1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // MachineScheduler schedules machine instructions after phi elimination. It 11 // preserves LiveIntervals so it can be invoked before register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineScheduler.h" 16 #include "llvm/ADT/PriorityQueue.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 19 #include "llvm/CodeGen/MachineDominators.h" 20 #include "llvm/CodeGen/MachineLoopInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/Passes.h" 23 #include "llvm/CodeGen/RegisterClassInfo.h" 24 #include "llvm/CodeGen/ScheduleDFS.h" 25 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 26 #include "llvm/CodeGen/TargetPassConfig.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/GraphWriter.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 34 using namespace llvm; 35 36 #define DEBUG_TYPE "misched" 37 38 namespace llvm { 39 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 40 cl::desc("Force top-down list scheduling")); 41 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 42 cl::desc("Force bottom-up list scheduling")); 43 cl::opt<bool> 44 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 45 cl::desc("Print critical path length to stdout")); 46 } 47 48 #ifndef NDEBUG 49 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 50 cl::desc("Pop up a window to show MISched dags after they are processed")); 51 52 /// In some situations a few uninteresting nodes depend on nearly all other 53 /// nodes in the graph, provide a cutoff to hide them. 54 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 55 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 56 57 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 58 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 59 60 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 61 cl::desc("Only schedule this function")); 62 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 63 cl::desc("Only schedule this MBB#")); 64 #else 65 static bool ViewMISchedDAGs = false; 66 #endif // NDEBUG 67 68 /// Avoid quadratic complexity in unusually large basic blocks by limiting the 69 /// size of the ready lists. 70 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden, 71 cl::desc("Limit ready list to N instructions"), cl::init(256)); 72 73 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 74 cl::desc("Enable register pressure scheduling."), cl::init(true)); 75 76 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 77 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 78 79 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden, 80 cl::desc("Enable memop clustering."), 81 cl::init(true)); 82 83 // Experimental heuristics 84 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden, 85 cl::desc("Enable scheduling for macro fusion."), cl::init(true)); 86 87 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, 88 cl::desc("Verify machine instrs before and after machine scheduling")); 89 90 // DAG subtrees must have at least this many nodes. 91 static const unsigned MinSubtreeSize = 8; 92 93 // Pin the vtables to this file. 94 void MachineSchedStrategy::anchor() {} 95 void ScheduleDAGMutation::anchor() {} 96 97 //===----------------------------------------------------------------------===// 98 // Machine Instruction Scheduling Pass and Registry 99 //===----------------------------------------------------------------------===// 100 101 MachineSchedContext::MachineSchedContext(): 102 MF(nullptr), MLI(nullptr), MDT(nullptr), PassConfig(nullptr), AA(nullptr), LIS(nullptr) { 103 RegClassInfo = new RegisterClassInfo(); 104 } 105 106 MachineSchedContext::~MachineSchedContext() { 107 delete RegClassInfo; 108 } 109 110 namespace { 111 /// Base class for a machine scheduler class that can run at any point. 112 class MachineSchedulerBase : public MachineSchedContext, 113 public MachineFunctionPass { 114 public: 115 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 116 117 void print(raw_ostream &O, const Module* = nullptr) const override; 118 119 protected: 120 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); 121 }; 122 123 /// MachineScheduler runs after coalescing and before register allocation. 124 class MachineScheduler : public MachineSchedulerBase { 125 public: 126 MachineScheduler(); 127 128 void getAnalysisUsage(AnalysisUsage &AU) const override; 129 130 bool runOnMachineFunction(MachineFunction&) override; 131 132 static char ID; // Class identification, replacement for typeinfo 133 134 protected: 135 ScheduleDAGInstrs *createMachineScheduler(); 136 }; 137 138 /// PostMachineScheduler runs after shortly before code emission. 139 class PostMachineScheduler : public MachineSchedulerBase { 140 public: 141 PostMachineScheduler(); 142 143 void getAnalysisUsage(AnalysisUsage &AU) const override; 144 145 bool runOnMachineFunction(MachineFunction&) override; 146 147 static char ID; // Class identification, replacement for typeinfo 148 149 protected: 150 ScheduleDAGInstrs *createPostMachineScheduler(); 151 }; 152 } // namespace 153 154 char MachineScheduler::ID = 0; 155 156 char &llvm::MachineSchedulerID = MachineScheduler::ID; 157 158 INITIALIZE_PASS_BEGIN(MachineScheduler, "machine-scheduler", 159 "Machine Instruction Scheduler", false, false) 160 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 161 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 162 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 163 INITIALIZE_PASS_END(MachineScheduler, "machine-scheduler", 164 "Machine Instruction Scheduler", false, false) 165 166 MachineScheduler::MachineScheduler() 167 : MachineSchedulerBase(ID) { 168 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 169 } 170 171 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 172 AU.setPreservesCFG(); 173 AU.addRequiredID(MachineDominatorsID); 174 AU.addRequired<MachineLoopInfo>(); 175 AU.addRequired<AAResultsWrapperPass>(); 176 AU.addRequired<TargetPassConfig>(); 177 AU.addRequired<SlotIndexes>(); 178 AU.addPreserved<SlotIndexes>(); 179 AU.addRequired<LiveIntervals>(); 180 AU.addPreserved<LiveIntervals>(); 181 MachineFunctionPass::getAnalysisUsage(AU); 182 } 183 184 char PostMachineScheduler::ID = 0; 185 186 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 187 188 INITIALIZE_PASS(PostMachineScheduler, "postmisched", 189 "PostRA Machine Instruction Scheduler", false, false) 190 191 PostMachineScheduler::PostMachineScheduler() 192 : MachineSchedulerBase(ID) { 193 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 194 } 195 196 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 197 AU.setPreservesCFG(); 198 AU.addRequiredID(MachineDominatorsID); 199 AU.addRequired<MachineLoopInfo>(); 200 AU.addRequired<TargetPassConfig>(); 201 MachineFunctionPass::getAnalysisUsage(AU); 202 } 203 204 MachinePassRegistry MachineSchedRegistry::Registry; 205 206 /// A dummy default scheduler factory indicates whether the scheduler 207 /// is overridden on the command line. 208 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 209 return nullptr; 210 } 211 212 /// MachineSchedOpt allows command line selection of the scheduler. 213 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 214 RegisterPassParser<MachineSchedRegistry> > 215 MachineSchedOpt("misched", 216 cl::init(&useDefaultMachineSched), cl::Hidden, 217 cl::desc("Machine instruction scheduler to use")); 218 219 static MachineSchedRegistry 220 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 221 useDefaultMachineSched); 222 223 static cl::opt<bool> EnableMachineSched( 224 "enable-misched", 225 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 226 cl::Hidden); 227 228 static cl::opt<bool> EnablePostRAMachineSched( 229 "enable-post-misched", 230 cl::desc("Enable the post-ra machine instruction scheduling pass."), 231 cl::init(true), cl::Hidden); 232 233 /// Forward declare the standard machine scheduler. This will be used as the 234 /// default scheduler if the target does not set a default. 235 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C); 236 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C); 237 238 /// Decrement this iterator until reaching the top or a non-debug instr. 239 static MachineBasicBlock::const_iterator 240 priorNonDebug(MachineBasicBlock::const_iterator I, 241 MachineBasicBlock::const_iterator Beg) { 242 assert(I != Beg && "reached the top of the region, cannot decrement"); 243 while (--I != Beg) { 244 if (!I->isDebugValue()) 245 break; 246 } 247 return I; 248 } 249 250 /// Non-const version. 251 static MachineBasicBlock::iterator 252 priorNonDebug(MachineBasicBlock::iterator I, 253 MachineBasicBlock::const_iterator Beg) { 254 return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg) 255 .getNonConstIterator(); 256 } 257 258 /// If this iterator is a debug value, increment until reaching the End or a 259 /// non-debug instruction. 260 static MachineBasicBlock::const_iterator 261 nextIfDebug(MachineBasicBlock::const_iterator I, 262 MachineBasicBlock::const_iterator End) { 263 for(; I != End; ++I) { 264 if (!I->isDebugValue()) 265 break; 266 } 267 return I; 268 } 269 270 /// Non-const version. 271 static MachineBasicBlock::iterator 272 nextIfDebug(MachineBasicBlock::iterator I, 273 MachineBasicBlock::const_iterator End) { 274 return nextIfDebug(MachineBasicBlock::const_iterator(I), End) 275 .getNonConstIterator(); 276 } 277 278 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 279 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 280 // Select the scheduler, or set the default. 281 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 282 if (Ctor != useDefaultMachineSched) 283 return Ctor(this); 284 285 // Get the default scheduler set by the target for this function. 286 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 287 if (Scheduler) 288 return Scheduler; 289 290 // Default to GenericScheduler. 291 return createGenericSchedLive(this); 292 } 293 294 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 295 /// the caller. We don't have a command line option to override the postRA 296 /// scheduler. The Target must configure it. 297 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 298 // Get the postRA scheduler set by the target for this function. 299 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 300 if (Scheduler) 301 return Scheduler; 302 303 // Default to GenericScheduler. 304 return createGenericSchedPostRA(this); 305 } 306 307 /// Top-level MachineScheduler pass driver. 308 /// 309 /// Visit blocks in function order. Divide each block into scheduling regions 310 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 311 /// consistent with the DAG builder, which traverses the interior of the 312 /// scheduling regions bottom-up. 313 /// 314 /// This design avoids exposing scheduling boundaries to the DAG builder, 315 /// simplifying the DAG builder's support for "special" target instructions. 316 /// At the same time the design allows target schedulers to operate across 317 /// scheduling boundaries, for example to bundle the boudary instructions 318 /// without reordering them. This creates complexity, because the target 319 /// scheduler must update the RegionBegin and RegionEnd positions cached by 320 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 321 /// design would be to split blocks at scheduling boundaries, but LLVM has a 322 /// general bias against block splitting purely for implementation simplicity. 323 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 324 if (skipFunction(*mf.getFunction())) 325 return false; 326 327 if (EnableMachineSched.getNumOccurrences()) { 328 if (!EnableMachineSched) 329 return false; 330 } else if (!mf.getSubtarget().enableMachineScheduler()) 331 return false; 332 333 DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs())); 334 335 // Initialize the context of the pass. 336 MF = &mf; 337 MLI = &getAnalysis<MachineLoopInfo>(); 338 MDT = &getAnalysis<MachineDominatorTree>(); 339 PassConfig = &getAnalysis<TargetPassConfig>(); 340 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 341 342 LIS = &getAnalysis<LiveIntervals>(); 343 344 if (VerifyScheduling) { 345 DEBUG(LIS->dump()); 346 MF->verify(this, "Before machine scheduling."); 347 } 348 RegClassInfo->runOnMachineFunction(*MF); 349 350 // Instantiate the selected scheduler for this target, function, and 351 // optimization level. 352 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 353 scheduleRegions(*Scheduler, false); 354 355 DEBUG(LIS->dump()); 356 if (VerifyScheduling) 357 MF->verify(this, "After machine scheduling."); 358 return true; 359 } 360 361 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 362 if (skipFunction(*mf.getFunction())) 363 return false; 364 365 if (EnablePostRAMachineSched.getNumOccurrences()) { 366 if (!EnablePostRAMachineSched) 367 return false; 368 } else if (!mf.getSubtarget().enablePostRAScheduler()) { 369 DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 370 return false; 371 } 372 DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 373 374 // Initialize the context of the pass. 375 MF = &mf; 376 PassConfig = &getAnalysis<TargetPassConfig>(); 377 378 if (VerifyScheduling) 379 MF->verify(this, "Before post machine scheduling."); 380 381 // Instantiate the selected scheduler for this target, function, and 382 // optimization level. 383 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 384 scheduleRegions(*Scheduler, true); 385 386 if (VerifyScheduling) 387 MF->verify(this, "After post machine scheduling."); 388 return true; 389 } 390 391 /// Return true of the given instruction should not be included in a scheduling 392 /// region. 393 /// 394 /// MachineScheduler does not currently support scheduling across calls. To 395 /// handle calls, the DAG builder needs to be modified to create register 396 /// anti/output dependencies on the registers clobbered by the call's regmask 397 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 398 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 399 /// the boundary, but there would be no benefit to postRA scheduling across 400 /// calls this late anyway. 401 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 402 MachineBasicBlock *MBB, 403 MachineFunction *MF, 404 const TargetInstrInfo *TII) { 405 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF); 406 } 407 408 /// Main driver for both MachineScheduler and PostMachineScheduler. 409 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, 410 bool FixKillFlags) { 411 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 412 413 // Visit all machine basic blocks. 414 // 415 // TODO: Visit blocks in global postorder or postorder within the bottom-up 416 // loop tree. Then we can optionally compute global RegPressure. 417 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 418 MBB != MBBEnd; ++MBB) { 419 420 Scheduler.startBlock(&*MBB); 421 422 #ifndef NDEBUG 423 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 424 continue; 425 if (SchedOnlyBlock.getNumOccurrences() 426 && (int)SchedOnlyBlock != MBB->getNumber()) 427 continue; 428 #endif 429 430 // Break the block into scheduling regions [I, RegionEnd), and schedule each 431 // region as soon as it is discovered. RegionEnd points the scheduling 432 // boundary at the bottom of the region. The DAG does not include RegionEnd, 433 // but the region does (i.e. the next RegionEnd is above the previous 434 // RegionBegin). If the current block has no terminator then RegionEnd == 435 // MBB->end() for the bottom region. 436 // 437 // The Scheduler may insert instructions during either schedule() or 438 // exitRegion(), even for empty regions. So the local iterators 'I' and 439 // 'RegionEnd' are invalid across these calls. 440 // 441 // MBB::size() uses instr_iterator to count. Here we need a bundle to count 442 // as a single instruction. 443 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 444 RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) { 445 446 // Avoid decrementing RegionEnd for blocks with no terminator. 