xref: /llvm-project/llvm/lib/CodeGen/MachineScheduler.cpp (revision 31d19d43c79603d43c331bce2e92e5569c2ea216)
1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // MachineScheduler schedules machine instructions after phi elimination. It
11 // preserves LiveIntervals so it can be invoked before register allocation.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/MachineScheduler.h"
16 #include "llvm/ADT/PriorityQueue.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
19 #include "llvm/CodeGen/MachineDominators.h"
20 #include "llvm/CodeGen/MachineLoopInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/Passes.h"
23 #include "llvm/CodeGen/RegisterClassInfo.h"
24 #include "llvm/CodeGen/ScheduleDFS.h"
25 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
26 #include "llvm/CodeGen/TargetPassConfig.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/GraphWriter.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Target/TargetInstrInfo.h"
33 
34 using namespace llvm;
35 
36 #define DEBUG_TYPE "misched"
37 
38 namespace llvm {
39 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
40                            cl::desc("Force top-down list scheduling"));
41 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
42                             cl::desc("Force bottom-up list scheduling"));
43 cl::opt<bool>
44 DumpCriticalPathLength("misched-dcpl", cl::Hidden,
45                        cl::desc("Print critical path length to stdout"));
46 }
47 
48 #ifndef NDEBUG
49 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
50   cl::desc("Pop up a window to show MISched dags after they are processed"));
51 
52 /// In some situations a few uninteresting nodes depend on nearly all other
53 /// nodes in the graph, provide a cutoff to hide them.
54 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
55   cl::desc("Hide nodes with more predecessor/successor than cutoff"));
56 
57 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
58   cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
59 
60 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
61   cl::desc("Only schedule this function"));
62 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
63   cl::desc("Only schedule this MBB#"));
64 #else
65 static bool ViewMISchedDAGs = false;
66 #endif // NDEBUG
67 
68 /// Avoid quadratic complexity in unusually large basic blocks by limiting the
69 /// size of the ready lists.
70 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden,
71   cl::desc("Limit ready list to N instructions"), cl::init(256));
72 
73 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
74   cl::desc("Enable register pressure scheduling."), cl::init(true));
75 
76 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
77   cl::desc("Enable cyclic critical path analysis."), cl::init(true));
78 
79 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden,
80                                         cl::desc("Enable memop clustering."),
81                                         cl::init(true));
82 
83 // Experimental heuristics
84 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden,
85   cl::desc("Enable scheduling for macro fusion."), cl::init(true));
86 
87 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
88   cl::desc("Verify machine instrs before and after machine scheduling"));
89 
90 // DAG subtrees must have at least this many nodes.
91 static const unsigned MinSubtreeSize = 8;
92 
93 // Pin the vtables to this file.
94 void MachineSchedStrategy::anchor() {}
95 void ScheduleDAGMutation::anchor() {}
96 
97 //===----------------------------------------------------------------------===//
98 // Machine Instruction Scheduling Pass and Registry
99 //===----------------------------------------------------------------------===//
100 
101 MachineSchedContext::MachineSchedContext():
102     MF(nullptr), MLI(nullptr), MDT(nullptr), PassConfig(nullptr), AA(nullptr), LIS(nullptr) {
103   RegClassInfo = new RegisterClassInfo();
104 }
105 
106 MachineSchedContext::~MachineSchedContext() {
107   delete RegClassInfo;
108 }
109 
110 namespace {
111 /// Base class for a machine scheduler class that can run at any point.
112 class MachineSchedulerBase : public MachineSchedContext,
113                              public MachineFunctionPass {
114 public:
115   MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
116 
117   void print(raw_ostream &O, const Module* = nullptr) const override;
118 
119 protected:
120   void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
121 };
122 
123 /// MachineScheduler runs after coalescing and before register allocation.
124 class MachineScheduler : public MachineSchedulerBase {
125 public:
126   MachineScheduler();
127 
128   void getAnalysisUsage(AnalysisUsage &AU) const override;
129 
130   bool runOnMachineFunction(MachineFunction&) override;
131 
132   static char ID; // Class identification, replacement for typeinfo
133 
134 protected:
135   ScheduleDAGInstrs *createMachineScheduler();
136 };
137 
138 /// PostMachineScheduler runs after shortly before code emission.
139 class PostMachineScheduler : public MachineSchedulerBase {
140 public:
141   PostMachineScheduler();
142 
143   void getAnalysisUsage(AnalysisUsage &AU) const override;
144 
145   bool runOnMachineFunction(MachineFunction&) override;
146 
147   static char ID; // Class identification, replacement for typeinfo
148 
149 protected:
150   ScheduleDAGInstrs *createPostMachineScheduler();
151 };
152 } // namespace
153 
154 char MachineScheduler::ID = 0;
155 
156 char &llvm::MachineSchedulerID = MachineScheduler::ID;
157 
158 INITIALIZE_PASS_BEGIN(MachineScheduler, "machine-scheduler",
159                       "Machine Instruction Scheduler", false, false)
160 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
161 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
162 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
163 INITIALIZE_PASS_END(MachineScheduler, "machine-scheduler",
164                     "Machine Instruction Scheduler", false, false)
165 
166 MachineScheduler::MachineScheduler()
167 : MachineSchedulerBase(ID) {
168   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
169 }
170 
171 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
172   AU.setPreservesCFG();
173   AU.addRequiredID(MachineDominatorsID);
174   AU.addRequired<MachineLoopInfo>();
175   AU.addRequired<AAResultsWrapperPass>();
176   AU.addRequired<TargetPassConfig>();
177   AU.addRequired<SlotIndexes>();
178   AU.addPreserved<SlotIndexes>();
179   AU.addRequired<LiveIntervals>();
180   AU.addPreserved<LiveIntervals>();
181   MachineFunctionPass::getAnalysisUsage(AU);
182 }
183 
184 char PostMachineScheduler::ID = 0;
185 
186 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
187 
188 INITIALIZE_PASS(PostMachineScheduler, "postmisched",
189                 "PostRA Machine Instruction Scheduler", false, false)
190 
191 PostMachineScheduler::PostMachineScheduler()
192 : MachineSchedulerBase(ID) {
193   initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
194 }
195 
196 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
197   AU.setPreservesCFG();
198   AU.addRequiredID(MachineDominatorsID);
199   AU.addRequired<MachineLoopInfo>();
200   AU.addRequired<TargetPassConfig>();
201   MachineFunctionPass::getAnalysisUsage(AU);
202 }
203 
204 MachinePassRegistry MachineSchedRegistry::Registry;
205 
206 /// A dummy default scheduler factory indicates whether the scheduler
207 /// is overridden on the command line.
208 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
209   return nullptr;
210 }
211 
212 /// MachineSchedOpt allows command line selection of the scheduler.
213 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
214                RegisterPassParser<MachineSchedRegistry> >
215 MachineSchedOpt("misched",
216                 cl::init(&useDefaultMachineSched), cl::Hidden,
217                 cl::desc("Machine instruction scheduler to use"));
218 
219 static MachineSchedRegistry
220 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
221                      useDefaultMachineSched);
222 
223 static cl::opt<bool> EnableMachineSched(
224     "enable-misched",
225     cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
226     cl::Hidden);
227 
228 static cl::opt<bool> EnablePostRAMachineSched(
229     "enable-post-misched",
230     cl::desc("Enable the post-ra machine instruction scheduling pass."),
231     cl::init(true), cl::Hidden);
232 
233 /// Forward declare the standard machine scheduler. This will be used as the
234 /// default scheduler if the target does not set a default.
235 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C);
236 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C);
237 
238 /// Decrement this iterator until reaching the top or a non-debug instr.
239 static MachineBasicBlock::const_iterator
240 priorNonDebug(MachineBasicBlock::const_iterator I,
241               MachineBasicBlock::const_iterator Beg) {
242   assert(I != Beg && "reached the top of the region, cannot decrement");
243   while (--I != Beg) {
244     if (!I->isDebugValue())
245       break;
246   }
247   return I;
248 }
249 
250 /// Non-const version.
251 static MachineBasicBlock::iterator
252 priorNonDebug(MachineBasicBlock::iterator I,
253               MachineBasicBlock::const_iterator Beg) {
254   return const_cast<MachineInstr*>(
255     &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg));
256 }
257 
258 /// If this iterator is a debug value, increment until reaching the End or a
259 /// non-debug instruction.
260 static MachineBasicBlock::const_iterator
261 nextIfDebug(MachineBasicBlock::const_iterator I,
262             MachineBasicBlock::const_iterator End) {
263   for(; I != End; ++I) {
264     if (!I->isDebugValue())
265       break;
266   }
267   return I;
268 }
269 
270 /// Non-const version.
271 static MachineBasicBlock::iterator
272 nextIfDebug(MachineBasicBlock::iterator I,
273             MachineBasicBlock::const_iterator End) {
274   // Cast the return value to nonconst MachineInstr, then cast to an
275   // instr_iterator, which does not check for null, finally return a
276   // bundle_iterator.
277   return MachineBasicBlock::instr_iterator(
278     const_cast<MachineInstr*>(
279       &*nextIfDebug(MachineBasicBlock::const_iterator(I), End)));
280 }
281 
282 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
283 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
284   // Select the scheduler, or set the default.
285   MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
286   if (Ctor != useDefaultMachineSched)
287     return Ctor(this);
288 
289   // Get the default scheduler set by the target for this function.
290   ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
291   if (Scheduler)
292     return Scheduler;
293 
294   // Default to GenericScheduler.
295   return createGenericSchedLive(this);
296 }
297 
298 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
299 /// the caller. We don't have a command line option to override the postRA
300 /// scheduler. The Target must configure it.
301 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
302   // Get the postRA scheduler set by the target for this function.
303   ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
304   if (Scheduler)
305     return Scheduler;
306 
307   // Default to GenericScheduler.
308   return createGenericSchedPostRA(this);
309 }
310 
311 /// Top-level MachineScheduler pass driver.
312 ///
313 /// Visit blocks in function order. Divide each block into scheduling regions
314 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
315 /// consistent with the DAG builder, which traverses the interior of the
316 /// scheduling regions bottom-up.
317 ///
318 /// This design avoids exposing scheduling boundaries to the DAG builder,
319 /// simplifying the DAG builder's support for "special" target instructions.
320 /// At the same time the design allows target schedulers to operate across
321 /// scheduling boundaries, for example to bundle the boudary instructions
322 /// without reordering them. This creates complexity, because the target
323 /// scheduler must update the RegionBegin and RegionEnd positions cached by
324 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
325 /// design would be to split blocks at scheduling boundaries, but LLVM has a
326 /// general bias against block splitting purely for implementation simplicity.
327 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
328   if (skipFunction(*mf.getFunction()))
329     return false;
330 
331   if (EnableMachineSched.getNumOccurrences()) {
332     if (!EnableMachineSched)
333       return false;
334   } else if (!mf.getSubtarget().enableMachineScheduler())
335     return false;
336 
337   DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
338 
339   // Initialize the context of the pass.
340   MF = &mf;
341   MLI = &getAnalysis<MachineLoopInfo>();
342   MDT = &getAnalysis<MachineDominatorTree>();
343   PassConfig = &getAnalysis<TargetPassConfig>();
344   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
345 
346   LIS = &getAnalysis<LiveIntervals>();
347 
348   if (VerifyScheduling) {
349     DEBUG(LIS->dump());
350     MF->verify(this, "Before machine scheduling.");
351   }
352   RegClassInfo->runOnMachineFunction(*MF);
353 
354   // Instantiate the selected scheduler for this target, function, and
355   // optimization level.
356   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
357   scheduleRegions(*Scheduler, false);
358 
359   DEBUG(LIS->dump());
360   if (VerifyScheduling)
361     MF->verify(this, "After machine scheduling.");
362   return true;
363 }
364 
365 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
366   if (skipFunction(*mf.getFunction()))
367     return false;
368 
369   if (EnablePostRAMachineSched.getNumOccurrences()) {
370     if (!EnablePostRAMachineSched)
371       return false;
372   } else if (!mf.getSubtarget().enablePostRAScheduler()) {
373     DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
374     return false;
375   }
376   DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
377 
378   // Initialize the context of the pass.
379   MF = &mf;
380   PassConfig = &getAnalysis<TargetPassConfig>();
381 
382   if (VerifyScheduling)
383     MF->verify(this, "Before post machine scheduling.");
384 
385   // Instantiate the selected scheduler for this target, function, and
386   // optimization level.
387   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
388   scheduleRegions(*Scheduler, true);
389 
390   if (VerifyScheduling)
391     MF->verify(this, "After post machine scheduling.");
392   return true;
393 }
394 
395 /// Return true of the given instruction should not be included in a scheduling
396 /// region.
397 ///
398 /// MachineScheduler does not currently support scheduling across calls. To
399 /// handle calls, the DAG builder needs to be modified to create register
400 /// anti/output dependencies on the registers clobbered by the call's regmask
401 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
402 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
403 /// the boundary, but there would be no benefit to postRA scheduling across
404 /// calls this late anyway.
405 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
406                             MachineBasicBlock *MBB,
407                             MachineFunction *MF,
408                             const TargetInstrInfo *TII) {
409   return MI->isCall() || TII->isSchedulingBoundary(MI, MBB, *MF);
410 }
411 
412 /// Main driver for both MachineScheduler and PostMachineScheduler.
413 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
414                                            bool FixKillFlags) {
415   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
416 
417   // Visit all machine basic blocks.
418   //
419   // TODO: Visit blocks in global postorder or postorder within the bottom-up
420   // loop tree. Then we can optionally compute global RegPressure.
421   for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
422        MBB != MBBEnd; ++MBB) {
423 
424     Scheduler.startBlock(&*MBB);
425 
426 #ifndef NDEBUG
427     if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
428       continue;
429     if (SchedOnlyBlock.getNumOccurrences()
430         && (int)SchedOnlyBlock != MBB->getNumber())
431       continue;
432 #endif
433 
434     // Break the block into scheduling regions [I, RegionEnd), and schedule each
435     // region as soon as it is discovered. RegionEnd points the scheduling
436     // boundary at the bottom of the region. The DAG does not include RegionEnd,
437     // but the region does (i.e. the next RegionEnd is above the previous
438     // RegionBegin). If the current block has no terminator then RegionEnd ==
439     // MBB->end() for the bottom region.
440     //
441     // The Scheduler may insert instructions during either schedule() or
442     // exitRegion(), even for empty regions. So the local iterators 'I' and
443     // 'RegionEnd' are invalid across these calls.
444     //
445     // MBB::size() uses instr_iterator to count. Here we need a bundle to count
446     // as a single instruction.
447     unsigned RemainingInstrs = std::distance(MBB->begin(), MBB->end());
448     for(MachineBasicBlock::iterator RegionEnd = MBB->end();
449         RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) {
450 
451       // Avoid decrementing RegionEnd for blocks with no terminator.
452       if (RegionEnd != MBB->end() ||
453           isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
454         --RegionEnd;
455         // Count the boundary instruction.
456         --RemainingInstrs;
457       }
458 
459       // The next region starts above the previous region. Look backward in the
460       // instruction stream until we find the nearest boundary.
461       unsigned NumRegionInstrs = 0;
462       MachineBasicBlock::iterator I = RegionEnd;
463       for(;I != MBB->begin(); --I, --RemainingInstrs) {
464         if (isSchedBoundary(&*std::prev(I), &*MBB, MF, TII))
465           break;
466         if (!I->isDebugValue())
467           ++NumRegionInstrs;
468       }
469       // Notify the scheduler of the region, even if we may skip scheduling
470       // it. Perhaps it still needs to be bundled.
