduling")); 82 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 83 cl::desc("Force bottom-up list scheduling")); 84 namespace MISchedPostRASched { 85 enum Direction { 86 TopDown, 87 BottomUp, 88 Bidirectional, 89 }; 90 } // end namespace MISchedPostRASched 91 cl::opt<MISchedPostRASched::Direction> PostRADirection( 92 "misched-postra-direction", cl::Hidden, 93 cl::desc("Post reg-alloc list scheduling direction"), 94 // Default to top-down because it was implemented first and existing targets 95 // expect that behavior by default. 96 cl::init(MISchedPostRASched::TopDown), 97 cl::values( 98 clEnumValN(MISchedPostRASched::TopDown, "topdown", 99 "Force top-down post reg-alloc list scheduling"), 100 clEnumValN(MISchedPostRASched::BottomUp, "bottomup", 101 "Force bottom-up post reg-alloc list scheduling"), 102 clEnumValN(MISchedPostRASched::Bidirectional, "bidirectional", 103 "Force bidirectional post reg-alloc list scheduling"))); 104 cl::opt<bool> 105 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 106 cl::desc("Print critical path length to stdout")); 107 108 cl::opt<bool> VerifyScheduling( 109 "verify-misched", cl::Hidden, 110 cl::desc("Verify machine instrs before and after machine scheduling")); 111 112 #ifndef NDEBUG 113 cl::opt<bool> ViewMISchedDAGs( 114 "view-misched-dags", cl::Hidden, 115 cl::desc("Pop up a window to show MISched dags after they are processed")); 116 cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden, 117 cl::desc("Print schedule DAGs")); 118 cl::opt<bool> MISchedDumpReservedCycles( 119 "misched-dump-reserved-cycles", cl::Hidden, cl::init(false), 120 cl::desc("Dump resource usage at schedule boundary.")); 121 cl::opt<bool> MischedDetailResourceBooking( 122 "misched-detail-resource-booking", cl::Hidden, cl::init(false), 123 cl::desc("Show details of invoking getNextResoufceCycle.")); 124 #else 125 const bool ViewMISchedDAGs = false; 126 const bool PrintDAGs = false; 127 const bool MischedDetailResourceBooking = false; 128 #ifdef LLVM_ENABLE_DUMP 129 const bool MISchedDumpReservedCycles = false; 130 #endif // LLVM_ENABLE_DUMP 131 #endif // NDEBUG 132 133 } // end namespace llvm 134 135 #ifndef NDEBUG 136 /// In some situations a few uninteresting nodes depend on nearly all other 137 /// nodes in the graph, provide a cutoff to hide them. 138 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 139 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 140 141 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 142 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 143 144 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 145 cl::desc("Only schedule this function")); 146 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 147 cl::desc("Only schedule this MBB#")); 148 #endif // NDEBUG 149 150 /// Avoid quadratic complexity in unusually large basic blocks by limiting the 151 /// size of the ready lists. 152 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden, 153 cl::desc("Limit ready list to N instructions"), cl::init(256)); 154 155 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 156 cl::desc("Enable register pressure scheduling."), cl::init(true)); 157 158 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 159 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 160 161 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden, 162 cl::desc("Enable memop clustering."), 163 cl::init(true)); 164 static cl::opt<bool> 165 ForceFastCluster("force-fast-cluster", cl::Hidden, 166 cl::desc("Switch to fast cluster algorithm with the lost " 167 "of some fusion opportunities"), 168 cl::init(false)); 169 static cl::opt<unsigned> 170 FastClusterThreshold("fast-cluster-threshold", cl::Hidden, 171 cl::desc("The threshold for fast cluster"), 172 cl::init(1000)); 173 174 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 175 static cl::opt<bool> MISchedDumpScheduleTrace( 176 "misched-dump-schedule-trace", cl::Hidden, cl::init(false), 177 cl::desc("Dump resource usage at schedule boundary.")); 178 static cl::opt<unsigned> 179 HeaderColWidth("misched-dump-schedule-trace-col-header-width", cl::Hidden, 180 cl::desc("Set width of the columns with " 181 "the resources and schedule units"), 182 cl::init(19)); 183 static cl::opt<unsigned> 184 ColWidth("misched-dump-schedule-trace-col-width", cl::Hidden, 185 cl::desc("Set width of the columns showing resource booking."), 186 cl::init(5)); 187 static cl::opt<bool> MISchedSortResourcesInTrace( 188 "misched-sort-resources-in-trace", cl::Hidden, cl::init(true), 189 cl::desc("Sort the resources printed in the dump trace")); 190 #endif 191 192 static cl::opt<unsigned> 193 MIResourceCutOff("misched-resource-cutoff", cl::Hidden, 194 cl::desc("Number of intervals to track"), cl::init(10)); 195 196 // DAG subtrees must have at least this many nodes. 197 static const unsigned MinSubtreeSize = 8; 198 199 // Pin the vtables to this file. 200 void MachineSchedStrategy::anchor() {} 201 202 void ScheduleDAGMutation::anchor() {} 203 204 //===----------------------------------------------------------------------===// 205 // Machine Instruction Scheduling Pass and Registry 206 //===----------------------------------------------------------------------===// 207 208 MachineSchedContext::MachineSchedContext() { 209 RegClassInfo = new RegisterClassInfo(); 210 } 211 212 MachineSchedContext::~MachineSchedContext() { 213 delete RegClassInfo; 214 } 215 216 namespace { 217 218 /// Base class for a machine scheduler class that can run at any point. 219 class MachineSchedulerBase : public MachineSchedContext, 220 public MachineFunctionPass { 221 public: 222 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 223 224 void print(raw_ostream &O, const Module* = nullptr) const override; 225 226 protected: 227 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); 228 }; 229 230 /// MachineScheduler runs after coalescing and before register allocation. 231 class MachineScheduler : public MachineSchedulerBase { 232 public: 233 MachineScheduler(); 234 235 void getAnalysisUsage(AnalysisUsage &AU) const override; 236 237 bool runOnMachineFunction(MachineFunction&) override; 238 239 static char ID; // Class identification, replacement for typeinfo 240 241 protected: 242 ScheduleDAGInstrs *createMachineScheduler(); 243 }; 244 245 /// PostMachineScheduler runs after shortly before code emission. 246 class PostMachineScheduler : public MachineSchedulerBase { 247 public: 248 PostMachineScheduler(); 249 250 void getAnalysisUsage(AnalysisUsage &AU) const override; 251 252 bool runOnMachineFunction(MachineFunction&) override; 253 254 static char ID; // Class identification, replacement for typeinfo 255 256 protected: 257 ScheduleDAGInstrs *createPostMachineScheduler(); 258 }; 259 260 } // end anonymous namespace 261 262 char MachineScheduler::ID = 0; 263 264 char &llvm::MachineSchedulerID = MachineScheduler::ID; 265 266 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE, 267 "Machine Instruction Scheduler", false, false) 268 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 269 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) 270 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) 271 INITIALIZE_PASS_DEPENDENCY(SlotIndexesWrapperPass) 272 INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass) 273 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE, 274 "Machine Instruction Scheduler", false, false) 275 276 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) { 277 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 278 } 279 280 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 281 AU.setPreservesCFG(); 282 AU.addRequired<MachineDominatorTreeWrapperPass>(); 283 AU.addRequired<MachineLoopInfoWrapperPass>(); 284 AU.addRequired<AAResultsWrapperPass>(); 285 AU.addRequired<TargetPassConfig>(); 286 AU.addRequired<SlotIndexesWrapperPass>(); 287 AU.addPreserved<SlotIndexesWrapperPass>(); 288 AU.addRequired<LiveIntervalsWrapperPass>(); 289 AU.addPreserved<LiveIntervalsWrapperPass>(); 290 MachineFunctionPass::getAnalysisUsage(AU); 291 } 292 293 char PostMachineScheduler::ID = 0; 294 295 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 296 297 INITIALIZE_PASS_BEGIN(PostMachineScheduler, "postmisched", 298 "PostRA Machine Instruction Scheduler", false, false) 299 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) 300 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) 301 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 302 INITIALIZE_PASS_END(PostMachineScheduler, "postmisched", 303 "PostRA Machine Instruction Scheduler", false, false) 304 305 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) { 306 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 307 } 308 309 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 310 AU.setPreservesCFG(); 311 AU.addRequired<MachineDominatorTreeWrapperPass>(); 312 AU.addRequired<MachineLoopInfoWrapperPass>(); 313 AU.addRequired<AAResultsWrapperPass>(); 314 AU.addRequired<TargetPassConfig>(); 315 MachineFunctionPass::getAnalysisUsage(AU); 316 } 317 318 MachinePassRegistry<MachineSchedRegistry::ScheduleDAGCtor> 319 MachineSchedRegistry::Registry; 320 321 /// A dummy default scheduler factory indicates whether the scheduler 322 /// is overridden on the command line. 323 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 324 return nullptr; 325 } 326 327 /// MachineSchedOpt allows command line selection of the scheduler. 328 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 329 RegisterPassParser<MachineSchedRegistry>> 330 MachineSchedOpt("misched", 331 cl::init(&useDefaultMachineSched), cl::Hidden, 332 cl::desc("Machine instruction scheduler to use")); 333 334 static MachineSchedRegistry 335 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 336 useDefaultMachineSched); 337 338 static cl::opt<bool> EnableMachineSched( 339 "enable-misched", 340 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 341 cl::Hidden); 342 343 static cl::opt<bool> EnablePostRAMachineSched( 344 "enable-post-misched", 345 cl::desc("Enable the post-ra machine instruction scheduling pass."), 346 cl::init(true), cl::Hidden); 347 348 /// Decrement this iterator until reaching the top or a non-debug instr. 349 static MachineBasicBlock::const_iterator 350 priorNonDebug(MachineBasicBlock::const_iterator I, 351 MachineBasicBlock::const_iterator Beg) { 352 assert(I != Beg && "reached the top of the region, cannot decrement"); 353 while (--I != Beg) { 354 if (!I->isDebugOrPseudoInstr()) 355 break; 356 } 357 return I; 358 } 359 360 /// Non-const version. 361 static MachineBasicBlock::iterator 362 priorNonDebug(MachineBasicBlock::iterator I, 363 MachineBasicBlock::const_iterator Beg) { 364 return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg) 365 .getNonConstIterator(); 366 } 367 368 /// If this iterator is a debug value, increment until reaching the End or a 369 /// non-debug instruction. 370 static MachineBasicBlock::const_iterator 371 nextIfDebug(MachineBasicBlock::const_iterator I, 372 MachineBasicBlock::const_iterator End) { 373 for(; I != End; ++I) { 374 if (!I->isDebugOrPseudoInstr()) 375 break; 376 } 377 return I; 378 } 379 380 /// Non-const version. 381 static MachineBasicBlock::iterator 382 nextIfDebug(MachineBasicBlock::iterator I, 383 MachineBasicBlock::const_iterator End) { 384 return nextIfDebug(MachineBasicBlock::const_iterator(I), End) 385 .getNonConstIterator(); 386 } 387 388 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 389 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 390 // Select the scheduler, or set the default. 391 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 392 if (Ctor != useDefaultMachineSched) 393 return Ctor(this); 394 395 // Get the default scheduler set by the target for this function. 396 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 397 if (Scheduler) 398 return Scheduler; 399 400 // Default to GenericScheduler. 401 return createGenericSchedLive(this); 402 } 403 404 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 405 /// the caller. We don't have a command line option to override the postRA 406 /// scheduler. The Target must configure it. 407 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 408 // Get the postRA scheduler set by the target for this function. 409 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 410 if (Scheduler) 411 return Scheduler; 412 413 // Default to GenericScheduler. 414 return createGenericSchedPostRA(this); 415 } 416 417 /// Top-level MachineScheduler pass driver. 418 /// 419 /// Visit blocks in function order. Divide each block into scheduling regions 420 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 421 /// consistent with the DAG builder, which traverses the interior of the 422 /// scheduling regions bottom-up. 423 /// 424 /// This design avoids exposing scheduling boundaries to the DAG builder, 425 /// simplifying the DAG builder's support for "special" target instructions. 426 /// At the same time the design allows target schedulers to operate across 427 /// scheduling boundaries, for example to bundle the boundary instructions 428 /// without reordering them. This creates complexity, because the target 429 /// scheduler must update the RegionBegin and RegionEnd positions cached by 430 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 431 /// design would be to split blocks at scheduling boundaries, but LLVM has a 432 /// general bias against block splitting purely for implementation simplicity. 433 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 434 if (skipFunction(mf.getFunction())) 435 return false; 436 437 if (EnableMachineSched.getNumOccurrences()) { 438 if (!EnableMachineSched) 439 return false; 440 } else if (!mf.getSubtarget().enableMachineScheduler()) 441 return false; 442 443 LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs())); 444 445 // Initialize the context of the pass. 446 MF = &mf; 447 MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); 448 MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); 449 PassConfig = &getAnalysis<TargetPassConfig>(); 450 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 451 452 LIS = &getAnalysis<LiveIntervalsWrapperPass>().getLIS(); 453 454 if (VerifyScheduling) { 455 LLVM_DEBUG(LIS->dump()); 456 MF->verify(this, "Before machine scheduling.", &errs()); 457 } 458 RegClassInfo->runOnMachineFunction(*MF); 459 460 // Instantiate the selected scheduler for this target, function, and 461 // optimization level. 462 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 463 scheduleRegions(*Scheduler, false); 464 465 LLVM_DEBUG(LIS->dump()); 466 if (VerifyScheduling) 467 MF->verify(this, "After machine scheduling.", &errs()); 468 return true; 469 } 470 471 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 472 if (skipFunction(mf.getFunction())) 473 return false; 474 475 if (EnablePostRAMachineSched.getNumOccurrences()) { 476 if (!EnablePostRAMachineSched) 477 return false; 478 } else if (!mf.getSubtarget().enablePostRAMachineScheduler()) { 479 LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 480 return false; 481 } 482 LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 483 484 // Initialize the context of the pass. 485 MF = &mf; 486 MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); 487 PassConfig = &getAnalysis<TargetPassConfig>(); 488 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 489 490 if (VerifyScheduling) 491 MF->verify(this, "Before post machine scheduling.", &errs()); 492 493 // Instantiate the selected scheduler for this target, function, and 494 // optimization level. 495 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 496 scheduleRegions(*Scheduler, true); 497 498 if (VerifyScheduling) 499 MF->verify(this, "After post machine scheduling.", &errs()); 500 return true; 501 } 502 503 /// Return true of the given instruction should not be included in a scheduling 504 /// region. 505 /// 506 /// MachineScheduler does not currently support scheduling across calls. To 507 /// handle calls, the DAG builder needs to be modified to create register 508 /// anti/output dependencies on the registers clobbered by the call's regmask 509 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 510 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 511 /// the boundary, but there would be no benefit to postRA scheduling across 512 /// calls this late anyway. 513 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 514 MachineBasicBlock *MBB, 515 MachineFunction *MF, 516 const TargetInstrInfo *TII) { 517 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF) || 518 MI->isFakeUse(); 519 } 520 521 /// A region of an MBB for scheduling. 522 namespace { 523 struct SchedRegion { 524 /// RegionBegin is the first instruction in the scheduling region, and 525 /// RegionEnd is either MBB->end() or the scheduling boundary after the 526 /// last instruction in the scheduling region. These iterators cannot refer 527 /// to instructions outside of the identified scheduling region because 528 /// those may be reordered before scheduling this region. 529 MachineBasicBlock::iterator RegionBegin; 530 MachineBasicBlock::iterator RegionEnd; 531 unsigned NumRegionInstrs; 532 533 SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E, 534 unsigned N) : 535 RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {} 536 }; 537 } // end anonymous namespace 538 539 using MBBRegionsVector = SmallVector<SchedRegion, 16>; 540 541 static void 542 getSchedRegions(MachineBasicBlock *MBB, 543 MBBRegionsVector &Regions, 544 bool RegionsTopDown) { 545 MachineFunction *MF = MBB->getParent(); 546 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 547 548 MachineBasicBlock::iterator I = nullptr; 549 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 550 RegionEnd != MBB->begin(); RegionEnd = I) { 551 552 // Avoid decrementing RegionEnd for blocks with no terminator. 553 if (RegionEnd != MBB->end() || 554 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { 555 --RegionEnd; 556 } 557 558 // The next region starts above the previous region. Look backward in the 559 // instruction stream until we find the nearest boundary. 560 unsigned NumRegionInstrs = 0; 561 I = RegionEnd; 562 for (;I != MBB->begin(); --I) { 563 MachineInstr &MI = *std::prev(I); 564 if (isSchedBoundary(&MI, &*MBB, MF, TII)) 565 break; 566 if (!MI.isDebugOrPseudoInstr()) { 567 // MBB::size() uses instr_iterator to count. Here we need a bundle to 568 // count as a single instruction. 569 ++NumRegionInstrs; 570 } 571 } 572 573 // It's possible we found a scheduling region that only has debug 574 // instructions. Don't bother scheduling these. 575 if (NumRegionInstrs != 0) 576 Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs)); 577 } 578 579 if (RegionsTopDown) 580 std::reverse(Regions.begin(), Regions.end()); 581 } 582 583 /// Main driver for both MachineScheduler and PostMachineScheduler. 584 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, 585 bool FixKillFlags) { 586 // Visit all machine basic blocks. 587 // 588 // TODO: Visit blocks in global postorder or postorder within the bottom-up 589 // loop tree. Then we can optionally compute global RegPressure. 590 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 591 MBB != MBBEnd; ++MBB) { 592 593 Scheduler.startBlock(&*MBB); 594 595 #ifndef NDEBUG 596 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 597 continue; 598 if (SchedOnlyBlock.getNumOccurrences() 599 && (int)SchedOnlyBlock != MBB->getNumber()) 600 continue; 601 #endif 602 603 // Break the block into scheduling regions [I, RegionEnd). RegionEnd 604 // points to the scheduling boundary at the bottom of the region. The DAG 605 // does not include RegionEnd, but the region does (i.e. the next 606 // RegionEnd is above the previous RegionBegin). If the current block has 607 // no terminator then RegionEnd == MBB->end() for the bottom region. 608 // 609 // All the regions of MBB are first found and stored in MBBRegions, which 610 // will be processed (MBB) top-down if initialized with true. 611 // 612 // The Scheduler may insert instructions during either schedule() or 613 // exitRegion(), even for empty regions. So the local iterators 'I' and 614 // 'RegionEnd' are invalid across these calls. Instructions must not be 615 // added to other regions than the current one without updating MBBRegions. 616 617 MBBRegionsVector MBBRegions; 618 getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown()); 619 for (const SchedRegion &R : MBBRegions) { 620 MachineBasicBlock::iterator I = R.RegionBegin; 621 MachineBasicBlock::iterator RegionEnd = R.RegionEnd; 622 unsigned NumRegionInstrs = R.NumRegionInstrs; 623 624 // Notify the scheduler of the region, even if we may skip scheduling 625 // it. Perhaps it still needs to be bundled. 