1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // MachineScheduler schedules machine instructions after phi elimination. It 10 // preserves LiveIntervals so it can be invoked before register allocation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineScheduler.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/PriorityQueue.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/iterator_range.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/CodeGen/LiveInterval.h" 24 #include "llvm/CodeGen/LiveIntervals.h" 25 #include "llvm/CodeGen/MachineBasicBlock.h" 26 #include "llvm/CodeGen/MachineDominators.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineFunctionPass.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineLoopInfo.h" 31 #include "llvm/CodeGen/MachineOperand.h" 32 #include "llvm/CodeGen/MachinePassRegistry.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/Passes.h" 35 #include "llvm/CodeGen/RegisterClassInfo.h" 36 #include "llvm/CodeGen/RegisterPressure.h" 37 #include "llvm/CodeGen/ScheduleDAG.h" 38 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 39 #include "llvm/CodeGen/ScheduleDAGMutation.h" 40 #include "llvm/CodeGen/ScheduleDFS.h" 41 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 42 #include "llvm/CodeGen/SlotIndexes.h" 43 #include "llvm/CodeGen/TargetFrameLowering.h" 44 #include "llvm/CodeGen/TargetInstrInfo.h" 45 #include "llvm/CodeGen/TargetLowering.h" 46 #include "llvm/CodeGen/TargetPassConfig.h" 47 #include "llvm/CodeGen/TargetRegisterInfo.h" 48 #include "llvm/CodeGen/TargetSchedule.h" 49 #include "llvm/CodeGen/TargetSubtargetInfo.h" 50 #include "llvm/Config/llvm-config.h" 51 #include "llvm/InitializePasses.h" 52 #include "llvm/MC/LaneBitmask.h" 53 #include "llvm/Pass.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Compiler.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/GraphWriter.h" 59 #include "llvm/Support/MachineValueType.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include <algorithm> 62 #include <cassert> 63 #include <cstdint> 64 #include <iterator> 65 #include <limits> 66 #include <memory> 67 #include <string> 68 #include <tuple> 69 #include <utility> 70 #include <vector> 71 72 using namespace llvm; 73 74 #define DEBUG_TYPE "machine-scheduler" 75 76 namespace llvm { 77 78 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 79 cl::desc("Force top-down list scheduling")); 80 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 81 cl::desc("Force bottom-up list scheduling")); 82 cl::opt<bool> 83 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 84 cl::desc("Print critical path length to stdout")); 85 86 cl::opt<bool> VerifyScheduling( 87 "verify-misched", cl::Hidden, 88 cl::desc("Verify machine instrs before and after machine scheduling")); 89 90 } // end namespace llvm 91 92 #ifndef NDEBUG 93 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 94 cl::desc("Pop up a window to show MISched dags after they are processed")); 95 96 /// In some situations a few uninteresting nodes depend on nearly all other 97 /// nodes in the graph, provide a cutoff to hide them. 98 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 99 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 100 101 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 102 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 103 104 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 105 cl::desc("Only schedule this function")); 106 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 107 cl::desc("Only schedule this MBB#")); 108 static cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden, 109 cl::desc("Print schedule DAGs")); 110 #else 111 static const bool ViewMISchedDAGs = false; 112 static const bool PrintDAGs = false; 113 #endif // NDEBUG 114 115 /// Avoid quadratic complexity in unusually large basic blocks by limiting the 116 /// size of the ready lists. 117 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden, 118 cl::desc("Limit ready list to N instructions"), cl::init(256)); 119 120 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 121 cl::desc("Enable register pressure scheduling."), cl::init(true)); 122 123 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 124 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 125 126 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden, 127 cl::desc("Enable memop clustering."), 128 cl::init(true)); 129 130 // DAG subtrees must have at least this many nodes. 131 static const unsigned MinSubtreeSize = 8; 132 133 // Pin the vtables to this file. 134 void MachineSchedStrategy::anchor() {} 135 136 void ScheduleDAGMutation::anchor() {} 137 138 //===----------------------------------------------------------------------===// 139 // Machine Instruction Scheduling Pass and Registry 140 //===----------------------------------------------------------------------===// 141 142 MachineSchedContext::MachineSchedContext() { 143 RegClassInfo = new RegisterClassInfo(); 144 } 145 146 MachineSchedContext::~MachineSchedContext() { 147 delete RegClassInfo; 148 } 149 150 namespace { 151 152 /// Base class for a machine scheduler class that can run at any point. 153 class MachineSchedulerBase : public MachineSchedContext, 154 public MachineFunctionPass { 155 public: 156 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 157 158 void print(raw_ostream &O, const Module* = nullptr) const override; 159 160 protected: 161 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); 162 }; 163 164 /// MachineScheduler runs after coalescing and before register allocation. 165 class MachineScheduler : public MachineSchedulerBase { 166 public: 167 MachineScheduler(); 168 169 void getAnalysisUsage(AnalysisUsage &AU) const override; 170 171 bool runOnMachineFunction(MachineFunction&) override; 172 173 static char ID; // Class identification, replacement for typeinfo 174 175 protected: 176 ScheduleDAGInstrs *createMachineScheduler(); 177 }; 178 179 /// PostMachineScheduler runs after shortly before code emission. 180 class PostMachineScheduler : public MachineSchedulerBase { 181 public: 182 PostMachineScheduler(); 183 184 void getAnalysisUsage(AnalysisUsage &AU) const override; 185 186 bool runOnMachineFunction(MachineFunction&) override; 187 188 static char ID; // Class identification, replacement for typeinfo 189 190 protected: 191 ScheduleDAGInstrs *createPostMachineScheduler(); 192 }; 193 194 } // end anonymous namespace 195 196 char MachineScheduler::ID = 0; 197 198 char &llvm::MachineSchedulerID = MachineScheduler::ID; 199 200 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE, 201 "Machine Instruction Scheduler", false, false) 202 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 203 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 204 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 205 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 206 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 207 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE, 208 "Machine Instruction Scheduler", false, false) 209 210 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) { 211 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 212 } 213 214 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 215 AU.setPreservesCFG(); 216 AU.addRequired<MachineDominatorTree>(); 217 AU.addRequired<MachineLoopInfo>(); 218 AU.addRequired<AAResultsWrapperPass>(); 219 AU.addRequired<TargetPassConfig>(); 220 AU.addRequired<SlotIndexes>(); 221 AU.addPreserved<SlotIndexes>(); 222 AU.addRequired<LiveIntervals>(); 223 AU.addPreserved<LiveIntervals>(); 224 MachineFunctionPass::getAnalysisUsage(AU); 225 } 226 227 char PostMachineScheduler::ID = 0; 228 229 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 230 231 INITIALIZE_PASS(PostMachineScheduler, "postmisched", 232 "PostRA Machine Instruction Scheduler", false, false) 233 234 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) { 235 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 236 } 237 238 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 239 AU.setPreservesCFG(); 240 AU.addRequired<MachineDominatorTree>(); 241 AU.addRequired<MachineLoopInfo>(); 242 AU.addRequired<AAResultsWrapperPass>(); 243 AU.addRequired<TargetPassConfig>(); 244 MachineFunctionPass::getAnalysisUsage(AU); 245 } 246 247 MachinePassRegistry<MachineSchedRegistry::ScheduleDAGCtor> 248 MachineSchedRegistry::Registry; 249 250 /// A dummy default scheduler factory indicates whether the scheduler 251 /// is overridden on the command line. 252 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 253 return nullptr; 254 } 255 256 /// MachineSchedOpt allows command line selection of the scheduler. 257 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 258 RegisterPassParser<MachineSchedRegistry>> 259 MachineSchedOpt("misched", 260 cl::init(&useDefaultMachineSched), cl::Hidden, 261 cl::desc("Machine instruction scheduler to use")); 262 263 static MachineSchedRegistry 264 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 265 useDefaultMachineSched); 266 267 static cl::opt<bool> EnableMachineSched( 268 "enable-misched", 269 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 270 cl::Hidden); 271 272 static cl::opt<bool> EnablePostRAMachineSched( 273 "enable-post-misched", 274 cl::desc("Enable the post-ra machine instruction scheduling pass."), 275 cl::init(true), cl::Hidden); 276 277 /// Decrement this iterator until reaching the top or a non-debug instr. 278 static MachineBasicBlock::const_iterator 279 priorNonDebug(MachineBasicBlock::const_iterator I, 280 MachineBasicBlock::const_iterator Beg) { 281 assert(I != Beg && "reached the top of the region, cannot decrement"); 282 while (--I != Beg) { 283 if (!I->isDebugInstr()) 284 break; 285 } 286 return I; 287 } 288 289 /// Non-const version. 290 static MachineBasicBlock::iterator 291 priorNonDebug(MachineBasicBlock::iterator I, 292 MachineBasicBlock::const_iterator Beg) { 293 return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg) 294 .getNonConstIterator(); 295 } 296 297 /// If this iterator is a debug value, increment until reaching the End or a 298 /// non-debug instruction. 299 static MachineBasicBlock::const_iterator 300 nextIfDebug(MachineBasicBlock::const_iterator I, 301 MachineBasicBlock::const_iterator End) { 302 for(; I != End; ++I) { 303 if (!I->isDebugInstr()) 304 break; 305 } 306 return I; 307 } 308 309 /// Non-const version. 310 static MachineBasicBlock::iterator 311 nextIfDebug(MachineBasicBlock::iterator I, 312 MachineBasicBlock::const_iterator End) { 313 return nextIfDebug(MachineBasicBlock::const_iterator(I), End) 314 .getNonConstIterator(); 315 } 316 317 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 318 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 319 // Select the scheduler, or set the default. 320 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 321 if (Ctor != useDefaultMachineSched) 322 return Ctor(this); 323 324 // Get the default scheduler set by the target for this function. 325 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 326 if (Scheduler) 327 return Scheduler; 328 329 // Default to GenericScheduler. 330 return createGenericSchedLive(this); 331 } 332 333 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 334 /// the caller. We don't have a command line option to override the postRA 335 /// scheduler. The Target must configure it. 336 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 337 // Get the postRA scheduler set by the target for this function. 338 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 339 if (Scheduler) 340 return Scheduler; 341 342 // Default to GenericScheduler. 343 return createGenericSchedPostRA(this); 344 } 345 346 /// Top-level MachineScheduler pass driver. 347 /// 348 /// Visit blocks in function order. Divide each block into scheduling regions 349 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 350 /// consistent with the DAG builder, which traverses the interior of the 351 /// scheduling regions bottom-up. 352 /// 353 /// This design avoids exposing scheduling boundaries to the DAG builder, 354 /// simplifying the DAG builder's support for "special" target instructions. 355 /// At the same time the design allows target schedulers to operate across 356 /// scheduling boundaries, for example to bundle the boundary instructions 357 /// without reordering them. This creates complexity, because the target 358 /// scheduler must update the RegionBegin and RegionEnd positions cached by 359 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 360 /// design would be to split blocks at scheduling boundaries, but LLVM has a 361 /// general bias against block splitting purely for implementation simplicity. 362 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 363 if (skipFunction(mf.getFunction())) 364 return false; 365 366 if (EnableMachineSched.getNumOccurrences()) { 367 if (!EnableMachineSched) 368 return false; 369 } else if (!mf.getSubtarget().enableMachineScheduler()) 370 return false; 371 372 LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs())); 373 374 // Initialize the context of the pass. 375 MF = &mf; 376 MLI = &getAnalysis<MachineLoopInfo>(); 377 MDT = &getAnalysis<MachineDominatorTree>(); 378 PassConfig = &getAnalysis<TargetPassConfig>(); 379 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 380 381 LIS = &getAnalysis<LiveIntervals>(); 382 383 if (VerifyScheduling) { 384 LLVM_DEBUG(LIS->dump()); 385 MF->verify(this, "Before machine scheduling."); 386 } 387 RegClassInfo->runOnMachineFunction(*MF); 388 389 // Instantiate the selected scheduler for this target, function, and 390 // optimization level. 391 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 392 scheduleRegions(*Scheduler, false); 393 394 LLVM_DEBUG(LIS->dump()); 395 if (VerifyScheduling) 396 MF->verify(this, "After machine scheduling."); 397 return true; 398 } 399 400 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 401 if (skipFunction(mf.getFunction())) 402 return false; 403 404 if (EnablePostRAMachineSched.getNumOccurrences()) { 405 if (!EnablePostRAMachineSched) 406 return false; 407 } else if (!mf.getSubtarget().enablePostRAMachineScheduler()) { 408 LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 409 return false; 410 } 411 LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 412 413 // Initialize the context of the pass. 414 MF = &mf; 415 MLI = &getAnalysis<MachineLoopInfo>(); 416 PassConfig = &getAnalysis<TargetPassConfig>(); 417 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 418 419 if (VerifyScheduling) 420 MF->verify(this, "Before post machine scheduling."); 421 422 // Instantiate the selected scheduler for this target, function, and 423 // optimization level. 424 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 425 scheduleRegions(*Scheduler, true); 426 427 if (VerifyScheduling) 428 MF->verify(this, "After post machine scheduling."); 429 return true; 430 } 431 432 /// Return true of the given instruction should not be included in a scheduling 433 /// region. 434 /// 435 /// MachineScheduler does not currently support scheduling across calls. To 436 /// handle calls, the DAG builder needs to be modified to create register 437 /// anti/output dependencies on the registers clobbered by the call's regmask 438 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 439 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 440 /// the boundary, but there would be no benefit to postRA scheduling across 441 /// calls this late anyway. 442 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 443 MachineBasicBlock *MBB, 444 MachineFunction *MF, 445 const TargetInstrInfo *TII) { 446 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF); 447 } 448 449 /// A region of an MBB for scheduling. 450 namespace { 451 struct SchedRegion { 452 /// RegionBegin is the first instruction in the scheduling region, and 453 /// RegionEnd is either MBB->end() or the scheduling boundary after the 454 /// last instruction in the scheduling region. These iterators cannot refer 455 /// to instructions outside of the identified scheduling region because 456 /// those may be reordered before scheduling this region. 457 MachineBasicBlock::iterator RegionBegin; 458 MachineBasicBlock::iterator RegionEnd; 459 unsigned NumRegionInstrs; 460 461 SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E, 462 unsigned N) : 463 RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {} 464 }; 465 } // end anonymous namespace 466 467 using MBBRegionsVector = SmallVector<SchedRegion, 16>; 468 469 static void 470 getSchedRegions(MachineBasicBlock *MBB, 471 MBBRegionsVector &Regions, 472 bool RegionsTopDown) { 473 MachineFunction *MF = MBB->getParent(); 474 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 475 476 MachineBasicBlock::iterator I = nullptr; 477 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 478 RegionEnd != MBB->begin(); RegionEnd = I) { 479 480 // Avoid decrementing RegionEnd for blocks with no terminator. 