xref: /llvm-project/llvm/lib/CodeGen/MachineScheduler.cpp (revision 325cd2c98ab64b8dbee7f493818ba01e0143d34b)
1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // MachineScheduler schedules machine instructions after phi elimination. It
11 // preserves LiveIntervals so it can be invoked before register allocation.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/MachineScheduler.h"
16 #include "llvm/ADT/PriorityQueue.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
19 #include "llvm/CodeGen/MachineDominators.h"
20 #include "llvm/CodeGen/MachineLoopInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/Passes.h"
23 #include "llvm/CodeGen/RegisterClassInfo.h"
24 #include "llvm/CodeGen/ScheduleDFS.h"
25 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
26 #include "llvm/CodeGen/TargetPassConfig.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/GraphWriter.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Target/TargetInstrInfo.h"
33 
34 using namespace llvm;
35 
36 #define DEBUG_TYPE "misched"
37 
38 namespace llvm {
39 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
40                            cl::desc("Force top-down list scheduling"));
41 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
42                             cl::desc("Force bottom-up list scheduling"));
43 cl::opt<bool>
44 DumpCriticalPathLength("misched-dcpl", cl::Hidden,
45                        cl::desc("Print critical path length to stdout"));
46 }
47 
48 #ifndef NDEBUG
49 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
50   cl::desc("Pop up a window to show MISched dags after they are processed"));
51 
52 /// In some situations a few uninteresting nodes depend on nearly all other
53 /// nodes in the graph, provide a cutoff to hide them.
54 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
55   cl::desc("Hide nodes with more predecessor/successor than cutoff"));
56 
57 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
58   cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
59 
60 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
61   cl::desc("Only schedule this function"));
62 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
63   cl::desc("Only schedule this MBB#"));
64 #else
65 static bool ViewMISchedDAGs = false;
66 #endif // NDEBUG
67 
68 /// Avoid quadratic complexity in unusually large basic blocks by limiting the
69 /// size of the ready lists.
70 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden,
71   cl::desc("Limit ready list to N instructions"), cl::init(256));
72 
73 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
74   cl::desc("Enable register pressure scheduling."), cl::init(true));
75 
76 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
77   cl::desc("Enable cyclic critical path analysis."), cl::init(true));
78 
79 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden,
80                                         cl::desc("Enable memop clustering."),
81                                         cl::init(true));
82 
83 // Experimental heuristics
84 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden,
85   cl::desc("Enable scheduling for macro fusion."), cl::init(true));
86 
87 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
88   cl::desc("Verify machine instrs before and after machine scheduling"));
89 
90 // DAG subtrees must have at least this many nodes.
91 static const unsigned MinSubtreeSize = 8;
92 
93 // Pin the vtables to this file.
94 void MachineSchedStrategy::anchor() {}
95 void ScheduleDAGMutation::anchor() {}
96 
97 //===----------------------------------------------------------------------===//
98 // Machine Instruction Scheduling Pass and Registry
99 //===----------------------------------------------------------------------===//
100 
101 MachineSchedContext::MachineSchedContext():
102     MF(nullptr), MLI(nullptr), MDT(nullptr), PassConfig(nullptr), AA(nullptr), LIS(nullptr) {
103   RegClassInfo = new RegisterClassInfo();
104 }
105 
106 MachineSchedContext::~MachineSchedContext() {
107   delete RegClassInfo;
108 }
109 
110 namespace {
111 /// Base class for a machine scheduler class that can run at any point.
112 class MachineSchedulerBase : public MachineSchedContext,
113                              public MachineFunctionPass {
114 public:
115   MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
116 
117   void print(raw_ostream &O, const Module* = nullptr) const override;
118 
119 protected:
120   void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
121 };
122 
123 /// MachineScheduler runs after coalescing and before register allocation.
124 class MachineScheduler : public MachineSchedulerBase {
125 public:
126   MachineScheduler();
127 
128   void getAnalysisUsage(AnalysisUsage &AU) const override;
129 
130   bool runOnMachineFunction(MachineFunction&) override;
131 
132   static char ID; // Class identification, replacement for typeinfo
133 
134 protected:
135   ScheduleDAGInstrs *createMachineScheduler();
136 };
137 
138 /// PostMachineScheduler runs after shortly before code emission.
139 class PostMachineScheduler : public MachineSchedulerBase {
140 public:
141   PostMachineScheduler();
142 
143   void getAnalysisUsage(AnalysisUsage &AU) const override;
144 
145   bool runOnMachineFunction(MachineFunction&) override;
146 
147   static char ID; // Class identification, replacement for typeinfo
148 
149 protected:
150   ScheduleDAGInstrs *createPostMachineScheduler();
151 };
152 } // namespace
153 
154 char MachineScheduler::ID = 0;
155 
156 char &llvm::MachineSchedulerID = MachineScheduler::ID;
157 
158 INITIALIZE_PASS_BEGIN(MachineScheduler, "machine-scheduler",
159                       "Machine Instruction Scheduler", false, false)
160 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
161 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
162 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
163 INITIALIZE_PASS_END(MachineScheduler, "machine-scheduler",
164                     "Machine Instruction Scheduler", false, false)
165 
166 MachineScheduler::MachineScheduler()
167 : MachineSchedulerBase(ID) {
168   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
169 }
170 
171 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
172   AU.setPreservesCFG();
173   AU.addRequiredID(MachineDominatorsID);
174   AU.addRequired<MachineLoopInfo>();
175   AU.addRequired<AAResultsWrapperPass>();
176   AU.addRequired<TargetPassConfig>();
177   AU.addRequired<SlotIndexes>();
178   AU.addPreserved<SlotIndexes>();
179   AU.addRequired<LiveIntervals>();
180   AU.addPreserved<LiveIntervals>();
181   MachineFunctionPass::getAnalysisUsage(AU);
182 }
183 
184 char PostMachineScheduler::ID = 0;
185 
186 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
187 
188 INITIALIZE_PASS(PostMachineScheduler, "postmisched",
189                 "PostRA Machine Instruction Scheduler", false, false)
190 
191 PostMachineScheduler::PostMachineScheduler()
192 : MachineSchedulerBase(ID) {
193   initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
194 }
195 
196 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
197   AU.setPreservesCFG();
198   AU.addRequiredID(MachineDominatorsID);
199   AU.addRequired<MachineLoopInfo>();
200   AU.addRequired<TargetPassConfig>();
201   MachineFunctionPass::getAnalysisUsage(AU);
202 }
203 
204 MachinePassRegistry MachineSchedRegistry::Registry;
205 
206 /// A dummy default scheduler factory indicates whether the scheduler
207 /// is overridden on the command line.
208 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
209   return nullptr;
210 }
211 
212 /// MachineSchedOpt allows command line selection of the scheduler.
213 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
214                RegisterPassParser<MachineSchedRegistry> >
215 MachineSchedOpt("misched",
216                 cl::init(&useDefaultMachineSched), cl::Hidden,
217                 cl::desc("Machine instruction scheduler to use"));
218 
219 static MachineSchedRegistry
220 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
221                      useDefaultMachineSched);
222 
223 static cl::opt<bool> EnableMachineSched(
224     "enable-misched",
225     cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
226     cl::Hidden);
227 
228 static cl::opt<bool> EnablePostRAMachineSched(
229     "enable-post-misched",
230     cl::desc("Enable the post-ra machine instruction scheduling pass."),
231     cl::init(true), cl::Hidden);
232 
233 /// Forward declare the standard machine scheduler. This will be used as the
234 /// default scheduler if the target does not set a default.
235 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C);
236 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C);
237 
238 /// Decrement this iterator until reaching the top or a non-debug instr.
239 static MachineBasicBlock::const_iterator
240 priorNonDebug(MachineBasicBlock::const_iterator I,
241               MachineBasicBlock::const_iterator Beg) {
242   assert(I != Beg && "reached the top of the region, cannot decrement");
243   while (--I != Beg) {
244     if (!I->isDebugValue())
245       break;
246   }
247   return I;
248 }
249 
250 /// Non-const version.
251 static MachineBasicBlock::iterator
252 priorNonDebug(MachineBasicBlock::iterator I,
253               MachineBasicBlock::const_iterator Beg) {
254   return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)
255       .getNonConstIterator();
256 }
257 
258 /// If this iterator is a debug value, increment until reaching the End or a
259 /// non-debug instruction.
260 static MachineBasicBlock::const_iterator
261 nextIfDebug(MachineBasicBlock::const_iterator I,
262             MachineBasicBlock::const_iterator End) {
263   for(; I != End; ++I) {
264     if (!I->isDebugValue())
265       break;
266   }
267   return I;
268 }
269 
270 /// Non-const version.
271 static MachineBasicBlock::iterator
272 nextIfDebug(MachineBasicBlock::iterator I,
273             MachineBasicBlock::const_iterator End) {
274   return nextIfDebug(MachineBasicBlock::const_iterator(I), End)
275       .getNonConstIterator();
276 }
277 
278 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
279 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
280   // Select the scheduler, or set the default.
281   MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
282   if (Ctor != useDefaultMachineSched)
283     return Ctor(this);
284 
285   // Get the default scheduler set by the target for this function.
286   ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
287   if (Scheduler)
288     return Scheduler;
289 
290   // Default to GenericScheduler.
291   return createGenericSchedLive(this);
292 }
293 
294 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
295 /// the caller. We don't have a command line option to override the postRA
296 /// scheduler. The Target must configure it.
297 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
298   // Get the postRA scheduler set by the target for this function.
299   ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
300   if (Scheduler)
301     return Scheduler;
302 
303   // Default to GenericScheduler.
304   return createGenericSchedPostRA(this);
305 }
306 
307 /// Top-level MachineScheduler pass driver.
308 ///
309 /// Visit blocks in function order. Divide each block into scheduling regions
310 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
311 /// consistent with the DAG builder, which traverses the interior of the
312 /// scheduling regions bottom-up.
313 ///
314 /// This design avoids exposing scheduling boundaries to the DAG builder,
315 /// simplifying the DAG builder's support for "special" target instructions.
316 /// At the same time the design allows target schedulers to operate across
317 /// scheduling boundaries, for example to bundle the boudary instructions
318 /// without reordering them. This creates complexity, because the target
319 /// scheduler must update the RegionBegin and RegionEnd positions cached by
320 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
321 /// design would be to split blocks at scheduling boundaries, but LLVM has a
322 /// general bias against block splitting purely for implementation simplicity.
323 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
324   if (skipFunction(*mf.getFunction()))
325     return false;
326 
327   if (EnableMachineSched.getNumOccurrences()) {
328     if (!EnableMachineSched)
329       return false;
330   } else if (!mf.getSubtarget().enableMachineScheduler())
331     return false;
332 
333   DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
334 
335   // Initialize the context of the pass.
336   MF = &mf;
337   MLI = &getAnalysis<MachineLoopInfo>();
338   MDT = &getAnalysis<MachineDominatorTree>();
339   PassConfig = &getAnalysis<TargetPassConfig>();
340   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
341 
342   LIS = &getAnalysis<LiveIntervals>();
343 
344   if (VerifyScheduling) {
345     DEBUG(LIS->dump());
346     MF->verify(this, "Before machine scheduling.");
347   }
348   RegClassInfo->runOnMachineFunction(*MF);
349 
350   // Instantiate the selected scheduler for this target, function, and
351   // optimization level.
352   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
353   scheduleRegions(*Scheduler, false);
354 
355   DEBUG(LIS->dump());
356   if (VerifyScheduling)
357     MF->verify(this, "After machine scheduling.");
358   return true;
359 }
360 
361 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
362   if (skipFunction(*mf.getFunction()))
363     return false;
364 
365   if (EnablePostRAMachineSched.getNumOccurrences()) {
366     if (!EnablePostRAMachineSched)
367       return false;
368   } else if (!mf.getSubtarget().enablePostRAScheduler()) {
369     DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
370     return false;
371   }
372   DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
373 
374   // Initialize the context of the pass.
375   MF = &mf;
376   PassConfig = &getAnalysis<TargetPassConfig>();
377 
378   if (VerifyScheduling)
379     MF->verify(this, "Before post machine scheduling.");
380 
381   // Instantiate the selected scheduler for this target, function, and
382   // optimization level.
383   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
384   scheduleRegions(*Scheduler, true);
385 
386   if (VerifyScheduling)
387     MF->verify(this, "After post machine scheduling.");
388   return true;
389 }
390 
391 /// Return true of the given instruction should not be included in a scheduling
392 /// region.
393 ///
394 /// MachineScheduler does not currently support scheduling across calls. To
395 /// handle calls, the DAG builder needs to be modified to create register
396 /// anti/output dependencies on the registers clobbered by the call's regmask
397 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
398 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
399 /// the boundary, but there would be no benefit to postRA scheduling across
400 /// calls this late anyway.
401 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
402                             MachineBasicBlock *MBB,
403                             MachineFunction *MF,
404                             const TargetInstrInfo *TII) {
405   return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF);
406 }
407 
408 /// Main driver for both MachineScheduler and PostMachineScheduler.
409 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
410                                            bool FixKillFlags) {
411   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
412 
413   // Visit all machine basic blocks.
414   //
415   // TODO: Visit blocks in global postorder or postorder within the bottom-up
416   // loop tree. Then we can optionally compute global RegPressure.
417   for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
418        MBB != MBBEnd; ++MBB) {
419 
420     Scheduler.startBlock(&*MBB);
421 
422 #ifndef NDEBUG
423     if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
424       continue;
425     if (SchedOnlyBlock.getNumOccurrences()
426         && (int)SchedOnlyBlock != MBB->getNumber())
427       continue;
428 #endif
429 
430     // Break the block into scheduling regions [I, RegionEnd), and schedule each
431     // region as soon as it is discovered. RegionEnd points the scheduling
432     // boundary at the bottom of the region. The DAG does not include RegionEnd,
433     // but the region does (i.e. the next RegionEnd is above the previous
434     // RegionBegin). If the current block has no terminator then RegionEnd ==
435     // MBB->end() for the bottom region.
436     //
437     // The Scheduler may insert instructions during either schedule() or
438     // exitRegion(), even for empty regions. So the local iterators 'I' and
439     // 'RegionEnd' are invalid across these calls.
440     //
441     // MBB::size() uses instr_iterator to count. Here we need a bundle to count
442     // as a single instruction.
443     for(MachineBasicBlock::iterator RegionEnd = MBB->end();
444         RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) {
445 
446       // Avoid decrementing RegionEnd for blocks with no terminator.
447       if (RegionEnd != MBB->end() ||
448           isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
449         --RegionEnd;
450       }
451 
452       // The next region starts above the previous region. Look backward in the
453       // instruction stream until we find the nearest boundary.
454       unsigned NumRegionInstrs = 0;
455       MachineBasicBlock::iterator I = RegionEnd;
456       for (;I != MBB->begin(); --I) {
457         MachineInstr &MI = *std::prev(I);
458         if (isSchedBoundary(&MI, &*MBB, MF, TII))
459           break;
460         if (!MI.isDebugValue())
461           ++NumRegionInstrs;
462       }
463       // Notify the scheduler of the region, even if we may skip scheduling
464       // it. Perhaps it still needs to be bundled.
465       Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
466 
467       // Skip empty scheduling regions (0 or 1 schedulable instructions).
468       if (I == RegionEnd || I == std::prev(RegionEnd)) {
469         // Close the current region. Bundle the terminator if needed.
470         // This invalidates 'RegionEnd' and 'I'.