626 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); 627 628 // Skip empty scheduling regions (0 or 1 schedulable instructions). 629 if (I == RegionEnd || I == std::prev(RegionEnd)) { 630 // Close the current region. Bundle the terminator if needed. 631 // This invalidates 'RegionEnd' and 'I'. 632 Scheduler.exitRegion(); 633 continue; 634 } 635 LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n"); 636 LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB) 637 << " " << MBB->getName() << "\n From: " << *I 638 << " To: "; 639 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 640 else dbgs() << "End\n"; 641 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); 642 if (DumpCriticalPathLength) { 643 errs() << MF->getName(); 644 errs() << ":%bb. " << MBB->getNumber(); 645 errs() << " " << MBB->getName() << " \n"; 646 } 647 648 // Schedule a region: possibly reorder instructions. 649 // This invalidates the original region iterators. 650 Scheduler.schedule(); 651 652 // Close the current region. 653 Scheduler.exitRegion(); 654 } 655 Scheduler.finishBlock(); 656 // FIXME: Ideally, no further passes should rely on kill flags. However, 657 // thumb2 size reduction is currently an exception, so the PostMIScheduler 658 // needs to do this. 659 if (FixKillFlags) 660 Scheduler.fixupKills(*MBB); 661 } 662 Scheduler.finalizeSchedule(); 663 } 664 665 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 666 // unimplemented 667 } 668 669 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 670 LLVM_DUMP_METHOD void ReadyQueue::dump() const { 671 dbgs() << "Queue " << Name << ": "; 672 for (const SUnit *SU : Queue) 673 dbgs() << SU->NodeNum << " "; 674 dbgs() << "\n"; 675 } 676 #endif 677 678 //===----------------------------------------------------------------------===// 679 // ScheduleDAGMI - Basic machine instruction scheduling. This is 680 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 681 // virtual registers. 682 // ===----------------------------------------------------------------------===/ 683 684 // Provide a vtable anchor. 685 ScheduleDAGMI::~ScheduleDAGMI() = default; 686 687 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 688 /// NumPredsLeft reaches zero, release the successor node. 689 /// 690 /// FIXME: Adjust SuccSU height based on MinLatency. 691 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 692 SUnit *SuccSU = SuccEdge->getSUnit(); 693 694 if (SuccEdge->isWeak()) { 695 --SuccSU->WeakPredsLeft; 696 if (SuccEdge->isCluster()) 697 NextClusterSucc = SuccSU; 698 return; 699 } 700 #ifndef NDEBUG 701 if (SuccSU->NumPredsLeft == 0) { 702 dbgs() << "*** Scheduling failed! ***\n"; 703 dumpNode(*SuccSU); 704 dbgs() << " has been released too many times!\n"; 705 llvm_unreachable(nullptr); 706 } 707 #endif 708 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 709 // CurrCycle may have advanced since then. 710 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 711 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 712 713 --SuccSU->NumPredsLeft; 714 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 715 SchedImpl->releaseTopNode(SuccSU); 716 } 717 718 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 719 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 720 for (SDep &Succ : SU->Succs) 721 releaseSucc(SU, &Succ); 722 } 723 724 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 725 /// NumSuccsLeft reaches zero, release the predecessor node. 726 /// 727 /// FIXME: Adjust PredSU height based on MinLatency. 728 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 729 SUnit *PredSU = PredEdge->getSUnit(); 730 731 if (PredEdge->isWeak()) { 732 --PredSU->WeakSuccsLeft; 733 if (PredEdge->isCluster()) 734 NextClusterPred = PredSU; 735 return; 736 } 737 #ifndef NDEBUG 738 if (PredSU->NumSuccsLeft == 0) { 739 dbgs() << "*** Scheduling failed! ***\n"; 740 dumpNode(*PredSU); 741 dbgs() << " has been released too many times!\n"; 742 llvm_unreachable(nullptr); 743 } 744 #endif 745 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 746 // CurrCycle may have advanced since then. 747 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 748 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 749 750 --PredSU->NumSuccsLeft; 751 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 752 SchedImpl->releaseBottomNode(PredSU); 753 } 754 755 /// releasePredecessors - Call releasePred on each of SU's predecessors. 756 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 757 for (SDep &Pred : SU->Preds) 758 releasePred(SU, &Pred); 759 } 760 761 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) { 762 ScheduleDAGInstrs::startBlock(bb); 763 SchedImpl->enterMBB(bb); 764 } 765 766 void ScheduleDAGMI::finishBlock() { 767 SchedImpl->leaveMBB(); 768 ScheduleDAGInstrs::finishBlock(); 769 } 770 771 /// enterRegion - Called back from PostMachineScheduler::runOnMachineFunction 772 /// after crossing a scheduling boundary. [begin, end) includes all instructions 773 /// in the region, including the boundary itself and single-instruction regions 774 /// that don't get scheduled. 775 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 776 MachineBasicBlock::iterator begin, 777 MachineBasicBlock::iterator end, 778 unsigned regioninstrs) 779 { 780 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 781 782 SchedImpl->initPolicy(begin, end, regioninstrs); 783 784 // Set dump direction after initializing sched policy. 785 ScheduleDAGMI::DumpDirection D; 786 if (SchedImpl->getPolicy().OnlyTopDown) 787 D = ScheduleDAGMI::DumpDirection::TopDown; 788 else if (SchedImpl->getPolicy().OnlyBottomUp) 789 D = ScheduleDAGMI::DumpDirection::BottomUp; 790 else 791 D = ScheduleDAGMI::DumpDirection::Bidirectional; 792 setDumpDirection(D); 793 } 794 795 /// This is normally called from the main scheduler loop but may also be invoked 796 /// by the scheduling strategy to perform additional code motion. 797 void ScheduleDAGMI::moveInstruction( 798 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 799 // Advance RegionBegin if the first instruction moves down. 800 if (&*RegionBegin == MI) 801 ++RegionBegin; 802 803 // Update the instruction stream. 804 BB->splice(InsertPos, BB, MI); 805 806 // Update LiveIntervals 807 if (LIS) 808 LIS->handleMove(*MI, /*UpdateFlags=*/true); 809 810 // Recede RegionBegin if an instruction moves above the first. 811 if (RegionBegin == InsertPos) 812 RegionBegin = MI; 813 } 814 815 bool ScheduleDAGMI::checkSchedLimit() { 816 #if LLVM_ENABLE_ABI_BREAKING_CHECKS && !defined(NDEBUG) 817 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 818 CurrentTop = CurrentBottom; 819 return false; 820 } 821 ++NumInstrsScheduled; 822 #endif 823 return true; 824 } 825 826 /// Per-region scheduling driver, called back from 827 /// PostMachineScheduler::runOnMachineFunction. This is a simplified driver 828 /// that does not consider liveness or register pressure. It is useful for 829 /// PostRA scheduling and potentially other custom schedulers. 830 void ScheduleDAGMI::schedule() { 831 LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); 832 LLVM_DEBUG(SchedImpl->dumpPolicy()); 833 834 // Build the DAG. 835 buildSchedGraph(AA); 836 837 postProcessDAG(); 838 839 SmallVector<SUnit*, 8> TopRoots, BotRoots; 840 findRootsAndBiasEdges(TopRoots, BotRoots); 841 842 LLVM_DEBUG(dump()); 843 if (PrintDAGs) dump(); 844 if (ViewMISchedDAGs) viewGraph(); 845 846 // Initialize the strategy before modifying the DAG. 847 // This may initialize a DFSResult to be used for queue priority. 848 SchedImpl->initialize(this); 849 850 // Initialize ready queues now that the DAG and priority data are finalized. 851 initQueues(TopRoots, BotRoots); 852 853 bool IsTopNode = false; 854 while (true) { 855 LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); 856 SUnit *SU = SchedImpl->pickNode(IsTopNode); 857 if (!SU) break; 858 859 assert(!SU->isScheduled && "Node already scheduled"); 860 if (!checkSchedLimit()) 861 break; 862 863 MachineInstr *MI = SU->getInstr(); 864 if (IsTopNode) { 865 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 866 if (&*CurrentTop == MI) 867 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 868 else 869 moveInstruction(MI, CurrentTop); 870 } else { 871 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 872 MachineBasicBlock::iterator priorII = 873 priorNonDebug(CurrentBottom, CurrentTop); 874 if (&*priorII == MI) 875 CurrentBottom = priorII; 876 else { 877 if (&*CurrentTop == MI) 878 CurrentTop = nextIfDebug(++CurrentTop, priorII); 879 moveInstruction(MI, CurrentBottom); 880 CurrentBottom = MI; 881 } 882 } 883 // Notify the scheduling strategy before updating the DAG. 884 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 885 // runs, it can then use the accurate ReadyCycle time to determine whether 886 // newly released nodes can move to the readyQ. 887 SchedImpl->schedNode(SU, IsTopNode); 888 889 updateQueues(SU, IsTopNode); 890 } 891 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 892 893 placeDebugValues(); 894 895 LLVM_DEBUG({ 896 dbgs() << "*** Final schedule for " 897 << printMBBReference(*begin()->getParent()) << " ***\n"; 898 dumpSchedule(); 899 dbgs() << '\n'; 900 }); 901 } 902 903 /// Apply each ScheduleDAGMutation step in order. 904 void ScheduleDAGMI::postProcessDAG() { 905 for (auto &m : Mutations) 906 m->apply(this); 907 } 908 909 void ScheduleDAGMI:: 910 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 911 SmallVectorImpl<SUnit*> &BotRoots) { 912 for (SUnit &SU : SUnits) { 913 assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits"); 914 915 // Order predecessors so DFSResult follows the critical path. 916 SU.biasCriticalPath(); 917 918 // A SUnit is ready to top schedule if it has no predecessors. 919 if (!SU.NumPredsLeft) 920 TopRoots.push_back(&SU); 921 // A SUnit is ready to bottom schedule if it has no successors. 922 if (!SU.NumSuccsLeft) 923 BotRoots.push_back(&SU); 924 } 925 ExitSU.biasCriticalPath(); 926 } 927 928 /// Identify DAG roots and setup scheduler queues. 929 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 930 ArrayRef<SUnit*> BotRoots) { 931 NextClusterSucc = nullptr; 932 NextClusterPred = nullptr; 933 934 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 935 // 936 // Nodes with unreleased weak edges can still be roots. 937 // Release top roots in forward order. 938 for (SUnit *SU : TopRoots) 939 SchedImpl->releaseTopNode(SU); 940 941 // Release bottom roots in reverse order so the higher priority nodes appear 942 // first. This is more natural and slightly more efficient. 943 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 944 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 945 SchedImpl->releaseBottomNode(*I); 946 } 947 948 releaseSuccessors(&EntrySU); 949 releasePredecessors(&ExitSU); 950 951 SchedImpl->registerRoots(); 952 953 // Advance past initial DebugValues. 954 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 955 CurrentBottom = RegionEnd; 956 } 957 958 /// Update scheduler queues after scheduling an instruction. 959 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 960 // Release dependent instructions for scheduling. 961 if (IsTopNode) 962 releaseSuccessors(SU); 963 else 964 releasePredecessors(SU); 965 966 SU->isScheduled = true; 967 } 968 969 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 970 void ScheduleDAGMI::placeDebugValues() { 971 // If first instruction was a DBG_VALUE then put it back. 972 if (FirstDbgValue) { 973 BB->splice(RegionBegin, BB, FirstDbgValue); 974 RegionBegin = FirstDbgValue; 975 } 976 977 for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator 978 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 979 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 980 MachineInstr *DbgValue = P.first; 981 MachineBasicBlock::iterator OrigPrevMI = P.second; 982 if (&*RegionBegin == DbgValue) 983 ++RegionBegin; 984 BB->splice(std::next(OrigPrevMI), BB, DbgValue); 985 if (RegionEnd != BB->end() && OrigPrevMI == &*RegionEnd) 986 RegionEnd = DbgValue; 987 } 988 } 989 990 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 991 static const char *scheduleTableLegend = " i: issue\n x: resource booked"; 992 993 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpScheduleTraceTopDown() const { 994 // Bail off when there is no schedule model to query. 995 if (!SchedModel.hasInstrSchedModel()) 996 return; 997 998 // Nothing to show if there is no or just one instruction. 999 if (BB->size() < 2) 1000 return; 1001 1002 dbgs() << " * Schedule table (TopDown):\n"; 1003 dbgs() << scheduleTableLegend << "\n"; 1004 const unsigned FirstCycle = getSUnit(&*(std::begin(*this)))->TopReadyCycle; 1005 unsigned LastCycle = getSUnit(&*(std::prev(std::end(*this))))->TopReadyCycle; 1006 for (MachineInstr &MI : *this) { 1007 SUnit *SU = getSUnit(&MI); 1008 if (!SU) 1009 continue; 1010 const MCSchedClassDesc *SC = getSchedClass(SU); 1011 for (TargetSchedModel::ProcResIter PI = SchedModel.getWriteProcResBegin(SC), 1012 PE = SchedModel.getWriteProcResEnd(SC); 1013 PI != PE; ++PI) { 1014 if (SU->TopReadyCycle + PI->ReleaseAtCycle - 1 > LastCycle) 1015 LastCycle = SU->TopReadyCycle + PI->ReleaseAtCycle - 1; 1016 } 1017 } 1018 // Print the header with the cycles 1019 dbgs() << llvm::left_justify("Cycle", HeaderColWidth); 1020 for (unsigned C = FirstCycle; C <= LastCycle; ++C) 1021 dbgs() << llvm::left_justify("| " + std::to_string(C), ColWidth); 1022 dbgs() << "|\n"; 1023 1024 for (MachineInstr &MI : *this) { 1025 SUnit *SU = getSUnit(&MI); 1026 if (!SU) { 1027 dbgs() << "Missing SUnit\n"; 1028 continue; 1029 } 1030 std::string NodeName("SU("); 1031 NodeName += std::to_string(SU->NodeNum) + ")"; 1032 dbgs() << llvm::left_justify(NodeName, HeaderColWidth); 1033 unsigned C = FirstCycle; 1034 for (; C <= LastCycle; ++C) { 1035 if (C == SU->TopReadyCycle) 1036 dbgs() << llvm::left_justify("| i", ColWidth); 1037 else 1038 dbgs() << llvm::left_justify("|", ColWidth); 1039 } 1040 dbgs() << "|\n"; 1041 const MCSchedClassDesc *SC = getSchedClass(SU); 1042 1043 SmallVector<MCWriteProcResEntry, 4> ResourcesIt( 1044 make_range(SchedModel.getWriteProcResBegin(SC), 1045 SchedModel.getWriteProcResEnd(SC))); 1046 1047 if (MISchedSortResourcesInTrace) 1048 llvm::stable_sort(ResourcesIt, 1049 [](const MCWriteProcResEntry &LHS, 1050 const MCWriteProcResEntry &RHS) -> bool { 1051 return LHS.AcquireAtCycle < RHS.AcquireAtCycle || 1052 (LHS.AcquireAtCycle == RHS.AcquireAtCycle && 1053 LHS.ReleaseAtCycle < RHS.ReleaseAtCycle); 1054 }); 1055 for (const MCWriteProcResEntry &PI : ResourcesIt) { 1056 C = FirstCycle; 1057 const std::string ResName = 1058 SchedModel.getResourceName(PI.ProcResourceIdx); 1059 dbgs() << llvm::right_justify(ResName + " ", HeaderColWidth); 1060 for (; C < SU->TopReadyCycle + PI.AcquireAtCycle; ++C) { 1061 dbgs() << llvm::left_justify("|", ColWidth); 1062 } 1063 for (unsigned I = 0, E = PI.ReleaseAtCycle - PI.AcquireAtCycle; I != E; 1064 ++I, ++C) 1065 dbgs() << llvm::left_justify("| x", ColWidth); 1066 while (C++ <= LastCycle) 1067 dbgs() << llvm::left_justify("|", ColWidth); 1068 // Place end char 1069 dbgs() << "| \n"; 1070 } 1071 } 1072 } 1073 1074 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpScheduleTraceBottomUp() const { 1075 // Bail off when there is no schedule model to query. 1076 if (!SchedModel.hasInstrSchedModel()) 1077 return; 1078 1079 // Nothing to show if there is no or just one instruction. 1080 if (BB->size() < 2) 1081 return; 1082 1083 dbgs() << " * Schedule table (BottomUp):\n"; 1084 dbgs() << scheduleTableLegend << "\n"; 1085 1086 const int FirstCycle = getSUnit(&*(std::begin(*this)))->BotReadyCycle; 1087 int LastCycle = getSUnit(&*(std::prev(std::end(*this))))->BotReadyCycle; 1088 for (MachineInstr &MI : *this) { 1089 SUnit *SU = getSUnit(&MI); 1090 if (!SU) 1091 continue; 1092 const MCSchedClassDesc *SC = getSchedClass(SU); 1093 for (TargetSchedModel::ProcResIter PI = SchedModel.getWriteProcResBegin(SC), 1094 PE = SchedModel.getWriteProcResEnd(SC); 1095 PI != PE; ++PI) { 1096 if ((int)SU->BotReadyCycle - PI->ReleaseAtCycle + 1 < LastCycle) 1097 LastCycle = (int)SU->BotReadyCycle - PI->ReleaseAtCycle + 1; 1098 } 1099 } 1100 // Print the header with the cycles 1101 dbgs() << llvm::left_justify("Cycle", HeaderColWidth); 1102 for (int C = FirstCycle; C >= LastCycle; --C) 1103 dbgs() << llvm::left_justify("| " + std::to_string(C), ColWidth); 1104 dbgs() << "|\n"; 1105 1106 for (MachineInstr &MI : *this) { 1107 SUnit *SU = getSUnit(&MI); 1108 if (!SU) { 1109 dbgs() << "Missing SUnit\n"; 1110 continue; 1111 } 1112 std::string NodeName("SU("); 1113 NodeName += std::to_string(SU->NodeNum) + ")"; 1114 dbgs() << llvm::left_justify(NodeName, HeaderColWidth); 1115 int C = FirstCycle; 1116 for (; C >= LastCycle; --C) { 1117 if (C == (int)SU->BotReadyCycle) 1118 dbgs() << llvm::left_justify("| i", ColWidth); 1119 else 1120 dbgs() << llvm::left_justify("|", ColWidth); 1121 } 1122 dbgs() << "|\n"; 1123 const MCSchedClassDesc *SC = getSchedClass(SU); 1124 SmallVector<MCWriteProcResEntry, 4> ResourcesIt( 1125 make_range(SchedModel.getWriteProcResBegin(SC), 1126 SchedModel.getWriteProcResEnd(SC))); 1127 1128 if (MISchedSortResourcesInTrace) 1129 llvm::stable_sort(ResourcesIt, 1130 [](const MCWriteProcResEntry &LHS, 1131 const MCWriteProcResEntry &RHS) -> bool { 1132 return LHS.AcquireAtCycle < RHS.AcquireAtCycle || 1133 (LHS.AcquireAtCycle == RHS.AcquireAtCycle && 1134 LHS.ReleaseAtCycle < RHS.ReleaseAtCycle); 1135 }); 1136 for (const MCWriteProcResEntry &PI : ResourcesIt) { 1137 C = FirstCycle; 1138 const std::string ResName = 1139 SchedModel.getResourceName(PI.ProcResourceIdx); 1140 dbgs() << llvm::right_justify(ResName + " ", HeaderColWidth); 1141 for (; C > ((int)SU->BotReadyCycle - (int)PI.AcquireAtCycle); --C) { 1142 dbgs() << llvm::left_justify("|", ColWidth); 1143 } 1144 for (unsigned I = 0, E = PI.ReleaseAtCycle - PI.AcquireAtCycle; I != E; 1145 ++I, --C) 1146 dbgs() << llvm::left_justify("| x", ColWidth); 1147 while (C-- >= LastCycle) 1148 dbgs() << llvm::left_justify("|", ColWidth); 1149 // Place end char 1150 dbgs() << "| \n"; 1151 } 1152 } 1153 } 1154 #endif 1155 1156 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1157 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const { 1158 if (MISchedDumpScheduleTrace) { 1159 if (DumpDir == DumpDirection::TopDown) 1160 dumpScheduleTraceTopDown(); 1161 else if (DumpDir == DumpDirection::BottomUp) 1162 dumpScheduleTraceBottomUp(); 1163 else if (DumpDir == DumpDirection::Bidirectional) { 1164 dbgs() << "* Schedule table (Bidirectional): not implemented\n"; 1165 } else { 1166 dbgs() << "* Schedule table: DumpDirection not set.\n"; 1167 } 1168 } 1169 1170 for (MachineInstr &MI : *this) { 1171 if (SUnit *SU = getSUnit(&MI)) 1172 dumpNode(*SU); 1173 else 1174 dbgs() << "Missing SUnit\n"; 1175 } 1176 } 1177 #endif 1178 1179 //===----------------------------------------------------------------------===// 1180 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 1181 // preservation. 1182 //===----------------------------------------------------------------------===// 1183 1184 ScheduleDAGMILive::~ScheduleDAGMILive() { 1185 delete DFSResult; 1186 } 1187 1188 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) { 1189 const MachineInstr &MI = *SU.getInstr(); 1190 for (const MachineOperand &MO : MI.operands()) { 1191 if (!MO.isReg()) 1192 continue; 1193 if (!MO.readsReg()) 1194 continue; 1195 if (TrackLaneMasks && !MO.isUse()) 1196 continue; 1197 1198 Register Reg = MO.getReg(); 1199 if (!Reg.isVirtual()) 1200 continue; 1201 1202 // Ignore re-defs. 1203 if (TrackLaneMasks) { 1204 bool FoundDef = false; 1205 for (const MachineOperand &MO2 : MI.all_defs()) { 1206 if (MO2.getReg() == Reg && !MO2.isDead()) { 1207 FoundDef = true; 1208 break; 1209 } 1210 } 1211 if (FoundDef) 1212 continue; 1213 } 1214 1215 // Record this local VReg use. 1216 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg); 1217 for (; UI != VRegUses.end(); ++UI) { 1218 if (UI->SU == &SU) 1219 break; 1220 } 1221 if (UI == VRegUses.end()) 1222 VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU)); 1223 } 1224 } 1225 1226 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 1227 /// crossing a scheduling boundary. [begin, end) includes all instructions in 1228 /// the region, including the boundary itself and single-instruction regions 1229 /// that don't get scheduled. 1230 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 1231 MachineBasicBlock::iterator begin, 1232 MachineBasicBlock::iterator end, 1233 unsigned regioninstrs) 1234 { 1235 // ScheduleDAGMI initializes SchedImpl's per-region policy. 1236 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 1237 1238 // For convenience remember the end of the liveness region. 