1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // MachineScheduler schedules machine instructions after phi elimination. It 10 // preserves LiveIntervals so it can be invoked before register allocation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineScheduler.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/PriorityQueue.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/iterator_range.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/CodeGen/LiveInterval.h" 24 #include "llvm/CodeGen/LiveIntervals.h" 25 #include "llvm/CodeGen/MachineBasicBlock.h" 26 #include "llvm/CodeGen/MachineDominators.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineFunctionPass.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineLoopInfo.h" 31 #include "llvm/CodeGen/MachineOperand.h" 32 #include "llvm/CodeGen/MachinePassRegistry.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/Passes.h" 35 #include "llvm/CodeGen/RegisterClassInfo.h" 36 #include "llvm/CodeGen/RegisterPressure.h" 37 #include "llvm/CodeGen/ScheduleDAG.h" 38 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 39 #include "llvm/CodeGen/ScheduleDAGMutation.h" 40 #include "llvm/CodeGen/ScheduleDFS.h" 41 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 42 #include "llvm/CodeGen/SlotIndexes.h" 43 #include "llvm/CodeGen/TargetFrameLowering.h" 44 #include "llvm/CodeGen/TargetInstrInfo.h" 45 #include "llvm/CodeGen/TargetLowering.h" 46 #include "llvm/CodeGen/TargetPassConfig.h" 47 #include "llvm/CodeGen/TargetRegisterInfo.h" 48 #include "llvm/CodeGen/TargetSchedule.h" 49 #include "llvm/CodeGen/TargetSubtargetInfo.h" 50 #include "llvm/Config/llvm-config.h" 51 #include "llvm/InitializePasses.h" 52 #include "llvm/MC/LaneBitmask.h" 53 #include "llvm/Pass.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Compiler.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/GraphWriter.h" 59 #include "llvm/Support/MachineValueType.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include <algorithm> 62 #include <cassert> 63 #include <cstdint> 64 #include <iterator> 65 #include <limits> 66 #include <memory> 67 #include <string> 68 #include <tuple> 69 #include <utility> 70 #include <vector> 71 72 using namespace llvm; 73 74 #define DEBUG_TYPE "machine-scheduler" 75 76 namespace llvm { 77 78 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 79 cl::desc("Force top-down list scheduling")); 80 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 81 cl::desc("Force bottom-up list scheduling")); 82 cl::opt<bool> 83 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 84 cl::desc("Print critical path length to stdout")); 85 86 cl::opt<bool> VerifyScheduling( 87 "verify-misched", cl::Hidden, 88 cl::desc("Verify machine instrs before and after machine scheduling")); 89 90 } // end namespace llvm 91 92 #ifndef NDEBUG 93 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 94 cl::desc("Pop up a window to show MISched dags after they are processed")); 95 96 /// In some situations a few uninteresting nodes depend on nearly all other 97 /// nodes in the graph, provide a cutoff to hide them. 98 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 99 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 100 101 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 102 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 103 104 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 105 cl::desc("Only schedule this function")); 106 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 107 cl::desc("Only schedule this MBB#")); 108 static cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden, 109 cl::desc("Print schedule DAGs")); 110 #else 111 static const bool ViewMISchedDAGs = false; 112 static const bool PrintDAGs = false; 113 #endif // NDEBUG 114 115 /// Avoid quadratic complexity in unusually large basic blocks by limiting the 116 /// size of the ready lists. 117 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden, 118 cl::desc("Limit ready list to N instructions"), cl::init(256)); 119 120 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 121 cl::desc("Enable register pressure scheduling."), cl::init(true)); 122 123 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 124 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 125 126 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden, 127 cl::desc("Enable memop clustering."), 128 cl::init(true)); 129 130 // DAG subtrees must have at least this many nodes. 131 static const unsigned MinSubtreeSize = 8; 132 133 // Pin the vtables to this file. 134 void MachineSchedStrategy::anchor() {} 135 136 void ScheduleDAGMutation::anchor() {} 137 138 //===----------------------------------------------------------------------===// 139 // Machine Instruction Scheduling Pass and Registry 140 //===----------------------------------------------------------------------===// 141 142 MachineSchedContext::MachineSchedContext() { 143 RegClassInfo = new RegisterClassInfo(); 144 } 145 146 MachineSchedContext::~MachineSchedContext() { 147 delete RegClassInfo; 148 } 149 150 namespace { 151 152 /// Base class for a machine scheduler class that can run at any point. 153 class MachineSchedulerBase : public MachineSchedContext, 154 public MachineFunctionPass { 155 public: 156 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 157 158 void print(raw_ostream &O, const Module* = nullptr) const override; 159 160 protected: 161 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); 162 }; 163 164 /// MachineScheduler runs after coalescing and before register allocation. 165 class MachineScheduler : public MachineSchedulerBase { 166 public: 167 MachineScheduler(); 168 169 void getAnalysisUsage(AnalysisUsage &AU) const override; 170 171 bool runOnMachineFunction(MachineFunction&) override; 172 173 static char ID; // Class identification, replacement for typeinfo 174 175 protected: 176 ScheduleDAGInstrs *createMachineScheduler(); 177 }; 178 179 /// PostMachineScheduler runs after shortly before code emission. 180 class PostMachineScheduler : public MachineSchedulerBase { 181 public: 182 PostMachineScheduler(); 183 184 void getAnalysisUsage(AnalysisUsage &AU) const override; 185 186 bool runOnMachineFunction(MachineFunction&) override; 187 188 static char ID; // Class identification, replacement for typeinfo 189 190 protected: 191 ScheduleDAGInstrs *createPostMachineScheduler(); 192 }; 193 194 } // end anonymous namespace 195 196 char MachineScheduler::ID = 0; 197 198 char &llvm::MachineSchedulerID = MachineScheduler::ID; 199 200 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE, 201 "Machine Instruction Scheduler", false, false) 202 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 203 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 204 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 205 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 206 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 207 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE, 208 "Machine Instruction Scheduler", false, false) 209 210 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) { 211 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 212 } 213 214 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 215 AU.setPreservesCFG(); 216 AU.addRequired<MachineDominatorTree>(); 217 AU.addRequired<MachineLoopInfo>(); 218 AU.addRequired<AAResultsWrapperPass>(); 219 AU.addRequired<TargetPassConfig>(); 220 AU.addRequired<SlotIndexes>(); 221 AU.addPreserved<SlotIndexes>(); 222 AU.addRequired<LiveIntervals>(); 223 AU.addPreserved<LiveIntervals>(); 224 MachineFunctionPass::getAnalysisUsage(AU); 225 } 226 227 char PostMachineScheduler::ID = 0; 228 229 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 230 231 INITIALIZE_PASS(PostMachineScheduler, "postmisched", 232 "PostRA Machine Instruction Scheduler", false, false) 233 234 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) { 235 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 236 } 237 238 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 239 AU.setPreservesCFG(); 240 AU.addRequired<MachineDominatorTree>(); 241 AU.addRequired<MachineLoopInfo>(); 242 AU.addRequired<AAResultsWrapperPass>(); 243 AU.addRequired<TargetPassConfig>(); 244 MachineFunctionPass::getAnalysisUsage(AU); 245 } 246 247 MachinePassRegistry<MachineSchedRegistry::ScheduleDAGCtor> 248 MachineSchedRegistry::Registry; 249 250 /// A dummy default scheduler factory indicates whether the scheduler 251 /// is overridden on the command line. 252 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 253 return nullptr; 254 } 255 256 /// MachineSchedOpt allows command line selection of the scheduler. 257 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 258 RegisterPassParser<MachineSchedRegistry>> 259 MachineSchedOpt("misched", 260 cl::init(&useDefaultMachineSched), cl::Hidden, 261 cl::desc("Machine instruction scheduler to use")); 262 263 static MachineSchedRegistry 264 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 265 useDefaultMachineSched); 266 267 static cl::opt<bool> EnableMachineSched( 268 "enable-misched", 269 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 270 cl::Hidden); 271 272 static cl::opt<bool> EnablePostRAMachineSched( 273 "enable-post-misched", 274 cl::desc("Enable the post-ra machine instruction scheduling pass."), 275 cl::init(true), cl::Hidden); 276 277 /// Decrement this iterator until reaching the top or a non-debug instr. 278 static MachineBasicBlock::const_iterator 279 priorNonDebug(MachineBasicBlock::const_iterator I, 280 MachineBasicBlock::const_iterator Beg) { 281 assert(I != Beg && "reached the top of the region, cannot decrement"); 282 while (--I != Beg) { 283 if (!I->isDebugInstr()) 284 break; 285 } 286 return I; 287 } 288 289 /// Non-const version. 290 static MachineBasicBlock::iterator 291 priorNonDebug(MachineBasicBlock::iterator I, 292 MachineBasicBlock::const_iterator Beg) { 293 return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg) 294 .getNonConstIterator(); 295 } 296 297 /// If this iterator is a debug value, increment until reaching the End or a 298 /// non-debug instruction. 299 static MachineBasicBlock::const_iterator 300 nextIfDebug(MachineBasicBlock::const_iterator I, 301 MachineBasicBlock::const_iterator End) { 302 for(; I != End; ++I) { 303 if (!I->isDebugInstr()) 304 break; 305 } 306 return I; 307 } 308 309 /// Non-const version. 310 static MachineBasicBlock::iterator 311 nextIfDebug(MachineBasicBlock::iterator I, 312 MachineBasicBlock::const_iterator End) { 313 return nextIfDebug(MachineBasicBlock::const_iterator(I), End) 314 .getNonConstIterator(); 315 } 316 317 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 318 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 319 // Select the scheduler, or set the default. 320 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 321 if (Ctor != useDefaultMachineSched) 322 return Ctor(this); 323 324 // Get the default scheduler set by the target for this function. 325 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 326 if (Scheduler) 327 return Scheduler; 328 329 // Default to GenericScheduler. 330 return createGenericSchedLive(this); 331 } 332 333 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 334 /// the caller. We don't have a command line option to override the postRA 335 /// scheduler. The Target must configure it. 336 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 337 // Get the postRA scheduler set by the target for this function. 338 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 339 if (Scheduler) 340 return Scheduler; 341 342 // Default to GenericScheduler. 343 return createGenericSchedPostRA(this); 344 } 345 346 /// Top-level MachineScheduler pass driver. 347 /// 348 /// Visit blocks in function order. Divide each block into scheduling regions 349 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 350 /// consistent with the DAG builder, which traverses the interior of the 351 /// scheduling regions bottom-up. 352 /// 353 /// This design avoids exposing scheduling boundaries to the DAG builder, 354 /// simplifying the DAG builder's support for "special" target instructions. 