471         Scheduler.exitRegion();
472         continue;
473       }
474       DEBUG(dbgs() << "********** MI Scheduling **********\n");
475       DEBUG(dbgs() << MF->getName()
476             << ":BB#" << MBB->getNumber() << " " << MBB->getName()
477             << "\n  From: " << *I << "    To: ";
478             if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
479             else dbgs() << "End";
480             dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
481       if (DumpCriticalPathLength) {
482         errs() << MF->getName();
483         errs() << ":BB# " << MBB->getNumber();
484         errs() << " " << MBB->getName() << " \n";
485       }
486 
487       // Schedule a region: possibly reorder instructions.
488       // This invalidates 'RegionEnd' and 'I'.
489       Scheduler.schedule();
490 
491       // Close the current region.
492       Scheduler.exitRegion();
493 
494       // Scheduling has invalidated the current iterator 'I'. Ask the
495       // scheduler for the top of it's scheduled region.
496       RegionEnd = Scheduler.begin();
497     }
498     Scheduler.finishBlock();
499     // FIXME: Ideally, no further passes should rely on kill flags. However,
500     // thumb2 size reduction is currently an exception, so the PostMIScheduler
501     // needs to do this.
502     if (FixKillFlags)
503         Scheduler.fixupKills(&*MBB);
504   }
505   Scheduler.finalizeSchedule();
506 }
507 
508 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
509   // unimplemented
510 }
511 
512 LLVM_DUMP_METHOD
513 void ReadyQueue::dump() {
514   dbgs() << "Queue " << Name << ": ";
515   for (unsigned i = 0, e = Queue.size(); i < e; ++i)
516     dbgs() << Queue[i]->NodeNum << " ";
517   dbgs() << "\n";
518 }
519 
520 //===----------------------------------------------------------------------===//
521 // ScheduleDAGMI - Basic machine instruction scheduling. This is
522 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
523 // virtual registers.
524 // ===----------------------------------------------------------------------===/
525 
526 // Provide a vtable anchor.
527 ScheduleDAGMI::~ScheduleDAGMI() {
528 }
529 
530 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
531   return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
532 }
533 
534 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
535   if (SuccSU != &ExitSU) {
536     // Do not use WillCreateCycle, it assumes SD scheduling.
537     // If Pred is reachable from Succ, then the edge creates a cycle.
538     if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
539       return false;
540     Topo.AddPred(SuccSU, PredDep.getSUnit());
541   }
542   SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
543   // Return true regardless of whether a new edge needed to be inserted.
544   return true;
545 }
546 
547 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
548 /// NumPredsLeft reaches zero, release the successor node.
549 ///
550 /// FIXME: Adjust SuccSU height based on MinLatency.
551 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
552   SUnit *SuccSU = SuccEdge->getSUnit();
553 
554   if (SuccEdge->isWeak()) {
555     --SuccSU->WeakPredsLeft;
556     if (SuccEdge->isCluster())
557       NextClusterSucc = SuccSU;
558     return;
559   }
560 #ifndef NDEBUG
561   if (SuccSU->NumPredsLeft == 0) {
562     dbgs() << "*** Scheduling failed! ***\n";
563     SuccSU->dump(this);
564     dbgs() << " has been released too many times!\n";
565     llvm_unreachable(nullptr);
566   }
567 #endif
568   // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
569   // CurrCycle may have advanced since then.
570   if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
571     SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
572 
573   --SuccSU->NumPredsLeft;
574   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
575     SchedImpl->releaseTopNode(SuccSU);
576 }
577 
578 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
579 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
580   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
581        I != E; ++I) {
582     releaseSucc(SU, &*I);
583   }
584 }
585 
586 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
587 /// NumSuccsLeft reaches zero, release the predecessor node.
588 ///
589 /// FIXME: Adjust PredSU height based on MinLatency.
590 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
591   SUnit *PredSU = PredEdge->getSUnit();
592 
593   if (PredEdge->isWeak()) {
594     --PredSU->WeakSuccsLeft;
595     if (PredEdge->isCluster())
596       NextClusterPred = PredSU;
597     return;
598   }
599 #ifndef NDEBUG
600   if (PredSU->NumSuccsLeft == 0) {
601     dbgs() << "*** Scheduling failed! ***\n";
602     PredSU->dump(this);
603     dbgs() << " has been released too many times!\n";
604     llvm_unreachable(nullptr);
605   }
606 #endif
607   // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
608   // CurrCycle may have advanced since then.
609   if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
610     PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
611 
612   --PredSU->NumSuccsLeft;
613   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
614     SchedImpl->releaseBottomNode(PredSU);
615 }
616 
617 /// releasePredecessors - Call releasePred on each of SU's predecessors.
618 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
619   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
620        I != E; ++I) {
621     releasePred(SU, &*I);
622   }
623 }
624 
625 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
626 /// crossing a scheduling boundary. [begin, end) includes all instructions in
627 /// the region, including the boundary itself and single-instruction regions
628 /// that don't get scheduled.
629 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
630                                      MachineBasicBlock::iterator begin,
631                                      MachineBasicBlock::iterator end,
632                                      unsigned regioninstrs)
633 {
634   ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
635 
636   SchedImpl->initPolicy(begin, end, regioninstrs);
637 }
638 
639 /// This is normally called from the main scheduler loop but may also be invoked
640 /// by the scheduling strategy to perform additional code motion.
641 void ScheduleDAGMI::moveInstruction(
642   MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
643   // Advance RegionBegin if the first instruction moves down.
644   if (&*RegionBegin == MI)
645     ++RegionBegin;
646 
647   // Update the instruction stream.
648   BB->splice(InsertPos, BB, MI);
649 
650   // Update LiveIntervals
651   if (LIS)
652     LIS->handleMove(*MI, /*UpdateFlags=*/true);
653 
654   // Recede RegionBegin if an instruction moves above the first.
655   if (RegionBegin == InsertPos)
656     RegionBegin = MI;
657 }
658 
659 bool ScheduleDAGMI::checkSchedLimit() {
660 #ifndef NDEBUG
661   if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
662     CurrentTop = CurrentBottom;
663     return false;
664   }
665   ++NumInstrsScheduled;
666 #endif
667   return true;
668 }
669 
670 /// Per-region scheduling driver, called back from
671 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that
672 /// does not consider liveness or register pressure. It is useful for PostRA
673 /// scheduling and potentially other custom schedulers.
674 void ScheduleDAGMI::schedule() {
675   DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
676   DEBUG(SchedImpl->dumpPolicy());
677 
678   // Build the DAG.
679   buildSchedGraph(AA);
680 
681   Topo.InitDAGTopologicalSorting();
682 
683   postprocessDAG();
684 
685   SmallVector<SUnit*, 8> TopRoots, BotRoots;
686   findRootsAndBiasEdges(TopRoots, BotRoots);
687 
688   // Initialize the strategy before modifying the DAG.
689   // This may initialize a DFSResult to be used for queue priority.
690   SchedImpl->initialize(this);
691 
692   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
693           SUnits[su].dumpAll(this));
694   if (ViewMISchedDAGs) viewGraph();
695 
696   // Initialize ready queues now that the DAG and priority data are finalized.
697   initQueues(TopRoots, BotRoots);
698 
699   bool IsTopNode = false;
700   while (true) {
701     DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
702     SUnit *SU = SchedImpl->pickNode(IsTopNode);
703     if (!SU) break;
704 
705     assert(!SU->isScheduled && "Node already scheduled");
706     if (!checkSchedLimit())
707       break;
708 
709     MachineInstr *MI = SU->getInstr();
710     if (IsTopNode) {
711       assert(SU->isTopReady() && "node still has unscheduled dependencies");
712       if (&*CurrentTop == MI)
713         CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
714       else
715         moveInstruction(MI, CurrentTop);
716     } else {
717       assert(SU->isBottomReady() && "node still has unscheduled dependencies");
718       MachineBasicBlock::iterator priorII =
719         priorNonDebug(CurrentBottom, CurrentTop);
720       if (&*priorII == MI)
721         CurrentBottom = priorII;
722       else {
723         if (&*CurrentTop == MI)
724           CurrentTop = nextIfDebug(++CurrentTop, priorII);
725         moveInstruction(MI, CurrentBottom);
726         CurrentBottom = MI;
727       }
728     }
729     // Notify the scheduling strategy before updating the DAG.
730     // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
731     // runs, it can then use the accurate ReadyCycle time to determine whether
732     // newly released nodes can move to the readyQ.
733     SchedImpl->schedNode(SU, IsTopNode);
734 
735     updateQueues(SU, IsTopNode);
736   }
737   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
738 
739   placeDebugValues();
740 
741   DEBUG({
742       unsigned BBNum = begin()->getParent()->getNumber();
743       dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
744       dumpSchedule();
745       dbgs() << '\n';
746     });
747 }
748 
749 /// Apply each ScheduleDAGMutation step in order.
750 void ScheduleDAGMI::postprocessDAG() {
751   for (unsigned i = 0, e = Mutations.size(); i < e; ++i) {
752     Mutations[i]->apply(this);
753   }
754 }
755 
756 void ScheduleDAGMI::
757 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
758                       SmallVectorImpl<SUnit*> &BotRoots) {
759   for (std::vector<SUnit>::iterator
760          I = SUnits.begin(), E = SUnits.end(); I != E; ++I) {
761     SUnit *SU = &(*I);
762     assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits");
763 
764     // Order predecessors so DFSResult follows the critical path.
765     SU->biasCriticalPath();
766 
767     // A SUnit is ready to top schedule if it has no predecessors.
768     if (!I->NumPredsLeft)
769       TopRoots.push_back(SU);
770     // A SUnit is ready to bottom schedule if it has no successors.
771     if (!I->NumSuccsLeft)
772       BotRoots.push_back(SU);
773   }
774   ExitSU.biasCriticalPath();
775 }
776 
777 /// Identify DAG roots and setup scheduler queues.
778 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
779                                ArrayRef<SUnit*> BotRoots) {
780   NextClusterSucc = nullptr;
781   NextClusterPred = nullptr;
782 
783   // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
784   //
785   // Nodes with unreleased weak edges can still be roots.
786   // Release top roots in forward order.
787   for (SmallVectorImpl<SUnit*>::const_iterator
788          I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) {
789     SchedImpl->releaseTopNode(*I);
790   }
791   // Release bottom roots in reverse order so the higher priority nodes appear
792   // first. This is more natural and slightly more efficient.
793   for (SmallVectorImpl<SUnit*>::const_reverse_iterator
794          I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
795     SchedImpl->releaseBottomNode(*I);
796   }
797 
798   releaseSuccessors(&EntrySU);
799   releasePredecessors(&ExitSU);
800 
801   SchedImpl->registerRoots();
802 
803   // Advance past initial DebugValues.
804   CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
805   CurrentBottom = RegionEnd;
806 }
807 
808 /// Update scheduler queues after scheduling an instruction.
809 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
810   // Release dependent instructions for scheduling.
811   if (IsTopNode)
812     releaseSuccessors(SU);
813   else
814     releasePredecessors(SU);
815 
816   SU->isScheduled = true;
817 }
818 
819 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
820 void ScheduleDAGMI::placeDebugValues() {
821   // If first instruction was a DBG_VALUE then put it back.
822   if (FirstDbgValue) {
823     BB->splice(RegionBegin, BB, FirstDbgValue);
824     RegionBegin = FirstDbgValue;
825   }
826 
827   for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
828          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
829     std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
830     MachineInstr *DbgValue = P.first;
831     MachineBasicBlock::iterator OrigPrevMI = P.second;
832     if (&*RegionBegin == DbgValue)
833       ++RegionBegin;
834     BB->splice(++OrigPrevMI, BB, DbgValue);
835     if (OrigPrevMI == std::prev(RegionEnd))
836       RegionEnd = DbgValue;
837   }
838   DbgValues.clear();
839   FirstDbgValue = nullptr;
840 }
841 
842 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
843 void ScheduleDAGMI::dumpSchedule() const {
844   for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
845     if (SUnit *SU = getSUnit(&(*MI)))
846       SU->dump(this);
847     else
848       dbgs() << "Missing SUnit\n";
849   }
850 }
851 #endif
852 
853 //===----------------------------------------------------------------------===//
854 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
855 // preservation.
856 //===----------------------------------------------------------------------===//
857 
858 ScheduleDAGMILive::~ScheduleDAGMILive() {
859   delete DFSResult;
860 }
861 
862 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
863 /// crossing a scheduling boundary. [begin, end) includes all instructions in
864 /// the region, including the boundary itself and single-instruction regions
865 /// that don't get scheduled.
866 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
867                                 MachineBasicBlock::iterator begin,
868                                 MachineBasicBlock::iterator end,
869                                 unsigned regioninstrs)
870 {
871   // ScheduleDAGMI initializes SchedImpl's per-region policy.
872   ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
873 
874   // For convenience remember the end of the liveness region.
875   LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
876 
877   SUPressureDiffs.clear();
878 
879   ShouldTrackPressure = SchedImpl->shouldTrackPressure();
880   ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks();
881 
882   assert((!ShouldTrackLaneMasks || ShouldTrackPressure) &&
883          "ShouldTrackLaneMasks requires ShouldTrackPressure");
884 }
885 
886 // Setup the register pressure trackers for the top scheduled top and bottom
887 // scheduled regions.
888 void ScheduleDAGMILive::initRegPressure() {
889   TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin,
890                     ShouldTrackLaneMasks, false);
891   BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
892                     ShouldTrackLaneMasks, false);
893 
894   // Close the RPTracker to finalize live ins.
895   RPTracker.closeRegion();
896 
897   DEBUG(RPTracker.dump());
898 
899   // Initialize the live ins and live outs.
900   TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
901   BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
902 
903   // Close one end of the tracker so we can call
904   // getMaxUpward/DownwardPressureDelta before advancing across any
905   // instructions. This converts currently live regs into live ins/outs.
906   TopRPTracker.closeTop();
907   BotRPTracker.closeBottom();
908 
909   BotRPTracker.initLiveThru(RPTracker);
910   if (!BotRPTracker.getLiveThru().empty()) {
911     TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
912     DEBUG(dbgs() << "Live Thru: ";
913           dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
914   };
915 
916   // For each live out vreg reduce the pressure change associated with other
917   // uses of the same vreg below the live-out reaching def.
918   updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
919 
920   // Account for liveness generated by the region boundary.
921   if (LiveRegionEnd != RegionEnd) {
922     SmallVector<RegisterMaskPair, 8> LiveUses;
923     BotRPTracker.recede(&LiveUses);
924     updatePressureDiffs(LiveUses);
925   }
926 
927   DEBUG(
928     dbgs() << "Top Pressure:\n";
929     dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
930     dbgs() << "Bottom Pressure:\n";
931     dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);
932   );
933 
934   assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
935 
936   // Cache the list of excess pressure sets in this region. This will also track
937   // the max pressure in the scheduled code for these sets.