447 if (RegionEnd != MBB->end() || 448 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { 449 --RegionEnd; 450 } 451 452 // The next region starts above the previous region. Look backward in the 453 // instruction stream until we find the nearest boundary. 454 unsigned NumRegionInstrs = 0; 455 MachineBasicBlock::iterator I = RegionEnd; 456 for (;I != MBB->begin(); --I) { 457 MachineInstr &MI = *std::prev(I); 458 if (isSchedBoundary(&MI, &*MBB, MF, TII)) 459 break; 460 if (!MI.isDebugValue()) 461 ++NumRegionInstrs; 462 } 463 // Notify the scheduler of the region, even if we may skip scheduling 464 // it. Perhaps it still needs to be bundled. 465 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); 466 467 // Skip empty scheduling regions (0 or 1 schedulable instructions). 468 if (I == RegionEnd || I == std::prev(RegionEnd)) { 469 // Close the current region. Bundle the terminator if needed. 470 // This invalidates 'RegionEnd' and 'I'. 471 Scheduler.exitRegion(); 472 continue; 473 } 474 DEBUG(dbgs() << "********** MI Scheduling **********\n"); 475 DEBUG(dbgs() << MF->getName() 476 << ":BB#" << MBB->getNumber() << " " << MBB->getName() 477 << "\n From: " << *I << " To: "; 478 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 479 else dbgs() << "End"; 480 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); 481 if (DumpCriticalPathLength) { 482 errs() << MF->getName(); 483 errs() << ":BB# " << MBB->getNumber(); 484 errs() << " " << MBB->getName() << " \n"; 485 } 486 487 // Schedule a region: possibly reorder instructions. 488 // This invalidates 'RegionEnd' and 'I'. 489 Scheduler.schedule(); 490 491 // Close the current region. 492 Scheduler.exitRegion(); 493 494 // Scheduling has invalidated the current iterator 'I'. Ask the 495 // scheduler for the top of it's scheduled region. 496 RegionEnd = Scheduler.begin(); 497 } 498 Scheduler.finishBlock(); 499 // FIXME: Ideally, no further passes should rely on kill flags. However, 500 // thumb2 size reduction is currently an exception, so the PostMIScheduler 501 // needs to do this. 502 if (FixKillFlags) 503 Scheduler.fixupKills(&*MBB); 504 } 505 Scheduler.finalizeSchedule(); 506 } 507 508 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 509 // unimplemented 510 } 511 512 LLVM_DUMP_METHOD 513 void ReadyQueue::dump() { 514 dbgs() << "Queue " << Name << ": "; 515 for (unsigned i = 0, e = Queue.size(); i < e; ++i) 516 dbgs() << Queue[i]->NodeNum << " "; 517 dbgs() << "\n"; 518 } 519 520 //===----------------------------------------------------------------------===// 521 // ScheduleDAGMI - Basic machine instruction scheduling. This is 522 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 523 // virtual registers. 524 // ===----------------------------------------------------------------------===/ 525 526 // Provide a vtable anchor. 527 ScheduleDAGMI::~ScheduleDAGMI() { 528 } 529 530 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 531 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 532 } 533 534 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { 535 if (SuccSU != &ExitSU) { 536 // Do not use WillCreateCycle, it assumes SD scheduling. 537 // If Pred is reachable from Succ, then the edge creates a cycle. 538 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 539 return false; 540 Topo.AddPred(SuccSU, PredDep.getSUnit()); 541 } 542 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 543 // Return true regardless of whether a new edge needed to be inserted. 544 return true; 545 } 546 547 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 548 /// NumPredsLeft reaches zero, release the successor node. 549 /// 550 /// FIXME: Adjust SuccSU height based on MinLatency. 551 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 552 SUnit *SuccSU = SuccEdge->getSUnit(); 553 554 if (SuccEdge->isWeak()) { 555 --SuccSU->WeakPredsLeft; 556 if (SuccEdge->isCluster()) 557 NextClusterSucc = SuccSU; 558 return; 559 } 560 #ifndef NDEBUG 561 if (SuccSU->NumPredsLeft == 0) { 562 dbgs() << "*** Scheduling failed! ***\n"; 563 SuccSU->dump(this); 564 dbgs() << " has been released too many times!\n"; 565 llvm_unreachable(nullptr); 566 } 567 #endif 568 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 569 // CurrCycle may have advanced since then. 570 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 571 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 572 573 --SuccSU->NumPredsLeft; 574 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 575 SchedImpl->releaseTopNode(SuccSU); 576 } 577 578 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 579 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 580 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 581 I != E; ++I) { 582 releaseSucc(SU, &*I); 583 } 584 } 585 586 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 587 /// NumSuccsLeft reaches zero, release the predecessor node. 588 /// 589 /// FIXME: Adjust PredSU height based on MinLatency. 590 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 591 SUnit *PredSU = PredEdge->getSUnit(); 592 593 if (PredEdge->isWeak()) { 594 --PredSU->WeakSuccsLeft; 595 if (PredEdge->isCluster()) 596 NextClusterPred = PredSU; 597 return; 598 } 599 #ifndef NDEBUG 600 if (PredSU->NumSuccsLeft == 0) { 601 dbgs() << "*** Scheduling failed! ***\n"; 602 PredSU->dump(this); 603 dbgs() << " has been released too many times!\n"; 604 llvm_unreachable(nullptr); 605 } 606 #endif 607 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 608 // CurrCycle may have advanced since then. 609 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 610 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 611 612 --PredSU->NumSuccsLeft; 613 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 614 SchedImpl->releaseBottomNode(PredSU); 615 } 616 617 /// releasePredecessors - Call releasePred on each of SU's predecessors. 618 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 619 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 620 I != E; ++I) { 621 releasePred(SU, &*I); 622 } 623 } 624 625 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 626 /// crossing a scheduling boundary. [begin, end) includes all instructions in 627 /// the region, including the boundary itself and single-instruction regions 628 /// that don't get scheduled. 629 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 630 MachineBasicBlock::iterator begin, 631 MachineBasicBlock::iterator end, 632 unsigned regioninstrs) 633 { 634 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 635 636 SchedImpl->initPolicy(begin, end, regioninstrs); 637 } 638 639 /// This is normally called from the main scheduler loop but may also be invoked 640 /// by the scheduling strategy to perform additional code motion. 641 void ScheduleDAGMI::moveInstruction( 642 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 643 // Advance RegionBegin if the first instruction moves down. 644 if (&*RegionBegin == MI) 645 ++RegionBegin; 646 647 // Update the instruction stream. 648 BB->splice(InsertPos, BB, MI); 649 650 // Update LiveIntervals 651 if (LIS) 652 LIS->handleMove(*MI, /*UpdateFlags=*/true); 653 654 // Recede RegionBegin if an instruction moves above the first. 655 if (RegionBegin == InsertPos) 656 RegionBegin = MI; 657 } 658 659 bool ScheduleDAGMI::checkSchedLimit() { 660 #ifndef NDEBUG 661 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 662 CurrentTop = CurrentBottom; 663 return false; 664 } 665 ++NumInstrsScheduled; 666 #endif 667 return true; 668 } 669 670 /// Per-region scheduling driver, called back from 671 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that 672 /// does not consider liveness or register pressure. It is useful for PostRA 673 /// scheduling and potentially other custom schedulers. 674 void ScheduleDAGMI::schedule() { 675 DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); 676 DEBUG(SchedImpl->dumpPolicy()); 677 678 // Build the DAG. 679 buildSchedGraph(AA); 680 681 Topo.InitDAGTopologicalSorting(); 682 683 postprocessDAG(); 684 685 SmallVector<SUnit*, 8> TopRoots, BotRoots; 686 findRootsAndBiasEdges(TopRoots, BotRoots); 687 688 // Initialize the strategy before modifying the DAG. 689 // This may initialize a DFSResult to be used for queue priority. 690 SchedImpl->initialize(this); 691 692 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 693 SUnits[su].dumpAll(this)); 694 if (ViewMISchedDAGs) viewGraph(); 695 696 // Initialize ready queues now that the DAG and priority data are finalized. 697 initQueues(TopRoots, BotRoots); 698 699 bool IsTopNode = false; 700 while (true) { 701 DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); 702 SUnit *SU = SchedImpl->pickNode(IsTopNode); 703 if (!SU) break; 704 705 assert(!SU->isScheduled && "Node already scheduled"); 706 if (!checkSchedLimit()) 707 break; 708 709 MachineInstr *MI = SU->getInstr(); 710 if (IsTopNode) { 711 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 712 if (&*CurrentTop == MI) 713 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 714 else 715 moveInstruction(MI, CurrentTop); 716 } else { 717 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 718 MachineBasicBlock::iterator priorII = 719 priorNonDebug(CurrentBottom, CurrentTop); 720 if (&*priorII == MI) 721 CurrentBottom = priorII; 722 else { 723 if (&*CurrentTop == MI) 724 CurrentTop = nextIfDebug(++CurrentTop, priorII); 725 moveInstruction(MI, CurrentBottom); 726 CurrentBottom = MI; 727 } 728 } 729 // Notify the scheduling strategy before updating the DAG. 730 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 731 // runs, it can then use the accurate ReadyCycle time to determine whether 732 // newly released nodes can move to the readyQ. 733 SchedImpl->schedNode(SU, IsTopNode); 734 735 updateQueues(SU, IsTopNode); 736 } 737 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 738 739 placeDebugValues(); 740 741 DEBUG({ 742 unsigned BBNum = begin()->getParent()->getNumber(); 743 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 744 dumpSchedule(); 745 dbgs() << '\n'; 746 }); 747 } 748 749 /// Apply each ScheduleDAGMutation step in order. 750 void ScheduleDAGMI::postprocessDAG() { 751 for (unsigned i = 0, e = Mutations.size(); i < e; ++i) { 752 Mutations[i]->apply(this); 753 } 754 } 755 756 void ScheduleDAGMI:: 757 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 758 SmallVectorImpl<SUnit*> &BotRoots) { 759 for (std::vector<SUnit>::iterator 760 I = SUnits.begin(), E = SUnits.end(); I != E; ++I) { 761 SUnit *SU = &(*I); 762 assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits"); 763 764 // Order predecessors so DFSResult follows the critical path. 765 SU->biasCriticalPath(); 766 767 // A SUnit is ready to top schedule if it has no predecessors. 768 if (!I->NumPredsLeft) 769 TopRoots.push_back(SU); 770 // A SUnit is ready to bottom schedule if it has no successors. 771 if (!I->NumSuccsLeft) 772 BotRoots.push_back(SU); 773 } 774 ExitSU.biasCriticalPath(); 775 } 776 777 /// Identify DAG roots and setup scheduler queues. 778 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 779 ArrayRef<SUnit*> BotRoots) { 780 NextClusterSucc = nullptr; 781 NextClusterPred = nullptr; 782 783 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 784 // 785 // Nodes with unreleased weak edges can still be roots. 786 // Release top roots in forward order. 787 for (SmallVectorImpl<SUnit*>::const_iterator 788 I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) { 789 SchedImpl->releaseTopNode(*I); 790 } 791 // Release bottom roots in reverse order so the higher priority nodes appear 792 // first. This is more natural and slightly more efficient. 793 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 794 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 795 SchedImpl->releaseBottomNode(*I); 796 } 797 798 releaseSuccessors(&EntrySU); 799 releasePredecessors(&ExitSU); 800 801 SchedImpl->registerRoots(); 802 803 // Advance past initial DebugValues. 804 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 805 CurrentBottom = RegionEnd; 806 } 807 808 /// Update scheduler queues after scheduling an instruction. 809 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 810 // Release dependent instructions for scheduling. 811 if (IsTopNode) 812 releaseSuccessors(SU); 813 else 814 releasePredecessors(SU); 815 816 SU->isScheduled = true; 817 } 818 819 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 820 void ScheduleDAGMI::placeDebugValues() { 821 // If first instruction was a DBG_VALUE then put it back. 822 if (FirstDbgValue) { 823 BB->splice(RegionBegin, BB, FirstDbgValue); 824 RegionBegin = FirstDbgValue; 825 } 826 827 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator 828 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 829 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 830 MachineInstr *DbgValue = P.first; 831 MachineBasicBlock::iterator OrigPrevMI = P.second; 832 if (&*RegionBegin == DbgValue) 833 ++RegionBegin; 834 BB->splice(++OrigPrevMI, BB, DbgValue); 835 if (OrigPrevMI == std::prev(RegionEnd)) 836 RegionEnd = DbgValue; 837 } 838 DbgValues.clear(); 839 FirstDbgValue = nullptr; 840 } 841 842 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 843 void ScheduleDAGMI::dumpSchedule() const { 844 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 845 if (SUnit *SU = getSUnit(&(*MI))) 846 SU->dump(this); 847 else 848 dbgs() << "Missing SUnit\n"; 849 } 850 } 851 #endif 852 853 //===----------------------------------------------------------------------===// 854 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 855 // preservation. 856 //===----------------------------------------------------------------------===// 857 858 ScheduleDAGMILive::~ScheduleDAGMILive() { 859 delete DFSResult; 860 } 861 862 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 863 /// crossing a scheduling boundary. [begin, end) includes all instructions in 864 /// the region, including the boundary itself and single-instruction regions 865 /// that don't get scheduled. 866 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 867 MachineBasicBlock::iterator begin, 868 MachineBasicBlock::iterator end, 869 unsigned regioninstrs) 870 { 871 // ScheduleDAGMI initializes SchedImpl's per-region policy. 872 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 873 874 // For convenience remember the end of the liveness region. 875 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 876 877 SUPressureDiffs.clear(); 878 879 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 880 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks(); 881 882 assert((!ShouldTrackLaneMasks || ShouldTrackPressure) && 883 "ShouldTrackLaneMasks requires ShouldTrackPressure"); 884 } 885 886 // Setup the register pressure trackers for the top scheduled top and bottom 887 // scheduled regions. 888 void ScheduleDAGMILive::initRegPressure() { 889 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin, 890 ShouldTrackLaneMasks, false); 891 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 892 ShouldTrackLaneMasks, false); 893 894 // Close the RPTracker to finalize live ins. 895 RPTracker.closeRegion(); 896 897 DEBUG(RPTracker.dump()); 898 899 // Initialize the live ins and live outs. 900 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 901 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 902 903 // Close one end of the tracker so we can call 904 // getMaxUpward/DownwardPressureDelta before advancing across any 905 // instructions. This converts currently live regs into live ins/outs. 906 TopRPTracker.closeTop(); 907 BotRPTracker.closeBottom(); 908 909 BotRPTracker.initLiveThru(RPTracker); 910 if (!BotRPTracker.getLiveThru().empty()) { 911 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 912 DEBUG(dbgs() << "Live Thru: "; 913 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 914 }; 915 916 // For each live out vreg reduce the pressure change associated with other 917 // uses of the same vreg below the live-out reaching def. 918 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 919 920 // Account for liveness generated by the region boundary. 