355 /// At the same time the design allows target schedulers to operate across 356 /// scheduling boundaries, for example to bundle the boundary instructions 357 /// without reordering them. This creates complexity, because the target 358 /// scheduler must update the RegionBegin and RegionEnd positions cached by 359 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 360 /// design would be to split blocks at scheduling boundaries, but LLVM has a 361 /// general bias against block splitting purely for implementation simplicity. 362 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 363 if (skipFunction(mf.getFunction())) 364 return false; 365 366 if (EnableMachineSched.getNumOccurrences()) { 367 if (!EnableMachineSched) 368 return false; 369 } else if (!mf.getSubtarget().enableMachineScheduler()) 370 return false; 371 372 LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs())); 373 374 // Initialize the context of the pass. 375 MF = &mf; 376 MLI = &getAnalysis<MachineLoopInfo>(); 377 MDT = &getAnalysis<MachineDominatorTree>(); 378 PassConfig = &getAnalysis<TargetPassConfig>(); 379 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 380 381 LIS = &getAnalysis<LiveIntervals>(); 382 383 if (VerifyScheduling) { 384 LLVM_DEBUG(LIS->dump()); 385 MF->verify(this, "Before machine scheduling."); 386 } 387 RegClassInfo->runOnMachineFunction(*MF); 388 389 // Instantiate the selected scheduler for this target, function, and 390 // optimization level. 391 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 392 scheduleRegions(*Scheduler, false); 393 394 LLVM_DEBUG(LIS->dump()); 395 if (VerifyScheduling) 396 MF->verify(this, "After machine scheduling."); 397 return true; 398 } 399 400 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 401 if (skipFunction(mf.getFunction())) 402 return false; 403 404 if (EnablePostRAMachineSched.getNumOccurrences()) { 405 if (!EnablePostRAMachineSched) 406 return false; 407 } else if (!mf.getSubtarget().enablePostRAMachineScheduler()) { 408 LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 409 return false; 410 } 411 LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 412 413 // Initialize the context of the pass. 414 MF = &mf; 415 MLI = &getAnalysis<MachineLoopInfo>(); 416 PassConfig = &getAnalysis<TargetPassConfig>(); 417 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 418 419 if (VerifyScheduling) 420 MF->verify(this, "Before post machine scheduling."); 421 422 // Instantiate the selected scheduler for this target, function, and 423 // optimization level. 424 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 425 scheduleRegions(*Scheduler, true); 426 427 if (VerifyScheduling) 428 MF->verify(this, "After post machine scheduling."); 429 return true; 430 } 431 432 /// Return true of the given instruction should not be included in a scheduling 433 /// region. 434 /// 435 /// MachineScheduler does not currently support scheduling across calls. To 436 /// handle calls, the DAG builder needs to be modified to create register 437 /// anti/output dependencies on the registers clobbered by the call's regmask 438 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 439 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 440 /// the boundary, but there would be no benefit to postRA scheduling across 441 /// calls this late anyway. 442 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 443 MachineBasicBlock *MBB, 444 MachineFunction *MF, 445 const TargetInstrInfo *TII) { 446 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF); 447 } 448 449 /// A region of an MBB for scheduling. 450 namespace { 451 struct SchedRegion { 452 /// RegionBegin is the first instruction in the scheduling region, and 453 /// RegionEnd is either MBB->end() or the scheduling boundary after the 454 /// last instruction in the scheduling region. These iterators cannot refer 455 /// to instructions outside of the identified scheduling region because 456 /// those may be reordered before scheduling this region. 457 MachineBasicBlock::iterator RegionBegin; 458 MachineBasicBlock::iterator RegionEnd; 459 unsigned NumRegionInstrs; 460 461 SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E, 462 unsigned N) : 463 RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {} 464 }; 465 } // end anonymous namespace 466 467 using MBBRegionsVector = SmallVector<SchedRegion, 16>; 468 469 static void 470 getSchedRegions(MachineBasicBlock *MBB, 471 MBBRegionsVector &Regions, 472 bool RegionsTopDown) { 473 MachineFunction *MF = MBB->getParent(); 474 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 475 476 MachineBasicBlock::iterator I = nullptr; 477 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 478 RegionEnd != MBB->begin(); RegionEnd = I) { 479 480 // Avoid decrementing RegionEnd for blocks with no terminator. 481 if (RegionEnd != MBB->end() || 482 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { 483 --RegionEnd; 484 } 485 486 // The next region starts above the previous region. Look backward in the 487 // instruction stream until we find the nearest boundary. 488 unsigned NumRegionInstrs = 0; 489 I = RegionEnd; 490 for (;I != MBB->begin(); --I) { 491 MachineInstr &MI = *std::prev(I); 492 if (isSchedBoundary(&MI, &*MBB, MF, TII)) 493 break; 494 if (!MI.isDebugInstr()) { 495 // MBB::size() uses instr_iterator to count. Here we need a bundle to 496 // count as a single instruction. 497 ++NumRegionInstrs; 498 } 499 } 500 501 // It's possible we found a scheduling region that only has debug 502 // instructions. Don't bother scheduling these. 503 if (NumRegionInstrs != 0) 504 Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs)); 505 } 506 507 if (RegionsTopDown) 508 std::reverse(Regions.begin(), Regions.end()); 509 } 510 511 /// Main driver for both MachineScheduler and PostMachineScheduler. 512 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, 513 bool FixKillFlags) { 514 // Visit all machine basic blocks. 515 // 516 // TODO: Visit blocks in global postorder or postorder within the bottom-up 517 // loop tree. Then we can optionally compute global RegPressure. 518 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 519 MBB != MBBEnd; ++MBB) { 520 521 Scheduler.startBlock(&*MBB); 522 523 #ifndef NDEBUG 524 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 525 continue; 526 if (SchedOnlyBlock.getNumOccurrences() 527 && (int)SchedOnlyBlock != MBB->getNumber()) 528 continue; 529 #endif 530 531 // Break the block into scheduling regions [I, RegionEnd). RegionEnd 532 // points to the scheduling boundary at the bottom of the region. The DAG 533 // does not include RegionEnd, but the region does (i.e. the next 534 // RegionEnd is above the previous RegionBegin). If the current block has 535 // no terminator then RegionEnd == MBB->end() for the bottom region. 536 // 537 // All the regions of MBB are first found and stored in MBBRegions, which 538 // will be processed (MBB) top-down if initialized with true. 539 // 540 // The Scheduler may insert instructions during either schedule() or 541 // exitRegion(), even for empty regions. So the local iterators 'I' and 542 // 'RegionEnd' are invalid across these calls. Instructions must not be 543 // added to other regions than the current one without updating MBBRegions. 544 545 MBBRegionsVector MBBRegions; 546 getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown()); 547 for (MBBRegionsVector::iterator R = MBBRegions.begin(); 548 R != MBBRegions.end(); ++R) { 549 MachineBasicBlock::iterator I = R->RegionBegin; 550 MachineBasicBlock::iterator RegionEnd = R->RegionEnd; 551 unsigned NumRegionInstrs = R->NumRegionInstrs; 552 553 // Notify the scheduler of the region, even if we may skip scheduling 554 // it. Perhaps it still needs to be bundled. 555 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); 556 557 // Skip empty scheduling regions (0 or 1 schedulable instructions). 558 if (I == RegionEnd || I == std::prev(RegionEnd)) { 559 // Close the current region. Bundle the terminator if needed. 560 // This invalidates 'RegionEnd' and 'I'. 561 Scheduler.exitRegion(); 562 continue; 563 } 564 LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n"); 565 LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB) 566 << " " << MBB->getName() << "\n From: " << *I 567 << " To: "; 568 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 569 else dbgs() << "End"; 570 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); 571 if (DumpCriticalPathLength) { 572 errs() << MF->getName(); 573 errs() << ":%bb. " << MBB->getNumber(); 574 errs() << " " << MBB->getName() << " \n"; 575 } 576 577 // Schedule a region: possibly reorder instructions. 578 // This invalidates the original region iterators. 579 Scheduler.schedule(); 580 581 // Close the current region. 582 Scheduler.exitRegion(); 583 } 584 Scheduler.finishBlock(); 585 // FIXME: Ideally, no further passes should rely on kill flags. However, 586 // thumb2 size reduction is currently an exception, so the PostMIScheduler 587 // needs to do this. 588 if (FixKillFlags) 589 Scheduler.fixupKills(*MBB); 590 } 591 Scheduler.finalizeSchedule(); 592 } 593 594 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 595 // unimplemented 596 } 597 598 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 599 LLVM_DUMP_METHOD void ReadyQueue::dump() const { 600 dbgs() << "Queue " << Name << ": "; 601 for (const SUnit *SU : Queue) 602 dbgs() << SU->NodeNum << " "; 603 dbgs() << "\n"; 604 } 605 #endif 606 607 //===----------------------------------------------------------------------===// 608 // ScheduleDAGMI - Basic machine instruction scheduling. This is 609 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 610 // virtual registers. 611 // ===----------------------------------------------------------------------===/ 612 613 // Provide a vtable anchor. 614 ScheduleDAGMI::~ScheduleDAGMI() = default; 615 616 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 617 /// NumPredsLeft reaches zero, release the successor node. 618 /// 619 /// FIXME: Adjust SuccSU height based on MinLatency. 620 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 621 SUnit *SuccSU = SuccEdge->getSUnit(); 622 623 if (SuccEdge->isWeak()) { 624 --SuccSU->WeakPredsLeft; 625 if (SuccEdge->isCluster()) 626 NextClusterSucc = SuccSU; 627 return; 628 } 629 #ifndef NDEBUG 630 if (SuccSU->NumPredsLeft == 0) { 631 dbgs() << "*** Scheduling failed! ***\n"; 632 dumpNode(*SuccSU); 633 dbgs() << " has been released too many times!\n"; 634 llvm_unreachable(nullptr); 635 } 636 #endif 637 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 638 // CurrCycle may have advanced since then. 639 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 640 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 641 642 --SuccSU->NumPredsLeft; 643 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 644 SchedImpl->releaseTopNode(SuccSU); 645 } 646 647 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 648 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 649 for (SDep &Succ : SU->Succs) 650 releaseSucc(SU, &Succ); 651 } 652 653 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 654 /// NumSuccsLeft reaches zero, release the predecessor node. 655 /// 656 /// FIXME: Adjust PredSU height based on MinLatency. 657 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 658 SUnit *PredSU = PredEdge->getSUnit(); 659 660 if (PredEdge->isWeak()) { 661 --PredSU->WeakSuccsLeft; 662 if (PredEdge->isCluster()) 663 NextClusterPred = PredSU; 664 return; 665 } 666 #ifndef NDEBUG 667 if (PredSU->NumSuccsLeft == 0) { 668 dbgs() << "*** Scheduling failed! ***\n"; 669 dumpNode(*PredSU); 670 dbgs() << " has been released too many times!\n"; 671 llvm_unreachable(nullptr); 672 } 673 #endif 674 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 675 // CurrCycle may have advanced since then. 676 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 677 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 678 679 --PredSU->NumSuccsLeft; 680 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 681 SchedImpl->releaseBottomNode(PredSU); 682 } 683 684 /// releasePredecessors - Call releasePred on each of SU's predecessors. 