xref: /llvm-project/llvm/lib/CodeGen/MachineScheduler.cpp (revision 3279943adf410d43082c14c0f0d9a7bc499004d1)
1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // MachineScheduler schedules machine instructions after phi elimination. It
10 // preserves LiveIntervals so it can be invoked before register allocation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineScheduler.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/PriorityQueue.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineLoopInfo.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachinePassRegistry.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegisterClassInfo.h"
37 #include "llvm/CodeGen/RegisterPressure.h"
38 #include "llvm/CodeGen/ScheduleDAG.h"
39 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
40 #include "llvm/CodeGen/ScheduleDAGMutation.h"
41 #include "llvm/CodeGen/ScheduleDFS.h"
42 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
43 #include "llvm/CodeGen/SlotIndexes.h"
44 #include "llvm/CodeGen/TargetFrameLowering.h"
45 #include "llvm/CodeGen/TargetInstrInfo.h"
46 #include "llvm/CodeGen/TargetLowering.h"
47 #include "llvm/CodeGen/TargetPassConfig.h"
48 #include "llvm/CodeGen/TargetRegisterInfo.h"
49 #include "llvm/CodeGen/TargetSchedule.h"
50 #include "llvm/CodeGen/TargetSubtargetInfo.h"
51 #include "llvm/Config/llvm-config.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/MC/LaneBitmask.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Compiler.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/GraphWriter.h"
60 #include "llvm/Support/MachineValueType.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <cstdint>
65 #include <iterator>
66 #include <limits>
67 #include <memory>
68 #include <string>
69 #include <tuple>
70 #include <utility>
71 #include <vector>
72 
73 using namespace llvm;
74 
75 #define DEBUG_TYPE "machine-scheduler"
76 
77 STATISTIC(NumClustered, "Number of load/store pairs clustered");
78 
79 namespace llvm {
80 
81 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
82                            cl::desc("Force top-down list scheduling"));
83 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
84                             cl::desc("Force bottom-up list scheduling"));
85 cl::opt<bool>
86 DumpCriticalPathLength("misched-dcpl", cl::Hidden,
87                        cl::desc("Print critical path length to stdout"));
88 
89 cl::opt<bool> VerifyScheduling(
90     "verify-misched", cl::Hidden,
91     cl::desc("Verify machine instrs before and after machine scheduling"));
92 
93 } // end namespace llvm
94 
95 #ifndef NDEBUG
96 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
97   cl::desc("Pop up a window to show MISched dags after they are processed"));
98 
99 /// In some situations a few uninteresting nodes depend on nearly all other
100 /// nodes in the graph, provide a cutoff to hide them.
101 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
102   cl::desc("Hide nodes with more predecessor/successor than cutoff"));
103 
104 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
105   cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
106 
107 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
108   cl::desc("Only schedule this function"));
109 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
110                                         cl::desc("Only schedule this MBB#"));
111 static cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden,
112                               cl::desc("Print schedule DAGs"));
113 #else
114 static const bool ViewMISchedDAGs = false;
115 static const bool PrintDAGs = false;
116 #endif // NDEBUG
117 
118 /// Avoid quadratic complexity in unusually large basic blocks by limiting the
119 /// size of the ready lists.
120 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden,
121   cl::desc("Limit ready list to N instructions"), cl::init(256));
122 
123 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
124   cl::desc("Enable register pressure scheduling."), cl::init(true));
125 
126 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
127   cl::desc("Enable cyclic critical path analysis."), cl::init(true));
128 
129 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden,
130                                         cl::desc("Enable memop clustering."),
131                                         cl::init(true));
132 static cl::opt<bool>
133     ForceFastCluster("force-fast-cluster", cl::Hidden,
134                      cl::desc("Switch to fast cluster algorithm with the lost "
135                               "of some fusion opportunities"),
136                      cl::init(false));
137 static cl::opt<unsigned>
138     FastClusterThreshold("fast-cluster-threshold", cl::Hidden,
139                          cl::desc("The threshold for fast cluster"),
140                          cl::init(1000));
141 
142 // DAG subtrees must have at least this many nodes.
143 static const unsigned MinSubtreeSize = 8;
144 
145 // Pin the vtables to this file.
146 void MachineSchedStrategy::anchor() {}
147 
148 void ScheduleDAGMutation::anchor() {}
149 
150 //===----------------------------------------------------------------------===//
151 // Machine Instruction Scheduling Pass and Registry
152 //===----------------------------------------------------------------------===//
153 
154 MachineSchedContext::MachineSchedContext() {
155   RegClassInfo = new RegisterClassInfo();
156 }
157 
158 MachineSchedContext::~MachineSchedContext() {
159   delete RegClassInfo;
160 }
161 
162 namespace {
163 
164 /// Base class for a machine scheduler class that can run at any point.
165 class MachineSchedulerBase : public MachineSchedContext,
166                              public MachineFunctionPass {
167 public:
168   MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
169 
170   void print(raw_ostream &O, const Module* = nullptr) const override;
171 
172 protected:
173   void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
174 };
175 
176 /// MachineScheduler runs after coalescing and before register allocation.
177 class MachineScheduler : public MachineSchedulerBase {
178 public:
179   MachineScheduler();
180 
181   void getAnalysisUsage(AnalysisUsage &AU) const override;
182 
183   bool runOnMachineFunction(MachineFunction&) override;
184 
185   static char ID; // Class identification, replacement for typeinfo
186 
187 protected:
188   ScheduleDAGInstrs *createMachineScheduler();
189 };
190 
191 /// PostMachineScheduler runs after shortly before code emission.
192 class PostMachineScheduler : public MachineSchedulerBase {
193 public:
194   PostMachineScheduler();
195 
196   void getAnalysisUsage(AnalysisUsage &AU) const override;
197 
198   bool runOnMachineFunction(MachineFunction&) override;
199 
200   static char ID; // Class identification, replacement for typeinfo
201 
202 protected:
203   ScheduleDAGInstrs *createPostMachineScheduler();
204 };
205 
206 } // end anonymous namespace
207 
208 char MachineScheduler::ID = 0;
209 
210 char &llvm::MachineSchedulerID = MachineScheduler::ID;
211 
212 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE,
213                       "Machine Instruction Scheduler", false, false)
214 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
215 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
216 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
217 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
218 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
219 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE,
220                     "Machine Instruction Scheduler", false, false)
221 
222 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) {
223   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
224 }
225 
226 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
227   AU.setPreservesCFG();
228   AU.addRequired<MachineDominatorTree>();
229   AU.addRequired<MachineLoopInfo>();
230   AU.addRequired<AAResultsWrapperPass>();
231   AU.addRequired<TargetPassConfig>();
232   AU.addRequired<SlotIndexes>();
233   AU.addPreserved<SlotIndexes>();
234   AU.addRequired<LiveIntervals>();
235   AU.addPreserved<LiveIntervals>();
236   MachineFunctionPass::getAnalysisUsage(AU);
237 }
238 
239 char PostMachineScheduler::ID = 0;
240 
241 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
242 
243 INITIALIZE_PASS_BEGIN(PostMachineScheduler, "postmisched",
244                       "PostRA Machine Instruction Scheduler", false, false)
245 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
246 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
247 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
248 INITIALIZE_PASS_END(PostMachineScheduler, "postmisched",
249                     "PostRA Machine Instruction Scheduler", false, false)
250 
251 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) {
252   initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
253 }
254 
255 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
256   AU.setPreservesCFG();
257   AU.addRequired<MachineDominatorTree>();
258   AU.addRequired<MachineLoopInfo>();
259   AU.addRequired<AAResultsWrapperPass>();
260   AU.addRequired<TargetPassConfig>();
261   MachineFunctionPass::getAnalysisUsage(AU);
262 }
263 
264 MachinePassRegistry<MachineSchedRegistry::ScheduleDAGCtor>
265     MachineSchedRegistry::Registry;
266 
267 /// A dummy default scheduler factory indicates whether the scheduler
268 /// is overridden on the command line.
269 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
270   return nullptr;
271 }
272 
273 /// MachineSchedOpt allows command line selection of the scheduler.
274 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
275                RegisterPassParser<MachineSchedRegistry>>
276 MachineSchedOpt("misched",
277                 cl::init(&useDefaultMachineSched), cl::Hidden,
278                 cl::desc("Machine instruction scheduler to use"));
279 
280 static MachineSchedRegistry
281 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
282                      useDefaultMachineSched);
283 
284 static cl::opt<bool> EnableMachineSched(
285     "enable-misched",
286     cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
287     cl::Hidden);
288 
289 static cl::opt<bool> EnablePostRAMachineSched(
290     "enable-post-misched",
291     cl::desc("Enable the post-ra machine instruction scheduling pass."),
292     cl::init(true), cl::Hidden);
293 
294 /// Decrement this iterator until reaching the top or a non-debug instr.
295 static MachineBasicBlock::const_iterator
296 priorNonDebug(MachineBasicBlock::const_iterator I,
297               MachineBasicBlock::const_iterator Beg) {
298   assert(I != Beg && "reached the top of the region, cannot decrement");
299   while (--I != Beg) {
300     if (!I->isDebugInstr())
301       break;
302   }
303   return I;
304 }
305 
306 /// Non-const version.
307 static MachineBasicBlock::iterator
308 priorNonDebug(MachineBasicBlock::iterator I,
309               MachineBasicBlock::const_iterator Beg) {
310   return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)
311       .getNonConstIterator();
312 }
313 
314 /// If this iterator is a debug value, increment until reaching the End or a
315 /// non-debug instruction.
316 static MachineBasicBlock::const_iterator
317 nextIfDebug(MachineBasicBlock::const_iterator I,
318             MachineBasicBlock::const_iterator End) {
319   for(; I != End; ++I) {
320     if (!I->isDebugInstr())
321       break;
322   }
323   return I;
324 }
325 
326 /// Non-const version.
327 static MachineBasicBlock::iterator
328 nextIfDebug(MachineBasicBlock::iterator I,
329             MachineBasicBlock::const_iterator End) {
330   return nextIfDebug(MachineBasicBlock::const_iterator(I), End)
331       .getNonConstIterator();
332 }
333 
334 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
335 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
336   // Select the scheduler, or set the default.
337   MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
338   if (Ctor != useDefaultMachineSched)
339     return Ctor(this);
340 
341   // Get the default scheduler set by the target for this function.
342   ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
343   if (Scheduler)
344     return Scheduler;
345 
346   // Default to GenericScheduler.
347   return createGenericSchedLive(this);
348 }
349 
350 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
351 /// the caller. We don't have a command line option to override the postRA
352 /// scheduler. The Target must configure it.
353 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
354   // Get the postRA scheduler set by the target for this function.
355   ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
356   if (Scheduler)
357     return Scheduler;
358 
359   // Default to GenericScheduler.
360   return createGenericSchedPostRA(this);
361 }
362 
363 /// Top-level MachineScheduler pass driver.
364 ///
365 /// Visit blocks in function order. Divide each block into scheduling regions
366 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
367 /// consistent with the DAG builder, which traverses the interior of the
368 /// scheduling regions bottom-up.
369 ///
370 /// This design avoids exposing scheduling boundaries to the DAG builder,
371 /// simplifying the DAG builder's support for "special" target instructions.
372 /// At the same time the design allows target schedulers to operate across
373 /// scheduling boundaries, for example to bundle the boundary instructions
374 /// without reordering them. This creates complexity, because the target
375 /// scheduler must update the RegionBegin and RegionEnd positions cached by
376 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
377 /// design would be to split blocks at scheduling boundaries, but LLVM has a
378 /// general bias against block splitting purely for implementation simplicity.
379 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
380   if (skipFunction(mf.getFunction()))
381     return false;
382 
383   if (EnableMachineSched.getNumOccurrences()) {
384     if (!EnableMachineSched)
385       return false;
386   } else if (!mf.getSubtarget().enableMachineScheduler())
387     return false;
388 
389   LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
390 
391   // Initialize the context of the pass.
392   MF = &mf;
393   MLI = &getAnalysis<MachineLoopInfo>();
394   MDT = &getAnalysis<MachineDominatorTree>();
395   PassConfig = &getAnalysis<TargetPassConfig>();
396   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
397 
398   LIS = &getAnalysis<LiveIntervals>();
399 
400   if (VerifyScheduling) {
401     LLVM_DEBUG(LIS->dump());
402     MF->verify(this, "Before machine scheduling.");
403   }
404   RegClassInfo->runOnMachineFunction(*MF);
405 
406   // Instantiate the selected scheduler for this target, function, and
407   // optimization level.
408   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
409   scheduleRegions(*Scheduler, false);
410 
411   LLVM_DEBUG(LIS->dump());
412   if (VerifyScheduling)
413     MF->verify(this, "After machine scheduling.");
414   return true;
415 }
416 
417 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
418   if (skipFunction(mf.getFunction()))
419     return false;
420 
421   if (EnablePostRAMachineSched.getNumOccurrences()) {
422     if (!EnablePostRAMachineSched)
423       return false;
424   } else if (!mf.getSubtarget().enablePostRAMachineScheduler()) {
425     LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
426     return false;
427   }
428   LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
429 
430   // Initialize the context of the pass.
431   MF = &mf;
432   MLI = &getAnalysis<MachineLoopInfo>();
433   PassConfig = &getAnalysis<TargetPassConfig>();
434   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
435 
436   if (VerifyScheduling)
437     MF->verify(this, "Before post machine scheduling.");
438 
439   // Instantiate the selected scheduler for this target, function, and
440   // optimization level.
441   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
442   scheduleRegions(*Scheduler, true);
443 
444   if (VerifyScheduling)
445     MF->verify(this, "After post machine scheduling.");
446   return true;
447 }
448 
449 /// Return true of the given instruction should not be included in a scheduling
450 /// region.
451 ///
452 /// MachineScheduler does not currently support scheduling across calls. To
453 /// handle calls, the DAG builder needs to be modified to create register
454 /// anti/output dependencies on the registers clobbered by the call's regmask
455 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
456 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
457 /// the boundary, but there would be no benefit to postRA scheduling across
458 /// calls this late anyway.
459 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
460                             MachineBasicBlock *MBB,
461                             MachineFunction *MF,
462                             const TargetInstrInfo *TII) {
463   return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF);
464 }
465 
466 /// A region of an MBB for scheduling.
467 namespace {
468 struct SchedRegion {
469   /// RegionBegin is the first instruction in the scheduling region, and
470   /// RegionEnd is either MBB->end() or the scheduling boundary after the
471   /// last instruction in the scheduling region. These iterators cannot refer
472   /// to instructions outside of the identified scheduling region because
473   /// those may be reordered before scheduling this region.
474   MachineBasicBlock::iterator RegionBegin;
475   MachineBasicBlock::iterator RegionEnd;
476   unsigned NumRegionInstrs;
477 
478   SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E,
479               unsigned N) :
480     RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {}
481 };
482 } // end anonymous namespace
483 
484 using MBBRegionsVector = SmallVector<SchedRegion, 16>;
485 
486 static void
487 getSchedRegions(MachineBasicBlock *MBB,
488                 MBBRegionsVector &Regions,
489                 bool RegionsTopDown) {
490   MachineFunction *MF = MBB->getParent();
491   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
492 
493   MachineBasicBlock::iterator I = nullptr;
494   for(MachineBasicBlock::iterator RegionEnd = MBB->end();
495       RegionEnd != MBB->begin(); RegionEnd = I) {
496 
497     // Avoid decrementing RegionEnd for blocks with no terminator.
498     if (RegionEnd != MBB->end() ||
499         isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
500       --RegionEnd;
501     }
502 
503     // The next region starts above the previous region. Look backward in the
504     // instruction stream until we find the nearest boundary.
505     unsigned NumRegionInstrs = 0;
506     I = RegionEnd;
507     for (;I != MBB->begin(); --I) {
508       MachineInstr &MI = *std::prev(I);
509       if (isSchedBoundary(&MI, &*MBB, MF, TII))
510         break;
511       if (!MI.isDebugInstr()) {
512         // MBB::size() uses instr_iterator to count. Here we need a bundle to
513         // count as a single instruction.
514         ++NumRegionInstrs;
515       }
516     }
517 
518     // It's possible we found a scheduling region that only has debug
519     // instructions. Don't bother scheduling these.
520     if (NumRegionInstrs != 0)
521       Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs));
522   }
523 
524   if (RegionsTopDown)
525     std::reverse(Regions.begin(), Regions.end());
526 }
527 
528 /// Main driver for both MachineScheduler and PostMachineScheduler.
529 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
530                                            bool FixKillFlags) {
531   // Visit all machine basic blocks.
532   //
533   // TODO: Visit blocks in global postorder or postorder within the bottom-up
534   // loop tree. Then we can optionally compute global RegPressure.
535   for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
536        MBB != MBBEnd; ++MBB) {
537 
538     Scheduler.startBlock(&*MBB);
539 
540 #ifndef NDEBUG
541     if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
542       continue;
543     if (SchedOnlyBlock.getNumOccurrences()
544         && (int)SchedOnlyBlock != MBB->getNumber())
545       continue;
546 #endif
547 
548     // Break the block into scheduling regions [I, RegionEnd). RegionEnd
549     // points to the scheduling boundary at the bottom of the region. The DAG
550     // does not include RegionEnd, but the region does (i.e. the next
551     // RegionEnd is above the previous RegionBegin). If the current block has
552     // no terminator then RegionEnd == MBB->end() for the bottom region.
553     //
554     // All the regions of MBB are first found and stored in MBBRegions, which
555     // will be processed (MBB) top-down if initialized with true.