921 if (LiveRegionEnd != RegionEnd) { 922 SmallVector<RegisterMaskPair, 8> LiveUses; 923 BotRPTracker.recede(&LiveUses); 924 updatePressureDiffs(LiveUses); 925 } 926 927 DEBUG( 928 dbgs() << "Top Pressure:\n"; 929 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 930 dbgs() << "Bottom Pressure:\n"; 931 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 932 ); 933 934 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); 935 936 // Cache the list of excess pressure sets in this region. This will also track 937 // the max pressure in the scheduled code for these sets. 938 RegionCriticalPSets.clear(); 939 const std::vector<unsigned> &RegionPressure = 940 RPTracker.getPressure().MaxSetPressure; 941 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 942 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 943 if (RegionPressure[i] > Limit) { 944 DEBUG(dbgs() << TRI->getRegPressureSetName(i) 945 << " Limit " << Limit 946 << " Actual " << RegionPressure[i] << "\n"); 947 RegionCriticalPSets.push_back(PressureChange(i)); 948 } 949 } 950 DEBUG(dbgs() << "Excess PSets: "; 951 for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i) 952 dbgs() << TRI->getRegPressureSetName( 953 RegionCriticalPSets[i].getPSet()) << " "; 954 dbgs() << "\n"); 955 } 956 957 void ScheduleDAGMILive:: 958 updateScheduledPressure(const SUnit *SU, 959 const std::vector<unsigned> &NewMaxPressure) { 960 const PressureDiff &PDiff = getPressureDiff(SU); 961 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 962 for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end(); 963 I != E; ++I) { 964 if (!I->isValid()) 965 break; 966 unsigned ID = I->getPSet(); 967 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 968 ++CritIdx; 969 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 970 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 971 && NewMaxPressure[ID] <= INT16_MAX) 972 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 973 } 974 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 975 if (NewMaxPressure[ID] >= Limit - 2) { 976 DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 977 << NewMaxPressure[ID] 978 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit 979 << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n"); 980 } 981 } 982 } 983 984 /// Update the PressureDiff array for liveness after scheduling this 985 /// instruction. 986 void ScheduleDAGMILive::updatePressureDiffs( 987 ArrayRef<RegisterMaskPair> LiveUses) { 988 for (const RegisterMaskPair &P : LiveUses) { 989 unsigned Reg = P.RegUnit; 990 /// FIXME: Currently assuming single-use physregs. 991 if (!TRI->isVirtualRegister(Reg)) 992 continue; 993 994 if (ShouldTrackLaneMasks) { 995 // If the register has just become live then other uses won't change 996 // this fact anymore => decrement pressure. 997 // If the register has just become dead then other uses make it come 998 // back to life => increment pressure. 999 bool Decrement = P.LaneMask != 0; 1000 1001 for (const VReg2SUnit &V2SU 1002 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1003 SUnit &SU = *V2SU.SU; 1004 if (SU.isScheduled || &SU == &ExitSU) 1005 continue; 1006 1007 PressureDiff &PDiff = getPressureDiff(&SU); 1008 PDiff.addPressureChange(Reg, Decrement, &MRI); 1009 DEBUG( 1010 dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") " 1011 << PrintReg(Reg, TRI) << ':' << PrintLaneMask(P.LaneMask) 1012 << ' ' << *SU.getInstr(); 1013 dbgs() << " to "; 1014 PDiff.dump(*TRI); 1015 ); 1016 } 1017 } else { 1018 assert(P.LaneMask != 0); 1019 DEBUG(dbgs() << " LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n"); 1020 // This may be called before CurrentBottom has been initialized. However, 1021 // BotRPTracker must have a valid position. We want the value live into the 1022 // instruction or live out of the block, so ask for the previous 1023 // instruction's live-out. 1024 const LiveInterval &LI = LIS->getInterval(Reg); 1025 VNInfo *VNI; 1026 MachineBasicBlock::const_iterator I = 1027 nextIfDebug(BotRPTracker.getPos(), BB->end()); 1028 if (I == BB->end()) 1029 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1030 else { 1031 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I)); 1032 VNI = LRQ.valueIn(); 1033 } 1034 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 1035 assert(VNI && "No live value at use."); 1036 for (const VReg2SUnit &V2SU 1037 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1038 SUnit *SU = V2SU.SU; 1039 // If this use comes before the reaching def, it cannot be a last use, 1040 // so decrease its pressure change. 1041 if (!SU->isScheduled && SU != &ExitSU) { 1042 LiveQueryResult LRQ = 1043 LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1044 if (LRQ.valueIn() == VNI) { 1045 PressureDiff &PDiff = getPressureDiff(SU); 1046 PDiff.addPressureChange(Reg, true, &MRI); 1047 DEBUG( 1048 dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 1049 << *SU->getInstr(); 1050 dbgs() << " to "; 1051 PDiff.dump(*TRI); 1052 ); 1053 } 1054 } 1055 } 1056 } 1057 } 1058 } 1059 1060 /// schedule - Called back from MachineScheduler::runOnMachineFunction 1061 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1062 /// only includes instructions that have DAG nodes, not scheduling boundaries. 1063 /// 1064 /// This is a skeletal driver, with all the functionality pushed into helpers, 1065 /// so that it can be easily extended by experimental schedulers. Generally, 1066 /// implementing MachineSchedStrategy should be sufficient to implement a new 1067 /// scheduling algorithm. However, if a scheduler further subclasses 1068 /// ScheduleDAGMILive then it will want to override this virtual method in order 1069 /// to update any specialized state. 1070 void ScheduleDAGMILive::schedule() { 1071 DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); 1072 DEBUG(SchedImpl->dumpPolicy()); 1073 buildDAGWithRegPressure(); 1074 1075 Topo.InitDAGTopologicalSorting(); 1076 1077 postprocessDAG(); 1078 1079 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1080 findRootsAndBiasEdges(TopRoots, BotRoots); 1081 1082 // Initialize the strategy before modifying the DAG. 1083 // This may initialize a DFSResult to be used for queue priority. 1084 SchedImpl->initialize(this); 1085 1086 DEBUG( 1087 for (const SUnit &SU : SUnits) { 1088 SU.dumpAll(this); 1089 if (ShouldTrackPressure) { 1090 dbgs() << " Pressure Diff : "; 1091 getPressureDiff(&SU).dump(*TRI); 1092 } 1093 dbgs() << '\n'; 1094 } 1095 ); 1096 if (ViewMISchedDAGs) viewGraph(); 1097 1098 // Initialize ready queues now that the DAG and priority data are finalized. 1099 initQueues(TopRoots, BotRoots); 1100 1101 bool IsTopNode = false; 1102 while (true) { 1103 DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); 1104 SUnit *SU = SchedImpl->pickNode(IsTopNode); 1105 if (!SU) break; 1106 1107 assert(!SU->isScheduled && "Node already scheduled"); 1108 if (!checkSchedLimit()) 1109 break; 1110 1111 scheduleMI(SU, IsTopNode); 1112 1113 if (DFSResult) { 1114 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1115 if (!ScheduledTrees.test(SubtreeID)) { 1116 ScheduledTrees.set(SubtreeID); 1117 DFSResult->scheduleTree(SubtreeID); 1118 SchedImpl->scheduleTree(SubtreeID); 1119 } 1120 } 1121 1122 // Notify the scheduling strategy after updating the DAG. 1123 SchedImpl->schedNode(SU, IsTopNode); 1124 1125 updateQueues(SU, IsTopNode); 1126 } 1127 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1128 1129 placeDebugValues(); 1130 1131 DEBUG({ 1132 unsigned BBNum = begin()->getParent()->getNumber(); 1133 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 1134 dumpSchedule(); 1135 dbgs() << '\n'; 1136 }); 1137 } 1138 1139 /// Build the DAG and setup three register pressure trackers. 1140 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1141 if (!ShouldTrackPressure) { 1142 RPTracker.reset(); 1143 RegionCriticalPSets.clear(); 1144 buildSchedGraph(AA); 1145 return; 1146 } 1147 1148 // Initialize the register pressure tracker used by buildSchedGraph. 1149 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1150 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true); 1151 1152 // Account for liveness generate by the region boundary. 1153 if (LiveRegionEnd != RegionEnd) 1154 RPTracker.recede(); 1155 1156 // Build the DAG, and compute current register pressure. 1157 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks); 1158 1159 // Initialize top/bottom trackers after computing region pressure. 1160 initRegPressure(); 1161 } 1162 1163 void ScheduleDAGMILive::computeDFSResult() { 1164 if (!DFSResult) 1165 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1166 DFSResult->clear(); 1167 ScheduledTrees.clear(); 1168 DFSResult->resize(SUnits.size()); 1169 DFSResult->compute(SUnits); 1170 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1171 } 1172 1173 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1174 /// only provides the critical path for single block loops. To handle loops that 1175 /// span blocks, we could use the vreg path latencies provided by 1176 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1177 /// available for use in the scheduler. 1178 /// 1179 /// The cyclic path estimation identifies a def-use pair that crosses the back 1180 /// edge and considers the depth and height of the nodes. For example, consider 1181 /// the following instruction sequence where each instruction has unit latency 1182 /// and defines an epomymous virtual register: 1183 /// 1184 /// a->b(a,c)->c(b)->d(c)->exit 1185 /// 1186 /// The cyclic critical path is a two cycles: b->c->b 1187 /// The acyclic critical path is four cycles: a->b->c->d->exit 1188 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1189 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1190 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1191 /// LiveInDepth = depth(b) = len(a->b) = 1 1192 /// 1193 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1194 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1195 /// CyclicCriticalPath = min(2, 2) = 2 1196 /// 1197 /// This could be relevant to PostRA scheduling, but is currently implemented 1198 /// assuming LiveIntervals. 1199 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1200 // This only applies to single block loop. 1201 if (!BB->isSuccessor(BB)) 1202 return 0; 1203 1204 unsigned MaxCyclicLatency = 0; 1205 // Visit each live out vreg def to find def/use pairs that cross iterations. 1206 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) { 1207 unsigned Reg = P.RegUnit; 1208 if (!TRI->isVirtualRegister(Reg)) 1209 continue; 1210 const LiveInterval &LI = LIS->getInterval(Reg); 1211 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1212 if (!DefVNI) 1213 continue; 1214 1215 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1216 const SUnit *DefSU = getSUnit(DefMI); 1217 if (!DefSU) 1218 continue; 1219 1220 unsigned LiveOutHeight = DefSU->getHeight(); 1221 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1222 // Visit all local users of the vreg def. 1223 for (const VReg2SUnit &V2SU 1224 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1225 SUnit *SU = V2SU.SU; 1226 if (SU == &ExitSU) 1227 continue; 1228 1229 // Only consider uses of the phi. 1230 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1231 if (!LRQ.valueIn()->isPHIDef()) 1232 continue; 1233 1234 // Assume that a path spanning two iterations is a cycle, which could 1235 // overestimate in strange cases. This allows cyclic latency to be 1236 // estimated as the minimum slack of the vreg's depth or height. 1237 unsigned CyclicLatency = 0; 1238 if (LiveOutDepth > SU->getDepth()) 1239 CyclicLatency = LiveOutDepth - SU->getDepth(); 1240 1241 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; 1242 if (LiveInHeight > LiveOutHeight) { 1243 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1244 CyclicLatency = LiveInHeight - LiveOutHeight; 1245 } else 1246 CyclicLatency = 0; 1247 1248 DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1249 << SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1250 if (CyclicLatency > MaxCyclicLatency) 1251 MaxCyclicLatency = CyclicLatency; 1252 } 1253 } 1254 DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1255 return MaxCyclicLatency; 1256 } 1257 1258 /// Release ExitSU predecessors and setup scheduler queues. Re-position 1259 /// the Top RP tracker in case the region beginning has changed. 1260 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots, 1261 ArrayRef<SUnit*> BotRoots) { 1262 ScheduleDAGMI::initQueues(TopRoots, BotRoots); 1263 if (ShouldTrackPressure) { 1264 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1265 TopRPTracker.setPos(CurrentTop); 1266 } 1267 } 1268 1269 /// Move an instruction and update register pressure. 1270 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1271 // Move the instruction to its new location in the instruction stream. 1272 MachineInstr *MI = SU->getInstr(); 1273 1274 if (IsTopNode) { 1275 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1276 if (&*CurrentTop == MI) 1277 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1278 else { 1279 moveInstruction(MI, CurrentTop); 1280 TopRPTracker.setPos(MI); 1281 } 1282 1283 if (ShouldTrackPressure) { 1284 // Update top scheduled pressure. 1285 RegisterOperands RegOpers; 1286 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1287 if (ShouldTrackLaneMasks) { 1288 // Adjust liveness and add missing dead+read-undef flags. 1289 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1290 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1291 } else { 1292 // Adjust for missing dead-def flags. 1293 RegOpers.detectDeadDefs(*MI, *LIS); 1294 } 1295 1296 TopRPTracker.advance(RegOpers); 1297 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1298 DEBUG( 1299 dbgs() << "Top Pressure:\n"; 1300 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1301 ); 1302 1303 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1304 } 1305 } else { 1306 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1307 MachineBasicBlock::iterator priorII = 1308 priorNonDebug(CurrentBottom, CurrentTop); 1309 if (&*priorII == MI) 1310 CurrentBottom = priorII; 1311 else { 1312 if (&*CurrentTop == MI) { 1313 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1314 TopRPTracker.setPos(CurrentTop); 1315 } 1316 moveInstruction(MI, CurrentBottom); 1317 CurrentBottom = MI; 1318 } 1319 if (ShouldTrackPressure) { 1320 RegisterOperands RegOpers; 1321 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1322 if (ShouldTrackLaneMasks) { 1323 // Adjust liveness and add missing dead+read-undef flags. 1324 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1325 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1326 } else { 1327 // Adjust for missing dead-def flags. 1328 RegOpers.detectDeadDefs(*MI, *LIS); 1329 } 1330 1331 BotRPTracker.recedeSkipDebugValues(); 1332 SmallVector<RegisterMaskPair, 8> LiveUses; 1333 BotRPTracker.recede(RegOpers, &LiveUses); 1334 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1335 DEBUG( 1336 dbgs() << "Bottom Pressure:\n"; 1337 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 1338 ); 1339 1340 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1341 updatePressureDiffs(LiveUses); 1342 } 1343 } 1344 } 1345 1346 //===----------------------------------------------------------------------===// 1347 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores. 1348 //===----------------------------------------------------------------------===// 1349 1350 namespace { 1351 /// \brief Post-process the DAG to create cluster edges between neighboring 1352 /// loads or between neighboring stores. 