481 if (RegionEnd != MBB->end() || 482 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { 483 --RegionEnd; 484 } 485 486 // The next region starts above the previous region. Look backward in the 487 // instruction stream until we find the nearest boundary. 488 unsigned NumRegionInstrs = 0; 489 I = RegionEnd; 490 for (;I != MBB->begin(); --I) { 491 MachineInstr &MI = *std::prev(I); 492 if (isSchedBoundary(&MI, &*MBB, MF, TII)) 493 break; 494 if (!MI.isDebugInstr()) { 495 // MBB::size() uses instr_iterator to count. Here we need a bundle to 496 // count as a single instruction. 497 ++NumRegionInstrs; 498 } 499 } 500 501 // It's possible we found a scheduling region that only has debug 502 // instructions. Don't bother scheduling these. 503 if (NumRegionInstrs != 0) 504 Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs)); 505 } 506 507 if (RegionsTopDown) 508 std::reverse(Regions.begin(), Regions.end()); 509 } 510 511 /// Main driver for both MachineScheduler and PostMachineScheduler. 512 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, 513 bool FixKillFlags) { 514 // Visit all machine basic blocks. 515 // 516 // TODO: Visit blocks in global postorder or postorder within the bottom-up 517 // loop tree. Then we can optionally compute global RegPressure. 518 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 519 MBB != MBBEnd; ++MBB) { 520 521 Scheduler.startBlock(&*MBB); 522 523 #ifndef NDEBUG 524 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 525 continue; 526 if (SchedOnlyBlock.getNumOccurrences() 527 && (int)SchedOnlyBlock != MBB->getNumber()) 528 continue; 529 #endif 530 531 // Break the block into scheduling regions [I, RegionEnd). RegionEnd 532 // points to the scheduling boundary at the bottom of the region. The DAG 533 // does not include RegionEnd, but the region does (i.e. the next 534 // RegionEnd is above the previous RegionBegin). If the current block has 535 // no terminator then RegionEnd == MBB->end() for the bottom region. 536 // 537 // All the regions of MBB are first found and stored in MBBRegions, which 538 // will be processed (MBB) top-down if initialized with true. 539 // 540 // The Scheduler may insert instructions during either schedule() or 541 // exitRegion(), even for empty regions. So the local iterators 'I' and 542 // 'RegionEnd' are invalid across these calls. Instructions must not be 543 // added to other regions than the current one without updating MBBRegions. 544 545 MBBRegionsVector MBBRegions; 546 getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown()); 547 for (MBBRegionsVector::iterator R = MBBRegions.begin(); 548 R != MBBRegions.end(); ++R) { 549 MachineBasicBlock::iterator I = R->RegionBegin; 550 MachineBasicBlock::iterator RegionEnd = R->RegionEnd; 551 unsigned NumRegionInstrs = R->NumRegionInstrs; 552 553 // Notify the scheduler of the region, even if we may skip scheduling 554 // it. Perhaps it still needs to be bundled. 555 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); 556 557 // Skip empty scheduling regions (0 or 1 schedulable instructions). 558 if (I == RegionEnd || I == std::prev(RegionEnd)) { 559 // Close the current region. Bundle the terminator if needed. 560 // This invalidates 'RegionEnd' and 'I'. 561 Scheduler.exitRegion(); 562 continue; 563 } 564 LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n"); 565 LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB) 566 << " " << MBB->getName() << "\n From: " << *I 567 << " To: "; 568 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 569 else dbgs() << "End"; 570 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); 571 if (DumpCriticalPathLength) { 572 errs() << MF->getName(); 573 errs() << ":%bb. " << MBB->getNumber(); 574 errs() << " " << MBB->getName() << " \n"; 575 } 576 577 // Schedule a region: possibly reorder instructions. 578 // This invalidates the original region iterators. 579 Scheduler.schedule(); 580 581 // Close the current region. 582 Scheduler.exitRegion(); 583 } 584 Scheduler.finishBlock(); 585 // FIXME: Ideally, no further passes should rely on kill flags. However, 586 // thumb2 size reduction is currently an exception, so the PostMIScheduler 587 // needs to do this. 588 if (FixKillFlags) 589 Scheduler.fixupKills(*MBB); 590 } 591 Scheduler.finalizeSchedule(); 592 } 593 594 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 595 // unimplemented 596 } 597 598 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 599 LLVM_DUMP_METHOD void ReadyQueue::dump() const { 600 dbgs() << "Queue " << Name << ": "; 601 for (const SUnit *SU : Queue) 602 dbgs() << SU->NodeNum << " "; 603 dbgs() << "\n"; 604 } 605 #endif 606 607 //===----------------------------------------------------------------------===// 608 // ScheduleDAGMI - Basic machine instruction scheduling. This is 609 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 610 // virtual registers. 611 // ===----------------------------------------------------------------------===/ 612 613 // Provide a vtable anchor. 614 ScheduleDAGMI::~ScheduleDAGMI() = default; 615 616 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 617 /// NumPredsLeft reaches zero, release the successor node. 618 /// 619 /// FIXME: Adjust SuccSU height based on MinLatency. 620 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 621 SUnit *SuccSU = SuccEdge->getSUnit(); 622 623 if (SuccEdge->isWeak()) { 624 --SuccSU->WeakPredsLeft; 625 if (SuccEdge->isCluster()) 626 NextClusterSucc = SuccSU; 627 return; 628 } 629 #ifndef NDEBUG 630 if (SuccSU->NumPredsLeft == 0) { 631 dbgs() << "*** Scheduling failed! ***\n"; 632 dumpNode(*SuccSU); 633 dbgs() << " has been released too many times!\n"; 634 llvm_unreachable(nullptr); 635 } 636 #endif 637 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 638 // CurrCycle may have advanced since then. 639 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 640 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 641 642 --SuccSU->NumPredsLeft; 643 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 644 SchedImpl->releaseTopNode(SuccSU); 645 } 646 647 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 648 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 649 for (SDep &Succ : SU->Succs) 650 releaseSucc(SU, &Succ); 651 } 652 653 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 654 /// NumSuccsLeft reaches zero, release the predecessor node. 655 /// 656 /// FIXME: Adjust PredSU height based on MinLatency. 657 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 658 SUnit *PredSU = PredEdge->getSUnit(); 659 660 if (PredEdge->isWeak()) { 661 --PredSU->WeakSuccsLeft; 662 if (PredEdge->isCluster()) 663 NextClusterPred = PredSU; 664 return; 665 } 666 #ifndef NDEBUG 667 if (PredSU->NumSuccsLeft == 0) { 668 dbgs() << "*** Scheduling failed! ***\n"; 669 dumpNode(*PredSU); 670 dbgs() << " has been released too many times!\n"; 671 llvm_unreachable(nullptr); 672 } 673 #endif 674 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 675 // CurrCycle may have advanced since then. 676 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 677 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 678 679 --PredSU->NumSuccsLeft; 680 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 681 SchedImpl->releaseBottomNode(PredSU); 682 } 683 684 /// releasePredecessors - Call releasePred on each of SU's predecessors. 685 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 686 for (SDep &Pred : SU->Preds) 687 releasePred(SU, &Pred); 688 } 689 690 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) { 691 ScheduleDAGInstrs::startBlock(bb); 692 SchedImpl->enterMBB(bb); 693 } 694 695 void ScheduleDAGMI::finishBlock() { 696 SchedImpl->leaveMBB(); 697 ScheduleDAGInstrs::finishBlock(); 698 } 699 700 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 701 /// crossing a scheduling boundary. [begin, end) includes all instructions in 702 /// the region, including the boundary itself and single-instruction regions 703 /// that don't get scheduled. 704 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 705 MachineBasicBlock::iterator begin, 706 MachineBasicBlock::iterator end, 707 unsigned regioninstrs) 708 { 709 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 710 711 SchedImpl->initPolicy(begin, end, regioninstrs); 712 } 713 714 /// This is normally called from the main scheduler loop but may also be invoked 715 /// by the scheduling strategy to perform additional code motion. 716 void ScheduleDAGMI::moveInstruction( 717 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 718 // Advance RegionBegin if the first instruction moves down. 719 if (&*RegionBegin == MI) 720 ++RegionBegin; 721 722 // Update the instruction stream. 723 BB->splice(InsertPos, BB, MI); 724 725 // Update LiveIntervals 726 if (LIS) 727 LIS->handleMove(*MI, /*UpdateFlags=*/true); 728 729 // Recede RegionBegin if an instruction moves above the first. 730 if (RegionBegin == InsertPos) 731 RegionBegin = MI; 732 } 733 734 bool ScheduleDAGMI::checkSchedLimit() { 735 #ifndef NDEBUG 736 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 737 CurrentTop = CurrentBottom; 738 return false; 739 } 740 ++NumInstrsScheduled; 741 #endif 742 return true; 743 } 744 745 /// Per-region scheduling driver, called back from 746 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that 747 /// does not consider liveness or register pressure. It is useful for PostRA 748 /// scheduling and potentially other custom schedulers. 749 void ScheduleDAGMI::schedule() { 750 LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); 751 LLVM_DEBUG(SchedImpl->dumpPolicy()); 752 753 // Build the DAG. 754 buildSchedGraph(AA); 755 756 postprocessDAG(); 757 758 SmallVector<SUnit*, 8> TopRoots, BotRoots; 759 findRootsAndBiasEdges(TopRoots, BotRoots); 760 761 LLVM_DEBUG(dump()); 762 if (PrintDAGs) dump(); 763 if (ViewMISchedDAGs) viewGraph(); 764 765 // Initialize the strategy before modifying the DAG. 766 // This may initialize a DFSResult to be used for queue priority. 767 SchedImpl->initialize(this); 768 769 // Initialize ready queues now that the DAG and priority data are finalized. 770 initQueues(TopRoots, BotRoots); 771 772 bool IsTopNode = false; 773 while (true) { 774 LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); 775 SUnit *SU = SchedImpl->pickNode(IsTopNode); 776 if (!SU) break; 777 778 assert(!SU->isScheduled && "Node already scheduled"); 779 if (!checkSchedLimit()) 780 break; 781 782 MachineInstr *MI = SU->getInstr(); 783 if (IsTopNode) { 784 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 785 if (&*CurrentTop == MI) 786 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 787 else 788 moveInstruction(MI, CurrentTop); 789 } else { 790 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 791 MachineBasicBlock::iterator priorII = 792 priorNonDebug(CurrentBottom, CurrentTop); 793 if (&*priorII == MI) 794 CurrentBottom = priorII; 795 else { 796 if (&*CurrentTop == MI) 797 CurrentTop = nextIfDebug(++CurrentTop, priorII); 798 moveInstruction(MI, CurrentBottom); 799 CurrentBottom = MI; 800 } 801 } 802 // Notify the scheduling strategy before updating the DAG. 803 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 804 // runs, it can then use the accurate ReadyCycle time to determine whether 805 // newly released nodes can move to the readyQ. 806 SchedImpl->schedNode(SU, IsTopNode); 807 808 updateQueues(SU, IsTopNode); 809 } 810 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 811 812 placeDebugValues(); 813 814 LLVM_DEBUG({ 815 dbgs() << "*** Final schedule for " 816 << printMBBReference(*begin()->getParent()) << " ***\n"; 817 dumpSchedule(); 818 dbgs() << '\n'; 819 }); 820 } 821 822 /// Apply each ScheduleDAGMutation step in order. 823 void ScheduleDAGMI::postprocessDAG() { 824 for (auto &m : Mutations) 825 m->apply(this); 826 } 827 828 void ScheduleDAGMI:: 829 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 830 SmallVectorImpl<SUnit*> &BotRoots) { 831 for (SUnit &SU : SUnits) { 832 assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits"); 833 834 // Order predecessors so DFSResult follows the critical path. 835 SU.biasCriticalPath(); 836 837 // A SUnit is ready to top schedule if it has no predecessors. 838 if (!SU.NumPredsLeft) 839 TopRoots.push_back(&SU); 840 // A SUnit is ready to bottom schedule if it has no successors. 841 if (!SU.NumSuccsLeft) 842 BotRoots.push_back(&SU); 843 } 844 ExitSU.biasCriticalPath(); 845 } 846 847 /// Identify DAG roots and setup scheduler queues. 848 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 849 ArrayRef<SUnit*> BotRoots) { 850 NextClusterSucc = nullptr; 851 NextClusterPred = nullptr; 852 853 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 854 // 855 // Nodes with unreleased weak edges can still be roots. 856 // Release top roots in forward order. 857 for (SUnit *SU : TopRoots) 858 SchedImpl->releaseTopNode(SU); 859 860 // Release bottom roots in reverse order so the higher priority nodes appear 861 // first. This is more natural and slightly more efficient. 862 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 863 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 864 SchedImpl->releaseBottomNode(*I); 865 } 866 867 releaseSuccessors(&EntrySU); 868 releasePredecessors(&ExitSU); 869 870 SchedImpl->registerRoots(); 871 872 // Advance past initial DebugValues. 873 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 874 CurrentBottom = RegionEnd; 875 } 876 877 /// Update scheduler queues after scheduling an instruction. 878 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 879 // Release dependent instructions for scheduling. 880 if (IsTopNode) 881 releaseSuccessors(SU); 882 else 883 releasePredecessors(SU); 884 885 SU->isScheduled = true; 886 } 887 888 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 889 void ScheduleDAGMI::placeDebugValues() { 890 // If first instruction was a DBG_VALUE then put it back. 891 if (FirstDbgValue) { 892 BB->splice(RegionBegin, BB, FirstDbgValue); 893 RegionBegin = FirstDbgValue; 894 } 895 896 for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator 897 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 898 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 899 MachineInstr *DbgValue = P.first; 900 MachineBasicBlock::iterator OrigPrevMI = P.second; 901 if (&*RegionBegin == DbgValue) 902 ++RegionBegin; 903 BB->splice(++OrigPrevMI, BB, DbgValue); 904 if (OrigPrevMI == std::prev(RegionEnd)) 905 RegionEnd = DbgValue; 906 } 907 DbgValues.clear(); 908 FirstDbgValue = nullptr; 909 } 910 911 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 912 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const { 913 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 914 if (SUnit *SU = getSUnit(&(*MI))) 915 dumpNode(*SU); 916 else 917 dbgs() << "Missing SUnit\n"; 918 } 919 } 920 #endif 921 922 //===----------------------------------------------------------------------===// 923 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 924 // preservation. 925 //===----------------------------------------------------------------------===// 926 927 ScheduleDAGMILive::~ScheduleDAGMILive() { 928 delete DFSResult; 929 } 930 931 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) { 932 const MachineInstr &MI = *SU.getInstr(); 933 for (const MachineOperand &MO : MI.operands()) { 934 if (!MO.isReg()) 935 continue; 936 if (!MO.readsReg()) 937 continue; 938 if (TrackLaneMasks && !MO.isUse()) 939 continue; 940 941 Register Reg = MO.getReg(); 942 if (!Register::isVirtualRegister(Reg)) 943 continue; 944 945 // Ignore re-defs. 946 if (TrackLaneMasks) { 947 bool FoundDef = false; 948 for (const MachineOperand &MO2 : MI.operands()) { 949 if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) { 950 FoundDef = true; 951 break; 952 } 953 } 954 if (FoundDef) 955 continue; 956 } 957 958 // Record this local VReg use. 959 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg); 960 for (; UI != VRegUses.end(); ++UI) { 961 if (UI->SU == &SU) 962 break; 963 } 964 if (UI == VRegUses.end()) 965 VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU)); 966 } 967 } 968 969 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 970 /// crossing a scheduling boundary. [begin, end) includes all instructions in 971 /// the region, including the boundary itself and single-instruction regions 972 /// that don't get scheduled. 973 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 974 MachineBasicBlock::iterator begin, 975 MachineBasicBlock::iterator end, 976 unsigned regioninstrs) 977 { 978 // ScheduleDAGMI initializes SchedImpl's per-region policy. 979 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 980 981 // For convenience remember the end of the liveness region. 