556     //
557     // The Scheduler may insert instructions during either schedule() or
558     // exitRegion(), even for empty regions. So the local iterators 'I' and
559     // 'RegionEnd' are invalid across these calls. Instructions must not be
560     // added to other regions than the current one without updating MBBRegions.
561 
562     MBBRegionsVector MBBRegions;
563     getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown());
564     for (MBBRegionsVector::iterator R = MBBRegions.begin();
565          R != MBBRegions.end(); ++R) {
566       MachineBasicBlock::iterator I = R->RegionBegin;
567       MachineBasicBlock::iterator RegionEnd = R->RegionEnd;
568       unsigned NumRegionInstrs = R->NumRegionInstrs;
569 
570       // Notify the scheduler of the region, even if we may skip scheduling
571       // it. Perhaps it still needs to be bundled.
572       Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
573 
574       // Skip empty scheduling regions (0 or 1 schedulable instructions).
575       if (I == RegionEnd || I == std::prev(RegionEnd)) {
576         // Close the current region. Bundle the terminator if needed.
577         // This invalidates 'RegionEnd' and 'I'.
578         Scheduler.exitRegion();
579         continue;
580       }
581       LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
582       LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB)
583                         << " " << MBB->getName() << "\n  From: " << *I
584                         << "    To: ";
585                  if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
586                  else dbgs() << "End";
587                  dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
588       if (DumpCriticalPathLength) {
589         errs() << MF->getName();
590         errs() << ":%bb. " << MBB->getNumber();
591         errs() << " " << MBB->getName() << " \n";
592       }
593 
594       // Schedule a region: possibly reorder instructions.
595       // This invalidates the original region iterators.
596       Scheduler.schedule();
597 
598       // Close the current region.
599       Scheduler.exitRegion();
600     }
601     Scheduler.finishBlock();
602     // FIXME: Ideally, no further passes should rely on kill flags. However,
603     // thumb2 size reduction is currently an exception, so the PostMIScheduler
604     // needs to do this.
605     if (FixKillFlags)
606       Scheduler.fixupKills(*MBB);
607   }
608   Scheduler.finalizeSchedule();
609 }
610 
611 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
612   // unimplemented
613 }
614 
615 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
616 LLVM_DUMP_METHOD void ReadyQueue::dump() const {
617   dbgs() << "Queue " << Name << ": ";
618   for (const SUnit *SU : Queue)
619     dbgs() << SU->NodeNum << " ";
620   dbgs() << "\n";
621 }
622 #endif
623 
624 //===----------------------------------------------------------------------===//
625 // ScheduleDAGMI - Basic machine instruction scheduling. This is
626 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
627 // virtual registers.
628 // ===----------------------------------------------------------------------===/
629 
630 // Provide a vtable anchor.
631 ScheduleDAGMI::~ScheduleDAGMI() = default;
632 
633 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
634 /// NumPredsLeft reaches zero, release the successor node.
635 ///
636 /// FIXME: Adjust SuccSU height based on MinLatency.
637 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
638   SUnit *SuccSU = SuccEdge->getSUnit();
639 
640   if (SuccEdge->isWeak()) {
641     --SuccSU->WeakPredsLeft;
642     if (SuccEdge->isCluster())
643       NextClusterSucc = SuccSU;
644     return;
645   }
646 #ifndef NDEBUG
647   if (SuccSU->NumPredsLeft == 0) {
648     dbgs() << "*** Scheduling failed! ***\n";
649     dumpNode(*SuccSU);
650     dbgs() << " has been released too many times!\n";
651     llvm_unreachable(nullptr);
652   }
653 #endif
654   // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
655   // CurrCycle may have advanced since then.
656   if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
657     SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
658 
659   --SuccSU->NumPredsLeft;
660   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
661     SchedImpl->releaseTopNode(SuccSU);
662 }
663 
664 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
665 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
666   for (SDep &Succ : SU->Succs)
667     releaseSucc(SU, &Succ);
668 }
669 
670 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
671 /// NumSuccsLeft reaches zero, release the predecessor node.
672 ///
673 /// FIXME: Adjust PredSU height based on MinLatency.
674 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
675   SUnit *PredSU = PredEdge->getSUnit();
676 
677   if (PredEdge->isWeak()) {
678     --PredSU->WeakSuccsLeft;
679     if (PredEdge->isCluster())
680       NextClusterPred = PredSU;
681     return;
682   }
683 #ifndef NDEBUG
684   if (PredSU->NumSuccsLeft == 0) {
685     dbgs() << "*** Scheduling failed! ***\n";
686     dumpNode(*PredSU);
687     dbgs() << " has been released too many times!\n";
688     llvm_unreachable(nullptr);
689   }
690 #endif
691   // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
692   // CurrCycle may have advanced since then.
693   if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
694     PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
695 
696   --PredSU->NumSuccsLeft;
697   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
698     SchedImpl->releaseBottomNode(PredSU);
699 }
700 
701 /// releasePredecessors - Call releasePred on each of SU's predecessors.
702 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
703   for (SDep &Pred : SU->Preds)
704     releasePred(SU, &Pred);
705 }
706 
707 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) {
708   ScheduleDAGInstrs::startBlock(bb);
709   SchedImpl->enterMBB(bb);
710 }
711 
712 void ScheduleDAGMI::finishBlock() {
713   SchedImpl->leaveMBB();
714   ScheduleDAGInstrs::finishBlock();
715 }
716 
717 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
718 /// crossing a scheduling boundary. [begin, end) includes all instructions in
719 /// the region, including the boundary itself and single-instruction regions
720 /// that don't get scheduled.
721 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
722                                      MachineBasicBlock::iterator begin,
723                                      MachineBasicBlock::iterator end,
724                                      unsigned regioninstrs)
725 {
726   ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
727 
728   SchedImpl->initPolicy(begin, end, regioninstrs);
729 }
730 
731 /// This is normally called from the main scheduler loop but may also be invoked
732 /// by the scheduling strategy to perform additional code motion.
733 void ScheduleDAGMI::moveInstruction(
734   MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
735   // Advance RegionBegin if the first instruction moves down.
736   if (&*RegionBegin == MI)
737     ++RegionBegin;
738 
739   // Update the instruction stream.
740   BB->splice(InsertPos, BB, MI);
741 
742   // Update LiveIntervals
743   if (LIS)
744     LIS->handleMove(*MI, /*UpdateFlags=*/true);
745 
746   // Recede RegionBegin if an instruction moves above the first.
747   if (RegionBegin == InsertPos)
748     RegionBegin = MI;
749 }
750 
751 bool ScheduleDAGMI::checkSchedLimit() {
752 #ifndef NDEBUG
753   if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
754     CurrentTop = CurrentBottom;
755     return false;
756   }
757   ++NumInstrsScheduled;
758 #endif
759   return true;
760 }
761 
762 /// Per-region scheduling driver, called back from
763 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that
764 /// does not consider liveness or register pressure. It is useful for PostRA
765 /// scheduling and potentially other custom schedulers.
766 void ScheduleDAGMI::schedule() {
767   LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
768   LLVM_DEBUG(SchedImpl->dumpPolicy());
769 
770   // Build the DAG.
771   buildSchedGraph(AA);
772 
773   postprocessDAG();
774 
775   SmallVector<SUnit*, 8> TopRoots, BotRoots;
776   findRootsAndBiasEdges(TopRoots, BotRoots);
777 
778   LLVM_DEBUG(dump());
779   if (PrintDAGs) dump();
780   if (ViewMISchedDAGs) viewGraph();
781 
782   // Initialize the strategy before modifying the DAG.
783   // This may initialize a DFSResult to be used for queue priority.
784   SchedImpl->initialize(this);
785 
786   // Initialize ready queues now that the DAG and priority data are finalized.
787   initQueues(TopRoots, BotRoots);
788 
789   bool IsTopNode = false;
790   while (true) {
791     LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
792     SUnit *SU = SchedImpl->pickNode(IsTopNode);
793     if (!SU) break;
794 
795     assert(!SU->isScheduled && "Node already scheduled");
796     if (!checkSchedLimit())
797       break;
798 
799     MachineInstr *MI = SU->getInstr();
800     if (IsTopNode) {
801       assert(SU->isTopReady() && "node still has unscheduled dependencies");
802       if (&*CurrentTop == MI)
803         CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
804       else
805         moveInstruction(MI, CurrentTop);
806     } else {
807       assert(SU->isBottomReady() && "node still has unscheduled dependencies");
808       MachineBasicBlock::iterator priorII =
809         priorNonDebug(CurrentBottom, CurrentTop);
810       if (&*priorII == MI)
811         CurrentBottom = priorII;
812       else {
813         if (&*CurrentTop == MI)
814           CurrentTop = nextIfDebug(++CurrentTop, priorII);
815         moveInstruction(MI, CurrentBottom);
816         CurrentBottom = MI;
817       }
818     }
819     // Notify the scheduling strategy before updating the DAG.
820     // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
821     // runs, it can then use the accurate ReadyCycle time to determine whether
822     // newly released nodes can move to the readyQ.
823     SchedImpl->schedNode(SU, IsTopNode);
824 
825     updateQueues(SU, IsTopNode);
826   }
827   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
828 
829   placeDebugValues();
830 
831   LLVM_DEBUG({
832     dbgs() << "*** Final schedule for "
833            << printMBBReference(*begin()->getParent()) << " ***\n";
834     dumpSchedule();
835     dbgs() << '\n';
836   });
837 }
838 
839 /// Apply each ScheduleDAGMutation step in order.
840 void ScheduleDAGMI::postprocessDAG() {
841   for (auto &m : Mutations)
842     m->apply(this);
843 }
844 
845 void ScheduleDAGMI::
846 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
847                       SmallVectorImpl<SUnit*> &BotRoots) {
848   for (SUnit &SU : SUnits) {
849     assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits");
850 
851     // Order predecessors so DFSResult follows the critical path.
852     SU.biasCriticalPath();
853 
854     // A SUnit is ready to top schedule if it has no predecessors.
855     if (!SU.NumPredsLeft)
856       TopRoots.push_back(&SU);
857     // A SUnit is ready to bottom schedule if it has no successors.
858     if (!SU.NumSuccsLeft)
859       BotRoots.push_back(&SU);
860   }
861   ExitSU.biasCriticalPath();
862 }
863 
864 /// Identify DAG roots and setup scheduler queues.
865 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
866                                ArrayRef<SUnit*> BotRoots) {
867   NextClusterSucc = nullptr;
868   NextClusterPred = nullptr;
869 
870   // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
871   //
872   // Nodes with unreleased weak edges can still be roots.
873   // Release top roots in forward order.
874   for (SUnit *SU : TopRoots)
875     SchedImpl->releaseTopNode(SU);
876 
877   // Release bottom roots in reverse order so the higher priority nodes appear
878   // first. This is more natural and slightly more efficient.
879   for (SmallVectorImpl<SUnit*>::const_reverse_iterator
880          I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
881     SchedImpl->releaseBottomNode(*I);
882   }
883 
884   releaseSuccessors(&EntrySU);
885   releasePredecessors(&ExitSU);
886 
887   SchedImpl->registerRoots();
888 
889   // Advance past initial DebugValues.
890   CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
891   CurrentBottom = RegionEnd;
892 }
893 
894 /// Update scheduler queues after scheduling an instruction.
895 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
896   // Release dependent instructions for scheduling.
897   if (IsTopNode)
898     releaseSuccessors(SU);
899   else
900     releasePredecessors(SU);
901 
902   SU->isScheduled = true;
903 }
904 
905 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
906 void ScheduleDAGMI::placeDebugValues() {
907   // If first instruction was a DBG_VALUE then put it back.
908   if (FirstDbgValue) {
909     BB->splice(RegionBegin, BB, FirstDbgValue);
910     RegionBegin = FirstDbgValue;
911   }
912 
913   for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator
914          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
915     std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
916     MachineInstr *DbgValue = P.first;
917     MachineBasicBlock::iterator OrigPrevMI = P.second;
918     if (&*RegionBegin == DbgValue)
919       ++RegionBegin;
920     BB->splice(++OrigPrevMI, BB, DbgValue);
921     if (OrigPrevMI == std::prev(RegionEnd))
922       RegionEnd = DbgValue;
923   }
924   DbgValues.clear();
925   FirstDbgValue = nullptr;
926 }
927 
928 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
929 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const {
930   for (MachineInstr &MI : *this) {
931     if (SUnit *SU = getSUnit(&MI))
932       dumpNode(*SU);
933     else
934       dbgs() << "Missing SUnit\n";
935   }
936 }
937 #endif
938 
939 //===----------------------------------------------------------------------===//
940 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
941 // preservation.
942 //===----------------------------------------------------------------------===//
943 
944 ScheduleDAGMILive::~ScheduleDAGMILive() {
945   delete DFSResult;
946 }
947 
948 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) {
949   const MachineInstr &MI = *SU.getInstr();
950   for (const MachineOperand &MO : MI.operands()) {
951     if (!MO.isReg())
952       continue;
953     if (!MO.readsReg())
954       continue;
955     if (TrackLaneMasks && !MO.isUse())
956       continue;
957 
958     Register Reg = MO.getReg();
959     if (!Register::isVirtualRegister(Reg))
960       continue;
961 
962     // Ignore re-defs.
963     if (TrackLaneMasks) {
964       bool FoundDef = false;
965       for (const MachineOperand &MO2 : MI.operands()) {
966         if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) {
967           FoundDef = true;
968           break;
969         }
970       }
971       if (FoundDef)
972         continue;
973     }
974 
975     // Record this local VReg use.
976     VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
977     for (; UI != VRegUses.end(); ++UI) {
978       if (UI->SU == &SU)
979         break;
980     }
981     if (UI == VRegUses.end())
982       VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU));
983   }
984 }
985 
986 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
987 /// crossing a scheduling boundary. [begin, end) includes all instructions in
988 /// the region, including the boundary itself and single-instruction regions
989 /// that don't get scheduled.
990 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
991                                 MachineBasicBlock::iterator begin,
992                                 MachineBasicBlock::iterator end,
993                                 unsigned regioninstrs)
994 {
995   // ScheduleDAGMI initializes SchedImpl's per-region policy.
996   ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
997 
998   // For convenience remember the end of the liveness region.
999   LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
1000 
1001   SUPressureDiffs.clear();
1002 
1003   ShouldTrackPressure = SchedImpl->shouldTrackPressure();
1004   ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks();
1005 
1006   assert((!ShouldTrackLaneMasks || ShouldTrackPressure) &&
1007          "ShouldTrackLaneMasks requires ShouldTrackPressure");
1008 }
1009 
1010 // Setup the register pressure trackers for the top scheduled and bottom
1011 // scheduled regions.
1012 void ScheduleDAGMILive::initRegPressure() {
1013   VRegUses.clear();
1014   VRegUses.setUniverse(MRI.getNumVirtRegs());
1015   for (SUnit &SU : SUnits)
1016     collectVRegUses(SU);
1017 
1018   TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin,
1019                     ShouldTrackLaneMasks, false);
1020   BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1021                     ShouldTrackLaneMasks, false);
1022 
1023   // Close the RPTracker to finalize live ins.
1024   RPTracker.closeRegion();
1025 
1026   LLVM_DEBUG(RPTracker.dump());
1027 
1028   // Initialize the live ins and live outs.
1029   TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
1030   BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
1031 
1032   // Close one end of the tracker so we can call
1033   // getMaxUpward/DownwardPressureDelta before advancing across any
1034   // instructions. This converts currently live regs into live ins/outs.
1035   TopRPTracker.closeTop();
1036   BotRPTracker.closeBottom();
1037 
1038   BotRPTracker.initLiveThru(RPTracker);
1039   if (!BotRPTracker.getLiveThru().empty()) {
1040     TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
1041     LLVM_DEBUG(dbgs() << "Live Thru: ";
1042                dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
1043   };
1044 
1045   // For each live out vreg reduce the pressure change associated with other
1046   // uses of the same vreg below the live-out reaching def.
1047   updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
1048 
1049   // Account for liveness generated by the region boundary.
1050   if (LiveRegionEnd != RegionEnd) {
1051     SmallVector<RegisterMaskPair, 8> LiveUses;
1052     BotRPTracker.recede(&LiveUses);
1053     updatePressureDiffs(LiveUses);
1054   }
1055 
1056   LLVM_DEBUG(dbgs() << "Top Pressure:\n";
1057              dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
1058              dbgs() << "Bottom Pressure:\n";
1059              dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI););
1060 
1061   assert((BotRPTracker.getPos() == RegionEnd ||
1062           (RegionEnd->isDebugInstr() &&
1063            BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) &&
1064          "Can't find the region bottom");
1065 
1066   // Cache the list of excess pressure sets in this region. This will also track
1067   // the max pressure in the scheduled code for these sets.