1353 class BaseMemOpClusterMutation : public ScheduleDAGMutation { 1354 struct MemOpInfo { 1355 SUnit *SU; 1356 unsigned BaseReg; 1357 int64_t Offset; 1358 MemOpInfo(SUnit *su, unsigned reg, int64_t ofs) 1359 : SU(su), BaseReg(reg), Offset(ofs) {} 1360 1361 bool operator<(const MemOpInfo&RHS) const { 1362 return std::tie(BaseReg, Offset, SU->NodeNum) < 1363 std::tie(RHS.BaseReg, RHS.Offset, RHS.SU->NodeNum); 1364 } 1365 }; 1366 1367 const TargetInstrInfo *TII; 1368 const TargetRegisterInfo *TRI; 1369 bool IsLoad; 1370 1371 public: 1372 BaseMemOpClusterMutation(const TargetInstrInfo *tii, 1373 const TargetRegisterInfo *tri, bool IsLoad) 1374 : TII(tii), TRI(tri), IsLoad(IsLoad) {} 1375 1376 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1377 1378 protected: 1379 void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG); 1380 }; 1381 1382 class StoreClusterMutation : public BaseMemOpClusterMutation { 1383 public: 1384 StoreClusterMutation(const TargetInstrInfo *tii, 1385 const TargetRegisterInfo *tri) 1386 : BaseMemOpClusterMutation(tii, tri, false) {} 1387 }; 1388 1389 class LoadClusterMutation : public BaseMemOpClusterMutation { 1390 public: 1391 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri) 1392 : BaseMemOpClusterMutation(tii, tri, true) {} 1393 }; 1394 } // anonymous 1395 1396 namespace llvm { 1397 1398 std::unique_ptr<ScheduleDAGMutation> 1399 createLoadClusterDAGMutation(const TargetInstrInfo *TII, 1400 const TargetRegisterInfo *TRI) { 1401 return make_unique<LoadClusterMutation>(TII, TRI); 1402 } 1403 1404 std::unique_ptr<ScheduleDAGMutation> 1405 createStoreClusterDAGMutation(const TargetInstrInfo *TII, 1406 const TargetRegisterInfo *TRI) { 1407 return make_unique<StoreClusterMutation>(TII, TRI); 1408 } 1409 1410 } // namespace llvm 1411 1412 void BaseMemOpClusterMutation::clusterNeighboringMemOps( 1413 ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG) { 1414 SmallVector<MemOpInfo, 32> MemOpRecords; 1415 for (unsigned Idx = 0, End = MemOps.size(); Idx != End; ++Idx) { 1416 SUnit *SU = MemOps[Idx]; 1417 unsigned BaseReg; 1418 int64_t Offset; 1419 if (TII->getMemOpBaseRegImmOfs(*SU->getInstr(), BaseReg, Offset, TRI)) 1420 MemOpRecords.push_back(MemOpInfo(SU, BaseReg, Offset)); 1421 } 1422 if (MemOpRecords.size() < 2) 1423 return; 1424 1425 std::sort(MemOpRecords.begin(), MemOpRecords.end()); 1426 unsigned ClusterLength = 1; 1427 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) { 1428 if (MemOpRecords[Idx].BaseReg != MemOpRecords[Idx+1].BaseReg) { 1429 ClusterLength = 1; 1430 continue; 1431 } 1432 1433 SUnit *SUa = MemOpRecords[Idx].SU; 1434 SUnit *SUb = MemOpRecords[Idx+1].SU; 1435 if (TII->shouldClusterMemOps(*SUa->getInstr(), *SUb->getInstr(), 1436 ClusterLength) && 1437 DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 1438 DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU(" 1439 << SUb->NodeNum << ")\n"); 1440 // Copy successor edges from SUa to SUb. Interleaving computation 1441 // dependent on SUa can prevent load combining due to register reuse. 1442 // Predecessor edges do not need to be copied from SUb to SUa since nearby 1443 // loads should have effectively the same inputs. 1444 for (SUnit::const_succ_iterator 1445 SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) { 1446 if (SI->getSUnit() == SUb) 1447 continue; 1448 DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n"); 1449 DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial)); 1450 } 1451 ++ClusterLength; 1452 } else 1453 ClusterLength = 1; 1454 } 1455 } 1456 1457 /// \brief Callback from DAG postProcessing to create cluster edges for loads. 1458 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAGInstrs) { 1459 1460 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1461 1462 // Map DAG NodeNum to store chain ID. 1463 DenseMap<unsigned, unsigned> StoreChainIDs; 1464 // Map each store chain to a set of dependent MemOps. 1465 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 1466 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1467 SUnit *SU = &DAG->SUnits[Idx]; 1468 if ((IsLoad && !SU->getInstr()->mayLoad()) || 1469 (!IsLoad && !SU->getInstr()->mayStore())) 1470 continue; 1471 1472 unsigned ChainPredID = DAG->SUnits.size(); 1473 for (SUnit::const_pred_iterator 1474 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 1475 if (PI->isCtrl()) { 1476 ChainPredID = PI->getSUnit()->NodeNum; 1477 break; 1478 } 1479 } 1480 // Check if this chain-like pred has been seen 1481 // before. ChainPredID==MaxNodeID at the top of the schedule. 1482 unsigned NumChains = StoreChainDependents.size(); 1483 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 1484 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 1485 if (Result.second) 1486 StoreChainDependents.resize(NumChains + 1); 1487 StoreChainDependents[Result.first->second].push_back(SU); 1488 } 1489 1490 // Iterate over the store chains. 1491 for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx) 1492 clusterNeighboringMemOps(StoreChainDependents[Idx], DAG); 1493 } 1494 1495 //===----------------------------------------------------------------------===// 1496 // MacroFusion - DAG post-processing to encourage fusion of macro ops. 1497 //===----------------------------------------------------------------------===// 1498 1499 namespace { 1500 /// \brief Post-process the DAG to create cluster edges between instructions 1501 /// that may be fused by the processor into a single operation. 1502 class MacroFusion : public ScheduleDAGMutation { 1503 const TargetInstrInfo &TII; 1504 public: 1505 MacroFusion(const TargetInstrInfo &TII) 1506 : TII(TII) {} 1507 1508 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1509 }; 1510 } // anonymous 1511 1512 namespace llvm { 1513 1514 std::unique_ptr<ScheduleDAGMutation> 1515 createMacroFusionDAGMutation(const TargetInstrInfo *TII) { 1516 return make_unique<MacroFusion>(*TII); 1517 } 1518 1519 } // namespace llvm 1520 1521 /// \brief Callback from DAG postProcessing to create cluster edges to encourage 1522 /// fused operations. 1523 void MacroFusion::apply(ScheduleDAGInstrs *DAGInstrs) { 1524 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1525 1526 // For now, assume targets can only fuse with the branch. 1527 SUnit &ExitSU = DAG->ExitSU; 1528 MachineInstr *Branch = ExitSU.getInstr(); 1529 if (!Branch) 1530 return; 1531 1532 for (SDep &PredDep : ExitSU.Preds) { 1533 if (PredDep.isWeak()) 1534 continue; 1535 SUnit &SU = *PredDep.getSUnit(); 1536 MachineInstr &Pred = *SU.getInstr(); 1537 if (!TII.shouldScheduleAdjacent(Pred, *Branch)) 1538 continue; 1539 1540 // Create a single weak edge from SU to ExitSU. The only effect is to cause 1541 // bottom-up scheduling to heavily prioritize the clustered SU. There is no 1542 // need to copy predecessor edges from ExitSU to SU, since top-down 1543 // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling 1544 // of SU, we could create an artificial edge from the deepest root, but it 1545 // hasn't been needed yet. 1546 bool Success = DAG->addEdge(&ExitSU, SDep(&SU, SDep::Cluster)); 1547 (void)Success; 1548 assert(Success && "No DAG nodes should be reachable from ExitSU"); 1549 1550 // Adjust latency of data deps between the nodes. 1551 for (SDep &PredDep : ExitSU.Preds) { 1552 if (PredDep.getSUnit() == &SU) 1553 PredDep.setLatency(0); 1554 } 1555 for (SDep &SuccDep : SU.Succs) { 1556 if (SuccDep.getSUnit() == &ExitSU) 1557 SuccDep.setLatency(0); 1558 } 1559 1560 DEBUG(dbgs() << "Macro Fuse SU(" << SU.NodeNum << ")\n"); 1561 break; 1562 } 1563 } 1564 1565 //===----------------------------------------------------------------------===// 1566 // CopyConstrain - DAG post-processing to encourage copy elimination. 1567 //===----------------------------------------------------------------------===// 1568 1569 namespace { 1570 /// \brief Post-process the DAG to create weak edges from all uses of a copy to 1571 /// the one use that defines the copy's source vreg, most likely an induction 1572 /// variable increment. 1573 class CopyConstrain : public ScheduleDAGMutation { 1574 // Transient state. 1575 SlotIndex RegionBeginIdx; 1576 // RegionEndIdx is the slot index of the last non-debug instruction in the 1577 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1578 SlotIndex RegionEndIdx; 1579 public: 1580 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1581 1582 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1583 1584 protected: 1585 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1586 }; 1587 } // anonymous 1588 1589 namespace llvm { 1590 1591 std::unique_ptr<ScheduleDAGMutation> 1592 createCopyConstrainDAGMutation(const TargetInstrInfo *TII, 1593 const TargetRegisterInfo *TRI) { 1594 return make_unique<CopyConstrain>(TII, TRI); 1595 } 1596 1597 } // namespace llvm 1598 1599 /// constrainLocalCopy handles two possibilities: 1600 /// 1) Local src: 1601 /// I0: = dst 1602 /// I1: src = ... 1603 /// I2: = dst 1604 /// I3: dst = src (copy) 1605 /// (create pred->succ edges I0->I1, I2->I1) 1606 /// 1607 /// 2) Local copy: 1608 /// I0: dst = src (copy) 1609 /// I1: = dst 1610 /// I2: src = ... 1611 /// I3: = dst 1612 /// (create pred->succ edges I1->I2, I3->I2) 1613 /// 1614 /// Although the MachineScheduler is currently constrained to single blocks, 1615 /// this algorithm should handle extended blocks. An EBB is a set of 1616 /// contiguously numbered blocks such that the previous block in the EBB is 1617 /// always the single predecessor. 1618 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1619 LiveIntervals *LIS = DAG->getLIS(); 1620 MachineInstr *Copy = CopySU->getInstr(); 1621 1622 // Check for pure vreg copies. 1623 const MachineOperand &SrcOp = Copy->getOperand(1); 1624 unsigned SrcReg = SrcOp.getReg(); 1625 if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !SrcOp.readsReg()) 1626 return; 1627 1628 const MachineOperand &DstOp = Copy->getOperand(0); 1629 unsigned DstReg = DstOp.getReg(); 1630 if (!TargetRegisterInfo::isVirtualRegister(DstReg) || DstOp.isDead()) 1631 return; 1632 1633 // Check if either the dest or source is local. If it's live across a back 1634 // edge, it's not local. Note that if both vregs are live across the back 1635 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1636 // If both the copy's source and dest are local live intervals, then we 1637 // should treat the dest as the global for the purpose of adding 1638 // constraints. This adds edges from source's other uses to the copy. 1639 unsigned LocalReg = SrcReg; 1640 unsigned GlobalReg = DstReg; 1641 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1642 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1643 LocalReg = DstReg; 1644 GlobalReg = SrcReg; 1645 LocalLI = &LIS->getInterval(LocalReg); 1646 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1647 return; 1648 } 1649 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1650 1651 // Find the global segment after the start of the local LI. 1652 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1653 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1654 // local live range. We could create edges from other global uses to the local 1655 // start, but the coalescer should have already eliminated these cases, so 1656 // don't bother dealing with it. 1657 if (GlobalSegment == GlobalLI->end()) 1658 return; 1659 1660 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1661 // returned the next global segment. But if GlobalSegment overlaps with 1662 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI 1663 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1664 if (GlobalSegment->contains(LocalLI->beginIndex())) 1665 ++GlobalSegment; 1666 1667 if (GlobalSegment == GlobalLI->end()) 1668 return; 1669 1670 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1671 if (GlobalSegment != GlobalLI->begin()) { 1672 // Two address defs have no hole. 1673 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1674 GlobalSegment->start)) { 1675 return; 1676 } 1677 // If the prior global segment may be defined by the same two-address 1678 // instruction that also defines LocalLI, then can't make a hole here. 1679 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1680 LocalLI->beginIndex())) { 1681 return; 1682 } 1683 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1684 // it would be a disconnected component in the live range. 1685 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1686 "Disconnected LRG within the scheduling region."); 1687 } 1688 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1689 if (!GlobalDef) 1690 return; 1691 1692 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1693 if (!GlobalSU) 1694 return; 1695 1696 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1697 // constraining the uses of the last local def to precede GlobalDef. 1698 SmallVector<SUnit*,8> LocalUses; 1699 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1700 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1701 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1702 for (SUnit::const_succ_iterator 1703 I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end(); 1704 I != E; ++I) { 1705 if (I->getKind() != SDep::Data || I->getReg() != LocalReg) 1706 continue; 1707 if (I->getSUnit() == GlobalSU) 1708 continue; 1709 if (!DAG->canAddEdge(GlobalSU, I->getSUnit())) 1710 return; 1711 LocalUses.push_back(I->getSUnit()); 1712 } 1713 // Open the top of the GlobalLI hole by constraining any earlier global uses 1714 // to precede the start of LocalLI. 1715 SmallVector<SUnit*,8> GlobalUses; 1716 MachineInstr *FirstLocalDef = 1717 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1718 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1719 for (SUnit::const_pred_iterator 1720 I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) { 1721 if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg) 1722 continue; 1723 if (I->getSUnit() == FirstLocalSU) 1724 continue; 1725 if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit())) 1726 return; 1727 GlobalUses.push_back(I->getSUnit()); 1728 } 1729 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1730 // Add the weak edges. 1731 for (SmallVectorImpl<SUnit*>::const_iterator 1732 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1733 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1734 << GlobalSU->NodeNum << ")\n"); 1735 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1736 } 1737 for (SmallVectorImpl<SUnit*>::const_iterator 1738 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1739 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1740 << FirstLocalSU->NodeNum << ")\n"); 1741 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1742 } 1743 } 1744 1745 /// \brief Callback from DAG postProcessing to create weak edges to encourage 1746 /// copy elimination. 1747 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) { 1748 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1749 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1750 1751 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1752 if (FirstPos == DAG->end()) 1753 return; 1754 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos); 1755 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1756 *priorNonDebug(DAG->end(), DAG->begin())); 1757 1758 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1759 SUnit *SU = &DAG->SUnits[Idx]; 1760 if (!SU->getInstr()->isCopy()) 1761 continue; 1762 1763 constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG)); 1764 } 1765 } 1766 1767 //===----------------------------------------------------------------------===// 1768 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1769 // and possibly other custom schedulers. 1770 //===----------------------------------------------------------------------===// 1771 1772 static const unsigned InvalidCycle = ~0U; 1773 1774 SchedBoundary::~SchedBoundary() { delete HazardRec; } 1775 1776 void SchedBoundary::reset() { 1777 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1778 // Destroying and reconstructing it is very expensive though. So keep 1779 // invalid, placeholder HazardRecs. 