982 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 983 984 SUPressureDiffs.clear(); 985 986 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 987 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks(); 988 989 assert((!ShouldTrackLaneMasks || ShouldTrackPressure) && 990 "ShouldTrackLaneMasks requires ShouldTrackPressure"); 991 } 992 993 // Setup the register pressure trackers for the top scheduled and bottom 994 // scheduled regions. 995 void ScheduleDAGMILive::initRegPressure() { 996 VRegUses.clear(); 997 VRegUses.setUniverse(MRI.getNumVirtRegs()); 998 for (SUnit &SU : SUnits) 999 collectVRegUses(SU); 1000 1001 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin, 1002 ShouldTrackLaneMasks, false); 1003 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1004 ShouldTrackLaneMasks, false); 1005 1006 // Close the RPTracker to finalize live ins. 1007 RPTracker.closeRegion(); 1008 1009 LLVM_DEBUG(RPTracker.dump()); 1010 1011 // Initialize the live ins and live outs. 1012 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 1013 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 1014 1015 // Close one end of the tracker so we can call 1016 // getMaxUpward/DownwardPressureDelta before advancing across any 1017 // instructions. This converts currently live regs into live ins/outs. 1018 TopRPTracker.closeTop(); 1019 BotRPTracker.closeBottom(); 1020 1021 BotRPTracker.initLiveThru(RPTracker); 1022 if (!BotRPTracker.getLiveThru().empty()) { 1023 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 1024 LLVM_DEBUG(dbgs() << "Live Thru: "; 1025 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 1026 }; 1027 1028 // For each live out vreg reduce the pressure change associated with other 1029 // uses of the same vreg below the live-out reaching def. 1030 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 1031 1032 // Account for liveness generated by the region boundary. 1033 if (LiveRegionEnd != RegionEnd) { 1034 SmallVector<RegisterMaskPair, 8> LiveUses; 1035 BotRPTracker.recede(&LiveUses); 1036 updatePressureDiffs(LiveUses); 1037 } 1038 1039 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; 1040 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1041 dbgs() << "Bottom Pressure:\n"; 1042 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);); 1043 1044 assert((BotRPTracker.getPos() == RegionEnd || 1045 (RegionEnd->isDebugInstr() && 1046 BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) && 1047 "Can't find the region bottom"); 1048 1049 // Cache the list of excess pressure sets in this region. This will also track 1050 // the max pressure in the scheduled code for these sets. 1051 RegionCriticalPSets.clear(); 1052 const std::vector<unsigned> &RegionPressure = 1053 RPTracker.getPressure().MaxSetPressure; 1054 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 1055 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 1056 if (RegionPressure[i] > Limit) { 1057 LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit 1058 << " Actual " << RegionPressure[i] << "\n"); 1059 RegionCriticalPSets.push_back(PressureChange(i)); 1060 } 1061 } 1062 LLVM_DEBUG(dbgs() << "Excess PSets: "; 1063 for (const PressureChange &RCPS 1064 : RegionCriticalPSets) dbgs() 1065 << TRI->getRegPressureSetName(RCPS.getPSet()) << " "; 1066 dbgs() << "\n"); 1067 } 1068 1069 void ScheduleDAGMILive:: 1070 updateScheduledPressure(const SUnit *SU, 1071 const std::vector<unsigned> &NewMaxPressure) { 1072 const PressureDiff &PDiff = getPressureDiff(SU); 1073 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 1074 for (const PressureChange &PC : PDiff) { 1075 if (!PC.isValid()) 1076 break; 1077 unsigned ID = PC.getPSet(); 1078 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 1079 ++CritIdx; 1080 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 1081 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 1082 && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max()) 1083 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 1084 } 1085 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 1086 if (NewMaxPressure[ID] >= Limit - 2) { 1087 LLVM_DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 1088 << NewMaxPressure[ID] 1089 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") 1090 << Limit << "(+ " << BotRPTracker.getLiveThru()[ID] 1091 << " livethru)\n"); 1092 } 1093 } 1094 } 1095 1096 /// Update the PressureDiff array for liveness after scheduling this 1097 /// instruction. 1098 void ScheduleDAGMILive::updatePressureDiffs( 1099 ArrayRef<RegisterMaskPair> LiveUses) { 1100 for (const RegisterMaskPair &P : LiveUses) { 1101 unsigned Reg = P.RegUnit; 1102 /// FIXME: Currently assuming single-use physregs. 1103 if (!Register::isVirtualRegister(Reg)) 1104 continue; 1105 1106 if (ShouldTrackLaneMasks) { 1107 // If the register has just become live then other uses won't change 1108 // this fact anymore => decrement pressure. 1109 // If the register has just become dead then other uses make it come 1110 // back to life => increment pressure. 1111 bool Decrement = P.LaneMask.any(); 1112 1113 for (const VReg2SUnit &V2SU 1114 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1115 SUnit &SU = *V2SU.SU; 1116 if (SU.isScheduled || &SU == &ExitSU) 1117 continue; 1118 1119 PressureDiff &PDiff = getPressureDiff(&SU); 1120 PDiff.addPressureChange(Reg, Decrement, &MRI); 1121 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") " 1122 << printReg(Reg, TRI) << ':' 1123 << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr(); 1124 dbgs() << " to "; PDiff.dump(*TRI);); 1125 } 1126 } else { 1127 assert(P.LaneMask.any()); 1128 LLVM_DEBUG(dbgs() << " LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n"); 1129 // This may be called before CurrentBottom has been initialized. However, 1130 // BotRPTracker must have a valid position. We want the value live into the 1131 // instruction or live out of the block, so ask for the previous 1132 // instruction's live-out. 1133 const LiveInterval &LI = LIS->getInterval(Reg); 1134 VNInfo *VNI; 1135 MachineBasicBlock::const_iterator I = 1136 nextIfDebug(BotRPTracker.getPos(), BB->end()); 1137 if (I == BB->end()) 1138 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1139 else { 1140 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I)); 1141 VNI = LRQ.valueIn(); 1142 } 1143 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 1144 assert(VNI && "No live value at use."); 1145 for (const VReg2SUnit &V2SU 1146 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1147 SUnit *SU = V2SU.SU; 1148 // If this use comes before the reaching def, it cannot be a last use, 1149 // so decrease its pressure change. 1150 if (!SU->isScheduled && SU != &ExitSU) { 1151 LiveQueryResult LRQ = 1152 LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1153 if (LRQ.valueIn() == VNI) { 1154 PressureDiff &PDiff = getPressureDiff(SU); 1155 PDiff.addPressureChange(Reg, true, &MRI); 1156 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 1157 << *SU->getInstr(); 1158 dbgs() << " to "; PDiff.dump(*TRI);); 1159 } 1160 } 1161 } 1162 } 1163 } 1164 } 1165 1166 void ScheduleDAGMILive::dump() const { 1167 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1168 if (EntrySU.getInstr() != nullptr) 1169 dumpNodeAll(EntrySU); 1170 for (const SUnit &SU : SUnits) { 1171 dumpNodeAll(SU); 1172 if (ShouldTrackPressure) { 1173 dbgs() << " Pressure Diff : "; 1174 getPressureDiff(&SU).dump(*TRI); 1175 } 1176 dbgs() << " Single Issue : "; 1177 if (SchedModel.mustBeginGroup(SU.getInstr()) && 1178 SchedModel.mustEndGroup(SU.getInstr())) 1179 dbgs() << "true;"; 1180 else 1181 dbgs() << "false;"; 1182 dbgs() << '\n'; 1183 } 1184 if (ExitSU.getInstr() != nullptr) 1185 dumpNodeAll(ExitSU); 1186 #endif 1187 } 1188 1189 /// schedule - Called back from MachineScheduler::runOnMachineFunction 1190 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1191 /// only includes instructions that have DAG nodes, not scheduling boundaries. 1192 /// 1193 /// This is a skeletal driver, with all the functionality pushed into helpers, 1194 /// so that it can be easily extended by experimental schedulers. Generally, 1195 /// implementing MachineSchedStrategy should be sufficient to implement a new 1196 /// scheduling algorithm. However, if a scheduler further subclasses 1197 /// ScheduleDAGMILive then it will want to override this virtual method in order 1198 /// to update any specialized state. 1199 void ScheduleDAGMILive::schedule() { 1200 LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); 1201 LLVM_DEBUG(SchedImpl->dumpPolicy()); 1202 buildDAGWithRegPressure(); 1203 1204 postprocessDAG(); 1205 1206 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1207 findRootsAndBiasEdges(TopRoots, BotRoots); 1208 1209 // Initialize the strategy before modifying the DAG. 1210 // This may initialize a DFSResult to be used for queue priority. 1211 SchedImpl->initialize(this); 1212 1213 LLVM_DEBUG(dump()); 1214 if (PrintDAGs) dump(); 1215 if (ViewMISchedDAGs) viewGraph(); 1216 1217 // Initialize ready queues now that the DAG and priority data are finalized. 1218 initQueues(TopRoots, BotRoots); 1219 1220 bool IsTopNode = false; 1221 while (true) { 1222 LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); 1223 SUnit *SU = SchedImpl->pickNode(IsTopNode); 1224 if (!SU) break; 1225 1226 assert(!SU->isScheduled && "Node already scheduled"); 1227 if (!checkSchedLimit()) 1228 break; 1229 1230 scheduleMI(SU, IsTopNode); 1231 1232 if (DFSResult) { 1233 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1234 if (!ScheduledTrees.test(SubtreeID)) { 1235 ScheduledTrees.set(SubtreeID); 1236 DFSResult->scheduleTree(SubtreeID); 1237 SchedImpl->scheduleTree(SubtreeID); 1238 } 1239 } 1240 1241 // Notify the scheduling strategy after updating the DAG. 1242 SchedImpl->schedNode(SU, IsTopNode); 1243 1244 updateQueues(SU, IsTopNode); 1245 } 1246 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1247 1248 placeDebugValues(); 1249 1250 LLVM_DEBUG({ 1251 dbgs() << "*** Final schedule for " 1252 << printMBBReference(*begin()->getParent()) << " ***\n"; 1253 dumpSchedule(); 1254 dbgs() << '\n'; 1255 }); 1256 } 1257 1258 /// Build the DAG and setup three register pressure trackers. 1259 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1260 if (!ShouldTrackPressure) { 1261 RPTracker.reset(); 1262 RegionCriticalPSets.clear(); 1263 buildSchedGraph(AA); 1264 return; 1265 } 1266 1267 // Initialize the register pressure tracker used by buildSchedGraph. 1268 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1269 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true); 1270 1271 // Account for liveness generate by the region boundary. 1272 if (LiveRegionEnd != RegionEnd) 1273 RPTracker.recede(); 1274 1275 // Build the DAG, and compute current register pressure. 1276 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks); 1277 1278 // Initialize top/bottom trackers after computing region pressure. 1279 initRegPressure(); 1280 } 1281 1282 void ScheduleDAGMILive::computeDFSResult() { 1283 if (!DFSResult) 1284 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1285 DFSResult->clear(); 1286 ScheduledTrees.clear(); 1287 DFSResult->resize(SUnits.size()); 1288 DFSResult->compute(SUnits); 1289 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1290 } 1291 1292 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1293 /// only provides the critical path for single block loops. To handle loops that 1294 /// span blocks, we could use the vreg path latencies provided by 1295 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1296 /// available for use in the scheduler. 1297 /// 1298 /// The cyclic path estimation identifies a def-use pair that crosses the back 1299 /// edge and considers the depth and height of the nodes. For example, consider 1300 /// the following instruction sequence where each instruction has unit latency 1301 /// and defines an epomymous virtual register: 1302 /// 1303 /// a->b(a,c)->c(b)->d(c)->exit 1304 /// 1305 /// The cyclic critical path is a two cycles: b->c->b 1306 /// The acyclic critical path is four cycles: a->b->c->d->exit 1307 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1308 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1309 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1310 /// LiveInDepth = depth(b) = len(a->b) = 1 1311 /// 1312 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1313 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1314 /// CyclicCriticalPath = min(2, 2) = 2 1315 /// 1316 /// This could be relevant to PostRA scheduling, but is currently implemented 1317 /// assuming LiveIntervals. 1318 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1319 // This only applies to single block loop. 1320 if (!BB->isSuccessor(BB)) 1321 return 0; 1322 1323 unsigned MaxCyclicLatency = 0; 1324 // Visit each live out vreg def to find def/use pairs that cross iterations. 1325 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) { 1326 unsigned Reg = P.RegUnit; 1327 if (!Register::isVirtualRegister(Reg)) 1328 continue; 1329 const LiveInterval &LI = LIS->getInterval(Reg); 1330 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1331 if (!DefVNI) 1332 continue; 1333 1334 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1335 const SUnit *DefSU = getSUnit(DefMI); 1336 if (!DefSU) 1337 continue; 1338 1339 unsigned LiveOutHeight = DefSU->getHeight(); 1340 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1341 // Visit all local users of the vreg def. 1342 for (const VReg2SUnit &V2SU 1343 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1344 SUnit *SU = V2SU.SU; 1345 if (SU == &ExitSU) 1346 continue; 1347 1348 // Only consider uses of the phi. 1349 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1350 if (!LRQ.valueIn()->isPHIDef()) 1351 continue; 1352 1353 // Assume that a path spanning two iterations is a cycle, which could 1354 // overestimate in strange cases. This allows cyclic latency to be 1355 // estimated as the minimum slack of the vreg's depth or height. 1356 unsigned CyclicLatency = 0; 1357 if (LiveOutDepth > SU->getDepth()) 1358 CyclicLatency = LiveOutDepth - SU->getDepth(); 1359 1360 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; 1361 if (LiveInHeight > LiveOutHeight) { 1362 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1363 CyclicLatency = LiveInHeight - LiveOutHeight; 1364 } else 1365 CyclicLatency = 0; 1366 1367 LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1368 << SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1369 if (CyclicLatency > MaxCyclicLatency) 1370 MaxCyclicLatency = CyclicLatency; 1371 } 1372 } 1373 LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1374 return MaxCyclicLatency; 1375 } 1376 1377 /// Release ExitSU predecessors and setup scheduler queues. Re-position 1378 /// the Top RP tracker in case the region beginning has changed. 1379 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots, 1380 ArrayRef<SUnit*> BotRoots) { 1381 ScheduleDAGMI::initQueues(TopRoots, BotRoots); 1382 if (ShouldTrackPressure) { 1383 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1384 TopRPTracker.setPos(CurrentTop); 1385 } 1386 } 1387 1388 /// Move an instruction and update register pressure. 1389 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1390 // Move the instruction to its new location in the instruction stream. 1391 MachineInstr *MI = SU->getInstr(); 1392 1393 if (IsTopNode) { 1394 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1395 if (&*CurrentTop == MI) 1396 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1397 else { 1398 moveInstruction(MI, CurrentTop); 1399 TopRPTracker.setPos(MI); 1400 } 1401 1402 if (ShouldTrackPressure) { 1403 // Update top scheduled pressure. 1404 RegisterOperands RegOpers; 1405 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1406 if (ShouldTrackLaneMasks) { 1407 // Adjust liveness and add missing dead+read-undef flags. 1408 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1409 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1410 } else { 1411 // Adjust for missing dead-def flags. 1412 RegOpers.detectDeadDefs(*MI, *LIS); 1413 } 1414 1415 TopRPTracker.advance(RegOpers); 1416 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1417 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure( 1418 TopRPTracker.getRegSetPressureAtPos(), TRI);); 1419 1420 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1421 } 1422 } else { 1423 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1424 MachineBasicBlock::iterator priorII = 1425 priorNonDebug(CurrentBottom, CurrentTop); 1426 if (&*priorII == MI) 1427 CurrentBottom = priorII; 1428 else { 1429 if (&*CurrentTop == MI) { 1430 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1431 TopRPTracker.setPos(CurrentTop); 1432 } 1433 moveInstruction(MI, CurrentBottom); 1434 CurrentBottom = MI; 1435 BotRPTracker.setPos(CurrentBottom); 1436 } 1437 if (ShouldTrackPressure) { 1438 RegisterOperands RegOpers; 1439 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1440 if (ShouldTrackLaneMasks) { 1441 // Adjust liveness and add missing dead+read-undef flags. 