1239 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 1240 1241 SUPressureDiffs.clear(); 1242 1243 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 1244 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks(); 1245 1246 assert((!ShouldTrackLaneMasks || ShouldTrackPressure) && 1247 "ShouldTrackLaneMasks requires ShouldTrackPressure"); 1248 } 1249 1250 // Setup the register pressure trackers for the top scheduled and bottom 1251 // scheduled regions. 1252 void ScheduleDAGMILive::initRegPressure() { 1253 VRegUses.clear(); 1254 VRegUses.setUniverse(MRI.getNumVirtRegs()); 1255 for (SUnit &SU : SUnits) 1256 collectVRegUses(SU); 1257 1258 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin, 1259 ShouldTrackLaneMasks, false); 1260 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1261 ShouldTrackLaneMasks, false); 1262 1263 // Close the RPTracker to finalize live ins. 1264 RPTracker.closeRegion(); 1265 1266 LLVM_DEBUG(RPTracker.dump()); 1267 1268 // Initialize the live ins and live outs. 1269 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 1270 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 1271 1272 // Close one end of the tracker so we can call 1273 // getMaxUpward/DownwardPressureDelta before advancing across any 1274 // instructions. This converts currently live regs into live ins/outs. 1275 TopRPTracker.closeTop(); 1276 BotRPTracker.closeBottom(); 1277 1278 BotRPTracker.initLiveThru(RPTracker); 1279 if (!BotRPTracker.getLiveThru().empty()) { 1280 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 1281 LLVM_DEBUG(dbgs() << "Live Thru: "; 1282 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 1283 }; 1284 1285 // For each live out vreg reduce the pressure change associated with other 1286 // uses of the same vreg below the live-out reaching def. 1287 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 1288 1289 // Account for liveness generated by the region boundary. 1290 if (LiveRegionEnd != RegionEnd) { 1291 SmallVector<RegisterMaskPair, 8> LiveUses; 1292 BotRPTracker.recede(&LiveUses); 1293 updatePressureDiffs(LiveUses); 1294 } 1295 1296 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; 1297 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1298 dbgs() << "Bottom Pressure:\n"; 1299 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);); 1300 1301 assert((BotRPTracker.getPos() == RegionEnd || 1302 (RegionEnd->isDebugInstr() && 1303 BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) && 1304 "Can't find the region bottom"); 1305 1306 // Cache the list of excess pressure sets in this region. This will also track 1307 // the max pressure in the scheduled code for these sets. 1308 RegionCriticalPSets.clear(); 1309 const std::vector<unsigned> &RegionPressure = 1310 RPTracker.getPressure().MaxSetPressure; 1311 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 1312 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 1313 if (RegionPressure[i] > Limit) { 1314 LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit 1315 << " Actual " << RegionPressure[i] << "\n"); 1316 RegionCriticalPSets.push_back(PressureChange(i)); 1317 } 1318 } 1319 LLVM_DEBUG(dbgs() << "Excess PSets: "; 1320 for (const PressureChange &RCPS 1321 : RegionCriticalPSets) dbgs() 1322 << TRI->getRegPressureSetName(RCPS.getPSet()) << " "; 1323 dbgs() << "\n"); 1324 } 1325 1326 void ScheduleDAGMILive:: 1327 updateScheduledPressure(const SUnit *SU, 1328 const std::vector<unsigned> &NewMaxPressure) { 1329 const PressureDiff &PDiff = getPressureDiff(SU); 1330 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 1331 for (const PressureChange &PC : PDiff) { 1332 if (!PC.isValid()) 1333 break; 1334 unsigned ID = PC.getPSet(); 1335 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 1336 ++CritIdx; 1337 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 1338 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 1339 && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max()) 1340 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 1341 } 1342 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 1343 if (NewMaxPressure[ID] >= Limit - 2) { 1344 LLVM_DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 1345 << NewMaxPressure[ID] 1346 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") 1347 << Limit << "(+ " << BotRPTracker.getLiveThru()[ID] 1348 << " livethru)\n"); 1349 } 1350 } 1351 } 1352 1353 /// Update the PressureDiff array for liveness after scheduling this 1354 /// instruction. 1355 void ScheduleDAGMILive::updatePressureDiffs( 1356 ArrayRef<RegisterMaskPair> LiveUses) { 1357 for (const RegisterMaskPair &P : LiveUses) { 1358 Register Reg = P.RegUnit; 1359 /// FIXME: Currently assuming single-use physregs. 1360 if (!Reg.isVirtual()) 1361 continue; 1362 1363 if (ShouldTrackLaneMasks) { 1364 // If the register has just become live then other uses won't change 1365 // this fact anymore => decrement pressure. 1366 // If the register has just become dead then other uses make it come 1367 // back to life => increment pressure. 1368 bool Decrement = P.LaneMask.any(); 1369 1370 for (const VReg2SUnit &V2SU 1371 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1372 SUnit &SU = *V2SU.SU; 1373 if (SU.isScheduled || &SU == &ExitSU) 1374 continue; 1375 1376 PressureDiff &PDiff = getPressureDiff(&SU); 1377 PDiff.addPressureChange(Reg, Decrement, &MRI); 1378 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") " 1379 << printReg(Reg, TRI) << ':' 1380 << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr(); 1381 dbgs() << " to "; PDiff.dump(*TRI);); 1382 } 1383 } else { 1384 assert(P.LaneMask.any()); 1385 LLVM_DEBUG(dbgs() << " LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n"); 1386 // This may be called before CurrentBottom has been initialized. However, 1387 // BotRPTracker must have a valid position. We want the value live into the 1388 // instruction or live out of the block, so ask for the previous 1389 // instruction's live-out. 1390 const LiveInterval &LI = LIS->getInterval(Reg); 1391 VNInfo *VNI; 1392 MachineBasicBlock::const_iterator I = 1393 nextIfDebug(BotRPTracker.getPos(), BB->end()); 1394 if (I == BB->end()) 1395 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1396 else { 1397 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I)); 1398 VNI = LRQ.valueIn(); 1399 } 1400 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 1401 assert(VNI && "No live value at use."); 1402 for (const VReg2SUnit &V2SU 1403 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1404 SUnit *SU = V2SU.SU; 1405 // If this use comes before the reaching def, it cannot be a last use, 1406 // so decrease its pressure change. 1407 if (!SU->isScheduled && SU != &ExitSU) { 1408 LiveQueryResult LRQ = 1409 LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1410 if (LRQ.valueIn() == VNI) { 1411 PressureDiff &PDiff = getPressureDiff(SU); 1412 PDiff.addPressureChange(Reg, true, &MRI); 1413 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 1414 << *SU->getInstr(); 1415 dbgs() << " to "; PDiff.dump(*TRI);); 1416 } 1417 } 1418 } 1419 } 1420 } 1421 } 1422 1423 void ScheduleDAGMILive::dump() const { 1424 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1425 if (EntrySU.getInstr() != nullptr) 1426 dumpNodeAll(EntrySU); 1427 for (const SUnit &SU : SUnits) { 1428 dumpNodeAll(SU); 1429 if (ShouldTrackPressure) { 1430 dbgs() << " Pressure Diff : "; 1431 getPressureDiff(&SU).dump(*TRI); 1432 } 1433 dbgs() << " Single Issue : "; 1434 if (SchedModel.mustBeginGroup(SU.getInstr()) && 1435 SchedModel.mustEndGroup(SU.getInstr())) 1436 dbgs() << "true;"; 1437 else 1438 dbgs() << "false;"; 1439 dbgs() << '\n'; 1440 } 1441 if (ExitSU.getInstr() != nullptr) 1442 dumpNodeAll(ExitSU); 1443 #endif 1444 } 1445 1446 /// schedule - Called back from MachineScheduler::runOnMachineFunction 1447 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1448 /// only includes instructions that have DAG nodes, not scheduling boundaries. 1449 /// 1450 /// This is a skeletal driver, with all the functionality pushed into helpers, 1451 /// so that it can be easily extended by experimental schedulers. Generally, 1452 /// implementing MachineSchedStrategy should be sufficient to implement a new 1453 /// scheduling algorithm. However, if a scheduler further subclasses 1454 /// ScheduleDAGMILive then it will want to override this virtual method in order 1455 /// to update any specialized state. 1456 void ScheduleDAGMILive::schedule() { 1457 LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); 1458 LLVM_DEBUG(SchedImpl->dumpPolicy()); 1459 buildDAGWithRegPressure(); 1460 1461 postProcessDAG(); 1462 1463 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1464 findRootsAndBiasEdges(TopRoots, BotRoots); 1465 1466 // Initialize the strategy before modifying the DAG. 1467 // This may initialize a DFSResult to be used for queue priority. 1468 SchedImpl->initialize(this); 1469 1470 LLVM_DEBUG(dump()); 1471 if (PrintDAGs) dump(); 1472 if (ViewMISchedDAGs) viewGraph(); 1473 1474 // Initialize ready queues now that the DAG and priority data are finalized. 1475 initQueues(TopRoots, BotRoots); 1476 1477 bool IsTopNode = false; 1478 while (true) { 1479 LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); 1480 SUnit *SU = SchedImpl->pickNode(IsTopNode); 1481 if (!SU) break; 1482 1483 assert(!SU->isScheduled && "Node already scheduled"); 1484 if (!checkSchedLimit()) 1485 break; 1486 1487 scheduleMI(SU, IsTopNode); 1488 1489 if (DFSResult) { 1490 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1491 if (!ScheduledTrees.test(SubtreeID)) { 1492 ScheduledTrees.set(SubtreeID); 1493 DFSResult->scheduleTree(SubtreeID); 1494 SchedImpl->scheduleTree(SubtreeID); 1495 } 1496 } 1497 1498 // Notify the scheduling strategy after updating the DAG. 1499 SchedImpl->schedNode(SU, IsTopNode); 1500 1501 updateQueues(SU, IsTopNode); 1502 } 1503 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1504 1505 placeDebugValues(); 1506 1507 LLVM_DEBUG({ 1508 dbgs() << "*** Final schedule for " 1509 << printMBBReference(*begin()->getParent()) << " ***\n"; 1510 dumpSchedule(); 1511 dbgs() << '\n'; 1512 }); 1513 } 1514 1515 /// Build the DAG and setup three register pressure trackers. 1516 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1517 if (!ShouldTrackPressure) { 1518 RPTracker.reset(); 1519 RegionCriticalPSets.clear(); 1520 buildSchedGraph(AA); 1521 return; 1522 } 1523 1524 // Initialize the register pressure tracker used by buildSchedGraph. 1525 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1526 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true); 1527 1528 // Account for liveness generate by the region boundary. 1529 if (LiveRegionEnd != RegionEnd) 1530 RPTracker.recede(); 1531 1532 // Build the DAG, and compute current register pressure. 1533 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks); 1534 1535 // Initialize top/bottom trackers after computing region pressure. 1536 initRegPressure(); 1537 } 1538 1539 void ScheduleDAGMILive::computeDFSResult() { 1540 if (!DFSResult) 1541 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1542 DFSResult->clear(); 1543 ScheduledTrees.clear(); 1544 DFSResult->resize(SUnits.size()); 1545 DFSResult->compute(SUnits); 1546 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1547 } 1548 1549 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1550 /// only provides the critical path for single block loops. To handle loops that 1551 /// span blocks, we could use the vreg path latencies provided by 1552 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1553 /// available for use in the scheduler. 1554 /// 1555 /// The cyclic path estimation identifies a def-use pair that crosses the back 1556 /// edge and considers the depth and height of the nodes. For example, consider 1557 /// the following instruction sequence where each instruction has unit latency 1558 /// and defines an eponymous virtual register: 1559 /// 1560 /// a->b(a,c)->c(b)->d(c)->exit 1561 /// 1562 /// The cyclic critical path is a two cycles: b->c->b 1563 /// The acyclic critical path is four cycles: a->b->c->d->exit 1564 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1565 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1566 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1567 /// LiveInDepth = depth(b) = len(a->b) = 1 1568 /// 1569 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1570 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1571 /// CyclicCriticalPath = min(2, 2) = 2 1572 /// 1573 /// This could be relevant to PostRA scheduling, but is currently implemented 1574 /// assuming LiveIntervals. 1575 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1576 // This only applies to single block loop. 1577 if (!BB->isSuccessor(BB)) 1578 return 0; 1579 1580 unsigned MaxCyclicLatency = 0; 1581 // Visit each live out vreg def to find def/use pairs that cross iterations. 1582 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) { 1583 Register Reg = P.RegUnit; 1584 if (!Reg.isVirtual()) 1585 continue; 1586 const LiveInterval &LI = LIS->getInterval(Reg); 1587 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1588 if (!DefVNI) 1589 continue; 1590 1591 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1592 const SUnit *DefSU = getSUnit(DefMI); 1593 if (!DefSU) 1594 continue; 1595 1596 unsigned LiveOutHeight = DefSU->getHeight(); 1597 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1598 // Visit all local users of the vreg def. 1599 for (const VReg2SUnit &V2SU 1600 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1601 SUnit *SU = V2SU.SU; 1602 if (SU == &ExitSU) 1603 continue; 1604 1605 // Only consider uses of the phi. 1606 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1607 if (!LRQ.valueIn()->isPHIDef()) 1608 continue; 1609 1610 // Assume that a path spanning two iterations is a cycle, which could 1611 // overestimate in strange cases. This allows cyclic latency to be 1612 // estimated as the minimum slack of the vreg's depth or height. 1613 unsigned CyclicLatency = 0; 1614 if (LiveOutDepth > SU->getDepth()) 1615 CyclicLatency = LiveOutDepth - SU->getDepth(); 1616 1617 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; 1618 if (LiveInHeight > LiveOutHeight) { 1619 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1620 CyclicLatency = LiveInHeight - LiveOutHeight; 1621 } else 1622 CyclicLatency = 0; 1623 1624 LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1625 << SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1626 if (CyclicLatency > MaxCyclicLatency) 1627 MaxCyclicLatency = CyclicLatency; 1628 } 1629 } 1630 LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1631 return MaxCyclicLatency; 1632 } 1633 1634 /// Release ExitSU predecessors and setup scheduler queues. Re-position 1635 /// the Top RP tracker in case the region beginning has changed. 1636 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots, 1637 ArrayRef<SUnit*> BotRoots) { 1638 ScheduleDAGMI::initQueues(TopRoots, BotRoots); 1639 if (ShouldTrackPressure) { 1640 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1641 TopRPTracker.setPos(CurrentTop); 1642 } 1643 } 1644 1645 /// Move an instruction and update register pressure. 1646 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1647 // Move the instruction to its new location in the instruction stream. 1648 MachineInstr *MI = SU->getInstr(); 1649 1650 if (IsTopNode) { 1651 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1652 if (&*CurrentTop == MI) 1653 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1654 else { 1655 moveInstruction(MI, CurrentTop); 1656 TopRPTracker.setPos(MI); 1657 } 1658 1659 if (ShouldTrackPressure) { 1660 // Update top scheduled pressure. 1661 RegisterOperands RegOpers; 1662 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, 1663 /*IgnoreDead=*/false); 1664 if (ShouldTrackLaneMasks) { 1665 // Adjust liveness and add missing dead+read-undef flags. 1666 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1667 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1668 } else { 1669 // Adjust for missing dead-def flags. 1670 RegOpers.detectDeadDefs(*MI, *LIS); 1671 } 1672 1673 TopRPTracker.advance(RegOpers); 1674 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1675 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure( 1676 TopRPTracker.getRegSetPressureAtPos(), TRI);); 1677 1678 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1679 } 1680 } else { 1681 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1682 MachineBasicBlock::iterator priorII = 1683 priorNonDebug(CurrentBottom, CurrentTop); 1684 if (&*priorII == MI) 1685 CurrentBottom = priorII; 1686 else { 1687 if (&*CurrentTop == MI) { 1688 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1689 TopRPTracker.setPos(CurrentTop); 1690 } 1691 moveInstruction(MI, CurrentBottom); 1692 CurrentBottom = MI; 1693 BotRPTracker.setPos(CurrentBottom); 1694 } 1695 if (ShouldTrackPressure) { 1696 RegisterOperands RegOpers; 1697 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, 1698 /*IgnoreDead=*/false); 1699 if (ShouldTrackLaneMasks) { 1700 // Adjust liveness and add missing dead+read-undef flags. 1701 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1702 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1703 } else { 1704 // Adjust for missing dead-def flags. 1705 RegOpers.detectDeadDefs(*MI, *LIS); 1706 } 1707 1708 if (BotRPTracker.getPos() != CurrentBottom) 1709 BotRPTracker.recedeSkipDebugValues(); 1710 SmallVector<RegisterMaskPair, 8> LiveUses; 1711 BotRPTracker.recede(RegOpers, &LiveUses); 1712 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1713 LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure( 1714 BotRPTracker.getRegSetPressureAtPos(), TRI);); 1715 1716 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1717 updatePressureDiffs(LiveUses); 1718 } 1719 } 1720 } 1721 1722 //===----------------------------------------------------------------------===// 1723 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores. 1724 //===----------------------------------------------------------------------===// 1725 1726 namespace { 1727 1728 /// Post-process the DAG to create cluster edges between neighboring 1729 /// loads or between neighboring stores. 1730 class BaseMemOpClusterMutation : public ScheduleDAGMutation { 1731 struct MemOpInfo { 1732 SUnit *SU; 1733 SmallVector<const MachineOperand *, 4> BaseOps; 1734 int64_t Offset; 1735 LocationSize Width; 1736 bool OffsetIsScalable; 1737 1738 MemOpInfo(SUnit *SU, ArrayRef<const MachineOperand *> BaseOps, 1739 int64_t Offset, bool OffsetIsScalable, LocationSize Width) 1740 : SU(SU), BaseOps(BaseOps), Offset(Offset), Width(Width), 1741 OffsetIsScalable(OffsetIsScalable) {} 1742 1743 static bool Compare(const MachineOperand *const &A, 1744 const MachineOperand *const &B) { 1745 if (A->getType() != B->getType()) 1746 return A->getType() < B->getType(); 1747 if (A->isReg()) 1748 return A->getReg() < B->getReg(); 1749 if (A->isFI()) { 1750 const MachineFunction &MF = *A->getParent()->getParent()->getParent(); 1751 const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering(); 1752 bool StackGrowsDown = TFI.getStackGrowthDirection() == 1753 TargetFrameLowering::StackGrowsDown; 1754 return StackGrowsDown ? A->getIndex() > B->getIndex() 1755 : A->getIndex() < B->getIndex(); 1756 } 1757 1758 llvm_unreachable("MemOpClusterMutation only supports register or frame " 1759 "index bases."); 1760 } 1761 1762 bool operator<(const MemOpInfo &RHS) const { 1763 // FIXME: Don't compare everything twice. Maybe use C++20 three way 1764 // comparison instead when it's available. 