685 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 686 for (SDep &Pred : SU->Preds) 687 releasePred(SU, &Pred); 688 } 689 690 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) { 691 ScheduleDAGInstrs::startBlock(bb); 692 SchedImpl->enterMBB(bb); 693 } 694 695 void ScheduleDAGMI::finishBlock() { 696 SchedImpl->leaveMBB(); 697 ScheduleDAGInstrs::finishBlock(); 698 } 699 700 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 701 /// crossing a scheduling boundary. [begin, end) includes all instructions in 702 /// the region, including the boundary itself and single-instruction regions 703 /// that don't get scheduled. 704 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 705 MachineBasicBlock::iterator begin, 706 MachineBasicBlock::iterator end, 707 unsigned regioninstrs) 708 { 709 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 710 711 SchedImpl->initPolicy(begin, end, regioninstrs); 712 } 713 714 /// This is normally called from the main scheduler loop but may also be invoked 715 /// by the scheduling strategy to perform additional code motion. 716 void ScheduleDAGMI::moveInstruction( 717 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 718 // Advance RegionBegin if the first instruction moves down. 719 if (&*RegionBegin == MI) 720 ++RegionBegin; 721 722 // Update the instruction stream. 723 BB->splice(InsertPos, BB, MI); 724 725 // Update LiveIntervals 726 if (LIS) 727 LIS->handleMove(*MI, /*UpdateFlags=*/true); 728 729 // Recede RegionBegin if an instruction moves above the first. 730 if (RegionBegin == InsertPos) 731 RegionBegin = MI; 732 } 733 734 bool ScheduleDAGMI::checkSchedLimit() { 735 #ifndef NDEBUG 736 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 737 CurrentTop = CurrentBottom; 738 return false; 739 } 740 ++NumInstrsScheduled; 741 #endif 742 return true; 743 } 744 745 /// Per-region scheduling driver, called back from 746 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that 747 /// does not consider liveness or register pressure. It is useful for PostRA 748 /// scheduling and potentially other custom schedulers. 749 void ScheduleDAGMI::schedule() { 750 LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); 751 LLVM_DEBUG(SchedImpl->dumpPolicy()); 752 753 // Build the DAG. 754 buildSchedGraph(AA); 755 756 postprocessDAG(); 757 758 SmallVector<SUnit*, 8> TopRoots, BotRoots; 759 findRootsAndBiasEdges(TopRoots, BotRoots); 760 761 LLVM_DEBUG(dump()); 762 if (PrintDAGs) dump(); 763 if (ViewMISchedDAGs) viewGraph(); 764 765 // Initialize the strategy before modifying the DAG. 766 // This may initialize a DFSResult to be used for queue priority. 767 SchedImpl->initialize(this); 768 769 // Initialize ready queues now that the DAG and priority data are finalized. 770 initQueues(TopRoots, BotRoots); 771 772 bool IsTopNode = false; 773 while (true) { 774 LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); 775 SUnit *SU = SchedImpl->pickNode(IsTopNode); 776 if (!SU) break; 777 778 assert(!SU->isScheduled && "Node already scheduled"); 779 if (!checkSchedLimit()) 780 break; 781 782 MachineInstr *MI = SU->getInstr(); 783 if (IsTopNode) { 784 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 785 if (&*CurrentTop == MI) 786 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 787 else 788 moveInstruction(MI, CurrentTop); 789 } else { 790 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 791 MachineBasicBlock::iterator priorII = 792 priorNonDebug(CurrentBottom, CurrentTop); 793 if (&*priorII == MI) 794 CurrentBottom = priorII; 795 else { 796 if (&*CurrentTop == MI) 797 CurrentTop = nextIfDebug(++CurrentTop, priorII); 798 moveInstruction(MI, CurrentBottom); 799 CurrentBottom = MI; 800 } 801 } 802 // Notify the scheduling strategy before updating the DAG. 803 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 804 // runs, it can then use the accurate ReadyCycle time to determine whether 805 // newly released nodes can move to the readyQ. 806 SchedImpl->schedNode(SU, IsTopNode); 807 808 updateQueues(SU, IsTopNode); 809 } 810 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 811 812 placeDebugValues(); 813 814 LLVM_DEBUG({ 815 dbgs() << "*** Final schedule for " 816 << printMBBReference(*begin()->getParent()) << " ***\n"; 817 dumpSchedule(); 818 dbgs() << '\n'; 819 }); 820 } 821 822 /// Apply each ScheduleDAGMutation step in order. 823 void ScheduleDAGMI::postprocessDAG() { 824 for (auto &m : Mutations) 825 m->apply(this); 826 } 827 828 void ScheduleDAGMI:: 829 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 830 SmallVectorImpl<SUnit*> &BotRoots) { 831 for (SUnit &SU : SUnits) { 832 assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits"); 833 834 // Order predecessors so DFSResult follows the critical path. 835 SU.biasCriticalPath(); 836 837 // A SUnit is ready to top schedule if it has no predecessors. 838 if (!SU.NumPredsLeft) 839 TopRoots.push_back(&SU); 840 // A SUnit is ready to bottom schedule if it has no successors. 841 if (!SU.NumSuccsLeft) 842 BotRoots.push_back(&SU); 843 } 844 ExitSU.biasCriticalPath(); 845 } 846 847 /// Identify DAG roots and setup scheduler queues. 848 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 849 ArrayRef<SUnit*> BotRoots) { 850 NextClusterSucc = nullptr; 851 NextClusterPred = nullptr; 852 853 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 854 // 855 // Nodes with unreleased weak edges can still be roots. 856 // Release top roots in forward order. 857 for (SUnit *SU : TopRoots) 858 SchedImpl->releaseTopNode(SU); 859 860 // Release bottom roots in reverse order so the higher priority nodes appear 861 // first. This is more natural and slightly more efficient. 862 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 863 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 864 SchedImpl->releaseBottomNode(*I); 865 } 866 867 releaseSuccessors(&EntrySU); 868 releasePredecessors(&ExitSU); 869 870 SchedImpl->registerRoots(); 871 872 // Advance past initial DebugValues. 873 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 874 CurrentBottom = RegionEnd; 875 } 876 877 /// Update scheduler queues after scheduling an instruction. 878 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 879 // Release dependent instructions for scheduling. 880 if (IsTopNode) 881 releaseSuccessors(SU); 882 else 883 releasePredecessors(SU); 884 885 SU->isScheduled = true; 886 } 887 888 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 889 void ScheduleDAGMI::placeDebugValues() { 890 // If first instruction was a DBG_VALUE then put it back. 891 if (FirstDbgValue) { 892 BB->splice(RegionBegin, BB, FirstDbgValue); 893 RegionBegin = FirstDbgValue; 894 } 895 896 for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator 897 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 898 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 899 MachineInstr *DbgValue = P.first; 900 MachineBasicBlock::iterator OrigPrevMI = P.second; 901 if (&*RegionBegin == DbgValue) 902 ++RegionBegin; 903 BB->splice(++OrigPrevMI, BB, DbgValue); 904 if (OrigPrevMI == std::prev(RegionEnd)) 905 RegionEnd = DbgValue; 906 } 907 DbgValues.clear(); 908 FirstDbgValue = nullptr; 909 } 910 911 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 912 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const { 913 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 914 if (SUnit *SU = getSUnit(&(*MI))) 915 dumpNode(*SU); 916 else 917 dbgs() << "Missing SUnit\n"; 918 } 919 } 920 #endif 921 922 //===----------------------------------------------------------------------===// 923 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 924 // preservation. 925 //===----------------------------------------------------------------------===// 926 927 ScheduleDAGMILive::~ScheduleDAGMILive() { 928 delete DFSResult; 929 } 930 931 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) { 932 const MachineInstr &MI = *SU.getInstr(); 933 for (const MachineOperand &MO : MI.operands()) { 934 if (!MO.isReg()) 935 continue; 936 if (!MO.readsReg()) 937 continue; 938 if (TrackLaneMasks && !MO.isUse()) 939 continue; 940 941 Register Reg = MO.getReg(); 942 if (!Register::isVirtualRegister(Reg)) 943 continue; 944 945 // Ignore re-defs. 946 if (TrackLaneMasks) { 947 bool FoundDef = false; 948 for (const MachineOperand &MO2 : MI.operands()) { 949 if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) { 950 FoundDef = true; 951 break; 952 } 953 } 954 if (FoundDef) 955 continue; 956 } 957 958 // Record this local VReg use. 959 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg); 960 for (; UI != VRegUses.end(); ++UI) { 961 if (UI->SU == &SU) 962 break; 963 } 964 if (UI == VRegUses.end()) 965 VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU)); 966 } 967 } 968 969 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 970 /// crossing a scheduling boundary. [begin, end) includes all instructions in 971 /// the region, including the boundary itself and single-instruction regions 972 /// that don't get scheduled. 973 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 974 MachineBasicBlock::iterator begin, 975 MachineBasicBlock::iterator end, 976 unsigned regioninstrs) 977 { 978 // ScheduleDAGMI initializes SchedImpl's per-region policy. 979 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 980 981 // For convenience remember the end of the liveness region. 982 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 983 984 SUPressureDiffs.clear(); 985 986 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 987 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks(); 988 989 assert((!ShouldTrackLaneMasks || ShouldTrackPressure) && 990 "ShouldTrackLaneMasks requires ShouldTrackPressure"); 991 } 992 993 // Setup the register pressure trackers for the top scheduled and bottom 994 // scheduled regions. 995 void ScheduleDAGMILive::initRegPressure() { 996 VRegUses.clear(); 997 VRegUses.setUniverse(MRI.getNumVirtRegs()); 998 for (SUnit &SU : SUnits) 999 collectVRegUses(SU); 1000 1001 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin, 1002 ShouldTrackLaneMasks, false); 1003 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1004 ShouldTrackLaneMasks, false); 1005 1006 // Close the RPTracker to finalize live ins. 1007 RPTracker.closeRegion(); 1008 1009 LLVM_DEBUG(RPTracker.dump()); 1010 1011 // Initialize the live ins and live outs. 1012 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 1013 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 1014 1015 // Close one end of the tracker so we can call 1016 // getMaxUpward/DownwardPressureDelta before advancing across any 1017 // instructions. This converts currently live regs into live ins/outs. 1018 TopRPTracker.closeTop(); 1019 BotRPTracker.closeBottom(); 1020 1021 BotRPTracker.initLiveThru(RPTracker); 1022 if (!BotRPTracker.getLiveThru().empty()) { 1023 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 1024 LLVM_DEBUG(dbgs() << "Live Thru: "; 1025 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 1026 }; 1027 1028 // For each live out vreg reduce the pressure change associated with other 1029 // uses of the same vreg below the live-out reaching def. 1030 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 1031 1032 // Account for liveness generated by the region boundary. 