938   RegionCriticalPSets.clear();
939   const std::vector<unsigned> &RegionPressure =
940     RPTracker.getPressure().MaxSetPressure;
941   for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
942     unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
943     if (RegionPressure[i] > Limit) {
944       DEBUG(dbgs() << TRI->getRegPressureSetName(i)
945             << " Limit " << Limit
946             << " Actual " << RegionPressure[i] << "\n");
947       RegionCriticalPSets.push_back(PressureChange(i));
948     }
949   }
950   DEBUG(dbgs() << "Excess PSets: ";
951         for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
952           dbgs() << TRI->getRegPressureSetName(
953             RegionCriticalPSets[i].getPSet()) << " ";
954         dbgs() << "\n");
955 }
956 
957 void ScheduleDAGMILive::
958 updateScheduledPressure(const SUnit *SU,
959                         const std::vector<unsigned> &NewMaxPressure) {
960   const PressureDiff &PDiff = getPressureDiff(SU);
961   unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
962   for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end();
963        I != E; ++I) {
964     if (!I->isValid())
965       break;
966     unsigned ID = I->getPSet();
967     while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
968       ++CritIdx;
969     if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
970       if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
971           && NewMaxPressure[ID] <= INT16_MAX)
972         RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
973     }
974     unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
975     if (NewMaxPressure[ID] >= Limit - 2) {
976       DEBUG(dbgs() << "  " << TRI->getRegPressureSetName(ID) << ": "
977             << NewMaxPressure[ID]
978             << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit
979             << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n");
980     }
981   }
982 }
983 
984 /// Update the PressureDiff array for liveness after scheduling this
985 /// instruction.
986 void ScheduleDAGMILive::updatePressureDiffs(
987     ArrayRef<RegisterMaskPair> LiveUses) {
988   for (const RegisterMaskPair &P : LiveUses) {
989     unsigned Reg = P.RegUnit;
990     /// FIXME: Currently assuming single-use physregs.
991     if (!TRI->isVirtualRegister(Reg))
992       continue;
993 
994     if (ShouldTrackLaneMasks) {
995       // If the register has just become live then other uses won't change
996       // this fact anymore => decrement pressure.
997       // If the register has just become dead then other uses make it come
998       // back to life => increment pressure.
999       bool Decrement = P.LaneMask != 0;
1000 
1001       for (const VReg2SUnit &V2SU
1002            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1003         SUnit &SU = *V2SU.SU;
1004         if (SU.isScheduled || &SU == &ExitSU)
1005           continue;
1006 
1007         PressureDiff &PDiff = getPressureDiff(&SU);
1008         PDiff.addPressureChange(Reg, Decrement, &MRI);
1009         DEBUG(
1010           dbgs() << "  UpdateRegP: SU(" << SU.NodeNum << ") "
1011                  << PrintReg(Reg, TRI) << ':' << PrintLaneMask(P.LaneMask)
1012                  << ' ' << *SU.getInstr();
1013           dbgs() << "              to ";
1014           PDiff.dump(*TRI);
1015         );
1016       }
1017     } else {
1018       assert(P.LaneMask != 0);
1019       DEBUG(dbgs() << "  LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n");
1020       // This may be called before CurrentBottom has been initialized. However,
1021       // BotRPTracker must have a valid position. We want the value live into the
1022       // instruction or live out of the block, so ask for the previous
1023       // instruction's live-out.
1024       const LiveInterval &LI = LIS->getInterval(Reg);
1025       VNInfo *VNI;
1026       MachineBasicBlock::const_iterator I =
1027         nextIfDebug(BotRPTracker.getPos(), BB->end());
1028       if (I == BB->end())
1029         VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1030       else {
1031         LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I));
1032         VNI = LRQ.valueIn();
1033       }
1034       // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
1035       assert(VNI && "No live value at use.");
1036       for (const VReg2SUnit &V2SU
1037            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1038         SUnit *SU = V2SU.SU;
1039         // If this use comes before the reaching def, it cannot be a last use,
1040         // so decrease its pressure change.
1041         if (!SU->isScheduled && SU != &ExitSU) {
1042           LiveQueryResult LRQ =
1043               LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1044           if (LRQ.valueIn() == VNI) {
1045             PressureDiff &PDiff = getPressureDiff(SU);
1046             PDiff.addPressureChange(Reg, true, &MRI);
1047             DEBUG(
1048               dbgs() << "  UpdateRegP: SU(" << SU->NodeNum << ") "
1049                      << *SU->getInstr();
1050               dbgs() << "              to ";
1051               PDiff.dump(*TRI);
1052             );
1053           }
1054         }
1055       }
1056     }
1057   }
1058 }
1059 
1060 /// schedule - Called back from MachineScheduler::runOnMachineFunction
1061 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
1062 /// only includes instructions that have DAG nodes, not scheduling boundaries.
1063 ///
1064 /// This is a skeletal driver, with all the functionality pushed into helpers,
1065 /// so that it can be easily extended by experimental schedulers. Generally,
1066 /// implementing MachineSchedStrategy should be sufficient to implement a new
1067 /// scheduling algorithm. However, if a scheduler further subclasses
1068 /// ScheduleDAGMILive then it will want to override this virtual method in order
1069 /// to update any specialized state.
1070 void ScheduleDAGMILive::schedule() {
1071   DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
1072   DEBUG(SchedImpl->dumpPolicy());
1073   buildDAGWithRegPressure();
1074 
1075   Topo.InitDAGTopologicalSorting();
1076 
1077   postprocessDAG();
1078 
1079   SmallVector<SUnit*, 8> TopRoots, BotRoots;
1080   findRootsAndBiasEdges(TopRoots, BotRoots);
1081 
1082   // Initialize the strategy before modifying the DAG.
1083   // This may initialize a DFSResult to be used for queue priority.
1084   SchedImpl->initialize(this);
1085 
1086   DEBUG(
1087     for (const SUnit &SU : SUnits) {
1088       SU.dumpAll(this);
1089       if (ShouldTrackPressure) {
1090         dbgs() << "  Pressure Diff      : ";
1091         getPressureDiff(&SU).dump(*TRI);
1092       }
1093       dbgs() << '\n';
1094     }
1095   );
1096   if (ViewMISchedDAGs) viewGraph();
1097 
1098   // Initialize ready queues now that the DAG and priority data are finalized.
1099   initQueues(TopRoots, BotRoots);
1100 
1101   bool IsTopNode = false;
1102   while (true) {
1103     DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
1104     SUnit *SU = SchedImpl->pickNode(IsTopNode);
1105     if (!SU) break;
1106 
1107     assert(!SU->isScheduled && "Node already scheduled");
1108     if (!checkSchedLimit())
1109       break;
1110 
1111     scheduleMI(SU, IsTopNode);
1112 
1113     if (DFSResult) {
1114       unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1115       if (!ScheduledTrees.test(SubtreeID)) {
1116         ScheduledTrees.set(SubtreeID);
1117         DFSResult->scheduleTree(SubtreeID);
1118         SchedImpl->scheduleTree(SubtreeID);
1119       }
1120     }
1121 
1122     // Notify the scheduling strategy after updating the DAG.
1123     SchedImpl->schedNode(SU, IsTopNode);
1124 
1125     updateQueues(SU, IsTopNode);
1126   }
1127   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1128 
1129   placeDebugValues();
1130 
1131   DEBUG({
1132       unsigned BBNum = begin()->getParent()->getNumber();
1133       dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
1134       dumpSchedule();
1135       dbgs() << '\n';
1136     });
1137 }
1138 
1139 /// Build the DAG and setup three register pressure trackers.
1140 void ScheduleDAGMILive::buildDAGWithRegPressure() {
1141   if (!ShouldTrackPressure) {
1142     RPTracker.reset();
1143     RegionCriticalPSets.clear();
1144     buildSchedGraph(AA);
1145     return;
1146   }
1147 
1148   // Initialize the register pressure tracker used by buildSchedGraph.
1149   RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1150                  ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true);
1151 
1152   // Account for liveness generate by the region boundary.
1153   if (LiveRegionEnd != RegionEnd)
1154     RPTracker.recede();
1155 
1156   // Build the DAG, and compute current register pressure.
1157   buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks);
1158 
1159   // Initialize top/bottom trackers after computing region pressure.
1160   initRegPressure();
1161 }
1162 
1163 void ScheduleDAGMILive::computeDFSResult() {
1164   if (!DFSResult)
1165     DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1166   DFSResult->clear();
1167   ScheduledTrees.clear();
1168   DFSResult->resize(SUnits.size());
1169   DFSResult->compute(SUnits);
1170   ScheduledTrees.resize(DFSResult->getNumSubtrees());
1171 }
1172 
1173 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
1174 /// only provides the critical path for single block loops. To handle loops that
1175 /// span blocks, we could use the vreg path latencies provided by
1176 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1177 /// available for use in the scheduler.
1178 ///
1179 /// The cyclic path estimation identifies a def-use pair that crosses the back
1180 /// edge and considers the depth and height of the nodes. For example, consider
1181 /// the following instruction sequence where each instruction has unit latency
1182 /// and defines an epomymous virtual register:
1183 ///
1184 /// a->b(a,c)->c(b)->d(c)->exit
1185 ///
1186 /// The cyclic critical path is a two cycles: b->c->b
1187 /// The acyclic critical path is four cycles: a->b->c->d->exit
1188 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
1189 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1190 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1191 /// LiveInDepth = depth(b) = len(a->b) = 1
1192 ///
1193 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1194 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1195 /// CyclicCriticalPath = min(2, 2) = 2
1196 ///
1197 /// This could be relevant to PostRA scheduling, but is currently implemented
1198 /// assuming LiveIntervals.
1199 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1200   // This only applies to single block loop.
1201   if (!BB->isSuccessor(BB))
1202     return 0;
1203 
1204   unsigned MaxCyclicLatency = 0;
1205   // Visit each live out vreg def to find def/use pairs that cross iterations.
1206   for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) {
1207     unsigned Reg = P.RegUnit;
1208     if (!TRI->isVirtualRegister(Reg))
1209         continue;
1210     const LiveInterval &LI = LIS->getInterval(Reg);
1211     const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1212     if (!DefVNI)
1213       continue;
1214 
1215     MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1216     const SUnit *DefSU = getSUnit(DefMI);
1217     if (!DefSU)
1218       continue;
1219 
1220     unsigned LiveOutHeight = DefSU->getHeight();
1221     unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1222     // Visit all local users of the vreg def.
1223     for (const VReg2SUnit &V2SU
1224          : make_range(VRegUses.find(Reg), VRegUses.end())) {
1225       SUnit *SU = V2SU.SU;
1226       if (SU == &ExitSU)
1227         continue;
1228 
1229       // Only consider uses of the phi.
1230       LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1231       if (!LRQ.valueIn()->isPHIDef())
1232         continue;
1233 
1234       // Assume that a path spanning two iterations is a cycle, which could
1235       // overestimate in strange cases. This allows cyclic latency to be
1236       // estimated as the minimum slack of the vreg's depth or height.
1237       unsigned CyclicLatency = 0;
1238       if (LiveOutDepth > SU->getDepth())
1239         CyclicLatency = LiveOutDepth - SU->getDepth();
1240 
1241       unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
1242       if (LiveInHeight > LiveOutHeight) {
1243         if (LiveInHeight - LiveOutHeight < CyclicLatency)
1244           CyclicLatency = LiveInHeight - LiveOutHeight;
1245       } else
1246         CyclicLatency = 0;
1247 
1248       DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1249             << SU->NodeNum << ") = " << CyclicLatency << "c\n");
1250       if (CyclicLatency > MaxCyclicLatency)
1251         MaxCyclicLatency = CyclicLatency;
1252     }
1253   }
1254   DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1255   return MaxCyclicLatency;
1256 }
1257 
1258 /// Release ExitSU predecessors and setup scheduler queues. Re-position
1259 /// the Top RP tracker in case the region beginning has changed.
1260 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots,
1261                                    ArrayRef<SUnit*> BotRoots) {
1262   ScheduleDAGMI::initQueues(TopRoots, BotRoots);
1263   if (ShouldTrackPressure) {
1264     assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1265     TopRPTracker.setPos(CurrentTop);
1266   }
1267 }
1268 
1269 /// Move an instruction and update register pressure.
1270 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1271   // Move the instruction to its new location in the instruction stream.
1272   MachineInstr *MI = SU->getInstr();
1273 
1274   if (IsTopNode) {
1275     assert(SU->isTopReady() && "node still has unscheduled dependencies");
1276     if (&*CurrentTop == MI)
1277       CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1278     else {
1279       moveInstruction(MI, CurrentTop);
1280       TopRPTracker.setPos(MI);
1281     }
1282 
1283     if (ShouldTrackPressure) {
1284       // Update top scheduled pressure.
1285       RegisterOperands RegOpers;
1286       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1287       if (ShouldTrackLaneMasks) {
1288         // Adjust liveness and add missing dead+read-undef flags.
1289         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1290         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1291       } else {
1292         // Adjust for missing dead-def flags.
1293         RegOpers.detectDeadDefs(*MI, *LIS);
1294       }
1295 
1296       TopRPTracker.advance(RegOpers);
1297       assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1298       DEBUG(
1299         dbgs() << "Top Pressure:\n";
1300         dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
1301       );
1302 
1303       updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1304     }
1305   } else {
1306     assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1307     MachineBasicBlock::iterator priorII =
1308       priorNonDebug(CurrentBottom, CurrentTop);
1309     if (&*priorII == MI)
1310       CurrentBottom = priorII;
1311     else {
1312       if (&*CurrentTop == MI) {
1313         CurrentTop = nextIfDebug(++CurrentTop, priorII);
1314         TopRPTracker.setPos(CurrentTop);
1315       }
1316       moveInstruction(MI, CurrentBottom);
1317       CurrentBottom = MI;
1318     }
1319     if (ShouldTrackPressure) {
1320       RegisterOperands RegOpers;
1321       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1322       if (ShouldTrackLaneMasks) {
1323         // Adjust liveness and add missing dead+read-undef flags.
1324         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1325         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1326       } else {
1327         // Adjust for missing dead-def flags.
1328         RegOpers.detectDeadDefs(*MI, *LIS);
1329       }
1330 
1331       BotRPTracker.recedeSkipDebugValues();
1332       SmallVector<RegisterMaskPair, 8> LiveUses;
1333       BotRPTracker.recede(RegOpers, &LiveUses);
1334       assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1335       DEBUG(
1336         dbgs() << "Bottom Pressure:\n";
1337         dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);
1338       );
1339 
1340       updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1341       updatePressureDiffs(LiveUses);
1342     }
1343   }
1344 }
1345 
1346 //===----------------------------------------------------------------------===//
1347 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores.
1348 //===----------------------------------------------------------------------===//
1349 
1350 namespace {
1351 /// \brief Post-process the DAG to create cluster edges between neighboring
1352 /// loads or between neighboring stores.