471       Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
472 
473       // Skip empty scheduling regions (0 or 1 schedulable instructions).
474       if (I == RegionEnd || I == std::prev(RegionEnd)) {
475         // Close the current region. Bundle the terminator if needed.
476         // This invalidates 'RegionEnd' and 'I'.
477         Scheduler.exitRegion();
478         continue;
479       }
480       DEBUG(dbgs() << "********** MI Scheduling **********\n");
481       DEBUG(dbgs() << MF->getName()
482             << ":BB#" << MBB->getNumber() << " " << MBB->getName()
483             << "\n  From: " << *I << "    To: ";
484             if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
485             else dbgs() << "End";
486             dbgs() << " RegionInstrs: " << NumRegionInstrs
487             << " Remaining: " << RemainingInstrs << "\n");
488       if (DumpCriticalPathLength) {
489         errs() << MF->getName();
490         errs() << ":BB# " << MBB->getNumber();
491         errs() << " " << MBB->getName() << " \n";
492       }
493 
494       // Schedule a region: possibly reorder instructions.
495       // This invalidates 'RegionEnd' and 'I'.
496       Scheduler.schedule();
497 
498       // Close the current region.
499       Scheduler.exitRegion();
500 
501       // Scheduling has invalidated the current iterator 'I'. Ask the
502       // scheduler for the top of it's scheduled region.
503       RegionEnd = Scheduler.begin();
504     }
505     assert(RemainingInstrs == 0 && "Instruction count mismatch!");
506     Scheduler.finishBlock();
507     // FIXME: Ideally, no further passes should rely on kill flags. However,
508     // thumb2 size reduction is currently an exception, so the PostMIScheduler
509     // needs to do this.
510     if (FixKillFlags)
511         Scheduler.fixupKills(&*MBB);
512   }
513   Scheduler.finalizeSchedule();
514 }
515 
516 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
517   // unimplemented
518 }
519 
520 LLVM_DUMP_METHOD
521 void ReadyQueue::dump() {
522   dbgs() << "Queue " << Name << ": ";
523   for (unsigned i = 0, e = Queue.size(); i < e; ++i)
524     dbgs() << Queue[i]->NodeNum << " ";
525   dbgs() << "\n";
526 }
527 
528 //===----------------------------------------------------------------------===//
529 // ScheduleDAGMI - Basic machine instruction scheduling. This is
530 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
531 // virtual registers.
532 // ===----------------------------------------------------------------------===/
533 
534 // Provide a vtable anchor.
535 ScheduleDAGMI::~ScheduleDAGMI() {
536 }
537 
538 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
539   return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
540 }
541 
542 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
543   if (SuccSU != &ExitSU) {
544     // Do not use WillCreateCycle, it assumes SD scheduling.
545     // If Pred is reachable from Succ, then the edge creates a cycle.
546     if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
547       return false;
548     Topo.AddPred(SuccSU, PredDep.getSUnit());
549   }
550   SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
551   // Return true regardless of whether a new edge needed to be inserted.
552   return true;
553 }
554 
555 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
556 /// NumPredsLeft reaches zero, release the successor node.
557 ///
558 /// FIXME: Adjust SuccSU height based on MinLatency.
559 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
560   SUnit *SuccSU = SuccEdge->getSUnit();
561 
562   if (SuccEdge->isWeak()) {
563     --SuccSU->WeakPredsLeft;
564     if (SuccEdge->isCluster())
565       NextClusterSucc = SuccSU;
566     return;
567   }
568 #ifndef NDEBUG
569   if (SuccSU->NumPredsLeft == 0) {
570     dbgs() << "*** Scheduling failed! ***\n";
571     SuccSU->dump(this);
572     dbgs() << " has been released too many times!\n";
573     llvm_unreachable(nullptr);
574   }
575 #endif
576   // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
577   // CurrCycle may have advanced since then.
578   if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
579     SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
580 
581   --SuccSU->NumPredsLeft;
582   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
583     SchedImpl->releaseTopNode(SuccSU);
584 }
585 
586 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
587 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
588   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
589        I != E; ++I) {
590     releaseSucc(SU, &*I);
591   }
592 }
593 
594 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
595 /// NumSuccsLeft reaches zero, release the predecessor node.
596 ///
597 /// FIXME: Adjust PredSU height based on MinLatency.
598 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
599   SUnit *PredSU = PredEdge->getSUnit();
600 
601   if (PredEdge->isWeak()) {
602     --PredSU->WeakSuccsLeft;
603     if (PredEdge->isCluster())
604       NextClusterPred = PredSU;
605     return;
606   }
607 #ifndef NDEBUG
608   if (PredSU->NumSuccsLeft == 0) {
609     dbgs() << "*** Scheduling failed! ***\n";
610     PredSU->dump(this);
611     dbgs() << " has been released too many times!\n";
612     llvm_unreachable(nullptr);
613   }
614 #endif
615   // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
616   // CurrCycle may have advanced since then.
617   if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
618     PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
619 
620   --PredSU->NumSuccsLeft;
621   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
622     SchedImpl->releaseBottomNode(PredSU);
623 }
624 
625 /// releasePredecessors - Call releasePred on each of SU's predecessors.
626 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
627   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
628        I != E; ++I) {
629     releasePred(SU, &*I);
630   }
631 }
632 
633 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
634 /// crossing a scheduling boundary. [begin, end) includes all instructions in
635 /// the region, including the boundary itself and single-instruction regions
636 /// that don't get scheduled.
637 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
638                                      MachineBasicBlock::iterator begin,
639                                      MachineBasicBlock::iterator end,
640                                      unsigned regioninstrs)
641 {
642   ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
643 
644   SchedImpl->initPolicy(begin, end, regioninstrs);
645 }
646 
647 /// This is normally called from the main scheduler loop but may also be invoked
648 /// by the scheduling strategy to perform additional code motion.
649 void ScheduleDAGMI::moveInstruction(
650   MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
651   // Advance RegionBegin if the first instruction moves down.
652   if (&*RegionBegin == MI)
653     ++RegionBegin;
654 
655   // Update the instruction stream.
656   BB->splice(InsertPos, BB, MI);
657 
658   // Update LiveIntervals
659   if (LIS)
660     LIS->handleMove(*MI, /*UpdateFlags=*/true);
661 
662   // Recede RegionBegin if an instruction moves above the first.
663   if (RegionBegin == InsertPos)
664     RegionBegin = MI;
665 }
666 
667 bool ScheduleDAGMI::checkSchedLimit() {
668 #ifndef NDEBUG
669   if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
670     CurrentTop = CurrentBottom;
671     return false;
672   }
673   ++NumInstrsScheduled;
674 #endif
675   return true;
676 }
677 
678 /// Per-region scheduling driver, called back from
679 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that
680 /// does not consider liveness or register pressure. It is useful for PostRA
681 /// scheduling and potentially other custom schedulers.
682 void ScheduleDAGMI::schedule() {
683   DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
684   DEBUG(SchedImpl->dumpPolicy());
685 
686   // Build the DAG.
687   buildSchedGraph(AA);
688 
689   Topo.InitDAGTopologicalSorting();
690 
691   postprocessDAG();
692 
693   SmallVector<SUnit*, 8> TopRoots, BotRoots;
694   findRootsAndBiasEdges(TopRoots, BotRoots);
695 
696   // Initialize the strategy before modifying the DAG.
697   // This may initialize a DFSResult to be used for queue priority.
698   SchedImpl->initialize(this);
699 
700   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
701           SUnits[su].dumpAll(this));
702   if (ViewMISchedDAGs) viewGraph();
703 
704   // Initialize ready queues now that the DAG and priority data are finalized.
705   initQueues(TopRoots, BotRoots);
706 
707   bool IsTopNode = false;
708   while (true) {
709     DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
710     SUnit *SU = SchedImpl->pickNode(IsTopNode);
711     if (!SU) break;
712 
713     assert(!SU->isScheduled && "Node already scheduled");
714     if (!checkSchedLimit())
715       break;
716 
717     MachineInstr *MI = SU->getInstr();
718     if (IsTopNode) {
719       assert(SU->isTopReady() && "node still has unscheduled dependencies");
720       if (&*CurrentTop == MI)
721         CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
722       else
723         moveInstruction(MI, CurrentTop);
724     } else {
725       assert(SU->isBottomReady() && "node still has unscheduled dependencies");
726       MachineBasicBlock::iterator priorII =
727         priorNonDebug(CurrentBottom, CurrentTop);
728       if (&*priorII == MI)
729         CurrentBottom = priorII;
730       else {
731         if (&*CurrentTop == MI)
732           CurrentTop = nextIfDebug(++CurrentTop, priorII);
733         moveInstruction(MI, CurrentBottom);
734         CurrentBottom = MI;
735       }
736     }
737     // Notify the scheduling strategy before updating the DAG.
738     // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
739     // runs, it can then use the accurate ReadyCycle time to determine whether
740     // newly released nodes can move to the readyQ.
741     SchedImpl->schedNode(SU, IsTopNode);
742 
743     updateQueues(SU, IsTopNode);
744   }
745   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
746 
747   placeDebugValues();
748 
749   DEBUG({
750       unsigned BBNum = begin()->getParent()->getNumber();
751       dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
752       dumpSchedule();
753       dbgs() << '\n';
754     });
755 }
756 
757 /// Apply each ScheduleDAGMutation step in order.
758 void ScheduleDAGMI::postprocessDAG() {
759   for (unsigned i = 0, e = Mutations.size(); i < e; ++i) {
760     Mutations[i]->apply(this);
761   }
762 }
763 
764 void ScheduleDAGMI::
765 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
766                       SmallVectorImpl<SUnit*> &BotRoots) {
767   for (std::vector<SUnit>::iterator
768          I = SUnits.begin(), E = SUnits.end(); I != E; ++I) {
769     SUnit *SU = &(*I);
770     assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits");
771 
772     // Order predecessors so DFSResult follows the critical path.
773     SU->biasCriticalPath();
774 
775     // A SUnit is ready to top schedule if it has no predecessors.
776     if (!I->NumPredsLeft)
777       TopRoots.push_back(SU);
778     // A SUnit is ready to bottom schedule if it has no successors.
779     if (!I->NumSuccsLeft)
780       BotRoots.push_back(SU);
781   }
782   ExitSU.biasCriticalPath();
783 }
784 
785 /// Identify DAG roots and setup scheduler queues.
786 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
787                                ArrayRef<SUnit*> BotRoots) {
788   NextClusterSucc = nullptr;
789   NextClusterPred = nullptr;
790 
791   // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
792   //
793   // Nodes with unreleased weak edges can still be roots.
794   // Release top roots in forward order.
795   for (SmallVectorImpl<SUnit*>::const_iterator
796          I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) {
797     SchedImpl->releaseTopNode(*I);
798   }
799   // Release bottom roots in reverse order so the higher priority nodes appear
800   // first. This is more natural and slightly more efficient.
801   for (SmallVectorImpl<SUnit*>::const_reverse_iterator
802          I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
803     SchedImpl->releaseBottomNode(*I);
804   }
805 
806   releaseSuccessors(&EntrySU);
807   releasePredecessors(&ExitSU);
808 
809   SchedImpl->registerRoots();
810 
811   // Advance past initial DebugValues.
812   CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
813   CurrentBottom = RegionEnd;
814 }
815 
816 /// Update scheduler queues after scheduling an instruction.
817 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
818   // Release dependent instructions for scheduling.
819   if (IsTopNode)
820     releaseSuccessors(SU);
821   else
822     releasePredecessors(SU);
823 
824   SU->isScheduled = true;
825 }
826 
827 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
828 void ScheduleDAGMI::placeDebugValues() {
829   // If first instruction was a DBG_VALUE then put it back.
830   if (FirstDbgValue) {
831     BB->splice(RegionBegin, BB, FirstDbgValue);
832     RegionBegin = FirstDbgValue;
833   }
834 
835   for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
836          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
837     std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
838     MachineInstr *DbgValue = P.first;
839     MachineBasicBlock::iterator OrigPrevMI = P.second;
840     if (&*RegionBegin == DbgValue)
841       ++RegionBegin;
842     BB->splice(++OrigPrevMI, BB, DbgValue);
843     if (OrigPrevMI == std::prev(RegionEnd))
844       RegionEnd = DbgValue;
845   }
846   DbgValues.clear();
847   FirstDbgValue = nullptr;
848 }
849 
850 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
851 void ScheduleDAGMI::dumpSchedule() const {
852   for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
853     if (SUnit *SU = getSUnit(&(*MI)))
854       SU->dump(this);
855     else
856       dbgs() << "Missing SUnit\n";
857   }
858 }
859 #endif
860 
861 //===----------------------------------------------------------------------===//
862 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
863 // preservation.
864 //===----------------------------------------------------------------------===//
865 
866 ScheduleDAGMILive::~ScheduleDAGMILive() {
867   delete DFSResult;
868 }
869 
870 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
871 /// crossing a scheduling boundary. [begin, end) includes all instructions in
872 /// the region, including the boundary itself and single-instruction regions
873 /// that don't get scheduled.
874 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
875                                 MachineBasicBlock::iterator begin,
876                                 MachineBasicBlock::iterator end,
877                                 unsigned regioninstrs)
878 {
879   // ScheduleDAGMI initializes SchedImpl's per-region policy.
880   ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
881 
882   // For convenience remember the end of the liveness region.
883   LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
884 
885   SUPressureDiffs.clear();
886 
887   ShouldTrackPressure = SchedImpl->shouldTrackPressure();
888   ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks();
889 
890   if (ShouldTrackLaneMasks) {
891     if (!ShouldTrackPressure)
892       report_fatal_error("ShouldTrackLaneMasks requires ShouldTrackPressure");
893     // Dead subregister defs have no users and therefore no dependencies,
894     // moving them around may cause liveintervals to degrade into multiple
895     // components. Change independent components to have their own vreg to avoid
896     // this.
897     if (!DisconnectedComponentsRenamed)
898       LIS->renameDisconnectedComponents();
899   }
900 }
901 
902 // Setup the register pressure trackers for the top scheduled top and bottom
903 // scheduled regions.
904 void ScheduleDAGMILive::initRegPressure() {
905   TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin,
906                     ShouldTrackLaneMasks, false);
907   BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
908                     ShouldTrackLaneMasks, false);
909 
910   // Close the RPTracker to finalize live ins.
911   RPTracker.closeRegion();
912 
913   DEBUG(RPTracker.dump());
914 
915   // Initialize the live ins and live outs.
916   TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
917   BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
918 
919   // Close one end of the tracker so we can call
920   // getMaxUpward/DownwardPressureDelta before advancing across any
921   // instructions. This converts currently live regs into live ins/outs.
922   TopRPTracker.closeTop();
923   BotRPTracker.closeBottom();
924 
925   BotRPTracker.initLiveThru(RPTracker);
926   if (!BotRPTracker.getLiveThru().empty()) {
927     TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
928     DEBUG(dbgs() << "Live Thru: ";
929           dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
930   };
931 
932   // For each live out vreg reduce the pressure change associated with other
933   // uses of the same vreg below the live-out reaching def.
934   updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
935 
936   // Account for liveness generated by the region boundary.
937   if (LiveRegionEnd != RegionEnd) {
938     SmallVector<RegisterMaskPair, 8> LiveUses;
939     BotRPTracker.recede(&LiveUses);
940     updatePressureDiffs(LiveUses);
941   }
942 
943   DEBUG(
944     dbgs() << "Top Pressure:\n";
945     dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
946     dbgs() << "Bottom Pressure:\n";
947     dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);
948   );
949 
950   assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
951 
952   // Cache the list of excess pressure sets in this region. This will also track
953   // the max pressure in the scheduled code for these sets.