1068   RegionCriticalPSets.clear();
1069   const std::vector<unsigned> &RegionPressure =
1070     RPTracker.getPressure().MaxSetPressure;
1071   for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
1072     unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
1073     if (RegionPressure[i] > Limit) {
1074       LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit
1075                         << " Actual " << RegionPressure[i] << "\n");
1076       RegionCriticalPSets.push_back(PressureChange(i));
1077     }
1078   }
1079   LLVM_DEBUG(dbgs() << "Excess PSets: ";
1080              for (const PressureChange &RCPS
1081                   : RegionCriticalPSets) dbgs()
1082              << TRI->getRegPressureSetName(RCPS.getPSet()) << " ";
1083              dbgs() << "\n");
1084 }
1085 
1086 void ScheduleDAGMILive::
1087 updateScheduledPressure(const SUnit *SU,
1088                         const std::vector<unsigned> &NewMaxPressure) {
1089   const PressureDiff &PDiff = getPressureDiff(SU);
1090   unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
1091   for (const PressureChange &PC : PDiff) {
1092     if (!PC.isValid())
1093       break;
1094     unsigned ID = PC.getPSet();
1095     while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
1096       ++CritIdx;
1097     if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
1098       if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
1099           && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max())
1100         RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
1101     }
1102     unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
1103     if (NewMaxPressure[ID] >= Limit - 2) {
1104       LLVM_DEBUG(dbgs() << "  " << TRI->getRegPressureSetName(ID) << ": "
1105                         << NewMaxPressure[ID]
1106                         << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ")
1107                         << Limit << "(+ " << BotRPTracker.getLiveThru()[ID]
1108                         << " livethru)\n");
1109     }
1110   }
1111 }
1112 
1113 /// Update the PressureDiff array for liveness after scheduling this
1114 /// instruction.
1115 void ScheduleDAGMILive::updatePressureDiffs(
1116     ArrayRef<RegisterMaskPair> LiveUses) {
1117   for (const RegisterMaskPair &P : LiveUses) {
1118     Register Reg = P.RegUnit;
1119     /// FIXME: Currently assuming single-use physregs.
1120     if (!Register::isVirtualRegister(Reg))
1121       continue;
1122 
1123     if (ShouldTrackLaneMasks) {
1124       // If the register has just become live then other uses won't change
1125       // this fact anymore => decrement pressure.
1126       // If the register has just become dead then other uses make it come
1127       // back to life => increment pressure.
1128       bool Decrement = P.LaneMask.any();
1129 
1130       for (const VReg2SUnit &V2SU
1131            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1132         SUnit &SU = *V2SU.SU;
1133         if (SU.isScheduled || &SU == &ExitSU)
1134           continue;
1135 
1136         PressureDiff &PDiff = getPressureDiff(&SU);
1137         PDiff.addPressureChange(Reg, Decrement, &MRI);
1138         LLVM_DEBUG(dbgs() << "  UpdateRegP: SU(" << SU.NodeNum << ") "
1139                           << printReg(Reg, TRI) << ':'
1140                           << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr();
1141                    dbgs() << "              to "; PDiff.dump(*TRI););
1142       }
1143     } else {
1144       assert(P.LaneMask.any());
1145       LLVM_DEBUG(dbgs() << "  LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n");
1146       // This may be called before CurrentBottom has been initialized. However,
1147       // BotRPTracker must have a valid position. We want the value live into the
1148       // instruction or live out of the block, so ask for the previous
1149       // instruction's live-out.
1150       const LiveInterval &LI = LIS->getInterval(Reg);
1151       VNInfo *VNI;
1152       MachineBasicBlock::const_iterator I =
1153         nextIfDebug(BotRPTracker.getPos(), BB->end());
1154       if (I == BB->end())
1155         VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1156       else {
1157         LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I));
1158         VNI = LRQ.valueIn();
1159       }
1160       // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
1161       assert(VNI && "No live value at use.");
1162       for (const VReg2SUnit &V2SU
1163            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1164         SUnit *SU = V2SU.SU;
1165         // If this use comes before the reaching def, it cannot be a last use,
1166         // so decrease its pressure change.
1167         if (!SU->isScheduled && SU != &ExitSU) {
1168           LiveQueryResult LRQ =
1169               LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1170           if (LRQ.valueIn() == VNI) {
1171             PressureDiff &PDiff = getPressureDiff(SU);
1172             PDiff.addPressureChange(Reg, true, &MRI);
1173             LLVM_DEBUG(dbgs() << "  UpdateRegP: SU(" << SU->NodeNum << ") "
1174                               << *SU->getInstr();
1175                        dbgs() << "              to "; PDiff.dump(*TRI););
1176           }
1177         }
1178       }
1179     }
1180   }
1181 }
1182 
1183 void ScheduleDAGMILive::dump() const {
1184 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1185   if (EntrySU.getInstr() != nullptr)
1186     dumpNodeAll(EntrySU);
1187   for (const SUnit &SU : SUnits) {
1188     dumpNodeAll(SU);
1189     if (ShouldTrackPressure) {
1190       dbgs() << "  Pressure Diff      : ";
1191       getPressureDiff(&SU).dump(*TRI);
1192     }
1193     dbgs() << "  Single Issue       : ";
1194     if (SchedModel.mustBeginGroup(SU.getInstr()) &&
1195         SchedModel.mustEndGroup(SU.getInstr()))
1196       dbgs() << "true;";
1197     else
1198       dbgs() << "false;";
1199     dbgs() << '\n';
1200   }
1201   if (ExitSU.getInstr() != nullptr)
1202     dumpNodeAll(ExitSU);
1203 #endif
1204 }
1205 
1206 /// schedule - Called back from MachineScheduler::runOnMachineFunction
1207 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
1208 /// only includes instructions that have DAG nodes, not scheduling boundaries.
1209 ///
1210 /// This is a skeletal driver, with all the functionality pushed into helpers,
1211 /// so that it can be easily extended by experimental schedulers. Generally,
1212 /// implementing MachineSchedStrategy should be sufficient to implement a new
1213 /// scheduling algorithm. However, if a scheduler further subclasses
1214 /// ScheduleDAGMILive then it will want to override this virtual method in order
1215 /// to update any specialized state.
1216 void ScheduleDAGMILive::schedule() {
1217   LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
1218   LLVM_DEBUG(SchedImpl->dumpPolicy());
1219   buildDAGWithRegPressure();
1220 
1221   postprocessDAG();
1222 
1223   SmallVector<SUnit*, 8> TopRoots, BotRoots;
1224   findRootsAndBiasEdges(TopRoots, BotRoots);
1225 
1226   // Initialize the strategy before modifying the DAG.
1227   // This may initialize a DFSResult to be used for queue priority.
1228   SchedImpl->initialize(this);
1229 
1230   LLVM_DEBUG(dump());
1231   if (PrintDAGs) dump();
1232   if (ViewMISchedDAGs) viewGraph();
1233 
1234   // Initialize ready queues now that the DAG and priority data are finalized.
1235   initQueues(TopRoots, BotRoots);
1236 
1237   bool IsTopNode = false;
1238   while (true) {
1239     LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
1240     SUnit *SU = SchedImpl->pickNode(IsTopNode);
1241     if (!SU) break;
1242 
1243     assert(!SU->isScheduled && "Node already scheduled");
1244     if (!checkSchedLimit())
1245       break;
1246 
1247     scheduleMI(SU, IsTopNode);
1248 
1249     if (DFSResult) {
1250       unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1251       if (!ScheduledTrees.test(SubtreeID)) {
1252         ScheduledTrees.set(SubtreeID);
1253         DFSResult->scheduleTree(SubtreeID);
1254         SchedImpl->scheduleTree(SubtreeID);
1255       }
1256     }
1257 
1258     // Notify the scheduling strategy after updating the DAG.
1259     SchedImpl->schedNode(SU, IsTopNode);
1260 
1261     updateQueues(SU, IsTopNode);
1262   }
1263   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1264 
1265   placeDebugValues();
1266 
1267   LLVM_DEBUG({
1268     dbgs() << "*** Final schedule for "
1269            << printMBBReference(*begin()->getParent()) << " ***\n";
1270     dumpSchedule();
1271     dbgs() << '\n';
1272   });
1273 }
1274 
1275 /// Build the DAG and setup three register pressure trackers.
1276 void ScheduleDAGMILive::buildDAGWithRegPressure() {
1277   if (!ShouldTrackPressure) {
1278     RPTracker.reset();
1279     RegionCriticalPSets.clear();
1280     buildSchedGraph(AA);
1281     return;
1282   }
1283 
1284   // Initialize the register pressure tracker used by buildSchedGraph.
1285   RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1286                  ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true);
1287 
1288   // Account for liveness generate by the region boundary.
1289   if (LiveRegionEnd != RegionEnd)
1290     RPTracker.recede();
1291 
1292   // Build the DAG, and compute current register pressure.
1293   buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks);
1294 
1295   // Initialize top/bottom trackers after computing region pressure.
1296   initRegPressure();
1297 }
1298 
1299 void ScheduleDAGMILive::computeDFSResult() {
1300   if (!DFSResult)
1301     DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1302   DFSResult->clear();
1303   ScheduledTrees.clear();
1304   DFSResult->resize(SUnits.size());
1305   DFSResult->compute(SUnits);
1306   ScheduledTrees.resize(DFSResult->getNumSubtrees());
1307 }
1308 
1309 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
1310 /// only provides the critical path for single block loops. To handle loops that
1311 /// span blocks, we could use the vreg path latencies provided by
1312 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1313 /// available for use in the scheduler.
1314 ///
1315 /// The cyclic path estimation identifies a def-use pair that crosses the back
1316 /// edge and considers the depth and height of the nodes. For example, consider
1317 /// the following instruction sequence where each instruction has unit latency
1318 /// and defines an eponymous virtual register:
1319 ///
1320 /// a->b(a,c)->c(b)->d(c)->exit
1321 ///
1322 /// The cyclic critical path is a two cycles: b->c->b
1323 /// The acyclic critical path is four cycles: a->b->c->d->exit
1324 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
1325 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1326 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1327 /// LiveInDepth = depth(b) = len(a->b) = 1
1328 ///
1329 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1330 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1331 /// CyclicCriticalPath = min(2, 2) = 2
1332 ///
1333 /// This could be relevant to PostRA scheduling, but is currently implemented
1334 /// assuming LiveIntervals.
1335 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1336   // This only applies to single block loop.
1337   if (!BB->isSuccessor(BB))
1338     return 0;
1339 
1340   unsigned MaxCyclicLatency = 0;
1341   // Visit each live out vreg def to find def/use pairs that cross iterations.
1342   for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) {
1343     Register Reg = P.RegUnit;
1344     if (!Register::isVirtualRegister(Reg))
1345       continue;
1346     const LiveInterval &LI = LIS->getInterval(Reg);
1347     const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1348     if (!DefVNI)
1349       continue;
1350 
1351     MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1352     const SUnit *DefSU = getSUnit(DefMI);
1353     if (!DefSU)
1354       continue;
1355 
1356     unsigned LiveOutHeight = DefSU->getHeight();
1357     unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1358     // Visit all local users of the vreg def.
1359     for (const VReg2SUnit &V2SU
1360          : make_range(VRegUses.find(Reg), VRegUses.end())) {
1361       SUnit *SU = V2SU.SU;
1362       if (SU == &ExitSU)
1363         continue;
1364 
1365       // Only consider uses of the phi.
1366       LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1367       if (!LRQ.valueIn()->isPHIDef())
1368         continue;
1369 
1370       // Assume that a path spanning two iterations is a cycle, which could
1371       // overestimate in strange cases. This allows cyclic latency to be
1372       // estimated as the minimum slack of the vreg's depth or height.
1373       unsigned CyclicLatency = 0;
1374       if (LiveOutDepth > SU->getDepth())
1375         CyclicLatency = LiveOutDepth - SU->getDepth();
1376 
1377       unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
1378       if (LiveInHeight > LiveOutHeight) {
1379         if (LiveInHeight - LiveOutHeight < CyclicLatency)
1380           CyclicLatency = LiveInHeight - LiveOutHeight;
1381       } else
1382         CyclicLatency = 0;
1383 
1384       LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1385                         << SU->NodeNum << ") = " << CyclicLatency << "c\n");
1386       if (CyclicLatency > MaxCyclicLatency)
1387         MaxCyclicLatency = CyclicLatency;
1388     }
1389   }
1390   LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1391   return MaxCyclicLatency;
1392 }
1393 
1394 /// Release ExitSU predecessors and setup scheduler queues. Re-position
1395 /// the Top RP tracker in case the region beginning has changed.
1396 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots,
1397                                    ArrayRef<SUnit*> BotRoots) {
1398   ScheduleDAGMI::initQueues(TopRoots, BotRoots);
1399   if (ShouldTrackPressure) {
1400     assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1401     TopRPTracker.setPos(CurrentTop);
1402   }
1403 }
1404 
1405 /// Move an instruction and update register pressure.
1406 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1407   // Move the instruction to its new location in the instruction stream.
1408   MachineInstr *MI = SU->getInstr();
1409 
1410   if (IsTopNode) {
1411     assert(SU->isTopReady() && "node still has unscheduled dependencies");
1412     if (&*CurrentTop == MI)
1413       CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1414     else {
1415       moveInstruction(MI, CurrentTop);
1416       TopRPTracker.setPos(MI);
1417     }
1418 
1419     if (ShouldTrackPressure) {
1420       // Update top scheduled pressure.
1421       RegisterOperands RegOpers;
1422       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1423       if (ShouldTrackLaneMasks) {
1424         // Adjust liveness and add missing dead+read-undef flags.
1425         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1426         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1427       } else {
1428         // Adjust for missing dead-def flags.
1429         RegOpers.detectDeadDefs(*MI, *LIS);
1430       }
1431 
1432       TopRPTracker.advance(RegOpers);
1433       assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1434       LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure(
1435                      TopRPTracker.getRegSetPressureAtPos(), TRI););
1436 
1437       updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1438     }
1439   } else {
1440     assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1441     MachineBasicBlock::iterator priorII =
1442       priorNonDebug(CurrentBottom, CurrentTop);
1443     if (&*priorII == MI)
1444       CurrentBottom = priorII;
1445     else {
1446       if (&*CurrentTop == MI) {
1447         CurrentTop = nextIfDebug(++CurrentTop, priorII);
1448         TopRPTracker.setPos(CurrentTop);
1449       }
1450       moveInstruction(MI, CurrentBottom);
1451       CurrentBottom = MI;
1452       BotRPTracker.setPos(CurrentBottom);
1453     }
1454     if (ShouldTrackPressure) {
1455       RegisterOperands RegOpers;
1456       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1457       if (ShouldTrackLaneMasks) {
1458         // Adjust liveness and add missing dead+read-undef flags.
1459         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1460         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1461       } else {
1462         // Adjust for missing dead-def flags.
1463         RegOpers.detectDeadDefs(*MI, *LIS);
1464       }
1465 
1466       if (BotRPTracker.getPos() != CurrentBottom)
1467         BotRPTracker.recedeSkipDebugValues();
1468       SmallVector<RegisterMaskPair, 8> LiveUses;
1469       BotRPTracker.recede(RegOpers, &LiveUses);
1470       assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1471       LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure(
1472                      BotRPTracker.getRegSetPressureAtPos(), TRI););
1473 
1474       updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1475       updatePressureDiffs(LiveUses);
1476     }
1477   }
1478 }
1479 
1480 //===----------------------------------------------------------------------===//
1481 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores.
1482 //===----------------------------------------------------------------------===//
1483 
1484 namespace {
1485 
1486 /// Post-process the DAG to create cluster edges between neighboring
1487 /// loads or between neighboring stores.
1488 class BaseMemOpClusterMutation : public ScheduleDAGMutation {
1489   struct MemOpInfo {
1490     SUnit *SU;
1491     SmallVector<const MachineOperand *, 4> BaseOps;
1492     int64_t Offset;
1493     unsigned Width;
1494 
1495     MemOpInfo(SUnit *SU, ArrayRef<const MachineOperand *> BaseOps,
1496               int64_t Offset, unsigned Width)
1497         : SU(SU), BaseOps(BaseOps.begin(), BaseOps.end()), Offset(Offset),
1498           Width(Width) {}
1499 
1500     static bool Compare(const MachineOperand *const &A,
1501                         const MachineOperand *const &B) {
1502       if (A->getType() != B->getType())
1503         return A->getType() < B->getType();
1504       if (A->isReg())
1505         return A->getReg() < B->getReg();
1506       if (A->isFI()) {
1507         const MachineFunction &MF = *A->getParent()->getParent()->getParent();
1508         const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering();
1509         bool StackGrowsDown = TFI.getStackGrowthDirection() ==
1510                               TargetFrameLowering::StackGrowsDown;
1511         return StackGrowsDown ? A->getIndex() > B->getIndex()
1512                               : A->getIndex() < B->getIndex();
1513       }
1514 
1515       llvm_unreachable("MemOpClusterMutation only supports register or frame "
1516                        "index bases.");
1517     }
1518 
1519     bool operator<(const MemOpInfo &RHS) const {
1520       // FIXME: Don't compare everything twice. Maybe use C++20 three way
1521       // comparison instead when it's available.