1765 if (std::lexicographical_compare(BaseOps.begin(), BaseOps.end(), 1766 RHS.BaseOps.begin(), RHS.BaseOps.end(), 1767 Compare)) 1768 return true; 1769 if (std::lexicographical_compare(RHS.BaseOps.begin(), RHS.BaseOps.end(), 1770 BaseOps.begin(), BaseOps.end(), Compare)) 1771 return false; 1772 if (Offset != RHS.Offset) 1773 return Offset < RHS.Offset; 1774 return SU->NodeNum < RHS.SU->NodeNum; 1775 } 1776 }; 1777 1778 const TargetInstrInfo *TII; 1779 const TargetRegisterInfo *TRI; 1780 bool IsLoad; 1781 bool ReorderWhileClustering; 1782 1783 public: 1784 BaseMemOpClusterMutation(const TargetInstrInfo *tii, 1785 const TargetRegisterInfo *tri, bool IsLoad, 1786 bool ReorderWhileClustering) 1787 : TII(tii), TRI(tri), IsLoad(IsLoad), 1788 ReorderWhileClustering(ReorderWhileClustering) {} 1789 1790 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1791 1792 protected: 1793 void clusterNeighboringMemOps(ArrayRef<MemOpInfo> MemOps, bool FastCluster, 1794 ScheduleDAGInstrs *DAG); 1795 void collectMemOpRecords(std::vector<SUnit> &SUnits, 1796 SmallVectorImpl<MemOpInfo> &MemOpRecords); 1797 bool groupMemOps(ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG, 1798 DenseMap<unsigned, SmallVector<MemOpInfo, 32>> &Groups); 1799 }; 1800 1801 class StoreClusterMutation : public BaseMemOpClusterMutation { 1802 public: 1803 StoreClusterMutation(const TargetInstrInfo *tii, 1804 const TargetRegisterInfo *tri, 1805 bool ReorderWhileClustering) 1806 : BaseMemOpClusterMutation(tii, tri, false, ReorderWhileClustering) {} 1807 }; 1808 1809 class LoadClusterMutation : public BaseMemOpClusterMutation { 1810 public: 1811 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri, 1812 bool ReorderWhileClustering) 1813 : BaseMemOpClusterMutation(tii, tri, true, ReorderWhileClustering) {} 1814 }; 1815 1816 } // end anonymous namespace 1817 1818 namespace llvm { 1819 1820 std::unique_ptr<ScheduleDAGMutation> 1821 createLoadClusterDAGMutation(const TargetInstrInfo *TII, 1822 const TargetRegisterInfo *TRI, 1823 bool ReorderWhileClustering) { 1824 return EnableMemOpCluster ? std::make_unique<LoadClusterMutation>( 1825 TII, TRI, ReorderWhileClustering) 1826 : nullptr; 1827 } 1828 1829 std::unique_ptr<ScheduleDAGMutation> 1830 createStoreClusterDAGMutation(const TargetInstrInfo *TII, 1831 const TargetRegisterInfo *TRI, 1832 bool ReorderWhileClustering) { 1833 return EnableMemOpCluster ? std::make_unique<StoreClusterMutation>( 1834 TII, TRI, ReorderWhileClustering) 1835 : nullptr; 1836 } 1837 1838 } // end namespace llvm 1839 1840 // Sorting all the loads/stores first, then for each load/store, checking the 1841 // following load/store one by one, until reach the first non-dependent one and 1842 // call target hook to see if they can cluster. 1843 // If FastCluster is enabled, we assume that, all the loads/stores have been 1844 // preprocessed and now, they didn't have dependencies on each other. 1845 void BaseMemOpClusterMutation::clusterNeighboringMemOps( 1846 ArrayRef<MemOpInfo> MemOpRecords, bool FastCluster, 1847 ScheduleDAGInstrs *DAG) { 1848 // Keep track of the current cluster length and bytes for each SUnit. 1849 DenseMap<unsigned, std::pair<unsigned, unsigned>> SUnit2ClusterInfo; 1850 1851 // At this point, `MemOpRecords` array must hold atleast two mem ops. Try to 1852 // cluster mem ops collected within `MemOpRecords` array. 1853 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) { 1854 // Decision to cluster mem ops is taken based on target dependent logic 1855 auto MemOpa = MemOpRecords[Idx]; 1856 1857 // Seek for the next load/store to do the cluster. 1858 unsigned NextIdx = Idx + 1; 1859 for (; NextIdx < End; ++NextIdx) 1860 // Skip if MemOpb has been clustered already or has dependency with 1861 // MemOpa. 1862 if (!SUnit2ClusterInfo.count(MemOpRecords[NextIdx].SU->NodeNum) && 1863 (FastCluster || 1864 (!DAG->IsReachable(MemOpRecords[NextIdx].SU, MemOpa.SU) && 1865 !DAG->IsReachable(MemOpa.SU, MemOpRecords[NextIdx].SU)))) 1866 break; 1867 if (NextIdx == End) 1868 continue; 1869 1870 auto MemOpb = MemOpRecords[NextIdx]; 1871 unsigned ClusterLength = 2; 1872 unsigned CurrentClusterBytes = MemOpa.Width.getValue().getKnownMinValue() + 1873 MemOpb.Width.getValue().getKnownMinValue(); 1874 if (SUnit2ClusterInfo.count(MemOpa.SU->NodeNum)) { 1875 ClusterLength = SUnit2ClusterInfo[MemOpa.SU->NodeNum].first + 1; 1876 CurrentClusterBytes = SUnit2ClusterInfo[MemOpa.SU->NodeNum].second + 1877 MemOpb.Width.getValue().getKnownMinValue(); 1878 } 1879 1880 if (!TII->shouldClusterMemOps(MemOpa.BaseOps, MemOpa.Offset, 1881 MemOpa.OffsetIsScalable, MemOpb.BaseOps, 1882 MemOpb.Offset, MemOpb.OffsetIsScalable, 1883 ClusterLength, CurrentClusterBytes)) 1884 continue; 1885 1886 SUnit *SUa = MemOpa.SU; 1887 SUnit *SUb = MemOpb.SU; 1888 if (!ReorderWhileClustering && SUa->NodeNum > SUb->NodeNum) 1889 std::swap(SUa, SUb); 1890 1891 // FIXME: Is this check really required? 1892 if (!DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) 1893 continue; 1894 1895 LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU(" 1896 << SUb->NodeNum << ")\n"); 1897 ++NumClustered; 1898 1899 if (IsLoad) { 1900 // Copy successor edges from SUa to SUb. Interleaving computation 1901 // dependent on SUa can prevent load combining due to register reuse. 1902 // Predecessor edges do not need to be copied from SUb to SUa since 1903 // nearby loads should have effectively the same inputs. 1904 for (const SDep &Succ : SUa->Succs) { 1905 if (Succ.getSUnit() == SUb) 1906 continue; 1907 LLVM_DEBUG(dbgs() << " Copy Succ SU(" << Succ.getSUnit()->NodeNum 1908 << ")\n"); 1909 DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial)); 1910 } 1911 } else { 1912 // Copy predecessor edges from SUb to SUa to avoid the SUnits that 1913 // SUb dependent on scheduled in-between SUb and SUa. Successor edges 1914 // do not need to be copied from SUa to SUb since no one will depend 1915 // on stores. 1916 // Notice that, we don't need to care about the memory dependency as 1917 // we won't try to cluster them if they have any memory dependency. 1918 for (const SDep &Pred : SUb->Preds) { 1919 if (Pred.getSUnit() == SUa) 1920 continue; 1921 LLVM_DEBUG(dbgs() << " Copy Pred SU(" << Pred.getSUnit()->NodeNum 1922 << ")\n"); 1923 DAG->addEdge(SUa, SDep(Pred.getSUnit(), SDep::Artificial)); 1924 } 1925 } 1926 1927 SUnit2ClusterInfo[MemOpb.SU->NodeNum] = {ClusterLength, 1928 CurrentClusterBytes}; 1929 1930 LLVM_DEBUG(dbgs() << " Curr cluster length: " << ClusterLength 1931 << ", Curr cluster bytes: " << CurrentClusterBytes 1932 << "\n"); 1933 } 1934 } 1935 1936 void BaseMemOpClusterMutation::collectMemOpRecords( 1937 std::vector<SUnit> &SUnits, SmallVectorImpl<MemOpInfo> &MemOpRecords) { 1938 for (auto &SU : SUnits) { 1939 if ((IsLoad && !SU.getInstr()->mayLoad()) || 1940 (!IsLoad && !SU.getInstr()->mayStore())) 1941 continue; 1942 1943 const MachineInstr &MI = *SU.getInstr(); 1944 SmallVector<const MachineOperand *, 4> BaseOps; 1945 int64_t Offset; 1946 bool OffsetIsScalable; 1947 LocationSize Width = 0; 1948 if (TII->getMemOperandsWithOffsetWidth(MI, BaseOps, Offset, 1949 OffsetIsScalable, Width, TRI)) { 1950 MemOpRecords.push_back( 1951 MemOpInfo(&SU, BaseOps, Offset, OffsetIsScalable, Width)); 1952 1953 LLVM_DEBUG(dbgs() << "Num BaseOps: " << BaseOps.size() << ", Offset: " 1954 << Offset << ", OffsetIsScalable: " << OffsetIsScalable 1955 << ", Width: " << Width << "\n"); 1956 } 1957 #ifndef NDEBUG 1958 for (const auto *Op : BaseOps) 1959 assert(Op); 1960 #endif 1961 } 1962 } 1963 1964 bool BaseMemOpClusterMutation::groupMemOps( 1965 ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG, 1966 DenseMap<unsigned, SmallVector<MemOpInfo, 32>> &Groups) { 1967 bool FastCluster = 1968 ForceFastCluster || 1969 MemOps.size() * DAG->SUnits.size() / 1000 > FastClusterThreshold; 1970 1971 for (const auto &MemOp : MemOps) { 1972 unsigned ChainPredID = DAG->SUnits.size(); 1973 if (FastCluster) { 1974 for (const SDep &Pred : MemOp.SU->Preds) { 1975 // We only want to cluster the mem ops that have the same ctrl(non-data) 1976 // pred so that they didn't have ctrl dependency for each other. But for 1977 // store instrs, we can still cluster them if the pred is load instr. 1978 if ((Pred.isCtrl() && 1979 (IsLoad || 1980 (Pred.getSUnit() && Pred.getSUnit()->getInstr()->mayStore()))) && 1981 !Pred.isArtificial()) { 1982 ChainPredID = Pred.getSUnit()->NodeNum; 1983 break; 1984 } 1985 } 1986 } else 1987 ChainPredID = 0; 1988 1989 Groups[ChainPredID].push_back(MemOp); 1990 } 1991 return FastCluster; 1992 } 1993 1994 /// Callback from DAG postProcessing to create cluster edges for loads/stores. 1995 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAG) { 1996 // Collect all the clusterable loads/stores 1997 SmallVector<MemOpInfo, 32> MemOpRecords; 1998 collectMemOpRecords(DAG->SUnits, MemOpRecords); 1999 2000 if (MemOpRecords.size() < 2) 2001 return; 2002 2003 // Put the loads/stores without dependency into the same group with some 2004 // heuristic if the DAG is too complex to avoid compiling time blow up. 2005 // Notice that, some fusion pair could be lost with this. 2006 DenseMap<unsigned, SmallVector<MemOpInfo, 32>> Groups; 2007 bool FastCluster = groupMemOps(MemOpRecords, DAG, Groups); 2008 2009 for (auto &Group : Groups) { 2010 // Sorting the loads/stores, so that, we can stop the cluster as early as 2011 // possible. 2012 llvm::sort(Group.second); 2013 2014 // Trying to cluster all the neighboring loads/stores. 2015 clusterNeighboringMemOps(Group.second, FastCluster, DAG); 2016 } 2017 } 2018 2019 //===----------------------------------------------------------------------===// 2020 // CopyConstrain - DAG post-processing to encourage copy elimination. 2021 //===----------------------------------------------------------------------===// 2022 2023 namespace { 2024 2025 /// Post-process the DAG to create weak edges from all uses of a copy to 2026 /// the one use that defines the copy's source vreg, most likely an induction 2027 /// variable increment. 2028 class CopyConstrain : public ScheduleDAGMutation { 2029 // Transient state. 2030 SlotIndex RegionBeginIdx; 2031 2032 // RegionEndIdx is the slot index of the last non-debug instruction in the 2033 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 2034 SlotIndex RegionEndIdx; 2035 2036 public: 2037 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 2038 2039 void apply(ScheduleDAGInstrs *DAGInstrs) override; 2040 2041 protected: 2042 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 2043 }; 2044 2045 } // end anonymous namespace 2046 2047 namespace llvm { 2048 2049 std::unique_ptr<ScheduleDAGMutation> 2050 createCopyConstrainDAGMutation(const TargetInstrInfo *TII, 2051 const TargetRegisterInfo *TRI) { 2052 return std::make_unique<CopyConstrain>(TII, TRI); 2053 } 2054 2055 } // end namespace llvm 2056 2057 /// constrainLocalCopy handles two possibilities: 2058 /// 1) Local src: 2059 /// I0: = dst 2060 /// I1: src = ... 2061 /// I2: = dst 2062 /// I3: dst = src (copy) 2063 /// (create pred->succ edges I0->I1, I2->I1) 2064 /// 2065 /// 2) Local copy: 2066 /// I0: dst = src (copy) 2067 /// I1: = dst 2068 /// I2: src = ... 2069 /// I3: = dst 2070 /// (create pred->succ edges I1->I2, I3->I2) 2071 /// 2072 /// Although the MachineScheduler is currently constrained to single blocks, 2073 /// this algorithm should handle extended blocks. An EBB is a set of 2074 /// contiguously numbered blocks such that the previous block in the EBB is 2075 /// always the single predecessor. 2076 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 2077 LiveIntervals *LIS = DAG->getLIS(); 2078 MachineInstr *Copy = CopySU->getInstr(); 2079 2080 // Check for pure vreg copies. 2081 const MachineOperand &SrcOp = Copy->getOperand(1); 2082 Register SrcReg = SrcOp.getReg(); 2083 if (!SrcReg.isVirtual() || !SrcOp.readsReg()) 2084 return; 2085 2086 const MachineOperand &DstOp = Copy->getOperand(0); 2087 Register DstReg = DstOp.getReg(); 2088 if (!DstReg.isVirtual() || DstOp.isDead()) 2089 return; 2090 2091 // Check if either the dest or source is local. If it's live across a back 2092 // edge, it's not local. Note that if both vregs are live across the back 2093 // edge, we cannot successfully contrain the copy without cyclic scheduling. 2094 // If both the copy's source and dest are local live intervals, then we 2095 // should treat the dest as the global for the purpose of adding 2096 // constraints. This adds edges from source's other uses to the copy. 2097 unsigned LocalReg = SrcReg; 2098 unsigned GlobalReg = DstReg; 2099 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 2100 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 2101 LocalReg = DstReg; 2102 GlobalReg = SrcReg; 2103 LocalLI = &LIS->getInterval(LocalReg); 2104 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 2105 return; 2106 } 2107 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 2108 2109 // Find the global segment after the start of the local LI. 2110 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 2111 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 2112 // local live range. We could create edges from other global uses to the local 2113 // start, but the coalescer should have already eliminated these cases, so 2114 // don't bother dealing with it. 2115 if (GlobalSegment == GlobalLI->end()) 2116 return; 2117 2118 // If GlobalSegment is killed at the LocalLI->start, the call to find() 2119 // returned the next global segment. But if GlobalSegment overlaps with 2120 // LocalLI->start, then advance to the next segment. If a hole in GlobalLI 2121 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 2122 if (GlobalSegment->contains(LocalLI->beginIndex())) 2123 ++GlobalSegment; 2124 2125 if (GlobalSegment == GlobalLI->end()) 2126 return; 2127 2128 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 2129 if (GlobalSegment != GlobalLI->begin()) { 2130 // Two address defs have no hole. 2131 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 2132 GlobalSegment->start)) { 2133 return; 2134 } 2135 // If the prior global segment may be defined by the same two-address 2136 // instruction that also defines LocalLI, then can't make a hole here. 2137 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 2138 LocalLI->beginIndex())) { 2139 return; 2140 } 2141 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 2142 // it would be a disconnected component in the live range. 2143 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 2144 "Disconnected LRG within the scheduling region."); 2145 } 2146 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 2147 if (!GlobalDef) 2148 return; 2149 2150 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 2151 if (!GlobalSU) 2152 return; 2153 2154 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 2155 // constraining the uses of the last local def to precede GlobalDef. 2156 SmallVector<SUnit*,8> LocalUses; 2157 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 2158 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 2159 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 2160 for (const SDep &Succ : LastLocalSU->Succs) { 2161 if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg) 2162 continue; 2163 if (Succ.getSUnit() == GlobalSU) 2164 continue; 2165 if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit())) 2166 return; 2167 LocalUses.push_back(Succ.getSUnit()); 2168 } 2169 // Open the top of the GlobalLI hole by constraining any earlier global uses 2170 // to precede the start of LocalLI. 2171 SmallVector<SUnit*,8> GlobalUses; 2172 MachineInstr *FirstLocalDef = 2173 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 2174 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 2175 for (const SDep &Pred : GlobalSU->Preds) { 2176 if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg) 2177 continue; 2178 if (Pred.getSUnit() == FirstLocalSU) 2179 continue; 2180 if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit())) 2181 return; 2182 GlobalUses.push_back(Pred.getSUnit()); 2183 } 2184 LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 2185 // Add the weak edges. 2186 for (SUnit *LU : LocalUses) { 2187 LLVM_DEBUG(dbgs() << " Local use SU(" << LU->NodeNum << ") -> SU(" 2188 << GlobalSU->NodeNum << ")\n"); 2189 DAG->addEdge(GlobalSU, SDep(LU, SDep::Weak)); 2190 } 2191 for (SUnit *GU : GlobalUses) { 2192 LLVM_DEBUG(dbgs() << " Global use SU(" << GU->NodeNum << ") -> SU(" 2193 << FirstLocalSU->NodeNum << ")\n"); 2194 DAG->addEdge(FirstLocalSU, SDep(GU, SDep::Weak)); 2195 } 2196 } 2197 2198 /// Callback from DAG postProcessing to create weak edges to encourage 2199 /// copy elimination. 2200 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) { 2201 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 2202 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 2203 2204 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 2205 if (FirstPos == DAG->end()) 2206 return; 2207 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos); 2208 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 2209 *priorNonDebug(DAG->end(), DAG->begin())); 2210 2211 for (SUnit &SU : DAG->SUnits) { 2212 if (!SU.getInstr()->isCopy()) 2213 continue; 2214 2215 constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG)); 2216 } 2217 } 2218 2219 //===----------------------------------------------------------------------===// 2220 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 2221 // and possibly other custom schedulers. 2222 //===----------------------------------------------------------------------===// 2223 2224 static const unsigned InvalidCycle = ~0U; 2225 2226 SchedBoundary::~SchedBoundary() { delete HazardRec; } 2227 2228 /// Given a Count of resource usage and a Latency value, return true if a 2229 /// SchedBoundary becomes resource limited. 2230 /// If we are checking after scheduling a node, we should return true when 2231 /// we just reach the resource limit. 2232 static bool checkResourceLimit(unsigned LFactor, unsigned Count, 2233 unsigned Latency, bool AfterSchedNode) { 2234 int ResCntFactor = (int)(Count - (Latency * LFactor)); 2235 if (AfterSchedNode) 2236 return ResCntFactor >= (int)LFactor; 2237 else 2238 return ResCntFactor > (int)LFactor; 2239 } 2240 2241 void SchedBoundary::reset() { 2242 // A new HazardRec is created for each DAG and owned by SchedBoundary. 2243 // Destroying and reconstructing it is very expensive though. So keep 2244 // invalid, placeholder HazardRecs. 2245 if (HazardRec && HazardRec->isEnabled()) { 2246 delete HazardRec; 2247 HazardRec = nullptr; 2248 } 2249 Available.clear(); 2250 Pending.clear(); 2251 CheckPending = false; 2252 CurrCycle = 0; 2253 CurrMOps = 0; 2254 MinReadyCycle = std::numeric_limits<unsigned>::max(); 2255 ExpectedLatency = 0; 2256 DependentLatency = 0; 2257 RetiredMOps = 0; 2258 MaxExecutedResCount = 0; 2259 ZoneCritResIdx = 0; 2260 IsResourceLimited = false; 2261 ReservedCycles.clear(); 2262 ReservedResourceSegments.clear(); 2263 ReservedCyclesIndex.clear(); 2264 ResourceGroupSubUnitMasks.clear(); 2265 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 2266 // Track the maximum number of stall cycles that could arise either from the 2267 // latency of a DAG edge or the number of cycles that a processor resource is 2268 // reserved (SchedBoundary::ReservedCycles). 2269 MaxObservedStall = 0; 2270 #endif 2271 // Reserve a zero-count for invalid CritResIdx. 2272 ExecutedResCounts.resize(1); 2273 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 2274 } 2275 2276 void SchedRemainder:: 2277 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 2278 reset(); 2279 if (!SchedModel->hasInstrSchedModel()) 2280 return; 2281 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 2282 for (SUnit &SU : DAG->SUnits) { 2283 const MCSchedClassDesc *SC = DAG->getSchedClass(&SU); 2284 RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC) 2285 * SchedModel->getMicroOpFactor(); 2286 for (TargetSchedModel::ProcResIter 2287 PI = SchedModel->getWriteProcResBegin(SC), 2288 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2289 unsigned PIdx = PI->ProcResourceIdx; 2290 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2291 assert(PI->ReleaseAtCycle >= PI->AcquireAtCycle); 2292 RemainingCounts[PIdx] += 2293 (Factor * (PI->ReleaseAtCycle - PI->AcquireAtCycle)); 2294 } 2295 } 2296 } 2297 2298 void SchedBoundary:: 2299 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 2300 reset(); 2301 DAG = dag; 2302 SchedModel = smodel; 2303 Rem = rem; 2304 if (SchedModel->hasInstrSchedModel()) { 2305 unsigned ResourceCount = SchedModel->getNumProcResourceKinds(); 2306 ReservedCyclesIndex.resize(ResourceCount); 2307 ExecutedResCounts.resize(ResourceCount); 2308 ResourceGroupSubUnitMasks.resize(ResourceCount, APInt(ResourceCount, 0)); 2309 unsigned NumUnits = 0; 2310 2311 for (unsigned i = 0; i < ResourceCount; ++i) { 2312 ReservedCyclesIndex[i] = NumUnits; 2313 NumUnits += SchedModel->getProcResource(i)->NumUnits; 2314 if (isUnbufferedGroup(i)) { 2315 auto SubUnits = SchedModel->getProcResource(i)->SubUnitsIdxBegin; 2316 for (unsigned U = 0, UE = SchedModel->getProcResource(i)->NumUnits; 2317 U != UE; ++U) 2318 ResourceGroupSubUnitMasks[i].setBit(SubUnits[U]); 2319 } 2320 } 2321 2322 ReservedCycles.resize(NumUnits, InvalidCycle); 2323 } 2324 } 2325 2326 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 2327 /// these "soft stalls" differently than the hard stall cycles based on CPU 2328 /// resources and computed by checkHazard(). A fully in-order model 2329 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 2330 /// available for scheduling until they are ready. However, a weaker in-order 2331 /// model may use this for heuristics. For example, if a processor has in-order 2332 /// behavior when reading certain resources, this may come into play. 2333 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 2334 if (!SU->isUnbuffered) 2335 return 0; 2336 2337 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2338 if (ReadyCycle > CurrCycle) 2339 return ReadyCycle - CurrCycle; 2340 return 0; 2341 } 2342 2343 /// Compute the next cycle at which the given processor resource unit 2344 /// can be scheduled. 