1442 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1443 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1444 } else { 1445 // Adjust for missing dead-def flags. 1446 RegOpers.detectDeadDefs(*MI, *LIS); 1447 } 1448 1449 if (BotRPTracker.getPos() != CurrentBottom) 1450 BotRPTracker.recedeSkipDebugValues(); 1451 SmallVector<RegisterMaskPair, 8> LiveUses; 1452 BotRPTracker.recede(RegOpers, &LiveUses); 1453 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1454 LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure( 1455 BotRPTracker.getRegSetPressureAtPos(), TRI);); 1456 1457 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1458 updatePressureDiffs(LiveUses); 1459 } 1460 } 1461 } 1462 1463 //===----------------------------------------------------------------------===// 1464 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores. 1465 //===----------------------------------------------------------------------===// 1466 1467 namespace { 1468 1469 /// Post-process the DAG to create cluster edges between neighboring 1470 /// loads or between neighboring stores. 1471 class BaseMemOpClusterMutation : public ScheduleDAGMutation { 1472 struct MemOpInfo { 1473 SUnit *SU; 1474 SmallVector<const MachineOperand *, 4> BaseOps; 1475 int64_t Offset; 1476 1477 MemOpInfo(SUnit *SU, ArrayRef<const MachineOperand *> BaseOps, 1478 int64_t Offset) 1479 : SU(SU), BaseOps(BaseOps.begin(), BaseOps.end()), Offset(Offset) {} 1480 1481 static bool Compare(const MachineOperand *const &A, 1482 const MachineOperand *const &B) { 1483 if (A->getType() != B->getType()) 1484 return A->getType() < B->getType(); 1485 if (A->isReg()) 1486 return A->getReg() < B->getReg(); 1487 if (A->isFI()) { 1488 const MachineFunction &MF = *A->getParent()->getParent()->getParent(); 1489 const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering(); 1490 bool StackGrowsDown = TFI.getStackGrowthDirection() == 1491 TargetFrameLowering::StackGrowsDown; 1492 return StackGrowsDown ? A->getIndex() > B->getIndex() 1493 : A->getIndex() < B->getIndex(); 1494 } 1495 1496 llvm_unreachable("MemOpClusterMutation only supports register or frame " 1497 "index bases."); 1498 } 1499 1500 bool operator<(const MemOpInfo &RHS) const { 1501 // FIXME: Don't compare everything twice. Maybe use C++20 three way 1502 // comparison instead when it's available. 1503 if (std::lexicographical_compare(BaseOps.begin(), BaseOps.end(), 1504 RHS.BaseOps.begin(), RHS.BaseOps.end(), 1505 Compare)) 1506 return true; 1507 if (std::lexicographical_compare(RHS.BaseOps.begin(), RHS.BaseOps.end(), 1508 BaseOps.begin(), BaseOps.end(), Compare)) 1509 return false; 1510 if (Offset != RHS.Offset) 1511 return Offset < RHS.Offset; 1512 return SU->NodeNum < RHS.SU->NodeNum; 1513 } 1514 }; 1515 1516 const TargetInstrInfo *TII; 1517 const TargetRegisterInfo *TRI; 1518 bool IsLoad; 1519 1520 public: 1521 BaseMemOpClusterMutation(const TargetInstrInfo *tii, 1522 const TargetRegisterInfo *tri, bool IsLoad) 1523 : TII(tii), TRI(tri), IsLoad(IsLoad) {} 1524 1525 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1526 1527 protected: 1528 void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGInstrs *DAG); 1529 }; 1530 1531 class StoreClusterMutation : public BaseMemOpClusterMutation { 1532 public: 1533 StoreClusterMutation(const TargetInstrInfo *tii, 1534 const TargetRegisterInfo *tri) 1535 : BaseMemOpClusterMutation(tii, tri, false) {} 1536 }; 1537 1538 class LoadClusterMutation : public BaseMemOpClusterMutation { 1539 public: 1540 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri) 1541 : BaseMemOpClusterMutation(tii, tri, true) {} 1542 }; 1543 1544 } // end anonymous namespace 1545 1546 namespace llvm { 1547 1548 std::unique_ptr<ScheduleDAGMutation> 1549 createLoadClusterDAGMutation(const TargetInstrInfo *TII, 1550 const TargetRegisterInfo *TRI) { 1551 return EnableMemOpCluster ? std::make_unique<LoadClusterMutation>(TII, TRI) 1552 : nullptr; 1553 } 1554 1555 std::unique_ptr<ScheduleDAGMutation> 1556 createStoreClusterDAGMutation(const TargetInstrInfo *TII, 1557 const TargetRegisterInfo *TRI) { 1558 return EnableMemOpCluster ? std::make_unique<StoreClusterMutation>(TII, TRI) 1559 : nullptr; 1560 } 1561 1562 } // end namespace llvm 1563 1564 void BaseMemOpClusterMutation::clusterNeighboringMemOps( 1565 ArrayRef<SUnit *> MemOps, ScheduleDAGInstrs *DAG) { 1566 SmallVector<MemOpInfo, 32> MemOpRecords; 1567 for (SUnit *SU : MemOps) { 1568 SmallVector<const MachineOperand *, 4> BaseOps; 1569 int64_t Offset; 1570 bool OffsetIsScalable; 1571 if (TII->getMemOperandsWithOffset(*SU->getInstr(), BaseOps, Offset, 1572 OffsetIsScalable, TRI)) 1573 MemOpRecords.push_back(MemOpInfo(SU, BaseOps, Offset)); 1574 #ifndef NDEBUG 1575 for (auto *Op : BaseOps) 1576 assert(Op); 1577 #endif 1578 } 1579 if (MemOpRecords.size() < 2) 1580 return; 1581 1582 llvm::sort(MemOpRecords); 1583 unsigned ClusterLength = 1; 1584 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) { 1585 SUnit *SUa = MemOpRecords[Idx].SU; 1586 SUnit *SUb = MemOpRecords[Idx+1].SU; 1587 if (TII->shouldClusterMemOps(MemOpRecords[Idx].BaseOps, 1588 MemOpRecords[Idx + 1].BaseOps, 1589 ClusterLength + 1)) { 1590 if (SUa->NodeNum > SUb->NodeNum) 1591 std::swap(SUa, SUb); 1592 if (DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 1593 LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU(" 1594 << SUb->NodeNum << ")\n"); 1595 // Copy successor edges from SUa to SUb. Interleaving computation 1596 // dependent on SUa can prevent load combining due to register reuse. 1597 // Predecessor edges do not need to be copied from SUb to SUa since 1598 // nearby loads should have effectively the same inputs. 1599 for (const SDep &Succ : SUa->Succs) { 1600 if (Succ.getSUnit() == SUb) 1601 continue; 1602 LLVM_DEBUG(dbgs() 1603 << " Copy Succ SU(" << Succ.getSUnit()->NodeNum << ")\n"); 1604 DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial)); 1605 } 1606 ++ClusterLength; 1607 } else 1608 ClusterLength = 1; 1609 } else 1610 ClusterLength = 1; 1611 } 1612 } 1613 1614 /// Callback from DAG postProcessing to create cluster edges for loads. 1615 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAG) { 1616 // Map DAG NodeNum to a set of dependent MemOps in store chain. 1617 DenseMap<unsigned, SmallVector<SUnit *, 4>> StoreChains; 1618 for (SUnit &SU : DAG->SUnits) { 1619 if ((IsLoad && !SU.getInstr()->mayLoad()) || 1620 (!IsLoad && !SU.getInstr()->mayStore())) 1621 continue; 1622 1623 unsigned ChainPredID = DAG->SUnits.size(); 1624 for (const SDep &Pred : SU.Preds) { 1625 if (Pred.isCtrl() && !Pred.isArtificial()) { 1626 ChainPredID = Pred.getSUnit()->NodeNum; 1627 break; 1628 } 1629 } 1630 // Insert the SU to corresponding store chain. 1631 auto &Chain = StoreChains.FindAndConstruct(ChainPredID).second; 1632 Chain.push_back(&SU); 1633 } 1634 1635 // Iterate over the store chains. 1636 for (auto &SCD : StoreChains) 1637 clusterNeighboringMemOps(SCD.second, DAG); 1638 } 1639 1640 //===----------------------------------------------------------------------===// 1641 // CopyConstrain - DAG post-processing to encourage copy elimination. 1642 //===----------------------------------------------------------------------===// 1643 1644 namespace { 1645 1646 /// Post-process the DAG to create weak edges from all uses of a copy to 1647 /// the one use that defines the copy's source vreg, most likely an induction 1648 /// variable increment. 1649 class CopyConstrain : public ScheduleDAGMutation { 1650 // Transient state. 1651 SlotIndex RegionBeginIdx; 1652 1653 // RegionEndIdx is the slot index of the last non-debug instruction in the 1654 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1655 SlotIndex RegionEndIdx; 1656 1657 public: 1658 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1659 1660 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1661 1662 protected: 1663 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1664 }; 1665 1666 } // end anonymous namespace 1667 1668 namespace llvm { 1669 1670 std::unique_ptr<ScheduleDAGMutation> 1671 createCopyConstrainDAGMutation(const TargetInstrInfo *TII, 1672 const TargetRegisterInfo *TRI) { 1673 return std::make_unique<CopyConstrain>(TII, TRI); 1674 } 1675 1676 } // end namespace llvm 1677 1678 /// constrainLocalCopy handles two possibilities: 1679 /// 1) Local src: 1680 /// I0: = dst 1681 /// I1: src = ... 1682 /// I2: = dst 1683 /// I3: dst = src (copy) 1684 /// (create pred->succ edges I0->I1, I2->I1) 1685 /// 1686 /// 2) Local copy: 1687 /// I0: dst = src (copy) 1688 /// I1: = dst 1689 /// I2: src = ... 1690 /// I3: = dst 1691 /// (create pred->succ edges I1->I2, I3->I2) 1692 /// 1693 /// Although the MachineScheduler is currently constrained to single blocks, 1694 /// this algorithm should handle extended blocks. An EBB is a set of 1695 /// contiguously numbered blocks such that the previous block in the EBB is 1696 /// always the single predecessor. 1697 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1698 LiveIntervals *LIS = DAG->getLIS(); 1699 MachineInstr *Copy = CopySU->getInstr(); 1700 1701 // Check for pure vreg copies. 1702 const MachineOperand &SrcOp = Copy->getOperand(1); 1703 Register SrcReg = SrcOp.getReg(); 1704 if (!Register::isVirtualRegister(SrcReg) || !SrcOp.readsReg()) 1705 return; 1706 1707 const MachineOperand &DstOp = Copy->getOperand(0); 1708 Register DstReg = DstOp.getReg(); 1709 if (!Register::isVirtualRegister(DstReg) || DstOp.isDead()) 1710 return; 1711 1712 // Check if either the dest or source is local. If it's live across a back 1713 // edge, it's not local. Note that if both vregs are live across the back 1714 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1715 // If both the copy's source and dest are local live intervals, then we 1716 // should treat the dest as the global for the purpose of adding 1717 // constraints. This adds edges from source's other uses to the copy. 1718 unsigned LocalReg = SrcReg; 1719 unsigned GlobalReg = DstReg; 1720 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1721 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1722 LocalReg = DstReg; 1723 GlobalReg = SrcReg; 1724 LocalLI = &LIS->getInterval(LocalReg); 1725 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1726 return; 1727 } 1728 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1729 1730 // Find the global segment after the start of the local LI. 1731 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1732 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1733 // local live range. We could create edges from other global uses to the local 1734 // start, but the coalescer should have already eliminated these cases, so 1735 // don't bother dealing with it. 1736 if (GlobalSegment == GlobalLI->end()) 1737 return; 1738 1739 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1740 // returned the next global segment. But if GlobalSegment overlaps with 1741 // LocalLI->start, then advance to the next segment. If a hole in GlobalLI 1742 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1743 if (GlobalSegment->contains(LocalLI->beginIndex())) 1744 ++GlobalSegment; 1745 1746 if (GlobalSegment == GlobalLI->end()) 1747 return; 1748 1749 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1750 if (GlobalSegment != GlobalLI->begin()) { 1751 // Two address defs have no hole. 1752 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1753 GlobalSegment->start)) { 1754 return; 1755 } 1756 // If the prior global segment may be defined by the same two-address 1757 // instruction that also defines LocalLI, then can't make a hole here. 1758 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1759 LocalLI->beginIndex())) { 1760 return; 1761 } 1762 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1763 // it would be a disconnected component in the live range. 1764 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1765 "Disconnected LRG within the scheduling region."); 1766 } 1767 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1768 if (!GlobalDef) 1769 return; 1770 1771 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1772 if (!GlobalSU) 1773 return; 1774 1775 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1776 // constraining the uses of the last local def to precede GlobalDef. 1777 SmallVector<SUnit*,8> LocalUses; 1778 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1779 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1780 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1781 for (const SDep &Succ : LastLocalSU->Succs) { 1782 if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg) 1783 continue; 1784 if (Succ.getSUnit() == GlobalSU) 1785 continue; 1786 if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit())) 1787 return; 1788 LocalUses.push_back(Succ.getSUnit()); 1789 } 1790 // Open the top of the GlobalLI hole by constraining any earlier global uses 1791 // to precede the start of LocalLI. 1792 SmallVector<SUnit*,8> GlobalUses; 1793 MachineInstr *FirstLocalDef = 1794 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1795 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1796 for (const SDep &Pred : GlobalSU->Preds) { 1797 if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg) 1798 continue; 1799 if (Pred.getSUnit() == FirstLocalSU) 1800 continue; 1801 if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit())) 1802 return; 1803 GlobalUses.push_back(Pred.getSUnit()); 1804 } 1805 LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1806 // Add the weak edges. 1807 for (SmallVectorImpl<SUnit*>::const_iterator 1808 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1809 LLVM_DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1810 << GlobalSU->NodeNum << ")\n"); 1811 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1812 } 1813 for (SmallVectorImpl<SUnit*>::const_iterator 1814 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1815 LLVM_DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1816 << FirstLocalSU->NodeNum << ")\n"); 1817 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1818 } 1819 } 1820 1821 /// Callback from DAG postProcessing to create weak edges to encourage 1822 /// copy elimination. 1823 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) { 1824 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1825 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1826 1827 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1828 if (FirstPos == DAG->end()) 1829 return; 1830 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos); 1831 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1832 *priorNonDebug(DAG->end(), DAG->begin())); 1833 1834 for (SUnit &SU : DAG->SUnits) { 1835 if (!SU.getInstr()->isCopy()) 1836 continue; 1837 1838 constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG)); 1839 } 1840 } 1841 1842 //===----------------------------------------------------------------------===// 1843 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1844 // and possibly other custom schedulers. 1845 //===----------------------------------------------------------------------===// 1846 1847 static const unsigned InvalidCycle = ~0U; 1848 1849 SchedBoundary::~SchedBoundary() { delete HazardRec; } 1850 1851 /// Given a Count of resource usage and a Latency value, return true if a 1852 /// SchedBoundary becomes resource limited. 1853 /// If we are checking after scheduling a node, we should return true when 1854 /// we just reach the resource limit. 1855 static bool checkResourceLimit(unsigned LFactor, unsigned Count, 1856 unsigned Latency, bool AfterSchedNode) { 1857 int ResCntFactor = (int)(Count - (Latency * LFactor)); 1858 if (AfterSchedNode) 1859 return ResCntFactor >= (int)LFactor; 1860 else 1861 return ResCntFactor > (int)LFactor; 1862 } 1863 1864 void SchedBoundary::reset() { 1865 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1866 // Destroying and reconstructing it is very expensive though. So keep 1867 // invalid, placeholder HazardRecs. 1868 if (HazardRec && HazardRec->isEnabled()) { 1869 delete HazardRec; 1870 HazardRec = nullptr; 1871 } 1872 Available.clear(); 1873 Pending.clear(); 1874 CheckPending = false; 1875 CurrCycle = 0; 1876 CurrMOps = 0; 1877 MinReadyCycle = std::numeric_limits<unsigned>::max(); 1878 ExpectedLatency = 0; 1879 DependentLatency = 0; 1880 RetiredMOps = 0; 1881 MaxExecutedResCount = 0; 1882 ZoneCritResIdx = 0; 1883 IsResourceLimited = false; 1884 ReservedCycles.clear(); 1885 ReservedCyclesIndex.clear(); 1886 #ifndef NDEBUG 1887 // Track the maximum number of stall cycles that could arise either from the 1888 // latency of a DAG edge or the number of cycles that a processor resource is 1889 // reserved (SchedBoundary::ReservedCycles). 1890 MaxObservedStall = 0; 1891 #endif 1892 // Reserve a zero-count for invalid CritResIdx. 