1522       if (std::lexicographical_compare(BaseOps.begin(), BaseOps.end(),
1523                                        RHS.BaseOps.begin(), RHS.BaseOps.end(),
1524                                        Compare))
1525         return true;
1526       if (std::lexicographical_compare(RHS.BaseOps.begin(), RHS.BaseOps.end(),
1527                                        BaseOps.begin(), BaseOps.end(), Compare))
1528         return false;
1529       if (Offset != RHS.Offset)
1530         return Offset < RHS.Offset;
1531       return SU->NodeNum < RHS.SU->NodeNum;
1532     }
1533   };
1534 
1535   const TargetInstrInfo *TII;
1536   const TargetRegisterInfo *TRI;
1537   bool IsLoad;
1538 
1539 public:
1540   BaseMemOpClusterMutation(const TargetInstrInfo *tii,
1541                            const TargetRegisterInfo *tri, bool IsLoad)
1542       : TII(tii), TRI(tri), IsLoad(IsLoad) {}
1543 
1544   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1545 
1546 protected:
1547   void clusterNeighboringMemOps(ArrayRef<MemOpInfo> MemOps, bool FastCluster,
1548                                 ScheduleDAGInstrs *DAG);
1549   void collectMemOpRecords(std::vector<SUnit> &SUnits,
1550                            SmallVectorImpl<MemOpInfo> &MemOpRecords);
1551   bool groupMemOps(ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG,
1552                    DenseMap<unsigned, SmallVector<MemOpInfo, 32>> &Groups);
1553 };
1554 
1555 class StoreClusterMutation : public BaseMemOpClusterMutation {
1556 public:
1557   StoreClusterMutation(const TargetInstrInfo *tii,
1558                        const TargetRegisterInfo *tri)
1559       : BaseMemOpClusterMutation(tii, tri, false) {}
1560 };
1561 
1562 class LoadClusterMutation : public BaseMemOpClusterMutation {
1563 public:
1564   LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri)
1565       : BaseMemOpClusterMutation(tii, tri, true) {}
1566 };
1567 
1568 } // end anonymous namespace
1569 
1570 namespace llvm {
1571 
1572 std::unique_ptr<ScheduleDAGMutation>
1573 createLoadClusterDAGMutation(const TargetInstrInfo *TII,
1574                              const TargetRegisterInfo *TRI) {
1575   return EnableMemOpCluster ? std::make_unique<LoadClusterMutation>(TII, TRI)
1576                             : nullptr;
1577 }
1578 
1579 std::unique_ptr<ScheduleDAGMutation>
1580 createStoreClusterDAGMutation(const TargetInstrInfo *TII,
1581                               const TargetRegisterInfo *TRI) {
1582   return EnableMemOpCluster ? std::make_unique<StoreClusterMutation>(TII, TRI)
1583                             : nullptr;
1584 }
1585 
1586 } // end namespace llvm
1587 
1588 // Sorting all the loads/stores first, then for each load/store, checking the
1589 // following load/store one by one, until reach the first non-dependent one and
1590 // call target hook to see if they can cluster.
1591 // If FastCluster is enabled, we assume that, all the loads/stores have been
1592 // preprocessed and now, they didn't have dependencies on each other.
1593 void BaseMemOpClusterMutation::clusterNeighboringMemOps(
1594     ArrayRef<MemOpInfo> MemOpRecords, bool FastCluster,
1595     ScheduleDAGInstrs *DAG) {
1596   // Keep track of the current cluster length and bytes for each SUnit.
1597   DenseMap<unsigned, std::pair<unsigned, unsigned>> SUnit2ClusterInfo;
1598 
1599   // At this point, `MemOpRecords` array must hold atleast two mem ops. Try to
1600   // cluster mem ops collected within `MemOpRecords` array.
1601   for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) {
1602     // Decision to cluster mem ops is taken based on target dependent logic
1603     auto MemOpa = MemOpRecords[Idx];
1604 
1605     // Seek for the next load/store to do the cluster.
1606     unsigned NextIdx = Idx + 1;
1607     for (; NextIdx < End; ++NextIdx)
1608       // Skip if MemOpb has been clustered already or has dependency with
1609       // MemOpa.
1610       if (!SUnit2ClusterInfo.count(MemOpRecords[NextIdx].SU->NodeNum) &&
1611           (FastCluster ||
1612            (!DAG->IsReachable(MemOpRecords[NextIdx].SU, MemOpa.SU) &&
1613             !DAG->IsReachable(MemOpa.SU, MemOpRecords[NextIdx].SU))))
1614         break;
1615     if (NextIdx == End)
1616       continue;
1617 
1618     auto MemOpb = MemOpRecords[NextIdx];
1619     unsigned ClusterLength = 2;
1620     unsigned CurrentClusterBytes = MemOpa.Width + MemOpb.Width;
1621     if (SUnit2ClusterInfo.count(MemOpa.SU->NodeNum)) {
1622       ClusterLength = SUnit2ClusterInfo[MemOpa.SU->NodeNum].first + 1;
1623       CurrentClusterBytes =
1624           SUnit2ClusterInfo[MemOpa.SU->NodeNum].second + MemOpb.Width;
1625     }
1626 
1627     if (!TII->shouldClusterMemOps(MemOpa.BaseOps, MemOpb.BaseOps, ClusterLength,
1628                                   CurrentClusterBytes))
1629       continue;
1630 
1631     SUnit *SUa = MemOpa.SU;
1632     SUnit *SUb = MemOpb.SU;
1633     if (SUa->NodeNum > SUb->NodeNum)
1634       std::swap(SUa, SUb);
1635 
1636     // FIXME: Is this check really required?
1637     if (!DAG->addEdge(SUb, SDep(SUa, SDep::Cluster)))
1638       continue;
1639 
1640     LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU("
1641                       << SUb->NodeNum << ")\n");
1642     ++NumClustered;
1643 
1644     if (IsLoad) {
1645       // Copy successor edges from SUa to SUb. Interleaving computation
1646       // dependent on SUa can prevent load combining due to register reuse.
1647       // Predecessor edges do not need to be copied from SUb to SUa since
1648       // nearby loads should have effectively the same inputs.
1649       for (const SDep &Succ : SUa->Succs) {
1650         if (Succ.getSUnit() == SUb)
1651           continue;
1652         LLVM_DEBUG(dbgs() << "  Copy Succ SU(" << Succ.getSUnit()->NodeNum
1653                           << ")\n");
1654         DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial));
1655       }
1656     } else {
1657       // Copy predecessor edges from SUb to SUa to avoid the SUnits that
1658       // SUb dependent on scheduled in-between SUb and SUa. Successor edges
1659       // do not need to be copied from SUa to SUb since no one will depend
1660       // on stores.
1661       // Notice that, we don't need to care about the memory dependency as
1662       // we won't try to cluster them if they have any memory dependency.
1663       for (const SDep &Pred : SUb->Preds) {
1664         if (Pred.getSUnit() == SUa)
1665           continue;
1666         LLVM_DEBUG(dbgs() << "  Copy Pred SU(" << Pred.getSUnit()->NodeNum
1667                           << ")\n");
1668         DAG->addEdge(SUa, SDep(Pred.getSUnit(), SDep::Artificial));
1669       }
1670     }
1671 
1672     SUnit2ClusterInfo[MemOpb.SU->NodeNum] = {ClusterLength,
1673                                              CurrentClusterBytes};
1674 
1675     LLVM_DEBUG(dbgs() << "  Curr cluster length: " << ClusterLength
1676                       << ", Curr cluster bytes: " << CurrentClusterBytes
1677                       << "\n");
1678   }
1679 }
1680 
1681 void BaseMemOpClusterMutation::collectMemOpRecords(
1682     std::vector<SUnit> &SUnits, SmallVectorImpl<MemOpInfo> &MemOpRecords) {
1683   for (auto &SU : SUnits) {
1684     if ((IsLoad && !SU.getInstr()->mayLoad()) ||
1685         (!IsLoad && !SU.getInstr()->mayStore()))
1686       continue;
1687 
1688     const MachineInstr &MI = *SU.getInstr();
1689     SmallVector<const MachineOperand *, 4> BaseOps;
1690     int64_t Offset;
1691     bool OffsetIsScalable;
1692     unsigned Width;
1693     if (TII->getMemOperandsWithOffsetWidth(MI, BaseOps, Offset,
1694                                            OffsetIsScalable, Width, TRI)) {
1695       MemOpRecords.push_back(MemOpInfo(&SU, BaseOps, Offset, Width));
1696 
1697       LLVM_DEBUG(dbgs() << "Num BaseOps: " << BaseOps.size() << ", Offset: "
1698                         << Offset << ", OffsetIsScalable: " << OffsetIsScalable
1699                         << ", Width: " << Width << "\n");
1700     }
1701 #ifndef NDEBUG
1702     for (auto *Op : BaseOps)
1703       assert(Op);
1704 #endif
1705   }
1706 }
1707 
1708 bool BaseMemOpClusterMutation::groupMemOps(
1709     ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG,
1710     DenseMap<unsigned, SmallVector<MemOpInfo, 32>> &Groups) {
1711   bool FastCluster =
1712       ForceFastCluster ||
1713       MemOps.size() * DAG->SUnits.size() / 1000 > FastClusterThreshold;
1714 
1715   for (const auto &MemOp : MemOps) {
1716     unsigned ChainPredID = DAG->SUnits.size();
1717     if (FastCluster) {
1718       for (const SDep &Pred : MemOp.SU->Preds) {
1719         // We only want to cluster the mem ops that have the same ctrl(non-data)
1720         // pred so that they didn't have ctrl dependency for each other. But for
1721         // store instrs, we can still cluster them if the pred is load instr.
1722         if ((Pred.isCtrl() &&
1723              (IsLoad ||
1724               (Pred.getSUnit() && Pred.getSUnit()->getInstr()->mayStore()))) &&
1725             !Pred.isArtificial()) {
1726           ChainPredID = Pred.getSUnit()->NodeNum;
1727           break;
1728         }
1729       }
1730     } else
1731       ChainPredID = 0;
1732 
1733     Groups[ChainPredID].push_back(MemOp);
1734   }
1735   return FastCluster;
1736 }
1737 
1738 /// Callback from DAG postProcessing to create cluster edges for loads/stores.
1739 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAG) {
1740   // Collect all the clusterable loads/stores
1741   SmallVector<MemOpInfo, 32> MemOpRecords;
1742   collectMemOpRecords(DAG->SUnits, MemOpRecords);
1743 
1744   if (MemOpRecords.size() < 2)
1745     return;
1746 
1747   // Put the loads/stores without dependency into the same group with some
1748   // heuristic if the DAG is too complex to avoid compiling time blow up.
1749   // Notice that, some fusion pair could be lost with this.
1750   DenseMap<unsigned, SmallVector<MemOpInfo, 32>> Groups;
1751   bool FastCluster = groupMemOps(MemOpRecords, DAG, Groups);
1752 
1753   for (auto &Group : Groups) {
1754     // Sorting the loads/stores, so that, we can stop the cluster as early as
1755     // possible.
1756     llvm::sort(Group.second);
1757 
1758     // Trying to cluster all the neighboring loads/stores.
1759     clusterNeighboringMemOps(Group.second, FastCluster, DAG);
1760   }
1761 }
1762 
1763 //===----------------------------------------------------------------------===//
1764 // CopyConstrain - DAG post-processing to encourage copy elimination.
1765 //===----------------------------------------------------------------------===//
1766 
1767 namespace {
1768 
1769 /// Post-process the DAG to create weak edges from all uses of a copy to
1770 /// the one use that defines the copy's source vreg, most likely an induction
1771 /// variable increment.
1772 class CopyConstrain : public ScheduleDAGMutation {
1773   // Transient state.
1774   SlotIndex RegionBeginIdx;
1775 
1776   // RegionEndIdx is the slot index of the last non-debug instruction in the
1777   // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1778   SlotIndex RegionEndIdx;
1779 
1780 public:
1781   CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1782 
1783   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1784 
1785 protected:
1786   void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
1787 };
1788 
1789 } // end anonymous namespace
1790 
1791 namespace llvm {
1792 
1793 std::unique_ptr<ScheduleDAGMutation>
1794 createCopyConstrainDAGMutation(const TargetInstrInfo *TII,
1795                                const TargetRegisterInfo *TRI) {
1796   return std::make_unique<CopyConstrain>(TII, TRI);
1797 }
1798 
1799 } // end namespace llvm
1800 
1801 /// constrainLocalCopy handles two possibilities:
1802 /// 1) Local src:
1803 /// I0:     = dst
1804 /// I1: src = ...
1805 /// I2:     = dst
1806 /// I3: dst = src (copy)
1807 /// (create pred->succ edges I0->I1, I2->I1)
1808 ///
1809 /// 2) Local copy:
1810 /// I0: dst = src (copy)
1811 /// I1:     = dst
1812 /// I2: src = ...
1813 /// I3:     = dst
1814 /// (create pred->succ edges I1->I2, I3->I2)
1815 ///
1816 /// Although the MachineScheduler is currently constrained to single blocks,
1817 /// this algorithm should handle extended blocks. An EBB is a set of
1818 /// contiguously numbered blocks such that the previous block in the EBB is
1819 /// always the single predecessor.
1820 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
1821   LiveIntervals *LIS = DAG->getLIS();
1822   MachineInstr *Copy = CopySU->getInstr();
1823 
1824   // Check for pure vreg copies.
1825   const MachineOperand &SrcOp = Copy->getOperand(1);
1826   Register SrcReg = SrcOp.getReg();
1827   if (!Register::isVirtualRegister(SrcReg) || !SrcOp.readsReg())
1828     return;
1829 
1830   const MachineOperand &DstOp = Copy->getOperand(0);
1831   Register DstReg = DstOp.getReg();
1832   if (!Register::isVirtualRegister(DstReg) || DstOp.isDead())
1833     return;
1834 
1835   // Check if either the dest or source is local. If it's live across a back
1836   // edge, it's not local. Note that if both vregs are live across the back
1837   // edge, we cannot successfully contrain the copy without cyclic scheduling.
1838   // If both the copy's source and dest are local live intervals, then we
1839   // should treat the dest as the global for the purpose of adding
1840   // constraints. This adds edges from source's other uses to the copy.
1841   unsigned LocalReg = SrcReg;
1842   unsigned GlobalReg = DstReg;
1843   LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
1844   if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
1845     LocalReg = DstReg;
1846     GlobalReg = SrcReg;
1847     LocalLI = &LIS->getInterval(LocalReg);
1848     if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
1849       return;
1850   }
1851   LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1852 
1853   // Find the global segment after the start of the local LI.
1854   LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1855   // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1856   // local live range. We could create edges from other global uses to the local
1857   // start, but the coalescer should have already eliminated these cases, so
1858   // don't bother dealing with it.
1859   if (GlobalSegment == GlobalLI->end())
1860     return;
1861 
1862   // If GlobalSegment is killed at the LocalLI->start, the call to find()
1863   // returned the next global segment. But if GlobalSegment overlaps with
1864   // LocalLI->start, then advance to the next segment. If a hole in GlobalLI
1865   // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1866   if (GlobalSegment->contains(LocalLI->beginIndex()))
1867     ++GlobalSegment;
1868 
1869   if (GlobalSegment == GlobalLI->end())
1870     return;
1871 
1872   // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1873   if (GlobalSegment != GlobalLI->begin()) {
1874     // Two address defs have no hole.
1875     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
1876                                GlobalSegment->start)) {
1877       return;
1878     }
1879     // If the prior global segment may be defined by the same two-address
1880     // instruction that also defines LocalLI, then can't make a hole here.
1881     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
1882                                LocalLI->beginIndex())) {
1883       return;
1884     }
1885     // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1886     // it would be a disconnected component in the live range.
1887     assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
1888            "Disconnected LRG within the scheduling region.");
1889   }
1890   MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1891   if (!GlobalDef)
1892     return;
1893 
1894   SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1895   if (!GlobalSU)
1896     return;
1897 
1898   // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1899   // constraining the uses of the last local def to precede GlobalDef.
1900   SmallVector<SUnit*,8> LocalUses;
1901   const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1902   MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1903   SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1904   for (const SDep &Succ : LastLocalSU->Succs) {
1905     if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg)
1906       continue;
1907     if (Succ.getSUnit() == GlobalSU)
1908       continue;
1909     if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit()))
1910       return;
1911     LocalUses.push_back(Succ.getSUnit());
1912   }
1913   // Open the top of the GlobalLI hole by constraining any earlier global uses
1914   // to precede the start of LocalLI.
1915   SmallVector<SUnit*,8> GlobalUses;
1916   MachineInstr *FirstLocalDef =
1917     LIS->getInstructionFromIndex(LocalLI->beginIndex());
1918   SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1919   for (const SDep &Pred : GlobalSU->Preds) {
1920     if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg)
1921       continue;
1922     if (Pred.getSUnit() == FirstLocalSU)
1923       continue;
1924     if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit()))
1925       return;
1926     GlobalUses.push_back(Pred.getSUnit());
1927   }
1928   LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1929   // Add the weak edges.
1930   for (SUnit *LU : LocalUses) {
1931     LLVM_DEBUG(dbgs() << "  Local use SU(" << LU->NodeNum << ") -> SU("
1932                       << GlobalSU->NodeNum << ")\n");
1933     DAG->addEdge(GlobalSU, SDep(LU, SDep::Weak));
1934   }
1935   for (SUnit *GU : GlobalUses) {
1936     LLVM_DEBUG(dbgs() << "  Global use SU(" << GU->NodeNum << ") -> SU("
1937                       << FirstLocalSU->NodeNum << ")\n");
1938     DAG->addEdge(FirstLocalSU, SDep(GU, SDep::Weak));
1939   }
1940 }
1941 
1942 /// Callback from DAG postProcessing to create weak edges to encourage
1943 /// copy elimination.
1944 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) {
1945   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1946   assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
1947 
1948   MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1949   if (FirstPos == DAG->end())
1950     return;
1951   RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos);
1952   RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1953       *priorNonDebug(DAG->end(), DAG->begin()));
1954 
1955   for (SUnit &SU : DAG->SUnits) {
1956     if (!SU.getInstr()->isCopy())
1957       continue;
1958 
1959     constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG));
1960   }
1961 }
1962 
1963 //===----------------------------------------------------------------------===//
1964 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
1965 // and possibly other custom schedulers.
1966 //===----------------------------------------------------------------------===//
1967 
1968 static const unsigned InvalidCycle = ~0U;
1969 
1970 SchedBoundary::~SchedBoundary() { delete HazardRec; }
1971 
1972 /// Given a Count of resource usage and a Latency value, return true if a
1973 /// SchedBoundary becomes resource limited.