954   RegionCriticalPSets.clear();
955   const std::vector<unsigned> &RegionPressure =
956     RPTracker.getPressure().MaxSetPressure;
957   for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
958     unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
959     if (RegionPressure[i] > Limit) {
960       DEBUG(dbgs() << TRI->getRegPressureSetName(i)
961             << " Limit " << Limit
962             << " Actual " << RegionPressure[i] << "\n");
963       RegionCriticalPSets.push_back(PressureChange(i));
964     }
965   }
966   DEBUG(dbgs() << "Excess PSets: ";
967         for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
968           dbgs() << TRI->getRegPressureSetName(
969             RegionCriticalPSets[i].getPSet()) << " ";
970         dbgs() << "\n");
971 }
972 
973 void ScheduleDAGMILive::
974 updateScheduledPressure(const SUnit *SU,
975                         const std::vector<unsigned> &NewMaxPressure) {
976   const PressureDiff &PDiff = getPressureDiff(SU);
977   unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
978   for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end();
979        I != E; ++I) {
980     if (!I->isValid())
981       break;
982     unsigned ID = I->getPSet();
983     while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
984       ++CritIdx;
985     if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
986       if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
987           && NewMaxPressure[ID] <= INT16_MAX)
988         RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
989     }
990     unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
991     if (NewMaxPressure[ID] >= Limit - 2) {
992       DEBUG(dbgs() << "  " << TRI->getRegPressureSetName(ID) << ": "
993             << NewMaxPressure[ID]
994             << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit
995             << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n");
996     }
997   }
998 }
999 
1000 /// Update the PressureDiff array for liveness after scheduling this
1001 /// instruction.
1002 void ScheduleDAGMILive::updatePressureDiffs(
1003     ArrayRef<RegisterMaskPair> LiveUses) {
1004   for (const RegisterMaskPair &P : LiveUses) {
1005     unsigned Reg = P.RegUnit;
1006     /// FIXME: Currently assuming single-use physregs.
1007     if (!TRI->isVirtualRegister(Reg))
1008       continue;
1009 
1010     if (ShouldTrackLaneMasks) {
1011       // If the register has just become live then other uses won't change
1012       // this fact anymore => decrement pressure.
1013       // If the register has just become dead then other uses make it come
1014       // back to life => increment pressure.
1015       bool Decrement = P.LaneMask != 0;
1016 
1017       for (const VReg2SUnit &V2SU
1018            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1019         SUnit &SU = *V2SU.SU;
1020         if (SU.isScheduled || &SU == &ExitSU)
1021           continue;
1022 
1023         PressureDiff &PDiff = getPressureDiff(&SU);
1024         PDiff.addPressureChange(Reg, Decrement, &MRI);
1025         DEBUG(
1026           dbgs() << "  UpdateRegP: SU(" << SU.NodeNum << ") "
1027                  << PrintReg(Reg, TRI) << ':' << PrintLaneMask(P.LaneMask)
1028                  << ' ' << *SU.getInstr();
1029           dbgs() << "              to ";
1030           PDiff.dump(*TRI);
1031         );
1032       }
1033     } else {
1034       assert(P.LaneMask != 0);
1035       DEBUG(dbgs() << "  LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n");
1036       // This may be called before CurrentBottom has been initialized. However,
1037       // BotRPTracker must have a valid position. We want the value live into the
1038       // instruction or live out of the block, so ask for the previous
1039       // instruction's live-out.
1040       const LiveInterval &LI = LIS->getInterval(Reg);
1041       VNInfo *VNI;
1042       MachineBasicBlock::const_iterator I =
1043         nextIfDebug(BotRPTracker.getPos(), BB->end());
1044       if (I == BB->end())
1045         VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1046       else {
1047         LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I));
1048         VNI = LRQ.valueIn();
1049       }
1050       // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
1051       assert(VNI && "No live value at use.");
1052       for (const VReg2SUnit &V2SU
1053            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1054         SUnit *SU = V2SU.SU;
1055         // If this use comes before the reaching def, it cannot be a last use,
1056         // so decrease its pressure change.
1057         if (!SU->isScheduled && SU != &ExitSU) {
1058           LiveQueryResult LRQ =
1059               LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1060           if (LRQ.valueIn() == VNI) {
1061             PressureDiff &PDiff = getPressureDiff(SU);
1062             PDiff.addPressureChange(Reg, true, &MRI);
1063             DEBUG(
1064               dbgs() << "  UpdateRegP: SU(" << SU->NodeNum << ") "
1065                      << *SU->getInstr();
1066               dbgs() << "              to ";
1067               PDiff.dump(*TRI);
1068             );
1069           }
1070         }
1071       }
1072     }
1073   }
1074 }
1075 
1076 /// schedule - Called back from MachineScheduler::runOnMachineFunction
1077 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
1078 /// only includes instructions that have DAG nodes, not scheduling boundaries.
1079 ///
1080 /// This is a skeletal driver, with all the functionality pushed into helpers,
1081 /// so that it can be easily extended by experimental schedulers. Generally,
1082 /// implementing MachineSchedStrategy should be sufficient to implement a new
1083 /// scheduling algorithm. However, if a scheduler further subclasses
1084 /// ScheduleDAGMILive then it will want to override this virtual method in order
1085 /// to update any specialized state.
1086 void ScheduleDAGMILive::schedule() {
1087   DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
1088   DEBUG(SchedImpl->dumpPolicy());
1089   buildDAGWithRegPressure();
1090 
1091   Topo.InitDAGTopologicalSorting();
1092 
1093   postprocessDAG();
1094 
1095   SmallVector<SUnit*, 8> TopRoots, BotRoots;
1096   findRootsAndBiasEdges(TopRoots, BotRoots);
1097 
1098   // Initialize the strategy before modifying the DAG.
1099   // This may initialize a DFSResult to be used for queue priority.
1100   SchedImpl->initialize(this);
1101 
1102   DEBUG(
1103     for (const SUnit &SU : SUnits) {
1104       SU.dumpAll(this);
1105       if (ShouldTrackPressure) {
1106         dbgs() << "  Pressure Diff      : ";
1107         getPressureDiff(&SU).dump(*TRI);
1108       }
1109       dbgs() << '\n';
1110     }
1111   );
1112   if (ViewMISchedDAGs) viewGraph();
1113 
1114   // Initialize ready queues now that the DAG and priority data are finalized.
1115   initQueues(TopRoots, BotRoots);
1116 
1117   bool IsTopNode = false;
1118   while (true) {
1119     DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
1120     SUnit *SU = SchedImpl->pickNode(IsTopNode);
1121     if (!SU) break;
1122 
1123     assert(!SU->isScheduled && "Node already scheduled");
1124     if (!checkSchedLimit())
1125       break;
1126 
1127     scheduleMI(SU, IsTopNode);
1128 
1129     if (DFSResult) {
1130       unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1131       if (!ScheduledTrees.test(SubtreeID)) {
1132         ScheduledTrees.set(SubtreeID);
1133         DFSResult->scheduleTree(SubtreeID);
1134         SchedImpl->scheduleTree(SubtreeID);
1135       }
1136     }
1137 
1138     // Notify the scheduling strategy after updating the DAG.
1139     SchedImpl->schedNode(SU, IsTopNode);
1140 
1141     updateQueues(SU, IsTopNode);
1142   }
1143   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1144 
1145   placeDebugValues();
1146 
1147   DEBUG({
1148       unsigned BBNum = begin()->getParent()->getNumber();
1149       dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
1150       dumpSchedule();
1151       dbgs() << '\n';
1152     });
1153 }
1154 
1155 /// Build the DAG and setup three register pressure trackers.
1156 void ScheduleDAGMILive::buildDAGWithRegPressure() {
1157   if (!ShouldTrackPressure) {
1158     RPTracker.reset();
1159     RegionCriticalPSets.clear();
1160     buildSchedGraph(AA);
1161     return;
1162   }
1163 
1164   // Initialize the register pressure tracker used by buildSchedGraph.
1165   RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1166                  ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true);
1167 
1168   // Account for liveness generate by the region boundary.
1169   if (LiveRegionEnd != RegionEnd)
1170     RPTracker.recede();
1171 
1172   // Build the DAG, and compute current register pressure.
1173   buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks);
1174 
1175   // Initialize top/bottom trackers after computing region pressure.
1176   initRegPressure();
1177 }
1178 
1179 void ScheduleDAGMILive::computeDFSResult() {
1180   if (!DFSResult)
1181     DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1182   DFSResult->clear();
1183   ScheduledTrees.clear();
1184   DFSResult->resize(SUnits.size());
1185   DFSResult->compute(SUnits);
1186   ScheduledTrees.resize(DFSResult->getNumSubtrees());
1187 }
1188 
1189 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
1190 /// only provides the critical path for single block loops. To handle loops that
1191 /// span blocks, we could use the vreg path latencies provided by
1192 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1193 /// available for use in the scheduler.
1194 ///
1195 /// The cyclic path estimation identifies a def-use pair that crosses the back
1196 /// edge and considers the depth and height of the nodes. For example, consider
1197 /// the following instruction sequence where each instruction has unit latency
1198 /// and defines an epomymous virtual register:
1199 ///
1200 /// a->b(a,c)->c(b)->d(c)->exit
1201 ///
1202 /// The cyclic critical path is a two cycles: b->c->b
1203 /// The acyclic critical path is four cycles: a->b->c->d->exit
1204 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
1205 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1206 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1207 /// LiveInDepth = depth(b) = len(a->b) = 1
1208 ///
1209 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1210 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1211 /// CyclicCriticalPath = min(2, 2) = 2
1212 ///
1213 /// This could be relevant to PostRA scheduling, but is currently implemented
1214 /// assuming LiveIntervals.
1215 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1216   // This only applies to single block loop.
1217   if (!BB->isSuccessor(BB))
1218     return 0;
1219 
1220   unsigned MaxCyclicLatency = 0;
1221   // Visit each live out vreg def to find def/use pairs that cross iterations.
1222   for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) {
1223     unsigned Reg = P.RegUnit;
1224     if (!TRI->isVirtualRegister(Reg))
1225         continue;
1226     const LiveInterval &LI = LIS->getInterval(Reg);
1227     const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1228     if (!DefVNI)
1229       continue;
1230 
1231     MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1232     const SUnit *DefSU = getSUnit(DefMI);
1233     if (!DefSU)
1234       continue;
1235 
1236     unsigned LiveOutHeight = DefSU->getHeight();
1237     unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1238     // Visit all local users of the vreg def.
1239     for (const VReg2SUnit &V2SU
1240          : make_range(VRegUses.find(Reg), VRegUses.end())) {
1241       SUnit *SU = V2SU.SU;
1242       if (SU == &ExitSU)
1243         continue;
1244 
1245       // Only consider uses of the phi.
1246       LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1247       if (!LRQ.valueIn()->isPHIDef())
1248         continue;
1249 
1250       // Assume that a path spanning two iterations is a cycle, which could
1251       // overestimate in strange cases. This allows cyclic latency to be
1252       // estimated as the minimum slack of the vreg's depth or height.
1253       unsigned CyclicLatency = 0;
1254       if (LiveOutDepth > SU->getDepth())
1255         CyclicLatency = LiveOutDepth - SU->getDepth();
1256 
1257       unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
1258       if (LiveInHeight > LiveOutHeight) {
1259         if (LiveInHeight - LiveOutHeight < CyclicLatency)
1260           CyclicLatency = LiveInHeight - LiveOutHeight;
1261       } else
1262         CyclicLatency = 0;
1263 
1264       DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1265             << SU->NodeNum << ") = " << CyclicLatency << "c\n");
1266       if (CyclicLatency > MaxCyclicLatency)
1267         MaxCyclicLatency = CyclicLatency;
1268     }
1269   }
1270   DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1271   return MaxCyclicLatency;
1272 }
1273 
1274 /// Release ExitSU predecessors and setup scheduler queues. Re-position
1275 /// the Top RP tracker in case the region beginning has changed.
1276 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots,
1277                                    ArrayRef<SUnit*> BotRoots) {
1278   ScheduleDAGMI::initQueues(TopRoots, BotRoots);
1279   if (ShouldTrackPressure) {
1280     assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1281     TopRPTracker.setPos(CurrentTop);
1282   }
1283 }
1284 
1285 /// Move an instruction and update register pressure.
1286 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1287   // Move the instruction to its new location in the instruction stream.
1288   MachineInstr *MI = SU->getInstr();
1289 
1290   if (IsTopNode) {
1291     assert(SU->isTopReady() && "node still has unscheduled dependencies");
1292     if (&*CurrentTop == MI)
1293       CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1294     else {
1295       moveInstruction(MI, CurrentTop);
1296       TopRPTracker.setPos(MI);
1297     }
1298 
1299     if (ShouldTrackPressure) {
1300       // Update top scheduled pressure.
1301       RegisterOperands RegOpers;
1302       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1303       if (ShouldTrackLaneMasks) {
1304         // Adjust liveness and add missing dead+read-undef flags.
1305         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1306         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1307       } else {
1308         // Adjust for missing dead-def flags.
1309         RegOpers.detectDeadDefs(*MI, *LIS);
1310       }
1311 
1312       TopRPTracker.advance(RegOpers);
1313       assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1314       DEBUG(
1315         dbgs() << "Top Pressure:\n";
1316         dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
1317       );
1318 
1319       updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1320     }
1321   } else {
1322     assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1323     MachineBasicBlock::iterator priorII =
1324       priorNonDebug(CurrentBottom, CurrentTop);
1325     if (&*priorII == MI)
1326       CurrentBottom = priorII;
1327     else {
1328       if (&*CurrentTop == MI) {
1329         CurrentTop = nextIfDebug(++CurrentTop, priorII);
1330         TopRPTracker.setPos(CurrentTop);
1331       }
1332       moveInstruction(MI, CurrentBottom);
1333       CurrentBottom = MI;
1334     }
1335     if (ShouldTrackPressure) {
1336       RegisterOperands RegOpers;
1337       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1338       if (ShouldTrackLaneMasks) {
1339         // Adjust liveness and add missing dead+read-undef flags.
1340         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1341         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1342       } else {
1343         // Adjust for missing dead-def flags.
1344         RegOpers.detectDeadDefs(*MI, *LIS);
1345       }
1346 
1347       BotRPTracker.recedeSkipDebugValues();
1348       SmallVector<RegisterMaskPair, 8> LiveUses;
1349       BotRPTracker.recede(RegOpers, &LiveUses);
1350       assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1351       DEBUG(
1352         dbgs() << "Bottom Pressure:\n";
1353         dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);
1354       );
1355 
1356       updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1357       updatePressureDiffs(LiveUses);
1358     }
1359   }
1360 }
1361 
1362 //===----------------------------------------------------------------------===//
1363 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores.
1364 //===----------------------------------------------------------------------===//
1365 
1366 namespace {
1367 /// \brief Post-process the DAG to create cluster edges between neighboring
1368 /// loads or between neighboring stores.