2345 unsigned SchedBoundary::getNextResourceCycleByInstance(unsigned InstanceIdx, 2346 unsigned ReleaseAtCycle, 2347 unsigned AcquireAtCycle) { 2348 if (SchedModel && SchedModel->enableIntervals()) { 2349 if (isTop()) 2350 return ReservedResourceSegments[InstanceIdx].getFirstAvailableAtFromTop( 2351 CurrCycle, AcquireAtCycle, ReleaseAtCycle); 2352 2353 return ReservedResourceSegments[InstanceIdx].getFirstAvailableAtFromBottom( 2354 CurrCycle, AcquireAtCycle, ReleaseAtCycle); 2355 } 2356 2357 unsigned NextUnreserved = ReservedCycles[InstanceIdx]; 2358 // If this resource has never been used, always return cycle zero. 2359 if (NextUnreserved == InvalidCycle) 2360 return CurrCycle; 2361 // For bottom-up scheduling add the cycles needed for the current operation. 2362 if (!isTop()) 2363 NextUnreserved = std::max(CurrCycle, NextUnreserved + ReleaseAtCycle); 2364 return NextUnreserved; 2365 } 2366 2367 /// Compute the next cycle at which the given processor resource can be 2368 /// scheduled. Returns the next cycle and the index of the processor resource 2369 /// instance in the reserved cycles vector. 2370 std::pair<unsigned, unsigned> 2371 SchedBoundary::getNextResourceCycle(const MCSchedClassDesc *SC, unsigned PIdx, 2372 unsigned ReleaseAtCycle, 2373 unsigned AcquireAtCycle) { 2374 if (MischedDetailResourceBooking) { 2375 LLVM_DEBUG(dbgs() << " Resource booking (@" << CurrCycle << "c): \n"); 2376 LLVM_DEBUG(dumpReservedCycles()); 2377 LLVM_DEBUG(dbgs() << " getNextResourceCycle (@" << CurrCycle << "c): \n"); 2378 } 2379 unsigned MinNextUnreserved = InvalidCycle; 2380 unsigned InstanceIdx = 0; 2381 unsigned StartIndex = ReservedCyclesIndex[PIdx]; 2382 unsigned NumberOfInstances = SchedModel->getProcResource(PIdx)->NumUnits; 2383 assert(NumberOfInstances > 0 && 2384 "Cannot have zero instances of a ProcResource"); 2385 2386 if (isUnbufferedGroup(PIdx)) { 2387 // If any subunits are used by the instruction, report that the 2388 // subunits of the resource group are available at the first cycle 2389 // in which the unit is available, effectively removing the group 2390 // record from hazarding and basing the hazarding decisions on the 2391 // subunit records. Otherwise, choose the first available instance 2392 // from among the subunits. Specifications which assign cycles to 2393 // both the subunits and the group or which use an unbuffered 2394 // group with buffered subunits will appear to schedule 2395 // strangely. In the first case, the additional cycles for the 2396 // group will be ignored. In the second, the group will be 2397 // ignored entirely. 2398 for (const MCWriteProcResEntry &PE : 2399 make_range(SchedModel->getWriteProcResBegin(SC), 2400 SchedModel->getWriteProcResEnd(SC))) 2401 if (ResourceGroupSubUnitMasks[PIdx][PE.ProcResourceIdx]) 2402 return std::make_pair(getNextResourceCycleByInstance( 2403 StartIndex, ReleaseAtCycle, AcquireAtCycle), 2404 StartIndex); 2405 2406 auto SubUnits = SchedModel->getProcResource(PIdx)->SubUnitsIdxBegin; 2407 for (unsigned I = 0, End = NumberOfInstances; I < End; ++I) { 2408 unsigned NextUnreserved, NextInstanceIdx; 2409 std::tie(NextUnreserved, NextInstanceIdx) = 2410 getNextResourceCycle(SC, SubUnits[I], ReleaseAtCycle, AcquireAtCycle); 2411 if (MinNextUnreserved > NextUnreserved) { 2412 InstanceIdx = NextInstanceIdx; 2413 MinNextUnreserved = NextUnreserved; 2414 } 2415 } 2416 return std::make_pair(MinNextUnreserved, InstanceIdx); 2417 } 2418 2419 for (unsigned I = StartIndex, End = StartIndex + NumberOfInstances; I < End; 2420 ++I) { 2421 unsigned NextUnreserved = 2422 getNextResourceCycleByInstance(I, ReleaseAtCycle, AcquireAtCycle); 2423 if (MischedDetailResourceBooking) 2424 LLVM_DEBUG(dbgs() << " Instance " << I - StartIndex << " available @" 2425 << NextUnreserved << "c\n"); 2426 if (MinNextUnreserved > NextUnreserved) { 2427 InstanceIdx = I; 2428 MinNextUnreserved = NextUnreserved; 2429 } 2430 } 2431 if (MischedDetailResourceBooking) 2432 LLVM_DEBUG(dbgs() << " selecting " << SchedModel->getResourceName(PIdx) 2433 << "[" << InstanceIdx - StartIndex << "]" 2434 << " available @" << MinNextUnreserved << "c" 2435 << "\n"); 2436 return std::make_pair(MinNextUnreserved, InstanceIdx); 2437 } 2438 2439 /// Does this SU have a hazard within the current instruction group. 2440 /// 2441 /// The scheduler supports two modes of hazard recognition. The first is the 2442 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 2443 /// supports highly complicated in-order reservation tables 2444 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic. 2445 /// 2446 /// The second is a streamlined mechanism that checks for hazards based on 2447 /// simple counters that the scheduler itself maintains. It explicitly checks 2448 /// for instruction dispatch limitations, including the number of micro-ops that 2449 /// can dispatch per cycle. 2450 /// 2451 /// TODO: Also check whether the SU must start a new group. 2452 bool SchedBoundary::checkHazard(SUnit *SU) { 2453 if (HazardRec->isEnabled() 2454 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 2455 return true; 2456 } 2457 2458 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 2459 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 2460 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 2461 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 2462 return true; 2463 } 2464 2465 if (CurrMOps > 0 && 2466 ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) || 2467 (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) { 2468 LLVM_DEBUG(dbgs() << " hazard: SU(" << SU->NodeNum << ") must " 2469 << (isTop() ? "begin" : "end") << " group\n"); 2470 return true; 2471 } 2472 2473 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 2474 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2475 for (const MCWriteProcResEntry &PE : 2476 make_range(SchedModel->getWriteProcResBegin(SC), 2477 SchedModel->getWriteProcResEnd(SC))) { 2478 unsigned ResIdx = PE.ProcResourceIdx; 2479 unsigned ReleaseAtCycle = PE.ReleaseAtCycle; 2480 unsigned AcquireAtCycle = PE.AcquireAtCycle; 2481 unsigned NRCycle, InstanceIdx; 2482 std::tie(NRCycle, InstanceIdx) = 2483 getNextResourceCycle(SC, ResIdx, ReleaseAtCycle, AcquireAtCycle); 2484 if (NRCycle > CurrCycle) { 2485 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 2486 MaxObservedStall = std::max(ReleaseAtCycle, MaxObservedStall); 2487 #endif 2488 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 2489 << SchedModel->getResourceName(ResIdx) 2490 << '[' << InstanceIdx - ReservedCyclesIndex[ResIdx] << ']' 2491 << "=" << NRCycle << "c\n"); 2492 return true; 2493 } 2494 } 2495 } 2496 return false; 2497 } 2498 2499 // Find the unscheduled node in ReadySUs with the highest latency. 2500 unsigned SchedBoundary:: 2501 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 2502 SUnit *LateSU = nullptr; 2503 unsigned RemLatency = 0; 2504 for (SUnit *SU : ReadySUs) { 2505 unsigned L = getUnscheduledLatency(SU); 2506 if (L > RemLatency) { 2507 RemLatency = L; 2508 LateSU = SU; 2509 } 2510 } 2511 if (LateSU) { 2512 LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 2513 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 2514 } 2515 return RemLatency; 2516 } 2517 2518 // Count resources in this zone and the remaining unscheduled 2519 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 2520 // resource index, or zero if the zone is issue limited. 2521 unsigned SchedBoundary:: 2522 getOtherResourceCount(unsigned &OtherCritIdx) { 2523 OtherCritIdx = 0; 2524 if (!SchedModel->hasInstrSchedModel()) 2525 return 0; 2526 2527 unsigned OtherCritCount = Rem->RemIssueCount 2528 + (RetiredMOps * SchedModel->getMicroOpFactor()); 2529 LLVM_DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 2530 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 2531 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 2532 PIdx != PEnd; ++PIdx) { 2533 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 2534 if (OtherCount > OtherCritCount) { 2535 OtherCritCount = OtherCount; 2536 OtherCritIdx = PIdx; 2537 } 2538 } 2539 if (OtherCritIdx) { 2540 LLVM_DEBUG( 2541 dbgs() << " " << Available.getName() << " + Remain CritRes: " 2542 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 2543 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 2544 } 2545 return OtherCritCount; 2546 } 2547 2548 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle, bool InPQueue, 2549 unsigned Idx) { 2550 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 2551 2552 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 2553 // ReadyCycle was been bumped up to the CurrCycle when this node was 2554 // scheduled, but CurrCycle may have been eagerly advanced immediately after 2555 // scheduling, so may now be greater than ReadyCycle. 2556 if (ReadyCycle > CurrCycle) 2557 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 2558 #endif 2559 2560 if (ReadyCycle < MinReadyCycle) 2561 MinReadyCycle = ReadyCycle; 2562 2563 // Check for interlocks first. For the purpose of other heuristics, an 2564 // instruction that cannot issue appears as if it's not in the ReadyQueue. 2565 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2566 bool HazardDetected = (!IsBuffered && ReadyCycle > CurrCycle) || 2567 checkHazard(SU) || (Available.size() >= ReadyListLimit); 2568 2569 if (!HazardDetected) { 2570 Available.push(SU); 2571 2572 if (InPQueue) 2573 Pending.remove(Pending.begin() + Idx); 2574 return; 2575 } 2576 2577 if (!InPQueue) 2578 Pending.push(SU); 2579 } 2580 2581 /// Move the boundary of scheduled code by one cycle. 2582 void SchedBoundary::bumpCycle(unsigned NextCycle) { 2583 if (SchedModel->getMicroOpBufferSize() == 0) { 2584 assert(MinReadyCycle < std::numeric_limits<unsigned>::max() && 2585 "MinReadyCycle uninitialized"); 2586 if (MinReadyCycle > NextCycle) 2587 NextCycle = MinReadyCycle; 2588 } 2589 // Update the current micro-ops, which will issue in the next cycle. 2590 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 2591 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 2592 2593 // Decrement DependentLatency based on the next cycle. 2594 if ((NextCycle - CurrCycle) > DependentLatency) 2595 DependentLatency = 0; 2596 else 2597 DependentLatency -= (NextCycle - CurrCycle); 2598 2599 if (!HazardRec->isEnabled()) { 2600 // Bypass HazardRec virtual calls. 2601 CurrCycle = NextCycle; 2602 } else { 2603 // Bypass getHazardType calls in case of long latency. 2604 for (; CurrCycle != NextCycle; ++CurrCycle) { 2605 if (isTop()) 2606 HazardRec->AdvanceCycle(); 2607 else 2608 HazardRec->RecedeCycle(); 2609 } 2610 } 2611 CheckPending = true; 2612 IsResourceLimited = 2613 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2614 getScheduledLatency(), true); 2615 2616 LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() 2617 << '\n'); 2618 } 2619 2620 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 2621 ExecutedResCounts[PIdx] += Count; 2622 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 2623 MaxExecutedResCount = ExecutedResCounts[PIdx]; 2624 } 2625 2626 /// Add the given processor resource to this scheduled zone. 2627 /// 2628 /// \param ReleaseAtCycle indicates the number of consecutive (non-pipelined) 2629 /// cycles during which this resource is released. 2630 /// 2631 /// \param AcquireAtCycle indicates the number of consecutive (non-pipelined) 2632 /// cycles at which the resource is aquired after issue (assuming no stalls). 2633 /// 2634 /// \return the next cycle at which the instruction may execute without 2635 /// oversubscribing resources. 2636 unsigned SchedBoundary::countResource(const MCSchedClassDesc *SC, unsigned PIdx, 2637 unsigned ReleaseAtCycle, 2638 unsigned NextCycle, 2639 unsigned AcquireAtCycle) { 2640 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2641 unsigned Count = Factor * (ReleaseAtCycle- AcquireAtCycle); 2642 LLVM_DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) << " +" 2643 << ReleaseAtCycle << "x" << Factor << "u\n"); 2644 2645 // Update Executed resources counts. 2646 incExecutedResources(PIdx, Count); 2647 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 2648 Rem->RemainingCounts[PIdx] -= Count; 2649 2650 // Check if this resource exceeds the current critical resource. If so, it 2651 // becomes the critical resource. 2652 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 2653 ZoneCritResIdx = PIdx; 2654 LLVM_DEBUG(dbgs() << " *** Critical resource " 2655 << SchedModel->getResourceName(PIdx) << ": " 2656 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() 2657 << "c\n"); 2658 } 2659 // For reserved resources, record the highest cycle using the resource. 2660 unsigned NextAvailable, InstanceIdx; 2661 std::tie(NextAvailable, InstanceIdx) = 2662 getNextResourceCycle(SC, PIdx, ReleaseAtCycle, AcquireAtCycle); 2663 if (NextAvailable > CurrCycle) { 2664 LLVM_DEBUG(dbgs() << " Resource conflict: " 2665 << SchedModel->getResourceName(PIdx) 2666 << '[' << InstanceIdx - ReservedCyclesIndex[PIdx] << ']' 2667 << " reserved until @" << NextAvailable << "\n"); 2668 } 2669 return NextAvailable; 2670 } 2671 2672 /// Move the boundary of scheduled code by one SUnit. 2673 void SchedBoundary::bumpNode(SUnit *SU) { 2674 // Update the reservation table. 2675 if (HazardRec->isEnabled()) { 2676 if (!isTop() && SU->isCall) { 2677 // Calls are scheduled with their preceding instructions. For bottom-up 2678 // scheduling, clear the pipeline state before emitting. 2679 HazardRec->Reset(); 2680 } 2681 HazardRec->EmitInstruction(SU); 2682 // Scheduling an instruction may have made pending instructions available. 2683 CheckPending = true; 2684 } 2685 // checkHazard should prevent scheduling multiple instructions per cycle that 2686 // exceed the issue width. 2687 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2688 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 2689 assert( 2690 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 2691 "Cannot schedule this instruction's MicroOps in the current cycle."); 2692 2693 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2694 LLVM_DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 2695 2696 unsigned NextCycle = CurrCycle; 2697 switch (SchedModel->getMicroOpBufferSize()) { 2698 case 0: 2699 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 2700 break; 2701 case 1: 2702 if (ReadyCycle > NextCycle) { 2703 NextCycle = ReadyCycle; 2704 LLVM_DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 2705 } 2706 break; 2707 default: 2708 // We don't currently model the OOO reorder buffer, so consider all 2709 // scheduled MOps to be "retired". We do loosely model in-order resource 2710 // latency. If this instruction uses an in-order resource, account for any 2711 // likely stall cycles. 2712 if (SU->isUnbuffered && ReadyCycle > NextCycle) 2713 NextCycle = ReadyCycle; 2714 break; 2715 } 2716 RetiredMOps += IncMOps; 2717 2718 // Update resource counts and critical resource. 2719 if (SchedModel->hasInstrSchedModel()) { 2720 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 2721 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 2722 Rem->RemIssueCount -= DecRemIssue; 2723 if (ZoneCritResIdx) { 2724 // Scale scheduled micro-ops for comparing with the critical resource. 2725 unsigned ScaledMOps = 2726 RetiredMOps * SchedModel->getMicroOpFactor(); 2727 2728 // If scaled micro-ops are now more than the previous critical resource by 2729 // a full cycle, then micro-ops issue becomes critical. 2730 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 2731 >= (int)SchedModel->getLatencyFactor()) { 2732 ZoneCritResIdx = 0; 2733 LLVM_DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2734 << ScaledMOps / SchedModel->getLatencyFactor() 2735 << "c\n"); 2736 } 2737 } 2738 for (TargetSchedModel::ProcResIter 2739 PI = SchedModel->getWriteProcResBegin(SC), 2740 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2741 unsigned RCycle = 2742 countResource(SC, PI->ProcResourceIdx, PI->ReleaseAtCycle, NextCycle, 2743 PI->AcquireAtCycle); 2744 if (RCycle > NextCycle) 2745 NextCycle = RCycle; 2746 } 2747 if (SU->hasReservedResource) { 2748 // For reserved resources, record the highest cycle using the resource. 2749 // For top-down scheduling, this is the cycle in which we schedule this 2750 // instruction plus the number of cycles the operations reserves the 2751 // resource. For bottom-up is it simply the instruction's cycle. 2752 for (TargetSchedModel::ProcResIter 2753 PI = SchedModel->getWriteProcResBegin(SC), 2754 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2755 unsigned PIdx = PI->ProcResourceIdx; 2756 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2757 2758 if (SchedModel && SchedModel->enableIntervals()) { 2759 unsigned ReservedUntil, InstanceIdx; 2760 std::tie(ReservedUntil, InstanceIdx) = getNextResourceCycle( 2761 SC, PIdx, PI->ReleaseAtCycle, PI->AcquireAtCycle); 2762 if (isTop()) { 2763 ReservedResourceSegments[InstanceIdx].add( 2764 ResourceSegments::getResourceIntervalTop( 2765 NextCycle, PI->AcquireAtCycle, PI->ReleaseAtCycle), 2766 MIResourceCutOff); 2767 } else { 2768 ReservedResourceSegments[InstanceIdx].add( 2769 ResourceSegments::getResourceIntervalBottom( 2770 NextCycle, PI->AcquireAtCycle, PI->ReleaseAtCycle), 2771 MIResourceCutOff); 2772 } 2773 } else { 2774 2775 unsigned ReservedUntil, InstanceIdx; 2776 std::tie(ReservedUntil, InstanceIdx) = getNextResourceCycle( 2777 SC, PIdx, PI->ReleaseAtCycle, PI->AcquireAtCycle); 2778 if (isTop()) { 2779 ReservedCycles[InstanceIdx] = 2780 std::max(ReservedUntil, NextCycle + PI->ReleaseAtCycle); 2781 } else 2782 ReservedCycles[InstanceIdx] = NextCycle; 2783 } 2784 } 2785 } 2786 } 2787 } 2788 // Update ExpectedLatency and DependentLatency. 2789 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2790 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2791 if (SU->getDepth() > TopLatency) { 2792 TopLatency = SU->getDepth(); 2793 LLVM_DEBUG(dbgs() << " " << Available.getName() << " TopLatency SU(" 2794 << SU->NodeNum << ") " << TopLatency << "c\n"); 2795 } 2796 if (SU->getHeight() > BotLatency) { 2797 BotLatency = SU->getHeight(); 2798 LLVM_DEBUG(dbgs() << " " << Available.getName() << " BotLatency SU(" 2799 << SU->NodeNum << ") " << BotLatency << "c\n"); 2800 } 2801 // If we stall for any reason, bump the cycle. 2802 if (NextCycle > CurrCycle) 2803 bumpCycle(NextCycle); 2804 else 2805 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2806 // resource limited. If a stall occurred, bumpCycle does this. 2807 IsResourceLimited = 2808 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2809 getScheduledLatency(), true); 2810 2811 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2812 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2813 // one cycle. Since we commonly reach the max MOps here, opportunistically 2814 // bump the cycle to avoid uselessly checking everything in the readyQ. 2815 CurrMOps += IncMOps; 2816 2817 // Bump the cycle count for issue group constraints. 2818 // This must be done after NextCycle has been adjust for all other stalls. 2819 // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set 2820 // currCycle to X. 2821 if ((isTop() && SchedModel->mustEndGroup(SU->getInstr())) || 2822 (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) { 2823 LLVM_DEBUG(dbgs() << " Bump cycle to " << (isTop() ? "end" : "begin") 2824 << " group\n"); 2825 bumpCycle(++NextCycle); 2826 } 2827 2828 while (CurrMOps >= SchedModel->getIssueWidth()) { 2829 LLVM_DEBUG(dbgs() << " *** Max MOps " << CurrMOps << " at cycle " 2830 << CurrCycle << '\n'); 2831 bumpCycle(++NextCycle); 2832 } 2833 LLVM_DEBUG(dumpScheduledState()); 2834 } 2835 2836 /// Release pending ready nodes in to the available queue. This makes them 2837 /// visible to heuristics. 2838 void SchedBoundary::releasePending() { 2839 // If the available queue is empty, it is safe to reset MinReadyCycle. 2840 if (Available.empty()) 2841 MinReadyCycle = std::numeric_limits<unsigned>::max(); 2842 2843 // Check to see if any of the pending instructions are ready to issue. If 2844 // so, add them to the available queue. 2845 for (unsigned I = 0, E = Pending.size(); I < E; ++I) { 2846 SUnit *SU = *(Pending.begin() + I); 2847 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2848 2849 if (ReadyCycle < MinReadyCycle) 2850 MinReadyCycle = ReadyCycle; 2851 2852 if (Available.size() >= ReadyListLimit) 2853 break; 2854 2855 releaseNode(SU, ReadyCycle, true, I); 2856 if (E != Pending.size()) { 2857 --I; 2858 --E; 2859 } 2860 } 2861 CheckPending = false; 2862 } 2863 2864 /// Remove SU from the ready set for this boundary. 