1353 class BaseMemOpClusterMutation : public ScheduleDAGMutation {
1354   struct MemOpInfo {
1355     SUnit *SU;
1356     unsigned BaseReg;
1357     int64_t Offset;
1358     MemOpInfo(SUnit *su, unsigned reg, int64_t ofs)
1359         : SU(su), BaseReg(reg), Offset(ofs) {}
1360 
1361     bool operator<(const MemOpInfo&RHS) const {
1362       return std::tie(BaseReg, Offset, SU->NodeNum) <
1363              std::tie(RHS.BaseReg, RHS.Offset, RHS.SU->NodeNum);
1364     }
1365   };
1366 
1367   const TargetInstrInfo *TII;
1368   const TargetRegisterInfo *TRI;
1369   bool IsLoad;
1370 
1371 public:
1372   BaseMemOpClusterMutation(const TargetInstrInfo *tii,
1373                            const TargetRegisterInfo *tri, bool IsLoad)
1374       : TII(tii), TRI(tri), IsLoad(IsLoad) {}
1375 
1376   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1377 
1378 protected:
1379   void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG);
1380 };
1381 
1382 class StoreClusterMutation : public BaseMemOpClusterMutation {
1383 public:
1384   StoreClusterMutation(const TargetInstrInfo *tii,
1385                        const TargetRegisterInfo *tri)
1386       : BaseMemOpClusterMutation(tii, tri, false) {}
1387 };
1388 
1389 class LoadClusterMutation : public BaseMemOpClusterMutation {
1390 public:
1391   LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri)
1392       : BaseMemOpClusterMutation(tii, tri, true) {}
1393 };
1394 } // anonymous
1395 
1396 namespace llvm {
1397 
1398 std::unique_ptr<ScheduleDAGMutation>
1399 createLoadClusterDAGMutation(const TargetInstrInfo *TII,
1400                              const TargetRegisterInfo *TRI) {
1401   return make_unique<LoadClusterMutation>(TII, TRI);
1402 }
1403 
1404 std::unique_ptr<ScheduleDAGMutation>
1405 createStoreClusterDAGMutation(const TargetInstrInfo *TII,
1406                               const TargetRegisterInfo *TRI) {
1407   return make_unique<StoreClusterMutation>(TII, TRI);
1408 }
1409 
1410 } // namespace llvm
1411 
1412 void BaseMemOpClusterMutation::clusterNeighboringMemOps(
1413     ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG) {
1414   SmallVector<MemOpInfo, 32> MemOpRecords;
1415   for (unsigned Idx = 0, End = MemOps.size(); Idx != End; ++Idx) {
1416     SUnit *SU = MemOps[Idx];
1417     unsigned BaseReg;
1418     int64_t Offset;
1419     if (TII->getMemOpBaseRegImmOfs(*SU->getInstr(), BaseReg, Offset, TRI))
1420       MemOpRecords.push_back(MemOpInfo(SU, BaseReg, Offset));
1421   }
1422   if (MemOpRecords.size() < 2)
1423     return;
1424 
1425   std::sort(MemOpRecords.begin(), MemOpRecords.end());
1426   unsigned ClusterLength = 1;
1427   for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) {
1428     if (MemOpRecords[Idx].BaseReg != MemOpRecords[Idx+1].BaseReg) {
1429       ClusterLength = 1;
1430       continue;
1431     }
1432 
1433     SUnit *SUa = MemOpRecords[Idx].SU;
1434     SUnit *SUb = MemOpRecords[Idx+1].SU;
1435     if (TII->shouldClusterMemOps(*SUa->getInstr(), *SUb->getInstr(),
1436                                  ClusterLength) &&
1437         DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
1438       DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU("
1439             << SUb->NodeNum << ")\n");
1440       // Copy successor edges from SUa to SUb. Interleaving computation
1441       // dependent on SUa can prevent load combining due to register reuse.
1442       // Predecessor edges do not need to be copied from SUb to SUa since nearby
1443       // loads should have effectively the same inputs.
1444       for (SUnit::const_succ_iterator
1445              SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) {
1446         if (SI->getSUnit() == SUb)
1447           continue;
1448         DEBUG(dbgs() << "  Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n");
1449         DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial));
1450       }
1451       ++ClusterLength;
1452     } else
1453       ClusterLength = 1;
1454   }
1455 }
1456 
1457 /// \brief Callback from DAG postProcessing to create cluster edges for loads.
1458 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAGInstrs) {
1459 
1460   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1461 
1462   // Map DAG NodeNum to store chain ID.
1463   DenseMap<unsigned, unsigned> StoreChainIDs;
1464   // Map each store chain to a set of dependent MemOps.
1465   SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
1466   for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
1467     SUnit *SU = &DAG->SUnits[Idx];
1468     if ((IsLoad && !SU->getInstr()->mayLoad()) ||
1469         (!IsLoad && !SU->getInstr()->mayStore()))
1470       continue;
1471 
1472     unsigned ChainPredID = DAG->SUnits.size();
1473     for (SUnit::const_pred_iterator
1474            PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
1475       if (PI->isCtrl()) {
1476         ChainPredID = PI->getSUnit()->NodeNum;
1477         break;
1478       }
1479     }
1480     // Check if this chain-like pred has been seen
1481     // before. ChainPredID==MaxNodeID at the top of the schedule.
1482     unsigned NumChains = StoreChainDependents.size();
1483     std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
1484       StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
1485     if (Result.second)
1486       StoreChainDependents.resize(NumChains + 1);
1487     StoreChainDependents[Result.first->second].push_back(SU);
1488   }
1489 
1490   // Iterate over the store chains.
1491   for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx)
1492     clusterNeighboringMemOps(StoreChainDependents[Idx], DAG);
1493 }
1494 
1495 //===----------------------------------------------------------------------===//
1496 // MacroFusion - DAG post-processing to encourage fusion of macro ops.
1497 //===----------------------------------------------------------------------===//
1498 
1499 namespace {
1500 /// \brief Post-process the DAG to create cluster edges between instructions
1501 /// that may be fused by the processor into a single operation.
1502 class MacroFusion : public ScheduleDAGMutation {
1503   const TargetInstrInfo &TII;
1504 public:
1505   MacroFusion(const TargetInstrInfo &TII)
1506     : TII(TII) {}
1507 
1508   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1509 };
1510 } // anonymous
1511 
1512 namespace llvm {
1513 
1514 std::unique_ptr<ScheduleDAGMutation>
1515 createMacroFusionDAGMutation(const TargetInstrInfo *TII) {
1516   return make_unique<MacroFusion>(*TII);
1517 }
1518 
1519 } // namespace llvm
1520 
1521 /// \brief Callback from DAG postProcessing to create cluster edges to encourage
1522 /// fused operations.
1523 void MacroFusion::apply(ScheduleDAGInstrs *DAGInstrs) {
1524   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1525 
1526   // For now, assume targets can only fuse with the branch.
1527   SUnit &ExitSU = DAG->ExitSU;
1528   MachineInstr *Branch = ExitSU.getInstr();
1529   if (!Branch)
1530     return;
1531 
1532   for (SDep &PredDep : ExitSU.Preds) {
1533     if (PredDep.isWeak())
1534       continue;
1535     SUnit &SU = *PredDep.getSUnit();
1536     MachineInstr &Pred = *SU.getInstr();
1537     if (!TII.shouldScheduleAdjacent(Pred, *Branch))
1538       continue;
1539 
1540     // Create a single weak edge from SU to ExitSU. The only effect is to cause
1541     // bottom-up scheduling to heavily prioritize the clustered SU.  There is no
1542     // need to copy predecessor edges from ExitSU to SU, since top-down
1543     // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling
1544     // of SU, we could create an artificial edge from the deepest root, but it
1545     // hasn't been needed yet.
1546     bool Success = DAG->addEdge(&ExitSU, SDep(&SU, SDep::Cluster));
1547     (void)Success;
1548     assert(Success && "No DAG nodes should be reachable from ExitSU");
1549 
1550     // Adjust latency of data deps between the nodes.
1551     for (SDep &PredDep : ExitSU.Preds) {
1552       if (PredDep.getSUnit() == &SU)
1553         PredDep.setLatency(0);
1554     }
1555     for (SDep &SuccDep : SU.Succs) {
1556       if (SuccDep.getSUnit() == &ExitSU)
1557         SuccDep.setLatency(0);
1558     }
1559 
1560     DEBUG(dbgs() << "Macro Fuse SU(" << SU.NodeNum << ")\n");
1561     break;
1562   }
1563 }
1564 
1565 //===----------------------------------------------------------------------===//
1566 // CopyConstrain - DAG post-processing to encourage copy elimination.
1567 //===----------------------------------------------------------------------===//
1568 
1569 namespace {
1570 /// \brief Post-process the DAG to create weak edges from all uses of a copy to
1571 /// the one use that defines the copy's source vreg, most likely an induction
1572 /// variable increment.
1573 class CopyConstrain : public ScheduleDAGMutation {
1574   // Transient state.
1575   SlotIndex RegionBeginIdx;
1576   // RegionEndIdx is the slot index of the last non-debug instruction in the
1577   // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1578   SlotIndex RegionEndIdx;
1579 public:
1580   CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1581 
1582   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1583 
1584 protected:
1585   void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
1586 };
1587 } // anonymous
1588 
1589 namespace llvm {
1590 
1591 std::unique_ptr<ScheduleDAGMutation>
1592 createCopyConstrainDAGMutation(const TargetInstrInfo *TII,
1593                              const TargetRegisterInfo *TRI) {
1594   return make_unique<CopyConstrain>(TII, TRI);
1595 }
1596 
1597 } // namespace llvm
1598 
1599 /// constrainLocalCopy handles two possibilities:
1600 /// 1) Local src:
1601 /// I0:     = dst
1602 /// I1: src = ...
1603 /// I2:     = dst
1604 /// I3: dst = src (copy)
1605 /// (create pred->succ edges I0->I1, I2->I1)
1606 ///
1607 /// 2) Local copy:
1608 /// I0: dst = src (copy)
1609 /// I1:     = dst
1610 /// I2: src = ...
1611 /// I3:     = dst
1612 /// (create pred->succ edges I1->I2, I3->I2)
1613 ///
1614 /// Although the MachineScheduler is currently constrained to single blocks,
1615 /// this algorithm should handle extended blocks. An EBB is a set of
1616 /// contiguously numbered blocks such that the previous block in the EBB is
1617 /// always the single predecessor.
1618 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
1619   LiveIntervals *LIS = DAG->getLIS();
1620   MachineInstr *Copy = CopySU->getInstr();
1621 
1622   // Check for pure vreg copies.
1623   const MachineOperand &SrcOp = Copy->getOperand(1);
1624   unsigned SrcReg = SrcOp.getReg();
1625   if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !SrcOp.readsReg())
1626     return;
1627 
1628   const MachineOperand &DstOp = Copy->getOperand(0);
1629   unsigned DstReg = DstOp.getReg();
1630   if (!TargetRegisterInfo::isVirtualRegister(DstReg) || DstOp.isDead())
1631     return;
1632 
1633   // Check if either the dest or source is local. If it's live across a back
1634   // edge, it's not local. Note that if both vregs are live across the back
1635   // edge, we cannot successfully contrain the copy without cyclic scheduling.
1636   // If both the copy's source and dest are local live intervals, then we
1637   // should treat the dest as the global for the purpose of adding
1638   // constraints. This adds edges from source's other uses to the copy.
1639   unsigned LocalReg = SrcReg;
1640   unsigned GlobalReg = DstReg;
1641   LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
1642   if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
1643     LocalReg = DstReg;
1644     GlobalReg = SrcReg;
1645     LocalLI = &LIS->getInterval(LocalReg);
1646     if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
1647       return;
1648   }
1649   LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1650 
1651   // Find the global segment after the start of the local LI.
1652   LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1653   // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1654   // local live range. We could create edges from other global uses to the local
1655   // start, but the coalescer should have already eliminated these cases, so
1656   // don't bother dealing with it.
1657   if (GlobalSegment == GlobalLI->end())
1658     return;
1659 
1660   // If GlobalSegment is killed at the LocalLI->start, the call to find()
1661   // returned the next global segment. But if GlobalSegment overlaps with
1662   // LocalLI->start, then advance to the next segement. If a hole in GlobalLI
1663   // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1664   if (GlobalSegment->contains(LocalLI->beginIndex()))
1665     ++GlobalSegment;
1666 
1667   if (GlobalSegment == GlobalLI->end())
1668     return;
1669 
1670   // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1671   if (GlobalSegment != GlobalLI->begin()) {
1672     // Two address defs have no hole.
1673     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
1674                                GlobalSegment->start)) {
1675       return;
1676     }
1677     // If the prior global segment may be defined by the same two-address
1678     // instruction that also defines LocalLI, then can't make a hole here.
1679     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
1680                                LocalLI->beginIndex())) {
1681       return;
1682     }
1683     // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1684     // it would be a disconnected component in the live range.
1685     assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
1686            "Disconnected LRG within the scheduling region.");
1687   }
1688   MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1689   if (!GlobalDef)
1690     return;
1691 
1692   SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1693   if (!GlobalSU)
1694     return;
1695 
1696   // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1697   // constraining the uses of the last local def to precede GlobalDef.
1698   SmallVector<SUnit*,8> LocalUses;
1699   const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1700   MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1701   SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1702   for (SUnit::const_succ_iterator
1703          I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end();
1704        I != E; ++I) {
1705     if (I->getKind() != SDep::Data || I->getReg() != LocalReg)
1706       continue;
1707     if (I->getSUnit() == GlobalSU)
1708       continue;
1709     if (!DAG->canAddEdge(GlobalSU, I->getSUnit()))
1710       return;
1711     LocalUses.push_back(I->getSUnit());
1712   }
1713   // Open the top of the GlobalLI hole by constraining any earlier global uses
1714   // to precede the start of LocalLI.
1715   SmallVector<SUnit*,8> GlobalUses;
1716   MachineInstr *FirstLocalDef =
1717     LIS->getInstructionFromIndex(LocalLI->beginIndex());
1718   SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1719   for (SUnit::const_pred_iterator
1720          I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) {
1721     if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg)
1722       continue;
1723     if (I->getSUnit() == FirstLocalSU)
1724       continue;
1725     if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit()))
1726       return;
1727     GlobalUses.push_back(I->getSUnit());
1728   }
1729   DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1730   // Add the weak edges.
1731   for (SmallVectorImpl<SUnit*>::const_iterator
1732          I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
1733     DEBUG(dbgs() << "  Local use SU(" << (*I)->NodeNum << ") -> SU("
1734           << GlobalSU->NodeNum << ")\n");
1735     DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
1736   }
1737   for (SmallVectorImpl<SUnit*>::const_iterator
1738          I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
1739     DEBUG(dbgs() << "  Global use SU(" << (*I)->NodeNum << ") -> SU("
1740           << FirstLocalSU->NodeNum << ")\n");
1741     DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
1742   }
1743 }
1744 
1745 /// \brief Callback from DAG postProcessing to create weak edges to encourage
1746 /// copy elimination.
1747 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) {
1748   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1749   assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
1750 
1751   MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1752   if (FirstPos == DAG->end())
1753     return;
1754   RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos);
1755   RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1756       *priorNonDebug(DAG->end(), DAG->begin()));
1757 
1758   for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
1759     SUnit *SU = &DAG->SUnits[Idx];
1760     if (!SU->getInstr()->isCopy())
1761       continue;
1762 
1763     constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG));
1764   }
1765 }
1766 
1767 //===----------------------------------------------------------------------===//
1768 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
1769 // and possibly other custom schedulers.
1770 //===----------------------------------------------------------------------===//
1771 
1772 static const unsigned InvalidCycle = ~0U;
1773 
1774 SchedBoundary::~SchedBoundary() { delete HazardRec; }
1775 
1776 void SchedBoundary::reset() {
1777   // A new HazardRec is created for each DAG and owned by SchedBoundary.
1778   // Destroying and reconstructing it is very expensive though. So keep
1779   // invalid, placeholder HazardRecs.
1780   if (HazardRec && HazardRec->isEnabled()) {
1781     delete HazardRec;
1782     HazardRec = nullptr;
1783   }
1784   Available.clear();
1785   Pending.clear();
1786   CheckPending = false;
1787   CurrCycle = 0;
1788   CurrMOps = 0;
1789   MinReadyCycle = UINT_MAX;
1790   ExpectedLatency = 0;
1791   DependentLatency = 0;
1792   RetiredMOps = 0;
1793   MaxExecutedResCount = 0;
1794   ZoneCritResIdx = 0;
1795   IsResourceLimited = false;
1796   ReservedCycles.clear();
1797 #ifndef NDEBUG
1798   // Track the maximum number of stall cycles that could arise either from the
1799   // latency of a DAG edge or the number of cycles that a processor resource is
1800   // reserved (SchedBoundary::ReservedCycles).