1369 class BaseMemOpClusterMutation : public ScheduleDAGMutation {
1370   struct MemOpInfo {
1371     SUnit *SU;
1372     unsigned BaseReg;
1373     int64_t Offset;
1374     MemOpInfo(SUnit *su, unsigned reg, int64_t ofs)
1375         : SU(su), BaseReg(reg), Offset(ofs) {}
1376 
1377     bool operator<(const MemOpInfo&RHS) const {
1378       return std::tie(BaseReg, Offset) < std::tie(RHS.BaseReg, RHS.Offset);
1379     }
1380   };
1381 
1382   const TargetInstrInfo *TII;
1383   const TargetRegisterInfo *TRI;
1384   bool IsLoad;
1385 
1386 public:
1387   BaseMemOpClusterMutation(const TargetInstrInfo *tii,
1388                            const TargetRegisterInfo *tri, bool IsLoad)
1389       : TII(tii), TRI(tri), IsLoad(IsLoad) {}
1390 
1391   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1392 
1393 protected:
1394   void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG);
1395 };
1396 
1397 class StoreClusterMutation : public BaseMemOpClusterMutation {
1398 public:
1399   StoreClusterMutation(const TargetInstrInfo *tii,
1400                        const TargetRegisterInfo *tri)
1401       : BaseMemOpClusterMutation(tii, tri, false) {}
1402 };
1403 
1404 class LoadClusterMutation : public BaseMemOpClusterMutation {
1405 public:
1406   LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri)
1407       : BaseMemOpClusterMutation(tii, tri, true) {}
1408 };
1409 } // anonymous
1410 
1411 void BaseMemOpClusterMutation::clusterNeighboringMemOps(
1412     ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG) {
1413   SmallVector<MemOpInfo, 32> MemOpRecords;
1414   for (unsigned Idx = 0, End = MemOps.size(); Idx != End; ++Idx) {
1415     SUnit *SU = MemOps[Idx];
1416     unsigned BaseReg;
1417     int64_t Offset;
1418     if (TII->getMemOpBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI))
1419       MemOpRecords.push_back(MemOpInfo(SU, BaseReg, Offset));
1420   }
1421   if (MemOpRecords.size() < 2)
1422     return;
1423 
1424   std::sort(MemOpRecords.begin(), MemOpRecords.end());
1425   unsigned ClusterLength = 1;
1426   for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) {
1427     if (MemOpRecords[Idx].BaseReg != MemOpRecords[Idx+1].BaseReg) {
1428       ClusterLength = 1;
1429       continue;
1430     }
1431 
1432     SUnit *SUa = MemOpRecords[Idx].SU;
1433     SUnit *SUb = MemOpRecords[Idx+1].SU;
1434     if (TII->shouldClusterMemOps(SUa->getInstr(), SUb->getInstr(), ClusterLength)
1435         && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
1436       DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU("
1437             << SUb->NodeNum << ")\n");
1438       // Copy successor edges from SUa to SUb. Interleaving computation
1439       // dependent on SUa can prevent load combining due to register reuse.
1440       // Predecessor edges do not need to be copied from SUb to SUa since nearby
1441       // loads should have effectively the same inputs.
1442       for (SUnit::const_succ_iterator
1443              SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) {
1444         if (SI->getSUnit() == SUb)
1445           continue;
1446         DEBUG(dbgs() << "  Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n");
1447         DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial));
1448       }
1449       ++ClusterLength;
1450     } else
1451       ClusterLength = 1;
1452   }
1453 }
1454 
1455 /// \brief Callback from DAG postProcessing to create cluster edges for loads.
1456 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAGInstrs) {
1457 
1458   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1459 
1460   // Map DAG NodeNum to store chain ID.
1461   DenseMap<unsigned, unsigned> StoreChainIDs;
1462   // Map each store chain to a set of dependent MemOps.
1463   SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
1464   for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
1465     SUnit *SU = &DAG->SUnits[Idx];
1466     if ((IsLoad && !SU->getInstr()->mayLoad()) ||
1467         (!IsLoad && !SU->getInstr()->mayStore()))
1468       continue;
1469 
1470     unsigned ChainPredID = DAG->SUnits.size();
1471     for (SUnit::const_pred_iterator
1472            PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
1473       if (PI->isCtrl()) {
1474         ChainPredID = PI->getSUnit()->NodeNum;
1475         break;
1476       }
1477     }
1478     // Check if this chain-like pred has been seen
1479     // before. ChainPredID==MaxNodeID at the top of the schedule.
1480     unsigned NumChains = StoreChainDependents.size();
1481     std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
1482       StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
1483     if (Result.second)
1484       StoreChainDependents.resize(NumChains + 1);
1485     StoreChainDependents[Result.first->second].push_back(SU);
1486   }
1487 
1488   // Iterate over the store chains.
1489   for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx)
1490     clusterNeighboringMemOps(StoreChainDependents[Idx], DAG);
1491 }
1492 
1493 //===----------------------------------------------------------------------===//
1494 // MacroFusion - DAG post-processing to encourage fusion of macro ops.
1495 //===----------------------------------------------------------------------===//
1496 
1497 namespace {
1498 /// \brief Post-process the DAG to create cluster edges between instructions
1499 /// that may be fused by the processor into a single operation.
1500 class MacroFusion : public ScheduleDAGMutation {
1501   const TargetInstrInfo &TII;
1502   const TargetRegisterInfo &TRI;
1503 public:
1504   MacroFusion(const TargetInstrInfo &TII, const TargetRegisterInfo &TRI)
1505     : TII(TII), TRI(TRI) {}
1506 
1507   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1508 };
1509 } // anonymous
1510 
1511 /// Returns true if \p MI reads a register written by \p Other.
1512 static bool HasDataDep(const TargetRegisterInfo &TRI, const MachineInstr &MI,
1513                        const MachineInstr &Other) {
1514   for (const MachineOperand &MO : MI.uses()) {
1515     if (!MO.isReg() || !MO.readsReg())
1516       continue;
1517 
1518     unsigned Reg = MO.getReg();
1519     if (Other.modifiesRegister(Reg, &TRI))
1520       return true;
1521   }
1522   return false;
1523 }
1524 
1525 /// \brief Callback from DAG postProcessing to create cluster edges to encourage
1526 /// fused operations.
1527 void MacroFusion::apply(ScheduleDAGInstrs *DAGInstrs) {
1528   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1529 
1530   // For now, assume targets can only fuse with the branch.
1531   SUnit &ExitSU = DAG->ExitSU;
1532   MachineInstr *Branch = ExitSU.getInstr();
1533   if (!Branch)
1534     return;
1535 
1536   for (SUnit &SU : DAG->SUnits) {
1537     // SUnits with successors can't be schedule in front of the ExitSU.
1538     if (!SU.Succs.empty())
1539       continue;
1540     // We only care if the node writes to a register that the branch reads.
1541     MachineInstr *Pred = SU.getInstr();
1542     if (!HasDataDep(TRI, *Branch, *Pred))
1543       continue;
1544 
1545     if (!TII.shouldScheduleAdjacent(Pred, Branch))
1546       continue;
1547 
1548     // Create a single weak edge from SU to ExitSU. The only effect is to cause
1549     // bottom-up scheduling to heavily prioritize the clustered SU.  There is no
1550     // need to copy predecessor edges from ExitSU to SU, since top-down
1551     // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling
1552     // of SU, we could create an artificial edge from the deepest root, but it
1553     // hasn't been needed yet.
1554     bool Success = DAG->addEdge(&ExitSU, SDep(&SU, SDep::Cluster));
1555     (void)Success;
1556     assert(Success && "No DAG nodes should be reachable from ExitSU");
1557 
1558     DEBUG(dbgs() << "Macro Fuse SU(" << SU.NodeNum << ")\n");
1559     break;
1560   }
1561 }
1562 
1563 //===----------------------------------------------------------------------===//
1564 // CopyConstrain - DAG post-processing to encourage copy elimination.
1565 //===----------------------------------------------------------------------===//
1566 
1567 namespace {
1568 /// \brief Post-process the DAG to create weak edges from all uses of a copy to
1569 /// the one use that defines the copy's source vreg, most likely an induction
1570 /// variable increment.
1571 class CopyConstrain : public ScheduleDAGMutation {
1572   // Transient state.
1573   SlotIndex RegionBeginIdx;
1574   // RegionEndIdx is the slot index of the last non-debug instruction in the
1575   // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1576   SlotIndex RegionEndIdx;
1577 public:
1578   CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1579 
1580   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1581 
1582 protected:
1583   void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
1584 };
1585 } // anonymous
1586 
1587 /// constrainLocalCopy handles two possibilities:
1588 /// 1) Local src:
1589 /// I0:     = dst
1590 /// I1: src = ...
1591 /// I2:     = dst
1592 /// I3: dst = src (copy)
1593 /// (create pred->succ edges I0->I1, I2->I1)
1594 ///
1595 /// 2) Local copy:
1596 /// I0: dst = src (copy)
1597 /// I1:     = dst
1598 /// I2: src = ...
1599 /// I3:     = dst
1600 /// (create pred->succ edges I1->I2, I3->I2)
1601 ///
1602 /// Although the MachineScheduler is currently constrained to single blocks,
1603 /// this algorithm should handle extended blocks. An EBB is a set of
1604 /// contiguously numbered blocks such that the previous block in the EBB is
1605 /// always the single predecessor.
1606 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
1607   LiveIntervals *LIS = DAG->getLIS();
1608   MachineInstr *Copy = CopySU->getInstr();
1609 
1610   // Check for pure vreg copies.
1611   const MachineOperand &SrcOp = Copy->getOperand(1);
1612   unsigned SrcReg = SrcOp.getReg();
1613   if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !SrcOp.readsReg())
1614     return;
1615 
1616   const MachineOperand &DstOp = Copy->getOperand(0);
1617   unsigned DstReg = DstOp.getReg();
1618   if (!TargetRegisterInfo::isVirtualRegister(DstReg) || DstOp.isDead())
1619     return;
1620 
1621   // Check if either the dest or source is local. If it's live across a back
1622   // edge, it's not local. Note that if both vregs are live across the back
1623   // edge, we cannot successfully contrain the copy without cyclic scheduling.
1624   // If both the copy's source and dest are local live intervals, then we
1625   // should treat the dest as the global for the purpose of adding
1626   // constraints. This adds edges from source's other uses to the copy.
1627   unsigned LocalReg = SrcReg;
1628   unsigned GlobalReg = DstReg;
1629   LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
1630   if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
1631     LocalReg = DstReg;
1632     GlobalReg = SrcReg;
1633     LocalLI = &LIS->getInterval(LocalReg);
1634     if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
1635       return;
1636   }
1637   LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1638 
1639   // Find the global segment after the start of the local LI.
1640   LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1641   // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1642   // local live range. We could create edges from other global uses to the local
1643   // start, but the coalescer should have already eliminated these cases, so
1644   // don't bother dealing with it.
1645   if (GlobalSegment == GlobalLI->end())
1646     return;
1647 
1648   // If GlobalSegment is killed at the LocalLI->start, the call to find()
1649   // returned the next global segment. But if GlobalSegment overlaps with
1650   // LocalLI->start, then advance to the next segement. If a hole in GlobalLI
1651   // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1652   if (GlobalSegment->contains(LocalLI->beginIndex()))
1653     ++GlobalSegment;
1654 
1655   if (GlobalSegment == GlobalLI->end())
1656     return;
1657 
1658   // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1659   if (GlobalSegment != GlobalLI->begin()) {
1660     // Two address defs have no hole.
1661     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
1662                                GlobalSegment->start)) {
1663       return;
1664     }
1665     // If the prior global segment may be defined by the same two-address
1666     // instruction that also defines LocalLI, then can't make a hole here.
1667     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
1668                                LocalLI->beginIndex())) {
1669       return;
1670     }
1671     // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1672     // it would be a disconnected component in the live range.
1673     assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
1674            "Disconnected LRG within the scheduling region.");
1675   }
1676   MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1677   if (!GlobalDef)
1678     return;
1679 
1680   SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1681   if (!GlobalSU)
1682     return;
1683 
1684   // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1685   // constraining the uses of the last local def to precede GlobalDef.
1686   SmallVector<SUnit*,8> LocalUses;
1687   const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1688   MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1689   SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1690   for (SUnit::const_succ_iterator
1691          I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end();
1692        I != E; ++I) {
1693     if (I->getKind() != SDep::Data || I->getReg() != LocalReg)
1694       continue;
1695     if (I->getSUnit() == GlobalSU)
1696       continue;
1697     if (!DAG->canAddEdge(GlobalSU, I->getSUnit()))
1698       return;
1699     LocalUses.push_back(I->getSUnit());
1700   }
1701   // Open the top of the GlobalLI hole by constraining any earlier global uses
1702   // to precede the start of LocalLI.
1703   SmallVector<SUnit*,8> GlobalUses;
1704   MachineInstr *FirstLocalDef =
1705     LIS->getInstructionFromIndex(LocalLI->beginIndex());
1706   SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1707   for (SUnit::const_pred_iterator
1708          I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) {
1709     if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg)
1710       continue;
1711     if (I->getSUnit() == FirstLocalSU)
1712       continue;
1713     if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit()))
1714       return;
1715     GlobalUses.push_back(I->getSUnit());
1716   }
1717   DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1718   // Add the weak edges.
1719   for (SmallVectorImpl<SUnit*>::const_iterator
1720          I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
1721     DEBUG(dbgs() << "  Local use SU(" << (*I)->NodeNum << ") -> SU("
1722           << GlobalSU->NodeNum << ")\n");
1723     DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
1724   }
1725   for (SmallVectorImpl<SUnit*>::const_iterator
1726          I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
1727     DEBUG(dbgs() << "  Global use SU(" << (*I)->NodeNum << ") -> SU("
1728           << FirstLocalSU->NodeNum << ")\n");
1729     DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
1730   }
1731 }
1732 
1733 /// \brief Callback from DAG postProcessing to create weak edges to encourage
1734 /// copy elimination.
1735 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) {
1736   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1737   assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
1738 
1739   MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1740   if (FirstPos == DAG->end())
1741     return;
1742   RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos);
1743   RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1744       *priorNonDebug(DAG->end(), DAG->begin()));
1745 
1746   for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
1747     SUnit *SU = &DAG->SUnits[Idx];
1748     if (!SU->getInstr()->isCopy())
1749       continue;
1750 
1751     constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG));
1752   }
1753 }
1754 
1755 //===----------------------------------------------------------------------===//
1756 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
1757 // and possibly other custom schedulers.
1758 //===----------------------------------------------------------------------===//
1759 
1760 static const unsigned InvalidCycle = ~0U;
1761 
1762 SchedBoundary::~SchedBoundary() { delete HazardRec; }
1763 
1764 void SchedBoundary::reset() {
1765   // A new HazardRec is created for each DAG and owned by SchedBoundary.
1766   // Destroying and reconstructing it is very expensive though. So keep
1767   // invalid, placeholder HazardRecs.
1768   if (HazardRec && HazardRec->isEnabled()) {
1769     delete HazardRec;
1770     HazardRec = nullptr;
1771   }
1772   Available.clear();
1773   Pending.clear();
1774   CheckPending = false;
1775   NextSUs.clear();
1776   CurrCycle = 0;
1777   CurrMOps = 0;
1778   MinReadyCycle = UINT_MAX;
1779   ExpectedLatency = 0;
1780   DependentLatency = 0;
1781   RetiredMOps = 0;
1782   MaxExecutedResCount = 0;
1783   ZoneCritResIdx = 0;
1784   IsResourceLimited = false;
1785   ReservedCycles.clear();
1786 #ifndef NDEBUG
1787   // Track the maximum number of stall cycles that could arise either from the
1788   // latency of a DAG edge or the number of cycles that a processor resource is
1789   // reserved (SchedBoundary::ReservedCycles).