1033 if (LiveRegionEnd != RegionEnd) { 1034 SmallVector<RegisterMaskPair, 8> LiveUses; 1035 BotRPTracker.recede(&LiveUses); 1036 updatePressureDiffs(LiveUses); 1037 } 1038 1039 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; 1040 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1041 dbgs() << "Bottom Pressure:\n"; 1042 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);); 1043 1044 assert((BotRPTracker.getPos() == RegionEnd || 1045 (RegionEnd->isDebugInstr() && 1046 BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) && 1047 "Can't find the region bottom"); 1048 1049 // Cache the list of excess pressure sets in this region. This will also track 1050 // the max pressure in the scheduled code for these sets. 1051 RegionCriticalPSets.clear(); 1052 const std::vector<unsigned> &RegionPressure = 1053 RPTracker.getPressure().MaxSetPressure; 1054 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 1055 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 1056 if (RegionPressure[i] > Limit) { 1057 LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit 1058 << " Actual " << RegionPressure[i] << "\n"); 1059 RegionCriticalPSets.push_back(PressureChange(i)); 1060 } 1061 } 1062 LLVM_DEBUG(dbgs() << "Excess PSets: "; 1063 for (const PressureChange &RCPS 1064 : RegionCriticalPSets) dbgs() 1065 << TRI->getRegPressureSetName(RCPS.getPSet()) << " "; 1066 dbgs() << "\n"); 1067 } 1068 1069 void ScheduleDAGMILive:: 1070 updateScheduledPressure(const SUnit *SU, 1071 const std::vector<unsigned> &NewMaxPressure) { 1072 const PressureDiff &PDiff = getPressureDiff(SU); 1073 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 1074 for (const PressureChange &PC : PDiff) { 1075 if (!PC.isValid()) 1076 break; 1077 unsigned ID = PC.getPSet(); 1078 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 1079 ++CritIdx; 1080 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 1081 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 1082 && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max()) 1083 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 1084 } 1085 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 1086 if (NewMaxPressure[ID] >= Limit - 2) { 1087 LLVM_DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 1088 << NewMaxPressure[ID] 1089 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") 1090 << Limit << "(+ " << BotRPTracker.getLiveThru()[ID] 1091 << " livethru)\n"); 1092 } 1093 } 1094 } 1095 1096 /// Update the PressureDiff array for liveness after scheduling this 1097 /// instruction. 1098 void ScheduleDAGMILive::updatePressureDiffs( 1099 ArrayRef<RegisterMaskPair> LiveUses) { 1100 for (const RegisterMaskPair &P : LiveUses) { 1101 unsigned Reg = P.RegUnit; 1102 /// FIXME: Currently assuming single-use physregs. 1103 if (!Register::isVirtualRegister(Reg)) 1104 continue; 1105 1106 if (ShouldTrackLaneMasks) { 1107 // If the register has just become live then other uses won't change 1108 // this fact anymore => decrement pressure. 1109 // If the register has just become dead then other uses make it come 1110 // back to life => increment pressure. 1111 bool Decrement = P.LaneMask.any(); 1112 1113 for (const VReg2SUnit &V2SU 1114 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1115 SUnit &SU = *V2SU.SU; 1116 if (SU.isScheduled || &SU == &ExitSU) 1117 continue; 1118 1119 PressureDiff &PDiff = getPressureDiff(&SU); 1120 PDiff.addPressureChange(Reg, Decrement, &MRI); 1121 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") " 1122 << printReg(Reg, TRI) << ':' 1123 << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr(); 1124 dbgs() << " to "; PDiff.dump(*TRI);); 1125 } 1126 } else { 1127 assert(P.LaneMask.any()); 1128 LLVM_DEBUG(dbgs() << " LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n"); 1129 // This may be called before CurrentBottom has been initialized. However, 1130 // BotRPTracker must have a valid position. We want the value live into the 1131 // instruction or live out of the block, so ask for the previous 1132 // instruction's live-out. 1133 const LiveInterval &LI = LIS->getInterval(Reg); 1134 VNInfo *VNI; 1135 MachineBasicBlock::const_iterator I = 1136 nextIfDebug(BotRPTracker.getPos(), BB->end()); 1137 if (I == BB->end()) 1138 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1139 else { 1140 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I)); 1141 VNI = LRQ.valueIn(); 1142 } 1143 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 1144 assert(VNI && "No live value at use."); 1145 for (const VReg2SUnit &V2SU 1146 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1147 SUnit *SU = V2SU.SU; 1148 // If this use comes before the reaching def, it cannot be a last use, 1149 // so decrease its pressure change. 1150 if (!SU->isScheduled && SU != &ExitSU) { 1151 LiveQueryResult LRQ = 1152 LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1153 if (LRQ.valueIn() == VNI) { 1154 PressureDiff &PDiff = getPressureDiff(SU); 1155 PDiff.addPressureChange(Reg, true, &MRI); 1156 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 1157 << *SU->getInstr(); 1158 dbgs() << " to "; PDiff.dump(*TRI);); 1159 } 1160 } 1161 } 1162 } 1163 } 1164 } 1165 1166 void ScheduleDAGMILive::dump() const { 1167 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1168 if (EntrySU.getInstr() != nullptr) 1169 dumpNodeAll(EntrySU); 1170 for (const SUnit &SU : SUnits) { 1171 dumpNodeAll(SU); 1172 if (ShouldTrackPressure) { 1173 dbgs() << " Pressure Diff : "; 1174 getPressureDiff(&SU).dump(*TRI); 1175 } 1176 dbgs() << " Single Issue : "; 1177 if (SchedModel.mustBeginGroup(SU.getInstr()) && 1178 SchedModel.mustEndGroup(SU.getInstr())) 1179 dbgs() << "true;"; 1180 else 1181 dbgs() << "false;"; 1182 dbgs() << '\n'; 1183 } 1184 if (ExitSU.getInstr() != nullptr) 1185 dumpNodeAll(ExitSU); 1186 #endif 1187 } 1188 1189 /// schedule - Called back from MachineScheduler::runOnMachineFunction 1190 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1191 /// only includes instructions that have DAG nodes, not scheduling boundaries. 1192 /// 1193 /// This is a skeletal driver, with all the functionality pushed into helpers, 1194 /// so that it can be easily extended by experimental schedulers. Generally, 1195 /// implementing MachineSchedStrategy should be sufficient to implement a new 1196 /// scheduling algorithm. However, if a scheduler further subclasses 1197 /// ScheduleDAGMILive then it will want to override this virtual method in order 1198 /// to update any specialized state. 1199 void ScheduleDAGMILive::schedule() { 1200 LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); 1201 LLVM_DEBUG(SchedImpl->dumpPolicy()); 1202 buildDAGWithRegPressure(); 1203 1204 postprocessDAG(); 1205 1206 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1207 findRootsAndBiasEdges(TopRoots, BotRoots); 1208 1209 // Initialize the strategy before modifying the DAG. 1210 // This may initialize a DFSResult to be used for queue priority. 1211 SchedImpl->initialize(this); 1212 1213 LLVM_DEBUG(dump()); 1214 if (PrintDAGs) dump(); 1215 if (ViewMISchedDAGs) viewGraph(); 1216 1217 // Initialize ready queues now that the DAG and priority data are finalized. 1218 initQueues(TopRoots, BotRoots); 1219 1220 bool IsTopNode = false; 1221 while (true) { 1222 LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); 1223 SUnit *SU = SchedImpl->pickNode(IsTopNode); 1224 if (!SU) break; 1225 1226 assert(!SU->isScheduled && "Node already scheduled"); 1227 if (!checkSchedLimit()) 1228 break; 1229 1230 scheduleMI(SU, IsTopNode); 1231 1232 if (DFSResult) { 1233 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1234 if (!ScheduledTrees.test(SubtreeID)) { 1235 ScheduledTrees.set(SubtreeID); 1236 DFSResult->scheduleTree(SubtreeID); 1237 SchedImpl->scheduleTree(SubtreeID); 1238 } 1239 } 1240 1241 // Notify the scheduling strategy after updating the DAG. 1242 SchedImpl->schedNode(SU, IsTopNode); 1243 1244 updateQueues(SU, IsTopNode); 1245 } 1246 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1247 1248 placeDebugValues(); 1249 1250 LLVM_DEBUG({ 1251 dbgs() << "*** Final schedule for " 1252 << printMBBReference(*begin()->getParent()) << " ***\n"; 1253 dumpSchedule(); 1254 dbgs() << '\n'; 1255 }); 1256 } 1257 1258 /// Build the DAG and setup three register pressure trackers. 1259 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1260 if (!ShouldTrackPressure) { 1261 RPTracker.reset(); 1262 RegionCriticalPSets.clear(); 1263 buildSchedGraph(AA); 1264 return; 1265 } 1266 1267 // Initialize the register pressure tracker used by buildSchedGraph. 1268 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1269 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true); 1270 1271 // Account for liveness generate by the region boundary. 1272 if (LiveRegionEnd != RegionEnd) 1273 RPTracker.recede(); 1274 1275 // Build the DAG, and compute current register pressure. 1276 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks); 1277 1278 // Initialize top/bottom trackers after computing region pressure. 1279 initRegPressure(); 1280 } 1281 1282 void ScheduleDAGMILive::computeDFSResult() { 1283 if (!DFSResult) 1284 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1285 DFSResult->clear(); 1286 ScheduledTrees.clear(); 1287 DFSResult->resize(SUnits.size()); 1288 DFSResult->compute(SUnits); 1289 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1290 } 1291 1292 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1293 /// only provides the critical path for single block loops. To handle loops that 1294 /// span blocks, we could use the vreg path latencies provided by 1295 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1296 /// available for use in the scheduler. 1297 /// 1298 /// The cyclic path estimation identifies a def-use pair that crosses the back 1299 /// edge and considers the depth and height of the nodes. For example, consider 1300 /// the following instruction sequence where each instruction has unit latency 1301 /// and defines an epomymous virtual register: 1302 /// 1303 /// a->b(a,c)->c(b)->d(c)->exit 1304 /// 1305 /// The cyclic critical path is a two cycles: b->c->b 1306 /// The acyclic critical path is four cycles: a->b->c->d->exit 1307 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1308 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1309 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1310 /// LiveInDepth = depth(b) = len(a->b) = 1 1311 /// 1312 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1313 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1314 /// CyclicCriticalPath = min(2, 2) = 2 1315 /// 1316 /// This could be relevant to PostRA scheduling, but is currently implemented 1317 /// assuming LiveIntervals. 1318 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1319 // This only applies to single block loop. 1320 if (!BB->isSuccessor(BB)) 1321 return 0; 1322 1323 unsigned MaxCyclicLatency = 0; 1324 // Visit each live out vreg def to find def/use pairs that cross iterations. 1325 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) { 1326 unsigned Reg = P.RegUnit; 1327 if (!Register::isVirtualRegister(Reg)) 1328 continue; 1329 const LiveInterval &LI = LIS->getInterval(Reg); 1330 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1331 if (!DefVNI) 1332 continue; 1333 1334 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1335 const SUnit *DefSU = getSUnit(DefMI); 1336 if (!DefSU) 1337 continue; 1338 1339 unsigned LiveOutHeight = DefSU->getHeight(); 1340 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1341 // Visit all local users of the vreg def. 1342 for (const VReg2SUnit &V2SU 1343 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1344 SUnit *SU = V2SU.SU; 1345 if (SU == &ExitSU) 1346 continue; 1347 1348 // Only consider uses of the phi. 1349 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1350 if (!LRQ.valueIn()->isPHIDef()) 1351 continue; 1352 1353 // Assume that a path spanning two iterations is a cycle, which could 1354 // overestimate in strange cases. This allows cyclic latency to be 1355 // estimated as the minimum slack of the vreg's depth or height. 1356 unsigned CyclicLatency = 0; 1357 if (LiveOutDepth > SU->getDepth()) 1358 CyclicLatency = LiveOutDepth - SU->getDepth(); 1359 1360 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; 1361 if (LiveInHeight > LiveOutHeight) { 1362 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1363 CyclicLatency = LiveInHeight - LiveOutHeight; 1364 } else 1365 CyclicLatency = 0; 1366 1367 LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1368 << SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1369 if (CyclicLatency > MaxCyclicLatency) 1370 MaxCyclicLatency = CyclicLatency; 1371 } 1372 } 1373 LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1374 return MaxCyclicLatency; 1375 } 1376 1377 /// Release ExitSU predecessors and setup scheduler queues. Re-position 1378 /// the Top RP tracker in case the region beginning has changed. 1379 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots, 1380 ArrayRef<SUnit*> BotRoots) { 1381 ScheduleDAGMI::initQueues(TopRoots, BotRoots); 1382 if (ShouldTrackPressure) { 1383 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1384 TopRPTracker.setPos(CurrentTop); 1385 } 1386 } 1387 1388 /// Move an instruction and update register pressure. 