1974 /// If we are checking after scheduling a node, we should return true when
1975 /// we just reach the resource limit.
1976 static bool checkResourceLimit(unsigned LFactor, unsigned Count,
1977                                unsigned Latency, bool AfterSchedNode) {
1978   int ResCntFactor = (int)(Count - (Latency * LFactor));
1979   if (AfterSchedNode)
1980     return ResCntFactor >= (int)LFactor;
1981   else
1982     return ResCntFactor > (int)LFactor;
1983 }
1984 
1985 void SchedBoundary::reset() {
1986   // A new HazardRec is created for each DAG and owned by SchedBoundary.
1987   // Destroying and reconstructing it is very expensive though. So keep
1988   // invalid, placeholder HazardRecs.
1989   if (HazardRec && HazardRec->isEnabled()) {
1990     delete HazardRec;
1991     HazardRec = nullptr;
1992   }
1993   Available.clear();
1994   Pending.clear();
1995   CheckPending = false;
1996   CurrCycle = 0;
1997   CurrMOps = 0;
1998   MinReadyCycle = std::numeric_limits<unsigned>::max();
1999   ExpectedLatency = 0;
2000   DependentLatency = 0;
2001   RetiredMOps = 0;
2002   MaxExecutedResCount = 0;
2003   ZoneCritResIdx = 0;
2004   IsResourceLimited = false;
2005   ReservedCycles.clear();
2006   ReservedCyclesIndex.clear();
2007 #ifndef NDEBUG
2008   // Track the maximum number of stall cycles that could arise either from the
2009   // latency of a DAG edge or the number of cycles that a processor resource is
2010   // reserved (SchedBoundary::ReservedCycles).
2011   MaxObservedStall = 0;
2012 #endif
2013   // Reserve a zero-count for invalid CritResIdx.
2014   ExecutedResCounts.resize(1);
2015   assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
2016 }
2017 
2018 void SchedRemainder::
2019 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
2020   reset();
2021   if (!SchedModel->hasInstrSchedModel())
2022     return;
2023   RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
2024   for (SUnit &SU : DAG->SUnits) {
2025     const MCSchedClassDesc *SC = DAG->getSchedClass(&SU);
2026     RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC)
2027       * SchedModel->getMicroOpFactor();
2028     for (TargetSchedModel::ProcResIter
2029            PI = SchedModel->getWriteProcResBegin(SC),
2030            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2031       unsigned PIdx = PI->ProcResourceIdx;
2032       unsigned Factor = SchedModel->getResourceFactor(PIdx);
2033       RemainingCounts[PIdx] += (Factor * PI->Cycles);
2034     }
2035   }
2036 }
2037 
2038 void SchedBoundary::
2039 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
2040   reset();
2041   DAG = dag;
2042   SchedModel = smodel;
2043   Rem = rem;
2044   if (SchedModel->hasInstrSchedModel()) {
2045     unsigned ResourceCount = SchedModel->getNumProcResourceKinds();
2046     ReservedCyclesIndex.resize(ResourceCount);
2047     ExecutedResCounts.resize(ResourceCount);
2048     unsigned NumUnits = 0;
2049 
2050     for (unsigned i = 0; i < ResourceCount; ++i) {
2051       ReservedCyclesIndex[i] = NumUnits;
2052       NumUnits += SchedModel->getProcResource(i)->NumUnits;
2053     }
2054 
2055     ReservedCycles.resize(NumUnits, InvalidCycle);
2056   }
2057 }
2058 
2059 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
2060 /// these "soft stalls" differently than the hard stall cycles based on CPU
2061 /// resources and computed by checkHazard(). A fully in-order model
2062 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
2063 /// available for scheduling until they are ready. However, a weaker in-order
2064 /// model may use this for heuristics. For example, if a processor has in-order
2065 /// behavior when reading certain resources, this may come into play.
2066 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
2067   if (!SU->isUnbuffered)
2068     return 0;
2069 
2070   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2071   if (ReadyCycle > CurrCycle)
2072     return ReadyCycle - CurrCycle;
2073   return 0;
2074 }
2075 
2076 /// Compute the next cycle at which the given processor resource unit
2077 /// can be scheduled.
2078 unsigned SchedBoundary::getNextResourceCycleByInstance(unsigned InstanceIdx,
2079                                                        unsigned Cycles) {
2080   unsigned NextUnreserved = ReservedCycles[InstanceIdx];
2081   // If this resource has never been used, always return cycle zero.
2082   if (NextUnreserved == InvalidCycle)
2083     return 0;
2084   // For bottom-up scheduling add the cycles needed for the current operation.
2085   if (!isTop())
2086     NextUnreserved += Cycles;
2087   return NextUnreserved;
2088 }
2089 
2090 /// Compute the next cycle at which the given processor resource can be
2091 /// scheduled.  Returns the next cycle and the index of the processor resource
2092 /// instance in the reserved cycles vector.
2093 std::pair<unsigned, unsigned>
2094 SchedBoundary::getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
2095   unsigned MinNextUnreserved = InvalidCycle;
2096   unsigned InstanceIdx = 0;
2097   unsigned StartIndex = ReservedCyclesIndex[PIdx];
2098   unsigned NumberOfInstances = SchedModel->getProcResource(PIdx)->NumUnits;
2099   assert(NumberOfInstances > 0 &&
2100          "Cannot have zero instances of a ProcResource");
2101 
2102   for (unsigned I = StartIndex, End = StartIndex + NumberOfInstances; I < End;
2103        ++I) {
2104     unsigned NextUnreserved = getNextResourceCycleByInstance(I, Cycles);
2105     if (MinNextUnreserved > NextUnreserved) {
2106       InstanceIdx = I;
2107       MinNextUnreserved = NextUnreserved;
2108     }
2109   }
2110   return std::make_pair(MinNextUnreserved, InstanceIdx);
2111 }
2112 
2113 /// Does this SU have a hazard within the current instruction group.
2114 ///
2115 /// The scheduler supports two modes of hazard recognition. The first is the
2116 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
2117 /// supports highly complicated in-order reservation tables
2118 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
2119 ///
2120 /// The second is a streamlined mechanism that checks for hazards based on
2121 /// simple counters that the scheduler itself maintains. It explicitly checks
2122 /// for instruction dispatch limitations, including the number of micro-ops that
2123 /// can dispatch per cycle.
2124 ///
2125 /// TODO: Also check whether the SU must start a new group.
2126 bool SchedBoundary::checkHazard(SUnit *SU) {
2127   if (HazardRec->isEnabled()
2128       && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
2129     return true;
2130   }
2131 
2132   unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
2133   if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
2134     LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
2135                       << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
2136     return true;
2137   }
2138 
2139   if (CurrMOps > 0 &&
2140       ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) ||
2141        (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) {
2142     LLVM_DEBUG(dbgs() << "  hazard: SU(" << SU->NodeNum << ") must "
2143                       << (isTop() ? "begin" : "end") << " group\n");
2144     return true;
2145   }
2146 
2147   if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
2148     const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2149     for (const MCWriteProcResEntry &PE :
2150           make_range(SchedModel->getWriteProcResBegin(SC),
2151                      SchedModel->getWriteProcResEnd(SC))) {
2152       unsigned ResIdx = PE.ProcResourceIdx;
2153       unsigned Cycles = PE.Cycles;
2154       unsigned NRCycle, InstanceIdx;
2155       std::tie(NRCycle, InstanceIdx) = getNextResourceCycle(ResIdx, Cycles);
2156       if (NRCycle > CurrCycle) {
2157 #ifndef NDEBUG
2158         MaxObservedStall = std::max(Cycles, MaxObservedStall);
2159 #endif
2160         LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") "
2161                           << SchedModel->getResourceName(ResIdx)
2162                           << '[' << InstanceIdx - ReservedCyclesIndex[ResIdx]  << ']'
2163                           << "=" << NRCycle << "c\n");
2164         return true;
2165       }
2166     }
2167   }
2168   return false;
2169 }
2170 
2171 // Find the unscheduled node in ReadySUs with the highest latency.
2172 unsigned SchedBoundary::
2173 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
2174   SUnit *LateSU = nullptr;
2175   unsigned RemLatency = 0;
2176   for (SUnit *SU : ReadySUs) {
2177     unsigned L = getUnscheduledLatency(SU);
2178     if (L > RemLatency) {
2179       RemLatency = L;
2180       LateSU = SU;
2181     }
2182   }
2183   if (LateSU) {
2184     LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU("
2185                       << LateSU->NodeNum << ") " << RemLatency << "c\n");
2186   }
2187   return RemLatency;
2188 }
2189 
2190 // Count resources in this zone and the remaining unscheduled
2191 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
2192 // resource index, or zero if the zone is issue limited.
2193 unsigned SchedBoundary::
2194 getOtherResourceCount(unsigned &OtherCritIdx) {
2195   OtherCritIdx = 0;
2196   if (!SchedModel->hasInstrSchedModel())
2197     return 0;
2198 
2199   unsigned OtherCritCount = Rem->RemIssueCount
2200     + (RetiredMOps * SchedModel->getMicroOpFactor());
2201   LLVM_DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
2202                     << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
2203   for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
2204        PIdx != PEnd; ++PIdx) {
2205     unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
2206     if (OtherCount > OtherCritCount) {
2207       OtherCritCount = OtherCount;
2208       OtherCritIdx = PIdx;
2209     }
2210   }
2211   if (OtherCritIdx) {
2212     LLVM_DEBUG(
2213         dbgs() << "  " << Available.getName() << " + Remain CritRes: "
2214                << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
2215                << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
2216   }
2217   return OtherCritCount;
2218 }
2219 
2220 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle, bool InPQueue,
2221                                 unsigned Idx) {
2222   assert(SU->getInstr() && "Scheduled SUnit must have instr");
2223 
2224 #ifndef NDEBUG
2225   // ReadyCycle was been bumped up to the CurrCycle when this node was
2226   // scheduled, but CurrCycle may have been eagerly advanced immediately after
2227   // scheduling, so may now be greater than ReadyCycle.
2228   if (ReadyCycle > CurrCycle)
2229     MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
2230 #endif
2231 
2232   if (ReadyCycle < MinReadyCycle)
2233     MinReadyCycle = ReadyCycle;
2234 
2235   // Check for interlocks first. For the purpose of other heuristics, an
2236   // instruction that cannot issue appears as if it's not in the ReadyQueue.
2237   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2238   bool HazardDetected = (!IsBuffered && ReadyCycle > CurrCycle) ||
2239                         checkHazard(SU) || (Available.size() >= ReadyListLimit);
2240 
2241   if (!HazardDetected) {
2242     Available.push(SU);
2243 
2244     if (InPQueue)
2245       Pending.remove(Pending.begin() + Idx);
2246     return;
2247   }
2248 
2249   if (!InPQueue)
2250     Pending.push(SU);
2251 }
2252 
2253 /// Move the boundary of scheduled code by one cycle.
2254 void SchedBoundary::bumpCycle(unsigned NextCycle) {
2255   if (SchedModel->getMicroOpBufferSize() == 0) {
2256     assert(MinReadyCycle < std::numeric_limits<unsigned>::max() &&
2257            "MinReadyCycle uninitialized");
2258     if (MinReadyCycle > NextCycle)
2259       NextCycle = MinReadyCycle;
2260   }
2261   // Update the current micro-ops, which will issue in the next cycle.
2262   unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
2263   CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
2264 
2265   // Decrement DependentLatency based on the next cycle.
2266   if ((NextCycle - CurrCycle) > DependentLatency)
2267     DependentLatency = 0;
2268   else
2269     DependentLatency -= (NextCycle - CurrCycle);
2270 
2271   if (!HazardRec->isEnabled()) {
2272     // Bypass HazardRec virtual calls.
2273     CurrCycle = NextCycle;
2274   } else {
2275     // Bypass getHazardType calls in case of long latency.
2276     for (; CurrCycle != NextCycle; ++CurrCycle) {
2277       if (isTop())
2278         HazardRec->AdvanceCycle();
2279       else
2280         HazardRec->RecedeCycle();
2281     }
2282   }
2283   CheckPending = true;
2284   IsResourceLimited =
2285       checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2286                          getScheduledLatency(), true);
2287 
2288   LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName()
2289                     << '\n');
2290 }
2291 
2292 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
2293   ExecutedResCounts[PIdx] += Count;
2294   if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
2295     MaxExecutedResCount = ExecutedResCounts[PIdx];
2296 }
2297 
2298 /// Add the given processor resource to this scheduled zone.
2299 ///
2300 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
2301 /// during which this resource is consumed.
2302 ///
2303 /// \return the next cycle at which the instruction may execute without
2304 /// oversubscribing resources.
2305 unsigned SchedBoundary::
2306 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
2307   unsigned Factor = SchedModel->getResourceFactor(PIdx);
2308   unsigned Count = Factor * Cycles;
2309   LLVM_DEBUG(dbgs() << "  " << SchedModel->getResourceName(PIdx) << " +"
2310                     << Cycles << "x" << Factor << "u\n");
2311 
2312   // Update Executed resources counts.
2313   incExecutedResources(PIdx, Count);
2314   assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
2315   Rem->RemainingCounts[PIdx] -= Count;
2316 
2317   // Check if this resource exceeds the current critical resource. If so, it
2318   // becomes the critical resource.
2319   if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
2320     ZoneCritResIdx = PIdx;
2321     LLVM_DEBUG(dbgs() << "  *** Critical resource "
2322                       << SchedModel->getResourceName(PIdx) << ": "
2323                       << getResourceCount(PIdx) / SchedModel->getLatencyFactor()
2324                       << "c\n");
2325   }
2326   // For reserved resources, record the highest cycle using the resource.
2327   unsigned NextAvailable, InstanceIdx;
2328   std::tie(NextAvailable, InstanceIdx) = getNextResourceCycle(PIdx, Cycles);
2329   if (NextAvailable > CurrCycle) {
2330     LLVM_DEBUG(dbgs() << "  Resource conflict: "
2331                       << SchedModel->getResourceName(PIdx)
2332                       << '[' << InstanceIdx - ReservedCyclesIndex[PIdx]  << ']'
2333                       << " reserved until @" << NextAvailable << "\n");
2334   }
2335   return NextAvailable;
2336 }
2337 
2338 /// Move the boundary of scheduled code by one SUnit.
2339 void SchedBoundary::bumpNode(SUnit *SU) {
2340   // Update the reservation table.
2341   if (HazardRec->isEnabled()) {
2342     if (!isTop() && SU->isCall) {
2343       // Calls are scheduled with their preceding instructions. For bottom-up
2344       // scheduling, clear the pipeline state before emitting.
2345       HazardRec->Reset();
2346     }
2347     HazardRec->EmitInstruction(SU);
2348     // Scheduling an instruction may have made pending instructions available.
2349     CheckPending = true;
2350   }
2351   // checkHazard should prevent scheduling multiple instructions per cycle that
2352   // exceed the issue width.
2353   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2354   unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
2355   assert(
2356       (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
2357       "Cannot schedule this instruction's MicroOps in the current cycle.");
2358 
2359   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2360   LLVM_DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
2361 
2362   unsigned NextCycle = CurrCycle;
2363   switch (SchedModel->getMicroOpBufferSize()) {
2364   case 0:
2365     assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
2366     break;
2367   case 1:
2368     if (ReadyCycle > NextCycle) {
2369       NextCycle = ReadyCycle;
2370       LLVM_DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
2371     }
2372     break;
2373   default:
2374     // We don't currently model the OOO reorder buffer, so consider all
2375     // scheduled MOps to be "retired". We do loosely model in-order resource
2376     // latency. If this instruction uses an in-order resource, account for any
2377     // likely stall cycles.
2378     if (SU->isUnbuffered && ReadyCycle > NextCycle)
2379       NextCycle = ReadyCycle;
2380     break;
2381   }
2382   RetiredMOps += IncMOps;
2383 
2384   // Update resource counts and critical resource.
2385   if (SchedModel->hasInstrSchedModel()) {
2386     unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
2387     assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
2388     Rem->RemIssueCount -= DecRemIssue;
2389     if (ZoneCritResIdx) {
2390       // Scale scheduled micro-ops for comparing with the critical resource.
2391       unsigned ScaledMOps =
2392         RetiredMOps * SchedModel->getMicroOpFactor();
2393 
2394       // If scaled micro-ops are now more than the previous critical resource by
2395       // a full cycle, then micro-ops issue becomes critical.
2396       if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
2397           >= (int)SchedModel->getLatencyFactor()) {
2398         ZoneCritResIdx = 0;
2399         LLVM_DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
2400                           << ScaledMOps / SchedModel->getLatencyFactor()
2401                           << "c\n");
2402       }
2403     }
2404     for (TargetSchedModel::ProcResIter
2405            PI = SchedModel->getWriteProcResBegin(SC),
2406            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2407       unsigned RCycle =
2408         countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
2409       if (RCycle > NextCycle)
2410         NextCycle = RCycle;
2411     }
2412     if (SU->hasReservedResource) {
2413       // For reserved resources, record the highest cycle using the resource.
2414       // For top-down scheduling, this is the cycle in which we schedule this
2415       // instruction plus the number of cycles the operations reserves the
2416       // resource. For bottom-up is it simply the instruction's cycle.
2417       for (TargetSchedModel::ProcResIter
2418              PI = SchedModel->getWriteProcResBegin(SC),
2419              PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2420         unsigned PIdx = PI->ProcResourceIdx;
2421         if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
2422           unsigned ReservedUntil, InstanceIdx;
2423           std::tie(ReservedUntil, InstanceIdx) = getNextResourceCycle(PIdx, 0);
2424           if (isTop()) {
2425             ReservedCycles[InstanceIdx] =
2426                 std::max(ReservedUntil, NextCycle + PI->Cycles);
2427           } else
2428             ReservedCycles[InstanceIdx] = NextCycle;
2429         }
2430       }
2431     }
2432   }
2433   // Update ExpectedLatency and DependentLatency.