2865 void SchedBoundary::removeReady(SUnit *SU) { 2866 if (Available.isInQueue(SU)) 2867 Available.remove(Available.find(SU)); 2868 else { 2869 assert(Pending.isInQueue(SU) && "bad ready count"); 2870 Pending.remove(Pending.find(SU)); 2871 } 2872 } 2873 2874 /// If this queue only has one ready candidate, return it. As a side effect, 2875 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2876 /// one node is ready. If multiple instructions are ready, return NULL. 2877 SUnit *SchedBoundary::pickOnlyChoice() { 2878 if (CheckPending) 2879 releasePending(); 2880 2881 // Defer any ready instrs that now have a hazard. 2882 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2883 if (checkHazard(*I)) { 2884 Pending.push(*I); 2885 I = Available.remove(I); 2886 continue; 2887 } 2888 ++I; 2889 } 2890 for (unsigned i = 0; Available.empty(); ++i) { 2891 // FIXME: Re-enable assert once PR20057 is resolved. 2892 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2893 // "permanent hazard"); 2894 (void)i; 2895 bumpCycle(CurrCycle + 1); 2896 releasePending(); 2897 } 2898 2899 LLVM_DEBUG(Pending.dump()); 2900 LLVM_DEBUG(Available.dump()); 2901 2902 if (Available.size() == 1) 2903 return *Available.begin(); 2904 return nullptr; 2905 } 2906 2907 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2908 2909 /// Dump the content of the \ref ReservedCycles vector for the 2910 /// resources that are used in the basic block. 2911 /// 2912 LLVM_DUMP_METHOD void SchedBoundary::dumpReservedCycles() const { 2913 if (!SchedModel->hasInstrSchedModel()) 2914 return; 2915 2916 unsigned ResourceCount = SchedModel->getNumProcResourceKinds(); 2917 unsigned StartIdx = 0; 2918 2919 for (unsigned ResIdx = 0; ResIdx < ResourceCount; ++ResIdx) { 2920 const unsigned NumUnits = SchedModel->getProcResource(ResIdx)->NumUnits; 2921 std::string ResName = SchedModel->getResourceName(ResIdx); 2922 for (unsigned UnitIdx = 0; UnitIdx < NumUnits; ++UnitIdx) { 2923 dbgs() << ResName << "(" << UnitIdx << ") = "; 2924 if (SchedModel && SchedModel->enableIntervals()) { 2925 if (ReservedResourceSegments.count(StartIdx + UnitIdx)) 2926 dbgs() << ReservedResourceSegments.at(StartIdx + UnitIdx); 2927 else 2928 dbgs() << "{ }\n"; 2929 } else 2930 dbgs() << ReservedCycles[StartIdx + UnitIdx] << "\n"; 2931 } 2932 StartIdx += NumUnits; 2933 } 2934 } 2935 2936 // This is useful information to dump after bumpNode. 2937 // Note that the Queue contents are more useful before pickNodeFromQueue. 2938 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const { 2939 unsigned ResFactor; 2940 unsigned ResCount; 2941 if (ZoneCritResIdx) { 2942 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2943 ResCount = getResourceCount(ZoneCritResIdx); 2944 } else { 2945 ResFactor = SchedModel->getMicroOpFactor(); 2946 ResCount = RetiredMOps * ResFactor; 2947 } 2948 unsigned LFactor = SchedModel->getLatencyFactor(); 2949 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2950 << " Retired: " << RetiredMOps; 2951 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2952 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2953 << ResCount / ResFactor << " " 2954 << SchedModel->getResourceName(ZoneCritResIdx) 2955 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2956 << (IsResourceLimited ? " - Resource" : " - Latency") 2957 << " limited.\n"; 2958 if (MISchedDumpReservedCycles) 2959 dumpReservedCycles(); 2960 } 2961 #endif 2962 2963 //===----------------------------------------------------------------------===// 2964 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2965 //===----------------------------------------------------------------------===// 2966 2967 void GenericSchedulerBase::SchedCandidate:: 2968 initResourceDelta(const ScheduleDAGMI *DAG, 2969 const TargetSchedModel *SchedModel) { 2970 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2971 return; 2972 2973 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2974 for (TargetSchedModel::ProcResIter 2975 PI = SchedModel->getWriteProcResBegin(SC), 2976 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2977 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2978 ResDelta.CritResources += PI->ReleaseAtCycle; 2979 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2980 ResDelta.DemandedResources += PI->ReleaseAtCycle; 2981 } 2982 } 2983 2984 /// Compute remaining latency. We need this both to determine whether the 2985 /// overall schedule has become latency-limited and whether the instructions 2986 /// outside this zone are resource or latency limited. 2987 /// 2988 /// The "dependent" latency is updated incrementally during scheduling as the 2989 /// max height/depth of scheduled nodes minus the cycles since it was 2990 /// scheduled: 2991 /// DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2992 /// 2993 /// The "independent" latency is the max ready queue depth: 2994 /// ILat = max N.depth for N in Available|Pending 2995 /// 2996 /// RemainingLatency is the greater of independent and dependent latency. 2997 /// 2998 /// These computations are expensive, especially in DAGs with many edges, so 2999 /// only do them if necessary. 3000 static unsigned computeRemLatency(SchedBoundary &CurrZone) { 3001 unsigned RemLatency = CurrZone.getDependentLatency(); 3002 RemLatency = std::max(RemLatency, 3003 CurrZone.findMaxLatency(CurrZone.Available.elements())); 3004 RemLatency = std::max(RemLatency, 3005 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 3006 return RemLatency; 3007 } 3008 3009 /// Returns true if the current cycle plus remaning latency is greater than 3010 /// the critical path in the scheduling region. 3011 bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy, 3012 SchedBoundary &CurrZone, 3013 bool ComputeRemLatency, 3014 unsigned &RemLatency) const { 3015 // The current cycle is already greater than the critical path, so we are 3016 // already latency limited and don't need to compute the remaining latency. 3017 if (CurrZone.getCurrCycle() > Rem.CriticalPath) 3018 return true; 3019 3020 // If we haven't scheduled anything yet, then we aren't latency limited. 3021 if (CurrZone.getCurrCycle() == 0) 3022 return false; 3023 3024 if (ComputeRemLatency) 3025 RemLatency = computeRemLatency(CurrZone); 3026 3027 return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath; 3028 } 3029 3030 /// Set the CandPolicy given a scheduling zone given the current resources and 3031 /// latencies inside and outside the zone. 3032 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA, 3033 SchedBoundary &CurrZone, 3034 SchedBoundary *OtherZone) { 3035 // Apply preemptive heuristics based on the total latency and resources 3036 // inside and outside this zone. Potential stalls should be considered before 3037 // following this policy. 3038 3039 // Compute the critical resource outside the zone. 3040 unsigned OtherCritIdx = 0; 3041 unsigned OtherCount = 3042 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 3043 3044 bool OtherResLimited = false; 3045 unsigned RemLatency = 0; 3046 bool RemLatencyComputed = false; 3047 if (SchedModel->hasInstrSchedModel() && OtherCount != 0) { 3048 RemLatency = computeRemLatency(CurrZone); 3049 RemLatencyComputed = true; 3050 OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(), 3051 OtherCount, RemLatency, false); 3052 } 3053 3054 // Schedule aggressively for latency in PostRA mode. We don't check for 3055 // acyclic latency during PostRA, and highly out-of-order processors will 3056 // skip PostRA scheduling. 3057 if (!OtherResLimited && 3058 (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed, 3059 RemLatency))) { 3060 Policy.ReduceLatency |= true; 3061 LLVM_DEBUG(dbgs() << " " << CurrZone.Available.getName() 3062 << " RemainingLatency " << RemLatency << " + " 3063 << CurrZone.getCurrCycle() << "c > CritPath " 3064 << Rem.CriticalPath << "\n"); 3065 } 3066 // If the same resource is limiting inside and outside the zone, do nothing. 3067 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 3068 return; 3069 3070 LLVM_DEBUG(if (CurrZone.isResourceLimited()) { 3071 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 3072 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n"; 3073 } if (OtherResLimited) dbgs() 3074 << " RemainingLimit: " 3075 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 3076 if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs() 3077 << " Latency limited both directions.\n"); 3078 3079 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 3080 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 3081 3082 if (OtherResLimited) 3083 Policy.DemandResIdx = OtherCritIdx; 3084 } 3085 3086 #ifndef NDEBUG 3087 const char *GenericSchedulerBase::getReasonStr( 3088 GenericSchedulerBase::CandReason Reason) { 3089 switch (Reason) { 3090 case NoCand: return "NOCAND "; 3091 case Only1: return "ONLY1 "; 3092 case PhysReg: return "PHYS-REG "; 3093 case RegExcess: return "REG-EXCESS"; 3094 case RegCritical: return "REG-CRIT "; 3095 case Stall: return "STALL "; 3096 case Cluster: return "CLUSTER "; 3097 case Weak: return "WEAK "; 3098 case RegMax: return "REG-MAX "; 3099 case ResourceReduce: return "RES-REDUCE"; 3100 case ResourceDemand: return "RES-DEMAND"; 3101 case TopDepthReduce: return "TOP-DEPTH "; 3102 case TopPathReduce: return "TOP-PATH "; 3103 case BotHeightReduce:return "BOT-HEIGHT"; 3104 case BotPathReduce: return "BOT-PATH "; 3105 case NextDefUse: return "DEF-USE "; 3106 case NodeOrder: return "ORDER "; 3107 }; 3108 llvm_unreachable("Unknown reason!"); 3109 } 3110 3111 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 3112 PressureChange P; 3113 unsigned ResIdx = 0; 3114 unsigned Latency = 0; 3115 switch (Cand.Reason) { 3116 default: 3117 break; 3118 case RegExcess: 3119 P = Cand.RPDelta.Excess; 3120 break; 3121 case RegCritical: 3122 P = Cand.RPDelta.CriticalMax; 3123 break; 3124 case RegMax: 3125 P = Cand.RPDelta.CurrentMax; 3126 break; 3127 case ResourceReduce: 3128 ResIdx = Cand.Policy.ReduceResIdx; 3129 break; 3130 case ResourceDemand: 3131 ResIdx = Cand.Policy.DemandResIdx; 3132 break; 3133 case TopDepthReduce: 3134 Latency = Cand.SU->getDepth(); 3135 break; 3136 case TopPathReduce: 3137 Latency = Cand.SU->getHeight(); 3138 break; 3139 case BotHeightReduce: 3140 Latency = Cand.SU->getHeight(); 3141 break; 3142 case BotPathReduce: 3143 Latency = Cand.SU->getDepth(); 3144 break; 3145 } 3146 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 3147 if (P.isValid()) 3148 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 3149 << ":" << P.getUnitInc() << " "; 3150 else 3151 dbgs() << " "; 3152 if (ResIdx) 3153 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 3154 else 3155 dbgs() << " "; 3156 if (Latency) 3157 dbgs() << " " << Latency << " cycles "; 3158 else 3159 dbgs() << " "; 3160 dbgs() << '\n'; 3161 } 3162 #endif 3163 3164 namespace llvm { 3165 /// Return true if this heuristic determines order. 3166 /// TODO: Consider refactor return type of these functions as integer or enum, 3167 /// as we may need to differentiate whether TryCand is better than Cand. 3168 bool tryLess(int TryVal, int CandVal, 3169 GenericSchedulerBase::SchedCandidate &TryCand, 3170 GenericSchedulerBase::SchedCandidate &Cand, 3171 GenericSchedulerBase::CandReason Reason) { 3172 if (TryVal < CandVal) { 3173 TryCand.Reason = Reason; 3174 return true; 3175 } 3176 if (TryVal > CandVal) { 3177 if (Cand.Reason > Reason) 3178 Cand.Reason = Reason; 3179 return true; 3180 } 3181 return false; 3182 } 3183 3184 bool tryGreater(int TryVal, int CandVal, 3185 GenericSchedulerBase::SchedCandidate &TryCand, 3186 GenericSchedulerBase::SchedCandidate &Cand, 3187 GenericSchedulerBase::CandReason Reason) { 3188 if (TryVal > CandVal) { 3189 TryCand.Reason = Reason; 3190 return true; 3191 } 3192 if (TryVal < CandVal) { 3193 if (Cand.Reason > Reason) 3194 Cand.Reason = Reason; 3195 return true; 3196 } 3197 return false; 3198 } 3199 3200 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 3201 GenericSchedulerBase::SchedCandidate &Cand, 3202 SchedBoundary &Zone) { 3203 if (Zone.isTop()) { 3204 // Prefer the candidate with the lesser depth, but only if one of them has 3205 // depth greater than the total latency scheduled so far, otherwise either 3206 // of them could be scheduled now with no stall. 3207 if (std::max(TryCand.SU->getDepth(), Cand.SU->getDepth()) > 3208 Zone.getScheduledLatency()) { 3209 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 3210 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 3211 return true; 3212 } 3213 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 3214 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 3215 return true; 3216 } else { 3217 // Prefer the candidate with the lesser height, but only if one of them has 3218 // height greater than the total latency scheduled so far, otherwise either 3219 // of them could be scheduled now with no stall. 3220 if (std::max(TryCand.SU->getHeight(), Cand.SU->getHeight()) > 3221 Zone.getScheduledLatency()) { 3222 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 3223 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 3224 return true; 3225 } 3226 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 3227 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 3228 return true; 3229 } 3230 return false; 3231 } 3232 } // end namespace llvm 3233 3234 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) { 3235 LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 3236 << GenericSchedulerBase::getReasonStr(Reason) << '\n'); 3237 } 3238 3239 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) { 3240 tracePick(Cand.Reason, Cand.AtTop); 3241 } 3242 3243 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 3244 assert(dag->hasVRegLiveness() && 3245 "(PreRA)GenericScheduler needs vreg liveness"); 3246 DAG = static_cast<ScheduleDAGMILive*>(dag); 3247 SchedModel = DAG->getSchedModel(); 3248 TRI = DAG->TRI; 3249 3250 if (RegionPolicy.ComputeDFSResult) 3251 DAG->computeDFSResult(); 3252 3253 Rem.init(DAG, SchedModel); 3254 Top.init(DAG, SchedModel, &Rem); 3255 Bot.init(DAG, SchedModel, &Rem); 3256 3257 // Initialize resource counts. 3258 3259 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 3260 // are disabled, then these HazardRecs will be disabled. 3261 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3262 if (!Top.HazardRec) { 3263 Top.HazardRec = DAG->TII->CreateTargetMIHazardRecognizer(Itin, DAG); 3264 } 3265 if (!Bot.HazardRec) { 3266 Bot.HazardRec = DAG->TII->CreateTargetMIHazardRecognizer(Itin, DAG); 3267 } 3268 TopCand.SU = nullptr; 3269 BotCand.SU = nullptr; 3270 } 3271 3272 /// Initialize the per-region scheduling policy. 3273 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 3274 MachineBasicBlock::iterator End, 3275 unsigned NumRegionInstrs) { 3276 const MachineFunction &MF = *Begin->getMF(); 3277 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 3278 3279 // Avoid setting up the register pressure tracker for small regions to save 3280 // compile time. As a rough heuristic, only track pressure when the number of 3281 // schedulable instructions exceeds half the allocatable integer register file 3282 // that is the largest legal integer regiser type. 3283 RegionPolicy.ShouldTrackPressure = true; 3284 for (unsigned VT = MVT::i64; VT > (unsigned)MVT::i1; --VT) { 3285 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 3286 if (TLI->isTypeLegal(LegalIntVT)) { 3287 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 3288 TLI->getRegClassFor(LegalIntVT)); 3289 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 3290 break; 3291 } 3292 } 3293 3294 // For generic targets, we default to bottom-up, because it's simpler and more 3295 // compile-time optimizations have been implemented in that direction. 3296 RegionPolicy.OnlyBottomUp = true; 3297 3298 // Allow the subtarget to override default policy. 3299 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs); 3300 3301 // After subtarget overrides, apply command line options. 3302 if (!EnableRegPressure) { 3303 RegionPolicy.ShouldTrackPressure = false; 3304 RegionPolicy.ShouldTrackLaneMasks = false; 3305 } 3306 3307 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 3308 // e.g. -misched-bottomup=false allows scheduling in both directions. 3309 assert((!ForceTopDown || !ForceBottomUp) && 3310 "-misched-topdown incompatible with -misched-bottomup"); 3311 if (ForceBottomUp.getNumOccurrences() > 0) { 3312 RegionPolicy.OnlyBottomUp = ForceBottomUp; 3313 if (RegionPolicy.OnlyBottomUp) 3314 RegionPolicy.OnlyTopDown = false; 3315 } 3316 if (ForceTopDown.getNumOccurrences() > 0) { 3317 RegionPolicy.OnlyTopDown = ForceTopDown; 3318 if (RegionPolicy.OnlyTopDown) 3319 RegionPolicy.OnlyBottomUp = false; 3320 } 3321 } 3322 3323 void GenericScheduler::dumpPolicy() const { 3324 // Cannot completely remove virtual function even in release mode. 3325 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3326 dbgs() << "GenericScheduler RegionPolicy: " 3327 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure 3328 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown 3329 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp 3330 << "\n"; 3331 #endif 3332 } 3333 3334 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 3335 /// critical path by more cycles than it takes to drain the instruction buffer. 3336 /// We estimate an upper bounds on in-flight instructions as: 3337 /// 3338 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 3339 /// InFlightIterations = AcyclicPath / CyclesPerIteration 3340 /// InFlightResources = InFlightIterations * LoopResources 3341 /// 3342 /// TODO: Check execution resources in addition to IssueCount. 3343 void GenericScheduler::checkAcyclicLatency() { 3344 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 3345 return; 3346 3347 // Scaled number of cycles per loop iteration. 3348 unsigned IterCount = 3349 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 3350 Rem.RemIssueCount); 3351 // Scaled acyclic critical path. 3352 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 3353 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 3354 unsigned InFlightCount = 3355 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 3356 unsigned BufferLimit = 3357 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 3358 3359 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 3360 3361 LLVM_DEBUG( 3362 dbgs() << "IssueCycles=" 3363 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 3364 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 3365 << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount 3366 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 3367 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 3368 if (Rem.IsAcyclicLatencyLimited) dbgs() << " ACYCLIC LATENCY LIMIT\n"); 3369 } 3370 3371 void GenericScheduler::registerRoots() { 3372 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3373 3374 // Some roots may not feed into ExitSU. Check all of them in case. 3375 for (const SUnit *SU : Bot.Available) { 3376 if (SU->getDepth() > Rem.CriticalPath) 3377 Rem.CriticalPath = SU->getDepth(); 3378 } 3379 LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 3380 if (DumpCriticalPathLength) { 3381 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 3382 } 3383 3384 if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) { 3385 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 3386 checkAcyclicLatency(); 3387 } 3388 } 3389 3390 namespace llvm { 3391 bool tryPressure(const PressureChange &TryP, 3392 const PressureChange &CandP, 3393 GenericSchedulerBase::SchedCandidate &TryCand, 3394 GenericSchedulerBase::SchedCandidate &Cand, 3395 GenericSchedulerBase::CandReason Reason, 3396 const TargetRegisterInfo *TRI, 3397 const MachineFunction &MF) { 3398 // If one candidate decreases and the other increases, go with it. 3399 // Invalid candidates have UnitInc==0. 3400 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 3401 Reason)) { 3402 return true; 3403 } 3404 // Do not compare the magnitude of pressure changes between top and bottom 3405 // boundary. 3406 if (Cand.AtTop != TryCand.AtTop) 3407 return false; 3408 3409 // If both candidates affect the same set in the same boundary, go with the 3410 // smallest increase. 3411 unsigned TryPSet = TryP.getPSetOrMax(); 3412 unsigned CandPSet = CandP.getPSetOrMax(); 3413 if (TryPSet == CandPSet) { 3414 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 3415 Reason); 3416 } 3417 3418 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) : 3419 std::numeric_limits<int>::max(); 3420 3421 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) : 3422 std::numeric_limits<int>::max(); 3423 3424 // If the candidates are decreasing pressure, reverse priority. 