1801   MaxObservedStall = 0;
1802 #endif
1803   // Reserve a zero-count for invalid CritResIdx.
1804   ExecutedResCounts.resize(1);
1805   assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
1806 }
1807 
1808 void SchedRemainder::
1809 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
1810   reset();
1811   if (!SchedModel->hasInstrSchedModel())
1812     return;
1813   RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
1814   for (std::vector<SUnit>::iterator
1815          I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) {
1816     const MCSchedClassDesc *SC = DAG->getSchedClass(&*I);
1817     RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC)
1818       * SchedModel->getMicroOpFactor();
1819     for (TargetSchedModel::ProcResIter
1820            PI = SchedModel->getWriteProcResBegin(SC),
1821            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1822       unsigned PIdx = PI->ProcResourceIdx;
1823       unsigned Factor = SchedModel->getResourceFactor(PIdx);
1824       RemainingCounts[PIdx] += (Factor * PI->Cycles);
1825     }
1826   }
1827 }
1828 
1829 void SchedBoundary::
1830 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
1831   reset();
1832   DAG = dag;
1833   SchedModel = smodel;
1834   Rem = rem;
1835   if (SchedModel->hasInstrSchedModel()) {
1836     ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
1837     ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle);
1838   }
1839 }
1840 
1841 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
1842 /// these "soft stalls" differently than the hard stall cycles based on CPU
1843 /// resources and computed by checkHazard(). A fully in-order model
1844 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
1845 /// available for scheduling until they are ready. However, a weaker in-order
1846 /// model may use this for heuristics. For example, if a processor has in-order
1847 /// behavior when reading certain resources, this may come into play.
1848 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
1849   if (!SU->isUnbuffered)
1850     return 0;
1851 
1852   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1853   if (ReadyCycle > CurrCycle)
1854     return ReadyCycle - CurrCycle;
1855   return 0;
1856 }
1857 
1858 /// Compute the next cycle at which the given processor resource can be
1859 /// scheduled.
1860 unsigned SchedBoundary::
1861 getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
1862   unsigned NextUnreserved = ReservedCycles[PIdx];
1863   // If this resource has never been used, always return cycle zero.
1864   if (NextUnreserved == InvalidCycle)
1865     return 0;
1866   // For bottom-up scheduling add the cycles needed for the current operation.
1867   if (!isTop())
1868     NextUnreserved += Cycles;
1869   return NextUnreserved;
1870 }
1871 
1872 /// Does this SU have a hazard within the current instruction group.
1873 ///
1874 /// The scheduler supports two modes of hazard recognition. The first is the
1875 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
1876 /// supports highly complicated in-order reservation tables
1877 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic.
1878 ///
1879 /// The second is a streamlined mechanism that checks for hazards based on
1880 /// simple counters that the scheduler itself maintains. It explicitly checks
1881 /// for instruction dispatch limitations, including the number of micro-ops that
1882 /// can dispatch per cycle.
1883 ///
1884 /// TODO: Also check whether the SU must start a new group.
1885 bool SchedBoundary::checkHazard(SUnit *SU) {
1886   if (HazardRec->isEnabled()
1887       && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
1888     return true;
1889   }
1890   unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
1891   if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
1892     DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
1893           << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
1894     return true;
1895   }
1896   if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
1897     const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1898     for (TargetSchedModel::ProcResIter
1899            PI = SchedModel->getWriteProcResBegin(SC),
1900            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1901       unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles);
1902       if (NRCycle > CurrCycle) {
1903 #ifndef NDEBUG
1904         MaxObservedStall = std::max(PI->Cycles, MaxObservedStall);
1905 #endif
1906         DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") "
1907               << SchedModel->getResourceName(PI->ProcResourceIdx)
1908               << "=" << NRCycle << "c\n");
1909         return true;
1910       }
1911     }
1912   }
1913   return false;
1914 }
1915 
1916 // Find the unscheduled node in ReadySUs with the highest latency.
1917 unsigned SchedBoundary::
1918 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
1919   SUnit *LateSU = nullptr;
1920   unsigned RemLatency = 0;
1921   for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end();
1922        I != E; ++I) {
1923     unsigned L = getUnscheduledLatency(*I);
1924     if (L > RemLatency) {
1925       RemLatency = L;
1926       LateSU = *I;
1927     }
1928   }
1929   if (LateSU) {
1930     DEBUG(dbgs() << Available.getName() << " RemLatency SU("
1931           << LateSU->NodeNum << ") " << RemLatency << "c\n");
1932   }
1933   return RemLatency;
1934 }
1935 
1936 // Count resources in this zone and the remaining unscheduled
1937 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
1938 // resource index, or zero if the zone is issue limited.
1939 unsigned SchedBoundary::
1940 getOtherResourceCount(unsigned &OtherCritIdx) {
1941   OtherCritIdx = 0;
1942   if (!SchedModel->hasInstrSchedModel())
1943     return 0;
1944 
1945   unsigned OtherCritCount = Rem->RemIssueCount
1946     + (RetiredMOps * SchedModel->getMicroOpFactor());
1947   DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
1948         << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
1949   for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
1950        PIdx != PEnd; ++PIdx) {
1951     unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
1952     if (OtherCount > OtherCritCount) {
1953       OtherCritCount = OtherCount;
1954       OtherCritIdx = PIdx;
1955     }
1956   }
1957   if (OtherCritIdx) {
1958     DEBUG(dbgs() << "  " << Available.getName() << " + Remain CritRes: "
1959           << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
1960           << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
1961   }
1962   return OtherCritCount;
1963 }
1964 
1965 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) {
1966   assert(SU->getInstr() && "Scheduled SUnit must have instr");
1967 
1968 #ifndef NDEBUG
1969   // ReadyCycle was been bumped up to the CurrCycle when this node was
1970   // scheduled, but CurrCycle may have been eagerly advanced immediately after
1971   // scheduling, so may now be greater than ReadyCycle.
1972   if (ReadyCycle > CurrCycle)
1973     MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
1974 #endif
1975 
1976   if (ReadyCycle < MinReadyCycle)
1977     MinReadyCycle = ReadyCycle;
1978 
1979   // Check for interlocks first. For the purpose of other heuristics, an
1980   // instruction that cannot issue appears as if it's not in the ReadyQueue.
1981   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
1982   if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) ||
1983       Available.size() >= ReadyListLimit)
1984     Pending.push(SU);
1985   else
1986     Available.push(SU);
1987 }
1988 
1989 /// Move the boundary of scheduled code by one cycle.
1990 void SchedBoundary::bumpCycle(unsigned NextCycle) {
1991   if (SchedModel->getMicroOpBufferSize() == 0) {
1992     assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
1993     if (MinReadyCycle > NextCycle)
1994       NextCycle = MinReadyCycle;
1995   }
1996   // Update the current micro-ops, which will issue in the next cycle.
1997   unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
1998   CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
1999 
2000   // Decrement DependentLatency based on the next cycle.
2001   if ((NextCycle - CurrCycle) > DependentLatency)
2002     DependentLatency = 0;
2003   else
2004     DependentLatency -= (NextCycle - CurrCycle);
2005 
2006   if (!HazardRec->isEnabled()) {
2007     // Bypass HazardRec virtual calls.
2008     CurrCycle = NextCycle;
2009   } else {
2010     // Bypass getHazardType calls in case of long latency.
2011     for (; CurrCycle != NextCycle; ++CurrCycle) {
2012       if (isTop())
2013         HazardRec->AdvanceCycle();
2014       else
2015         HazardRec->RecedeCycle();
2016     }
2017   }
2018   CheckPending = true;
2019   unsigned LFactor = SchedModel->getLatencyFactor();
2020   IsResourceLimited =
2021     (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
2022     > (int)LFactor;
2023 
2024   DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n');
2025 }
2026 
2027 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
2028   ExecutedResCounts[PIdx] += Count;
2029   if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
2030     MaxExecutedResCount = ExecutedResCounts[PIdx];
2031 }
2032 
2033 /// Add the given processor resource to this scheduled zone.
2034 ///
2035 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
2036 /// during which this resource is consumed.
2037 ///
2038 /// \return the next cycle at which the instruction may execute without
2039 /// oversubscribing resources.
2040 unsigned SchedBoundary::
2041 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
2042   unsigned Factor = SchedModel->getResourceFactor(PIdx);
2043   unsigned Count = Factor * Cycles;
2044   DEBUG(dbgs() << "  " << SchedModel->getResourceName(PIdx)
2045         << " +" << Cycles << "x" << Factor << "u\n");
2046 
2047   // Update Executed resources counts.
2048   incExecutedResources(PIdx, Count);
2049   assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
2050   Rem->RemainingCounts[PIdx] -= Count;
2051 
2052   // Check if this resource exceeds the current critical resource. If so, it
2053   // becomes the critical resource.
2054   if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
2055     ZoneCritResIdx = PIdx;
2056     DEBUG(dbgs() << "  *** Critical resource "
2057           << SchedModel->getResourceName(PIdx) << ": "
2058           << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n");
2059   }
2060   // For reserved resources, record the highest cycle using the resource.
2061   unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles);
2062   if (NextAvailable > CurrCycle) {
2063     DEBUG(dbgs() << "  Resource conflict: "
2064           << SchedModel->getProcResource(PIdx)->Name << " reserved until @"
2065           << NextAvailable << "\n");
2066   }
2067   return NextAvailable;
2068 }
2069 
2070 /// Move the boundary of scheduled code by one SUnit.
2071 void SchedBoundary::bumpNode(SUnit *SU) {
2072   // Update the reservation table.
2073   if (HazardRec->isEnabled()) {
2074     if (!isTop() && SU->isCall) {
2075       // Calls are scheduled with their preceding instructions. For bottom-up
2076       // scheduling, clear the pipeline state before emitting.
2077       HazardRec->Reset();
2078     }
2079     HazardRec->EmitInstruction(SU);
2080   }
2081   // checkHazard should prevent scheduling multiple instructions per cycle that
2082   // exceed the issue width.
2083   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2084   unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
2085   assert(
2086       (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
2087       "Cannot schedule this instruction's MicroOps in the current cycle.");
2088 
2089   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2090   DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
2091 
2092   unsigned NextCycle = CurrCycle;
2093   switch (SchedModel->getMicroOpBufferSize()) {
2094   case 0:
2095     assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
2096     break;
2097   case 1:
2098     if (ReadyCycle > NextCycle) {
2099       NextCycle = ReadyCycle;
2100       DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
2101     }
2102     break;
2103   default:
2104     // We don't currently model the OOO reorder buffer, so consider all
2105     // scheduled MOps to be "retired". We do loosely model in-order resource
2106     // latency. If this instruction uses an in-order resource, account for any
2107     // likely stall cycles.
2108     if (SU->isUnbuffered && ReadyCycle > NextCycle)
2109       NextCycle = ReadyCycle;
2110     break;
2111   }
2112   RetiredMOps += IncMOps;
2113 
2114   // Update resource counts and critical resource.
2115   if (SchedModel->hasInstrSchedModel()) {
2116     unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
2117     assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
2118     Rem->RemIssueCount -= DecRemIssue;
2119     if (ZoneCritResIdx) {
2120       // Scale scheduled micro-ops for comparing with the critical resource.
2121       unsigned ScaledMOps =
2122         RetiredMOps * SchedModel->getMicroOpFactor();
2123 
2124       // If scaled micro-ops are now more than the previous critical resource by
2125       // a full cycle, then micro-ops issue becomes critical.
2126       if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
2127           >= (int)SchedModel->getLatencyFactor()) {
2128         ZoneCritResIdx = 0;
2129         DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
2130               << ScaledMOps / SchedModel->getLatencyFactor() << "c\n");
2131       }
2132     }
2133     for (TargetSchedModel::ProcResIter
2134            PI = SchedModel->getWriteProcResBegin(SC),
2135            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2136       unsigned RCycle =
2137         countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
2138       if (RCycle > NextCycle)
2139         NextCycle = RCycle;
2140     }
2141     if (SU->hasReservedResource) {
2142       // For reserved resources, record the highest cycle using the resource.
2143       // For top-down scheduling, this is the cycle in which we schedule this
2144       // instruction plus the number of cycles the operations reserves the
2145       // resource. For bottom-up is it simply the instruction's cycle.
2146       for (TargetSchedModel::ProcResIter
2147              PI = SchedModel->getWriteProcResBegin(SC),
2148              PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2149         unsigned PIdx = PI->ProcResourceIdx;
2150         if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
2151           if (isTop()) {
2152             ReservedCycles[PIdx] =
2153               std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles);
2154           }
2155           else
2156             ReservedCycles[PIdx] = NextCycle;
2157         }
2158       }
2159     }
2160   }
2161   // Update ExpectedLatency and DependentLatency.
2162   unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2163   unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2164   if (SU->getDepth() > TopLatency) {
2165     TopLatency = SU->getDepth();
2166     DEBUG(dbgs() << "  " << Available.getName()
2167           << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n");
2168   }
2169   if (SU->getHeight() > BotLatency) {
2170     BotLatency = SU->getHeight();
2171     DEBUG(dbgs() << "  " << Available.getName()
2172           << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n");
2173   }
2174   // If we stall for any reason, bump the cycle.
2175   if (NextCycle > CurrCycle) {
2176     bumpCycle(NextCycle);
2177   } else {
2178     // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2179     // resource limited. If a stall occurred, bumpCycle does this.
2180     unsigned LFactor = SchedModel->getLatencyFactor();
2181     IsResourceLimited =
2182       (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
2183       > (int)LFactor;
2184   }
2185   // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2186   // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2187   // one cycle.  Since we commonly reach the max MOps here, opportunistically
2188   // bump the cycle to avoid uselessly checking everything in the readyQ.
2189   CurrMOps += IncMOps;
2190   while (CurrMOps >= SchedModel->getIssueWidth()) {
2191     DEBUG(dbgs() << "  *** Max MOps " << CurrMOps
2192           << " at cycle " << CurrCycle << '\n');
2193     bumpCycle(++NextCycle);
2194   }
2195   DEBUG(dumpScheduledState());
2196 }
2197 
2198 /// Release pending ready nodes in to the available queue. This makes them
2199 /// visible to heuristics.
2200 void SchedBoundary::releasePending() {
2201   // If the available queue is empty, it is safe to reset MinReadyCycle.
2202   if (Available.empty())
2203     MinReadyCycle = UINT_MAX;
2204 
2205   // Check to see if any of the pending instructions are ready to issue.  If
2206   // so, add them to the available queue.
2207   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2208   for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
2209     SUnit *SU = *(Pending.begin()+i);
2210     unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2211 
2212     if (ReadyCycle < MinReadyCycle)
2213       MinReadyCycle = ReadyCycle;
2214 
2215     if (!IsBuffered && ReadyCycle > CurrCycle)
2216       continue;
2217 
2218     if (checkHazard(SU))
2219       continue;
2220 
2221     if (Available.size() >= ReadyListLimit)
2222       break;
2223 
2224     Available.push(SU);
2225     Pending.remove(Pending.begin()+i);
2226     --i; --e;
2227   }
2228   CheckPending = false;
2229 }
2230 
2231 /// Remove SU from the ready set for this boundary.
2232 void SchedBoundary::removeReady(SUnit *SU) {
2233   if (Available.isInQueue(SU))
2234     Available.remove(Available.find(SU));
2235   else {
2236     assert(Pending.isInQueue(SU) && "bad ready count");
2237     Pending.remove(Pending.find(SU));
2238   }
2239 }
2240 
2241 /// If this queue only has one ready candidate, return it. As a side effect,
2242 /// defer any nodes that now hit a hazard, and advance the cycle until at least
2243 /// one node is ready. If multiple instructions are ready, return NULL.