1389 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1390 // Move the instruction to its new location in the instruction stream. 1391 MachineInstr *MI = SU->getInstr(); 1392 1393 if (IsTopNode) { 1394 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1395 if (&*CurrentTop == MI) 1396 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1397 else { 1398 moveInstruction(MI, CurrentTop); 1399 TopRPTracker.setPos(MI); 1400 } 1401 1402 if (ShouldTrackPressure) { 1403 // Update top scheduled pressure. 1404 RegisterOperands RegOpers; 1405 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1406 if (ShouldTrackLaneMasks) { 1407 // Adjust liveness and add missing dead+read-undef flags. 1408 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1409 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1410 } else { 1411 // Adjust for missing dead-def flags. 1412 RegOpers.detectDeadDefs(*MI, *LIS); 1413 } 1414 1415 TopRPTracker.advance(RegOpers); 1416 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1417 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure( 1418 TopRPTracker.getRegSetPressureAtPos(), TRI);); 1419 1420 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1421 } 1422 } else { 1423 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1424 MachineBasicBlock::iterator priorII = 1425 priorNonDebug(CurrentBottom, CurrentTop); 1426 if (&*priorII == MI) 1427 CurrentBottom = priorII; 1428 else { 1429 if (&*CurrentTop == MI) { 1430 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1431 TopRPTracker.setPos(CurrentTop); 1432 } 1433 moveInstruction(MI, CurrentBottom); 1434 CurrentBottom = MI; 1435 BotRPTracker.setPos(CurrentBottom); 1436 } 1437 if (ShouldTrackPressure) { 1438 RegisterOperands RegOpers; 1439 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1440 if (ShouldTrackLaneMasks) { 1441 // Adjust liveness and add missing dead+read-undef flags. 1442 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1443 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1444 } else { 1445 // Adjust for missing dead-def flags. 1446 RegOpers.detectDeadDefs(*MI, *LIS); 1447 } 1448 1449 if (BotRPTracker.getPos() != CurrentBottom) 1450 BotRPTracker.recedeSkipDebugValues(); 1451 SmallVector<RegisterMaskPair, 8> LiveUses; 1452 BotRPTracker.recede(RegOpers, &LiveUses); 1453 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1454 LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure( 1455 BotRPTracker.getRegSetPressureAtPos(), TRI);); 1456 1457 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1458 updatePressureDiffs(LiveUses); 1459 } 1460 } 1461 } 1462 1463 //===----------------------------------------------------------------------===// 1464 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores. 1465 //===----------------------------------------------------------------------===// 1466 1467 namespace { 1468 1469 /// Post-process the DAG to create cluster edges between neighboring 1470 /// loads or between neighboring stores. 1471 class BaseMemOpClusterMutation : public ScheduleDAGMutation { 1472 struct MemOpInfo { 1473 SUnit *SU; 1474 SmallVector<const MachineOperand *, 4> BaseOps; 1475 int64_t Offset; 1476 unsigned Width; 1477 1478 MemOpInfo(SUnit *SU, ArrayRef<const MachineOperand *> BaseOps, 1479 int64_t Offset, unsigned Width) 1480 : SU(SU), BaseOps(BaseOps.begin(), BaseOps.end()), Offset(Offset), 1481 Width(Width) {} 1482 1483 static bool Compare(const MachineOperand *const &A, 1484 const MachineOperand *const &B) { 1485 if (A->getType() != B->getType()) 1486 return A->getType() < B->getType(); 1487 if (A->isReg()) 1488 return A->getReg() < B->getReg(); 1489 if (A->isFI()) { 1490 const MachineFunction &MF = *A->getParent()->getParent()->getParent(); 1491 const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering(); 1492 bool StackGrowsDown = TFI.getStackGrowthDirection() == 1493 TargetFrameLowering::StackGrowsDown; 1494 return StackGrowsDown ? A->getIndex() > B->getIndex() 1495 : A->getIndex() < B->getIndex(); 1496 } 1497 1498 llvm_unreachable("MemOpClusterMutation only supports register or frame " 1499 "index bases."); 1500 } 1501 1502 bool operator<(const MemOpInfo &RHS) const { 1503 // FIXME: Don't compare everything twice. Maybe use C++20 three way 1504 // comparison instead when it's available. 1505 if (std::lexicographical_compare(BaseOps.begin(), BaseOps.end(), 1506 RHS.BaseOps.begin(), RHS.BaseOps.end(), 1507 Compare)) 1508 return true; 1509 if (std::lexicographical_compare(RHS.BaseOps.begin(), RHS.BaseOps.end(), 1510 BaseOps.begin(), BaseOps.end(), Compare)) 1511 return false; 1512 if (Offset != RHS.Offset) 1513 return Offset < RHS.Offset; 1514 return SU->NodeNum < RHS.SU->NodeNum; 1515 } 1516 }; 1517 1518 const TargetInstrInfo *TII; 1519 const TargetRegisterInfo *TRI; 1520 bool IsLoad; 1521 1522 public: 1523 BaseMemOpClusterMutation(const TargetInstrInfo *tii, 1524 const TargetRegisterInfo *tri, bool IsLoad) 1525 : TII(tii), TRI(tri), IsLoad(IsLoad) {} 1526 1527 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1528 1529 protected: 1530 void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGInstrs *DAG); 1531 }; 1532 1533 class StoreClusterMutation : public BaseMemOpClusterMutation { 1534 public: 1535 StoreClusterMutation(const TargetInstrInfo *tii, 1536 const TargetRegisterInfo *tri) 1537 : BaseMemOpClusterMutation(tii, tri, false) {} 1538 }; 1539 1540 class LoadClusterMutation : public BaseMemOpClusterMutation { 1541 public: 1542 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri) 1543 : BaseMemOpClusterMutation(tii, tri, true) {} 1544 }; 1545 1546 } // end anonymous namespace 1547 1548 namespace llvm { 1549 1550 std::unique_ptr<ScheduleDAGMutation> 1551 createLoadClusterDAGMutation(const TargetInstrInfo *TII, 1552 const TargetRegisterInfo *TRI) { 1553 return EnableMemOpCluster ? std::make_unique<LoadClusterMutation>(TII, TRI) 1554 : nullptr; 1555 } 1556 1557 std::unique_ptr<ScheduleDAGMutation> 1558 createStoreClusterDAGMutation(const TargetInstrInfo *TII, 1559 const TargetRegisterInfo *TRI) { 1560 return EnableMemOpCluster ? std::make_unique<StoreClusterMutation>(TII, TRI) 1561 : nullptr; 1562 } 1563 1564 } // end namespace llvm 1565 1566 void BaseMemOpClusterMutation::clusterNeighboringMemOps( 1567 ArrayRef<SUnit *> MemOps, ScheduleDAGInstrs *DAG) { 1568 SmallVector<MemOpInfo, 32> MemOpRecords; 1569 for (SUnit *SU : MemOps) { 1570 const MachineInstr &MI = *SU->getInstr(); 1571 SmallVector<const MachineOperand *, 4> BaseOps; 1572 int64_t Offset; 1573 bool OffsetIsScalable; 1574 unsigned Width; 1575 if (TII->getMemOperandsWithOffsetWidth(MI, BaseOps, Offset, 1576 OffsetIsScalable, Width, TRI)) 1577 MemOpRecords.push_back(MemOpInfo(SU, BaseOps, Offset, Width)); 1578 #ifndef NDEBUG 1579 for (auto *Op : BaseOps) 1580 assert(Op); 1581 #endif 1582 } 1583 if (MemOpRecords.size() < 2) 1584 return; 1585 1586 llvm::sort(MemOpRecords); 1587 1588 // At this point, `MemOpRecords` array must hold atleast two mem ops. Try to 1589 // cluster mem ops collected within `MemOpRecords` array. 1590 unsigned ClusterLength = 1; 1591 unsigned CurrentClusterBytes = MemOpRecords[0].Width; 1592 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) { 1593 // Decision to cluster mem ops is taken based on target dependent logic 1594 auto MemOpa = MemOpRecords[Idx]; 1595 auto MemOpb = MemOpRecords[Idx + 1]; 1596 ++ClusterLength; 1597 CurrentClusterBytes += MemOpb.Width; 1598 if (!TII->shouldClusterMemOps(MemOpa.BaseOps, MemOpb.BaseOps, ClusterLength, 1599 CurrentClusterBytes)) { 1600 // Current mem ops pair could not be clustered, reset cluster length, and 1601 // go to next pair 1602 ClusterLength = 1; 1603 CurrentClusterBytes = MemOpb.Width; 1604 continue; 1605 } 1606 1607 SUnit *SUa = MemOpa.SU; 1608 SUnit *SUb = MemOpb.SU; 1609 if (SUa->NodeNum > SUb->NodeNum) 1610 std::swap(SUa, SUb); 1611 1612 // FIXME: Is this check really required? 1613 if (!DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 1614 ClusterLength = 1; 1615 CurrentClusterBytes = MemOpb.Width; 1616 continue; 1617 } 1618 1619 LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU(" 1620 << SUb->NodeNum << ")\n"); 1621 1622 // Copy successor edges from SUa to SUb. Interleaving computation 1623 // dependent on SUa can prevent load combining due to register reuse. 1624 // Predecessor edges do not need to be copied from SUb to SUa since 1625 // nearby loads should have effectively the same inputs. 1626 for (const SDep &Succ : SUa->Succs) { 1627 if (Succ.getSUnit() == SUb) 1628 continue; 1629 LLVM_DEBUG(dbgs() << " Copy Succ SU(" << Succ.getSUnit()->NodeNum 1630 << ")\n"); 1631 DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial)); 1632 } 1633 } 1634 } 1635 1636 /// Callback from DAG postProcessing to create cluster edges for loads. 1637 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAG) { 1638 // Map DAG NodeNum to a set of dependent MemOps in store chain. 1639 DenseMap<unsigned, SmallVector<SUnit *, 4>> StoreChains; 1640 for (SUnit &SU : DAG->SUnits) { 1641 if ((IsLoad && !SU.getInstr()->mayLoad()) || 1642 (!IsLoad && !SU.getInstr()->mayStore())) 1643 continue; 1644 1645 unsigned ChainPredID = DAG->SUnits.size(); 1646 for (const SDep &Pred : SU.Preds) { 1647 if (Pred.isCtrl() && !Pred.isArtificial()) { 1648 ChainPredID = Pred.getSUnit()->NodeNum; 1649 break; 1650 } 1651 } 1652 // Insert the SU to corresponding store chain. 1653 auto &Chain = StoreChains.FindAndConstruct(ChainPredID).second; 1654 Chain.push_back(&SU); 1655 } 1656 1657 // Iterate over the store chains. 1658 for (auto &SCD : StoreChains) 1659 clusterNeighboringMemOps(SCD.second, DAG); 1660 } 1661 1662 //===----------------------------------------------------------------------===// 1663 // CopyConstrain - DAG post-processing to encourage copy elimination. 1664 //===----------------------------------------------------------------------===// 1665 1666 namespace { 1667 1668 /// Post-process the DAG to create weak edges from all uses of a copy to 1669 /// the one use that defines the copy's source vreg, most likely an induction 1670 /// variable increment. 1671 class CopyConstrain : public ScheduleDAGMutation { 1672 // Transient state. 1673 SlotIndex RegionBeginIdx; 1674 1675 // RegionEndIdx is the slot index of the last non-debug instruction in the 1676 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1677 SlotIndex RegionEndIdx; 1678 1679 public: 1680 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1681 1682 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1683 1684 protected: 1685 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1686 }; 1687 1688 } // end anonymous namespace 1689 1690 namespace llvm { 1691 1692 std::unique_ptr<ScheduleDAGMutation> 1693 createCopyConstrainDAGMutation(const TargetInstrInfo *TII, 1694 const TargetRegisterInfo *TRI) { 1695 return std::make_unique<CopyConstrain>(TII, TRI); 1696 } 1697 1698 } // end namespace llvm 1699 1700 /// constrainLocalCopy handles two possibilities: 1701 /// 1) Local src: 1702 /// I0: = dst 1703 /// I1: src = ... 1704 /// I2: = dst 1705 /// I3: dst = src (copy) 1706 /// (create pred->succ edges I0->I1, I2->I1) 1707 /// 1708 /// 2) Local copy: 1709 /// I0: dst = src (copy) 1710 /// I1: = dst 1711 /// I2: src = ... 1712 /// I3: = dst 1713 /// (create pred->succ edges I1->I2, I3->I2) 1714 /// 1715 /// Although the MachineScheduler is currently constrained to single blocks, 1716 /// this algorithm should handle extended blocks. An EBB is a set of 1717 /// contiguously numbered blocks such that the previous block in the EBB is 1718 /// always the single predecessor. 1719 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1720 LiveIntervals *LIS = DAG->getLIS(); 1721 MachineInstr *Copy = CopySU->getInstr(); 1722 1723 // Check for pure vreg copies. 