1893 ExecutedResCounts.resize(1); 1894 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1895 } 1896 1897 void SchedRemainder:: 1898 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1899 reset(); 1900 if (!SchedModel->hasInstrSchedModel()) 1901 return; 1902 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1903 for (SUnit &SU : DAG->SUnits) { 1904 const MCSchedClassDesc *SC = DAG->getSchedClass(&SU); 1905 RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC) 1906 * SchedModel->getMicroOpFactor(); 1907 for (TargetSchedModel::ProcResIter 1908 PI = SchedModel->getWriteProcResBegin(SC), 1909 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1910 unsigned PIdx = PI->ProcResourceIdx; 1911 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1912 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1913 } 1914 } 1915 } 1916 1917 void SchedBoundary:: 1918 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1919 reset(); 1920 DAG = dag; 1921 SchedModel = smodel; 1922 Rem = rem; 1923 if (SchedModel->hasInstrSchedModel()) { 1924 unsigned ResourceCount = SchedModel->getNumProcResourceKinds(); 1925 ReservedCyclesIndex.resize(ResourceCount); 1926 ExecutedResCounts.resize(ResourceCount); 1927 unsigned NumUnits = 0; 1928 1929 for (unsigned i = 0; i < ResourceCount; ++i) { 1930 ReservedCyclesIndex[i] = NumUnits; 1931 NumUnits += SchedModel->getProcResource(i)->NumUnits; 1932 } 1933 1934 ReservedCycles.resize(NumUnits, InvalidCycle); 1935 } 1936 } 1937 1938 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 1939 /// these "soft stalls" differently than the hard stall cycles based on CPU 1940 /// resources and computed by checkHazard(). A fully in-order model 1941 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 1942 /// available for scheduling until they are ready. However, a weaker in-order 1943 /// model may use this for heuristics. For example, if a processor has in-order 1944 /// behavior when reading certain resources, this may come into play. 1945 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 1946 if (!SU->isUnbuffered) 1947 return 0; 1948 1949 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1950 if (ReadyCycle > CurrCycle) 1951 return ReadyCycle - CurrCycle; 1952 return 0; 1953 } 1954 1955 /// Compute the next cycle at which the given processor resource unit 1956 /// can be scheduled. 1957 unsigned SchedBoundary::getNextResourceCycleByInstance(unsigned InstanceIdx, 1958 unsigned Cycles) { 1959 unsigned NextUnreserved = ReservedCycles[InstanceIdx]; 1960 // If this resource has never been used, always return cycle zero. 1961 if (NextUnreserved == InvalidCycle) 1962 return 0; 1963 // For bottom-up scheduling add the cycles needed for the current operation. 1964 if (!isTop()) 1965 NextUnreserved += Cycles; 1966 return NextUnreserved; 1967 } 1968 1969 /// Compute the next cycle at which the given processor resource can be 1970 /// scheduled. Returns the next cycle and the index of the processor resource 1971 /// instance in the reserved cycles vector. 1972 std::pair<unsigned, unsigned> 1973 SchedBoundary::getNextResourceCycle(unsigned PIdx, unsigned Cycles) { 1974 unsigned MinNextUnreserved = InvalidCycle; 1975 unsigned InstanceIdx = 0; 1976 unsigned StartIndex = ReservedCyclesIndex[PIdx]; 1977 unsigned NumberOfInstances = SchedModel->getProcResource(PIdx)->NumUnits; 1978 assert(NumberOfInstances > 0 && 1979 "Cannot have zero instances of a ProcResource"); 1980 1981 for (unsigned I = StartIndex, End = StartIndex + NumberOfInstances; I < End; 1982 ++I) { 1983 unsigned NextUnreserved = getNextResourceCycleByInstance(I, Cycles); 1984 if (MinNextUnreserved > NextUnreserved) { 1985 InstanceIdx = I; 1986 MinNextUnreserved = NextUnreserved; 1987 } 1988 } 1989 return std::make_pair(MinNextUnreserved, InstanceIdx); 1990 } 1991 1992 /// Does this SU have a hazard within the current instruction group. 1993 /// 1994 /// The scheduler supports two modes of hazard recognition. The first is the 1995 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1996 /// supports highly complicated in-order reservation tables 1997 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic. 1998 /// 1999 /// The second is a streamlined mechanism that checks for hazards based on 2000 /// simple counters that the scheduler itself maintains. It explicitly checks 2001 /// for instruction dispatch limitations, including the number of micro-ops that 2002 /// can dispatch per cycle. 2003 /// 2004 /// TODO: Also check whether the SU must start a new group. 2005 bool SchedBoundary::checkHazard(SUnit *SU) { 2006 if (HazardRec->isEnabled() 2007 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 2008 return true; 2009 } 2010 2011 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 2012 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 2013 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 2014 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 2015 return true; 2016 } 2017 2018 if (CurrMOps > 0 && 2019 ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) || 2020 (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) { 2021 LLVM_DEBUG(dbgs() << " hazard: SU(" << SU->NodeNum << ") must " 2022 << (isTop() ? "begin" : "end") << " group\n"); 2023 return true; 2024 } 2025 2026 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 2027 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2028 for (const MCWriteProcResEntry &PE : 2029 make_range(SchedModel->getWriteProcResBegin(SC), 2030 SchedModel->getWriteProcResEnd(SC))) { 2031 unsigned ResIdx = PE.ProcResourceIdx; 2032 unsigned Cycles = PE.Cycles; 2033 unsigned NRCycle, InstanceIdx; 2034 std::tie(NRCycle, InstanceIdx) = getNextResourceCycle(ResIdx, Cycles); 2035 if (NRCycle > CurrCycle) { 2036 #ifndef NDEBUG 2037 MaxObservedStall = std::max(Cycles, MaxObservedStall); 2038 #endif 2039 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 2040 << SchedModel->getResourceName(ResIdx) 2041 << '[' << InstanceIdx - ReservedCyclesIndex[ResIdx] << ']' 2042 << "=" << NRCycle << "c\n"); 2043 return true; 2044 } 2045 } 2046 } 2047 return false; 2048 } 2049 2050 // Find the unscheduled node in ReadySUs with the highest latency. 2051 unsigned SchedBoundary:: 2052 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 2053 SUnit *LateSU = nullptr; 2054 unsigned RemLatency = 0; 2055 for (SUnit *SU : ReadySUs) { 2056 unsigned L = getUnscheduledLatency(SU); 2057 if (L > RemLatency) { 2058 RemLatency = L; 2059 LateSU = SU; 2060 } 2061 } 2062 if (LateSU) { 2063 LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 2064 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 2065 } 2066 return RemLatency; 2067 } 2068 2069 // Count resources in this zone and the remaining unscheduled 2070 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 2071 // resource index, or zero if the zone is issue limited. 2072 unsigned SchedBoundary:: 2073 getOtherResourceCount(unsigned &OtherCritIdx) { 2074 OtherCritIdx = 0; 2075 if (!SchedModel->hasInstrSchedModel()) 2076 return 0; 2077 2078 unsigned OtherCritCount = Rem->RemIssueCount 2079 + (RetiredMOps * SchedModel->getMicroOpFactor()); 2080 LLVM_DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 2081 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 2082 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 2083 PIdx != PEnd; ++PIdx) { 2084 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 2085 if (OtherCount > OtherCritCount) { 2086 OtherCritCount = OtherCount; 2087 OtherCritIdx = PIdx; 2088 } 2089 } 2090 if (OtherCritIdx) { 2091 LLVM_DEBUG( 2092 dbgs() << " " << Available.getName() << " + Remain CritRes: " 2093 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 2094 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 2095 } 2096 return OtherCritCount; 2097 } 2098 2099 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle, bool InPQueue, 2100 unsigned Idx) { 2101 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 2102 2103 #ifndef NDEBUG 2104 // ReadyCycle was been bumped up to the CurrCycle when this node was 2105 // scheduled, but CurrCycle may have been eagerly advanced immediately after 2106 // scheduling, so may now be greater than ReadyCycle. 2107 if (ReadyCycle > CurrCycle) 2108 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 2109 #endif 2110 2111 if (ReadyCycle < MinReadyCycle) 2112 MinReadyCycle = ReadyCycle; 2113 2114 // Check for interlocks first. For the purpose of other heuristics, an 2115 // instruction that cannot issue appears as if it's not in the ReadyQueue. 2116 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2117 bool HazardDetected = (!IsBuffered && ReadyCycle > CurrCycle) || 2118 checkHazard(SU) || (Available.size() >= ReadyListLimit); 2119 2120 if (!HazardDetected) { 2121 Available.push(SU); 2122 2123 if (InPQueue) 2124 Pending.remove(Pending.begin() + Idx); 2125 return; 2126 } 2127 2128 if (!InPQueue) 2129 Pending.push(SU); 2130 } 2131 2132 /// Move the boundary of scheduled code by one cycle. 2133 void SchedBoundary::bumpCycle(unsigned NextCycle) { 2134 if (SchedModel->getMicroOpBufferSize() == 0) { 2135 assert(MinReadyCycle < std::numeric_limits<unsigned>::max() && 2136 "MinReadyCycle uninitialized"); 2137 if (MinReadyCycle > NextCycle) 2138 NextCycle = MinReadyCycle; 2139 } 2140 // Update the current micro-ops, which will issue in the next cycle. 2141 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 2142 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 2143 2144 // Decrement DependentLatency based on the next cycle. 2145 if ((NextCycle - CurrCycle) > DependentLatency) 2146 DependentLatency = 0; 2147 else 2148 DependentLatency -= (NextCycle - CurrCycle); 2149 2150 if (!HazardRec->isEnabled()) { 2151 // Bypass HazardRec virtual calls. 2152 CurrCycle = NextCycle; 2153 } else { 2154 // Bypass getHazardType calls in case of long latency. 2155 for (; CurrCycle != NextCycle; ++CurrCycle) { 2156 if (isTop()) 2157 HazardRec->AdvanceCycle(); 2158 else 2159 HazardRec->RecedeCycle(); 2160 } 2161 } 2162 CheckPending = true; 2163 IsResourceLimited = 2164 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2165 getScheduledLatency(), true); 2166 2167 LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() 2168 << '\n'); 2169 } 2170 2171 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 2172 ExecutedResCounts[PIdx] += Count; 2173 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 2174 MaxExecutedResCount = ExecutedResCounts[PIdx]; 2175 } 2176 2177 /// Add the given processor resource to this scheduled zone. 2178 /// 2179 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 2180 /// during which this resource is consumed. 2181 /// 2182 /// \return the next cycle at which the instruction may execute without 2183 /// oversubscribing resources. 2184 unsigned SchedBoundary:: 2185 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) { 2186 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2187 unsigned Count = Factor * Cycles; 2188 LLVM_DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) << " +" 2189 << Cycles << "x" << Factor << "u\n"); 2190 2191 // Update Executed resources counts. 2192 incExecutedResources(PIdx, Count); 2193 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 2194 Rem->RemainingCounts[PIdx] -= Count; 2195 2196 // Check if this resource exceeds the current critical resource. If so, it 2197 // becomes the critical resource. 2198 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 2199 ZoneCritResIdx = PIdx; 2200 LLVM_DEBUG(dbgs() << " *** Critical resource " 2201 << SchedModel->getResourceName(PIdx) << ": " 2202 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() 2203 << "c\n"); 2204 } 2205 // For reserved resources, record the highest cycle using the resource. 2206 unsigned NextAvailable, InstanceIdx; 2207 std::tie(NextAvailable, InstanceIdx) = getNextResourceCycle(PIdx, Cycles); 2208 if (NextAvailable > CurrCycle) { 2209 LLVM_DEBUG(dbgs() << " Resource conflict: " 2210 << SchedModel->getResourceName(PIdx) 2211 << '[' << InstanceIdx - ReservedCyclesIndex[PIdx] << ']' 2212 << " reserved until @" << NextAvailable << "\n"); 2213 } 2214 return NextAvailable; 2215 } 2216 2217 /// Move the boundary of scheduled code by one SUnit. 2218 void SchedBoundary::bumpNode(SUnit *SU) { 2219 // Update the reservation table. 2220 if (HazardRec->isEnabled()) { 2221 if (!isTop() && SU->isCall) { 2222 // Calls are scheduled with their preceding instructions. For bottom-up 2223 // scheduling, clear the pipeline state before emitting. 2224 HazardRec->Reset(); 2225 } 2226 HazardRec->EmitInstruction(SU); 2227 // Scheduling an instruction may have made pending instructions available. 2228 CheckPending = true; 2229 } 2230 // checkHazard should prevent scheduling multiple instructions per cycle that 2231 // exceed the issue width. 2232 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2233 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 2234 assert( 2235 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 2236 "Cannot schedule this instruction's MicroOps in the current cycle."); 2237 2238 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2239 LLVM_DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 2240 2241 unsigned NextCycle = CurrCycle; 2242 switch (SchedModel->getMicroOpBufferSize()) { 2243 case 0: 2244 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 2245 break; 2246 case 1: 2247 if (ReadyCycle > NextCycle) { 2248 NextCycle = ReadyCycle; 2249 LLVM_DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 2250 } 2251 break; 2252 default: 2253 // We don't currently model the OOO reorder buffer, so consider all 2254 // scheduled MOps to be "retired". We do loosely model in-order resource 2255 // latency. If this instruction uses an in-order resource, account for any 2256 // likely stall cycles. 2257 if (SU->isUnbuffered && ReadyCycle > NextCycle) 2258 NextCycle = ReadyCycle; 2259 break; 2260 } 2261 RetiredMOps += IncMOps; 2262 2263 // Update resource counts and critical resource. 2264 if (SchedModel->hasInstrSchedModel()) { 2265 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 2266 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 2267 Rem->RemIssueCount -= DecRemIssue; 2268 if (ZoneCritResIdx) { 2269 // Scale scheduled micro-ops for comparing with the critical resource. 2270 unsigned ScaledMOps = 2271 RetiredMOps * SchedModel->getMicroOpFactor(); 2272 2273 // If scaled micro-ops are now more than the previous critical resource by 2274 // a full cycle, then micro-ops issue becomes critical. 2275 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 2276 >= (int)SchedModel->getLatencyFactor()) { 2277 ZoneCritResIdx = 0; 2278 LLVM_DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2279 << ScaledMOps / SchedModel->getLatencyFactor() 2280 << "c\n"); 2281 } 2282 } 2283 for (TargetSchedModel::ProcResIter 2284 PI = SchedModel->getWriteProcResBegin(SC), 2285 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2286 unsigned RCycle = 2287 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle); 2288 if (RCycle > NextCycle) 2289 NextCycle = RCycle; 2290 } 2291 if (SU->hasReservedResource) { 2292 // For reserved resources, record the highest cycle using the resource. 2293 // For top-down scheduling, this is the cycle in which we schedule this 2294 // instruction plus the number of cycles the operations reserves the 2295 // resource. For bottom-up is it simply the instruction's cycle. 2296 for (TargetSchedModel::ProcResIter 2297 PI = SchedModel->getWriteProcResBegin(SC), 2298 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2299 unsigned PIdx = PI->ProcResourceIdx; 2300 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2301 unsigned ReservedUntil, InstanceIdx; 2302 std::tie(ReservedUntil, InstanceIdx) = getNextResourceCycle(PIdx, 0); 2303 if (isTop()) { 2304 ReservedCycles[InstanceIdx] = 2305 std::max(ReservedUntil, NextCycle + PI->Cycles); 2306 } else 2307 ReservedCycles[InstanceIdx] = NextCycle; 2308 } 2309 } 2310 } 2311 } 2312 // Update ExpectedLatency and DependentLatency. 2313 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2314 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2315 if (SU->getDepth() > TopLatency) { 2316 TopLatency = SU->getDepth(); 2317 LLVM_DEBUG(dbgs() << " " << Available.getName() << " TopLatency SU(" 2318 << SU->NodeNum << ") " << TopLatency << "c\n"); 2319 } 2320 if (SU->getHeight() > BotLatency) { 2321 BotLatency = SU->getHeight(); 2322 LLVM_DEBUG(dbgs() << " " << Available.getName() << " BotLatency SU(" 2323 << SU->NodeNum << ") " << BotLatency << "c\n"); 2324 } 2325 // If we stall for any reason, bump the cycle. 2326 if (NextCycle > CurrCycle) 2327 bumpCycle(NextCycle); 2328 else 2329 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2330 // resource limited. If a stall occurred, bumpCycle does this. 2331 IsResourceLimited = 2332 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2333 getScheduledLatency(), true); 2334 2335 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2336 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2337 // one cycle. Since we commonly reach the max MOps here, opportunistically 2338 // bump the cycle to avoid uselessly checking everything in the readyQ. 