1780 if (HazardRec && HazardRec->isEnabled()) { 1781 delete HazardRec; 1782 HazardRec = nullptr; 1783 } 1784 Available.clear(); 1785 Pending.clear(); 1786 CheckPending = false; 1787 CurrCycle = 0; 1788 CurrMOps = 0; 1789 MinReadyCycle = UINT_MAX; 1790 ExpectedLatency = 0; 1791 DependentLatency = 0; 1792 RetiredMOps = 0; 1793 MaxExecutedResCount = 0; 1794 ZoneCritResIdx = 0; 1795 IsResourceLimited = false; 1796 ReservedCycles.clear(); 1797 #ifndef NDEBUG 1798 // Track the maximum number of stall cycles that could arise either from the 1799 // latency of a DAG edge or the number of cycles that a processor resource is 1800 // reserved (SchedBoundary::ReservedCycles). 1801 MaxObservedStall = 0; 1802 #endif 1803 // Reserve a zero-count for invalid CritResIdx. 1804 ExecutedResCounts.resize(1); 1805 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1806 } 1807 1808 void SchedRemainder:: 1809 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1810 reset(); 1811 if (!SchedModel->hasInstrSchedModel()) 1812 return; 1813 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1814 for (std::vector<SUnit>::iterator 1815 I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) { 1816 const MCSchedClassDesc *SC = DAG->getSchedClass(&*I); 1817 RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC) 1818 * SchedModel->getMicroOpFactor(); 1819 for (TargetSchedModel::ProcResIter 1820 PI = SchedModel->getWriteProcResBegin(SC), 1821 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1822 unsigned PIdx = PI->ProcResourceIdx; 1823 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1824 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1825 } 1826 } 1827 } 1828 1829 void SchedBoundary:: 1830 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1831 reset(); 1832 DAG = dag; 1833 SchedModel = smodel; 1834 Rem = rem; 1835 if (SchedModel->hasInstrSchedModel()) { 1836 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds()); 1837 ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle); 1838 } 1839 } 1840 1841 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 1842 /// these "soft stalls" differently than the hard stall cycles based on CPU 1843 /// resources and computed by checkHazard(). A fully in-order model 1844 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 1845 /// available for scheduling until they are ready. However, a weaker in-order 1846 /// model may use this for heuristics. For example, if a processor has in-order 1847 /// behavior when reading certain resources, this may come into play. 1848 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 1849 if (!SU->isUnbuffered) 1850 return 0; 1851 1852 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1853 if (ReadyCycle > CurrCycle) 1854 return ReadyCycle - CurrCycle; 1855 return 0; 1856 } 1857 1858 /// Compute the next cycle at which the given processor resource can be 1859 /// scheduled. 1860 unsigned SchedBoundary:: 1861 getNextResourceCycle(unsigned PIdx, unsigned Cycles) { 1862 unsigned NextUnreserved = ReservedCycles[PIdx]; 1863 // If this resource has never been used, always return cycle zero. 1864 if (NextUnreserved == InvalidCycle) 1865 return 0; 1866 // For bottom-up scheduling add the cycles needed for the current operation. 1867 if (!isTop()) 1868 NextUnreserved += Cycles; 1869 return NextUnreserved; 1870 } 1871 1872 /// Does this SU have a hazard within the current instruction group. 1873 /// 1874 /// The scheduler supports two modes of hazard recognition. The first is the 1875 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1876 /// supports highly complicated in-order reservation tables 1877 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. 1878 /// 1879 /// The second is a streamlined mechanism that checks for hazards based on 1880 /// simple counters that the scheduler itself maintains. It explicitly checks 1881 /// for instruction dispatch limitations, including the number of micro-ops that 1882 /// can dispatch per cycle. 1883 /// 1884 /// TODO: Also check whether the SU must start a new group. 1885 bool SchedBoundary::checkHazard(SUnit *SU) { 1886 if (HazardRec->isEnabled() 1887 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 1888 return true; 1889 } 1890 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1891 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 1892 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1893 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1894 return true; 1895 } 1896 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 1897 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1898 for (TargetSchedModel::ProcResIter 1899 PI = SchedModel->getWriteProcResBegin(SC), 1900 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1901 unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles); 1902 if (NRCycle > CurrCycle) { 1903 #ifndef NDEBUG 1904 MaxObservedStall = std::max(PI->Cycles, MaxObservedStall); 1905 #endif 1906 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 1907 << SchedModel->getResourceName(PI->ProcResourceIdx) 1908 << "=" << NRCycle << "c\n"); 1909 return true; 1910 } 1911 } 1912 } 1913 return false; 1914 } 1915 1916 // Find the unscheduled node in ReadySUs with the highest latency. 1917 unsigned SchedBoundary:: 1918 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 1919 SUnit *LateSU = nullptr; 1920 unsigned RemLatency = 0; 1921 for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end(); 1922 I != E; ++I) { 1923 unsigned L = getUnscheduledLatency(*I); 1924 if (L > RemLatency) { 1925 RemLatency = L; 1926 LateSU = *I; 1927 } 1928 } 1929 if (LateSU) { 1930 DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 1931 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 1932 } 1933 return RemLatency; 1934 } 1935 1936 // Count resources in this zone and the remaining unscheduled 1937 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 1938 // resource index, or zero if the zone is issue limited. 1939 unsigned SchedBoundary:: 1940 getOtherResourceCount(unsigned &OtherCritIdx) { 1941 OtherCritIdx = 0; 1942 if (!SchedModel->hasInstrSchedModel()) 1943 return 0; 1944 1945 unsigned OtherCritCount = Rem->RemIssueCount 1946 + (RetiredMOps * SchedModel->getMicroOpFactor()); 1947 DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 1948 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 1949 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 1950 PIdx != PEnd; ++PIdx) { 1951 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 1952 if (OtherCount > OtherCritCount) { 1953 OtherCritCount = OtherCount; 1954 OtherCritIdx = PIdx; 1955 } 1956 } 1957 if (OtherCritIdx) { 1958 DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: " 1959 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 1960 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 1961 } 1962 return OtherCritCount; 1963 } 1964 1965 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) { 1966 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 1967 1968 #ifndef NDEBUG 1969 // ReadyCycle was been bumped up to the CurrCycle when this node was 1970 // scheduled, but CurrCycle may have been eagerly advanced immediately after 1971 // scheduling, so may now be greater than ReadyCycle. 1972 if (ReadyCycle > CurrCycle) 1973 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 1974 #endif 1975 1976 if (ReadyCycle < MinReadyCycle) 1977 MinReadyCycle = ReadyCycle; 1978 1979 // Check for interlocks first. For the purpose of other heuristics, an 1980 // instruction that cannot issue appears as if it's not in the ReadyQueue. 1981 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 1982 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) || 1983 Available.size() >= ReadyListLimit) 1984 Pending.push(SU); 1985 else 1986 Available.push(SU); 1987 } 1988 1989 /// Move the boundary of scheduled code by one cycle. 1990 void SchedBoundary::bumpCycle(unsigned NextCycle) { 1991 if (SchedModel->getMicroOpBufferSize() == 0) { 1992 assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized"); 1993 if (MinReadyCycle > NextCycle) 1994 NextCycle = MinReadyCycle; 1995 } 1996 // Update the current micro-ops, which will issue in the next cycle. 1997 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 1998 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 1999 2000 // Decrement DependentLatency based on the next cycle. 2001 if ((NextCycle - CurrCycle) > DependentLatency) 2002 DependentLatency = 0; 2003 else 2004 DependentLatency -= (NextCycle - CurrCycle); 2005 2006 if (!HazardRec->isEnabled()) { 2007 // Bypass HazardRec virtual calls. 2008 CurrCycle = NextCycle; 2009 } else { 2010 // Bypass getHazardType calls in case of long latency. 2011 for (; CurrCycle != NextCycle; ++CurrCycle) { 2012 if (isTop()) 2013 HazardRec->AdvanceCycle(); 2014 else 2015 HazardRec->RecedeCycle(); 2016 } 2017 } 2018 CheckPending = true; 2019 unsigned LFactor = SchedModel->getLatencyFactor(); 2020 IsResourceLimited = 2021 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 2022 > (int)LFactor; 2023 2024 DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n'); 2025 } 2026 2027 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 2028 ExecutedResCounts[PIdx] += Count; 2029 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 2030 MaxExecutedResCount = ExecutedResCounts[PIdx]; 2031 } 2032 2033 /// Add the given processor resource to this scheduled zone. 2034 /// 2035 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 2036 /// during which this resource is consumed. 2037 /// 2038 /// \return the next cycle at which the instruction may execute without 2039 /// oversubscribing resources. 2040 unsigned SchedBoundary:: 2041 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) { 2042 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2043 unsigned Count = Factor * Cycles; 2044 DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) 2045 << " +" << Cycles << "x" << Factor << "u\n"); 2046 2047 // Update Executed resources counts. 2048 incExecutedResources(PIdx, Count); 2049 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 2050 Rem->RemainingCounts[PIdx] -= Count; 2051 2052 // Check if this resource exceeds the current critical resource. If so, it 2053 // becomes the critical resource. 2054 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 2055 ZoneCritResIdx = PIdx; 2056 DEBUG(dbgs() << " *** Critical resource " 2057 << SchedModel->getResourceName(PIdx) << ": " 2058 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n"); 2059 } 2060 // For reserved resources, record the highest cycle using the resource. 2061 unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles); 2062 if (NextAvailable > CurrCycle) { 2063 DEBUG(dbgs() << " Resource conflict: " 2064 << SchedModel->getProcResource(PIdx)->Name << " reserved until @" 2065 << NextAvailable << "\n"); 2066 } 2067 return NextAvailable; 2068 } 2069 2070 /// Move the boundary of scheduled code by one SUnit. 2071 void SchedBoundary::bumpNode(SUnit *SU) { 2072 // Update the reservation table. 2073 if (HazardRec->isEnabled()) { 2074 if (!isTop() && SU->isCall) { 2075 // Calls are scheduled with their preceding instructions. For bottom-up 2076 // scheduling, clear the pipeline state before emitting. 2077 HazardRec->Reset(); 2078 } 2079 HazardRec->EmitInstruction(SU); 2080 } 2081 // checkHazard should prevent scheduling multiple instructions per cycle that 2082 // exceed the issue width. 2083 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2084 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 2085 assert( 2086 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 2087 "Cannot schedule this instruction's MicroOps in the current cycle."); 2088 2089 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2090 DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 2091 2092 unsigned NextCycle = CurrCycle; 2093 switch (SchedModel->getMicroOpBufferSize()) { 2094 case 0: 2095 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 2096 break; 2097 case 1: 2098 if (ReadyCycle > NextCycle) { 2099 NextCycle = ReadyCycle; 2100 DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 2101 } 2102 break; 2103 default: 2104 // We don't currently model the OOO reorder buffer, so consider all 2105 // scheduled MOps to be "retired". We do loosely model in-order resource 2106 // latency. If this instruction uses an in-order resource, account for any 2107 // likely stall cycles. 2108 if (SU->isUnbuffered && ReadyCycle > NextCycle) 2109 NextCycle = ReadyCycle; 2110 break; 2111 } 2112 RetiredMOps += IncMOps; 2113 2114 // Update resource counts and critical resource. 2115 if (SchedModel->hasInstrSchedModel()) { 2116 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 2117 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 2118 Rem->RemIssueCount -= DecRemIssue; 2119 if (ZoneCritResIdx) { 2120 // Scale scheduled micro-ops for comparing with the critical resource. 2121 unsigned ScaledMOps = 2122 RetiredMOps * SchedModel->getMicroOpFactor(); 2123 2124 // If scaled micro-ops are now more than the previous critical resource by 2125 // a full cycle, then micro-ops issue becomes critical. 2126 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 2127 >= (int)SchedModel->getLatencyFactor()) { 2128 ZoneCritResIdx = 0; 2129 DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2130 << ScaledMOps / SchedModel->getLatencyFactor() << "c\n"); 2131 } 2132 } 2133 for (TargetSchedModel::ProcResIter 2134 PI = SchedModel->getWriteProcResBegin(SC), 2135 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2136 unsigned RCycle = 2137 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle); 2138 if (RCycle > NextCycle) 2139 NextCycle = RCycle; 2140 } 2141 if (SU->hasReservedResource) { 2142 // For reserved resources, record the highest cycle using the resource. 2143 // For top-down scheduling, this is the cycle in which we schedule this 2144 // instruction plus the number of cycles the operations reserves the 2145 // resource. For bottom-up is it simply the instruction's cycle. 2146 for (TargetSchedModel::ProcResIter 2147 PI = SchedModel->getWriteProcResBegin(SC), 2148 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2149 unsigned PIdx = PI->ProcResourceIdx; 2150 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2151 if (isTop()) { 2152 ReservedCycles[PIdx] = 2153 std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles); 2154 } 2155 else 2156 ReservedCycles[PIdx] = NextCycle; 2157 } 2158 } 2159 } 2160 } 2161 // Update ExpectedLatency and DependentLatency. 2162 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2163 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2164 if (SU->getDepth() > TopLatency) { 2165 TopLatency = SU->getDepth(); 2166 DEBUG(dbgs() << " " << Available.getName() 2167 << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n"); 2168 } 2169 if (SU->getHeight() > BotLatency) { 2170 BotLatency = SU->getHeight(); 2171 DEBUG(dbgs() << " " << Available.getName() 2172 << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n"); 2173 } 2174 // If we stall for any reason, bump the cycle. 2175 if (NextCycle > CurrCycle) { 2176 bumpCycle(NextCycle); 2177 } else { 2178 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2179 // resource limited. If a stall occurred, bumpCycle does this. 2180 unsigned LFactor = SchedModel->getLatencyFactor(); 2181 IsResourceLimited = 2182 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 2183 > (int)LFactor; 2184 } 2185 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2186 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2187 // one cycle. Since we commonly reach the max MOps here, opportunistically 2188 // bump the cycle to avoid uselessly checking everything in the readyQ. 2189 CurrMOps += IncMOps; 2190 while (CurrMOps >= SchedModel->getIssueWidth()) { 2191 DEBUG(dbgs() << " *** Max MOps " << CurrMOps 2192 << " at cycle " << CurrCycle << '\n'); 2193 bumpCycle(++NextCycle); 2194 } 2195 DEBUG(dumpScheduledState()); 2196 } 2197 2198 /// Release pending ready nodes in to the available queue. This makes them 2199 /// visible to heuristics. 2200 void SchedBoundary::releasePending() { 2201 // If the available queue is empty, it is safe to reset MinReadyCycle. 