2434   unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2435   unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2436   if (SU->getDepth() > TopLatency) {
2437     TopLatency = SU->getDepth();
2438     LLVM_DEBUG(dbgs() << "  " << Available.getName() << " TopLatency SU("
2439                       << SU->NodeNum << ") " << TopLatency << "c\n");
2440   }
2441   if (SU->getHeight() > BotLatency) {
2442     BotLatency = SU->getHeight();
2443     LLVM_DEBUG(dbgs() << "  " << Available.getName() << " BotLatency SU("
2444                       << SU->NodeNum << ") " << BotLatency << "c\n");
2445   }
2446   // If we stall for any reason, bump the cycle.
2447   if (NextCycle > CurrCycle)
2448     bumpCycle(NextCycle);
2449   else
2450     // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2451     // resource limited. If a stall occurred, bumpCycle does this.
2452     IsResourceLimited =
2453         checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2454                            getScheduledLatency(), true);
2455 
2456   // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2457   // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2458   // one cycle.  Since we commonly reach the max MOps here, opportunistically
2459   // bump the cycle to avoid uselessly checking everything in the readyQ.
2460   CurrMOps += IncMOps;
2461 
2462   // Bump the cycle count for issue group constraints.
2463   // This must be done after NextCycle has been adjust for all other stalls.
2464   // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set
2465   // currCycle to X.
2466   if ((isTop() &&  SchedModel->mustEndGroup(SU->getInstr())) ||
2467       (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) {
2468     LLVM_DEBUG(dbgs() << "  Bump cycle to " << (isTop() ? "end" : "begin")
2469                       << " group\n");
2470     bumpCycle(++NextCycle);
2471   }
2472 
2473   while (CurrMOps >= SchedModel->getIssueWidth()) {
2474     LLVM_DEBUG(dbgs() << "  *** Max MOps " << CurrMOps << " at cycle "
2475                       << CurrCycle << '\n');
2476     bumpCycle(++NextCycle);
2477   }
2478   LLVM_DEBUG(dumpScheduledState());
2479 }
2480 
2481 /// Release pending ready nodes in to the available queue. This makes them
2482 /// visible to heuristics.
2483 void SchedBoundary::releasePending() {
2484   // If the available queue is empty, it is safe to reset MinReadyCycle.
2485   if (Available.empty())
2486     MinReadyCycle = std::numeric_limits<unsigned>::max();
2487 
2488   // Check to see if any of the pending instructions are ready to issue.  If
2489   // so, add them to the available queue.
2490   for (unsigned I = 0, E = Pending.size(); I < E; ++I) {
2491     SUnit *SU = *(Pending.begin() + I);
2492     unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2493 
2494     if (ReadyCycle < MinReadyCycle)
2495       MinReadyCycle = ReadyCycle;
2496 
2497     if (Available.size() >= ReadyListLimit)
2498       break;
2499 
2500     releaseNode(SU, ReadyCycle, true, I);
2501     if (E != Pending.size()) {
2502       --I;
2503       --E;
2504     }
2505   }
2506   CheckPending = false;
2507 }
2508 
2509 /// Remove SU from the ready set for this boundary.
2510 void SchedBoundary::removeReady(SUnit *SU) {
2511   if (Available.isInQueue(SU))
2512     Available.remove(Available.find(SU));
2513   else {
2514     assert(Pending.isInQueue(SU) && "bad ready count");
2515     Pending.remove(Pending.find(SU));
2516   }
2517 }
2518 
2519 /// If this queue only has one ready candidate, return it. As a side effect,
2520 /// defer any nodes that now hit a hazard, and advance the cycle until at least
2521 /// one node is ready. If multiple instructions are ready, return NULL.
2522 SUnit *SchedBoundary::pickOnlyChoice() {
2523   if (CheckPending)
2524     releasePending();
2525 
2526   // Defer any ready instrs that now have a hazard.
2527   for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2528     if (checkHazard(*I)) {
2529       Pending.push(*I);
2530       I = Available.remove(I);
2531       continue;
2532     }
2533     ++I;
2534   }
2535   for (unsigned i = 0; Available.empty(); ++i) {
2536 //  FIXME: Re-enable assert once PR20057 is resolved.
2537 //    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2538 //           "permanent hazard");
2539     (void)i;
2540     bumpCycle(CurrCycle + 1);
2541     releasePending();
2542   }
2543 
2544   LLVM_DEBUG(Pending.dump());
2545   LLVM_DEBUG(Available.dump());
2546 
2547   if (Available.size() == 1)
2548     return *Available.begin();
2549   return nullptr;
2550 }
2551 
2552 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2553 // This is useful information to dump after bumpNode.
2554 // Note that the Queue contents are more useful before pickNodeFromQueue.
2555 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const {
2556   unsigned ResFactor;
2557   unsigned ResCount;
2558   if (ZoneCritResIdx) {
2559     ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2560     ResCount = getResourceCount(ZoneCritResIdx);
2561   } else {
2562     ResFactor = SchedModel->getMicroOpFactor();
2563     ResCount = RetiredMOps * ResFactor;
2564   }
2565   unsigned LFactor = SchedModel->getLatencyFactor();
2566   dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2567          << "  Retired: " << RetiredMOps;
2568   dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
2569   dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
2570          << ResCount / ResFactor << " "
2571          << SchedModel->getResourceName(ZoneCritResIdx)
2572          << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
2573          << (IsResourceLimited ? "  - Resource" : "  - Latency")
2574          << " limited.\n";
2575 }
2576 #endif
2577 
2578 //===----------------------------------------------------------------------===//
2579 // GenericScheduler - Generic implementation of MachineSchedStrategy.
2580 //===----------------------------------------------------------------------===//
2581 
2582 void GenericSchedulerBase::SchedCandidate::
2583 initResourceDelta(const ScheduleDAGMI *DAG,
2584                   const TargetSchedModel *SchedModel) {
2585   if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2586     return;
2587 
2588   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2589   for (TargetSchedModel::ProcResIter
2590          PI = SchedModel->getWriteProcResBegin(SC),
2591          PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2592     if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2593       ResDelta.CritResources += PI->Cycles;
2594     if (PI->ProcResourceIdx == Policy.DemandResIdx)
2595       ResDelta.DemandedResources += PI->Cycles;
2596   }
2597 }
2598 
2599 /// Compute remaining latency. We need this both to determine whether the
2600 /// overall schedule has become latency-limited and whether the instructions
2601 /// outside this zone are resource or latency limited.
2602 ///
2603 /// The "dependent" latency is updated incrementally during scheduling as the
2604 /// max height/depth of scheduled nodes minus the cycles since it was
2605 /// scheduled:
2606 ///   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2607 ///
2608 /// The "independent" latency is the max ready queue depth:
2609 ///   ILat = max N.depth for N in Available|Pending
2610 ///
2611 /// RemainingLatency is the greater of independent and dependent latency.
2612 ///
2613 /// These computations are expensive, especially in DAGs with many edges, so
2614 /// only do them if necessary.
2615 static unsigned computeRemLatency(SchedBoundary &CurrZone) {
2616   unsigned RemLatency = CurrZone.getDependentLatency();
2617   RemLatency = std::max(RemLatency,
2618                         CurrZone.findMaxLatency(CurrZone.Available.elements()));
2619   RemLatency = std::max(RemLatency,
2620                         CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2621   return RemLatency;
2622 }
2623 
2624 /// Returns true if the current cycle plus remaning latency is greater than
2625 /// the critical path in the scheduling region.
2626 bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy,
2627                                                SchedBoundary &CurrZone,
2628                                                bool ComputeRemLatency,
2629                                                unsigned &RemLatency) const {
2630   // The current cycle is already greater than the critical path, so we are
2631   // already latency limited and don't need to compute the remaining latency.
2632   if (CurrZone.getCurrCycle() > Rem.CriticalPath)
2633     return true;
2634 
2635   // If we haven't scheduled anything yet, then we aren't latency limited.
2636   if (CurrZone.getCurrCycle() == 0)
2637     return false;
2638 
2639   if (ComputeRemLatency)
2640     RemLatency = computeRemLatency(CurrZone);
2641 
2642   return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath;
2643 }
2644 
2645 /// Set the CandPolicy given a scheduling zone given the current resources and
2646 /// latencies inside and outside the zone.
2647 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA,
2648                                      SchedBoundary &CurrZone,
2649                                      SchedBoundary *OtherZone) {
2650   // Apply preemptive heuristics based on the total latency and resources
2651   // inside and outside this zone. Potential stalls should be considered before
2652   // following this policy.
2653 
2654   // Compute the critical resource outside the zone.
2655   unsigned OtherCritIdx = 0;
2656   unsigned OtherCount =
2657     OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
2658 
2659   bool OtherResLimited = false;
2660   unsigned RemLatency = 0;
2661   bool RemLatencyComputed = false;
2662   if (SchedModel->hasInstrSchedModel() && OtherCount != 0) {
2663     RemLatency = computeRemLatency(CurrZone);
2664     RemLatencyComputed = true;
2665     OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(),
2666                                          OtherCount, RemLatency, false);
2667   }
2668 
2669   // Schedule aggressively for latency in PostRA mode. We don't check for
2670   // acyclic latency during PostRA, and highly out-of-order processors will
2671   // skip PostRA scheduling.
2672   if (!OtherResLimited &&
2673       (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed,
2674                                        RemLatency))) {
2675     Policy.ReduceLatency |= true;
2676     LLVM_DEBUG(dbgs() << "  " << CurrZone.Available.getName()
2677                       << " RemainingLatency " << RemLatency << " + "
2678                       << CurrZone.getCurrCycle() << "c > CritPath "
2679                       << Rem.CriticalPath << "\n");
2680   }
2681   // If the same resource is limiting inside and outside the zone, do nothing.
2682   if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
2683     return;
2684 
2685   LLVM_DEBUG(if (CurrZone.isResourceLimited()) {
2686     dbgs() << "  " << CurrZone.Available.getName() << " ResourceLimited: "
2687            << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n";
2688   } if (OtherResLimited) dbgs()
2689                  << "  RemainingLimit: "
2690                  << SchedModel->getResourceName(OtherCritIdx) << "\n";
2691              if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs()
2692              << "  Latency limited both directions.\n");
2693 
2694   if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
2695     Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
2696 
2697   if (OtherResLimited)
2698     Policy.DemandResIdx = OtherCritIdx;
2699 }
2700 
2701 #ifndef NDEBUG
2702 const char *GenericSchedulerBase::getReasonStr(
2703   GenericSchedulerBase::CandReason Reason) {
2704   switch (Reason) {
2705   case NoCand:         return "NOCAND    ";
2706   case Only1:          return "ONLY1     ";
2707   case PhysReg:        return "PHYS-REG  ";
2708   case RegExcess:      return "REG-EXCESS";
2709   case RegCritical:    return "REG-CRIT  ";
2710   case Stall:          return "STALL     ";
2711   case Cluster:        return "CLUSTER   ";
2712   case Weak:           return "WEAK      ";
2713   case RegMax:         return "REG-MAX   ";
2714   case ResourceReduce: return "RES-REDUCE";
2715   case ResourceDemand: return "RES-DEMAND";
2716   case TopDepthReduce: return "TOP-DEPTH ";
2717   case TopPathReduce:  return "TOP-PATH  ";
2718   case BotHeightReduce:return "BOT-HEIGHT";
2719   case BotPathReduce:  return "BOT-PATH  ";
2720   case NextDefUse:     return "DEF-USE   ";
2721   case NodeOrder:      return "ORDER     ";
2722   };
2723   llvm_unreachable("Unknown reason!");
2724 }
2725 
2726 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
2727   PressureChange P;
2728   unsigned ResIdx = 0;
2729   unsigned Latency = 0;
2730   switch (Cand.Reason) {
2731   default:
2732     break;
2733   case RegExcess:
2734     P = Cand.RPDelta.Excess;
2735     break;
2736   case RegCritical:
2737     P = Cand.RPDelta.CriticalMax;
2738     break;
2739   case RegMax:
2740     P = Cand.RPDelta.CurrentMax;
2741     break;
2742   case ResourceReduce:
2743     ResIdx = Cand.Policy.ReduceResIdx;
2744     break;
2745   case ResourceDemand:
2746     ResIdx = Cand.Policy.DemandResIdx;
2747     break;
2748   case TopDepthReduce:
2749     Latency = Cand.SU->getDepth();
2750     break;
2751   case TopPathReduce:
2752     Latency = Cand.SU->getHeight();
2753     break;
2754   case BotHeightReduce:
2755     Latency = Cand.SU->getHeight();
2756     break;
2757   case BotPathReduce:
2758     Latency = Cand.SU->getDepth();
2759     break;
2760   }
2761   dbgs() << "  Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2762   if (P.isValid())
2763     dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2764            << ":" << P.getUnitInc() << " ";
2765   else
2766     dbgs() << "      ";
2767   if (ResIdx)
2768     dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2769   else
2770     dbgs() << "         ";
2771   if (Latency)
2772     dbgs() << " " << Latency << " cycles ";
2773   else
2774     dbgs() << "          ";
2775   dbgs() << '\n';
2776 }
2777 #endif
2778 
2779 namespace llvm {
2780 /// Return true if this heuristic determines order.
2781 bool tryLess(int TryVal, int CandVal,
2782              GenericSchedulerBase::SchedCandidate &TryCand,
2783              GenericSchedulerBase::SchedCandidate &Cand,
2784              GenericSchedulerBase::CandReason Reason) {
2785   if (TryVal < CandVal) {
2786     TryCand.Reason = Reason;
2787     return true;
2788   }
2789   if (TryVal > CandVal) {
2790     if (Cand.Reason > Reason)
2791       Cand.Reason = Reason;
2792     return true;
2793   }
2794   return false;
2795 }
2796 
2797 bool tryGreater(int TryVal, int CandVal,
2798                 GenericSchedulerBase::SchedCandidate &TryCand,
2799                 GenericSchedulerBase::SchedCandidate &Cand,
2800                 GenericSchedulerBase::CandReason Reason) {
2801   if (TryVal > CandVal) {
2802     TryCand.Reason = Reason;
2803     return true;
2804   }
2805   if (TryVal < CandVal) {
2806     if (Cand.Reason > Reason)
2807       Cand.Reason = Reason;
2808     return true;
2809   }
2810   return false;
2811 }
2812 
2813 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
2814                 GenericSchedulerBase::SchedCandidate &Cand,
2815                 SchedBoundary &Zone) {
2816   if (Zone.isTop()) {
2817     // Prefer the candidate with the lesser depth, but only if one of them has
2818     // depth greater than the total latency scheduled so far, otherwise either
2819     // of them could be scheduled now with no stall.
2820     if (std::max(TryCand.SU->getDepth(), Cand.SU->getDepth()) >
2821         Zone.getScheduledLatency()) {
2822       if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2823                   TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
2824         return true;
2825     }
2826     if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2827                    TryCand, Cand, GenericSchedulerBase::TopPathReduce))
2828       return true;
2829   } else {
2830     // Prefer the candidate with the lesser height, but only if one of them has
2831     // height greater than the total latency scheduled so far, otherwise either
2832     // of them could be scheduled now with no stall.
2833     if (std::max(TryCand.SU->getHeight(), Cand.SU->getHeight()) >
2834         Zone.getScheduledLatency()) {
2835       if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2836                   TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
2837         return true;
2838     }
2839     if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2840                    TryCand, Cand, GenericSchedulerBase::BotPathReduce))
2841       return true;
2842   }
2843   return false;
2844 }
2845 } // end namespace llvm
2846 
2847 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) {
2848   LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2849                     << GenericSchedulerBase::getReasonStr(Reason) << '\n');
2850 }
2851 
2852 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) {
2853   tracePick(Cand.Reason, Cand.AtTop);
2854 }
2855 
2856 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
2857   assert(dag->hasVRegLiveness() &&
2858          "(PreRA)GenericScheduler needs vreg liveness");
2859   DAG = static_cast<ScheduleDAGMILive*>(dag);
2860   SchedModel = DAG->getSchedModel();
2861   TRI = DAG->TRI;
2862 
2863   if (RegionPolicy.ComputeDFSResult)
2864     DAG->computeDFSResult();
2865 
2866   Rem.init(DAG, SchedModel);
2867   Top.init(DAG, SchedModel, &Rem);
2868   Bot.init(DAG, SchedModel, &Rem);
2869 
2870   // Initialize resource counts.
2871 
2872   // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
2873   // are disabled, then these HazardRecs will be disabled.
2874   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2875   if (!Top.HazardRec) {
2876     Top.HazardRec =
2877         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2878             Itin, DAG);
2879   }
2880   if (!Bot.HazardRec) {
2881     Bot.HazardRec =
2882         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2883             Itin, DAG);
2884   }
2885   TopCand.SU = nullptr;
2886   BotCand.SU = nullptr;
2887 }
2888 
2889 /// Initialize the per-region scheduling policy.
2890 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
2891                                   MachineBasicBlock::iterator End,
2892                                   unsigned NumRegionInstrs) {
2893   const MachineFunction &MF = *Begin->getMF();
2894   const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
2895 
2896   // Avoid setting up the register pressure tracker for small regions to save
2897   // compile time. As a rough heuristic, only track pressure when the number of
2898   // schedulable instructions exceeds half the integer register file.