3425 if (TryP.getUnitInc() < 0) 3426 std::swap(TryRank, CandRank); 3427 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 3428 } 3429 3430 unsigned getWeakLeft(const SUnit *SU, bool isTop) { 3431 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 3432 } 3433 3434 /// Minimize physical register live ranges. Regalloc wants them adjacent to 3435 /// their physreg def/use. 3436 /// 3437 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 3438 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 3439 /// with the operation that produces or consumes the physreg. We'll do this when 3440 /// regalloc has support for parallel copies. 3441 int biasPhysReg(const SUnit *SU, bool isTop) { 3442 const MachineInstr *MI = SU->getInstr(); 3443 3444 if (MI->isCopy()) { 3445 unsigned ScheduledOper = isTop ? 1 : 0; 3446 unsigned UnscheduledOper = isTop ? 0 : 1; 3447 // If we have already scheduled the physreg produce/consumer, immediately 3448 // schedule the copy. 3449 if (MI->getOperand(ScheduledOper).getReg().isPhysical()) 3450 return 1; 3451 // If the physreg is at the boundary, defer it. Otherwise schedule it 3452 // immediately to free the dependent. We can hoist the copy later. 3453 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 3454 if (MI->getOperand(UnscheduledOper).getReg().isPhysical()) 3455 return AtBoundary ? -1 : 1; 3456 } 3457 3458 if (MI->isMoveImmediate()) { 3459 // If we have a move immediate and all successors have been assigned, bias 3460 // towards scheduling this later. Make sure all register defs are to 3461 // physical registers. 3462 bool DoBias = true; 3463 for (const MachineOperand &Op : MI->defs()) { 3464 if (Op.isReg() && !Op.getReg().isPhysical()) { 3465 DoBias = false; 3466 break; 3467 } 3468 } 3469 3470 if (DoBias) 3471 return isTop ? -1 : 1; 3472 } 3473 3474 return 0; 3475 } 3476 } // end namespace llvm 3477 3478 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU, 3479 bool AtTop, 3480 const RegPressureTracker &RPTracker, 3481 RegPressureTracker &TempTracker) { 3482 Cand.SU = SU; 3483 Cand.AtTop = AtTop; 3484 if (DAG->isTrackingPressure()) { 3485 if (AtTop) { 3486 TempTracker.getMaxDownwardPressureDelta( 3487 Cand.SU->getInstr(), 3488 Cand.RPDelta, 3489 DAG->getRegionCriticalPSets(), 3490 DAG->getRegPressure().MaxSetPressure); 3491 } else { 3492 if (VerifyScheduling) { 3493 TempTracker.getMaxUpwardPressureDelta( 3494 Cand.SU->getInstr(), 3495 &DAG->getPressureDiff(Cand.SU), 3496 Cand.RPDelta, 3497 DAG->getRegionCriticalPSets(), 3498 DAG->getRegPressure().MaxSetPressure); 3499 } else { 3500 RPTracker.getUpwardPressureDelta( 3501 Cand.SU->getInstr(), 3502 DAG->getPressureDiff(Cand.SU), 3503 Cand.RPDelta, 3504 DAG->getRegionCriticalPSets(), 3505 DAG->getRegPressure().MaxSetPressure); 3506 } 3507 } 3508 } 3509 LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs() 3510 << " Try SU(" << Cand.SU->NodeNum << ") " 3511 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":" 3512 << Cand.RPDelta.Excess.getUnitInc() << "\n"); 3513 } 3514 3515 /// Apply a set of heuristics to a new candidate. Heuristics are currently 3516 /// hierarchical. This may be more efficient than a graduated cost model because 3517 /// we don't need to evaluate all aspects of the model for each node in the 3518 /// queue. But it's really done to make the heuristics easier to debug and 3519 /// statistically analyze. 3520 /// 3521 /// \param Cand provides the policy and current best candidate. 3522 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3523 /// \param Zone describes the scheduled zone that we are extending, or nullptr 3524 /// if Cand is from a different zone than TryCand. 3525 /// \return \c true if TryCand is better than Cand (Reason is NOT NoCand) 3526 bool GenericScheduler::tryCandidate(SchedCandidate &Cand, 3527 SchedCandidate &TryCand, 3528 SchedBoundary *Zone) const { 3529 // Initialize the candidate if needed. 3530 if (!Cand.isValid()) { 3531 TryCand.Reason = NodeOrder; 3532 return true; 3533 } 3534 3535 // Bias PhysReg Defs and copies to their uses and defined respectively. 3536 if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop), 3537 biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg)) 3538 return TryCand.Reason != NoCand; 3539 3540 // Avoid exceeding the target's limit. 3541 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 3542 Cand.RPDelta.Excess, 3543 TryCand, Cand, RegExcess, TRI, 3544 DAG->MF)) 3545 return TryCand.Reason != NoCand; 3546 3547 // Avoid increasing the max critical pressure in the scheduled region. 3548 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 3549 Cand.RPDelta.CriticalMax, 3550 TryCand, Cand, RegCritical, TRI, 3551 DAG->MF)) 3552 return TryCand.Reason != NoCand; 3553 3554 // We only compare a subset of features when comparing nodes between 3555 // Top and Bottom boundary. Some properties are simply incomparable, in many 3556 // other instances we should only override the other boundary if something 3557 // is a clear good pick on one boundary. Skip heuristics that are more 3558 // "tie-breaking" in nature. 3559 bool SameBoundary = Zone != nullptr; 3560 if (SameBoundary) { 3561 // For loops that are acyclic path limited, aggressively schedule for 3562 // latency. Within an single cycle, whenever CurrMOps > 0, allow normal 3563 // heuristics to take precedence. 3564 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() && 3565 tryLatency(TryCand, Cand, *Zone)) 3566 return TryCand.Reason != NoCand; 3567 3568 // Prioritize instructions that read unbuffered resources by stall cycles. 3569 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU), 3570 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3571 return TryCand.Reason != NoCand; 3572 } 3573 3574 // Keep clustered nodes together to encourage downstream peephole 3575 // optimizations which may reduce resource requirements. 3576 // 3577 // This is a best effort to set things up for a post-RA pass. Optimizations 3578 // like generating loads of multiple registers should ideally be done within 3579 // the scheduler pass by combining the loads during DAG postprocessing. 3580 const SUnit *CandNextClusterSU = 3581 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 3582 const SUnit *TryCandNextClusterSU = 3583 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 3584 if (tryGreater(TryCand.SU == TryCandNextClusterSU, 3585 Cand.SU == CandNextClusterSU, 3586 TryCand, Cand, Cluster)) 3587 return TryCand.Reason != NoCand; 3588 3589 if (SameBoundary) { 3590 // Weak edges are for clustering and other constraints. 3591 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop), 3592 getWeakLeft(Cand.SU, Cand.AtTop), 3593 TryCand, Cand, Weak)) 3594 return TryCand.Reason != NoCand; 3595 } 3596 3597 // Avoid increasing the max pressure of the entire region. 3598 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 3599 Cand.RPDelta.CurrentMax, 3600 TryCand, Cand, RegMax, TRI, 3601 DAG->MF)) 3602 return TryCand.Reason != NoCand; 3603 3604 if (SameBoundary) { 3605 // Avoid critical resource consumption and balance the schedule. 3606 TryCand.initResourceDelta(DAG, SchedModel); 3607 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3608 TryCand, Cand, ResourceReduce)) 3609 return TryCand.Reason != NoCand; 3610 if (tryGreater(TryCand.ResDelta.DemandedResources, 3611 Cand.ResDelta.DemandedResources, 3612 TryCand, Cand, ResourceDemand)) 3613 return TryCand.Reason != NoCand; 3614 3615 // Avoid serializing long latency dependence chains. 3616 // For acyclic path limited loops, latency was already checked above. 3617 if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency && 3618 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone)) 3619 return TryCand.Reason != NoCand; 3620 3621 // Fall through to original instruction order. 3622 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 3623 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 3624 TryCand.Reason = NodeOrder; 3625 return true; 3626 } 3627 } 3628 3629 return false; 3630 } 3631 3632 /// Pick the best candidate from the queue. 3633 /// 3634 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 3635 /// DAG building. To adjust for the current scheduling location we need to 3636 /// maintain the number of vreg uses remaining to be top-scheduled. 3637 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 3638 const CandPolicy &ZonePolicy, 3639 const RegPressureTracker &RPTracker, 3640 SchedCandidate &Cand) { 3641 // getMaxPressureDelta temporarily modifies the tracker. 3642 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 3643 3644 ReadyQueue &Q = Zone.Available; 3645 for (SUnit *SU : Q) { 3646 3647 SchedCandidate TryCand(ZonePolicy); 3648 initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker); 3649 // Pass SchedBoundary only when comparing nodes from the same boundary. 3650 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; 3651 if (tryCandidate(Cand, TryCand, ZoneArg)) { 3652 // Initialize resource delta if needed in case future heuristics query it. 3653 if (TryCand.ResDelta == SchedResourceDelta()) 3654 TryCand.initResourceDelta(DAG, SchedModel); 3655 Cand.setBest(TryCand); 3656 LLVM_DEBUG(traceCandidate(Cand)); 3657 } 3658 } 3659 } 3660 3661 /// Pick the best candidate node from either the top or bottom queue. 3662 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 3663 // Schedule as far as possible in the direction of no choice. This is most 3664 // efficient, but also provides the best heuristics for CriticalPSets. 3665 if (SUnit *SU = Bot.pickOnlyChoice()) { 3666 IsTopNode = false; 3667 tracePick(Only1, false); 3668 return SU; 3669 } 3670 if (SUnit *SU = Top.pickOnlyChoice()) { 3671 IsTopNode = true; 3672 tracePick(Only1, true); 3673 return SU; 3674 } 3675 // Set the bottom-up policy based on the state of the current bottom zone and 3676 // the instructions outside the zone, including the top zone. 3677 CandPolicy BotPolicy; 3678 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); 3679 // Set the top-down policy based on the state of the current top zone and 3680 // the instructions outside the zone, including the bottom zone. 3681 CandPolicy TopPolicy; 3682 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); 3683 3684 // See if BotCand is still valid (because we previously scheduled from Top). 3685 LLVM_DEBUG(dbgs() << "Picking from Bot:\n"); 3686 if (!BotCand.isValid() || BotCand.SU->isScheduled || 3687 BotCand.Policy != BotPolicy) { 3688 BotCand.reset(CandPolicy()); 3689 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); 3690 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 3691 } else { 3692 LLVM_DEBUG(traceCandidate(BotCand)); 3693 #ifndef NDEBUG 3694 if (VerifyScheduling) { 3695 SchedCandidate TCand; 3696 TCand.reset(CandPolicy()); 3697 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand); 3698 assert(TCand.SU == BotCand.SU && 3699 "Last pick result should correspond to re-picking right now"); 3700 } 3701 #endif 3702 } 3703 3704 // Check if the top Q has a better candidate. 3705 LLVM_DEBUG(dbgs() << "Picking from Top:\n"); 3706 if (!TopCand.isValid() || TopCand.SU->isScheduled || 3707 TopCand.Policy != TopPolicy) { 3708 TopCand.reset(CandPolicy()); 3709 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); 3710 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 3711 } else { 3712 LLVM_DEBUG(traceCandidate(TopCand)); 3713 #ifndef NDEBUG 3714 if (VerifyScheduling) { 3715 SchedCandidate TCand; 3716 TCand.reset(CandPolicy()); 3717 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand); 3718 assert(TCand.SU == TopCand.SU && 3719 "Last pick result should correspond to re-picking right now"); 3720 } 3721 #endif 3722 } 3723 3724 // Pick best from BotCand and TopCand. 3725 assert(BotCand.isValid()); 3726 assert(TopCand.isValid()); 3727 SchedCandidate Cand = BotCand; 3728 TopCand.Reason = NoCand; 3729 if (tryCandidate(Cand, TopCand, nullptr)) { 3730 Cand.setBest(TopCand); 3731 LLVM_DEBUG(traceCandidate(Cand)); 3732 } 3733 3734 IsTopNode = Cand.AtTop; 3735 tracePick(Cand); 3736 return Cand.SU; 3737 } 3738 3739 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 3740 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 3741 if (DAG->top() == DAG->bottom()) { 3742 assert(Top.Available.empty() && Top.Pending.empty() && 3743 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 3744 return nullptr; 3745 } 3746 SUnit *SU; 3747 do { 3748 if (RegionPolicy.OnlyTopDown) { 3749 SU = Top.pickOnlyChoice(); 3750 if (!SU) { 3751 CandPolicy NoPolicy; 3752 TopCand.reset(NoPolicy); 3753 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); 3754 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3755 tracePick(TopCand); 3756 SU = TopCand.SU; 3757 } 3758 IsTopNode = true; 3759 } else if (RegionPolicy.OnlyBottomUp) { 3760 SU = Bot.pickOnlyChoice(); 3761 if (!SU) { 3762 CandPolicy NoPolicy; 3763 BotCand.reset(NoPolicy); 3764 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); 3765 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 3766 tracePick(BotCand); 3767 SU = BotCand.SU; 3768 } 3769 IsTopNode = false; 3770 } else { 3771 SU = pickNodeBidirectional(IsTopNode); 3772 } 3773 } while (SU->isScheduled); 3774 3775 // If IsTopNode, then SU is in Top.Available and must be removed. Otherwise, 3776 // if isTopReady(), then SU is in either Top.Available or Top.Pending. 3777 // If !IsTopNode, then SU is in Bot.Available and must be removed. Otherwise, 3778 // if isBottomReady(), then SU is in either Bot.Available or Bot.Pending. 3779 // 3780 // It is coincidental when !IsTopNode && isTopReady or when IsTopNode && 3781 // isBottomReady. That is, it didn't factor into the decision to choose SU 3782 // because it isTopReady or isBottomReady, respectively. In fact, if the 3783 // RegionPolicy is OnlyTopDown or OnlyBottomUp, then the Bot queues and Top 3784 // queues respectivley contain the original roots and don't get updated when 3785 // picking a node. So if SU isTopReady on a OnlyBottomUp pick, then it was 3786 // because we schduled everything but the top roots. Conversley, if SU 3787 // isBottomReady on OnlyTopDown, then it was because we scheduled everything 3788 // but the bottom roots. If its in a queue even coincidentally, it should be 3789 // removed so it does not get re-picked in a subsequent pickNode call. 3790 if (SU->isTopReady()) 3791 Top.removeReady(SU); 3792 if (SU->isBottomReady()) 3793 Bot.removeReady(SU); 3794 3795 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 3796 << *SU->getInstr()); 3797 return SU; 3798 } 3799 3800 void GenericScheduler::reschedulePhysReg(SUnit *SU, bool isTop) { 3801 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 3802 if (!isTop) 3803 ++InsertPos; 3804 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 3805 3806 // Find already scheduled copies with a single physreg dependence and move 3807 // them just above the scheduled instruction. 3808 for (SDep &Dep : Deps) { 3809 if (Dep.getKind() != SDep::Data || 3810 !Register::isPhysicalRegister(Dep.getReg())) 3811 continue; 3812 SUnit *DepSU = Dep.getSUnit(); 3813 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 3814 continue; 3815 MachineInstr *Copy = DepSU->getInstr(); 3816 if (!Copy->isCopy() && !Copy->isMoveImmediate()) 3817 continue; 3818 LLVM_DEBUG(dbgs() << " Rescheduling physreg copy "; 3819 DAG->dumpNode(*Dep.getSUnit())); 3820 DAG->moveInstruction(Copy, InsertPos); 3821 } 3822 } 3823 3824 /// Update the scheduler's state after scheduling a node. This is the same node 3825 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 3826 /// update it's state based on the current cycle before MachineSchedStrategy 3827 /// does. 3828 /// 3829 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 3830 /// them here. See comments in biasPhysReg. 3831 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3832 if (IsTopNode) { 3833 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3834 Top.bumpNode(SU); 3835 if (SU->hasPhysRegUses) 3836 reschedulePhysReg(SU, true); 3837 } else { 3838 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 3839 Bot.bumpNode(SU); 3840 if (SU->hasPhysRegDefs) 3841 reschedulePhysReg(SU, false); 3842 } 3843 } 3844 3845 /// Create the standard converging machine scheduler. This will be used as the 3846 /// default scheduler if the target does not set a default. 3847 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) { 3848 ScheduleDAGMILive *DAG = 3849 new ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C)); 3850 // Register DAG post-processors. 3851 // 3852 // FIXME: extend the mutation API to allow earlier mutations to instantiate 3853 // data and pass it to later mutations. Have a single mutation that gathers 3854 // the interesting nodes in one pass. 3855 DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI)); 3856 3857 const TargetSubtargetInfo &STI = C->MF->getSubtarget(); 3858 // Add MacroFusion mutation if fusions are not empty. 3859 const auto &MacroFusions = STI.getMacroFusions(); 3860 if (!MacroFusions.empty()) 3861 DAG->addMutation(createMacroFusionDAGMutation(MacroFusions)); 3862 return DAG; 3863 } 3864 3865 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) { 3866 return createGenericSchedLive(C); 3867 } 3868 3869 static MachineSchedRegistry 3870 GenericSchedRegistry("converge", "Standard converging scheduler.", 3871 createConvergingSched); 3872 3873 //===----------------------------------------------------------------------===// 3874 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 3875 //===----------------------------------------------------------------------===// 3876 3877 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 3878 DAG = Dag; 3879 SchedModel = DAG->getSchedModel(); 3880 TRI = DAG->TRI; 3881 3882 Rem.init(DAG, SchedModel); 3883 Top.init(DAG, SchedModel, &Rem); 3884 Bot.init(DAG, SchedModel, &Rem); 3885 3886 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 3887 // or are disabled, then these HazardRecs will be disabled. 3888 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3889 if (!Top.HazardRec) { 3890 Top.HazardRec = DAG->TII->CreateTargetMIHazardRecognizer(Itin, DAG); 3891 } 3892 if (!Bot.HazardRec) { 3893 Bot.HazardRec = DAG->TII->CreateTargetMIHazardRecognizer(Itin, DAG); 3894 } 3895 } 3896 3897 void PostGenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 3898 MachineBasicBlock::iterator End, 3899 unsigned NumRegionInstrs) { 3900 const MachineFunction &MF = *Begin->getMF(); 3901 3902 // Default to top-down because it was implemented first and existing targets 3903 // expect that behavior by default. 3904 RegionPolicy.OnlyTopDown = true; 3905 RegionPolicy.OnlyBottomUp = false; 3906 3907 // Allow the subtarget to override default policy. 3908 MF.getSubtarget().overridePostRASchedPolicy(RegionPolicy, NumRegionInstrs); 3909 3910 // After subtarget overrides, apply command line options. 3911 if (PostRADirection.getNumOccurrences() > 0) { 3912 if (PostRADirection == MISchedPostRASched::TopDown) { 3913 RegionPolicy.OnlyTopDown = true; 3914 RegionPolicy.OnlyBottomUp = false; 3915 } else if (PostRADirection == MISchedPostRASched::BottomUp) { 3916 RegionPolicy.OnlyTopDown = false; 3917 RegionPolicy.OnlyBottomUp = true; 3918 } else if (PostRADirection == MISchedPostRASched::Bidirectional) { 3919 RegionPolicy.OnlyBottomUp = false; 3920 RegionPolicy.OnlyTopDown = false; 3921 } 3922 } 3923 } 3924 3925 void PostGenericScheduler::registerRoots() { 3926 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3927 3928 // Some roots may not feed into ExitSU. Check all of them in case. 3929 for (const SUnit *SU : Bot.Available) { 3930 if (SU->getDepth() > Rem.CriticalPath) 3931 Rem.CriticalPath = SU->getDepth(); 3932 } 3933 LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 3934 if (DumpCriticalPathLength) { 3935 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 3936 } 3937 } 3938 3939 /// Apply a set of heuristics to a new candidate for PostRA scheduling. 3940 /// 3941 /// \param Cand provides the policy and current best candidate. 3942 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3943 /// \return \c true if TryCand is better than Cand (Reason is NOT NoCand) 3944 bool PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 3945 SchedCandidate &TryCand) { 3946 // Initialize the candidate if needed. 3947 if (!Cand.isValid()) { 3948 TryCand.Reason = NodeOrder; 3949 return true; 3950 } 3951 3952 // Prioritize instructions that read unbuffered resources by stall cycles. 3953 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3954 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3955 return TryCand.Reason != NoCand; 3956 3957 // Keep clustered nodes together. 3958 if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(), 3959 Cand.SU == DAG->getNextClusterSucc(), 3960 TryCand, Cand, Cluster)) 3961 return TryCand.Reason != NoCand; 3962 3963 // Avoid critical resource consumption and balance the schedule. 