2202 if (Available.empty()) 2203 MinReadyCycle = UINT_MAX; 2204 2205 // Check to see if any of the pending instructions are ready to issue. If 2206 // so, add them to the available queue. 2207 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2208 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 2209 SUnit *SU = *(Pending.begin()+i); 2210 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2211 2212 if (ReadyCycle < MinReadyCycle) 2213 MinReadyCycle = ReadyCycle; 2214 2215 if (!IsBuffered && ReadyCycle > CurrCycle) 2216 continue; 2217 2218 if (checkHazard(SU)) 2219 continue; 2220 2221 if (Available.size() >= ReadyListLimit) 2222 break; 2223 2224 Available.push(SU); 2225 Pending.remove(Pending.begin()+i); 2226 --i; --e; 2227 } 2228 CheckPending = false; 2229 } 2230 2231 /// Remove SU from the ready set for this boundary. 2232 void SchedBoundary::removeReady(SUnit *SU) { 2233 if (Available.isInQueue(SU)) 2234 Available.remove(Available.find(SU)); 2235 else { 2236 assert(Pending.isInQueue(SU) && "bad ready count"); 2237 Pending.remove(Pending.find(SU)); 2238 } 2239 } 2240 2241 /// If this queue only has one ready candidate, return it. As a side effect, 2242 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2243 /// one node is ready. If multiple instructions are ready, return NULL. 2244 SUnit *SchedBoundary::pickOnlyChoice() { 2245 if (CheckPending) 2246 releasePending(); 2247 2248 if (CurrMOps > 0) { 2249 // Defer any ready instrs that now have a hazard. 2250 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2251 if (checkHazard(*I)) { 2252 Pending.push(*I); 2253 I = Available.remove(I); 2254 continue; 2255 } 2256 ++I; 2257 } 2258 } 2259 for (unsigned i = 0; Available.empty(); ++i) { 2260 // FIXME: Re-enable assert once PR20057 is resolved. 2261 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2262 // "permanent hazard"); 2263 (void)i; 2264 bumpCycle(CurrCycle + 1); 2265 releasePending(); 2266 } 2267 2268 DEBUG(Pending.dump()); 2269 DEBUG(Available.dump()); 2270 2271 if (Available.size() == 1) 2272 return *Available.begin(); 2273 return nullptr; 2274 } 2275 2276 #ifndef NDEBUG 2277 // This is useful information to dump after bumpNode. 2278 // Note that the Queue contents are more useful before pickNodeFromQueue. 2279 void SchedBoundary::dumpScheduledState() { 2280 unsigned ResFactor; 2281 unsigned ResCount; 2282 if (ZoneCritResIdx) { 2283 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2284 ResCount = getResourceCount(ZoneCritResIdx); 2285 } else { 2286 ResFactor = SchedModel->getMicroOpFactor(); 2287 ResCount = RetiredMOps * SchedModel->getMicroOpFactor(); 2288 } 2289 unsigned LFactor = SchedModel->getLatencyFactor(); 2290 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2291 << " Retired: " << RetiredMOps; 2292 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2293 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2294 << ResCount / ResFactor << " " 2295 << SchedModel->getResourceName(ZoneCritResIdx) 2296 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2297 << (IsResourceLimited ? " - Resource" : " - Latency") 2298 << " limited.\n"; 2299 } 2300 #endif 2301 2302 //===----------------------------------------------------------------------===// 2303 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2304 //===----------------------------------------------------------------------===// 2305 2306 void GenericSchedulerBase::SchedCandidate:: 2307 initResourceDelta(const ScheduleDAGMI *DAG, 2308 const TargetSchedModel *SchedModel) { 2309 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2310 return; 2311 2312 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2313 for (TargetSchedModel::ProcResIter 2314 PI = SchedModel->getWriteProcResBegin(SC), 2315 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2316 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2317 ResDelta.CritResources += PI->Cycles; 2318 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2319 ResDelta.DemandedResources += PI->Cycles; 2320 } 2321 } 2322 2323 /// Set the CandPolicy given a scheduling zone given the current resources and 2324 /// latencies inside and outside the zone. 2325 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA, 2326 SchedBoundary &CurrZone, 2327 SchedBoundary *OtherZone) { 2328 // Apply preemptive heuristics based on the total latency and resources 2329 // inside and outside this zone. Potential stalls should be considered before 2330 // following this policy. 2331 2332 // Compute remaining latency. We need this both to determine whether the 2333 // overall schedule has become latency-limited and whether the instructions 2334 // outside this zone are resource or latency limited. 2335 // 2336 // The "dependent" latency is updated incrementally during scheduling as the 2337 // max height/depth of scheduled nodes minus the cycles since it was 2338 // scheduled: 2339 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2340 // 2341 // The "independent" latency is the max ready queue depth: 2342 // ILat = max N.depth for N in Available|Pending 2343 // 2344 // RemainingLatency is the greater of independent and dependent latency. 2345 unsigned RemLatency = CurrZone.getDependentLatency(); 2346 RemLatency = std::max(RemLatency, 2347 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2348 RemLatency = std::max(RemLatency, 2349 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2350 2351 // Compute the critical resource outside the zone. 2352 unsigned OtherCritIdx = 0; 2353 unsigned OtherCount = 2354 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2355 2356 bool OtherResLimited = false; 2357 if (SchedModel->hasInstrSchedModel()) { 2358 unsigned LFactor = SchedModel->getLatencyFactor(); 2359 OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor; 2360 } 2361 // Schedule aggressively for latency in PostRA mode. We don't check for 2362 // acyclic latency during PostRA, and highly out-of-order processors will 2363 // skip PostRA scheduling. 2364 if (!OtherResLimited) { 2365 if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) { 2366 Policy.ReduceLatency |= true; 2367 DEBUG(dbgs() << " " << CurrZone.Available.getName() 2368 << " RemainingLatency " << RemLatency << " + " 2369 << CurrZone.getCurrCycle() << "c > CritPath " 2370 << Rem.CriticalPath << "\n"); 2371 } 2372 } 2373 // If the same resource is limiting inside and outside the zone, do nothing. 2374 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2375 return; 2376 2377 DEBUG( 2378 if (CurrZone.isResourceLimited()) { 2379 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2380 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) 2381 << "\n"; 2382 } 2383 if (OtherResLimited) 2384 dbgs() << " RemainingLimit: " 2385 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2386 if (!CurrZone.isResourceLimited() && !OtherResLimited) 2387 dbgs() << " Latency limited both directions.\n"); 2388 2389 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2390 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2391 2392 if (OtherResLimited) 2393 Policy.DemandResIdx = OtherCritIdx; 2394 } 2395 2396 #ifndef NDEBUG 2397 const char *GenericSchedulerBase::getReasonStr( 2398 GenericSchedulerBase::CandReason Reason) { 2399 switch (Reason) { 2400 case NoCand: return "NOCAND "; 2401 case Only1: return "ONLY1 "; 2402 case PhysRegCopy: return "PREG-COPY "; 2403 case RegExcess: return "REG-EXCESS"; 2404 case RegCritical: return "REG-CRIT "; 2405 case Stall: return "STALL "; 2406 case Cluster: return "CLUSTER "; 2407 case Weak: return "WEAK "; 2408 case RegMax: return "REG-MAX "; 2409 case ResourceReduce: return "RES-REDUCE"; 2410 case ResourceDemand: return "RES-DEMAND"; 2411 case TopDepthReduce: return "TOP-DEPTH "; 2412 case TopPathReduce: return "TOP-PATH "; 2413 case BotHeightReduce:return "BOT-HEIGHT"; 2414 case BotPathReduce: return "BOT-PATH "; 2415 case NextDefUse: return "DEF-USE "; 2416 case NodeOrder: return "ORDER "; 2417 }; 2418 llvm_unreachable("Unknown reason!"); 2419 } 2420 2421 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2422 PressureChange P; 2423 unsigned ResIdx = 0; 2424 unsigned Latency = 0; 2425 switch (Cand.Reason) { 2426 default: 2427 break; 2428 case RegExcess: 2429 P = Cand.RPDelta.Excess; 2430 break; 2431 case RegCritical: 2432 P = Cand.RPDelta.CriticalMax; 2433 break; 2434 case RegMax: 2435 P = Cand.RPDelta.CurrentMax; 2436 break; 2437 case ResourceReduce: 2438 ResIdx = Cand.Policy.ReduceResIdx; 2439 break; 2440 case ResourceDemand: 2441 ResIdx = Cand.Policy.DemandResIdx; 2442 break; 2443 case TopDepthReduce: 2444 Latency = Cand.SU->getDepth(); 2445 break; 2446 case TopPathReduce: 2447 Latency = Cand.SU->getHeight(); 2448 break; 2449 case BotHeightReduce: 2450 Latency = Cand.SU->getHeight(); 2451 break; 2452 case BotPathReduce: 2453 Latency = Cand.SU->getDepth(); 2454 break; 2455 } 2456 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2457 if (P.isValid()) 2458 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2459 << ":" << P.getUnitInc() << " "; 2460 else 2461 dbgs() << " "; 2462 if (ResIdx) 2463 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2464 else 2465 dbgs() << " "; 2466 if (Latency) 2467 dbgs() << " " << Latency << " cycles "; 2468 else 2469 dbgs() << " "; 2470 dbgs() << '\n'; 2471 } 2472 #endif 2473 2474 /// Return true if this heuristic determines order. 2475 static bool tryLess(int TryVal, int CandVal, 2476 GenericSchedulerBase::SchedCandidate &TryCand, 2477 GenericSchedulerBase::SchedCandidate &Cand, 2478 GenericSchedulerBase::CandReason Reason) { 2479 if (TryVal < CandVal) { 2480 TryCand.Reason = Reason; 2481 return true; 2482 } 2483 if (TryVal > CandVal) { 2484 if (Cand.Reason > Reason) 2485 Cand.Reason = Reason; 2486 return true; 2487 } 2488 return false; 2489 } 2490 2491 static bool tryGreater(int TryVal, int CandVal, 2492 GenericSchedulerBase::SchedCandidate &TryCand, 2493 GenericSchedulerBase::SchedCandidate &Cand, 2494 GenericSchedulerBase::CandReason Reason) { 2495 if (TryVal > CandVal) { 2496 TryCand.Reason = Reason; 2497 return true; 2498 } 2499 if (TryVal < CandVal) { 2500 if (Cand.Reason > Reason) 2501 Cand.Reason = Reason; 2502 return true; 2503 } 2504 return false; 2505 } 2506 2507 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2508 GenericSchedulerBase::SchedCandidate &Cand, 2509 SchedBoundary &Zone) { 2510 if (Zone.isTop()) { 2511 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2512 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2513 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2514 return true; 2515 } 2516 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2517 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2518 return true; 2519 } else { 2520 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2521 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2522 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2523 return true; 2524 } 2525 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2526 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2527 return true; 2528 } 2529 return false; 2530 } 2531 2532 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) { 2533 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2534 << GenericSchedulerBase::getReasonStr(Reason) << '\n'); 2535 } 2536 2537 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) { 2538 tracePick(Cand.Reason, Cand.AtTop); 2539 } 2540 2541 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2542 assert(dag->hasVRegLiveness() && 2543 "(PreRA)GenericScheduler needs vreg liveness"); 2544 DAG = static_cast<ScheduleDAGMILive*>(dag); 2545 SchedModel = DAG->getSchedModel(); 2546 TRI = DAG->TRI; 2547 2548 Rem.init(DAG, SchedModel); 2549 Top.init(DAG, SchedModel, &Rem); 2550 Bot.init(DAG, SchedModel, &Rem); 2551 2552 // Initialize resource counts. 2553 2554 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2555 // are disabled, then these HazardRecs will be disabled. 2556 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2557 if (!Top.HazardRec) { 2558 Top.HazardRec = 2559 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2560 Itin, DAG); 2561 } 2562 if (!Bot.HazardRec) { 2563 Bot.HazardRec = 2564 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2565 Itin, DAG); 2566 } 2567 TopCand.SU = nullptr; 2568 BotCand.SU = nullptr; 2569 } 2570 2571 /// Initialize the per-region scheduling policy. 2572 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2573 MachineBasicBlock::iterator End, 2574 unsigned NumRegionInstrs) { 2575 const MachineFunction &MF = *Begin->getParent()->getParent(); 2576 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2577 2578 // Avoid setting up the register pressure tracker for small regions to save 2579 // compile time. As a rough heuristic, only track pressure when the number of 2580 // schedulable instructions exceeds half the integer register file. 2581 RegionPolicy.ShouldTrackPressure = true; 2582 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2583 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2584 if (TLI->isTypeLegal(LegalIntVT)) { 2585 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2586 TLI->getRegClassFor(LegalIntVT)); 2587 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2588 } 2589 } 2590 2591 // For generic targets, we default to bottom-up, because it's simpler and more 2592 // compile-time optimizations have been implemented in that direction. 2593 RegionPolicy.OnlyBottomUp = true; 2594 2595 // Allow the subtarget to override default policy. 2596 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs); 2597 2598 // After subtarget overrides, apply command line options. 2599 if (!EnableRegPressure) 2600 RegionPolicy.ShouldTrackPressure = false; 2601 2602 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2603 // e.g. -misched-bottomup=false allows scheduling in both directions. 2604 assert((!ForceTopDown || !ForceBottomUp) && 2605 "-misched-topdown incompatible with -misched-bottomup"); 2606 if (ForceBottomUp.getNumOccurrences() > 0) { 2607 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2608 if (RegionPolicy.OnlyBottomUp) 2609 RegionPolicy.OnlyTopDown = false; 2610 } 2611 if (ForceTopDown.getNumOccurrences() > 0) { 2612 RegionPolicy.OnlyTopDown = ForceTopDown; 2613 if (RegionPolicy.OnlyTopDown) 2614 RegionPolicy.OnlyBottomUp = false; 2615 } 2616 } 2617 2618 void GenericScheduler::dumpPolicy() { 2619 dbgs() << "GenericScheduler RegionPolicy: " 2620 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure 2621 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown 2622 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp 2623 << "\n"; 2624 } 2625 2626 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 2627 /// critical path by more cycles than it takes to drain the instruction buffer. 2628 /// We estimate an upper bounds on in-flight instructions as: 2629 /// 2630 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 2631 /// InFlightIterations = AcyclicPath / CyclesPerIteration 2632 /// InFlightResources = InFlightIterations * LoopResources 2633 /// 2634 /// TODO: Check execution resources in addition to IssueCount. 2635 void GenericScheduler::checkAcyclicLatency() { 2636 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 2637 return; 2638 2639 // Scaled number of cycles per loop iteration. 