2244 SUnit *SchedBoundary::pickOnlyChoice() {
2245   if (CheckPending)
2246     releasePending();
2247 
2248   if (CurrMOps > 0) {
2249     // Defer any ready instrs that now have a hazard.
2250     for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2251       if (checkHazard(*I)) {
2252         Pending.push(*I);
2253         I = Available.remove(I);
2254         continue;
2255       }
2256       ++I;
2257     }
2258   }
2259   for (unsigned i = 0; Available.empty(); ++i) {
2260 //  FIXME: Re-enable assert once PR20057 is resolved.
2261 //    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2262 //           "permanent hazard");
2263     (void)i;
2264     bumpCycle(CurrCycle + 1);
2265     releasePending();
2266   }
2267 
2268   DEBUG(Pending.dump());
2269   DEBUG(Available.dump());
2270 
2271   if (Available.size() == 1)
2272     return *Available.begin();
2273   return nullptr;
2274 }
2275 
2276 #ifndef NDEBUG
2277 // This is useful information to dump after bumpNode.
2278 // Note that the Queue contents are more useful before pickNodeFromQueue.
2279 void SchedBoundary::dumpScheduledState() {
2280   unsigned ResFactor;
2281   unsigned ResCount;
2282   if (ZoneCritResIdx) {
2283     ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2284     ResCount = getResourceCount(ZoneCritResIdx);
2285   } else {
2286     ResFactor = SchedModel->getMicroOpFactor();
2287     ResCount = RetiredMOps * SchedModel->getMicroOpFactor();
2288   }
2289   unsigned LFactor = SchedModel->getLatencyFactor();
2290   dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2291          << "  Retired: " << RetiredMOps;
2292   dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
2293   dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
2294          << ResCount / ResFactor << " "
2295          << SchedModel->getResourceName(ZoneCritResIdx)
2296          << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
2297          << (IsResourceLimited ? "  - Resource" : "  - Latency")
2298          << " limited.\n";
2299 }
2300 #endif
2301 
2302 //===----------------------------------------------------------------------===//
2303 // GenericScheduler - Generic implementation of MachineSchedStrategy.
2304 //===----------------------------------------------------------------------===//
2305 
2306 void GenericSchedulerBase::SchedCandidate::
2307 initResourceDelta(const ScheduleDAGMI *DAG,
2308                   const TargetSchedModel *SchedModel) {
2309   if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2310     return;
2311 
2312   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2313   for (TargetSchedModel::ProcResIter
2314          PI = SchedModel->getWriteProcResBegin(SC),
2315          PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2316     if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2317       ResDelta.CritResources += PI->Cycles;
2318     if (PI->ProcResourceIdx == Policy.DemandResIdx)
2319       ResDelta.DemandedResources += PI->Cycles;
2320   }
2321 }
2322 
2323 /// Set the CandPolicy given a scheduling zone given the current resources and
2324 /// latencies inside and outside the zone.
2325 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA,
2326                                      SchedBoundary &CurrZone,
2327                                      SchedBoundary *OtherZone) {
2328   // Apply preemptive heuristics based on the total latency and resources
2329   // inside and outside this zone. Potential stalls should be considered before
2330   // following this policy.
2331 
2332   // Compute remaining latency. We need this both to determine whether the
2333   // overall schedule has become latency-limited and whether the instructions
2334   // outside this zone are resource or latency limited.
2335   //
2336   // The "dependent" latency is updated incrementally during scheduling as the
2337   // max height/depth of scheduled nodes minus the cycles since it was
2338   // scheduled:
2339   //   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2340   //
2341   // The "independent" latency is the max ready queue depth:
2342   //   ILat = max N.depth for N in Available|Pending
2343   //
2344   // RemainingLatency is the greater of independent and dependent latency.
2345   unsigned RemLatency = CurrZone.getDependentLatency();
2346   RemLatency = std::max(RemLatency,
2347                         CurrZone.findMaxLatency(CurrZone.Available.elements()));
2348   RemLatency = std::max(RemLatency,
2349                         CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2350 
2351   // Compute the critical resource outside the zone.
2352   unsigned OtherCritIdx = 0;
2353   unsigned OtherCount =
2354     OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
2355 
2356   bool OtherResLimited = false;
2357   if (SchedModel->hasInstrSchedModel()) {
2358     unsigned LFactor = SchedModel->getLatencyFactor();
2359     OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor;
2360   }
2361   // Schedule aggressively for latency in PostRA mode. We don't check for
2362   // acyclic latency during PostRA, and highly out-of-order processors will
2363   // skip PostRA scheduling.
2364   if (!OtherResLimited) {
2365     if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) {
2366       Policy.ReduceLatency |= true;
2367       DEBUG(dbgs() << "  " << CurrZone.Available.getName()
2368             << " RemainingLatency " << RemLatency << " + "
2369             << CurrZone.getCurrCycle() << "c > CritPath "
2370             << Rem.CriticalPath << "\n");
2371     }
2372   }
2373   // If the same resource is limiting inside and outside the zone, do nothing.
2374   if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
2375     return;
2376 
2377   DEBUG(
2378     if (CurrZone.isResourceLimited()) {
2379       dbgs() << "  " << CurrZone.Available.getName() << " ResourceLimited: "
2380              << SchedModel->getResourceName(CurrZone.getZoneCritResIdx())
2381              << "\n";
2382     }
2383     if (OtherResLimited)
2384       dbgs() << "  RemainingLimit: "
2385              << SchedModel->getResourceName(OtherCritIdx) << "\n";
2386     if (!CurrZone.isResourceLimited() && !OtherResLimited)
2387       dbgs() << "  Latency limited both directions.\n");
2388 
2389   if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
2390     Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
2391 
2392   if (OtherResLimited)
2393     Policy.DemandResIdx = OtherCritIdx;
2394 }
2395 
2396 #ifndef NDEBUG
2397 const char *GenericSchedulerBase::getReasonStr(
2398   GenericSchedulerBase::CandReason Reason) {
2399   switch (Reason) {
2400   case NoCand:         return "NOCAND    ";
2401   case Only1:          return "ONLY1     ";
2402   case PhysRegCopy:    return "PREG-COPY ";
2403   case RegExcess:      return "REG-EXCESS";
2404   case RegCritical:    return "REG-CRIT  ";
2405   case Stall:          return "STALL     ";
2406   case Cluster:        return "CLUSTER   ";
2407   case Weak:           return "WEAK      ";
2408   case RegMax:         return "REG-MAX   ";
2409   case ResourceReduce: return "RES-REDUCE";
2410   case ResourceDemand: return "RES-DEMAND";
2411   case TopDepthReduce: return "TOP-DEPTH ";
2412   case TopPathReduce:  return "TOP-PATH  ";
2413   case BotHeightReduce:return "BOT-HEIGHT";
2414   case BotPathReduce:  return "BOT-PATH  ";
2415   case NextDefUse:     return "DEF-USE   ";
2416   case NodeOrder:      return "ORDER     ";
2417   };
2418   llvm_unreachable("Unknown reason!");
2419 }
2420 
2421 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
2422   PressureChange P;
2423   unsigned ResIdx = 0;
2424   unsigned Latency = 0;
2425   switch (Cand.Reason) {
2426   default:
2427     break;
2428   case RegExcess:
2429     P = Cand.RPDelta.Excess;
2430     break;
2431   case RegCritical:
2432     P = Cand.RPDelta.CriticalMax;
2433     break;
2434   case RegMax:
2435     P = Cand.RPDelta.CurrentMax;
2436     break;
2437   case ResourceReduce:
2438     ResIdx = Cand.Policy.ReduceResIdx;
2439     break;
2440   case ResourceDemand:
2441     ResIdx = Cand.Policy.DemandResIdx;
2442     break;
2443   case TopDepthReduce:
2444     Latency = Cand.SU->getDepth();
2445     break;
2446   case TopPathReduce:
2447     Latency = Cand.SU->getHeight();
2448     break;
2449   case BotHeightReduce:
2450     Latency = Cand.SU->getHeight();
2451     break;
2452   case BotPathReduce:
2453     Latency = Cand.SU->getDepth();
2454     break;
2455   }
2456   dbgs() << "  Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2457   if (P.isValid())
2458     dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2459            << ":" << P.getUnitInc() << " ";
2460   else
2461     dbgs() << "      ";
2462   if (ResIdx)
2463     dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2464   else
2465     dbgs() << "         ";
2466   if (Latency)
2467     dbgs() << " " << Latency << " cycles ";
2468   else
2469     dbgs() << "          ";
2470   dbgs() << '\n';
2471 }
2472 #endif
2473 
2474 /// Return true if this heuristic determines order.
2475 static bool tryLess(int TryVal, int CandVal,
2476                     GenericSchedulerBase::SchedCandidate &TryCand,
2477                     GenericSchedulerBase::SchedCandidate &Cand,
2478                     GenericSchedulerBase::CandReason Reason) {
2479   if (TryVal < CandVal) {
2480     TryCand.Reason = Reason;
2481     return true;
2482   }
2483   if (TryVal > CandVal) {
2484     if (Cand.Reason > Reason)
2485       Cand.Reason = Reason;
2486     return true;
2487   }
2488   return false;
2489 }
2490 
2491 static bool tryGreater(int TryVal, int CandVal,
2492                        GenericSchedulerBase::SchedCandidate &TryCand,
2493                        GenericSchedulerBase::SchedCandidate &Cand,
2494                        GenericSchedulerBase::CandReason Reason) {
2495   if (TryVal > CandVal) {
2496     TryCand.Reason = Reason;
2497     return true;
2498   }
2499   if (TryVal < CandVal) {
2500     if (Cand.Reason > Reason)
2501       Cand.Reason = Reason;
2502     return true;
2503   }
2504   return false;
2505 }
2506 
2507 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
2508                        GenericSchedulerBase::SchedCandidate &Cand,
2509                        SchedBoundary &Zone) {
2510   if (Zone.isTop()) {
2511     if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
2512       if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2513                   TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
2514         return true;
2515     }
2516     if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2517                    TryCand, Cand, GenericSchedulerBase::TopPathReduce))
2518       return true;
2519   } else {
2520     if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
2521       if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2522                   TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
2523         return true;
2524     }
2525     if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2526                    TryCand, Cand, GenericSchedulerBase::BotPathReduce))
2527       return true;
2528   }
2529   return false;
2530 }
2531 
2532 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) {
2533   DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2534         << GenericSchedulerBase::getReasonStr(Reason) << '\n');
2535 }
2536 
2537 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) {
2538   tracePick(Cand.Reason, Cand.AtTop);
2539 }
2540 
2541 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
2542   assert(dag->hasVRegLiveness() &&
2543          "(PreRA)GenericScheduler needs vreg liveness");
2544   DAG = static_cast<ScheduleDAGMILive*>(dag);
2545   SchedModel = DAG->getSchedModel();
2546   TRI = DAG->TRI;
2547 
2548   Rem.init(DAG, SchedModel);
2549   Top.init(DAG, SchedModel, &Rem);
2550   Bot.init(DAG, SchedModel, &Rem);
2551 
2552   // Initialize resource counts.
2553 
2554   // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
2555   // are disabled, then these HazardRecs will be disabled.
2556   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2557   if (!Top.HazardRec) {
2558     Top.HazardRec =
2559         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2560             Itin, DAG);
2561   }
2562   if (!Bot.HazardRec) {
2563     Bot.HazardRec =
2564         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2565             Itin, DAG);
2566   }
2567   TopCand.SU = nullptr;
2568   BotCand.SU = nullptr;
2569 }
2570 
2571 /// Initialize the per-region scheduling policy.
2572 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
2573                                   MachineBasicBlock::iterator End,
2574                                   unsigned NumRegionInstrs) {
2575   const MachineFunction &MF = *Begin->getParent()->getParent();
2576   const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
2577 
2578   // Avoid setting up the register pressure tracker for small regions to save
2579   // compile time. As a rough heuristic, only track pressure when the number of
2580   // schedulable instructions exceeds half the integer register file.
2581   RegionPolicy.ShouldTrackPressure = true;
2582   for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
2583     MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
2584     if (TLI->isTypeLegal(LegalIntVT)) {
2585       unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
2586         TLI->getRegClassFor(LegalIntVT));
2587       RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
2588     }
2589   }
2590 
2591   // For generic targets, we default to bottom-up, because it's simpler and more
2592   // compile-time optimizations have been implemented in that direction.
2593   RegionPolicy.OnlyBottomUp = true;
2594 
2595   // Allow the subtarget to override default policy.
2596   MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs);
2597 
2598   // After subtarget overrides, apply command line options.
2599   if (!EnableRegPressure)
2600     RegionPolicy.ShouldTrackPressure = false;
2601 
2602   // Check -misched-topdown/bottomup can force or unforce scheduling direction.
2603   // e.g. -misched-bottomup=false allows scheduling in both directions.
2604   assert((!ForceTopDown || !ForceBottomUp) &&
2605          "-misched-topdown incompatible with -misched-bottomup");
2606   if (ForceBottomUp.getNumOccurrences() > 0) {
2607     RegionPolicy.OnlyBottomUp = ForceBottomUp;
2608     if (RegionPolicy.OnlyBottomUp)
2609       RegionPolicy.OnlyTopDown = false;
2610   }
2611   if (ForceTopDown.getNumOccurrences() > 0) {
2612     RegionPolicy.OnlyTopDown = ForceTopDown;
2613     if (RegionPolicy.OnlyTopDown)
2614       RegionPolicy.OnlyBottomUp = false;
2615   }
2616 }
2617 
2618 void GenericScheduler::dumpPolicy() {
2619   dbgs() << "GenericScheduler RegionPolicy: "
2620          << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
2621          << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
2622          << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
2623          << "\n";
2624 }
2625 
2626 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
2627 /// critical path by more cycles than it takes to drain the instruction buffer.
2628 /// We estimate an upper bounds on in-flight instructions as:
2629 ///
2630 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
2631 /// InFlightIterations = AcyclicPath / CyclesPerIteration
2632 /// InFlightResources = InFlightIterations * LoopResources
2633 ///
2634 /// TODO: Check execution resources in addition to IssueCount.
2635 void GenericScheduler::checkAcyclicLatency() {
2636   if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
2637     return;
2638 
2639   // Scaled number of cycles per loop iteration.
2640   unsigned IterCount =
2641     std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
2642              Rem.RemIssueCount);
2643   // Scaled acyclic critical path.
2644   unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
2645   // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
2646   unsigned InFlightCount =
2647     (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
2648   unsigned BufferLimit =
2649     SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
2650 
2651   Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
2652 
2653   DEBUG(dbgs() << "IssueCycles="
2654         << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
2655         << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
2656         << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount
2657         << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
2658         << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
2659         if (Rem.IsAcyclicLatencyLimited)
2660           dbgs() << "  ACYCLIC LATENCY LIMIT\n");
2661 }
2662 
2663 void GenericScheduler::registerRoots() {
2664   Rem.CriticalPath = DAG->ExitSU.getDepth();
2665 
2666   // Some roots may not feed into ExitSU. Check all of them in case.