2339 CurrMOps += IncMOps; 2340 2341 // Bump the cycle count for issue group constraints. 2342 // This must be done after NextCycle has been adjust for all other stalls. 2343 // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set 2344 // currCycle to X. 2345 if ((isTop() && SchedModel->mustEndGroup(SU->getInstr())) || 2346 (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) { 2347 LLVM_DEBUG(dbgs() << " Bump cycle to " << (isTop() ? "end" : "begin") 2348 << " group\n"); 2349 bumpCycle(++NextCycle); 2350 } 2351 2352 while (CurrMOps >= SchedModel->getIssueWidth()) { 2353 LLVM_DEBUG(dbgs() << " *** Max MOps " << CurrMOps << " at cycle " 2354 << CurrCycle << '\n'); 2355 bumpCycle(++NextCycle); 2356 } 2357 LLVM_DEBUG(dumpScheduledState()); 2358 } 2359 2360 /// Release pending ready nodes in to the available queue. This makes them 2361 /// visible to heuristics. 2362 void SchedBoundary::releasePending() { 2363 // If the available queue is empty, it is safe to reset MinReadyCycle. 2364 if (Available.empty()) 2365 MinReadyCycle = std::numeric_limits<unsigned>::max(); 2366 2367 // Check to see if any of the pending instructions are ready to issue. If 2368 // so, add them to the available queue. 2369 for (unsigned I = 0, E = Pending.size(); I < E; ++I) { 2370 SUnit *SU = *(Pending.begin() + I); 2371 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2372 2373 if (ReadyCycle < MinReadyCycle) 2374 MinReadyCycle = ReadyCycle; 2375 2376 if (Available.size() >= ReadyListLimit) 2377 break; 2378 2379 releaseNode(SU, ReadyCycle, true, I); 2380 if (E != Pending.size()) { 2381 --I; 2382 --E; 2383 } 2384 } 2385 CheckPending = false; 2386 } 2387 2388 /// Remove SU from the ready set for this boundary. 2389 void SchedBoundary::removeReady(SUnit *SU) { 2390 if (Available.isInQueue(SU)) 2391 Available.remove(Available.find(SU)); 2392 else { 2393 assert(Pending.isInQueue(SU) && "bad ready count"); 2394 Pending.remove(Pending.find(SU)); 2395 } 2396 } 2397 2398 /// If this queue only has one ready candidate, return it. As a side effect, 2399 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2400 /// one node is ready. If multiple instructions are ready, return NULL. 2401 SUnit *SchedBoundary::pickOnlyChoice() { 2402 if (CheckPending) 2403 releasePending(); 2404 2405 if (CurrMOps > 0) { 2406 // Defer any ready instrs that now have a hazard. 2407 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2408 if (checkHazard(*I)) { 2409 Pending.push(*I); 2410 I = Available.remove(I); 2411 continue; 2412 } 2413 ++I; 2414 } 2415 } 2416 for (unsigned i = 0; Available.empty(); ++i) { 2417 // FIXME: Re-enable assert once PR20057 is resolved. 2418 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2419 // "permanent hazard"); 2420 (void)i; 2421 bumpCycle(CurrCycle + 1); 2422 releasePending(); 2423 } 2424 2425 LLVM_DEBUG(Pending.dump()); 2426 LLVM_DEBUG(Available.dump()); 2427 2428 if (Available.size() == 1) 2429 return *Available.begin(); 2430 return nullptr; 2431 } 2432 2433 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2434 // This is useful information to dump after bumpNode. 2435 // Note that the Queue contents are more useful before pickNodeFromQueue. 2436 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const { 2437 unsigned ResFactor; 2438 unsigned ResCount; 2439 if (ZoneCritResIdx) { 2440 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2441 ResCount = getResourceCount(ZoneCritResIdx); 2442 } else { 2443 ResFactor = SchedModel->getMicroOpFactor(); 2444 ResCount = RetiredMOps * ResFactor; 2445 } 2446 unsigned LFactor = SchedModel->getLatencyFactor(); 2447 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2448 << " Retired: " << RetiredMOps; 2449 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2450 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2451 << ResCount / ResFactor << " " 2452 << SchedModel->getResourceName(ZoneCritResIdx) 2453 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2454 << (IsResourceLimited ? " - Resource" : " - Latency") 2455 << " limited.\n"; 2456 } 2457 #endif 2458 2459 //===----------------------------------------------------------------------===// 2460 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2461 //===----------------------------------------------------------------------===// 2462 2463 void GenericSchedulerBase::SchedCandidate:: 2464 initResourceDelta(const ScheduleDAGMI *DAG, 2465 const TargetSchedModel *SchedModel) { 2466 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2467 return; 2468 2469 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2470 for (TargetSchedModel::ProcResIter 2471 PI = SchedModel->getWriteProcResBegin(SC), 2472 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2473 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2474 ResDelta.CritResources += PI->Cycles; 2475 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2476 ResDelta.DemandedResources += PI->Cycles; 2477 } 2478 } 2479 2480 /// Compute remaining latency. We need this both to determine whether the 2481 /// overall schedule has become latency-limited and whether the instructions 2482 /// outside this zone are resource or latency limited. 2483 /// 2484 /// The "dependent" latency is updated incrementally during scheduling as the 2485 /// max height/depth of scheduled nodes minus the cycles since it was 2486 /// scheduled: 2487 /// DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2488 /// 2489 /// The "independent" latency is the max ready queue depth: 2490 /// ILat = max N.depth for N in Available|Pending 2491 /// 2492 /// RemainingLatency is the greater of independent and dependent latency. 2493 /// 2494 /// These computations are expensive, especially in DAGs with many edges, so 2495 /// only do them if necessary. 2496 static unsigned computeRemLatency(SchedBoundary &CurrZone) { 2497 unsigned RemLatency = CurrZone.getDependentLatency(); 2498 RemLatency = std::max(RemLatency, 2499 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2500 RemLatency = std::max(RemLatency, 2501 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2502 return RemLatency; 2503 } 2504 2505 /// Returns true if the current cycle plus remaning latency is greater than 2506 /// the critical path in the scheduling region. 2507 bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy, 2508 SchedBoundary &CurrZone, 2509 bool ComputeRemLatency, 2510 unsigned &RemLatency) const { 2511 // The current cycle is already greater than the critical path, so we are 2512 // already latency limited and don't need to compute the remaining latency. 2513 if (CurrZone.getCurrCycle() > Rem.CriticalPath) 2514 return true; 2515 2516 // If we haven't scheduled anything yet, then we aren't latency limited. 2517 if (CurrZone.getCurrCycle() == 0) 2518 return false; 2519 2520 if (ComputeRemLatency) 2521 RemLatency = computeRemLatency(CurrZone); 2522 2523 return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath; 2524 } 2525 2526 /// Set the CandPolicy given a scheduling zone given the current resources and 2527 /// latencies inside and outside the zone. 2528 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA, 2529 SchedBoundary &CurrZone, 2530 SchedBoundary *OtherZone) { 2531 // Apply preemptive heuristics based on the total latency and resources 2532 // inside and outside this zone. Potential stalls should be considered before 2533 // following this policy. 2534 2535 // Compute the critical resource outside the zone. 2536 unsigned OtherCritIdx = 0; 2537 unsigned OtherCount = 2538 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2539 2540 bool OtherResLimited = false; 2541 unsigned RemLatency = 0; 2542 bool RemLatencyComputed = false; 2543 if (SchedModel->hasInstrSchedModel() && OtherCount != 0) { 2544 RemLatency = computeRemLatency(CurrZone); 2545 RemLatencyComputed = true; 2546 OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(), 2547 OtherCount, RemLatency, false); 2548 } 2549 2550 // Schedule aggressively for latency in PostRA mode. We don't check for 2551 // acyclic latency during PostRA, and highly out-of-order processors will 2552 // skip PostRA scheduling. 2553 if (!OtherResLimited && 2554 (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed, 2555 RemLatency))) { 2556 Policy.ReduceLatency |= true; 2557 LLVM_DEBUG(dbgs() << " " << CurrZone.Available.getName() 2558 << " RemainingLatency " << RemLatency << " + " 2559 << CurrZone.getCurrCycle() << "c > CritPath " 2560 << Rem.CriticalPath << "\n"); 2561 } 2562 // If the same resource is limiting inside and outside the zone, do nothing. 2563 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2564 return; 2565 2566 LLVM_DEBUG(if (CurrZone.isResourceLimited()) { 2567 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2568 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n"; 2569 } if (OtherResLimited) dbgs() 2570 << " RemainingLimit: " 2571 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2572 if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs() 2573 << " Latency limited both directions.\n"); 2574 2575 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2576 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2577 2578 if (OtherResLimited) 2579 Policy.DemandResIdx = OtherCritIdx; 2580 } 2581 2582 #ifndef NDEBUG 2583 const char *GenericSchedulerBase::getReasonStr( 2584 GenericSchedulerBase::CandReason Reason) { 2585 switch (Reason) { 2586 case NoCand: return "NOCAND "; 2587 case Only1: return "ONLY1 "; 2588 case PhysReg: return "PHYS-REG "; 2589 case RegExcess: return "REG-EXCESS"; 2590 case RegCritical: return "REG-CRIT "; 2591 case Stall: return "STALL "; 2592 case Cluster: return "CLUSTER "; 2593 case Weak: return "WEAK "; 2594 case RegMax: return "REG-MAX "; 2595 case ResourceReduce: return "RES-REDUCE"; 2596 case ResourceDemand: return "RES-DEMAND"; 2597 case TopDepthReduce: return "TOP-DEPTH "; 2598 case TopPathReduce: return "TOP-PATH "; 2599 case BotHeightReduce:return "BOT-HEIGHT"; 2600 case BotPathReduce: return "BOT-PATH "; 2601 case NextDefUse: return "DEF-USE "; 2602 case NodeOrder: return "ORDER "; 2603 }; 2604 llvm_unreachable("Unknown reason!"); 2605 } 2606 2607 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2608 PressureChange P; 2609 unsigned ResIdx = 0; 2610 unsigned Latency = 0; 2611 switch (Cand.Reason) { 2612 default: 2613 break; 2614 case RegExcess: 2615 P = Cand.RPDelta.Excess; 2616 break; 2617 case RegCritical: 2618 P = Cand.RPDelta.CriticalMax; 2619 break; 2620 case RegMax: 2621 P = Cand.RPDelta.CurrentMax; 2622 break; 2623 case ResourceReduce: 2624 ResIdx = Cand.Policy.ReduceResIdx; 2625 break; 2626 case ResourceDemand: 2627 ResIdx = Cand.Policy.DemandResIdx; 2628 break; 2629 case TopDepthReduce: 2630 Latency = Cand.SU->getDepth(); 2631 break; 2632 case TopPathReduce: 2633 Latency = Cand.SU->getHeight(); 2634 break; 2635 case BotHeightReduce: 2636 Latency = Cand.SU->getHeight(); 2637 break; 2638 case BotPathReduce: 2639 Latency = Cand.SU->getDepth(); 2640 break; 2641 } 2642 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2643 if (P.isValid()) 2644 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2645 << ":" << P.getUnitInc() << " "; 2646 else 2647 dbgs() << " "; 2648 if (ResIdx) 2649 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2650 else 2651 dbgs() << " "; 2652 if (Latency) 2653 dbgs() << " " << Latency << " cycles "; 2654 else 2655 dbgs() << " "; 2656 dbgs() << '\n'; 2657 } 2658 #endif 2659 2660 namespace llvm { 2661 /// Return true if this heuristic determines order. 2662 bool tryLess(int TryVal, int CandVal, 2663 GenericSchedulerBase::SchedCandidate &TryCand, 2664 GenericSchedulerBase::SchedCandidate &Cand, 2665 GenericSchedulerBase::CandReason Reason) { 2666 if (TryVal < CandVal) { 2667 TryCand.Reason = Reason; 2668 return true; 2669 } 2670 if (TryVal > CandVal) { 2671 if (Cand.Reason > Reason) 2672 Cand.Reason = Reason; 2673 return true; 2674 } 2675 return false; 2676 } 2677 2678 bool tryGreater(int TryVal, int CandVal, 2679 GenericSchedulerBase::SchedCandidate &TryCand, 2680 GenericSchedulerBase::SchedCandidate &Cand, 2681 GenericSchedulerBase::CandReason Reason) { 2682 if (TryVal > CandVal) { 2683 TryCand.Reason = Reason; 2684 return true; 2685 } 2686 if (TryVal < CandVal) { 2687 if (Cand.Reason > Reason) 2688 Cand.Reason = Reason; 2689 return true; 2690 } 2691 return false; 2692 } 2693 2694 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2695 GenericSchedulerBase::SchedCandidate &Cand, 2696 SchedBoundary &Zone) { 2697 if (Zone.isTop()) { 2698 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2699 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2700 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2701 return true; 2702 } 2703 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2704 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2705 return true; 2706 } else { 2707 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2708 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2709 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2710 return true; 2711 } 2712 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2713 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2714 return true; 2715 } 2716 return false; 2717 } 2718 } // end namespace llvm 2719 2720 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) { 2721 LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2722 << GenericSchedulerBase::getReasonStr(Reason) << '\n'); 2723 } 2724 2725 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) { 2726 tracePick(Cand.Reason, Cand.AtTop); 2727 } 2728 2729 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2730 assert(dag->hasVRegLiveness() && 2731 "(PreRA)GenericScheduler needs vreg liveness"); 2732 DAG = static_cast<ScheduleDAGMILive*>(dag); 2733 SchedModel = DAG->getSchedModel(); 2734 TRI = DAG->TRI; 2735 2736 if (RegionPolicy.ComputeDFSResult) 2737 DAG->computeDFSResult(); 2738 2739 Rem.init(DAG, SchedModel); 2740 Top.init(DAG, SchedModel, &Rem); 2741 Bot.init(DAG, SchedModel, &Rem); 2742 2743 // Initialize resource counts. 2744 2745 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2746 // are disabled, then these HazardRecs will be disabled. 2747 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2748 if (!Top.HazardRec) { 2749 Top.HazardRec = 2750 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2751 Itin, DAG); 2752 } 2753 if (!Bot.HazardRec) { 2754 Bot.HazardRec = 2755 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2756 Itin, DAG); 2757 } 2758 TopCand.SU = nullptr; 2759 BotCand.SU = nullptr; 2760 } 2761 2762 /// Initialize the per-region scheduling policy. 2763 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2764 MachineBasicBlock::iterator End, 2765 unsigned NumRegionInstrs) { 2766 const MachineFunction &MF = *Begin->getMF(); 2767 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2768 2769 // Avoid setting up the register pressure tracker for small regions to save 2770 // compile time. As a rough heuristic, only track pressure when the number of 2771 // schedulable instructions exceeds half the integer register file. 2772 RegionPolicy.ShouldTrackPressure = true; 2773 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2774 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2775 if (TLI->isTypeLegal(LegalIntVT)) { 2776 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2777 TLI->getRegClassFor(LegalIntVT)); 2778 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2779 } 2780 } 2781 2782 // For generic targets, we default to bottom-up, because it's simpler and more 2783 // compile-time optimizations have been implemented in that direction. 2784 RegionPolicy.OnlyBottomUp = true; 2785 2786 // Allow the subtarget to override default policy. 2787 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs); 2788 2789 // After subtarget overrides, apply command line options. 2790 if (!EnableRegPressure) { 2791 RegionPolicy.ShouldTrackPressure = false; 2792 RegionPolicy.ShouldTrackLaneMasks = false; 2793 } 2794 2795 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2796 // e.g. -misched-bottomup=false allows scheduling in both directions. 2797 assert((!ForceTopDown || !ForceBottomUp) && 2798 "-misched-topdown incompatible with -misched-bottomup"); 2799 if (ForceBottomUp.getNumOccurrences() > 0) { 2800 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2801 if (RegionPolicy.OnlyBottomUp) 2802 RegionPolicy.OnlyTopDown = false; 2803 } 2804 if (ForceTopDown.getNumOccurrences() > 0) { 2805 RegionPolicy.OnlyTopDown = ForceTopDown; 2806 if (RegionPolicy.OnlyTopDown) 2807 RegionPolicy.OnlyBottomUp = false; 2808 } 2809 } 2810 2811 void GenericScheduler::dumpPolicy() const { 2812 // Cannot completely remove virtual function even in release mode. 2813 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2814 dbgs() << "GenericScheduler RegionPolicy: " 2815 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure 2816 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown 2817 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp 2818 << "\n"; 2819 #endif 2820 } 2821 2822 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 2823 /// critical path by more cycles than it takes to drain the instruction buffer. 