1790   MaxObservedStall = 0;
1791 #endif
1792   // Reserve a zero-count for invalid CritResIdx.
1793   ExecutedResCounts.resize(1);
1794   assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
1795 }
1796 
1797 void SchedRemainder::
1798 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
1799   reset();
1800   if (!SchedModel->hasInstrSchedModel())
1801     return;
1802   RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
1803   for (std::vector<SUnit>::iterator
1804          I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) {
1805     const MCSchedClassDesc *SC = DAG->getSchedClass(&*I);
1806     RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC)
1807       * SchedModel->getMicroOpFactor();
1808     for (TargetSchedModel::ProcResIter
1809            PI = SchedModel->getWriteProcResBegin(SC),
1810            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1811       unsigned PIdx = PI->ProcResourceIdx;
1812       unsigned Factor = SchedModel->getResourceFactor(PIdx);
1813       RemainingCounts[PIdx] += (Factor * PI->Cycles);
1814     }
1815   }
1816 }
1817 
1818 void SchedBoundary::
1819 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
1820   reset();
1821   DAG = dag;
1822   SchedModel = smodel;
1823   Rem = rem;
1824   if (SchedModel->hasInstrSchedModel()) {
1825     ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
1826     ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle);
1827   }
1828 }
1829 
1830 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
1831 /// these "soft stalls" differently than the hard stall cycles based on CPU
1832 /// resources and computed by checkHazard(). A fully in-order model
1833 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
1834 /// available for scheduling until they are ready. However, a weaker in-order
1835 /// model may use this for heuristics. For example, if a processor has in-order
1836 /// behavior when reading certain resources, this may come into play.
1837 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
1838   if (!SU->isUnbuffered)
1839     return 0;
1840 
1841   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1842   if (ReadyCycle > CurrCycle)
1843     return ReadyCycle - CurrCycle;
1844   return 0;
1845 }
1846 
1847 /// Compute the next cycle at which the given processor resource can be
1848 /// scheduled.
1849 unsigned SchedBoundary::
1850 getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
1851   unsigned NextUnreserved = ReservedCycles[PIdx];
1852   // If this resource has never been used, always return cycle zero.
1853   if (NextUnreserved == InvalidCycle)
1854     return 0;
1855   // For bottom-up scheduling add the cycles needed for the current operation.
1856   if (!isTop())
1857     NextUnreserved += Cycles;
1858   return NextUnreserved;
1859 }
1860 
1861 /// Does this SU have a hazard within the current instruction group.
1862 ///
1863 /// The scheduler supports two modes of hazard recognition. The first is the
1864 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
1865 /// supports highly complicated in-order reservation tables
1866 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic.
1867 ///
1868 /// The second is a streamlined mechanism that checks for hazards based on
1869 /// simple counters that the scheduler itself maintains. It explicitly checks
1870 /// for instruction dispatch limitations, including the number of micro-ops that
1871 /// can dispatch per cycle.
1872 ///
1873 /// TODO: Also check whether the SU must start a new group.
1874 bool SchedBoundary::checkHazard(SUnit *SU) {
1875   if (HazardRec->isEnabled()
1876       && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
1877     return true;
1878   }
1879   unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
1880   if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
1881     DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
1882           << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
1883     return true;
1884   }
1885   if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
1886     const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1887     for (TargetSchedModel::ProcResIter
1888            PI = SchedModel->getWriteProcResBegin(SC),
1889            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1890       unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles);
1891       if (NRCycle > CurrCycle) {
1892 #ifndef NDEBUG
1893         MaxObservedStall = std::max(PI->Cycles, MaxObservedStall);
1894 #endif
1895         DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") "
1896               << SchedModel->getResourceName(PI->ProcResourceIdx)
1897               << "=" << NRCycle << "c\n");
1898         return true;
1899       }
1900     }
1901   }
1902   return false;
1903 }
1904 
1905 // Find the unscheduled node in ReadySUs with the highest latency.
1906 unsigned SchedBoundary::
1907 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
1908   SUnit *LateSU = nullptr;
1909   unsigned RemLatency = 0;
1910   for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end();
1911        I != E; ++I) {
1912     unsigned L = getUnscheduledLatency(*I);
1913     if (L > RemLatency) {
1914       RemLatency = L;
1915       LateSU = *I;
1916     }
1917   }
1918   if (LateSU) {
1919     DEBUG(dbgs() << Available.getName() << " RemLatency SU("
1920           << LateSU->NodeNum << ") " << RemLatency << "c\n");
1921   }
1922   return RemLatency;
1923 }
1924 
1925 // Count resources in this zone and the remaining unscheduled
1926 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
1927 // resource index, or zero if the zone is issue limited.
1928 unsigned SchedBoundary::
1929 getOtherResourceCount(unsigned &OtherCritIdx) {
1930   OtherCritIdx = 0;
1931   if (!SchedModel->hasInstrSchedModel())
1932     return 0;
1933 
1934   unsigned OtherCritCount = Rem->RemIssueCount
1935     + (RetiredMOps * SchedModel->getMicroOpFactor());
1936   DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
1937         << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
1938   for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
1939        PIdx != PEnd; ++PIdx) {
1940     unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
1941     if (OtherCount > OtherCritCount) {
1942       OtherCritCount = OtherCount;
1943       OtherCritIdx = PIdx;
1944     }
1945   }
1946   if (OtherCritIdx) {
1947     DEBUG(dbgs() << "  " << Available.getName() << " + Remain CritRes: "
1948           << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
1949           << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
1950   }
1951   return OtherCritCount;
1952 }
1953 
1954 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) {
1955   assert(SU->getInstr() && "Scheduled SUnit must have instr");
1956 
1957 #ifndef NDEBUG
1958   // ReadyCycle was been bumped up to the CurrCycle when this node was
1959   // scheduled, but CurrCycle may have been eagerly advanced immediately after
1960   // scheduling, so may now be greater than ReadyCycle.
1961   if (ReadyCycle > CurrCycle)
1962     MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
1963 #endif
1964 
1965   if (ReadyCycle < MinReadyCycle)
1966     MinReadyCycle = ReadyCycle;
1967 
1968   // Check for interlocks first. For the purpose of other heuristics, an
1969   // instruction that cannot issue appears as if it's not in the ReadyQueue.
1970   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
1971   if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) ||
1972       Available.size() >= ReadyListLimit)
1973     Pending.push(SU);
1974   else
1975     Available.push(SU);
1976 
1977   // Record this node as an immediate dependent of the scheduled node.
1978   NextSUs.insert(SU);
1979 }
1980 
1981 void SchedBoundary::releaseTopNode(SUnit *SU) {
1982   if (SU->isScheduled)
1983     return;
1984 
1985   releaseNode(SU, SU->TopReadyCycle);
1986 }
1987 
1988 void SchedBoundary::releaseBottomNode(SUnit *SU) {
1989   if (SU->isScheduled)
1990     return;
1991 
1992   releaseNode(SU, SU->BotReadyCycle);
1993 }
1994 
1995 /// Move the boundary of scheduled code by one cycle.
1996 void SchedBoundary::bumpCycle(unsigned NextCycle) {
1997   if (SchedModel->getMicroOpBufferSize() == 0) {
1998     assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
1999     if (MinReadyCycle > NextCycle)
2000       NextCycle = MinReadyCycle;
2001   }
2002   // Update the current micro-ops, which will issue in the next cycle.
2003   unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
2004   CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
2005 
2006   // Decrement DependentLatency based on the next cycle.
2007   if ((NextCycle - CurrCycle) > DependentLatency)
2008     DependentLatency = 0;
2009   else
2010     DependentLatency -= (NextCycle - CurrCycle);
2011 
2012   if (!HazardRec->isEnabled()) {
2013     // Bypass HazardRec virtual calls.
2014     CurrCycle = NextCycle;
2015   } else {
2016     // Bypass getHazardType calls in case of long latency.
2017     for (; CurrCycle != NextCycle; ++CurrCycle) {
2018       if (isTop())
2019         HazardRec->AdvanceCycle();
2020       else
2021         HazardRec->RecedeCycle();
2022     }
2023   }
2024   CheckPending = true;
2025   unsigned LFactor = SchedModel->getLatencyFactor();
2026   IsResourceLimited =
2027     (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
2028     > (int)LFactor;
2029 
2030   DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n');
2031 }
2032 
2033 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
2034   ExecutedResCounts[PIdx] += Count;
2035   if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
2036     MaxExecutedResCount = ExecutedResCounts[PIdx];
2037 }
2038 
2039 /// Add the given processor resource to this scheduled zone.
2040 ///
2041 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
2042 /// during which this resource is consumed.
2043 ///
2044 /// \return the next cycle at which the instruction may execute without
2045 /// oversubscribing resources.
2046 unsigned SchedBoundary::
2047 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
2048   unsigned Factor = SchedModel->getResourceFactor(PIdx);
2049   unsigned Count = Factor * Cycles;
2050   DEBUG(dbgs() << "  " << SchedModel->getResourceName(PIdx)
2051         << " +" << Cycles << "x" << Factor << "u\n");
2052 
2053   // Update Executed resources counts.
2054   incExecutedResources(PIdx, Count);
2055   assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
2056   Rem->RemainingCounts[PIdx] -= Count;
2057 
2058   // Check if this resource exceeds the current critical resource. If so, it
2059   // becomes the critical resource.
2060   if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
2061     ZoneCritResIdx = PIdx;
2062     DEBUG(dbgs() << "  *** Critical resource "
2063           << SchedModel->getResourceName(PIdx) << ": "
2064           << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n");
2065   }
2066   // For reserved resources, record the highest cycle using the resource.
2067   unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles);
2068   if (NextAvailable > CurrCycle) {
2069     DEBUG(dbgs() << "  Resource conflict: "
2070           << SchedModel->getProcResource(PIdx)->Name << " reserved until @"
2071           << NextAvailable << "\n");
2072   }
2073   return NextAvailable;
2074 }
2075 
2076 /// Move the boundary of scheduled code by one SUnit.
2077 void SchedBoundary::bumpNode(SUnit *SU) {
2078   // Update the reservation table.
2079   if (HazardRec->isEnabled()) {
2080     if (!isTop() && SU->isCall) {
2081       // Calls are scheduled with their preceding instructions. For bottom-up
2082       // scheduling, clear the pipeline state before emitting.
2083       HazardRec->Reset();
2084     }
2085     HazardRec->EmitInstruction(SU);
2086   }
2087   // checkHazard should prevent scheduling multiple instructions per cycle that
2088   // exceed the issue width.
2089   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2090   unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
2091   assert(
2092       (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
2093       "Cannot schedule this instruction's MicroOps in the current cycle.");
2094 
2095   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2096   DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
2097 
2098   unsigned NextCycle = CurrCycle;
2099   switch (SchedModel->getMicroOpBufferSize()) {
2100   case 0:
2101     assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
2102     break;
2103   case 1:
2104     if (ReadyCycle > NextCycle) {
2105       NextCycle = ReadyCycle;
2106       DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
2107     }
2108     break;
2109   default:
2110     // We don't currently model the OOO reorder buffer, so consider all
2111     // scheduled MOps to be "retired". We do loosely model in-order resource
2112     // latency. If this instruction uses an in-order resource, account for any
2113     // likely stall cycles.
2114     if (SU->isUnbuffered && ReadyCycle > NextCycle)
2115       NextCycle = ReadyCycle;
2116     break;
2117   }
2118   RetiredMOps += IncMOps;
2119 
2120   // Update resource counts and critical resource.
2121   if (SchedModel->hasInstrSchedModel()) {
2122     unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
2123     assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
2124     Rem->RemIssueCount -= DecRemIssue;
2125     if (ZoneCritResIdx) {
2126       // Scale scheduled micro-ops for comparing with the critical resource.
2127       unsigned ScaledMOps =
2128         RetiredMOps * SchedModel->getMicroOpFactor();
2129 
2130       // If scaled micro-ops are now more than the previous critical resource by
2131       // a full cycle, then micro-ops issue becomes critical.
2132       if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
2133           >= (int)SchedModel->getLatencyFactor()) {
2134         ZoneCritResIdx = 0;
2135         DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
2136               << ScaledMOps / SchedModel->getLatencyFactor() << "c\n");
2137       }
2138     }
2139     for (TargetSchedModel::ProcResIter
2140            PI = SchedModel->getWriteProcResBegin(SC),
2141            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2142       unsigned RCycle =
2143         countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
2144       if (RCycle > NextCycle)
2145         NextCycle = RCycle;
2146     }
2147     if (SU->hasReservedResource) {
2148       // For reserved resources, record the highest cycle using the resource.
2149       // For top-down scheduling, this is the cycle in which we schedule this
2150       // instruction plus the number of cycles the operations reserves the
2151       // resource. For bottom-up is it simply the instruction's cycle.
2152       for (TargetSchedModel::ProcResIter
2153              PI = SchedModel->getWriteProcResBegin(SC),
2154              PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2155         unsigned PIdx = PI->ProcResourceIdx;
2156         if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
2157           if (isTop()) {
2158             ReservedCycles[PIdx] =
2159               std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles);
2160           }
2161           else
2162             ReservedCycles[PIdx] = NextCycle;
2163         }
2164       }
2165     }
2166   }
2167   // Update ExpectedLatency and DependentLatency.
2168   unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2169   unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2170   if (SU->getDepth() > TopLatency) {
2171     TopLatency = SU->getDepth();
2172     DEBUG(dbgs() << "  " << Available.getName()
2173           << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n");
2174   }
2175   if (SU->getHeight() > BotLatency) {
2176     BotLatency = SU->getHeight();
2177     DEBUG(dbgs() << "  " << Available.getName()
2178           << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n");
2179   }
2180   // If we stall for any reason, bump the cycle.
2181   if (NextCycle > CurrCycle) {
2182     bumpCycle(NextCycle);
2183   } else {
2184     // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2185     // resource limited. If a stall occurred, bumpCycle does this.
2186     unsigned LFactor = SchedModel->getLatencyFactor();
2187     IsResourceLimited =
2188       (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
2189       > (int)LFactor;
2190   }
2191   // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2192   // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2193   // one cycle.  Since we commonly reach the max MOps here, opportunistically
2194   // bump the cycle to avoid uselessly checking everything in the readyQ.
2195   CurrMOps += IncMOps;
2196   while (CurrMOps >= SchedModel->getIssueWidth()) {
2197     DEBUG(dbgs() << "  *** Max MOps " << CurrMOps
2198           << " at cycle " << CurrCycle << '\n');
2199     bumpCycle(++NextCycle);
2200   }
2201   DEBUG(dumpScheduledState());
2202 }
2203 
2204 /// Release pending ready nodes in to the available queue. This makes them
2205 /// visible to heuristics.
2206 void SchedBoundary::releasePending() {
2207   // If the available queue is empty, it is safe to reset MinReadyCycle.
2208   if (Available.empty())
2209     MinReadyCycle = UINT_MAX;
2210 
2211   // Check to see if any of the pending instructions are ready to issue.  If
2212   // so, add them to the available queue.
2213   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2214   for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
2215     SUnit *SU = *(Pending.begin()+i);
2216     unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2217 
2218     if (ReadyCycle < MinReadyCycle)
2219       MinReadyCycle = ReadyCycle;
2220 
2221     if (!IsBuffered && ReadyCycle > CurrCycle)
2222       continue;
2223 
2224     if (checkHazard(SU))
2225       continue;
2226 
2227     if (Available.size() >= ReadyListLimit)
2228       break;
2229 
2230     Available.push(SU);
2231     Pending.remove(Pending.begin()+i);
2232     --i; --e;
2233   }
2234   DEBUG(if (!Pending.empty()) Pending.dump());
2235   CheckPending = false;
2236 }
2237 
2238 /// Remove SU from the ready set for this boundary.