3964 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3965 TryCand, Cand, ResourceReduce)) 3966 return TryCand.Reason != NoCand; 3967 if (tryGreater(TryCand.ResDelta.DemandedResources, 3968 Cand.ResDelta.DemandedResources, 3969 TryCand, Cand, ResourceDemand)) 3970 return TryCand.Reason != NoCand; 3971 3972 // We only compare a subset of features when comparing nodes between 3973 // Top and Bottom boundary. 3974 if (Cand.AtTop == TryCand.AtTop) { 3975 // Avoid serializing long latency dependence chains. 3976 if (Cand.Policy.ReduceLatency && 3977 tryLatency(TryCand, Cand, Cand.AtTop ? Top : Bot)) 3978 return TryCand.Reason != NoCand; 3979 } 3980 3981 // Fall through to original instruction order. 3982 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) { 3983 TryCand.Reason = NodeOrder; 3984 return true; 3985 } 3986 3987 return false; 3988 } 3989 3990 void PostGenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 3991 SchedCandidate &Cand) { 3992 ReadyQueue &Q = Zone.Available; 3993 for (SUnit *SU : Q) { 3994 SchedCandidate TryCand(Cand.Policy); 3995 TryCand.SU = SU; 3996 TryCand.AtTop = Zone.isTop(); 3997 TryCand.initResourceDelta(DAG, SchedModel); 3998 if (tryCandidate(Cand, TryCand)) { 3999 Cand.setBest(TryCand); 4000 LLVM_DEBUG(traceCandidate(Cand)); 4001 } 4002 } 4003 } 4004 4005 /// Pick the best candidate node from either the top or bottom queue. 4006 SUnit *PostGenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 4007 // FIXME: This is similiar to GenericScheduler::pickNodeBidirectional. Factor 4008 // out common parts. 4009 4010 // Schedule as far as possible in the direction of no choice. This is most 4011 // efficient, but also provides the best heuristics for CriticalPSets. 4012 if (SUnit *SU = Bot.pickOnlyChoice()) { 4013 IsTopNode = false; 4014 tracePick(Only1, false); 4015 return SU; 4016 } 4017 if (SUnit *SU = Top.pickOnlyChoice()) { 4018 IsTopNode = true; 4019 tracePick(Only1, true); 4020 return SU; 4021 } 4022 // Set the bottom-up policy based on the state of the current bottom zone and 4023 // the instructions outside the zone, including the top zone. 4024 CandPolicy BotPolicy; 4025 setPolicy(BotPolicy, /*IsPostRA=*/true, Bot, &Top); 4026 // Set the top-down policy based on the state of the current top zone and 4027 // the instructions outside the zone, including the bottom zone. 4028 CandPolicy TopPolicy; 4029 setPolicy(TopPolicy, /*IsPostRA=*/true, Top, &Bot); 4030 4031 // See if BotCand is still valid (because we previously scheduled from Top). 4032 LLVM_DEBUG(dbgs() << "Picking from Bot:\n"); 4033 if (!BotCand.isValid() || BotCand.SU->isScheduled || 4034 BotCand.Policy != BotPolicy) { 4035 BotCand.reset(CandPolicy()); 4036 pickNodeFromQueue(Bot, BotCand); 4037 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 4038 } else { 4039 LLVM_DEBUG(traceCandidate(BotCand)); 4040 #ifndef NDEBUG 4041 if (VerifyScheduling) { 4042 SchedCandidate TCand; 4043 TCand.reset(CandPolicy()); 4044 pickNodeFromQueue(Bot, BotCand); 4045 assert(TCand.SU == BotCand.SU && 4046 "Last pick result should correspond to re-picking right now"); 4047 } 4048 #endif 4049 } 4050 4051 // Check if the top Q has a better candidate. 4052 LLVM_DEBUG(dbgs() << "Picking from Top:\n"); 4053 if (!TopCand.isValid() || TopCand.SU->isScheduled || 4054 TopCand.Policy != TopPolicy) { 4055 TopCand.reset(CandPolicy()); 4056 pickNodeFromQueue(Top, TopCand); 4057 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 4058 } else { 4059 LLVM_DEBUG(traceCandidate(TopCand)); 4060 #ifndef NDEBUG 4061 if (VerifyScheduling) { 4062 SchedCandidate TCand; 4063 TCand.reset(CandPolicy()); 4064 pickNodeFromQueue(Top, TopCand); 4065 assert(TCand.SU == TopCand.SU && 4066 "Last pick result should correspond to re-picking right now"); 4067 } 4068 #endif 4069 } 4070 4071 // Pick best from BotCand and TopCand. 4072 assert(BotCand.isValid()); 4073 assert(TopCand.isValid()); 4074 SchedCandidate Cand = BotCand; 4075 TopCand.Reason = NoCand; 4076 if (tryCandidate(Cand, TopCand)) { 4077 Cand.setBest(TopCand); 4078 LLVM_DEBUG(traceCandidate(Cand)); 4079 } 4080 4081 IsTopNode = Cand.AtTop; 4082 tracePick(Cand); 4083 return Cand.SU; 4084 } 4085 4086 /// Pick the next node to schedule. 4087 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 4088 if (DAG->top() == DAG->bottom()) { 4089 assert(Top.Available.empty() && Top.Pending.empty() && 4090 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 4091 return nullptr; 4092 } 4093 SUnit *SU; 4094 do { 4095 if (RegionPolicy.OnlyBottomUp) { 4096 SU = Bot.pickOnlyChoice(); 4097 if (SU) { 4098 tracePick(Only1, true); 4099 } else { 4100 CandPolicy NoPolicy; 4101 BotCand.reset(NoPolicy); 4102 // Set the bottom-up policy based on the state of the current bottom 4103 // zone and the instructions outside the zone, including the top zone. 4104 setPolicy(BotCand.Policy, /*IsPostRA=*/true, Bot, nullptr); 4105 pickNodeFromQueue(Bot, BotCand); 4106 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 4107 tracePick(BotCand); 4108 SU = BotCand.SU; 4109 } 4110 IsTopNode = false; 4111 } else if (RegionPolicy.OnlyTopDown) { 4112 SU = Top.pickOnlyChoice(); 4113 if (SU) { 4114 tracePick(Only1, true); 4115 } else { 4116 CandPolicy NoPolicy; 4117 TopCand.reset(NoPolicy); 4118 // Set the top-down policy based on the state of the current top zone 4119 // and the instructions outside the zone, including the bottom zone. 4120 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 4121 pickNodeFromQueue(Top, TopCand); 4122 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 4123 tracePick(TopCand); 4124 SU = TopCand.SU; 4125 } 4126 IsTopNode = true; 4127 } else { 4128 SU = pickNodeBidirectional(IsTopNode); 4129 } 4130 } while (SU->isScheduled); 4131 4132 if (SU->isTopReady()) 4133 Top.removeReady(SU); 4134 if (SU->isBottomReady()) 4135 Bot.removeReady(SU); 4136 4137 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 4138 << *SU->getInstr()); 4139 return SU; 4140 } 4141 4142 /// Called after ScheduleDAGMI has scheduled an instruction and updated 4143 /// scheduled/remaining flags in the DAG nodes. 4144 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 4145 if (IsTopNode) { 4146 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 4147 Top.bumpNode(SU); 4148 } else { 4149 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 4150 Bot.bumpNode(SU); 4151 } 4152 } 4153 4154 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) { 4155 ScheduleDAGMI *DAG = 4156 new ScheduleDAGMI(C, std::make_unique<PostGenericScheduler>(C), 4157 /*RemoveKillFlags=*/true); 4158 const TargetSubtargetInfo &STI = C->MF->getSubtarget(); 4159 // Add MacroFusion mutation if fusions are not empty. 4160 const auto &MacroFusions = STI.getMacroFusions(); 4161 if (!MacroFusions.empty()) 4162 DAG->addMutation(createMacroFusionDAGMutation(MacroFusions)); 4163 return DAG; 4164 } 4165 4166 //===----------------------------------------------------------------------===// 4167 // ILP Scheduler. Currently for experimental analysis of heuristics. 4168 //===----------------------------------------------------------------------===// 4169 4170 namespace { 4171 4172 /// Order nodes by the ILP metric. 4173 struct ILPOrder { 4174 const SchedDFSResult *DFSResult = nullptr; 4175 const BitVector *ScheduledTrees = nullptr; 4176 bool MaximizeILP; 4177 4178 ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {} 4179 4180 /// Apply a less-than relation on node priority. 4181 /// 4182 /// (Return true if A comes after B in the Q.) 4183 bool operator()(const SUnit *A, const SUnit *B) const { 4184 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 4185 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 4186 if (SchedTreeA != SchedTreeB) { 4187 // Unscheduled trees have lower priority. 4188 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 4189 return ScheduledTrees->test(SchedTreeB); 4190 4191 // Trees with shallower connections have lower priority. 4192 if (DFSResult->getSubtreeLevel(SchedTreeA) 4193 != DFSResult->getSubtreeLevel(SchedTreeB)) { 4194 return DFSResult->getSubtreeLevel(SchedTreeA) 4195 < DFSResult->getSubtreeLevel(SchedTreeB); 4196 } 4197 } 4198 if (MaximizeILP) 4199 return DFSResult->getILP(A) < DFSResult->getILP(B); 4200 else 4201 return DFSResult->getILP(A) > DFSResult->getILP(B); 4202 } 4203 }; 4204 4205 /// Schedule based on the ILP metric. 4206 class ILPScheduler : public MachineSchedStrategy { 4207 ScheduleDAGMILive *DAG = nullptr; 4208 ILPOrder Cmp; 4209 4210 std::vector<SUnit*> ReadyQ; 4211 4212 public: 4213 ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {} 4214 4215 void initialize(ScheduleDAGMI *dag) override { 4216 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 4217 DAG = static_cast<ScheduleDAGMILive*>(dag); 4218 DAG->computeDFSResult(); 4219 Cmp.DFSResult = DAG->getDFSResult(); 4220 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 4221 ReadyQ.clear(); 4222 } 4223 4224 void registerRoots() override { 4225 // Restore the heap in ReadyQ with the updated DFS results. 4226 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 4227 } 4228 4229 /// Implement MachineSchedStrategy interface. 4230 /// ----------------------------------------- 4231 4232 /// Callback to select the highest priority node from the ready Q. 4233 SUnit *pickNode(bool &IsTopNode) override { 4234 if (ReadyQ.empty()) return nullptr; 4235 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 4236 SUnit *SU = ReadyQ.back(); 4237 ReadyQ.pop_back(); 4238 IsTopNode = false; 4239 LLVM_DEBUG(dbgs() << "Pick node " 4240 << "SU(" << SU->NodeNum << ") " 4241 << " ILP: " << DAG->getDFSResult()->getILP(SU) 4242 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) 4243 << " @" 4244 << DAG->getDFSResult()->getSubtreeLevel( 4245 DAG->getDFSResult()->getSubtreeID(SU)) 4246 << '\n' 4247 << "Scheduling " << *SU->getInstr()); 4248 return SU; 4249 } 4250 4251 /// Scheduler callback to notify that a new subtree is scheduled. 4252 void scheduleTree(unsigned SubtreeID) override { 4253 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 4254 } 4255 4256 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 4257 /// DFSResults, and resort the priority Q. 4258 void schedNode(SUnit *SU, bool IsTopNode) override { 4259 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 4260 } 4261 4262 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 4263 4264 void releaseBottomNode(SUnit *SU) override { 4265 ReadyQ.push_back(SU); 4266 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 4267 } 4268 }; 4269 4270 } // end anonymous namespace 4271 4272 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 4273 return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(true)); 4274 } 4275 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 4276 return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(false)); 4277 } 4278 4279 static MachineSchedRegistry ILPMaxRegistry( 4280 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 4281 static MachineSchedRegistry ILPMinRegistry( 4282 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 4283 4284 //===----------------------------------------------------------------------===// 4285 // Machine Instruction Shuffler for Correctness Testing 4286 //===----------------------------------------------------------------------===// 4287 4288 #ifndef NDEBUG 4289 namespace { 4290 4291 /// Apply a less-than relation on the node order, which corresponds to the 4292 /// instruction order prior to scheduling. IsReverse implements greater-than. 4293 template<bool IsReverse> 4294 struct SUnitOrder { 4295 bool operator()(SUnit *A, SUnit *B) const { 4296 if (IsReverse) 4297 return A->NodeNum > B->NodeNum; 4298 else 4299 return A->NodeNum < B->NodeNum; 4300 } 4301 }; 4302 4303 /// Reorder instructions as much as possible. 4304 class InstructionShuffler : public MachineSchedStrategy { 4305 bool IsAlternating; 4306 bool IsTopDown; 4307 4308 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 4309 // gives nodes with a higher number higher priority causing the latest 4310 // instructions to be scheduled first. 4311 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>> 4312 TopQ; 4313 4314 // When scheduling bottom-up, use greater-than as the queue priority. 4315 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>> 4316 BottomQ; 4317 4318 public: 4319 InstructionShuffler(bool alternate, bool topdown) 4320 : IsAlternating(alternate), IsTopDown(topdown) {} 4321 4322 void initialize(ScheduleDAGMI*) override { 4323 TopQ.clear(); 4324 BottomQ.clear(); 4325 } 4326 4327 /// Implement MachineSchedStrategy interface. 4328 /// ----------------------------------------- 4329 4330 SUnit *pickNode(bool &IsTopNode) override { 4331 SUnit *SU; 4332 if (IsTopDown) { 4333 do { 4334 if (TopQ.empty()) return nullptr; 4335 SU = TopQ.top(); 4336 TopQ.pop(); 4337 } while (SU->isScheduled); 4338 IsTopNode = true; 4339 } else { 4340 do { 4341 if (BottomQ.empty()) return nullptr; 4342 SU = BottomQ.top(); 4343 BottomQ.pop(); 4344 } while (SU->isScheduled); 4345 IsTopNode = false; 4346 } 4347 if (IsAlternating) 4348 IsTopDown = !IsTopDown; 4349 return SU; 4350 } 4351 4352 void schedNode(SUnit *SU, bool IsTopNode) override {} 4353 4354 void releaseTopNode(SUnit *SU) override { 4355 TopQ.push(SU); 4356 } 4357 void releaseBottomNode(SUnit *SU) override { 4358 BottomQ.push(SU); 4359 } 4360 }; 4361 4362 } // end anonymous namespace 4363 4364 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 4365 bool Alternate = !ForceTopDown && !ForceBottomUp; 4366 bool TopDown = !ForceBottomUp; 4367 assert((TopDown || !ForceTopDown) && 4368 "-misched-topdown incompatible with -misched-bottomup"); 4369 return new ScheduleDAGMILive( 4370 C, std::make_unique<InstructionShuffler>(Alternate, TopDown)); 4371 } 4372 4373 static MachineSchedRegistry ShufflerRegistry( 4374 "shuffle", "Shuffle machine instructions alternating directions", 4375 createInstructionShuffler); 4376 #endif // !NDEBUG 4377 4378 //===----------------------------------------------------------------------===// 4379 // GraphWriter support for ScheduleDAGMILive. 4380 //===----------------------------------------------------------------------===// 4381 4382 #ifndef NDEBUG 4383 namespace llvm { 4384 4385 template<> struct GraphTraits< 4386 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 4387 4388 template<> 4389 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 4390 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 4391 4392 static std::string getGraphName(const ScheduleDAG *G) { 4393 return std::string(G->MF.getName()); 4394 } 4395 4396 static bool renderGraphFromBottomUp() { 4397 return true; 4398 } 4399 4400 static bool isNodeHidden(const SUnit *Node, const ScheduleDAG *G) { 4401 if (ViewMISchedCutoff == 0) 4402 return false; 4403 return (Node->Preds.size() > ViewMISchedCutoff 4404 || Node->Succs.size() > ViewMISchedCutoff); 4405 } 4406 4407 /// If you want to override the dot attributes printed for a particular 4408 /// edge, override this method. 4409 static std::string getEdgeAttributes(const SUnit *Node, 4410 SUnitIterator EI, 4411 const ScheduleDAG *Graph) { 4412 if (EI.isArtificialDep()) 4413 return "color=cyan,style=dashed"; 4414 if (EI.isCtrlDep()) 4415 return "color=blue,style=dashed"; 4416 return ""; 4417 } 4418 4419 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 4420 std::string Str; 4421 raw_string_ostream SS(Str); 4422 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 4423 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 4424 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 4425 SS << "SU:" << SU->NodeNum; 4426 if (DFS) 4427 SS << " I:" << DFS->getNumInstrs(SU); 4428 return Str; 4429 } 4430 4431 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 4432 return G->getGraphNodeLabel(SU); 4433 } 4434 4435 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 4436 std::string Str("shape=Mrecord"); 4437 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 4438 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 4439 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 4440 if (DFS) { 4441 Str += ",style=filled,fillcolor=\"#"; 4442 Str += DOT::getColorString(DFS->getSubtreeID(N)); 4443 Str += '"'; 4444 } 4445 return Str; 4446 } 4447 }; 4448 4449 } // end namespace llvm 4450 #endif // NDEBUG 4451 4452 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 4453 /// rendered using 'dot'. 4454 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 4455 #ifndef NDEBUG 4456 ViewGraph(this, Name, false, Title); 4457 #else 4458 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 4459 << "systems with Graphviz or gv!\n"; 4460 #endif // NDEBUG 4461 } 4462 4463 /// Out-of-line implementation with no arguments is handy for gdb. 4464 void ScheduleDAGMI::viewGraph() { 4465 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 4466 } 4467 4468 /// Sort predicate for the intervals stored in an instance of 4469 /// ResourceSegments. Intervals are always disjoint (no intersection 4470 /// for any pairs of intervals), therefore we can sort the totality of 4471 /// the intervals by looking only at the left boundary. 4472 static bool sortIntervals(const ResourceSegments::IntervalTy &A, 4473 const ResourceSegments::IntervalTy &B) { 4474 return A.first < B.first; 4475 } 4476 4477 unsigned ResourceSegments::getFirstAvailableAt( 4478 unsigned CurrCycle, unsigned AcquireAtCycle, unsigned ReleaseAtCycle, 4479 std::function<ResourceSegments::IntervalTy(unsigned, unsigned, unsigned)> 4480 IntervalBuilder) const { 4481 assert(std::is_sorted(std::begin(_Intervals), std::end(_Intervals), 4482 sortIntervals) && 4483 "Cannot execute on an un-sorted set of intervals."); 4484 4485 // Zero resource usage is allowed by TargetSchedule.td but we do not construct 4486 // a ResourceSegment interval for that situation. 4487 if (AcquireAtCycle == ReleaseAtCycle) 4488 return CurrCycle; 4489 4490 unsigned RetCycle = CurrCycle; 4491 ResourceSegments::IntervalTy NewInterval = 4492 IntervalBuilder(RetCycle, AcquireAtCycle, ReleaseAtCycle); 4493 for (auto &Interval : _Intervals) { 4494 if (!intersects(NewInterval, Interval)) 4495 continue; 4496 4497 // Move the interval right next to the top of the one it 4498 // intersects. 4499 assert(Interval.second > NewInterval.first && 4500 "Invalid intervals configuration."); 4501 RetCycle += (unsigned)Interval.second - (unsigned)NewInterval.first; 4502 NewInterval = IntervalBuilder(RetCycle, AcquireAtCycle, ReleaseAtCycle); 4503 } 4504 return RetCycle; 4505 } 4506 4507 void ResourceSegments::add(ResourceSegments::IntervalTy A, 4508 const unsigned CutOff) { 4509 assert(A.first <= A.second && "Cannot add negative resource usage"); 4510 assert(CutOff > 0 && "0-size interval history has no use."); 4511 // Zero resource usage is allowed by TargetSchedule.td, in the case that the 4512 // instruction needed the resource to be available but does not use it. 4513 // However, ResourceSegment represents an interval that is closed on the left 4514 // and open on the right. It is impossible to represent an empty interval when 4515 // the left is closed. Do not add it to Intervals. 4516 if (A.first == A.second) 4517 return; 4518 4519 assert(all_of(_Intervals, 4520 [&A](const ResourceSegments::IntervalTy &Interval) -> bool { 4521 return !intersects(A, Interval); 4522 }) && 4523 "A resource is being overwritten"); 4524 _Intervals.push_back(A); 4525 4526 sortAndMerge(); 4527 4528 // Do not keep the full history of the intervals, just the 4529 // latest #CutOff. 4530 while (_Intervals.size() > CutOff) 4531 _Intervals.pop_front(); 4532 } 4533 4534 bool ResourceSegments::intersects(ResourceSegments::IntervalTy A, 4535 ResourceSegments::IntervalTy B) { 4536 assert(A.first <= A.second && "Invalid interval"); 4537 assert(B.first <= B.second && "Invalid interval"); 4538 4539 // Share one boundary. 4540 if ((A.first == B.first) || (A.second == B.second)) 4541 return true; 4542 4543 // full intersersect: [ *** ) B 4544 // [***) A 4545 if ((A.first > B.first) && (A.second < B.second)) 4546 return true; 4547 4548 // right intersect: [ ***) B 4549 // [*** ) A 4550 if ((A.first > B.first) && (A.first < B.second) && (A.second > B.second)) 4551 return true; 4552 4553 // left intersect: [*** ) B 4554 // [ ***) A 4555 if ((A.first < B.first) && (B.first < A.second) && (B.second > B.first)) 4556 return true; 4557 4558 return false; 4559 } 4560 4561 void ResourceSegments::sortAndMerge() { 4562 if (_Intervals.size() <= 1) 4563 return; 4564 4565 // First sort the collection. 4566 _Intervals.sort(sortIntervals); 4567 4568 // can use next because I have at least 2 elements in the list 4569 auto next = std::next(std::begin(_Intervals)); 4570 auto E = std::end(_Intervals); 4571 for (; next != E; ++next) { 4572 if (std::prev(next)->second >= next->first) { 4573 next->first = std::prev(next)->first; 4574 _Intervals.erase(std::prev(next)); 4575 continue; 4576 } 4577 } 4578 } 4579