2640 unsigned IterCount = 2641 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 2642 Rem.RemIssueCount); 2643 // Scaled acyclic critical path. 2644 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 2645 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 2646 unsigned InFlightCount = 2647 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 2648 unsigned BufferLimit = 2649 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 2650 2651 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 2652 2653 DEBUG(dbgs() << "IssueCycles=" 2654 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 2655 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 2656 << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount 2657 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 2658 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 2659 if (Rem.IsAcyclicLatencyLimited) 2660 dbgs() << " ACYCLIC LATENCY LIMIT\n"); 2661 } 2662 2663 void GenericScheduler::registerRoots() { 2664 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2665 2666 // Some roots may not feed into ExitSU. Check all of them in case. 2667 for (std::vector<SUnit*>::const_iterator 2668 I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) { 2669 if ((*I)->getDepth() > Rem.CriticalPath) 2670 Rem.CriticalPath = (*I)->getDepth(); 2671 } 2672 DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 2673 if (DumpCriticalPathLength) { 2674 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 2675 } 2676 2677 if (EnableCyclicPath) { 2678 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 2679 checkAcyclicLatency(); 2680 } 2681 } 2682 2683 static bool tryPressure(const PressureChange &TryP, 2684 const PressureChange &CandP, 2685 GenericSchedulerBase::SchedCandidate &TryCand, 2686 GenericSchedulerBase::SchedCandidate &Cand, 2687 GenericSchedulerBase::CandReason Reason, 2688 const TargetRegisterInfo *TRI, 2689 const MachineFunction &MF) { 2690 // If one candidate decreases and the other increases, go with it. 2691 // Invalid candidates have UnitInc==0. 2692 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 2693 Reason)) { 2694 return true; 2695 } 2696 // Do not compare the magnitude of pressure changes between top and bottom 2697 // boundary. 2698 if (Cand.AtTop != TryCand.AtTop) 2699 return false; 2700 2701 // If both candidates affect the same set in the same boundary, go with the 2702 // smallest increase. 2703 unsigned TryPSet = TryP.getPSetOrMax(); 2704 unsigned CandPSet = CandP.getPSetOrMax(); 2705 if (TryPSet == CandPSet) { 2706 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 2707 Reason); 2708 } 2709 2710 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) : 2711 std::numeric_limits<int>::max(); 2712 2713 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) : 2714 std::numeric_limits<int>::max(); 2715 2716 // If the candidates are decreasing pressure, reverse priority. 2717 if (TryP.getUnitInc() < 0) 2718 std::swap(TryRank, CandRank); 2719 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2720 } 2721 2722 static unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2723 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2724 } 2725 2726 /// Minimize physical register live ranges. Regalloc wants them adjacent to 2727 /// their physreg def/use. 2728 /// 2729 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2730 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2731 /// with the operation that produces or consumes the physreg. We'll do this when 2732 /// regalloc has support for parallel copies. 2733 static int biasPhysRegCopy(const SUnit *SU, bool isTop) { 2734 const MachineInstr *MI = SU->getInstr(); 2735 if (!MI->isCopy()) 2736 return 0; 2737 2738 unsigned ScheduledOper = isTop ? 1 : 0; 2739 unsigned UnscheduledOper = isTop ? 0 : 1; 2740 // If we have already scheduled the physreg produce/consumer, immediately 2741 // schedule the copy. 2742 if (TargetRegisterInfo::isPhysicalRegister( 2743 MI->getOperand(ScheduledOper).getReg())) 2744 return 1; 2745 // If the physreg is at the boundary, defer it. Otherwise schedule it 2746 // immediately to free the dependent. We can hoist the copy later. 2747 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2748 if (TargetRegisterInfo::isPhysicalRegister( 2749 MI->getOperand(UnscheduledOper).getReg())) 2750 return AtBoundary ? -1 : 1; 2751 return 0; 2752 } 2753 2754 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU, 2755 bool AtTop, 2756 const RegPressureTracker &RPTracker, 2757 RegPressureTracker &TempTracker) { 2758 Cand.SU = SU; 2759 Cand.AtTop = AtTop; 2760 if (DAG->isTrackingPressure()) { 2761 if (AtTop) { 2762 TempTracker.getMaxDownwardPressureDelta( 2763 Cand.SU->getInstr(), 2764 Cand.RPDelta, 2765 DAG->getRegionCriticalPSets(), 2766 DAG->getRegPressure().MaxSetPressure); 2767 } else { 2768 if (VerifyScheduling) { 2769 TempTracker.getMaxUpwardPressureDelta( 2770 Cand.SU->getInstr(), 2771 &DAG->getPressureDiff(Cand.SU), 2772 Cand.RPDelta, 2773 DAG->getRegionCriticalPSets(), 2774 DAG->getRegPressure().MaxSetPressure); 2775 } else { 2776 RPTracker.getUpwardPressureDelta( 2777 Cand.SU->getInstr(), 2778 DAG->getPressureDiff(Cand.SU), 2779 Cand.RPDelta, 2780 DAG->getRegionCriticalPSets(), 2781 DAG->getRegPressure().MaxSetPressure); 2782 } 2783 } 2784 } 2785 DEBUG(if (Cand.RPDelta.Excess.isValid()) 2786 dbgs() << " Try SU(" << Cand.SU->NodeNum << ") " 2787 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) 2788 << ":" << Cand.RPDelta.Excess.getUnitInc() << "\n"); 2789 } 2790 2791 /// Apply a set of heursitics to a new candidate. Heuristics are currently 2792 /// hierarchical. This may be more efficient than a graduated cost model because 2793 /// we don't need to evaluate all aspects of the model for each node in the 2794 /// queue. But it's really done to make the heuristics easier to debug and 2795 /// statistically analyze. 2796 /// 2797 /// \param Cand provides the policy and current best candidate. 2798 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2799 /// \param Zone describes the scheduled zone that we are extending, or nullptr 2800 // if Cand is from a different zone than TryCand. 2801 void GenericScheduler::tryCandidate(SchedCandidate &Cand, 2802 SchedCandidate &TryCand, 2803 SchedBoundary *Zone) { 2804 // Initialize the candidate if needed. 2805 if (!Cand.isValid()) { 2806 TryCand.Reason = NodeOrder; 2807 return; 2808 } 2809 2810 if (tryGreater(biasPhysRegCopy(TryCand.SU, TryCand.AtTop), 2811 biasPhysRegCopy(Cand.SU, Cand.AtTop), 2812 TryCand, Cand, PhysRegCopy)) 2813 return; 2814 2815 // Avoid exceeding the target's limit. 2816 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 2817 Cand.RPDelta.Excess, 2818 TryCand, Cand, RegExcess, TRI, 2819 DAG->MF)) 2820 return; 2821 2822 // Avoid increasing the max critical pressure in the scheduled region. 2823 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 2824 Cand.RPDelta.CriticalMax, 2825 TryCand, Cand, RegCritical, TRI, 2826 DAG->MF)) 2827 return; 2828 2829 // We only compare a subset of features when comparing nodes between 2830 // Top and Bottom boundary. Some properties are simply incomparable, in many 2831 // other instances we should only override the other boundary if something 2832 // is a clear good pick on one boundary. Skip heuristics that are more 2833 // "tie-breaking" in nature. 2834 bool SameBoundary = Zone != nullptr; 2835 if (SameBoundary) { 2836 // For loops that are acyclic path limited, aggressively schedule for 2837 // latency. Within an single cycle, whenever CurrMOps > 0, allow normal 2838 // heuristics to take precedence. 2839 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() && 2840 tryLatency(TryCand, Cand, *Zone)) 2841 return; 2842 2843 // Prioritize instructions that read unbuffered resources by stall cycles. 2844 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU), 2845 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 2846 return; 2847 } 2848 2849 // Keep clustered nodes together to encourage downstream peephole 2850 // optimizations which may reduce resource requirements. 2851 // 2852 // This is a best effort to set things up for a post-RA pass. Optimizations 2853 // like generating loads of multiple registers should ideally be done within 2854 // the scheduler pass by combining the loads during DAG postprocessing. 2855 const SUnit *CandNextClusterSU = 2856 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2857 const SUnit *TryCandNextClusterSU = 2858 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2859 if (tryGreater(TryCand.SU == TryCandNextClusterSU, 2860 Cand.SU == CandNextClusterSU, 2861 TryCand, Cand, Cluster)) 2862 return; 2863 2864 if (SameBoundary) { 2865 // Weak edges are for clustering and other constraints. 2866 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop), 2867 getWeakLeft(Cand.SU, Cand.AtTop), 2868 TryCand, Cand, Weak)) 2869 return; 2870 } 2871 2872 // Avoid increasing the max pressure of the entire region. 2873 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 2874 Cand.RPDelta.CurrentMax, 2875 TryCand, Cand, RegMax, TRI, 2876 DAG->MF)) 2877 return; 2878 2879 if (SameBoundary) { 2880 // Avoid critical resource consumption and balance the schedule. 2881 TryCand.initResourceDelta(DAG, SchedModel); 2882 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 2883 TryCand, Cand, ResourceReduce)) 2884 return; 2885 if (tryGreater(TryCand.ResDelta.DemandedResources, 2886 Cand.ResDelta.DemandedResources, 2887 TryCand, Cand, ResourceDemand)) 2888 return; 2889 2890 // Avoid serializing long latency dependence chains. 2891 // For acyclic path limited loops, latency was already checked above. 2892 if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency && 2893 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone)) 2894 return; 2895 2896 // Fall through to original instruction order. 2897 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 2898 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 2899 TryCand.Reason = NodeOrder; 2900 } 2901 } 2902 } 2903 2904 /// Pick the best candidate from the queue. 2905 /// 2906 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 2907 /// DAG building. To adjust for the current scheduling location we need to 2908 /// maintain the number of vreg uses remaining to be top-scheduled. 2909 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 2910 const CandPolicy &ZonePolicy, 2911 const RegPressureTracker &RPTracker, 2912 SchedCandidate &Cand) { 2913 // getMaxPressureDelta temporarily modifies the tracker. 2914 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 2915 2916 ReadyQueue &Q = Zone.Available; 2917 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 2918 2919 SchedCandidate TryCand(ZonePolicy); 2920 initCandidate(TryCand, *I, Zone.isTop(), RPTracker, TempTracker); 2921 // Pass SchedBoundary only when comparing nodes from the same boundary. 2922 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; 2923 tryCandidate(Cand, TryCand, ZoneArg); 2924 if (TryCand.Reason != NoCand) { 2925 // Initialize resource delta if needed in case future heuristics query it. 2926 if (TryCand.ResDelta == SchedResourceDelta()) 2927 TryCand.initResourceDelta(DAG, SchedModel); 2928 Cand.setBest(TryCand); 2929 DEBUG(traceCandidate(Cand)); 2930 } 2931 } 2932 } 2933 2934 /// Pick the best candidate node from either the top or bottom queue. 2935 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 2936 // Schedule as far as possible in the direction of no choice. This is most 2937 // efficient, but also provides the best heuristics for CriticalPSets. 2938 if (SUnit *SU = Bot.pickOnlyChoice()) { 2939 IsTopNode = false; 2940 tracePick(Only1, false); 2941 return SU; 2942 } 2943 if (SUnit *SU = Top.pickOnlyChoice()) { 2944 IsTopNode = true; 2945 tracePick(Only1, true); 2946 return SU; 2947 } 2948 // Set the bottom-up policy based on the state of the current bottom zone and 2949 // the instructions outside the zone, including the top zone. 2950 CandPolicy BotPolicy; 2951 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); 2952 // Set the top-down policy based on the state of the current top zone and 2953 // the instructions outside the zone, including the bottom zone. 2954 CandPolicy TopPolicy; 2955 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); 2956 2957 // See if BotCand is still valid (because we previously scheduled from Top). 2958 DEBUG(dbgs() << "Picking from Bot:\n"); 2959 if (!BotCand.isValid() || BotCand.SU->isScheduled || 2960 BotCand.Policy != BotPolicy) { 2961 BotCand.reset(CandPolicy()); 2962 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); 2963 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 2964 } else { 2965 DEBUG(traceCandidate(BotCand)); 2966 #ifndef NDEBUG 2967 if (VerifyScheduling) { 2968 SchedCandidate TCand; 2969 TCand.reset(CandPolicy()); 2970 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand); 2971 assert(TCand.SU == BotCand.SU && 2972 "Last pick result should correspond to re-picking right now"); 2973 } 2974 #endif 2975 } 2976 2977 // Check if the top Q has a better candidate. 2978 DEBUG(dbgs() << "Picking from Top:\n"); 2979 if (!TopCand.isValid() || TopCand.SU->isScheduled || 2980 TopCand.Policy != TopPolicy) { 2981 TopCand.reset(CandPolicy()); 2982 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); 2983 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 2984 } else { 2985 DEBUG(traceCandidate(TopCand)); 2986 #ifndef NDEBUG 2987 if (VerifyScheduling) { 2988 SchedCandidate TCand; 2989 TCand.reset(CandPolicy()); 2990 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand); 2991 assert(TCand.SU == TopCand.SU && 2992 "Last pick result should correspond to re-picking right now"); 2993 } 2994 #endif 2995 } 2996 2997 // Pick best from BotCand and TopCand. 2998 assert(BotCand.isValid()); 2999 assert(TopCand.isValid()); 3000 SchedCandidate Cand = BotCand; 3001 TopCand.Reason = NoCand; 3002 tryCandidate(Cand, TopCand, nullptr); 3003 if (TopCand.Reason != NoCand) { 3004 Cand.setBest(TopCand); 3005 DEBUG(traceCandidate(Cand)); 3006 } 3007 3008 IsTopNode = Cand.AtTop; 3009 tracePick(Cand); 3010 return Cand.SU; 3011 } 3012 3013 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 3014 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 3015 if (DAG->top() == DAG->bottom()) { 3016 assert(Top.Available.empty() && Top.Pending.empty() && 3017 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 3018 return nullptr; 3019 } 3020 SUnit *SU; 3021 do { 3022 if (RegionPolicy.OnlyTopDown) { 3023 SU = Top.pickOnlyChoice(); 3024 if (!SU) { 3025 CandPolicy NoPolicy; 3026 TopCand.reset(NoPolicy); 3027 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); 3028 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3029 tracePick(TopCand); 3030 SU = TopCand.SU; 3031 } 3032 IsTopNode = true; 3033 } else if (RegionPolicy.OnlyBottomUp) { 3034 SU = Bot.pickOnlyChoice(); 3035 if (!SU) { 3036 CandPolicy NoPolicy; 3037 BotCand.reset(NoPolicy); 3038 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); 3039 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 3040 tracePick(BotCand); 3041 SU = BotCand.SU; 3042 } 3043 IsTopNode = false; 3044 } else { 3045 SU = pickNodeBidirectional(IsTopNode); 3046 } 3047 } while (SU->isScheduled); 3048 3049 if (SU->isTopReady()) 3050 Top.removeReady(SU); 3051 if (SU->isBottomReady()) 3052 Bot.removeReady(SU); 3053 3054 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3055 return SU; 3056 } 3057 3058 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) { 3059 3060 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 3061 if (!isTop) 3062 ++InsertPos; 3063 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 3064 3065 // Find already scheduled copies with a single physreg dependence and move 3066 // them just above the scheduled instruction. 3067 for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end(); 3068 I != E; ++I) { 3069 if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg())) 3070 continue; 3071 SUnit *DepSU = I->getSUnit(); 3072 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 3073 continue; 3074 MachineInstr *Copy = DepSU->getInstr(); 3075 if (!Copy->isCopy()) 3076 continue; 3077 DEBUG(dbgs() << " Rescheduling physreg copy "; 3078 I->getSUnit()->dump(DAG)); 3079 DAG->moveInstruction(Copy, InsertPos); 3080 } 3081 } 3082 3083 /// Update the scheduler's state after scheduling a node. This is the same node 3084 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 3085 /// update it's state based on the current cycle before MachineSchedStrategy 3086 /// does. 3087 /// 3088 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 3089 /// them here. See comments in biasPhysRegCopy. 