2824 /// We estimate an upper bounds on in-flight instructions as: 2825 /// 2826 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 2827 /// InFlightIterations = AcyclicPath / CyclesPerIteration 2828 /// InFlightResources = InFlightIterations * LoopResources 2829 /// 2830 /// TODO: Check execution resources in addition to IssueCount. 2831 void GenericScheduler::checkAcyclicLatency() { 2832 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 2833 return; 2834 2835 // Scaled number of cycles per loop iteration. 2836 unsigned IterCount = 2837 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 2838 Rem.RemIssueCount); 2839 // Scaled acyclic critical path. 2840 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 2841 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 2842 unsigned InFlightCount = 2843 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 2844 unsigned BufferLimit = 2845 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 2846 2847 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 2848 2849 LLVM_DEBUG( 2850 dbgs() << "IssueCycles=" 2851 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 2852 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 2853 << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount 2854 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 2855 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 2856 if (Rem.IsAcyclicLatencyLimited) dbgs() << " ACYCLIC LATENCY LIMIT\n"); 2857 } 2858 2859 void GenericScheduler::registerRoots() { 2860 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2861 2862 // Some roots may not feed into ExitSU. Check all of them in case. 2863 for (const SUnit *SU : Bot.Available) { 2864 if (SU->getDepth() > Rem.CriticalPath) 2865 Rem.CriticalPath = SU->getDepth(); 2866 } 2867 LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 2868 if (DumpCriticalPathLength) { 2869 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 2870 } 2871 2872 if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) { 2873 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 2874 checkAcyclicLatency(); 2875 } 2876 } 2877 2878 namespace llvm { 2879 bool tryPressure(const PressureChange &TryP, 2880 const PressureChange &CandP, 2881 GenericSchedulerBase::SchedCandidate &TryCand, 2882 GenericSchedulerBase::SchedCandidate &Cand, 2883 GenericSchedulerBase::CandReason Reason, 2884 const TargetRegisterInfo *TRI, 2885 const MachineFunction &MF) { 2886 // If one candidate decreases and the other increases, go with it. 2887 // Invalid candidates have UnitInc==0. 2888 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 2889 Reason)) { 2890 return true; 2891 } 2892 // Do not compare the magnitude of pressure changes between top and bottom 2893 // boundary. 2894 if (Cand.AtTop != TryCand.AtTop) 2895 return false; 2896 2897 // If both candidates affect the same set in the same boundary, go with the 2898 // smallest increase. 2899 unsigned TryPSet = TryP.getPSetOrMax(); 2900 unsigned CandPSet = CandP.getPSetOrMax(); 2901 if (TryPSet == CandPSet) { 2902 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 2903 Reason); 2904 } 2905 2906 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) : 2907 std::numeric_limits<int>::max(); 2908 2909 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) : 2910 std::numeric_limits<int>::max(); 2911 2912 // If the candidates are decreasing pressure, reverse priority. 2913 if (TryP.getUnitInc() < 0) 2914 std::swap(TryRank, CandRank); 2915 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2916 } 2917 2918 unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2919 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2920 } 2921 2922 /// Minimize physical register live ranges. Regalloc wants them adjacent to 2923 /// their physreg def/use. 2924 /// 2925 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2926 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2927 /// with the operation that produces or consumes the physreg. We'll do this when 2928 /// regalloc has support for parallel copies. 2929 int biasPhysReg(const SUnit *SU, bool isTop) { 2930 const MachineInstr *MI = SU->getInstr(); 2931 2932 if (MI->isCopy()) { 2933 unsigned ScheduledOper = isTop ? 1 : 0; 2934 unsigned UnscheduledOper = isTop ? 0 : 1; 2935 // If we have already scheduled the physreg produce/consumer, immediately 2936 // schedule the copy. 2937 if (Register::isPhysicalRegister(MI->getOperand(ScheduledOper).getReg())) 2938 return 1; 2939 // If the physreg is at the boundary, defer it. Otherwise schedule it 2940 // immediately to free the dependent. We can hoist the copy later. 2941 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2942 if (Register::isPhysicalRegister(MI->getOperand(UnscheduledOper).getReg())) 2943 return AtBoundary ? -1 : 1; 2944 } 2945 2946 if (MI->isMoveImmediate()) { 2947 // If we have a move immediate and all successors have been assigned, bias 2948 // towards scheduling this later. Make sure all register defs are to 2949 // physical registers. 2950 bool DoBias = true; 2951 for (const MachineOperand &Op : MI->defs()) { 2952 if (Op.isReg() && !Register::isPhysicalRegister(Op.getReg())) { 2953 DoBias = false; 2954 break; 2955 } 2956 } 2957 2958 if (DoBias) 2959 return isTop ? -1 : 1; 2960 } 2961 2962 return 0; 2963 } 2964 } // end namespace llvm 2965 2966 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU, 2967 bool AtTop, 2968 const RegPressureTracker &RPTracker, 2969 RegPressureTracker &TempTracker) { 2970 Cand.SU = SU; 2971 Cand.AtTop = AtTop; 2972 if (DAG->isTrackingPressure()) { 2973 if (AtTop) { 2974 TempTracker.getMaxDownwardPressureDelta( 2975 Cand.SU->getInstr(), 2976 Cand.RPDelta, 2977 DAG->getRegionCriticalPSets(), 2978 DAG->getRegPressure().MaxSetPressure); 2979 } else { 2980 if (VerifyScheduling) { 2981 TempTracker.getMaxUpwardPressureDelta( 2982 Cand.SU->getInstr(), 2983 &DAG->getPressureDiff(Cand.SU), 2984 Cand.RPDelta, 2985 DAG->getRegionCriticalPSets(), 2986 DAG->getRegPressure().MaxSetPressure); 2987 } else { 2988 RPTracker.getUpwardPressureDelta( 2989 Cand.SU->getInstr(), 2990 DAG->getPressureDiff(Cand.SU), 2991 Cand.RPDelta, 2992 DAG->getRegionCriticalPSets(), 2993 DAG->getRegPressure().MaxSetPressure); 2994 } 2995 } 2996 } 2997 LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs() 2998 << " Try SU(" << Cand.SU->NodeNum << ") " 2999 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":" 3000 << Cand.RPDelta.Excess.getUnitInc() << "\n"); 3001 } 3002 3003 /// Apply a set of heuristics to a new candidate. Heuristics are currently 3004 /// hierarchical. This may be more efficient than a graduated cost model because 3005 /// we don't need to evaluate all aspects of the model for each node in the 3006 /// queue. But it's really done to make the heuristics easier to debug and 3007 /// statistically analyze. 3008 /// 3009 /// \param Cand provides the policy and current best candidate. 3010 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3011 /// \param Zone describes the scheduled zone that we are extending, or nullptr 3012 // if Cand is from a different zone than TryCand. 3013 void GenericScheduler::tryCandidate(SchedCandidate &Cand, 3014 SchedCandidate &TryCand, 3015 SchedBoundary *Zone) const { 3016 // Initialize the candidate if needed. 3017 if (!Cand.isValid()) { 3018 TryCand.Reason = NodeOrder; 3019 return; 3020 } 3021 3022 // Bias PhysReg Defs and copies to their uses and defined respectively. 3023 if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop), 3024 biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg)) 3025 return; 3026 3027 // Avoid exceeding the target's limit. 3028 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 3029 Cand.RPDelta.Excess, 3030 TryCand, Cand, RegExcess, TRI, 3031 DAG->MF)) 3032 return; 3033 3034 // Avoid increasing the max critical pressure in the scheduled region. 3035 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 3036 Cand.RPDelta.CriticalMax, 3037 TryCand, Cand, RegCritical, TRI, 3038 DAG->MF)) 3039 return; 3040 3041 // We only compare a subset of features when comparing nodes between 3042 // Top and Bottom boundary. Some properties are simply incomparable, in many 3043 // other instances we should only override the other boundary if something 3044 // is a clear good pick on one boundary. Skip heuristics that are more 3045 // "tie-breaking" in nature. 3046 bool SameBoundary = Zone != nullptr; 3047 if (SameBoundary) { 3048 // For loops that are acyclic path limited, aggressively schedule for 3049 // latency. Within an single cycle, whenever CurrMOps > 0, allow normal 3050 // heuristics to take precedence. 3051 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() && 3052 tryLatency(TryCand, Cand, *Zone)) 3053 return; 3054 3055 // Prioritize instructions that read unbuffered resources by stall cycles. 3056 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU), 3057 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3058 return; 3059 } 3060 3061 // Keep clustered nodes together to encourage downstream peephole 3062 // optimizations which may reduce resource requirements. 3063 // 3064 // This is a best effort to set things up for a post-RA pass. Optimizations 3065 // like generating loads of multiple registers should ideally be done within 3066 // the scheduler pass by combining the loads during DAG postprocessing. 3067 const SUnit *CandNextClusterSU = 3068 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 3069 const SUnit *TryCandNextClusterSU = 3070 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 3071 if (tryGreater(TryCand.SU == TryCandNextClusterSU, 3072 Cand.SU == CandNextClusterSU, 3073 TryCand, Cand, Cluster)) 3074 return; 3075 3076 if (SameBoundary) { 3077 // Weak edges are for clustering and other constraints. 3078 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop), 3079 getWeakLeft(Cand.SU, Cand.AtTop), 3080 TryCand, Cand, Weak)) 3081 return; 3082 } 3083 3084 // Avoid increasing the max pressure of the entire region. 3085 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 3086 Cand.RPDelta.CurrentMax, 3087 TryCand, Cand, RegMax, TRI, 3088 DAG->MF)) 3089 return; 3090 3091 if (SameBoundary) { 3092 // Avoid critical resource consumption and balance the schedule. 3093 TryCand.initResourceDelta(DAG, SchedModel); 3094 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3095 TryCand, Cand, ResourceReduce)) 3096 return; 3097 if (tryGreater(TryCand.ResDelta.DemandedResources, 3098 Cand.ResDelta.DemandedResources, 3099 TryCand, Cand, ResourceDemand)) 3100 return; 3101 3102 // Avoid serializing long latency dependence chains. 3103 // For acyclic path limited loops, latency was already checked above. 3104 if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency && 3105 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone)) 3106 return; 3107 3108 // Fall through to original instruction order. 3109 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 3110 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 3111 TryCand.Reason = NodeOrder; 3112 } 3113 } 3114 } 3115 3116 /// Pick the best candidate from the queue. 3117 /// 3118 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 3119 /// DAG building. To adjust for the current scheduling location we need to 3120 /// maintain the number of vreg uses remaining to be top-scheduled. 3121 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 3122 const CandPolicy &ZonePolicy, 3123 const RegPressureTracker &RPTracker, 3124 SchedCandidate &Cand) { 3125 // getMaxPressureDelta temporarily modifies the tracker. 3126 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 3127 3128 ReadyQueue &Q = Zone.Available; 3129 for (SUnit *SU : Q) { 3130 3131 SchedCandidate TryCand(ZonePolicy); 3132 initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker); 3133 // Pass SchedBoundary only when comparing nodes from the same boundary. 3134 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; 3135 tryCandidate(Cand, TryCand, ZoneArg); 3136 if (TryCand.Reason != NoCand) { 3137 // Initialize resource delta if needed in case future heuristics query it. 3138 if (TryCand.ResDelta == SchedResourceDelta()) 3139 TryCand.initResourceDelta(DAG, SchedModel); 3140 Cand.setBest(TryCand); 3141 LLVM_DEBUG(traceCandidate(Cand)); 3142 } 3143 } 3144 } 3145 3146 /// Pick the best candidate node from either the top or bottom queue. 3147 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 3148 // Schedule as far as possible in the direction of no choice. This is most 3149 // efficient, but also provides the best heuristics for CriticalPSets. 3150 if (SUnit *SU = Bot.pickOnlyChoice()) { 3151 IsTopNode = false; 3152 tracePick(Only1, false); 3153 return SU; 3154 } 3155 if (SUnit *SU = Top.pickOnlyChoice()) { 3156 IsTopNode = true; 3157 tracePick(Only1, true); 3158 return SU; 3159 } 3160 // Set the bottom-up policy based on the state of the current bottom zone and 3161 // the instructions outside the zone, including the top zone. 3162 CandPolicy BotPolicy; 3163 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); 3164 // Set the top-down policy based on the state of the current top zone and 3165 // the instructions outside the zone, including the bottom zone. 3166 CandPolicy TopPolicy; 3167 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); 3168 3169 // See if BotCand is still valid (because we previously scheduled from Top). 3170 LLVM_DEBUG(dbgs() << "Picking from Bot:\n"); 3171 if (!BotCand.isValid() || BotCand.SU->isScheduled || 3172 BotCand.Policy != BotPolicy) { 3173 BotCand.reset(CandPolicy()); 3174 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); 3175 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 3176 } else { 3177 LLVM_DEBUG(traceCandidate(BotCand)); 3178 #ifndef NDEBUG 3179 if (VerifyScheduling) { 3180 SchedCandidate TCand; 3181 TCand.reset(CandPolicy()); 3182 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand); 3183 assert(TCand.SU == BotCand.SU && 3184 "Last pick result should correspond to re-picking right now"); 3185 } 3186 #endif 3187 } 3188 3189 // Check if the top Q has a better candidate. 3190 LLVM_DEBUG(dbgs() << "Picking from Top:\n"); 3191 if (!TopCand.isValid() || TopCand.SU->isScheduled || 3192 TopCand.Policy != TopPolicy) { 3193 TopCand.reset(CandPolicy()); 3194 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); 3195 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 3196 } else { 3197 LLVM_DEBUG(traceCandidate(TopCand)); 3198 #ifndef NDEBUG 3199 if (VerifyScheduling) { 3200 SchedCandidate TCand; 3201 TCand.reset(CandPolicy()); 3202 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand); 3203 assert(TCand.SU == TopCand.SU && 3204 "Last pick result should correspond to re-picking right now"); 3205 } 3206 #endif 3207 } 3208 3209 // Pick best from BotCand and TopCand. 3210 assert(BotCand.isValid()); 3211 assert(TopCand.isValid()); 3212 SchedCandidate Cand = BotCand; 3213 TopCand.Reason = NoCand; 3214 tryCandidate(Cand, TopCand, nullptr); 3215 if (TopCand.Reason != NoCand) { 3216 Cand.setBest(TopCand); 3217 LLVM_DEBUG(traceCandidate(Cand)); 3218 } 3219 3220 IsTopNode = Cand.AtTop; 3221 tracePick(Cand); 3222 return Cand.SU; 3223 } 3224 3225 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 3226 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 3227 if (DAG->top() == DAG->bottom()) { 3228 assert(Top.Available.empty() && Top.Pending.empty() && 3229 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 3230 return nullptr; 3231 } 3232 SUnit *SU; 3233 do { 3234 if (RegionPolicy.OnlyTopDown) { 3235 SU = Top.pickOnlyChoice(); 3236 if (!SU) { 3237 CandPolicy NoPolicy; 3238 TopCand.reset(NoPolicy); 3239 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); 3240 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3241 tracePick(TopCand); 3242 SU = TopCand.SU; 3243 } 3244 IsTopNode = true; 3245 } else if (RegionPolicy.OnlyBottomUp) { 3246 SU = Bot.pickOnlyChoice(); 3247 if (!SU) { 3248 CandPolicy NoPolicy; 3249 BotCand.reset(NoPolicy); 3250 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); 3251 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 3252 tracePick(BotCand); 3253 SU = BotCand.SU; 3254 } 3255 IsTopNode = false; 3256 } else { 3257 SU = pickNodeBidirectional(IsTopNode); 3258 } 3259 } while (SU->isScheduled); 3260 3261 if (SU->isTopReady()) 3262 Top.removeReady(SU); 3263 if (SU->isBottomReady()) 3264 Bot.removeReady(SU); 3265 3266 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 3267 << *SU->getInstr()); 3268 return SU; 3269 } 3270 3271 void GenericScheduler::reschedulePhysReg(SUnit *SU, bool isTop) { 3272 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 3273 if (!isTop) 3274 ++InsertPos; 3275 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 3276 3277 // Find already scheduled copies with a single physreg dependence and move 3278 // them just above the scheduled instruction. 