1724 const MachineOperand &SrcOp = Copy->getOperand(1); 1725 Register SrcReg = SrcOp.getReg(); 1726 if (!Register::isVirtualRegister(SrcReg) || !SrcOp.readsReg()) 1727 return; 1728 1729 const MachineOperand &DstOp = Copy->getOperand(0); 1730 Register DstReg = DstOp.getReg(); 1731 if (!Register::isVirtualRegister(DstReg) || DstOp.isDead()) 1732 return; 1733 1734 // Check if either the dest or source is local. If it's live across a back 1735 // edge, it's not local. Note that if both vregs are live across the back 1736 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1737 // If both the copy's source and dest are local live intervals, then we 1738 // should treat the dest as the global for the purpose of adding 1739 // constraints. This adds edges from source's other uses to the copy. 1740 unsigned LocalReg = SrcReg; 1741 unsigned GlobalReg = DstReg; 1742 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1743 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1744 LocalReg = DstReg; 1745 GlobalReg = SrcReg; 1746 LocalLI = &LIS->getInterval(LocalReg); 1747 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1748 return; 1749 } 1750 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1751 1752 // Find the global segment after the start of the local LI. 1753 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1754 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1755 // local live range. We could create edges from other global uses to the local 1756 // start, but the coalescer should have already eliminated these cases, so 1757 // don't bother dealing with it. 1758 if (GlobalSegment == GlobalLI->end()) 1759 return; 1760 1761 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1762 // returned the next global segment. But if GlobalSegment overlaps with 1763 // LocalLI->start, then advance to the next segment. If a hole in GlobalLI 1764 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1765 if (GlobalSegment->contains(LocalLI->beginIndex())) 1766 ++GlobalSegment; 1767 1768 if (GlobalSegment == GlobalLI->end()) 1769 return; 1770 1771 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1772 if (GlobalSegment != GlobalLI->begin()) { 1773 // Two address defs have no hole. 1774 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1775 GlobalSegment->start)) { 1776 return; 1777 } 1778 // If the prior global segment may be defined by the same two-address 1779 // instruction that also defines LocalLI, then can't make a hole here. 1780 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1781 LocalLI->beginIndex())) { 1782 return; 1783 } 1784 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1785 // it would be a disconnected component in the live range. 1786 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1787 "Disconnected LRG within the scheduling region."); 1788 } 1789 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1790 if (!GlobalDef) 1791 return; 1792 1793 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1794 if (!GlobalSU) 1795 return; 1796 1797 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1798 // constraining the uses of the last local def to precede GlobalDef. 1799 SmallVector<SUnit*,8> LocalUses; 1800 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1801 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1802 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1803 for (const SDep &Succ : LastLocalSU->Succs) { 1804 if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg) 1805 continue; 1806 if (Succ.getSUnit() == GlobalSU) 1807 continue; 1808 if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit())) 1809 return; 1810 LocalUses.push_back(Succ.getSUnit()); 1811 } 1812 // Open the top of the GlobalLI hole by constraining any earlier global uses 1813 // to precede the start of LocalLI. 1814 SmallVector<SUnit*,8> GlobalUses; 1815 MachineInstr *FirstLocalDef = 1816 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1817 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1818 for (const SDep &Pred : GlobalSU->Preds) { 1819 if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg) 1820 continue; 1821 if (Pred.getSUnit() == FirstLocalSU) 1822 continue; 1823 if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit())) 1824 return; 1825 GlobalUses.push_back(Pred.getSUnit()); 1826 } 1827 LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1828 // Add the weak edges. 1829 for (SmallVectorImpl<SUnit*>::const_iterator 1830 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1831 LLVM_DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1832 << GlobalSU->NodeNum << ")\n"); 1833 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1834 } 1835 for (SmallVectorImpl<SUnit*>::const_iterator 1836 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1837 LLVM_DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1838 << FirstLocalSU->NodeNum << ")\n"); 1839 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1840 } 1841 } 1842 1843 /// Callback from DAG postProcessing to create weak edges to encourage 1844 /// copy elimination. 1845 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) { 1846 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1847 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1848 1849 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1850 if (FirstPos == DAG->end()) 1851 return; 1852 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos); 1853 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1854 *priorNonDebug(DAG->end(), DAG->begin())); 1855 1856 for (SUnit &SU : DAG->SUnits) { 1857 if (!SU.getInstr()->isCopy()) 1858 continue; 1859 1860 constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG)); 1861 } 1862 } 1863 1864 //===----------------------------------------------------------------------===// 1865 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1866 // and possibly other custom schedulers. 1867 //===----------------------------------------------------------------------===// 1868 1869 static const unsigned InvalidCycle = ~0U; 1870 1871 SchedBoundary::~SchedBoundary() { delete HazardRec; } 1872 1873 /// Given a Count of resource usage and a Latency value, return true if a 1874 /// SchedBoundary becomes resource limited. 1875 /// If we are checking after scheduling a node, we should return true when 1876 /// we just reach the resource limit. 1877 static bool checkResourceLimit(unsigned LFactor, unsigned Count, 1878 unsigned Latency, bool AfterSchedNode) { 1879 int ResCntFactor = (int)(Count - (Latency * LFactor)); 1880 if (AfterSchedNode) 1881 return ResCntFactor >= (int)LFactor; 1882 else 1883 return ResCntFactor > (int)LFactor; 1884 } 1885 1886 void SchedBoundary::reset() { 1887 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1888 // Destroying and reconstructing it is very expensive though. So keep 1889 // invalid, placeholder HazardRecs. 1890 if (HazardRec && HazardRec->isEnabled()) { 1891 delete HazardRec; 1892 HazardRec = nullptr; 1893 } 1894 Available.clear(); 1895 Pending.clear(); 1896 CheckPending = false; 1897 CurrCycle = 0; 1898 CurrMOps = 0; 1899 MinReadyCycle = std::numeric_limits<unsigned>::max(); 1900 ExpectedLatency = 0; 1901 DependentLatency = 0; 1902 RetiredMOps = 0; 1903 MaxExecutedResCount = 0; 1904 ZoneCritResIdx = 0; 1905 IsResourceLimited = false; 1906 ReservedCycles.clear(); 1907 ReservedCyclesIndex.clear(); 1908 #ifndef NDEBUG 1909 // Track the maximum number of stall cycles that could arise either from the 1910 // latency of a DAG edge or the number of cycles that a processor resource is 1911 // reserved (SchedBoundary::ReservedCycles). 1912 MaxObservedStall = 0; 1913 #endif 1914 // Reserve a zero-count for invalid CritResIdx. 1915 ExecutedResCounts.resize(1); 1916 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1917 } 1918 1919 void SchedRemainder:: 1920 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1921 reset(); 1922 if (!SchedModel->hasInstrSchedModel()) 1923 return; 1924 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1925 for (SUnit &SU : DAG->SUnits) { 1926 const MCSchedClassDesc *SC = DAG->getSchedClass(&SU); 1927 RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC) 1928 * SchedModel->getMicroOpFactor(); 1929 for (TargetSchedModel::ProcResIter 1930 PI = SchedModel->getWriteProcResBegin(SC), 1931 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1932 unsigned PIdx = PI->ProcResourceIdx; 1933 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1934 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1935 } 1936 } 1937 } 1938 1939 void SchedBoundary:: 1940 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1941 reset(); 1942 DAG = dag; 1943 SchedModel = smodel; 1944 Rem = rem; 1945 if (SchedModel->hasInstrSchedModel()) { 1946 unsigned ResourceCount = SchedModel->getNumProcResourceKinds(); 1947 ReservedCyclesIndex.resize(ResourceCount); 1948 ExecutedResCounts.resize(ResourceCount); 1949 unsigned NumUnits = 0; 1950 1951 for (unsigned i = 0; i < ResourceCount; ++i) { 1952 ReservedCyclesIndex[i] = NumUnits; 1953 NumUnits += SchedModel->getProcResource(i)->NumUnits; 1954 } 1955 1956 ReservedCycles.resize(NumUnits, InvalidCycle); 1957 } 1958 } 1959 1960 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 1961 /// these "soft stalls" differently than the hard stall cycles based on CPU 1962 /// resources and computed by checkHazard(). A fully in-order model 1963 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 1964 /// available for scheduling until they are ready. However, a weaker in-order 1965 /// model may use this for heuristics. For example, if a processor has in-order 1966 /// behavior when reading certain resources, this may come into play. 1967 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 1968 if (!SU->isUnbuffered) 1969 return 0; 1970 1971 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1972 if (ReadyCycle > CurrCycle) 1973 return ReadyCycle - CurrCycle; 1974 return 0; 1975 } 1976 1977 /// Compute the next cycle at which the given processor resource unit 1978 /// can be scheduled. 1979 unsigned SchedBoundary::getNextResourceCycleByInstance(unsigned InstanceIdx, 1980 unsigned Cycles) { 1981 unsigned NextUnreserved = ReservedCycles[InstanceIdx]; 1982 // If this resource has never been used, always return cycle zero. 1983 if (NextUnreserved == InvalidCycle) 1984 return 0; 1985 // For bottom-up scheduling add the cycles needed for the current operation. 1986 if (!isTop()) 1987 NextUnreserved += Cycles; 1988 return NextUnreserved; 1989 } 1990 1991 /// Compute the next cycle at which the given processor resource can be 1992 /// scheduled. Returns the next cycle and the index of the processor resource 1993 /// instance in the reserved cycles vector. 1994 std::pair<unsigned, unsigned> 1995 SchedBoundary::getNextResourceCycle(unsigned PIdx, unsigned Cycles) { 1996 unsigned MinNextUnreserved = InvalidCycle; 1997 unsigned InstanceIdx = 0; 1998 unsigned StartIndex = ReservedCyclesIndex[PIdx]; 1999 unsigned NumberOfInstances = SchedModel->getProcResource(PIdx)->NumUnits; 2000 assert(NumberOfInstances > 0 && 2001 "Cannot have zero instances of a ProcResource"); 2002 2003 for (unsigned I = StartIndex, End = StartIndex + NumberOfInstances; I < End; 2004 ++I) { 2005 unsigned NextUnreserved = getNextResourceCycleByInstance(I, Cycles); 2006 if (MinNextUnreserved > NextUnreserved) { 2007 InstanceIdx = I; 2008 MinNextUnreserved = NextUnreserved; 2009 } 2010 } 2011 return std::make_pair(MinNextUnreserved, InstanceIdx); 2012 } 2013 2014 /// Does this SU have a hazard within the current instruction group. 2015 /// 2016 /// The scheduler supports two modes of hazard recognition. The first is the 2017 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 2018 /// supports highly complicated in-order reservation tables 2019 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic. 2020 /// 2021 /// The second is a streamlined mechanism that checks for hazards based on 2022 /// simple counters that the scheduler itself maintains. It explicitly checks 2023 /// for instruction dispatch limitations, including the number of micro-ops that 2024 /// can dispatch per cycle. 2025 /// 2026 /// TODO: Also check whether the SU must start a new group. 