2239 void SchedBoundary::removeReady(SUnit *SU) {
2240   if (Available.isInQueue(SU))
2241     Available.remove(Available.find(SU));
2242   else {
2243     assert(Pending.isInQueue(SU) && "bad ready count");
2244     Pending.remove(Pending.find(SU));
2245   }
2246 }
2247 
2248 /// If this queue only has one ready candidate, return it. As a side effect,
2249 /// defer any nodes that now hit a hazard, and advance the cycle until at least
2250 /// one node is ready. If multiple instructions are ready, return NULL.
2251 SUnit *SchedBoundary::pickOnlyChoice() {
2252   if (CheckPending)
2253     releasePending();
2254 
2255   if (CurrMOps > 0) {
2256     // Defer any ready instrs that now have a hazard.
2257     for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2258       if (checkHazard(*I)) {
2259         Pending.push(*I);
2260         I = Available.remove(I);
2261         continue;
2262       }
2263       ++I;
2264     }
2265   }
2266   for (unsigned i = 0; Available.empty(); ++i) {
2267 //  FIXME: Re-enable assert once PR20057 is resolved.
2268 //    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2269 //           "permanent hazard");
2270     (void)i;
2271     bumpCycle(CurrCycle + 1);
2272     releasePending();
2273   }
2274   if (Available.size() == 1)
2275     return *Available.begin();
2276   return nullptr;
2277 }
2278 
2279 #ifndef NDEBUG
2280 // This is useful information to dump after bumpNode.
2281 // Note that the Queue contents are more useful before pickNodeFromQueue.
2282 void SchedBoundary::dumpScheduledState() {
2283   unsigned ResFactor;
2284   unsigned ResCount;
2285   if (ZoneCritResIdx) {
2286     ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2287     ResCount = getResourceCount(ZoneCritResIdx);
2288   } else {
2289     ResFactor = SchedModel->getMicroOpFactor();
2290     ResCount = RetiredMOps * SchedModel->getMicroOpFactor();
2291   }
2292   unsigned LFactor = SchedModel->getLatencyFactor();
2293   dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2294          << "  Retired: " << RetiredMOps;
2295   dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
2296   dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
2297          << ResCount / ResFactor << " "
2298          << SchedModel->getResourceName(ZoneCritResIdx)
2299          << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
2300          << (IsResourceLimited ? "  - Resource" : "  - Latency")
2301          << " limited.\n";
2302 }
2303 #endif
2304 
2305 //===----------------------------------------------------------------------===//
2306 // GenericScheduler - Generic implementation of MachineSchedStrategy.
2307 //===----------------------------------------------------------------------===//
2308 
2309 void GenericSchedulerBase::SchedCandidate::
2310 initResourceDelta(const ScheduleDAGMI *DAG,
2311                   const TargetSchedModel *SchedModel) {
2312   if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2313     return;
2314 
2315   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2316   for (TargetSchedModel::ProcResIter
2317          PI = SchedModel->getWriteProcResBegin(SC),
2318          PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2319     if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2320       ResDelta.CritResources += PI->Cycles;
2321     if (PI->ProcResourceIdx == Policy.DemandResIdx)
2322       ResDelta.DemandedResources += PI->Cycles;
2323   }
2324 }
2325 
2326 /// Set the CandPolicy given a scheduling zone given the current resources and
2327 /// latencies inside and outside the zone.
2328 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA,
2329                                      SchedBoundary &CurrZone,
2330                                      SchedBoundary *OtherZone) {
2331   // Apply preemptive heuristics based on the total latency and resources
2332   // inside and outside this zone. Potential stalls should be considered before
2333   // following this policy.
2334 
2335   // Compute remaining latency. We need this both to determine whether the
2336   // overall schedule has become latency-limited and whether the instructions
2337   // outside this zone are resource or latency limited.
2338   //
2339   // The "dependent" latency is updated incrementally during scheduling as the
2340   // max height/depth of scheduled nodes minus the cycles since it was
2341   // scheduled:
2342   //   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2343   //
2344   // The "independent" latency is the max ready queue depth:
2345   //   ILat = max N.depth for N in Available|Pending
2346   //
2347   // RemainingLatency is the greater of independent and dependent latency.
2348   unsigned RemLatency = CurrZone.getDependentLatency();
2349   RemLatency = std::max(RemLatency,
2350                         CurrZone.findMaxLatency(CurrZone.Available.elements()));
2351   RemLatency = std::max(RemLatency,
2352                         CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2353 
2354   // Compute the critical resource outside the zone.
2355   unsigned OtherCritIdx = 0;
2356   unsigned OtherCount =
2357     OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
2358 
2359   bool OtherResLimited = false;
2360   if (SchedModel->hasInstrSchedModel()) {
2361     unsigned LFactor = SchedModel->getLatencyFactor();
2362     OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor;
2363   }
2364   // Schedule aggressively for latency in PostRA mode. We don't check for
2365   // acyclic latency during PostRA, and highly out-of-order processors will
2366   // skip PostRA scheduling.
2367   if (!OtherResLimited) {
2368     if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) {
2369       Policy.ReduceLatency |= true;
2370       DEBUG(dbgs() << "  " << CurrZone.Available.getName()
2371             << " RemainingLatency " << RemLatency << " + "
2372             << CurrZone.getCurrCycle() << "c > CritPath "
2373             << Rem.CriticalPath << "\n");
2374     }
2375   }
2376   // If the same resource is limiting inside and outside the zone, do nothing.
2377   if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
2378     return;
2379 
2380   DEBUG(
2381     if (CurrZone.isResourceLimited()) {
2382       dbgs() << "  " << CurrZone.Available.getName() << " ResourceLimited: "
2383              << SchedModel->getResourceName(CurrZone.getZoneCritResIdx())
2384              << "\n";
2385     }
2386     if (OtherResLimited)
2387       dbgs() << "  RemainingLimit: "
2388              << SchedModel->getResourceName(OtherCritIdx) << "\n";
2389     if (!CurrZone.isResourceLimited() && !OtherResLimited)
2390       dbgs() << "  Latency limited both directions.\n");
2391 
2392   if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
2393     Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
2394 
2395   if (OtherResLimited)
2396     Policy.DemandResIdx = OtherCritIdx;
2397 }
2398 
2399 #ifndef NDEBUG
2400 const char *GenericSchedulerBase::getReasonStr(
2401   GenericSchedulerBase::CandReason Reason) {
2402   switch (Reason) {
2403   case NoCand:         return "NOCAND    ";
2404   case PhysRegCopy:    return "PREG-COPY";
2405   case RegExcess:      return "REG-EXCESS";
2406   case RegCritical:    return "REG-CRIT  ";
2407   case Stall:          return "STALL     ";
2408   case Cluster:        return "CLUSTER   ";
2409   case Weak:           return "WEAK      ";
2410   case RegMax:         return "REG-MAX   ";
2411   case ResourceReduce: return "RES-REDUCE";
2412   case ResourceDemand: return "RES-DEMAND";
2413   case TopDepthReduce: return "TOP-DEPTH ";
2414   case TopPathReduce:  return "TOP-PATH  ";
2415   case BotHeightReduce:return "BOT-HEIGHT";
2416   case BotPathReduce:  return "BOT-PATH  ";
2417   case NextDefUse:     return "DEF-USE   ";
2418   case NodeOrder:      return "ORDER     ";
2419   };
2420   llvm_unreachable("Unknown reason!");
2421 }
2422 
2423 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
2424   PressureChange P;
2425   unsigned ResIdx = 0;
2426   unsigned Latency = 0;
2427   switch (Cand.Reason) {
2428   default:
2429     break;
2430   case RegExcess:
2431     P = Cand.RPDelta.Excess;
2432     break;
2433   case RegCritical:
2434     P = Cand.RPDelta.CriticalMax;
2435     break;
2436   case RegMax:
2437     P = Cand.RPDelta.CurrentMax;
2438     break;
2439   case ResourceReduce:
2440     ResIdx = Cand.Policy.ReduceResIdx;
2441     break;
2442   case ResourceDemand:
2443     ResIdx = Cand.Policy.DemandResIdx;
2444     break;
2445   case TopDepthReduce:
2446     Latency = Cand.SU->getDepth();
2447     break;
2448   case TopPathReduce:
2449     Latency = Cand.SU->getHeight();
2450     break;
2451   case BotHeightReduce:
2452     Latency = Cand.SU->getHeight();
2453     break;
2454   case BotPathReduce:
2455     Latency = Cand.SU->getDepth();
2456     break;
2457   }
2458   dbgs() << "  Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2459   if (P.isValid())
2460     dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2461            << ":" << P.getUnitInc() << " ";
2462   else
2463     dbgs() << "      ";
2464   if (ResIdx)
2465     dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2466   else
2467     dbgs() << "         ";
2468   if (Latency)
2469     dbgs() << " " << Latency << " cycles ";
2470   else
2471     dbgs() << "          ";
2472   dbgs() << '\n';
2473 }
2474 #endif
2475 
2476 /// Return true if this heuristic determines order.
2477 static bool tryLess(int TryVal, int CandVal,
2478                     GenericSchedulerBase::SchedCandidate &TryCand,
2479                     GenericSchedulerBase::SchedCandidate &Cand,
2480                     GenericSchedulerBase::CandReason Reason) {
2481   if (TryVal < CandVal) {
2482     TryCand.Reason = Reason;
2483     return true;
2484   }
2485   if (TryVal > CandVal) {
2486     if (Cand.Reason > Reason)
2487       Cand.Reason = Reason;
2488     return true;
2489   }
2490   Cand.setRepeat(Reason);
2491   return false;
2492 }
2493 
2494 static bool tryGreater(int TryVal, int CandVal,
2495                        GenericSchedulerBase::SchedCandidate &TryCand,
2496                        GenericSchedulerBase::SchedCandidate &Cand,
2497                        GenericSchedulerBase::CandReason Reason) {
2498   if (TryVal > CandVal) {
2499     TryCand.Reason = Reason;
2500     return true;
2501   }
2502   if (TryVal < CandVal) {
2503     if (Cand.Reason > Reason)
2504       Cand.Reason = Reason;
2505     return true;
2506   }
2507   Cand.setRepeat(Reason);
2508   return false;
2509 }
2510 
2511 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
2512                        GenericSchedulerBase::SchedCandidate &Cand,
2513                        SchedBoundary &Zone) {
2514   if (Zone.isTop()) {
2515     if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
2516       if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2517                   TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
2518         return true;
2519     }
2520     if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2521                    TryCand, Cand, GenericSchedulerBase::TopPathReduce))
2522       return true;
2523   } else {
2524     if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
2525       if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2526                   TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
2527         return true;
2528     }
2529     if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2530                    TryCand, Cand, GenericSchedulerBase::BotPathReduce))
2531       return true;
2532   }
2533   return false;
2534 }
2535 
2536 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand,
2537                       bool IsTop) {
2538   DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2539         << GenericSchedulerBase::getReasonStr(Cand.Reason) << '\n');
2540 }
2541 
2542 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
2543   assert(dag->hasVRegLiveness() &&
2544          "(PreRA)GenericScheduler needs vreg liveness");
2545   DAG = static_cast<ScheduleDAGMILive*>(dag);
2546   SchedModel = DAG->getSchedModel();
2547   TRI = DAG->TRI;
2548 
2549   Rem.init(DAG, SchedModel);
2550   Top.init(DAG, SchedModel, &Rem);
2551   Bot.init(DAG, SchedModel, &Rem);
2552 
2553   // Initialize resource counts.
2554 
2555   // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
2556   // are disabled, then these HazardRecs will be disabled.
2557   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2558   if (!Top.HazardRec) {
2559     Top.HazardRec =
2560         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2561             Itin, DAG);
2562   }
2563   if (!Bot.HazardRec) {
2564     Bot.HazardRec =
2565         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2566             Itin, DAG);
2567   }
2568 }
2569 
2570 /// Initialize the per-region scheduling policy.
2571 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
2572                                   MachineBasicBlock::iterator End,
2573                                   unsigned NumRegionInstrs) {
2574   const MachineFunction &MF = *Begin->getParent()->getParent();
2575   const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
2576 
2577   // Avoid setting up the register pressure tracker for small regions to save
2578   // compile time. As a rough heuristic, only track pressure when the number of
2579   // schedulable instructions exceeds half the integer register file.
2580   RegionPolicy.ShouldTrackPressure = true;
2581   for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
2582     MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
2583     if (TLI->isTypeLegal(LegalIntVT)) {
2584       unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
2585         TLI->getRegClassFor(LegalIntVT));
2586       RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
2587     }
2588   }
2589 
2590   // For generic targets, we default to bottom-up, because it's simpler and more
2591   // compile-time optimizations have been implemented in that direction.
2592   RegionPolicy.OnlyBottomUp = true;
2593 
2594   // Allow the subtarget to override default policy.
2595   MF.getSubtarget().overrideSchedPolicy(RegionPolicy, Begin, End,
2596                                         NumRegionInstrs);
2597 
2598   // After subtarget overrides, apply command line options.
2599   if (!EnableRegPressure)
2600     RegionPolicy.ShouldTrackPressure = false;
2601 
2602   // Check -misched-topdown/bottomup can force or unforce scheduling direction.
2603   // e.g. -misched-bottomup=false allows scheduling in both directions.
2604   assert((!ForceTopDown || !ForceBottomUp) &&
2605          "-misched-topdown incompatible with -misched-bottomup");
2606   if (ForceBottomUp.getNumOccurrences() > 0) {
2607     RegionPolicy.OnlyBottomUp = ForceBottomUp;
2608     if (RegionPolicy.OnlyBottomUp)
2609       RegionPolicy.OnlyTopDown = false;
2610   }
2611   if (ForceTopDown.getNumOccurrences() > 0) {
2612     RegionPolicy.OnlyTopDown = ForceTopDown;
2613     if (RegionPolicy.OnlyTopDown)
2614       RegionPolicy.OnlyBottomUp = false;
2615   }
2616 }
2617 
2618 void GenericScheduler::dumpPolicy() {
2619   dbgs() << "GenericScheduler RegionPolicy: "
2620          << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
2621          << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
2622          << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
2623          << "\n";
2624 }
2625 
2626 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
2627 /// critical path by more cycles than it takes to drain the instruction buffer.
2628 /// We estimate an upper bounds on in-flight instructions as:
2629 ///
2630 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
2631 /// InFlightIterations = AcyclicPath / CyclesPerIteration
2632 /// InFlightResources = InFlightIterations * LoopResources
2633 ///
2634 /// TODO: Check execution resources in addition to IssueCount.
2635 void GenericScheduler::checkAcyclicLatency() {
2636   if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
2637     return;
2638 
2639   // Scaled number of cycles per loop iteration.
2640   unsigned IterCount =
2641     std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
2642              Rem.RemIssueCount);
2643   // Scaled acyclic critical path.
2644   unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
2645   // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
2646   unsigned InFlightCount =
2647     (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
2648   unsigned BufferLimit =
2649     SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
2650 
2651   Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
2652 
2653   DEBUG(dbgs() << "IssueCycles="
2654         << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
2655         << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
2656         << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount
2657         << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
2658         << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
2659         if (Rem.IsAcyclicLatencyLimited)
2660           dbgs() << "  ACYCLIC LATENCY LIMIT\n");
2661 }
2662 
2663 void GenericScheduler::registerRoots() {
2664   Rem.CriticalPath = DAG->ExitSU.getDepth();
2665 
2666   // Some roots may not feed into ExitSU. Check all of them in case.