3090 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3091 if (IsTopNode) { 3092 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3093 Top.bumpNode(SU); 3094 if (SU->hasPhysRegUses) 3095 reschedulePhysRegCopies(SU, true); 3096 } else { 3097 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 3098 Bot.bumpNode(SU); 3099 if (SU->hasPhysRegDefs) 3100 reschedulePhysRegCopies(SU, false); 3101 } 3102 } 3103 3104 /// Create the standard converging machine scheduler. This will be used as the 3105 /// default scheduler if the target does not set a default. 3106 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C) { 3107 ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, make_unique<GenericScheduler>(C)); 3108 // Register DAG post-processors. 3109 // 3110 // FIXME: extend the mutation API to allow earlier mutations to instantiate 3111 // data and pass it to later mutations. Have a single mutation that gathers 3112 // the interesting nodes in one pass. 3113 DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI)); 3114 if (EnableMemOpCluster) { 3115 if (DAG->TII->enableClusterLoads()) 3116 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 3117 if (DAG->TII->enableClusterStores()) 3118 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 3119 } 3120 if (EnableMacroFusion) 3121 DAG->addMutation(createMacroFusionDAGMutation(DAG->TII)); 3122 return DAG; 3123 } 3124 3125 static MachineSchedRegistry 3126 GenericSchedRegistry("converge", "Standard converging scheduler.", 3127 createGenericSchedLive); 3128 3129 //===----------------------------------------------------------------------===// 3130 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 3131 //===----------------------------------------------------------------------===// 3132 3133 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 3134 DAG = Dag; 3135 SchedModel = DAG->getSchedModel(); 3136 TRI = DAG->TRI; 3137 3138 Rem.init(DAG, SchedModel); 3139 Top.init(DAG, SchedModel, &Rem); 3140 BotRoots.clear(); 3141 3142 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 3143 // or are disabled, then these HazardRecs will be disabled. 3144 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3145 if (!Top.HazardRec) { 3146 Top.HazardRec = 3147 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 3148 Itin, DAG); 3149 } 3150 } 3151 3152 3153 void PostGenericScheduler::registerRoots() { 3154 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3155 3156 // Some roots may not feed into ExitSU. Check all of them in case. 3157 for (SmallVectorImpl<SUnit*>::const_iterator 3158 I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) { 3159 if ((*I)->getDepth() > Rem.CriticalPath) 3160 Rem.CriticalPath = (*I)->getDepth(); 3161 } 3162 DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 3163 if (DumpCriticalPathLength) { 3164 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 3165 } 3166 } 3167 3168 /// Apply a set of heursitics to a new candidate for PostRA scheduling. 3169 /// 3170 /// \param Cand provides the policy and current best candidate. 3171 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3172 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 3173 SchedCandidate &TryCand) { 3174 3175 // Initialize the candidate if needed. 3176 if (!Cand.isValid()) { 3177 TryCand.Reason = NodeOrder; 3178 return; 3179 } 3180 3181 // Prioritize instructions that read unbuffered resources by stall cycles. 3182 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3183 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3184 return; 3185 3186 // Avoid critical resource consumption and balance the schedule. 3187 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3188 TryCand, Cand, ResourceReduce)) 3189 return; 3190 if (tryGreater(TryCand.ResDelta.DemandedResources, 3191 Cand.ResDelta.DemandedResources, 3192 TryCand, Cand, ResourceDemand)) 3193 return; 3194 3195 // Avoid serializing long latency dependence chains. 3196 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 3197 return; 3198 } 3199 3200 // Fall through to original instruction order. 3201 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) 3202 TryCand.Reason = NodeOrder; 3203 } 3204 3205 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 3206 ReadyQueue &Q = Top.Available; 3207 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 3208 SchedCandidate TryCand(Cand.Policy); 3209 TryCand.SU = *I; 3210 TryCand.AtTop = true; 3211 TryCand.initResourceDelta(DAG, SchedModel); 3212 tryCandidate(Cand, TryCand); 3213 if (TryCand.Reason != NoCand) { 3214 Cand.setBest(TryCand); 3215 DEBUG(traceCandidate(Cand)); 3216 } 3217 } 3218 } 3219 3220 /// Pick the next node to schedule. 3221 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 3222 if (DAG->top() == DAG->bottom()) { 3223 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 3224 return nullptr; 3225 } 3226 SUnit *SU; 3227 do { 3228 SU = Top.pickOnlyChoice(); 3229 if (SU) { 3230 tracePick(Only1, true); 3231 } else { 3232 CandPolicy NoPolicy; 3233 SchedCandidate TopCand(NoPolicy); 3234 // Set the top-down policy based on the state of the current top zone and 3235 // the instructions outside the zone, including the bottom zone. 3236 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 3237 pickNodeFromQueue(TopCand); 3238 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3239 tracePick(TopCand); 3240 SU = TopCand.SU; 3241 } 3242 } while (SU->isScheduled); 3243 3244 IsTopNode = true; 3245 Top.removeReady(SU); 3246 3247 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3248 return SU; 3249 } 3250 3251 /// Called after ScheduleDAGMI has scheduled an instruction and updated 3252 /// scheduled/remaining flags in the DAG nodes. 3253 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3254 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3255 Top.bumpNode(SU); 3256 } 3257 3258 /// Create a generic scheduler with no vreg liveness or DAG mutation passes. 3259 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C) { 3260 return new ScheduleDAGMI(C, make_unique<PostGenericScheduler>(C), 3261 /*RemoveKillFlags=*/true); 3262 } 3263 3264 //===----------------------------------------------------------------------===// 3265 // ILP Scheduler. Currently for experimental analysis of heuristics. 3266 //===----------------------------------------------------------------------===// 3267 3268 namespace { 3269 /// \brief Order nodes by the ILP metric. 3270 struct ILPOrder { 3271 const SchedDFSResult *DFSResult; 3272 const BitVector *ScheduledTrees; 3273 bool MaximizeILP; 3274 3275 ILPOrder(bool MaxILP) 3276 : DFSResult(nullptr), ScheduledTrees(nullptr), MaximizeILP(MaxILP) {} 3277 3278 /// \brief Apply a less-than relation on node priority. 3279 /// 3280 /// (Return true if A comes after B in the Q.) 3281 bool operator()(const SUnit *A, const SUnit *B) const { 3282 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3283 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3284 if (SchedTreeA != SchedTreeB) { 3285 // Unscheduled trees have lower priority. 3286 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3287 return ScheduledTrees->test(SchedTreeB); 3288 3289 // Trees with shallower connections have have lower priority. 3290 if (DFSResult->getSubtreeLevel(SchedTreeA) 3291 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3292 return DFSResult->getSubtreeLevel(SchedTreeA) 3293 < DFSResult->getSubtreeLevel(SchedTreeB); 3294 } 3295 } 3296 if (MaximizeILP) 3297 return DFSResult->getILP(A) < DFSResult->getILP(B); 3298 else 3299 return DFSResult->getILP(A) > DFSResult->getILP(B); 3300 } 3301 }; 3302 3303 /// \brief Schedule based on the ILP metric. 3304 class ILPScheduler : public MachineSchedStrategy { 3305 ScheduleDAGMILive *DAG; 3306 ILPOrder Cmp; 3307 3308 std::vector<SUnit*> ReadyQ; 3309 public: 3310 ILPScheduler(bool MaximizeILP): DAG(nullptr), Cmp(MaximizeILP) {} 3311 3312 void initialize(ScheduleDAGMI *dag) override { 3313 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3314 DAG = static_cast<ScheduleDAGMILive*>(dag); 3315 DAG->computeDFSResult(); 3316 Cmp.DFSResult = DAG->getDFSResult(); 3317 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3318 ReadyQ.clear(); 3319 } 3320 3321 void registerRoots() override { 3322 // Restore the heap in ReadyQ with the updated DFS results. 3323 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3324 } 3325 3326 /// Implement MachineSchedStrategy interface. 3327 /// ----------------------------------------- 3328 3329 /// Callback to select the highest priority node from the ready Q. 3330 SUnit *pickNode(bool &IsTopNode) override { 3331 if (ReadyQ.empty()) return nullptr; 3332 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3333 SUnit *SU = ReadyQ.back(); 3334 ReadyQ.pop_back(); 3335 IsTopNode = false; 3336 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") " 3337 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3338 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @" 3339 << DAG->getDFSResult()->getSubtreeLevel( 3340 DAG->getDFSResult()->getSubtreeID(SU)) << '\n' 3341 << "Scheduling " << *SU->getInstr()); 3342 return SU; 3343 } 3344 3345 /// \brief Scheduler callback to notify that a new subtree is scheduled. 3346 void scheduleTree(unsigned SubtreeID) override { 3347 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3348 } 3349 3350 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3351 /// DFSResults, and resort the priority Q. 3352 void schedNode(SUnit *SU, bool IsTopNode) override { 3353 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3354 } 3355 3356 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3357 3358 void releaseBottomNode(SUnit *SU) override { 3359 ReadyQ.push_back(SU); 3360 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3361 } 3362 }; 3363 } // namespace 3364 3365 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3366 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(true)); 3367 } 3368 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3369 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(false)); 3370 } 3371 static MachineSchedRegistry ILPMaxRegistry( 3372 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3373 static MachineSchedRegistry ILPMinRegistry( 3374 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3375 3376 //===----------------------------------------------------------------------===// 3377 // Machine Instruction Shuffler for Correctness Testing 3378 //===----------------------------------------------------------------------===// 3379 3380 #ifndef NDEBUG 3381 namespace { 3382 /// Apply a less-than relation on the node order, which corresponds to the 3383 /// instruction order prior to scheduling. IsReverse implements greater-than. 3384 template<bool IsReverse> 3385 struct SUnitOrder { 3386 bool operator()(SUnit *A, SUnit *B) const { 3387 if (IsReverse) 3388 return A->NodeNum > B->NodeNum; 3389 else 3390 return A->NodeNum < B->NodeNum; 3391 } 3392 }; 3393 3394 /// Reorder instructions as much as possible. 3395 class InstructionShuffler : public MachineSchedStrategy { 3396 bool IsAlternating; 3397 bool IsTopDown; 3398 3399 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3400 // gives nodes with a higher number higher priority causing the latest 3401 // instructions to be scheduled first. 3402 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> > 3403 TopQ; 3404 // When scheduling bottom-up, use greater-than as the queue priority. 3405 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> > 3406 BottomQ; 3407 public: 3408 InstructionShuffler(bool alternate, bool topdown) 3409 : IsAlternating(alternate), IsTopDown(topdown) {} 3410 3411 void initialize(ScheduleDAGMI*) override { 3412 TopQ.clear(); 3413 BottomQ.clear(); 3414 } 3415 3416 /// Implement MachineSchedStrategy interface. 3417 /// ----------------------------------------- 3418 3419 SUnit *pickNode(bool &IsTopNode) override { 3420 SUnit *SU; 3421 if (IsTopDown) { 3422 do { 3423 if (TopQ.empty()) return nullptr; 3424 SU = TopQ.top(); 3425 TopQ.pop(); 3426 } while (SU->isScheduled); 3427 IsTopNode = true; 3428 } else { 3429 do { 3430 if (BottomQ.empty()) return nullptr; 3431 SU = BottomQ.top(); 3432 BottomQ.pop(); 3433 } while (SU->isScheduled); 3434 IsTopNode = false; 3435 } 3436 if (IsAlternating) 3437 IsTopDown = !IsTopDown; 3438 return SU; 3439 } 3440 3441 void schedNode(SUnit *SU, bool IsTopNode) override {} 3442 3443 void releaseTopNode(SUnit *SU) override { 3444 TopQ.push(SU); 3445 } 3446 void releaseBottomNode(SUnit *SU) override { 3447 BottomQ.push(SU); 3448 } 3449 }; 3450 } // namespace 3451 3452 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3453 bool Alternate = !ForceTopDown && !ForceBottomUp; 3454 bool TopDown = !ForceBottomUp; 3455 assert((TopDown || !ForceTopDown) && 3456 "-misched-topdown incompatible with -misched-bottomup"); 3457 return new ScheduleDAGMILive(C, make_unique<InstructionShuffler>(Alternate, TopDown)); 3458 } 3459 static MachineSchedRegistry ShufflerRegistry( 3460 "shuffle", "Shuffle machine instructions alternating directions", 3461 createInstructionShuffler); 3462 #endif // !NDEBUG 3463 3464 //===----------------------------------------------------------------------===// 3465 // GraphWriter support for ScheduleDAGMILive. 3466 //===----------------------------------------------------------------------===// 3467 3468 #ifndef NDEBUG 3469 namespace llvm { 3470 3471 template<> struct GraphTraits< 3472 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3473 3474 template<> 3475 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3476 3477 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 3478 3479 static std::string getGraphName(const ScheduleDAG *G) { 3480 return G->MF.getName(); 3481 } 3482 3483 static bool renderGraphFromBottomUp() { 3484 return true; 3485 } 3486 3487 static bool isNodeHidden(const SUnit *Node) { 3488 if (ViewMISchedCutoff == 0) 3489 return false; 3490 return (Node->Preds.size() > ViewMISchedCutoff 3491 || Node->Succs.size() > ViewMISchedCutoff); 3492 } 3493 3494 /// If you want to override the dot attributes printed for a particular 3495 /// edge, override this method. 3496 static std::string getEdgeAttributes(const SUnit *Node, 3497 SUnitIterator EI, 3498 const ScheduleDAG *Graph) { 3499 if (EI.isArtificialDep()) 3500 return "color=cyan,style=dashed"; 3501 if (EI.isCtrlDep()) 3502 return "color=blue,style=dashed"; 3503 return ""; 3504 } 3505 3506 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3507 std::string Str; 3508 raw_string_ostream SS(Str); 3509 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3510 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3511 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3512 SS << "SU:" << SU->NodeNum; 3513 if (DFS) 3514 SS << " I:" << DFS->getNumInstrs(SU); 3515 return SS.str(); 3516 } 3517 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3518 return G->getGraphNodeLabel(SU); 3519 } 3520 3521 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3522 std::string Str("shape=Mrecord"); 3523 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3524 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3525 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3526 if (DFS) { 3527 Str += ",style=filled,fillcolor=\"#"; 3528 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3529 Str += '"'; 3530 } 3531 return Str; 3532 } 3533 }; 3534 } // namespace llvm 3535 #endif // NDEBUG 3536 3537 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3538 /// rendered using 'dot'. 3539 /// 3540 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3541 #ifndef NDEBUG 3542 ViewGraph(this, Name, false, Title); 3543 #else 3544 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3545 << "systems with Graphviz or gv!\n"; 3546 #endif // NDEBUG 3547 } 3548 3549 /// Out-of-line implementation with no arguments is handy for gdb. 3550 void ScheduleDAGMI::viewGraph() { 3551 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3552 } 3553