2027 bool SchedBoundary::checkHazard(SUnit *SU) { 2028 if (HazardRec->isEnabled() 2029 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 2030 return true; 2031 } 2032 2033 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 2034 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 2035 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 2036 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 2037 return true; 2038 } 2039 2040 if (CurrMOps > 0 && 2041 ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) || 2042 (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) { 2043 LLVM_DEBUG(dbgs() << " hazard: SU(" << SU->NodeNum << ") must " 2044 << (isTop() ? "begin" : "end") << " group\n"); 2045 return true; 2046 } 2047 2048 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 2049 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2050 for (const MCWriteProcResEntry &PE : 2051 make_range(SchedModel->getWriteProcResBegin(SC), 2052 SchedModel->getWriteProcResEnd(SC))) { 2053 unsigned ResIdx = PE.ProcResourceIdx; 2054 unsigned Cycles = PE.Cycles; 2055 unsigned NRCycle, InstanceIdx; 2056 std::tie(NRCycle, InstanceIdx) = getNextResourceCycle(ResIdx, Cycles); 2057 if (NRCycle > CurrCycle) { 2058 #ifndef NDEBUG 2059 MaxObservedStall = std::max(Cycles, MaxObservedStall); 2060 #endif 2061 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 2062 << SchedModel->getResourceName(ResIdx) 2063 << '[' << InstanceIdx - ReservedCyclesIndex[ResIdx] << ']' 2064 << "=" << NRCycle << "c\n"); 2065 return true; 2066 } 2067 } 2068 } 2069 return false; 2070 } 2071 2072 // Find the unscheduled node in ReadySUs with the highest latency. 2073 unsigned SchedBoundary:: 2074 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 2075 SUnit *LateSU = nullptr; 2076 unsigned RemLatency = 0; 2077 for (SUnit *SU : ReadySUs) { 2078 unsigned L = getUnscheduledLatency(SU); 2079 if (L > RemLatency) { 2080 RemLatency = L; 2081 LateSU = SU; 2082 } 2083 } 2084 if (LateSU) { 2085 LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 2086 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 2087 } 2088 return RemLatency; 2089 } 2090 2091 // Count resources in this zone and the remaining unscheduled 2092 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 2093 // resource index, or zero if the zone is issue limited. 2094 unsigned SchedBoundary:: 2095 getOtherResourceCount(unsigned &OtherCritIdx) { 2096 OtherCritIdx = 0; 2097 if (!SchedModel->hasInstrSchedModel()) 2098 return 0; 2099 2100 unsigned OtherCritCount = Rem->RemIssueCount 2101 + (RetiredMOps * SchedModel->getMicroOpFactor()); 2102 LLVM_DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 2103 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 2104 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 2105 PIdx != PEnd; ++PIdx) { 2106 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 2107 if (OtherCount > OtherCritCount) { 2108 OtherCritCount = OtherCount; 2109 OtherCritIdx = PIdx; 2110 } 2111 } 2112 if (OtherCritIdx) { 2113 LLVM_DEBUG( 2114 dbgs() << " " << Available.getName() << " + Remain CritRes: " 2115 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 2116 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 2117 } 2118 return OtherCritCount; 2119 } 2120 2121 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle, bool InPQueue, 2122 unsigned Idx) { 2123 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 2124 2125 #ifndef NDEBUG 2126 // ReadyCycle was been bumped up to the CurrCycle when this node was 2127 // scheduled, but CurrCycle may have been eagerly advanced immediately after 2128 // scheduling, so may now be greater than ReadyCycle. 2129 if (ReadyCycle > CurrCycle) 2130 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 2131 #endif 2132 2133 if (ReadyCycle < MinReadyCycle) 2134 MinReadyCycle = ReadyCycle; 2135 2136 // Check for interlocks first. For the purpose of other heuristics, an 2137 // instruction that cannot issue appears as if it's not in the ReadyQueue. 2138 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2139 bool HazardDetected = (!IsBuffered && ReadyCycle > CurrCycle) || 2140 checkHazard(SU) || (Available.size() >= ReadyListLimit); 2141 2142 if (!HazardDetected) { 2143 Available.push(SU); 2144 2145 if (InPQueue) 2146 Pending.remove(Pending.begin() + Idx); 2147 return; 2148 } 2149 2150 if (!InPQueue) 2151 Pending.push(SU); 2152 } 2153 2154 /// Move the boundary of scheduled code by one cycle. 2155 void SchedBoundary::bumpCycle(unsigned NextCycle) { 2156 if (SchedModel->getMicroOpBufferSize() == 0) { 2157 assert(MinReadyCycle < std::numeric_limits<unsigned>::max() && 2158 "MinReadyCycle uninitialized"); 2159 if (MinReadyCycle > NextCycle) 2160 NextCycle = MinReadyCycle; 2161 } 2162 // Update the current micro-ops, which will issue in the next cycle. 2163 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 2164 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 2165 2166 // Decrement DependentLatency based on the next cycle. 2167 if ((NextCycle - CurrCycle) > DependentLatency) 2168 DependentLatency = 0; 2169 else 2170 DependentLatency -= (NextCycle - CurrCycle); 2171 2172 if (!HazardRec->isEnabled()) { 2173 // Bypass HazardRec virtual calls. 2174 CurrCycle = NextCycle; 2175 } else { 2176 // Bypass getHazardType calls in case of long latency. 2177 for (; CurrCycle != NextCycle; ++CurrCycle) { 2178 if (isTop()) 2179 HazardRec->AdvanceCycle(); 2180 else 2181 HazardRec->RecedeCycle(); 2182 } 2183 } 2184 CheckPending = true; 2185 IsResourceLimited = 2186 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2187 getScheduledLatency(), true); 2188 2189 LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() 2190 << '\n'); 2191 } 2192 2193 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 2194 ExecutedResCounts[PIdx] += Count; 2195 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 2196 MaxExecutedResCount = ExecutedResCounts[PIdx]; 2197 } 2198 2199 /// Add the given processor resource to this scheduled zone. 2200 /// 2201 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 2202 /// during which this resource is consumed. 2203 /// 2204 /// \return the next cycle at which the instruction may execute without 2205 /// oversubscribing resources. 2206 unsigned SchedBoundary:: 2207 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) { 2208 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2209 unsigned Count = Factor * Cycles; 2210 LLVM_DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) << " +" 2211 << Cycles << "x" << Factor << "u\n"); 2212 2213 // Update Executed resources counts. 2214 incExecutedResources(PIdx, Count); 2215 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 2216 Rem->RemainingCounts[PIdx] -= Count; 2217 2218 // Check if this resource exceeds the current critical resource. If so, it 2219 // becomes the critical resource. 2220 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 2221 ZoneCritResIdx = PIdx; 2222 LLVM_DEBUG(dbgs() << " *** Critical resource " 2223 << SchedModel->getResourceName(PIdx) << ": " 2224 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() 2225 << "c\n"); 2226 } 2227 // For reserved resources, record the highest cycle using the resource. 2228 unsigned NextAvailable, InstanceIdx; 2229 std::tie(NextAvailable, InstanceIdx) = getNextResourceCycle(PIdx, Cycles); 2230 if (NextAvailable > CurrCycle) { 2231 LLVM_DEBUG(dbgs() << " Resource conflict: " 2232 << SchedModel->getResourceName(PIdx) 2233 << '[' << InstanceIdx - ReservedCyclesIndex[PIdx] << ']' 2234 << " reserved until @" << NextAvailable << "\n"); 2235 } 2236 return NextAvailable; 2237 } 2238 2239 /// Move the boundary of scheduled code by one SUnit. 2240 void SchedBoundary::bumpNode(SUnit *SU) { 2241 // Update the reservation table. 2242 if (HazardRec->isEnabled()) { 2243 if (!isTop() && SU->isCall) { 2244 // Calls are scheduled with their preceding instructions. For bottom-up 2245 // scheduling, clear the pipeline state before emitting. 2246 HazardRec->Reset(); 2247 } 2248 HazardRec->EmitInstruction(SU); 2249 // Scheduling an instruction may have made pending instructions available. 2250 CheckPending = true; 2251 } 2252 // checkHazard should prevent scheduling multiple instructions per cycle that 2253 // exceed the issue width. 2254 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2255 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 2256 assert( 2257 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 2258 "Cannot schedule this instruction's MicroOps in the current cycle."); 2259 2260 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2261 LLVM_DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 2262 2263 unsigned NextCycle = CurrCycle; 2264 switch (SchedModel->getMicroOpBufferSize()) { 2265 case 0: 2266 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 2267 break; 2268 case 1: 2269 if (ReadyCycle > NextCycle) { 2270 NextCycle = ReadyCycle; 2271 LLVM_DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 2272 } 2273 break; 2274 default: 2275 // We don't currently model the OOO reorder buffer, so consider all 2276 // scheduled MOps to be "retired". We do loosely model in-order resource 2277 // latency. If this instruction uses an in-order resource, account for any 2278 // likely stall cycles. 2279 if (SU->isUnbuffered && ReadyCycle > NextCycle) 2280 NextCycle = ReadyCycle; 2281 break; 2282 } 2283 RetiredMOps += IncMOps; 2284 2285 // Update resource counts and critical resource. 2286 if (SchedModel->hasInstrSchedModel()) { 2287 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 2288 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 2289 Rem->RemIssueCount -= DecRemIssue; 2290 if (ZoneCritResIdx) { 2291 // Scale scheduled micro-ops for comparing with the critical resource. 2292 unsigned ScaledMOps = 2293 RetiredMOps * SchedModel->getMicroOpFactor(); 2294 2295 // If scaled micro-ops are now more than the previous critical resource by 2296 // a full cycle, then micro-ops issue becomes critical. 2297 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 2298 >= (int)SchedModel->getLatencyFactor()) { 2299 ZoneCritResIdx = 0; 2300 LLVM_DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2301 << ScaledMOps / SchedModel->getLatencyFactor() 2302 << "c\n"); 2303 } 2304 } 2305 for (TargetSchedModel::ProcResIter 2306 PI = SchedModel->getWriteProcResBegin(SC), 2307 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2308 unsigned RCycle = 2309 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle); 2310 if (RCycle > NextCycle) 2311 NextCycle = RCycle; 2312 } 2313 if (SU->hasReservedResource) { 2314 // For reserved resources, record the highest cycle using the resource. 2315 // For top-down scheduling, this is the cycle in which we schedule this 2316 // instruction plus the number of cycles the operations reserves the 2317 // resource. For bottom-up is it simply the instruction's cycle. 2318 for (TargetSchedModel::ProcResIter 2319 PI = SchedModel->getWriteProcResBegin(SC), 2320 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2321 unsigned PIdx = PI->ProcResourceIdx; 2322 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2323 unsigned ReservedUntil, InstanceIdx; 2324 std::tie(ReservedUntil, InstanceIdx) = getNextResourceCycle(PIdx, 0); 2325 if (isTop()) { 2326 ReservedCycles[InstanceIdx] = 2327 std::max(ReservedUntil, NextCycle + PI->Cycles); 2328 } else 2329 ReservedCycles[InstanceIdx] = NextCycle; 2330 } 2331 } 2332 } 2333 } 2334 // Update ExpectedLatency and DependentLatency. 2335 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2336 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2337 if (SU->getDepth() > TopLatency) { 2338 TopLatency = SU->getDepth(); 2339 LLVM_DEBUG(dbgs() << " " << Available.getName() << " TopLatency SU(" 2340 << SU->NodeNum << ") " << TopLatency << "c\n"); 2341 } 2342 if (SU->getHeight() > BotLatency) { 2343 BotLatency = SU->getHeight(); 2344 LLVM_DEBUG(dbgs() << " " << Available.getName() << " BotLatency SU(" 2345 << SU->NodeNum << ") " << BotLatency << "c\n"); 2346 } 2347 // If we stall for any reason, bump the cycle. 2348 if (NextCycle > CurrCycle) 2349 bumpCycle(NextCycle); 2350 else 2351 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2352 // resource limited. If a stall occurred, bumpCycle does this. 2353 IsResourceLimited = 2354 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2355 getScheduledLatency(), true); 2356 2357 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2358 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2359 // one cycle. Since we commonly reach the max MOps here, opportunistically 2360 // bump the cycle to avoid uselessly checking everything in the readyQ. 2361 CurrMOps += IncMOps; 2362 2363 // Bump the cycle count for issue group constraints. 