2899   RegionPolicy.ShouldTrackPressure = true;
2900   for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
2901     MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
2902     if (TLI->isTypeLegal(LegalIntVT)) {
2903       unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
2904         TLI->getRegClassFor(LegalIntVT));
2905       RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
2906     }
2907   }
2908 
2909   // For generic targets, we default to bottom-up, because it's simpler and more
2910   // compile-time optimizations have been implemented in that direction.
2911   RegionPolicy.OnlyBottomUp = true;
2912 
2913   // Allow the subtarget to override default policy.
2914   MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs);
2915 
2916   // After subtarget overrides, apply command line options.
2917   if (!EnableRegPressure) {
2918     RegionPolicy.ShouldTrackPressure = false;
2919     RegionPolicy.ShouldTrackLaneMasks = false;
2920   }
2921 
2922   // Check -misched-topdown/bottomup can force or unforce scheduling direction.
2923   // e.g. -misched-bottomup=false allows scheduling in both directions.
2924   assert((!ForceTopDown || !ForceBottomUp) &&
2925          "-misched-topdown incompatible with -misched-bottomup");
2926   if (ForceBottomUp.getNumOccurrences() > 0) {
2927     RegionPolicy.OnlyBottomUp = ForceBottomUp;
2928     if (RegionPolicy.OnlyBottomUp)
2929       RegionPolicy.OnlyTopDown = false;
2930   }
2931   if (ForceTopDown.getNumOccurrences() > 0) {
2932     RegionPolicy.OnlyTopDown = ForceTopDown;
2933     if (RegionPolicy.OnlyTopDown)
2934       RegionPolicy.OnlyBottomUp = false;
2935   }
2936 }
2937 
2938 void GenericScheduler::dumpPolicy() const {
2939   // Cannot completely remove virtual function even in release mode.
2940 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2941   dbgs() << "GenericScheduler RegionPolicy: "
2942          << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
2943          << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
2944          << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
2945          << "\n";
2946 #endif
2947 }
2948 
2949 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
2950 /// critical path by more cycles than it takes to drain the instruction buffer.
2951 /// We estimate an upper bounds on in-flight instructions as:
2952 ///
2953 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
2954 /// InFlightIterations = AcyclicPath / CyclesPerIteration
2955 /// InFlightResources = InFlightIterations * LoopResources
2956 ///
2957 /// TODO: Check execution resources in addition to IssueCount.
2958 void GenericScheduler::checkAcyclicLatency() {
2959   if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
2960     return;
2961 
2962   // Scaled number of cycles per loop iteration.
2963   unsigned IterCount =
2964     std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
2965              Rem.RemIssueCount);
2966   // Scaled acyclic critical path.
2967   unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
2968   // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
2969   unsigned InFlightCount =
2970     (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
2971   unsigned BufferLimit =
2972     SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
2973 
2974   Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
2975 
2976   LLVM_DEBUG(
2977       dbgs() << "IssueCycles="
2978              << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
2979              << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
2980              << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount
2981              << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
2982              << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
2983       if (Rem.IsAcyclicLatencyLimited) dbgs() << "  ACYCLIC LATENCY LIMIT\n");
2984 }
2985 
2986 void GenericScheduler::registerRoots() {
2987   Rem.CriticalPath = DAG->ExitSU.getDepth();
2988 
2989   // Some roots may not feed into ExitSU. Check all of them in case.
2990   for (const SUnit *SU : Bot.Available) {
2991     if (SU->getDepth() > Rem.CriticalPath)
2992       Rem.CriticalPath = SU->getDepth();
2993   }
2994   LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
2995   if (DumpCriticalPathLength) {
2996     errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
2997   }
2998 
2999   if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) {
3000     Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
3001     checkAcyclicLatency();
3002   }
3003 }
3004 
3005 namespace llvm {
3006 bool tryPressure(const PressureChange &TryP,
3007                  const PressureChange &CandP,
3008                  GenericSchedulerBase::SchedCandidate &TryCand,
3009                  GenericSchedulerBase::SchedCandidate &Cand,
3010                  GenericSchedulerBase::CandReason Reason,
3011                  const TargetRegisterInfo *TRI,
3012                  const MachineFunction &MF) {
3013   // If one candidate decreases and the other increases, go with it.
3014   // Invalid candidates have UnitInc==0.
3015   if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
3016                  Reason)) {
3017     return true;
3018   }
3019   // Do not compare the magnitude of pressure changes between top and bottom
3020   // boundary.
3021   if (Cand.AtTop != TryCand.AtTop)
3022     return false;
3023 
3024   // If both candidates affect the same set in the same boundary, go with the
3025   // smallest increase.
3026   unsigned TryPSet = TryP.getPSetOrMax();
3027   unsigned CandPSet = CandP.getPSetOrMax();
3028   if (TryPSet == CandPSet) {
3029     return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
3030                    Reason);
3031   }
3032 
3033   int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
3034                                  std::numeric_limits<int>::max();
3035 
3036   int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
3037                                    std::numeric_limits<int>::max();
3038 
3039   // If the candidates are decreasing pressure, reverse priority.
3040   if (TryP.getUnitInc() < 0)
3041     std::swap(TryRank, CandRank);
3042   return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
3043 }
3044 
3045 unsigned getWeakLeft(const SUnit *SU, bool isTop) {
3046   return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
3047 }
3048 
3049 /// Minimize physical register live ranges. Regalloc wants them adjacent to
3050 /// their physreg def/use.
3051 ///
3052 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
3053 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
3054 /// with the operation that produces or consumes the physreg. We'll do this when
3055 /// regalloc has support for parallel copies.
3056 int biasPhysReg(const SUnit *SU, bool isTop) {
3057   const MachineInstr *MI = SU->getInstr();
3058 
3059   if (MI->isCopy()) {
3060     unsigned ScheduledOper = isTop ? 1 : 0;
3061     unsigned UnscheduledOper = isTop ? 0 : 1;
3062     // If we have already scheduled the physreg produce/consumer, immediately
3063     // schedule the copy.
3064     if (Register::isPhysicalRegister(MI->getOperand(ScheduledOper).getReg()))
3065       return 1;
3066     // If the physreg is at the boundary, defer it. Otherwise schedule it
3067     // immediately to free the dependent. We can hoist the copy later.
3068     bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
3069     if (Register::isPhysicalRegister(MI->getOperand(UnscheduledOper).getReg()))
3070       return AtBoundary ? -1 : 1;
3071   }
3072 
3073   if (MI->isMoveImmediate()) {
3074     // If we have a move immediate and all successors have been assigned, bias
3075     // towards scheduling this later. Make sure all register defs are to
3076     // physical registers.
3077     bool DoBias = true;
3078     for (const MachineOperand &Op : MI->defs()) {
3079       if (Op.isReg() && !Register::isPhysicalRegister(Op.getReg())) {
3080         DoBias = false;
3081         break;
3082       }
3083     }
3084 
3085     if (DoBias)
3086       return isTop ? -1 : 1;
3087   }
3088 
3089   return 0;
3090 }
3091 } // end namespace llvm
3092 
3093 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU,
3094                                      bool AtTop,
3095                                      const RegPressureTracker &RPTracker,
3096                                      RegPressureTracker &TempTracker) {
3097   Cand.SU = SU;
3098   Cand.AtTop = AtTop;
3099   if (DAG->isTrackingPressure()) {
3100     if (AtTop) {
3101       TempTracker.getMaxDownwardPressureDelta(
3102         Cand.SU->getInstr(),
3103         Cand.RPDelta,
3104         DAG->getRegionCriticalPSets(),
3105         DAG->getRegPressure().MaxSetPressure);
3106     } else {
3107       if (VerifyScheduling) {
3108         TempTracker.getMaxUpwardPressureDelta(
3109           Cand.SU->getInstr(),
3110           &DAG->getPressureDiff(Cand.SU),
3111           Cand.RPDelta,
3112           DAG->getRegionCriticalPSets(),
3113           DAG->getRegPressure().MaxSetPressure);
3114       } else {
3115         RPTracker.getUpwardPressureDelta(
3116           Cand.SU->getInstr(),
3117           DAG->getPressureDiff(Cand.SU),
3118           Cand.RPDelta,
3119           DAG->getRegionCriticalPSets(),
3120           DAG->getRegPressure().MaxSetPressure);
3121       }
3122     }
3123   }
3124   LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs()
3125              << "  Try  SU(" << Cand.SU->NodeNum << ") "
3126              << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":"
3127              << Cand.RPDelta.Excess.getUnitInc() << "\n");
3128 }
3129 
3130 /// Apply a set of heuristics to a new candidate. Heuristics are currently
3131 /// hierarchical. This may be more efficient than a graduated cost model because
3132 /// we don't need to evaluate all aspects of the model for each node in the
3133 /// queue. But it's really done to make the heuristics easier to debug and
3134 /// statistically analyze.
3135 ///
3136 /// \param Cand provides the policy and current best candidate.
3137 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3138 /// \param Zone describes the scheduled zone that we are extending, or nullptr
3139 //              if Cand is from a different zone than TryCand.
3140 void GenericScheduler::tryCandidate(SchedCandidate &Cand,
3141                                     SchedCandidate &TryCand,
3142                                     SchedBoundary *Zone) const {
3143   // Initialize the candidate if needed.
3144   if (!Cand.isValid()) {
3145     TryCand.Reason = NodeOrder;
3146     return;
3147   }
3148 
3149   // Bias PhysReg Defs and copies to their uses and defined respectively.
3150   if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop),
3151                  biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg))
3152     return;
3153 
3154   // Avoid exceeding the target's limit.
3155   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
3156                                                Cand.RPDelta.Excess,
3157                                                TryCand, Cand, RegExcess, TRI,
3158                                                DAG->MF))
3159     return;
3160 
3161   // Avoid increasing the max critical pressure in the scheduled region.
3162   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
3163                                                Cand.RPDelta.CriticalMax,
3164                                                TryCand, Cand, RegCritical, TRI,
3165                                                DAG->MF))
3166     return;
3167 
3168   // We only compare a subset of features when comparing nodes between
3169   // Top and Bottom boundary. Some properties are simply incomparable, in many
3170   // other instances we should only override the other boundary if something
3171   // is a clear good pick on one boundary. Skip heuristics that are more
3172   // "tie-breaking" in nature.
3173   bool SameBoundary = Zone != nullptr;
3174   if (SameBoundary) {
3175     // For loops that are acyclic path limited, aggressively schedule for
3176     // latency. Within an single cycle, whenever CurrMOps > 0, allow normal
3177     // heuristics to take precedence.
3178     if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() &&
3179         tryLatency(TryCand, Cand, *Zone))
3180       return;
3181 
3182     // Prioritize instructions that read unbuffered resources by stall cycles.
3183     if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
3184                 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3185       return;
3186   }
3187 
3188   // Keep clustered nodes together to encourage downstream peephole
3189   // optimizations which may reduce resource requirements.
3190   //
3191   // This is a best effort to set things up for a post-RA pass. Optimizations
3192   // like generating loads of multiple registers should ideally be done within
3193   // the scheduler pass by combining the loads during DAG postprocessing.
3194   const SUnit *CandNextClusterSU =
3195     Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3196   const SUnit *TryCandNextClusterSU =
3197     TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3198   if (tryGreater(TryCand.SU == TryCandNextClusterSU,
3199                  Cand.SU == CandNextClusterSU,
3200                  TryCand, Cand, Cluster))
3201     return;
3202 
3203   if (SameBoundary) {
3204     // Weak edges are for clustering and other constraints.
3205     if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
3206                 getWeakLeft(Cand.SU, Cand.AtTop),
3207                 TryCand, Cand, Weak))
3208       return;
3209   }
3210 
3211   // Avoid increasing the max pressure of the entire region.
3212   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
3213                                                Cand.RPDelta.CurrentMax,
3214                                                TryCand, Cand, RegMax, TRI,
3215                                                DAG->MF))
3216     return;
3217 
3218   if (SameBoundary) {
3219     // Avoid critical resource consumption and balance the schedule.
3220     TryCand.initResourceDelta(DAG, SchedModel);
3221     if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3222                 TryCand, Cand, ResourceReduce))
3223       return;
3224     if (tryGreater(TryCand.ResDelta.DemandedResources,
3225                    Cand.ResDelta.DemandedResources,
3226                    TryCand, Cand, ResourceDemand))
3227       return;
3228 
3229     // Avoid serializing long latency dependence chains.
3230     // For acyclic path limited loops, latency was already checked above.
3231     if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency &&
3232         !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone))
3233       return;
3234 
3235     // Fall through to original instruction order.
3236     if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
3237         || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
3238       TryCand.Reason = NodeOrder;
3239     }
3240   }
3241 }
3242 
3243 /// Pick the best candidate from the queue.
3244 ///
3245 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
3246 /// DAG building. To adjust for the current scheduling location we need to
3247 /// maintain the number of vreg uses remaining to be top-scheduled.
3248 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
3249                                          const CandPolicy &ZonePolicy,
3250                                          const RegPressureTracker &RPTracker,
3251                                          SchedCandidate &Cand) {
3252   // getMaxPressureDelta temporarily modifies the tracker.
3253   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
3254 
3255   ReadyQueue &Q = Zone.Available;
3256   for (SUnit *SU : Q) {
3257 
3258     SchedCandidate TryCand(ZonePolicy);
3259     initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker);
3260     // Pass SchedBoundary only when comparing nodes from the same boundary.
3261     SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
3262     tryCandidate(Cand, TryCand, ZoneArg);
3263     if (TryCand.Reason != NoCand) {
3264       // Initialize resource delta if needed in case future heuristics query it.
3265       if (TryCand.ResDelta == SchedResourceDelta())
3266         TryCand.initResourceDelta(DAG, SchedModel);
3267       Cand.setBest(TryCand);
3268       LLVM_DEBUG(traceCandidate(Cand));
3269     }
3270   }
3271 }
3272 
3273 /// Pick the best candidate node from either the top or bottom queue.
3274 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
3275   // Schedule as far as possible in the direction of no choice. This is most
3276   // efficient, but also provides the best heuristics for CriticalPSets.
3277   if (SUnit *SU = Bot.pickOnlyChoice()) {
3278     IsTopNode = false;
3279     tracePick(Only1, false);
3280     return SU;
3281   }
3282   if (SUnit *SU = Top.pickOnlyChoice()) {
3283     IsTopNode = true;
3284     tracePick(Only1, true);
3285     return SU;
3286   }
3287   // Set the bottom-up policy based on the state of the current bottom zone and
3288   // the instructions outside the zone, including the top zone.
3289   CandPolicy BotPolicy;
3290   setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
3291   // Set the top-down policy based on the state of the current top zone and
3292   // the instructions outside the zone, including the bottom zone.
3293   CandPolicy TopPolicy;
3294   setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
3295 
3296   // See if BotCand is still valid (because we previously scheduled from Top).
3297   LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
3298   if (!BotCand.isValid() || BotCand.SU->isScheduled ||
3299       BotCand.Policy != BotPolicy) {
3300     BotCand.reset(CandPolicy());
3301     pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
3302     assert(BotCand.Reason != NoCand && "failed to find the first candidate");
3303   } else {
3304     LLVM_DEBUG(traceCandidate(BotCand));
3305 #ifndef NDEBUG
3306     if (VerifyScheduling) {
3307       SchedCandidate TCand;
3308       TCand.reset(CandPolicy());
3309       pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
3310       assert(TCand.SU == BotCand.SU &&
3311              "Last pick result should correspond to re-picking right now");
3312     }
3313 #endif
3314   }
3315 
3316   // Check if the top Q has a better candidate.
3317   LLVM_DEBUG(dbgs() << "Picking from Top:\n");
3318   if (!TopCand.isValid() || TopCand.SU->isScheduled ||
3319       TopCand.Policy != TopPolicy) {
3320     TopCand.reset(CandPolicy());
3321     pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
3322     assert(TopCand.Reason != NoCand && "failed to find the first candidate");
3323   } else {
3324     LLVM_DEBUG(traceCandidate(TopCand));
3325 #ifndef NDEBUG
3326     if (VerifyScheduling) {
3327       SchedCandidate TCand;
3328       TCand.reset(CandPolicy());
3329       pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
3330       assert(TCand.SU == TopCand.SU &&
3331            "Last pick result should correspond to re-picking right now");
3332     }
3333 #endif
3334   }
3335 
3336   // Pick best from BotCand and TopCand.