2667   for (std::vector<SUnit*>::const_iterator
2668          I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) {
2669     if ((*I)->getDepth() > Rem.CriticalPath)
2670       Rem.CriticalPath = (*I)->getDepth();
2671   }
2672   DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
2673   if (DumpCriticalPathLength) {
2674     errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
2675   }
2676 
2677   if (EnableCyclicPath) {
2678     Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
2679     checkAcyclicLatency();
2680   }
2681 }
2682 
2683 static bool tryPressure(const PressureChange &TryP,
2684                         const PressureChange &CandP,
2685                         GenericSchedulerBase::SchedCandidate &TryCand,
2686                         GenericSchedulerBase::SchedCandidate &Cand,
2687                         GenericSchedulerBase::CandReason Reason,
2688                         const TargetRegisterInfo *TRI,
2689                         const MachineFunction &MF) {
2690   // If one candidate decreases and the other increases, go with it.
2691   // Invalid candidates have UnitInc==0.
2692   if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
2693                  Reason)) {
2694     return true;
2695   }
2696   // Do not compare the magnitude of pressure changes between top and bottom
2697   // boundary.
2698   if (Cand.AtTop != TryCand.AtTop)
2699     return false;
2700 
2701   // If both candidates affect the same set in the same boundary, go with the
2702   // smallest increase.
2703   unsigned TryPSet = TryP.getPSetOrMax();
2704   unsigned CandPSet = CandP.getPSetOrMax();
2705   if (TryPSet == CandPSet) {
2706     return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
2707                    Reason);
2708   }
2709 
2710   int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
2711                                  std::numeric_limits<int>::max();
2712 
2713   int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
2714                                    std::numeric_limits<int>::max();
2715 
2716   // If the candidates are decreasing pressure, reverse priority.
2717   if (TryP.getUnitInc() < 0)
2718     std::swap(TryRank, CandRank);
2719   return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
2720 }
2721 
2722 static unsigned getWeakLeft(const SUnit *SU, bool isTop) {
2723   return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
2724 }
2725 
2726 /// Minimize physical register live ranges. Regalloc wants them adjacent to
2727 /// their physreg def/use.
2728 ///
2729 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
2730 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
2731 /// with the operation that produces or consumes the physreg. We'll do this when
2732 /// regalloc has support for parallel copies.
2733 static int biasPhysRegCopy(const SUnit *SU, bool isTop) {
2734   const MachineInstr *MI = SU->getInstr();
2735   if (!MI->isCopy())
2736     return 0;
2737 
2738   unsigned ScheduledOper = isTop ? 1 : 0;
2739   unsigned UnscheduledOper = isTop ? 0 : 1;
2740   // If we have already scheduled the physreg produce/consumer, immediately
2741   // schedule the copy.
2742   if (TargetRegisterInfo::isPhysicalRegister(
2743         MI->getOperand(ScheduledOper).getReg()))
2744     return 1;
2745   // If the physreg is at the boundary, defer it. Otherwise schedule it
2746   // immediately to free the dependent. We can hoist the copy later.
2747   bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
2748   if (TargetRegisterInfo::isPhysicalRegister(
2749         MI->getOperand(UnscheduledOper).getReg()))
2750     return AtBoundary ? -1 : 1;
2751   return 0;
2752 }
2753 
2754 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU,
2755                                      bool AtTop,
2756                                      const RegPressureTracker &RPTracker,
2757                                      RegPressureTracker &TempTracker) {
2758   Cand.SU = SU;
2759   Cand.AtTop = AtTop;
2760   if (DAG->isTrackingPressure()) {
2761     if (AtTop) {
2762       TempTracker.getMaxDownwardPressureDelta(
2763         Cand.SU->getInstr(),
2764         Cand.RPDelta,
2765         DAG->getRegionCriticalPSets(),
2766         DAG->getRegPressure().MaxSetPressure);
2767     } else {
2768       if (VerifyScheduling) {
2769         TempTracker.getMaxUpwardPressureDelta(
2770           Cand.SU->getInstr(),
2771           &DAG->getPressureDiff(Cand.SU),
2772           Cand.RPDelta,
2773           DAG->getRegionCriticalPSets(),
2774           DAG->getRegPressure().MaxSetPressure);
2775       } else {
2776         RPTracker.getUpwardPressureDelta(
2777           Cand.SU->getInstr(),
2778           DAG->getPressureDiff(Cand.SU),
2779           Cand.RPDelta,
2780           DAG->getRegionCriticalPSets(),
2781           DAG->getRegPressure().MaxSetPressure);
2782       }
2783     }
2784   }
2785   DEBUG(if (Cand.RPDelta.Excess.isValid())
2786           dbgs() << "  Try  SU(" << Cand.SU->NodeNum << ") "
2787                  << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet())
2788                  << ":" << Cand.RPDelta.Excess.getUnitInc() << "\n");
2789 }
2790 
2791 /// Apply a set of heursitics to a new candidate. Heuristics are currently
2792 /// hierarchical. This may be more efficient than a graduated cost model because
2793 /// we don't need to evaluate all aspects of the model for each node in the
2794 /// queue. But it's really done to make the heuristics easier to debug and
2795 /// statistically analyze.
2796 ///
2797 /// \param Cand provides the policy and current best candidate.
2798 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
2799 /// \param Zone describes the scheduled zone that we are extending, or nullptr
2800 //              if Cand is from a different zone than TryCand.
2801 void GenericScheduler::tryCandidate(SchedCandidate &Cand,
2802                                     SchedCandidate &TryCand,
2803                                     SchedBoundary *Zone) {
2804   // Initialize the candidate if needed.
2805   if (!Cand.isValid()) {
2806     TryCand.Reason = NodeOrder;
2807     return;
2808   }
2809 
2810   if (tryGreater(biasPhysRegCopy(TryCand.SU, TryCand.AtTop),
2811                  biasPhysRegCopy(Cand.SU, Cand.AtTop),
2812                  TryCand, Cand, PhysRegCopy))
2813     return;
2814 
2815   // Avoid exceeding the target's limit.
2816   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
2817                                                Cand.RPDelta.Excess,
2818                                                TryCand, Cand, RegExcess, TRI,
2819                                                DAG->MF))
2820     return;
2821 
2822   // Avoid increasing the max critical pressure in the scheduled region.
2823   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
2824                                                Cand.RPDelta.CriticalMax,
2825                                                TryCand, Cand, RegCritical, TRI,
2826                                                DAG->MF))
2827     return;
2828 
2829   // We only compare a subset of features when comparing nodes between
2830   // Top and Bottom boundary. Some properties are simply incomparable, in many
2831   // other instances we should only override the other boundary if something
2832   // is a clear good pick on one boundary. Skip heuristics that are more
2833   // "tie-breaking" in nature.
2834   bool SameBoundary = Zone != nullptr;
2835   if (SameBoundary) {
2836     // For loops that are acyclic path limited, aggressively schedule for
2837     // latency. Within an single cycle, whenever CurrMOps > 0, allow normal
2838     // heuristics to take precedence.
2839     if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() &&
2840         tryLatency(TryCand, Cand, *Zone))
2841       return;
2842 
2843     // Prioritize instructions that read unbuffered resources by stall cycles.
2844     if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
2845                 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
2846       return;
2847   }
2848 
2849   // Keep clustered nodes together to encourage downstream peephole
2850   // optimizations which may reduce resource requirements.
2851   //
2852   // This is a best effort to set things up for a post-RA pass. Optimizations
2853   // like generating loads of multiple registers should ideally be done within
2854   // the scheduler pass by combining the loads during DAG postprocessing.
2855   const SUnit *CandNextClusterSU =
2856     Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
2857   const SUnit *TryCandNextClusterSU =
2858     TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
2859   if (tryGreater(TryCand.SU == TryCandNextClusterSU,
2860                  Cand.SU == CandNextClusterSU,
2861                  TryCand, Cand, Cluster))
2862     return;
2863 
2864   if (SameBoundary) {
2865     // Weak edges are for clustering and other constraints.
2866     if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
2867                 getWeakLeft(Cand.SU, Cand.AtTop),
2868                 TryCand, Cand, Weak))
2869       return;
2870   }
2871 
2872   // Avoid increasing the max pressure of the entire region.
2873   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
2874                                                Cand.RPDelta.CurrentMax,
2875                                                TryCand, Cand, RegMax, TRI,
2876                                                DAG->MF))
2877     return;
2878 
2879   if (SameBoundary) {
2880     // Avoid critical resource consumption and balance the schedule.
2881     TryCand.initResourceDelta(DAG, SchedModel);
2882     if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
2883                 TryCand, Cand, ResourceReduce))
2884       return;
2885     if (tryGreater(TryCand.ResDelta.DemandedResources,
2886                    Cand.ResDelta.DemandedResources,
2887                    TryCand, Cand, ResourceDemand))
2888       return;
2889 
2890     // Avoid serializing long latency dependence chains.
2891     // For acyclic path limited loops, latency was already checked above.
2892     if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency &&
2893         !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone))
2894       return;
2895 
2896     // Fall through to original instruction order.
2897     if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
2898         || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
2899       TryCand.Reason = NodeOrder;
2900     }
2901   }
2902 }
2903 
2904 /// Pick the best candidate from the queue.
2905 ///
2906 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
2907 /// DAG building. To adjust for the current scheduling location we need to
2908 /// maintain the number of vreg uses remaining to be top-scheduled.
2909 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
2910                                          const CandPolicy &ZonePolicy,
2911                                          const RegPressureTracker &RPTracker,
2912                                          SchedCandidate &Cand) {
2913   // getMaxPressureDelta temporarily modifies the tracker.
2914   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
2915 
2916   ReadyQueue &Q = Zone.Available;
2917   for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
2918 
2919     SchedCandidate TryCand(ZonePolicy);
2920     initCandidate(TryCand, *I, Zone.isTop(), RPTracker, TempTracker);
2921     // Pass SchedBoundary only when comparing nodes from the same boundary.
2922     SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
2923     tryCandidate(Cand, TryCand, ZoneArg);
2924     if (TryCand.Reason != NoCand) {
2925       // Initialize resource delta if needed in case future heuristics query it.
2926       if (TryCand.ResDelta == SchedResourceDelta())
2927         TryCand.initResourceDelta(DAG, SchedModel);
2928       Cand.setBest(TryCand);
2929       DEBUG(traceCandidate(Cand));
2930     }
2931   }
2932 }
2933 
2934 /// Pick the best candidate node from either the top or bottom queue.
2935 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
2936   // Schedule as far as possible in the direction of no choice. This is most
2937   // efficient, but also provides the best heuristics for CriticalPSets.
2938   if (SUnit *SU = Bot.pickOnlyChoice()) {
2939     IsTopNode = false;
2940     tracePick(Only1, false);
2941     return SU;
2942   }
2943   if (SUnit *SU = Top.pickOnlyChoice()) {
2944     IsTopNode = true;
2945     tracePick(Only1, true);
2946     return SU;
2947   }
2948   // Set the bottom-up policy based on the state of the current bottom zone and
2949   // the instructions outside the zone, including the top zone.
2950   CandPolicy BotPolicy;
2951   setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
2952   // Set the top-down policy based on the state of the current top zone and
2953   // the instructions outside the zone, including the bottom zone.
2954   CandPolicy TopPolicy;
2955   setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
2956 
2957   // See if BotCand is still valid (because we previously scheduled from Top).
2958   DEBUG(dbgs() << "Picking from Bot:\n");
2959   if (!BotCand.isValid() || BotCand.SU->isScheduled ||
2960       BotCand.Policy != BotPolicy) {
2961     BotCand.reset(CandPolicy());
2962     pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
2963     assert(BotCand.Reason != NoCand && "failed to find the first candidate");
2964   } else {
2965     DEBUG(traceCandidate(BotCand));
2966 #ifndef NDEBUG
2967     if (VerifyScheduling) {
2968       SchedCandidate TCand;
2969       TCand.reset(CandPolicy());
2970       pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
2971       assert(TCand.SU == BotCand.SU &&
2972              "Last pick result should correspond to re-picking right now");
2973     }
2974 #endif
2975   }
2976 
2977   // Check if the top Q has a better candidate.
2978   DEBUG(dbgs() << "Picking from Top:\n");
2979   if (!TopCand.isValid() || TopCand.SU->isScheduled ||
2980       TopCand.Policy != TopPolicy) {
2981     TopCand.reset(CandPolicy());
2982     pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
2983     assert(TopCand.Reason != NoCand && "failed to find the first candidate");
2984   } else {
2985     DEBUG(traceCandidate(TopCand));
2986 #ifndef NDEBUG
2987     if (VerifyScheduling) {
2988       SchedCandidate TCand;
2989       TCand.reset(CandPolicy());
2990       pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
2991       assert(TCand.SU == TopCand.SU &&
2992            "Last pick result should correspond to re-picking right now");
2993     }
2994 #endif
2995   }
2996 
2997   // Pick best from BotCand and TopCand.
2998   assert(BotCand.isValid());
2999   assert(TopCand.isValid());
3000   SchedCandidate Cand = BotCand;
3001   TopCand.Reason = NoCand;
3002   tryCandidate(Cand, TopCand, nullptr);
3003   if (TopCand.Reason != NoCand) {
3004     Cand.setBest(TopCand);
3005     DEBUG(traceCandidate(Cand));
3006   }
3007 
3008   IsTopNode = Cand.AtTop;
3009   tracePick(Cand);
3010   return Cand.SU;
3011 }
3012 
3013 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
3014 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
3015   if (DAG->top() == DAG->bottom()) {
3016     assert(Top.Available.empty() && Top.Pending.empty() &&
3017            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
3018     return nullptr;
3019   }
3020   SUnit *SU;
3021   do {
3022     if (RegionPolicy.OnlyTopDown) {
3023       SU = Top.pickOnlyChoice();
3024       if (!SU) {
3025         CandPolicy NoPolicy;
3026         TopCand.reset(NoPolicy);
3027         pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
3028         assert(TopCand.Reason != NoCand && "failed to find a candidate");
3029         tracePick(TopCand);
3030         SU = TopCand.SU;
3031       }
3032       IsTopNode = true;
3033     } else if (RegionPolicy.OnlyBottomUp) {
3034       SU = Bot.pickOnlyChoice();
3035       if (!SU) {
3036         CandPolicy NoPolicy;
3037         BotCand.reset(NoPolicy);
3038         pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
3039         assert(BotCand.Reason != NoCand && "failed to find a candidate");
3040         tracePick(BotCand);
3041         SU = BotCand.SU;
3042       }
3043       IsTopNode = false;
3044     } else {
3045       SU = pickNodeBidirectional(IsTopNode);
3046     }
3047   } while (SU->isScheduled);
3048 
3049   if (SU->isTopReady())
3050     Top.removeReady(SU);
3051   if (SU->isBottomReady())
3052     Bot.removeReady(SU);
3053 
3054   DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
3055   return SU;
3056 }
3057 
3058 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
3059 
3060   MachineBasicBlock::iterator InsertPos = SU->getInstr();
3061   if (!isTop)
3062     ++InsertPos;
3063   SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
3064 
3065   // Find already scheduled copies with a single physreg dependence and move
3066   // them just above the scheduled instruction.
3067   for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end();
3068        I != E; ++I) {
3069     if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg()))
3070       continue;
3071     SUnit *DepSU = I->getSUnit();
3072     if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
3073       continue;
3074     MachineInstr *Copy = DepSU->getInstr();
3075     if (!Copy->isCopy())
3076       continue;
3077     DEBUG(dbgs() << "  Rescheduling physreg copy ";
3078           I->getSUnit()->dump(DAG));
3079     DAG->moveInstruction(Copy, InsertPos);
3080   }
3081 }
3082 
3083 /// Update the scheduler's state after scheduling a node. This is the same node
3084 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
3085 /// update it's state based on the current cycle before MachineSchedStrategy
3086 /// does.