3279 for (SDep &Dep : Deps) { 3280 if (Dep.getKind() != SDep::Data || 3281 !Register::isPhysicalRegister(Dep.getReg())) 3282 continue; 3283 SUnit *DepSU = Dep.getSUnit(); 3284 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 3285 continue; 3286 MachineInstr *Copy = DepSU->getInstr(); 3287 if (!Copy->isCopy() && !Copy->isMoveImmediate()) 3288 continue; 3289 LLVM_DEBUG(dbgs() << " Rescheduling physreg copy "; 3290 DAG->dumpNode(*Dep.getSUnit())); 3291 DAG->moveInstruction(Copy, InsertPos); 3292 } 3293 } 3294 3295 /// Update the scheduler's state after scheduling a node. This is the same node 3296 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 3297 /// update it's state based on the current cycle before MachineSchedStrategy 3298 /// does. 3299 /// 3300 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 3301 /// them here. See comments in biasPhysReg. 3302 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3303 if (IsTopNode) { 3304 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3305 Top.bumpNode(SU); 3306 if (SU->hasPhysRegUses) 3307 reschedulePhysReg(SU, true); 3308 } else { 3309 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 3310 Bot.bumpNode(SU); 3311 if (SU->hasPhysRegDefs) 3312 reschedulePhysReg(SU, false); 3313 } 3314 } 3315 3316 /// Create the standard converging machine scheduler. This will be used as the 3317 /// default scheduler if the target does not set a default. 3318 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) { 3319 ScheduleDAGMILive *DAG = 3320 new ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C)); 3321 // Register DAG post-processors. 3322 // 3323 // FIXME: extend the mutation API to allow earlier mutations to instantiate 3324 // data and pass it to later mutations. Have a single mutation that gathers 3325 // the interesting nodes in one pass. 3326 DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI)); 3327 return DAG; 3328 } 3329 3330 static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) { 3331 return createGenericSchedLive(C); 3332 } 3333 3334 static MachineSchedRegistry 3335 GenericSchedRegistry("converge", "Standard converging scheduler.", 3336 createConveringSched); 3337 3338 //===----------------------------------------------------------------------===// 3339 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 3340 //===----------------------------------------------------------------------===// 3341 3342 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 3343 DAG = Dag; 3344 SchedModel = DAG->getSchedModel(); 3345 TRI = DAG->TRI; 3346 3347 Rem.init(DAG, SchedModel); 3348 Top.init(DAG, SchedModel, &Rem); 3349 BotRoots.clear(); 3350 3351 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 3352 // or are disabled, then these HazardRecs will be disabled. 3353 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3354 if (!Top.HazardRec) { 3355 Top.HazardRec = 3356 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 3357 Itin, DAG); 3358 } 3359 } 3360 3361 void PostGenericScheduler::registerRoots() { 3362 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3363 3364 // Some roots may not feed into ExitSU. Check all of them in case. 3365 for (const SUnit *SU : BotRoots) { 3366 if (SU->getDepth() > Rem.CriticalPath) 3367 Rem.CriticalPath = SU->getDepth(); 3368 } 3369 LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 3370 if (DumpCriticalPathLength) { 3371 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 3372 } 3373 } 3374 3375 /// Apply a set of heuristics to a new candidate for PostRA scheduling. 3376 /// 3377 /// \param Cand provides the policy and current best candidate. 3378 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3379 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 3380 SchedCandidate &TryCand) { 3381 // Initialize the candidate if needed. 3382 if (!Cand.isValid()) { 3383 TryCand.Reason = NodeOrder; 3384 return; 3385 } 3386 3387 // Prioritize instructions that read unbuffered resources by stall cycles. 3388 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3389 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3390 return; 3391 3392 // Keep clustered nodes together. 3393 if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(), 3394 Cand.SU == DAG->getNextClusterSucc(), 3395 TryCand, Cand, Cluster)) 3396 return; 3397 3398 // Avoid critical resource consumption and balance the schedule. 3399 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3400 TryCand, Cand, ResourceReduce)) 3401 return; 3402 if (tryGreater(TryCand.ResDelta.DemandedResources, 3403 Cand.ResDelta.DemandedResources, 3404 TryCand, Cand, ResourceDemand)) 3405 return; 3406 3407 // Avoid serializing long latency dependence chains. 3408 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 3409 return; 3410 } 3411 3412 // Fall through to original instruction order. 3413 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) 3414 TryCand.Reason = NodeOrder; 3415 } 3416 3417 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 3418 ReadyQueue &Q = Top.Available; 3419 for (SUnit *SU : Q) { 3420 SchedCandidate TryCand(Cand.Policy); 3421 TryCand.SU = SU; 3422 TryCand.AtTop = true; 3423 TryCand.initResourceDelta(DAG, SchedModel); 3424 tryCandidate(Cand, TryCand); 3425 if (TryCand.Reason != NoCand) { 3426 Cand.setBest(TryCand); 3427 LLVM_DEBUG(traceCandidate(Cand)); 3428 } 3429 } 3430 } 3431 3432 /// Pick the next node to schedule. 3433 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 3434 if (DAG->top() == DAG->bottom()) { 3435 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 3436 return nullptr; 3437 } 3438 SUnit *SU; 3439 do { 3440 SU = Top.pickOnlyChoice(); 3441 if (SU) { 3442 tracePick(Only1, true); 3443 } else { 3444 CandPolicy NoPolicy; 3445 SchedCandidate TopCand(NoPolicy); 3446 // Set the top-down policy based on the state of the current top zone and 3447 // the instructions outside the zone, including the bottom zone. 3448 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 3449 pickNodeFromQueue(TopCand); 3450 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3451 tracePick(TopCand); 3452 SU = TopCand.SU; 3453 } 3454 } while (SU->isScheduled); 3455 3456 IsTopNode = true; 3457 Top.removeReady(SU); 3458 3459 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 3460 << *SU->getInstr()); 3461 return SU; 3462 } 3463 3464 /// Called after ScheduleDAGMI has scheduled an instruction and updated 3465 /// scheduled/remaining flags in the DAG nodes. 3466 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3467 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3468 Top.bumpNode(SU); 3469 } 3470 3471 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) { 3472 return new ScheduleDAGMI(C, std::make_unique<PostGenericScheduler>(C), 3473 /*RemoveKillFlags=*/true); 3474 } 3475 3476 //===----------------------------------------------------------------------===// 3477 // ILP Scheduler. Currently for experimental analysis of heuristics. 3478 //===----------------------------------------------------------------------===// 3479 3480 namespace { 3481 3482 /// Order nodes by the ILP metric. 3483 struct ILPOrder { 3484 const SchedDFSResult *DFSResult = nullptr; 3485 const BitVector *ScheduledTrees = nullptr; 3486 bool MaximizeILP; 3487 3488 ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {} 3489 3490 /// Apply a less-than relation on node priority. 3491 /// 3492 /// (Return true if A comes after B in the Q.) 3493 bool operator()(const SUnit *A, const SUnit *B) const { 3494 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3495 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3496 if (SchedTreeA != SchedTreeB) { 3497 // Unscheduled trees have lower priority. 3498 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3499 return ScheduledTrees->test(SchedTreeB); 3500 3501 // Trees with shallower connections have have lower priority. 3502 if (DFSResult->getSubtreeLevel(SchedTreeA) 3503 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3504 return DFSResult->getSubtreeLevel(SchedTreeA) 3505 < DFSResult->getSubtreeLevel(SchedTreeB); 3506 } 3507 } 3508 if (MaximizeILP) 3509 return DFSResult->getILP(A) < DFSResult->getILP(B); 3510 else 3511 return DFSResult->getILP(A) > DFSResult->getILP(B); 3512 } 3513 }; 3514 3515 /// Schedule based on the ILP metric. 3516 class ILPScheduler : public MachineSchedStrategy { 3517 ScheduleDAGMILive *DAG = nullptr; 3518 ILPOrder Cmp; 3519 3520 std::vector<SUnit*> ReadyQ; 3521 3522 public: 3523 ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {} 3524 3525 void initialize(ScheduleDAGMI *dag) override { 3526 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3527 DAG = static_cast<ScheduleDAGMILive*>(dag); 3528 DAG->computeDFSResult(); 3529 Cmp.DFSResult = DAG->getDFSResult(); 3530 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3531 ReadyQ.clear(); 3532 } 3533 3534 void registerRoots() override { 3535 // Restore the heap in ReadyQ with the updated DFS results. 3536 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3537 } 3538 3539 /// Implement MachineSchedStrategy interface. 3540 /// ----------------------------------------- 3541 3542 /// Callback to select the highest priority node from the ready Q. 3543 SUnit *pickNode(bool &IsTopNode) override { 3544 if (ReadyQ.empty()) return nullptr; 3545 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3546 SUnit *SU = ReadyQ.back(); 3547 ReadyQ.pop_back(); 3548 IsTopNode = false; 3549 LLVM_DEBUG(dbgs() << "Pick node " 3550 << "SU(" << SU->NodeNum << ") " 3551 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3552 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) 3553 << " @" 3554 << DAG->getDFSResult()->getSubtreeLevel( 3555 DAG->getDFSResult()->getSubtreeID(SU)) 3556 << '\n' 3557 << "Scheduling " << *SU->getInstr()); 3558 return SU; 3559 } 3560 3561 /// Scheduler callback to notify that a new subtree is scheduled. 3562 void scheduleTree(unsigned SubtreeID) override { 3563 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3564 } 3565 3566 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3567 /// DFSResults, and resort the priority Q. 3568 void schedNode(SUnit *SU, bool IsTopNode) override { 3569 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3570 } 3571 3572 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3573 3574 void releaseBottomNode(SUnit *SU) override { 3575 ReadyQ.push_back(SU); 3576 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3577 } 3578 }; 3579 3580 } // end anonymous namespace 3581 3582 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3583 return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(true)); 3584 } 3585 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3586 return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(false)); 3587 } 3588 3589 static MachineSchedRegistry ILPMaxRegistry( 3590 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3591 static MachineSchedRegistry ILPMinRegistry( 3592 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3593 3594 //===----------------------------------------------------------------------===// 3595 // Machine Instruction Shuffler for Correctness Testing 3596 //===----------------------------------------------------------------------===// 3597 3598 #ifndef NDEBUG 3599 namespace { 3600 3601 /// Apply a less-than relation on the node order, which corresponds to the 3602 /// instruction order prior to scheduling. IsReverse implements greater-than. 3603 template<bool IsReverse> 3604 struct SUnitOrder { 3605 bool operator()(SUnit *A, SUnit *B) const { 3606 if (IsReverse) 3607 return A->NodeNum > B->NodeNum; 3608 else 3609 return A->NodeNum < B->NodeNum; 3610 } 3611 }; 3612 3613 /// Reorder instructions as much as possible. 3614 class InstructionShuffler : public MachineSchedStrategy { 3615 bool IsAlternating; 3616 bool IsTopDown; 3617 3618 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3619 // gives nodes with a higher number higher priority causing the latest 3620 // instructions to be scheduled first. 3621 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>> 3622 TopQ; 3623 3624 // When scheduling bottom-up, use greater-than as the queue priority. 3625 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>> 3626 BottomQ; 3627 3628 public: 3629 InstructionShuffler(bool alternate, bool topdown) 3630 : IsAlternating(alternate), IsTopDown(topdown) {} 3631 3632 void initialize(ScheduleDAGMI*) override { 3633 TopQ.clear(); 3634 BottomQ.clear(); 3635 } 3636 3637 /// Implement MachineSchedStrategy interface. 3638 /// ----------------------------------------- 3639 3640 SUnit *pickNode(bool &IsTopNode) override { 3641 SUnit *SU; 3642 if (IsTopDown) { 3643 do { 3644 if (TopQ.empty()) return nullptr; 3645 SU = TopQ.top(); 3646 TopQ.pop(); 3647 } while (SU->isScheduled); 3648 IsTopNode = true; 3649 } else { 3650 do { 3651 if (BottomQ.empty()) return nullptr; 3652 SU = BottomQ.top(); 3653 BottomQ.pop(); 3654 } while (SU->isScheduled); 3655 IsTopNode = false; 3656 } 3657 if (IsAlternating) 3658 IsTopDown = !IsTopDown; 3659 return SU; 3660 } 3661 3662 void schedNode(SUnit *SU, bool IsTopNode) override {} 3663 3664 void releaseTopNode(SUnit *SU) override { 3665 TopQ.push(SU); 3666 } 3667 void releaseBottomNode(SUnit *SU) override { 3668 BottomQ.push(SU); 3669 } 3670 }; 3671 3672 } // end anonymous namespace 3673 3674 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3675 bool Alternate = !ForceTopDown && !ForceBottomUp; 3676 bool TopDown = !ForceBottomUp; 3677 assert((TopDown || !ForceTopDown) && 3678 "-misched-topdown incompatible with -misched-bottomup"); 3679 return new ScheduleDAGMILive( 3680 C, std::make_unique<InstructionShuffler>(Alternate, TopDown)); 3681 } 3682 3683 static MachineSchedRegistry ShufflerRegistry( 3684 "shuffle", "Shuffle machine instructions alternating directions", 3685 createInstructionShuffler); 3686 #endif // !NDEBUG 3687 3688 //===----------------------------------------------------------------------===// 3689 // GraphWriter support for ScheduleDAGMILive. 3690 //===----------------------------------------------------------------------===// 3691 3692 #ifndef NDEBUG 3693 namespace llvm { 3694 3695 template<> struct GraphTraits< 3696 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3697 3698 template<> 3699 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3700 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3701 3702 static std::string getGraphName(const ScheduleDAG *G) { 3703 return std::string(G->MF.getName()); 3704 } 3705 3706 static bool renderGraphFromBottomUp() { 3707 return true; 3708 } 3709 3710 static bool isNodeHidden(const SUnit *Node) { 3711 if (ViewMISchedCutoff == 0) 3712 return false; 3713 return (Node->Preds.size() > ViewMISchedCutoff 3714 || Node->Succs.size() > ViewMISchedCutoff); 3715 } 3716 3717 /// If you want to override the dot attributes printed for a particular 3718 /// edge, override this method. 3719 static std::string getEdgeAttributes(const SUnit *Node, 3720 SUnitIterator EI, 3721 const ScheduleDAG *Graph) { 3722 if (EI.isArtificialDep()) 3723 return "color=cyan,style=dashed"; 3724 if (EI.isCtrlDep()) 3725 return "color=blue,style=dashed"; 3726 return ""; 3727 } 3728 3729 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3730 std::string Str; 3731 raw_string_ostream SS(Str); 3732 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3733 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3734 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3735 SS << "SU:" << SU->NodeNum; 3736 if (DFS) 3737 SS << " I:" << DFS->getNumInstrs(SU); 3738 return SS.str(); 3739 } 3740 3741 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3742 return G->getGraphNodeLabel(SU); 3743 } 3744 3745 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3746 std::string Str("shape=Mrecord"); 3747 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3748 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3749 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3750 if (DFS) { 3751 Str += ",style=filled,fillcolor=\"#"; 3752 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3753 Str += '"'; 3754 } 3755 return Str; 3756 } 3757 }; 3758 3759 } // end namespace llvm 3760 #endif // NDEBUG 3761 3762 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3763 /// rendered using 'dot'. 3764 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3765 #ifndef NDEBUG 3766 ViewGraph(this, Name, false, Title); 3767 #else 3768 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3769 << "systems with Graphviz or gv!\n"; 3770 #endif // NDEBUG 3771 } 3772 3773 /// Out-of-line implementation with no arguments is handy for gdb. 3774 void ScheduleDAGMI::viewGraph() { 3775 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3776 } 3777