2667   for (std::vector<SUnit*>::const_iterator
2668          I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) {
2669     if ((*I)->getDepth() > Rem.CriticalPath)
2670       Rem.CriticalPath = (*I)->getDepth();
2671   }
2672   DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
2673   if (DumpCriticalPathLength) {
2674     errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
2675   }
2676 
2677   if (EnableCyclicPath) {
2678     Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
2679     checkAcyclicLatency();
2680   }
2681 }
2682 
2683 static bool tryPressure(const PressureChange &TryP,
2684                         const PressureChange &CandP,
2685                         GenericSchedulerBase::SchedCandidate &TryCand,
2686                         GenericSchedulerBase::SchedCandidate &Cand,
2687                         GenericSchedulerBase::CandReason Reason,
2688                         const TargetRegisterInfo *TRI,
2689                         const MachineFunction &MF) {
2690   unsigned TryPSet = TryP.getPSetOrMax();
2691   unsigned CandPSet = CandP.getPSetOrMax();
2692   // If both candidates affect the same set, go with the smallest increase.
2693   if (TryPSet == CandPSet) {
2694     return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
2695                    Reason);
2696   }
2697   // If one candidate decreases and the other increases, go with it.
2698   // Invalid candidates have UnitInc==0.
2699   if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
2700                  Reason)) {
2701     return true;
2702   }
2703 
2704   int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
2705                                  std::numeric_limits<int>::max();
2706 
2707   int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
2708                                    std::numeric_limits<int>::max();
2709 
2710   // If the candidates are decreasing pressure, reverse priority.
2711   if (TryP.getUnitInc() < 0)
2712     std::swap(TryRank, CandRank);
2713   return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
2714 }
2715 
2716 static unsigned getWeakLeft(const SUnit *SU, bool isTop) {
2717   return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
2718 }
2719 
2720 /// Minimize physical register live ranges. Regalloc wants them adjacent to
2721 /// their physreg def/use.
2722 ///
2723 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
2724 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
2725 /// with the operation that produces or consumes the physreg. We'll do this when
2726 /// regalloc has support for parallel copies.
2727 static int biasPhysRegCopy(const SUnit *SU, bool isTop) {
2728   const MachineInstr *MI = SU->getInstr();
2729   if (!MI->isCopy())
2730     return 0;
2731 
2732   unsigned ScheduledOper = isTop ? 1 : 0;
2733   unsigned UnscheduledOper = isTop ? 0 : 1;
2734   // If we have already scheduled the physreg produce/consumer, immediately
2735   // schedule the copy.
2736   if (TargetRegisterInfo::isPhysicalRegister(
2737         MI->getOperand(ScheduledOper).getReg()))
2738     return 1;
2739   // If the physreg is at the boundary, defer it. Otherwise schedule it
2740   // immediately to free the dependent. We can hoist the copy later.
2741   bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
2742   if (TargetRegisterInfo::isPhysicalRegister(
2743         MI->getOperand(UnscheduledOper).getReg()))
2744     return AtBoundary ? -1 : 1;
2745   return 0;
2746 }
2747 
2748 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU,
2749                                      bool AtTop,
2750                                      const RegPressureTracker &RPTracker,
2751                                      RegPressureTracker &TempTracker) {
2752   Cand.SU = SU;
2753   if (DAG->isTrackingPressure()) {
2754     if (AtTop) {
2755       TempTracker.getMaxDownwardPressureDelta(
2756         Cand.SU->getInstr(),
2757         Cand.RPDelta,
2758         DAG->getRegionCriticalPSets(),
2759         DAG->getRegPressure().MaxSetPressure);
2760     } else {
2761       if (VerifyScheduling) {
2762         TempTracker.getMaxUpwardPressureDelta(
2763           Cand.SU->getInstr(),
2764           &DAG->getPressureDiff(Cand.SU),
2765           Cand.RPDelta,
2766           DAG->getRegionCriticalPSets(),
2767           DAG->getRegPressure().MaxSetPressure);
2768       } else {
2769         RPTracker.getUpwardPressureDelta(
2770           Cand.SU->getInstr(),
2771           DAG->getPressureDiff(Cand.SU),
2772           Cand.RPDelta,
2773           DAG->getRegionCriticalPSets(),
2774           DAG->getRegPressure().MaxSetPressure);
2775       }
2776     }
2777   }
2778   DEBUG(if (Cand.RPDelta.Excess.isValid())
2779           dbgs() << "  Try  SU(" << Cand.SU->NodeNum << ") "
2780                  << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet())
2781                  << ":" << Cand.RPDelta.Excess.getUnitInc() << "\n");
2782 }
2783 
2784 /// Apply a set of heursitics to a new candidate. Heuristics are currently
2785 /// hierarchical. This may be more efficient than a graduated cost model because
2786 /// we don't need to evaluate all aspects of the model for each node in the
2787 /// queue. But it's really done to make the heuristics easier to debug and
2788 /// statistically analyze.
2789 ///
2790 /// \param Cand provides the policy and current best candidate.
2791 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
2792 /// \param Zone describes the scheduled zone that we are extending.
2793 void GenericScheduler::tryCandidate(SchedCandidate &Cand,
2794                                     SchedCandidate &TryCand,
2795                                     SchedBoundary &Zone) {
2796   // Initialize the candidate if needed.
2797   if (!Cand.isValid()) {
2798     TryCand.Reason = NodeOrder;
2799     return;
2800   }
2801 
2802   if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()),
2803                  biasPhysRegCopy(Cand.SU, Zone.isTop()),
2804                  TryCand, Cand, PhysRegCopy))
2805     return;
2806 
2807   // Avoid exceeding the target's limit.
2808   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
2809                                                Cand.RPDelta.Excess,
2810                                                TryCand, Cand, RegExcess, TRI,
2811                                                DAG->MF))
2812     return;
2813 
2814   // Avoid increasing the max critical pressure in the scheduled region.
2815   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
2816                                                Cand.RPDelta.CriticalMax,
2817                                                TryCand, Cand, RegCritical, TRI,
2818                                                DAG->MF))
2819     return;
2820 
2821   // For loops that are acyclic path limited, aggressively schedule for latency.
2822   // This can result in very long dependence chains scheduled in sequence, so
2823   // once every cycle (when CurrMOps == 0), switch to normal heuristics.
2824   if (Rem.IsAcyclicLatencyLimited && !Zone.getCurrMOps()
2825       && tryLatency(TryCand, Cand, Zone))
2826     return;
2827 
2828   // Prioritize instructions that read unbuffered resources by stall cycles.
2829   if (tryLess(Zone.getLatencyStallCycles(TryCand.SU),
2830               Zone.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
2831     return;
2832 
2833   // Keep clustered nodes together to encourage downstream peephole
2834   // optimizations which may reduce resource requirements.
2835   //
2836   // This is a best effort to set things up for a post-RA pass. Optimizations
2837   // like generating loads of multiple registers should ideally be done within
2838   // the scheduler pass by combining the loads during DAG postprocessing.
2839   const SUnit *NextClusterSU =
2840     Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
2841   if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU,
2842                  TryCand, Cand, Cluster))
2843     return;
2844 
2845   // Weak edges are for clustering and other constraints.
2846   if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()),
2847               getWeakLeft(Cand.SU, Zone.isTop()),
2848               TryCand, Cand, Weak)) {
2849     return;
2850   }
2851   // Avoid increasing the max pressure of the entire region.
2852   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
2853                                                Cand.RPDelta.CurrentMax,
2854                                                TryCand, Cand, RegMax, TRI,
2855                                                DAG->MF))
2856     return;
2857 
2858   // Avoid critical resource consumption and balance the schedule.
2859   TryCand.initResourceDelta(DAG, SchedModel);
2860   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
2861               TryCand, Cand, ResourceReduce))
2862     return;
2863   if (tryGreater(TryCand.ResDelta.DemandedResources,
2864                  Cand.ResDelta.DemandedResources,
2865                  TryCand, Cand, ResourceDemand))
2866     return;
2867 
2868   // Avoid serializing long latency dependence chains.
2869   // For acyclic path limited loops, latency was already checked above.
2870   if (!RegionPolicy.DisableLatencyHeuristic && Cand.Policy.ReduceLatency &&
2871       !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, Zone)) {
2872     return;
2873   }
2874 
2875   // Prefer immediate defs/users of the last scheduled instruction. This is a
2876   // local pressure avoidance strategy that also makes the machine code
2877   // readable.
2878   if (tryGreater(Zone.isNextSU(TryCand.SU), Zone.isNextSU(Cand.SU),
2879                  TryCand, Cand, NextDefUse))
2880     return;
2881 
2882   // Fall through to original instruction order.
2883   if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
2884       || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
2885     TryCand.Reason = NodeOrder;
2886   }
2887 }
2888 
2889 /// Pick the best candidate from the queue.
2890 ///
2891 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
2892 /// DAG building. To adjust for the current scheduling location we need to
2893 /// maintain the number of vreg uses remaining to be top-scheduled.
2894 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
2895                                          const RegPressureTracker &RPTracker,
2896                                          SchedCandidate &Cand) {
2897   ReadyQueue &Q = Zone.Available;
2898 
2899   DEBUG(Q.dump());
2900 
2901   // getMaxPressureDelta temporarily modifies the tracker.
2902   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
2903 
2904   for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
2905 
2906     SchedCandidate TryCand(Cand.Policy);
2907     initCandidate(TryCand, *I, Zone.isTop(), RPTracker, TempTracker);
2908     tryCandidate(Cand, TryCand, Zone);
2909     if (TryCand.Reason != NoCand) {
2910       // Initialize resource delta if needed in case future heuristics query it.
2911       if (TryCand.ResDelta == SchedResourceDelta())
2912         TryCand.initResourceDelta(DAG, SchedModel);
2913       Cand.setBest(TryCand);
2914       DEBUG(traceCandidate(Cand));
2915     }
2916   }
2917 }
2918 
2919 /// Pick the best candidate node from either the top or bottom queue.
2920 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
2921   // Schedule as far as possible in the direction of no choice. This is most
2922   // efficient, but also provides the best heuristics for CriticalPSets.
2923   if (SUnit *SU = Bot.pickOnlyChoice()) {
2924     IsTopNode = false;
2925     DEBUG(dbgs() << "Pick Bot ONLY1\n");
2926     return SU;
2927   }
2928   if (SUnit *SU = Top.pickOnlyChoice()) {
2929     IsTopNode = true;
2930     DEBUG(dbgs() << "Pick Top ONLY1\n");
2931     return SU;
2932   }
2933   CandPolicy NoPolicy;
2934   SchedCandidate BotCand(NoPolicy);
2935   SchedCandidate TopCand(NoPolicy);
2936   // Set the bottom-up policy based on the state of the current bottom zone and
2937   // the instructions outside the zone, including the top zone.
2938   setPolicy(BotCand.Policy, /*IsPostRA=*/false, Bot, &Top);
2939   // Set the top-down policy based on the state of the current top zone and
2940   // the instructions outside the zone, including the bottom zone.
2941   setPolicy(TopCand.Policy, /*IsPostRA=*/false, Top, &Bot);
2942 
2943   // Prefer bottom scheduling when heuristics are silent.
2944   pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
2945   assert(BotCand.Reason != NoCand && "failed to find the first candidate");
2946 
2947   // If either Q has a single candidate that provides the least increase in
2948   // Excess pressure, we can immediately schedule from that Q.
2949   //
2950   // RegionCriticalPSets summarizes the pressure within the scheduled region and
2951   // affects picking from either Q. If scheduling in one direction must
2952   // increase pressure for one of the excess PSets, then schedule in that
2953   // direction first to provide more freedom in the other direction.
2954   if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess))
2955       || (BotCand.Reason == RegCritical && !BotCand.isRepeat(RegCritical)))
2956   {
2957     IsTopNode = false;
2958     tracePick(BotCand, IsTopNode);
2959     return BotCand.SU;
2960   }
2961   // Check if the top Q has a better candidate.
2962   pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
2963   assert(TopCand.Reason != NoCand && "failed to find the first candidate");
2964 
2965   // Choose the queue with the most important (lowest enum) reason.
2966   if (TopCand.Reason < BotCand.Reason) {
2967     IsTopNode = true;
2968     tracePick(TopCand, IsTopNode);
2969     return TopCand.SU;
2970   }
2971   // Otherwise prefer the bottom candidate, in node order if all else failed.
2972   IsTopNode = false;
2973   tracePick(BotCand, IsTopNode);
2974   return BotCand.SU;
2975 }
2976 
2977 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
2978 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
2979   if (DAG->top() == DAG->bottom()) {
2980     assert(Top.Available.empty() && Top.Pending.empty() &&
2981            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
2982     return nullptr;
2983   }
2984   SUnit *SU;
2985   do {
2986     if (RegionPolicy.OnlyTopDown) {
2987       SU = Top.pickOnlyChoice();
2988       if (!SU) {
2989         CandPolicy NoPolicy;
2990         SchedCandidate TopCand(NoPolicy);
2991         pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
2992         assert(TopCand.Reason != NoCand && "failed to find a candidate");
2993         tracePick(TopCand, true);
2994         SU = TopCand.SU;
2995       }
2996       IsTopNode = true;
2997     } else if (RegionPolicy.OnlyBottomUp) {
2998       SU = Bot.pickOnlyChoice();
2999       if (!SU) {
3000         CandPolicy NoPolicy;
3001         SchedCandidate BotCand(NoPolicy);
3002         pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
3003         assert(BotCand.Reason != NoCand && "failed to find a candidate");
3004         tracePick(BotCand, false);
3005         SU = BotCand.SU;
3006       }
3007       IsTopNode = false;
3008     } else {
3009       SU = pickNodeBidirectional(IsTopNode);
3010     }
3011   } while (SU->isScheduled);
3012 
3013   if (SU->isTopReady())
3014     Top.removeReady(SU);
3015   if (SU->isBottomReady())
3016     Bot.removeReady(SU);
3017 
3018   DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
3019   return SU;
3020 }
3021 
3022 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
3023 
3024   MachineBasicBlock::iterator InsertPos = SU->getInstr();
3025   if (!isTop)
3026     ++InsertPos;
3027   SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
3028 
3029   // Find already scheduled copies with a single physreg dependence and move
3030   // them just above the scheduled instruction.
3031   for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end();
3032        I != E; ++I) {
3033     if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg()))
3034       continue;
3035     SUnit *DepSU = I->getSUnit();
3036     if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
3037       continue;
3038     MachineInstr *Copy = DepSU->getInstr();
3039     if (!Copy->isCopy())
3040       continue;
3041     DEBUG(dbgs() << "  Rescheduling physreg copy ";
3042           I->getSUnit()->dump(DAG));
3043     DAG->moveInstruction(Copy, InsertPos);
3044   }
3045 }
3046 
3047 /// Update the scheduler's state after scheduling a node. This is the same node
3048 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
3049 /// update it's state based on the current cycle before MachineSchedStrategy
3050 /// does.
3051 ///
3052 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
3053 /// them here. See comments in biasPhysRegCopy.