3337   assert(BotCand.isValid());
3338   assert(TopCand.isValid());
3339   SchedCandidate Cand = BotCand;
3340   TopCand.Reason = NoCand;
3341   tryCandidate(Cand, TopCand, nullptr);
3342   if (TopCand.Reason != NoCand) {
3343     Cand.setBest(TopCand);
3344     LLVM_DEBUG(traceCandidate(Cand));
3345   }
3346 
3347   IsTopNode = Cand.AtTop;
3348   tracePick(Cand);
3349   return Cand.SU;
3350 }
3351 
3352 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
3353 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
3354   if (DAG->top() == DAG->bottom()) {
3355     assert(Top.Available.empty() && Top.Pending.empty() &&
3356            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
3357     return nullptr;
3358   }
3359   SUnit *SU;
3360   do {
3361     if (RegionPolicy.OnlyTopDown) {
3362       SU = Top.pickOnlyChoice();
3363       if (!SU) {
3364         CandPolicy NoPolicy;
3365         TopCand.reset(NoPolicy);
3366         pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
3367         assert(TopCand.Reason != NoCand && "failed to find a candidate");
3368         tracePick(TopCand);
3369         SU = TopCand.SU;
3370       }
3371       IsTopNode = true;
3372     } else if (RegionPolicy.OnlyBottomUp) {
3373       SU = Bot.pickOnlyChoice();
3374       if (!SU) {
3375         CandPolicy NoPolicy;
3376         BotCand.reset(NoPolicy);
3377         pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
3378         assert(BotCand.Reason != NoCand && "failed to find a candidate");
3379         tracePick(BotCand);
3380         SU = BotCand.SU;
3381       }
3382       IsTopNode = false;
3383     } else {
3384       SU = pickNodeBidirectional(IsTopNode);
3385     }
3386   } while (SU->isScheduled);
3387 
3388   if (SU->isTopReady())
3389     Top.removeReady(SU);
3390   if (SU->isBottomReady())
3391     Bot.removeReady(SU);
3392 
3393   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3394                     << *SU->getInstr());
3395   return SU;
3396 }
3397 
3398 void GenericScheduler::reschedulePhysReg(SUnit *SU, bool isTop) {
3399   MachineBasicBlock::iterator InsertPos = SU->getInstr();
3400   if (!isTop)
3401     ++InsertPos;
3402   SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
3403 
3404   // Find already scheduled copies with a single physreg dependence and move
3405   // them just above the scheduled instruction.
3406   for (SDep &Dep : Deps) {
3407     if (Dep.getKind() != SDep::Data ||
3408         !Register::isPhysicalRegister(Dep.getReg()))
3409       continue;
3410     SUnit *DepSU = Dep.getSUnit();
3411     if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
3412       continue;
3413     MachineInstr *Copy = DepSU->getInstr();
3414     if (!Copy->isCopy() && !Copy->isMoveImmediate())
3415       continue;
3416     LLVM_DEBUG(dbgs() << "  Rescheduling physreg copy ";
3417                DAG->dumpNode(*Dep.getSUnit()));
3418     DAG->moveInstruction(Copy, InsertPos);
3419   }
3420 }
3421 
3422 /// Update the scheduler's state after scheduling a node. This is the same node
3423 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
3424 /// update it's state based on the current cycle before MachineSchedStrategy
3425 /// does.
3426 ///
3427 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
3428 /// them here. See comments in biasPhysReg.
3429 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3430   if (IsTopNode) {
3431     SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3432     Top.bumpNode(SU);
3433     if (SU->hasPhysRegUses)
3434       reschedulePhysReg(SU, true);
3435   } else {
3436     SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
3437     Bot.bumpNode(SU);
3438     if (SU->hasPhysRegDefs)
3439       reschedulePhysReg(SU, false);
3440   }
3441 }
3442 
3443 /// Create the standard converging machine scheduler. This will be used as the
3444 /// default scheduler if the target does not set a default.
3445 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) {
3446   ScheduleDAGMILive *DAG =
3447       new ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C));
3448   // Register DAG post-processors.
3449   //
3450   // FIXME: extend the mutation API to allow earlier mutations to instantiate
3451   // data and pass it to later mutations. Have a single mutation that gathers
3452   // the interesting nodes in one pass.
3453   DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI));
3454   return DAG;
3455 }
3456 
3457 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) {
3458   return createGenericSchedLive(C);
3459 }
3460 
3461 static MachineSchedRegistry
3462 GenericSchedRegistry("converge", "Standard converging scheduler.",
3463                      createConvergingSched);
3464 
3465 //===----------------------------------------------------------------------===//
3466 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
3467 //===----------------------------------------------------------------------===//
3468 
3469 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
3470   DAG = Dag;
3471   SchedModel = DAG->getSchedModel();
3472   TRI = DAG->TRI;
3473 
3474   Rem.init(DAG, SchedModel);
3475   Top.init(DAG, SchedModel, &Rem);
3476   BotRoots.clear();
3477 
3478   // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
3479   // or are disabled, then these HazardRecs will be disabled.
3480   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3481   if (!Top.HazardRec) {
3482     Top.HazardRec =
3483         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3484             Itin, DAG);
3485   }
3486 }
3487 
3488 void PostGenericScheduler::registerRoots() {
3489   Rem.CriticalPath = DAG->ExitSU.getDepth();
3490 
3491   // Some roots may not feed into ExitSU. Check all of them in case.
3492   for (const SUnit *SU : BotRoots) {
3493     if (SU->getDepth() > Rem.CriticalPath)
3494       Rem.CriticalPath = SU->getDepth();
3495   }
3496   LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
3497   if (DumpCriticalPathLength) {
3498     errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
3499   }
3500 }
3501 
3502 /// Apply a set of heuristics to a new candidate for PostRA scheduling.
3503 ///
3504 /// \param Cand provides the policy and current best candidate.
3505 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3506 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
3507                                         SchedCandidate &TryCand) {
3508   // Initialize the candidate if needed.
3509   if (!Cand.isValid()) {
3510     TryCand.Reason = NodeOrder;
3511     return;
3512   }
3513 
3514   // Prioritize instructions that read unbuffered resources by stall cycles.
3515   if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
3516               Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3517     return;
3518 
3519   // Keep clustered nodes together.
3520   if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(),
3521                  Cand.SU == DAG->getNextClusterSucc(),
3522                  TryCand, Cand, Cluster))
3523     return;
3524 
3525   // Avoid critical resource consumption and balance the schedule.
3526   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3527               TryCand, Cand, ResourceReduce))
3528     return;
3529   if (tryGreater(TryCand.ResDelta.DemandedResources,
3530                  Cand.ResDelta.DemandedResources,
3531                  TryCand, Cand, ResourceDemand))
3532     return;
3533 
3534   // Avoid serializing long latency dependence chains.
3535   if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
3536     return;
3537   }
3538 
3539   // Fall through to original instruction order.
3540   if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
3541     TryCand.Reason = NodeOrder;
3542 }
3543 
3544 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
3545   ReadyQueue &Q = Top.Available;
3546   for (SUnit *SU : Q) {
3547     SchedCandidate TryCand(Cand.Policy);
3548     TryCand.SU = SU;
3549     TryCand.AtTop = true;
3550     TryCand.initResourceDelta(DAG, SchedModel);
3551     tryCandidate(Cand, TryCand);
3552     if (TryCand.Reason != NoCand) {
3553       Cand.setBest(TryCand);
3554       LLVM_DEBUG(traceCandidate(Cand));
3555     }
3556   }
3557 }
3558 
3559 /// Pick the next node to schedule.
3560 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
3561   if (DAG->top() == DAG->bottom()) {
3562     assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
3563     return nullptr;
3564   }
3565   SUnit *SU;
3566   do {
3567     SU = Top.pickOnlyChoice();
3568     if (SU) {
3569       tracePick(Only1, true);
3570     } else {
3571       CandPolicy NoPolicy;
3572       SchedCandidate TopCand(NoPolicy);
3573       // Set the top-down policy based on the state of the current top zone and
3574       // the instructions outside the zone, including the bottom zone.
3575       setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
3576       pickNodeFromQueue(TopCand);
3577       assert(TopCand.Reason != NoCand && "failed to find a candidate");
3578       tracePick(TopCand);
3579       SU = TopCand.SU;
3580     }
3581   } while (SU->isScheduled);
3582 
3583   IsTopNode = true;
3584   Top.removeReady(SU);
3585 
3586   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3587                     << *SU->getInstr());
3588   return SU;
3589 }
3590 
3591 /// Called after ScheduleDAGMI has scheduled an instruction and updated
3592 /// scheduled/remaining flags in the DAG nodes.
3593 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3594   SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3595   Top.bumpNode(SU);
3596 }
3597 
3598 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) {
3599   return new ScheduleDAGMI(C, std::make_unique<PostGenericScheduler>(C),
3600                            /*RemoveKillFlags=*/true);
3601 }
3602 
3603 //===----------------------------------------------------------------------===//
3604 // ILP Scheduler. Currently for experimental analysis of heuristics.
3605 //===----------------------------------------------------------------------===//
3606 
3607 namespace {
3608 
3609 /// Order nodes by the ILP metric.
3610 struct ILPOrder {
3611   const SchedDFSResult *DFSResult = nullptr;
3612   const BitVector *ScheduledTrees = nullptr;
3613   bool MaximizeILP;
3614 
3615   ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {}
3616 
3617   /// Apply a less-than relation on node priority.
3618   ///
3619   /// (Return true if A comes after B in the Q.)
3620   bool operator()(const SUnit *A, const SUnit *B) const {
3621     unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3622     unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3623     if (SchedTreeA != SchedTreeB) {
3624       // Unscheduled trees have lower priority.
3625       if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3626         return ScheduledTrees->test(SchedTreeB);
3627 
3628       // Trees with shallower connections have have lower priority.
3629       if (DFSResult->getSubtreeLevel(SchedTreeA)
3630           != DFSResult->getSubtreeLevel(SchedTreeB)) {
3631         return DFSResult->getSubtreeLevel(SchedTreeA)
3632           < DFSResult->getSubtreeLevel(SchedTreeB);
3633       }
3634     }
3635     if (MaximizeILP)
3636       return DFSResult->getILP(A) < DFSResult->getILP(B);
3637     else
3638       return DFSResult->getILP(A) > DFSResult->getILP(B);
3639   }
3640 };
3641 
3642 /// Schedule based on the ILP metric.
3643 class ILPScheduler : public MachineSchedStrategy {
3644   ScheduleDAGMILive *DAG = nullptr;
3645   ILPOrder Cmp;
3646 
3647   std::vector<SUnit*> ReadyQ;
3648 
3649 public:
3650   ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {}
3651 
3652   void initialize(ScheduleDAGMI *dag) override {
3653     assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
3654     DAG = static_cast<ScheduleDAGMILive*>(dag);
3655     DAG->computeDFSResult();
3656     Cmp.DFSResult = DAG->getDFSResult();
3657     Cmp.ScheduledTrees = &DAG->getScheduledTrees();
3658     ReadyQ.clear();
3659   }
3660 
3661   void registerRoots() override {
3662     // Restore the heap in ReadyQ with the updated DFS results.
3663     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3664   }
3665 
3666   /// Implement MachineSchedStrategy interface.
3667   /// -----------------------------------------
3668 
3669   /// Callback to select the highest priority node from the ready Q.
3670   SUnit *pickNode(bool &IsTopNode) override {
3671     if (ReadyQ.empty()) return nullptr;
3672     std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3673     SUnit *SU = ReadyQ.back();
3674     ReadyQ.pop_back();
3675     IsTopNode = false;
3676     LLVM_DEBUG(dbgs() << "Pick node "
3677                       << "SU(" << SU->NodeNum << ") "
3678                       << " ILP: " << DAG->getDFSResult()->getILP(SU)
3679                       << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU)
3680                       << " @"
3681                       << DAG->getDFSResult()->getSubtreeLevel(
3682                              DAG->getDFSResult()->getSubtreeID(SU))
3683                       << '\n'
3684                       << "Scheduling " << *SU->getInstr());
3685     return SU;
3686   }
3687 
3688   /// Scheduler callback to notify that a new subtree is scheduled.
3689   void scheduleTree(unsigned SubtreeID) override {
3690     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3691   }
3692 
3693   /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
3694   /// DFSResults, and resort the priority Q.
3695   void schedNode(SUnit *SU, bool IsTopNode) override {
3696     assert(!IsTopNode && "SchedDFSResult needs bottom-up");
3697   }
3698 
3699   void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
3700 
3701   void releaseBottomNode(SUnit *SU) override {
3702     ReadyQ.push_back(SU);
3703     std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3704   }
3705 };
3706 
3707 } // end anonymous namespace
3708 
3709 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
3710   return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(true));
3711 }
3712 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
3713   return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(false));
3714 }
3715 
3716 static MachineSchedRegistry ILPMaxRegistry(
3717   "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
3718 static MachineSchedRegistry ILPMinRegistry(
3719   "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
3720 
3721 //===----------------------------------------------------------------------===//
3722 // Machine Instruction Shuffler for Correctness Testing
3723 //===----------------------------------------------------------------------===//
3724 
3725 #ifndef NDEBUG
3726 namespace {
3727 
3728 /// Apply a less-than relation on the node order, which corresponds to the
3729 /// instruction order prior to scheduling. IsReverse implements greater-than.
3730 template<bool IsReverse>
3731 struct SUnitOrder {
3732   bool operator()(SUnit *A, SUnit *B) const {
3733     if (IsReverse)
3734       return A->NodeNum > B->NodeNum;
3735     else
3736       return A->NodeNum < B->NodeNum;
3737   }
3738 };
3739 
3740 /// Reorder instructions as much as possible.
3741 class InstructionShuffler : public MachineSchedStrategy {
3742   bool IsAlternating;
3743   bool IsTopDown;
3744 
3745   // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
3746   // gives nodes with a higher number higher priority causing the latest
3747   // instructions to be scheduled first.
3748   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>>
3749     TopQ;
3750 
3751   // When scheduling bottom-up, use greater-than as the queue priority.
3752   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>>
3753     BottomQ;
3754 
3755 public:
3756   InstructionShuffler(bool alternate, bool topdown)
3757     : IsAlternating(alternate), IsTopDown(topdown) {}
3758 
3759   void initialize(ScheduleDAGMI*) override {
3760     TopQ.clear();
3761     BottomQ.clear();
3762   }
3763 
3764   /// Implement MachineSchedStrategy interface.
3765   /// -----------------------------------------
3766 
3767   SUnit *pickNode(bool &IsTopNode) override {
3768     SUnit *SU;
3769     if (IsTopDown) {
3770       do {
3771         if (TopQ.empty()) return nullptr;
3772         SU = TopQ.top();
3773         TopQ.pop();
3774       } while (SU->isScheduled);
3775       IsTopNode = true;
3776     } else {
3777       do {
3778         if (BottomQ.empty()) return nullptr;
3779         SU = BottomQ.top();
3780         BottomQ.pop();
3781       } while (SU->isScheduled);
3782       IsTopNode = false;
3783     }
3784     if (IsAlternating)
3785       IsTopDown = !IsTopDown;
3786     return SU;
3787   }
3788 
3789   void schedNode(SUnit *SU, bool IsTopNode) override {}
3790 
3791   void releaseTopNode(SUnit *SU) override {
3792     TopQ.push(SU);
3793   }
3794   void releaseBottomNode(SUnit *SU) override {
3795     BottomQ.push(SU);
3796   }
3797 };
3798 
3799 } // end anonymous namespace
3800 
3801 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
3802   bool Alternate = !ForceTopDown && !ForceBottomUp;
3803   bool TopDown = !ForceBottomUp;
3804   assert((TopDown || !ForceTopDown) &&
3805          "-misched-topdown incompatible with -misched-bottomup");
3806   return new ScheduleDAGMILive(
3807       C, std::make_unique<InstructionShuffler>(Alternate, TopDown));
3808 }
3809 
3810 static MachineSchedRegistry ShufflerRegistry(
3811   "shuffle", "Shuffle machine instructions alternating directions",
3812   createInstructionShuffler);
3813 #endif // !NDEBUG
3814 
3815 //===----------------------------------------------------------------------===//
3816 // GraphWriter support for ScheduleDAGMILive.
3817 //===----------------------------------------------------------------------===//
3818 
3819 #ifndef NDEBUG
3820 namespace llvm {
3821 
3822 template<> struct GraphTraits<
3823   ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
3824 
3825 template<>
3826 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
3827   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
3828 
3829   static std::string getGraphName(const ScheduleDAG *G) {
3830     return std::string(G->MF.getName());
3831   }
3832 
3833   static bool renderGraphFromBottomUp() {
3834     return true;
3835   }
3836 
3837   static bool isNodeHidden(const SUnit *Node, const ScheduleDAG *G) {
3838     if (ViewMISchedCutoff == 0)
3839       return false;
3840     return (Node->Preds.size() > ViewMISchedCutoff
3841          || Node->Succs.size() > ViewMISchedCutoff);
3842   }
3843 
3844   /// If you want to override the dot attributes printed for a particular
3845   /// edge, override this method.
3846   static std::string getEdgeAttributes(const SUnit *Node,
3847                                        SUnitIterator EI,
3848                                        const ScheduleDAG *Graph) {
3849     if (EI.isArtificialDep())
3850       return "color=cyan,style=dashed";
3851     if (EI.isCtrlDep())
3852       return "color=blue,style=dashed";
3853     return "";
3854   }
3855 
3856   static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
3857     std::string Str;
3858     raw_string_ostream SS(Str);
3859     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3860     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3861       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3862     SS << "SU:" << SU->NodeNum;
3863     if (DFS)
3864       SS << " I:" << DFS->getNumInstrs(SU);
3865     return SS.str();
3866   }
3867 
3868   static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
3869     return G->getGraphNodeLabel(SU);
3870   }
3871 
3872   static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
3873     std::string Str("shape=Mrecord");
3874     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3875     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3876       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3877     if (DFS) {
3878       Str += ",style=filled,fillcolor=\"#";
3879       Str += DOT::getColorString(DFS->getSubtreeID(N));
3880       Str += '"';
3881     }
3882     return Str;
3883   }
3884 };
3885 
3886 } // end namespace llvm
3887 #endif // NDEBUG
3888 
3889 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
3890 /// rendered using 'dot'.
3891 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
3892 #ifndef NDEBUG
3893   ViewGraph(this, Name, false, Title);
3894 #else
3895   errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
3896          << "systems with Graphviz or gv!\n";
3897 #endif  // NDEBUG
3898 }
3899 
3900 /// Out-of-line implementation with no arguments is handy for gdb.
3901 void ScheduleDAGMI::viewGraph() {
3902   viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
3903 }
3904