3087 ///
3088 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
3089 /// them here. See comments in biasPhysRegCopy.
3090 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3091   if (IsTopNode) {
3092     SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3093     Top.bumpNode(SU);
3094     if (SU->hasPhysRegUses)
3095       reschedulePhysRegCopies(SU, true);
3096   } else {
3097     SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
3098     Bot.bumpNode(SU);
3099     if (SU->hasPhysRegDefs)
3100       reschedulePhysRegCopies(SU, false);
3101   }
3102 }
3103 
3104 /// Create the standard converging machine scheduler. This will be used as the
3105 /// default scheduler if the target does not set a default.
3106 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C) {
3107   ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, make_unique<GenericScheduler>(C));
3108   // Register DAG post-processors.
3109   //
3110   // FIXME: extend the mutation API to allow earlier mutations to instantiate
3111   // data and pass it to later mutations. Have a single mutation that gathers
3112   // the interesting nodes in one pass.
3113   DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI));
3114   if (EnableMemOpCluster) {
3115     if (DAG->TII->enableClusterLoads())
3116       DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
3117     if (DAG->TII->enableClusterStores())
3118       DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
3119   }
3120   if (EnableMacroFusion)
3121     DAG->addMutation(createMacroFusionDAGMutation(DAG->TII));
3122   return DAG;
3123 }
3124 
3125 static MachineSchedRegistry
3126 GenericSchedRegistry("converge", "Standard converging scheduler.",
3127                      createGenericSchedLive);
3128 
3129 //===----------------------------------------------------------------------===//
3130 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
3131 //===----------------------------------------------------------------------===//
3132 
3133 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
3134   DAG = Dag;
3135   SchedModel = DAG->getSchedModel();
3136   TRI = DAG->TRI;
3137 
3138   Rem.init(DAG, SchedModel);
3139   Top.init(DAG, SchedModel, &Rem);
3140   BotRoots.clear();
3141 
3142   // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
3143   // or are disabled, then these HazardRecs will be disabled.
3144   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3145   if (!Top.HazardRec) {
3146     Top.HazardRec =
3147         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3148             Itin, DAG);
3149   }
3150 }
3151 
3152 
3153 void PostGenericScheduler::registerRoots() {
3154   Rem.CriticalPath = DAG->ExitSU.getDepth();
3155 
3156   // Some roots may not feed into ExitSU. Check all of them in case.
3157   for (SmallVectorImpl<SUnit*>::const_iterator
3158          I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) {
3159     if ((*I)->getDepth() > Rem.CriticalPath)
3160       Rem.CriticalPath = (*I)->getDepth();
3161   }
3162   DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
3163   if (DumpCriticalPathLength) {
3164     errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
3165   }
3166 }
3167 
3168 /// Apply a set of heursitics to a new candidate for PostRA scheduling.
3169 ///
3170 /// \param Cand provides the policy and current best candidate.
3171 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3172 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
3173                                         SchedCandidate &TryCand) {
3174 
3175   // Initialize the candidate if needed.
3176   if (!Cand.isValid()) {
3177     TryCand.Reason = NodeOrder;
3178     return;
3179   }
3180 
3181   // Prioritize instructions that read unbuffered resources by stall cycles.
3182   if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
3183               Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3184     return;
3185 
3186   // Avoid critical resource consumption and balance the schedule.
3187   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3188               TryCand, Cand, ResourceReduce))
3189     return;
3190   if (tryGreater(TryCand.ResDelta.DemandedResources,
3191                  Cand.ResDelta.DemandedResources,
3192                  TryCand, Cand, ResourceDemand))
3193     return;
3194 
3195   // Avoid serializing long latency dependence chains.
3196   if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
3197     return;
3198   }
3199 
3200   // Fall through to original instruction order.
3201   if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
3202     TryCand.Reason = NodeOrder;
3203 }
3204 
3205 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
3206   ReadyQueue &Q = Top.Available;
3207   for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
3208     SchedCandidate TryCand(Cand.Policy);
3209     TryCand.SU = *I;
3210     TryCand.AtTop = true;
3211     TryCand.initResourceDelta(DAG, SchedModel);
3212     tryCandidate(Cand, TryCand);
3213     if (TryCand.Reason != NoCand) {
3214       Cand.setBest(TryCand);
3215       DEBUG(traceCandidate(Cand));
3216     }
3217   }
3218 }
3219 
3220 /// Pick the next node to schedule.
3221 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
3222   if (DAG->top() == DAG->bottom()) {
3223     assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
3224     return nullptr;
3225   }
3226   SUnit *SU;
3227   do {
3228     SU = Top.pickOnlyChoice();
3229     if (SU) {
3230       tracePick(Only1, true);
3231     } else {
3232       CandPolicy NoPolicy;
3233       SchedCandidate TopCand(NoPolicy);
3234       // Set the top-down policy based on the state of the current top zone and
3235       // the instructions outside the zone, including the bottom zone.
3236       setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
3237       pickNodeFromQueue(TopCand);
3238       assert(TopCand.Reason != NoCand && "failed to find a candidate");
3239       tracePick(TopCand);
3240       SU = TopCand.SU;
3241     }
3242   } while (SU->isScheduled);
3243 
3244   IsTopNode = true;
3245   Top.removeReady(SU);
3246 
3247   DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
3248   return SU;
3249 }
3250 
3251 /// Called after ScheduleDAGMI has scheduled an instruction and updated
3252 /// scheduled/remaining flags in the DAG nodes.
3253 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3254   SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3255   Top.bumpNode(SU);
3256 }
3257 
3258 /// Create a generic scheduler with no vreg liveness or DAG mutation passes.
3259 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C) {
3260   return new ScheduleDAGMI(C, make_unique<PostGenericScheduler>(C),
3261                            /*RemoveKillFlags=*/true);
3262 }
3263 
3264 //===----------------------------------------------------------------------===//
3265 // ILP Scheduler. Currently for experimental analysis of heuristics.
3266 //===----------------------------------------------------------------------===//
3267 
3268 namespace {
3269 /// \brief Order nodes by the ILP metric.
3270 struct ILPOrder {
3271   const SchedDFSResult *DFSResult;
3272   const BitVector *ScheduledTrees;
3273   bool MaximizeILP;
3274 
3275   ILPOrder(bool MaxILP)
3276     : DFSResult(nullptr), ScheduledTrees(nullptr), MaximizeILP(MaxILP) {}
3277 
3278   /// \brief Apply a less-than relation on node priority.
3279   ///
3280   /// (Return true if A comes after B in the Q.)
3281   bool operator()(const SUnit *A, const SUnit *B) const {
3282     unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3283     unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3284     if (SchedTreeA != SchedTreeB) {
3285       // Unscheduled trees have lower priority.
3286       if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3287         return ScheduledTrees->test(SchedTreeB);
3288 
3289       // Trees with shallower connections have have lower priority.
3290       if (DFSResult->getSubtreeLevel(SchedTreeA)
3291           != DFSResult->getSubtreeLevel(SchedTreeB)) {
3292         return DFSResult->getSubtreeLevel(SchedTreeA)
3293           < DFSResult->getSubtreeLevel(SchedTreeB);
3294       }
3295     }
3296     if (MaximizeILP)
3297       return DFSResult->getILP(A) < DFSResult->getILP(B);
3298     else
3299       return DFSResult->getILP(A) > DFSResult->getILP(B);
3300   }
3301 };
3302 
3303 /// \brief Schedule based on the ILP metric.
3304 class ILPScheduler : public MachineSchedStrategy {
3305   ScheduleDAGMILive *DAG;
3306   ILPOrder Cmp;
3307 
3308   std::vector<SUnit*> ReadyQ;
3309 public:
3310   ILPScheduler(bool MaximizeILP): DAG(nullptr), Cmp(MaximizeILP) {}
3311 
3312   void initialize(ScheduleDAGMI *dag) override {
3313     assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
3314     DAG = static_cast<ScheduleDAGMILive*>(dag);
3315     DAG->computeDFSResult();
3316     Cmp.DFSResult = DAG->getDFSResult();
3317     Cmp.ScheduledTrees = &DAG->getScheduledTrees();
3318     ReadyQ.clear();
3319   }
3320 
3321   void registerRoots() override {
3322     // Restore the heap in ReadyQ with the updated DFS results.
3323     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3324   }
3325 
3326   /// Implement MachineSchedStrategy interface.
3327   /// -----------------------------------------
3328 
3329   /// Callback to select the highest priority node from the ready Q.
3330   SUnit *pickNode(bool &IsTopNode) override {
3331     if (ReadyQ.empty()) return nullptr;
3332     std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3333     SUnit *SU = ReadyQ.back();
3334     ReadyQ.pop_back();
3335     IsTopNode = false;
3336     DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") "
3337           << " ILP: " << DAG->getDFSResult()->getILP(SU)
3338           << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @"
3339           << DAG->getDFSResult()->getSubtreeLevel(
3340             DAG->getDFSResult()->getSubtreeID(SU)) << '\n'
3341           << "Scheduling " << *SU->getInstr());
3342     return SU;
3343   }
3344 
3345   /// \brief Scheduler callback to notify that a new subtree is scheduled.
3346   void scheduleTree(unsigned SubtreeID) override {
3347     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3348   }
3349 
3350   /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
3351   /// DFSResults, and resort the priority Q.
3352   void schedNode(SUnit *SU, bool IsTopNode) override {
3353     assert(!IsTopNode && "SchedDFSResult needs bottom-up");
3354   }
3355 
3356   void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
3357 
3358   void releaseBottomNode(SUnit *SU) override {
3359     ReadyQ.push_back(SU);
3360     std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3361   }
3362 };
3363 } // namespace
3364 
3365 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
3366   return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(true));
3367 }
3368 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
3369   return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(false));
3370 }
3371 static MachineSchedRegistry ILPMaxRegistry(
3372   "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
3373 static MachineSchedRegistry ILPMinRegistry(
3374   "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
3375 
3376 //===----------------------------------------------------------------------===//
3377 // Machine Instruction Shuffler for Correctness Testing
3378 //===----------------------------------------------------------------------===//
3379 
3380 #ifndef NDEBUG
3381 namespace {
3382 /// Apply a less-than relation on the node order, which corresponds to the
3383 /// instruction order prior to scheduling. IsReverse implements greater-than.
3384 template<bool IsReverse>
3385 struct SUnitOrder {
3386   bool operator()(SUnit *A, SUnit *B) const {
3387     if (IsReverse)
3388       return A->NodeNum > B->NodeNum;
3389     else
3390       return A->NodeNum < B->NodeNum;
3391   }
3392 };
3393 
3394 /// Reorder instructions as much as possible.
3395 class InstructionShuffler : public MachineSchedStrategy {
3396   bool IsAlternating;
3397   bool IsTopDown;
3398 
3399   // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
3400   // gives nodes with a higher number higher priority causing the latest
3401   // instructions to be scheduled first.
3402   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> >
3403     TopQ;
3404   // When scheduling bottom-up, use greater-than as the queue priority.
3405   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> >
3406     BottomQ;
3407 public:
3408   InstructionShuffler(bool alternate, bool topdown)
3409     : IsAlternating(alternate), IsTopDown(topdown) {}
3410 
3411   void initialize(ScheduleDAGMI*) override {
3412     TopQ.clear();
3413     BottomQ.clear();
3414   }
3415 
3416   /// Implement MachineSchedStrategy interface.
3417   /// -----------------------------------------
3418 
3419   SUnit *pickNode(bool &IsTopNode) override {
3420     SUnit *SU;
3421     if (IsTopDown) {
3422       do {
3423         if (TopQ.empty()) return nullptr;
3424         SU = TopQ.top();
3425         TopQ.pop();
3426       } while (SU->isScheduled);
3427       IsTopNode = true;
3428     } else {
3429       do {
3430         if (BottomQ.empty()) return nullptr;
3431         SU = BottomQ.top();
3432         BottomQ.pop();
3433       } while (SU->isScheduled);
3434       IsTopNode = false;
3435     }
3436     if (IsAlternating)
3437       IsTopDown = !IsTopDown;
3438     return SU;
3439   }
3440 
3441   void schedNode(SUnit *SU, bool IsTopNode) override {}
3442 
3443   void releaseTopNode(SUnit *SU) override {
3444     TopQ.push(SU);
3445   }
3446   void releaseBottomNode(SUnit *SU) override {
3447     BottomQ.push(SU);
3448   }
3449 };
3450 } // namespace
3451 
3452 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
3453   bool Alternate = !ForceTopDown && !ForceBottomUp;
3454   bool TopDown = !ForceBottomUp;
3455   assert((TopDown || !ForceTopDown) &&
3456          "-misched-topdown incompatible with -misched-bottomup");
3457   return new ScheduleDAGMILive(C, make_unique<InstructionShuffler>(Alternate, TopDown));
3458 }
3459 static MachineSchedRegistry ShufflerRegistry(
3460   "shuffle", "Shuffle machine instructions alternating directions",
3461   createInstructionShuffler);
3462 #endif // !NDEBUG
3463 
3464 //===----------------------------------------------------------------------===//
3465 // GraphWriter support for ScheduleDAGMILive.
3466 //===----------------------------------------------------------------------===//
3467 
3468 #ifndef NDEBUG
3469 namespace llvm {
3470 
3471 template<> struct GraphTraits<
3472   ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
3473 
3474 template<>
3475 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
3476 
3477   DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
3478 
3479   static std::string getGraphName(const ScheduleDAG *G) {
3480     return G->MF.getName();
3481   }
3482 
3483   static bool renderGraphFromBottomUp() {
3484     return true;
3485   }
3486 
3487   static bool isNodeHidden(const SUnit *Node) {
3488     if (ViewMISchedCutoff == 0)
3489       return false;
3490     return (Node->Preds.size() > ViewMISchedCutoff
3491          || Node->Succs.size() > ViewMISchedCutoff);
3492   }
3493 
3494   /// If you want to override the dot attributes printed for a particular
3495   /// edge, override this method.
3496   static std::string getEdgeAttributes(const SUnit *Node,
3497                                        SUnitIterator EI,
3498                                        const ScheduleDAG *Graph) {
3499     if (EI.isArtificialDep())
3500       return "color=cyan,style=dashed";
3501     if (EI.isCtrlDep())
3502       return "color=blue,style=dashed";
3503     return "";
3504   }
3505 
3506   static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
3507     std::string Str;
3508     raw_string_ostream SS(Str);
3509     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3510     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3511       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3512     SS << "SU:" << SU->NodeNum;
3513     if (DFS)
3514       SS << " I:" << DFS->getNumInstrs(SU);
3515     return SS.str();
3516   }
3517   static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
3518     return G->getGraphNodeLabel(SU);
3519   }
3520 
3521   static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
3522     std::string Str("shape=Mrecord");
3523     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3524     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3525       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3526     if (DFS) {
3527       Str += ",style=filled,fillcolor=\"#";
3528       Str += DOT::getColorString(DFS->getSubtreeID(N));
3529       Str += '"';
3530     }
3531     return Str;
3532   }
3533 };
3534 } // namespace llvm
3535 #endif // NDEBUG
3536 
3537 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
3538 /// rendered using 'dot'.
3539 ///
3540 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
3541 #ifndef NDEBUG
3542   ViewGraph(this, Name, false, Title);
3543 #else
3544   errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
3545          << "systems with Graphviz or gv!\n";
3546 #endif  // NDEBUG
3547 }
3548 
3549 /// Out-of-line implementation with no arguments is handy for gdb.
3550 void ScheduleDAGMI::viewGraph() {
3551   viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
3552 }
3553