3054 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3055   if (IsTopNode) {
3056     SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3057     Top.bumpNode(SU);
3058     if (SU->hasPhysRegUses)
3059       reschedulePhysRegCopies(SU, true);
3060   } else {
3061     SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
3062     Bot.bumpNode(SU);
3063     if (SU->hasPhysRegDefs)
3064       reschedulePhysRegCopies(SU, false);
3065   }
3066 }
3067 
3068 /// Create the standard converging machine scheduler. This will be used as the
3069 /// default scheduler if the target does not set a default.
3070 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C) {
3071   ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, make_unique<GenericScheduler>(C));
3072   // Register DAG post-processors.
3073   //
3074   // FIXME: extend the mutation API to allow earlier mutations to instantiate
3075   // data and pass it to later mutations. Have a single mutation that gathers
3076   // the interesting nodes in one pass.
3077   DAG->addMutation(make_unique<CopyConstrain>(DAG->TII, DAG->TRI));
3078   if (EnableMemOpCluster) {
3079     if (DAG->TII->enableClusterLoads())
3080       DAG->addMutation(make_unique<LoadClusterMutation>(DAG->TII, DAG->TRI));
3081     if (DAG->TII->enableClusterStores())
3082       DAG->addMutation(make_unique<StoreClusterMutation>(DAG->TII, DAG->TRI));
3083   }
3084   if (EnableMacroFusion)
3085     DAG->addMutation(make_unique<MacroFusion>(*DAG->TII, *DAG->TRI));
3086   return DAG;
3087 }
3088 
3089 static MachineSchedRegistry
3090 GenericSchedRegistry("converge", "Standard converging scheduler.",
3091                      createGenericSchedLive);
3092 
3093 //===----------------------------------------------------------------------===//
3094 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
3095 //===----------------------------------------------------------------------===//
3096 
3097 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
3098   DAG = Dag;
3099   SchedModel = DAG->getSchedModel();
3100   TRI = DAG->TRI;
3101 
3102   Rem.init(DAG, SchedModel);
3103   Top.init(DAG, SchedModel, &Rem);
3104   BotRoots.clear();
3105 
3106   // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
3107   // or are disabled, then these HazardRecs will be disabled.
3108   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3109   if (!Top.HazardRec) {
3110     Top.HazardRec =
3111         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3112             Itin, DAG);
3113   }
3114 }
3115 
3116 
3117 void PostGenericScheduler::registerRoots() {
3118   Rem.CriticalPath = DAG->ExitSU.getDepth();
3119 
3120   // Some roots may not feed into ExitSU. Check all of them in case.
3121   for (SmallVectorImpl<SUnit*>::const_iterator
3122          I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) {
3123     if ((*I)->getDepth() > Rem.CriticalPath)
3124       Rem.CriticalPath = (*I)->getDepth();
3125   }
3126   DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
3127   if (DumpCriticalPathLength) {
3128     errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
3129   }
3130 }
3131 
3132 /// Apply a set of heursitics to a new candidate for PostRA scheduling.
3133 ///
3134 /// \param Cand provides the policy and current best candidate.
3135 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3136 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
3137                                         SchedCandidate &TryCand) {
3138 
3139   // Initialize the candidate if needed.
3140   if (!Cand.isValid()) {
3141     TryCand.Reason = NodeOrder;
3142     return;
3143   }
3144 
3145   // Prioritize instructions that read unbuffered resources by stall cycles.
3146   if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
3147               Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3148     return;
3149 
3150   // Avoid critical resource consumption and balance the schedule.
3151   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3152               TryCand, Cand, ResourceReduce))
3153     return;
3154   if (tryGreater(TryCand.ResDelta.DemandedResources,
3155                  Cand.ResDelta.DemandedResources,
3156                  TryCand, Cand, ResourceDemand))
3157     return;
3158 
3159   // Avoid serializing long latency dependence chains.
3160   if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
3161     return;
3162   }
3163 
3164   // Fall through to original instruction order.
3165   if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
3166     TryCand.Reason = NodeOrder;
3167 }
3168 
3169 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
3170   ReadyQueue &Q = Top.Available;
3171 
3172   DEBUG(Q.dump());
3173 
3174   for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
3175     SchedCandidate TryCand(Cand.Policy);
3176     TryCand.SU = *I;
3177     TryCand.initResourceDelta(DAG, SchedModel);
3178     tryCandidate(Cand, TryCand);
3179     if (TryCand.Reason != NoCand) {
3180       Cand.setBest(TryCand);
3181       DEBUG(traceCandidate(Cand));
3182     }
3183   }
3184 }
3185 
3186 /// Pick the next node to schedule.
3187 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
3188   if (DAG->top() == DAG->bottom()) {
3189     assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
3190     return nullptr;
3191   }
3192   SUnit *SU;
3193   do {
3194     SU = Top.pickOnlyChoice();
3195     if (!SU) {
3196       CandPolicy NoPolicy;
3197       SchedCandidate TopCand(NoPolicy);
3198       // Set the top-down policy based on the state of the current top zone and
3199       // the instructions outside the zone, including the bottom zone.
3200       setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
3201       pickNodeFromQueue(TopCand);
3202       assert(TopCand.Reason != NoCand && "failed to find a candidate");
3203       tracePick(TopCand, true);
3204       SU = TopCand.SU;
3205     }
3206   } while (SU->isScheduled);
3207 
3208   IsTopNode = true;
3209   Top.removeReady(SU);
3210 
3211   DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
3212   return SU;
3213 }
3214 
3215 /// Called after ScheduleDAGMI has scheduled an instruction and updated
3216 /// scheduled/remaining flags in the DAG nodes.
3217 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3218   SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3219   Top.bumpNode(SU);
3220 }
3221 
3222 /// Create a generic scheduler with no vreg liveness or DAG mutation passes.
3223 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C) {
3224   return new ScheduleDAGMI(C, make_unique<PostGenericScheduler>(C), /*IsPostRA=*/true);
3225 }
3226 
3227 //===----------------------------------------------------------------------===//
3228 // ILP Scheduler. Currently for experimental analysis of heuristics.
3229 //===----------------------------------------------------------------------===//
3230 
3231 namespace {
3232 /// \brief Order nodes by the ILP metric.
3233 struct ILPOrder {
3234   const SchedDFSResult *DFSResult;
3235   const BitVector *ScheduledTrees;
3236   bool MaximizeILP;
3237 
3238   ILPOrder(bool MaxILP)
3239     : DFSResult(nullptr), ScheduledTrees(nullptr), MaximizeILP(MaxILP) {}
3240 
3241   /// \brief Apply a less-than relation on node priority.
3242   ///
3243   /// (Return true if A comes after B in the Q.)
3244   bool operator()(const SUnit *A, const SUnit *B) const {
3245     unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3246     unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3247     if (SchedTreeA != SchedTreeB) {
3248       // Unscheduled trees have lower priority.
3249       if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3250         return ScheduledTrees->test(SchedTreeB);
3251 
3252       // Trees with shallower connections have have lower priority.
3253       if (DFSResult->getSubtreeLevel(SchedTreeA)
3254           != DFSResult->getSubtreeLevel(SchedTreeB)) {
3255         return DFSResult->getSubtreeLevel(SchedTreeA)
3256           < DFSResult->getSubtreeLevel(SchedTreeB);
3257       }
3258     }
3259     if (MaximizeILP)
3260       return DFSResult->getILP(A) < DFSResult->getILP(B);
3261     else
3262       return DFSResult->getILP(A) > DFSResult->getILP(B);
3263   }
3264 };
3265 
3266 /// \brief Schedule based on the ILP metric.
3267 class ILPScheduler : public MachineSchedStrategy {
3268   ScheduleDAGMILive *DAG;
3269   ILPOrder Cmp;
3270 
3271   std::vector<SUnit*> ReadyQ;
3272 public:
3273   ILPScheduler(bool MaximizeILP): DAG(nullptr), Cmp(MaximizeILP) {}
3274 
3275   void initialize(ScheduleDAGMI *dag) override {
3276     assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
3277     DAG = static_cast<ScheduleDAGMILive*>(dag);
3278     DAG->computeDFSResult();
3279     Cmp.DFSResult = DAG->getDFSResult();
3280     Cmp.ScheduledTrees = &DAG->getScheduledTrees();
3281     ReadyQ.clear();
3282   }
3283 
3284   void registerRoots() override {
3285     // Restore the heap in ReadyQ with the updated DFS results.
3286     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3287   }
3288 
3289   /// Implement MachineSchedStrategy interface.
3290   /// -----------------------------------------
3291 
3292   /// Callback to select the highest priority node from the ready Q.
3293   SUnit *pickNode(bool &IsTopNode) override {
3294     if (ReadyQ.empty()) return nullptr;
3295     std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3296     SUnit *SU = ReadyQ.back();
3297     ReadyQ.pop_back();
3298     IsTopNode = false;
3299     DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") "
3300           << " ILP: " << DAG->getDFSResult()->getILP(SU)
3301           << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @"
3302           << DAG->getDFSResult()->getSubtreeLevel(
3303             DAG->getDFSResult()->getSubtreeID(SU)) << '\n'
3304           << "Scheduling " << *SU->getInstr());
3305     return SU;
3306   }
3307 
3308   /// \brief Scheduler callback to notify that a new subtree is scheduled.
3309   void scheduleTree(unsigned SubtreeID) override {
3310     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3311   }
3312 
3313   /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
3314   /// DFSResults, and resort the priority Q.
3315   void schedNode(SUnit *SU, bool IsTopNode) override {
3316     assert(!IsTopNode && "SchedDFSResult needs bottom-up");
3317   }
3318 
3319   void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
3320 
3321   void releaseBottomNode(SUnit *SU) override {
3322     ReadyQ.push_back(SU);
3323     std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3324   }
3325 };
3326 } // namespace
3327 
3328 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
3329   return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(true));
3330 }
3331 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
3332   return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(false));
3333 }
3334 static MachineSchedRegistry ILPMaxRegistry(
3335   "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
3336 static MachineSchedRegistry ILPMinRegistry(
3337   "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
3338 
3339 //===----------------------------------------------------------------------===//
3340 // Machine Instruction Shuffler for Correctness Testing
3341 //===----------------------------------------------------------------------===//
3342 
3343 #ifndef NDEBUG
3344 namespace {
3345 /// Apply a less-than relation on the node order, which corresponds to the
3346 /// instruction order prior to scheduling. IsReverse implements greater-than.
3347 template<bool IsReverse>
3348 struct SUnitOrder {
3349   bool operator()(SUnit *A, SUnit *B) const {
3350     if (IsReverse)
3351       return A->NodeNum > B->NodeNum;
3352     else
3353       return A->NodeNum < B->NodeNum;
3354   }
3355 };
3356 
3357 /// Reorder instructions as much as possible.
3358 class InstructionShuffler : public MachineSchedStrategy {
3359   bool IsAlternating;
3360   bool IsTopDown;
3361 
3362   // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
3363   // gives nodes with a higher number higher priority causing the latest
3364   // instructions to be scheduled first.
3365   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> >
3366     TopQ;
3367   // When scheduling bottom-up, use greater-than as the queue priority.
3368   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> >
3369     BottomQ;
3370 public:
3371   InstructionShuffler(bool alternate, bool topdown)
3372     : IsAlternating(alternate), IsTopDown(topdown) {}
3373 
3374   void initialize(ScheduleDAGMI*) override {
3375     TopQ.clear();
3376     BottomQ.clear();
3377   }
3378 
3379   /// Implement MachineSchedStrategy interface.
3380   /// -----------------------------------------
3381 
3382   SUnit *pickNode(bool &IsTopNode) override {
3383     SUnit *SU;
3384     if (IsTopDown) {
3385       do {
3386         if (TopQ.empty()) return nullptr;
3387         SU = TopQ.top();
3388         TopQ.pop();
3389       } while (SU->isScheduled);
3390       IsTopNode = true;
3391     } else {
3392       do {
3393         if (BottomQ.empty()) return nullptr;
3394         SU = BottomQ.top();
3395         BottomQ.pop();
3396       } while (SU->isScheduled);
3397       IsTopNode = false;
3398     }
3399     if (IsAlternating)
3400       IsTopDown = !IsTopDown;
3401     return SU;
3402   }
3403 
3404   void schedNode(SUnit *SU, bool IsTopNode) override {}
3405 
3406   void releaseTopNode(SUnit *SU) override {
3407     TopQ.push(SU);
3408   }
3409   void releaseBottomNode(SUnit *SU) override {
3410     BottomQ.push(SU);
3411   }
3412 };
3413 } // namespace
3414 
3415 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
3416   bool Alternate = !ForceTopDown && !ForceBottomUp;
3417   bool TopDown = !ForceBottomUp;
3418   assert((TopDown || !ForceTopDown) &&
3419          "-misched-topdown incompatible with -misched-bottomup");
3420   return new ScheduleDAGMILive(C, make_unique<InstructionShuffler>(Alternate, TopDown));
3421 }
3422 static MachineSchedRegistry ShufflerRegistry(
3423   "shuffle", "Shuffle machine instructions alternating directions",
3424   createInstructionShuffler);
3425 #endif // !NDEBUG
3426 
3427 //===----------------------------------------------------------------------===//
3428 // GraphWriter support for ScheduleDAGMILive.
3429 //===----------------------------------------------------------------------===//
3430 
3431 #ifndef NDEBUG
3432 namespace llvm {
3433 
3434 template<> struct GraphTraits<
3435   ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
3436 
3437 template<>
3438 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
3439 
3440   DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
3441 
3442   static std::string getGraphName(const ScheduleDAG *G) {
3443     return G->MF.getName();
3444   }
3445 
3446   static bool renderGraphFromBottomUp() {
3447     return true;
3448   }
3449 
3450   static bool isNodeHidden(const SUnit *Node) {
3451     if (ViewMISchedCutoff == 0)
3452       return false;
3453     return (Node->Preds.size() > ViewMISchedCutoff
3454          || Node->Succs.size() > ViewMISchedCutoff);
3455   }
3456 
3457   /// If you want to override the dot attributes printed for a particular
3458   /// edge, override this method.
3459   static std::string getEdgeAttributes(const SUnit *Node,
3460                                        SUnitIterator EI,
3461                                        const ScheduleDAG *Graph) {
3462     if (EI.isArtificialDep())
3463       return "color=cyan,style=dashed";
3464     if (EI.isCtrlDep())
3465       return "color=blue,style=dashed";
3466     return "";
3467   }
3468 
3469   static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
3470     std::string Str;
3471     raw_string_ostream SS(Str);
3472     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3473     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3474       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3475     SS << "SU:" << SU->NodeNum;
3476     if (DFS)
3477       SS << " I:" << DFS->getNumInstrs(SU);
3478     return SS.str();
3479   }
3480   static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
3481     return G->getGraphNodeLabel(SU);
3482   }
3483 
3484   static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
3485     std::string Str("shape=Mrecord");
3486     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3487     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3488       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3489     if (DFS) {
3490       Str += ",style=filled,fillcolor=\"#";
3491       Str += DOT::getColorString(DFS->getSubtreeID(N));
3492       Str += '"';
3493     }
3494     return Str;
3495   }
3496 };
3497 } // namespace llvm
3498 #endif // NDEBUG
3499 
3500 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
3501 /// rendered using 'dot'.
3502 ///
3503 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
3504 #ifndef NDEBUG
3505   ViewGraph(this, Name, false, Title);
3506 #else
3507   errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
3508          << "systems with Graphviz or gv!\n";
3509 #endif  // NDEBUG
3510 }
3511 
3512 /// Out-of-line implementation with no arguments is handy for gdb.
3513 void ScheduleDAGMI::viewGraph() {
3514   viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
3515 }
3516