2364 // This must be done after NextCycle has been adjust for all other stalls. 2365 // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set 2366 // currCycle to X. 2367 if ((isTop() && SchedModel->mustEndGroup(SU->getInstr())) || 2368 (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) { 2369 LLVM_DEBUG(dbgs() << " Bump cycle to " << (isTop() ? "end" : "begin") 2370 << " group\n"); 2371 bumpCycle(++NextCycle); 2372 } 2373 2374 while (CurrMOps >= SchedModel->getIssueWidth()) { 2375 LLVM_DEBUG(dbgs() << " *** Max MOps " << CurrMOps << " at cycle " 2376 << CurrCycle << '\n'); 2377 bumpCycle(++NextCycle); 2378 } 2379 LLVM_DEBUG(dumpScheduledState()); 2380 } 2381 2382 /// Release pending ready nodes in to the available queue. This makes them 2383 /// visible to heuristics. 2384 void SchedBoundary::releasePending() { 2385 // If the available queue is empty, it is safe to reset MinReadyCycle. 2386 if (Available.empty()) 2387 MinReadyCycle = std::numeric_limits<unsigned>::max(); 2388 2389 // Check to see if any of the pending instructions are ready to issue. If 2390 // so, add them to the available queue. 2391 for (unsigned I = 0, E = Pending.size(); I < E; ++I) { 2392 SUnit *SU = *(Pending.begin() + I); 2393 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2394 2395 if (ReadyCycle < MinReadyCycle) 2396 MinReadyCycle = ReadyCycle; 2397 2398 if (Available.size() >= ReadyListLimit) 2399 break; 2400 2401 releaseNode(SU, ReadyCycle, true, I); 2402 if (E != Pending.size()) { 2403 --I; 2404 --E; 2405 } 2406 } 2407 CheckPending = false; 2408 } 2409 2410 /// Remove SU from the ready set for this boundary. 2411 void SchedBoundary::removeReady(SUnit *SU) { 2412 if (Available.isInQueue(SU)) 2413 Available.remove(Available.find(SU)); 2414 else { 2415 assert(Pending.isInQueue(SU) && "bad ready count"); 2416 Pending.remove(Pending.find(SU)); 2417 } 2418 } 2419 2420 /// If this queue only has one ready candidate, return it. As a side effect, 2421 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2422 /// one node is ready. If multiple instructions are ready, return NULL. 2423 SUnit *SchedBoundary::pickOnlyChoice() { 2424 if (CheckPending) 2425 releasePending(); 2426 2427 // Defer any ready instrs that now have a hazard. 2428 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2429 if (checkHazard(*I)) { 2430 Pending.push(*I); 2431 I = Available.remove(I); 2432 continue; 2433 } 2434 ++I; 2435 } 2436 for (unsigned i = 0; Available.empty(); ++i) { 2437 // FIXME: Re-enable assert once PR20057 is resolved. 2438 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2439 // "permanent hazard"); 2440 (void)i; 2441 bumpCycle(CurrCycle + 1); 2442 releasePending(); 2443 } 2444 2445 LLVM_DEBUG(Pending.dump()); 2446 LLVM_DEBUG(Available.dump()); 2447 2448 if (Available.size() == 1) 2449 return *Available.begin(); 2450 return nullptr; 2451 } 2452 2453 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2454 // This is useful information to dump after bumpNode. 2455 // Note that the Queue contents are more useful before pickNodeFromQueue. 2456 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const { 2457 unsigned ResFactor; 2458 unsigned ResCount; 2459 if (ZoneCritResIdx) { 2460 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2461 ResCount = getResourceCount(ZoneCritResIdx); 2462 } else { 2463 ResFactor = SchedModel->getMicroOpFactor(); 2464 ResCount = RetiredMOps * ResFactor; 2465 } 2466 unsigned LFactor = SchedModel->getLatencyFactor(); 2467 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2468 << " Retired: " << RetiredMOps; 2469 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2470 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2471 << ResCount / ResFactor << " " 2472 << SchedModel->getResourceName(ZoneCritResIdx) 2473 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2474 << (IsResourceLimited ? " - Resource" : " - Latency") 2475 << " limited.\n"; 2476 } 2477 #endif 2478 2479 //===----------------------------------------------------------------------===// 2480 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2481 //===----------------------------------------------------------------------===// 2482 2483 void GenericSchedulerBase::SchedCandidate:: 2484 initResourceDelta(const ScheduleDAGMI *DAG, 2485 const TargetSchedModel *SchedModel) { 2486 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2487 return; 2488 2489 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2490 for (TargetSchedModel::ProcResIter 2491 PI = SchedModel->getWriteProcResBegin(SC), 2492 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2493 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2494 ResDelta.CritResources += PI->Cycles; 2495 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2496 ResDelta.DemandedResources += PI->Cycles; 2497 } 2498 } 2499 2500 /// Compute remaining latency. We need this both to determine whether the 2501 /// overall schedule has become latency-limited and whether the instructions 2502 /// outside this zone are resource or latency limited. 2503 /// 2504 /// The "dependent" latency is updated incrementally during scheduling as the 2505 /// max height/depth of scheduled nodes minus the cycles since it was 2506 /// scheduled: 2507 /// DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2508 /// 2509 /// The "independent" latency is the max ready queue depth: 2510 /// ILat = max N.depth for N in Available|Pending 2511 /// 2512 /// RemainingLatency is the greater of independent and dependent latency. 2513 /// 2514 /// These computations are expensive, especially in DAGs with many edges, so 2515 /// only do them if necessary. 2516 static unsigned computeRemLatency(SchedBoundary &CurrZone) { 2517 unsigned RemLatency = CurrZone.getDependentLatency(); 2518 RemLatency = std::max(RemLatency, 2519 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2520 RemLatency = std::max(RemLatency, 2521 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2522 return RemLatency; 2523 } 2524 2525 /// Returns true if the current cycle plus remaning latency is greater than 2526 /// the critical path in the scheduling region. 2527 bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy, 2528 SchedBoundary &CurrZone, 2529 bool ComputeRemLatency, 2530 unsigned &RemLatency) const { 2531 // The current cycle is already greater than the critical path, so we are 2532 // already latency limited and don't need to compute the remaining latency. 2533 if (CurrZone.getCurrCycle() > Rem.CriticalPath) 2534 return true; 2535 2536 // If we haven't scheduled anything yet, then we aren't latency limited. 2537 if (CurrZone.getCurrCycle() == 0) 2538 return false; 2539 2540 if (ComputeRemLatency) 2541 RemLatency = computeRemLatency(CurrZone); 2542 2543 return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath; 2544 } 2545 2546 /// Set the CandPolicy given a scheduling zone given the current resources and 2547 /// latencies inside and outside the zone. 2548 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA, 2549 SchedBoundary &CurrZone, 2550 SchedBoundary *OtherZone) { 2551 // Apply preemptive heuristics based on the total latency and resources 2552 // inside and outside this zone. Potential stalls should be considered before 2553 // following this policy. 2554 2555 // Compute the critical resource outside the zone. 2556 unsigned OtherCritIdx = 0; 2557 unsigned OtherCount = 2558 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2559 2560 bool OtherResLimited = false; 2561 unsigned RemLatency = 0; 2562 bool RemLatencyComputed = false; 2563 if (SchedModel->hasInstrSchedModel() && OtherCount != 0) { 2564 RemLatency = computeRemLatency(CurrZone); 2565 RemLatencyComputed = true; 2566 OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(), 2567 OtherCount, RemLatency, false); 2568 } 2569 2570 // Schedule aggressively for latency in PostRA mode. We don't check for 2571 // acyclic latency during PostRA, and highly out-of-order processors will 2572 // skip PostRA scheduling. 2573 if (!OtherResLimited && 2574 (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed, 2575 RemLatency))) { 2576 Policy.ReduceLatency |= true; 2577 LLVM_DEBUG(dbgs() << " " << CurrZone.Available.getName() 2578 << " RemainingLatency " << RemLatency << " + " 2579 << CurrZone.getCurrCycle() << "c > CritPath " 2580 << Rem.CriticalPath << "\n"); 2581 } 2582 // If the same resource is limiting inside and outside the zone, do nothing. 2583 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2584 return; 2585 2586 LLVM_DEBUG(if (CurrZone.isResourceLimited()) { 2587 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2588 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n"; 2589 } if (OtherResLimited) dbgs() 2590 << " RemainingLimit: " 2591 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2592 if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs() 2593 << " Latency limited both directions.\n"); 2594 2595 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2596 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2597 2598 if (OtherResLimited) 2599 Policy.DemandResIdx = OtherCritIdx; 2600 } 2601 2602 #ifndef NDEBUG 2603 const char *GenericSchedulerBase::getReasonStr( 2604 GenericSchedulerBase::CandReason Reason) { 2605 switch (Reason) { 2606 case NoCand: return "NOCAND "; 2607 case Only1: return "ONLY1 "; 2608 case PhysReg: return "PHYS-REG "; 2609 case RegExcess: return "REG-EXCESS"; 2610 case RegCritical: return "REG-CRIT "; 2611 case Stall: return "STALL "; 2612 case Cluster: return "CLUSTER "; 2613 case Weak: return "WEAK "; 2614 case RegMax: return "REG-MAX "; 2615 case ResourceReduce: return "RES-REDUCE"; 2616 case ResourceDemand: return "RES-DEMAND"; 2617 case TopDepthReduce: return "TOP-DEPTH "; 2618 case TopPathReduce: return "TOP-PATH "; 2619 case BotHeightReduce:return "BOT-HEIGHT"; 2620 case BotPathReduce: return "BOT-PATH "; 2621 case NextDefUse: return "DEF-USE "; 2622 case NodeOrder: return "ORDER "; 2623 }; 2624 llvm_unreachable("Unknown reason!"); 2625 } 2626 2627 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2628 PressureChange P; 2629 unsigned ResIdx = 0; 2630 unsigned Latency = 0; 2631 switch (Cand.Reason) { 2632 default: 2633 break; 2634 case RegExcess: 2635 P = Cand.RPDelta.Excess; 2636 break; 2637 case RegCritical: 2638 P = Cand.RPDelta.CriticalMax; 2639 break; 2640 case RegMax: 2641 P = Cand.RPDelta.CurrentMax; 2642 break; 2643 case ResourceReduce: 2644 ResIdx = Cand.Policy.ReduceResIdx; 2645 break; 2646 case ResourceDemand: 2647 ResIdx = Cand.Policy.DemandResIdx; 2648 break; 2649 case TopDepthReduce: 2650 Latency = Cand.SU->getDepth(); 2651 break; 2652 case TopPathReduce: 2653 Latency = Cand.SU->getHeight(); 2654 break; 2655 case BotHeightReduce: 2656 Latency = Cand.SU->getHeight(); 2657 break; 2658 case BotPathReduce: 2659 Latency = Cand.SU->getDepth(); 2660 break; 2661 } 2662 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2663 if (P.isValid()) 2664 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2665 << ":" << P.getUnitInc() << " "; 2666 else 2667 dbgs() << " "; 2668 if (ResIdx) 2669 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2670 else 2671 dbgs() << " "; 2672 if (Latency) 2673 dbgs() << " " << Latency << " cycles "; 2674 else 2675 dbgs() << " "; 2676 dbgs() << '\n'; 2677 } 2678 #endif 2679 2680 namespace llvm { 2681 /// Return true if this heuristic determines order. 2682 bool tryLess(int TryVal, int CandVal, 2683 GenericSchedulerBase::SchedCandidate &TryCand, 2684 GenericSchedulerBase::SchedCandidate &Cand, 2685 GenericSchedulerBase::CandReason Reason) { 2686 if (TryVal < CandVal) { 2687 TryCand.Reason = Reason; 2688 return true; 2689 } 2690 if (TryVal > CandVal) { 2691 if (Cand.Reason > Reason) 2692 Cand.Reason = Reason; 2693 return true; 2694 } 2695 return false; 2696 } 2697 2698 bool tryGreater(int TryVal, int CandVal, 2699 GenericSchedulerBase::SchedCandidate &TryCand, 2700 GenericSchedulerBase::SchedCandidate &Cand, 2701 GenericSchedulerBase::CandReason Reason) { 2702 if (TryVal > CandVal) { 2703 TryCand.Reason = Reason; 2704 return true; 2705 } 2706 if (TryVal < CandVal) { 2707 if (Cand.Reason > Reason) 2708 Cand.Reason = Reason; 2709 return true; 2710 } 2711 return false; 2712 } 2713 2714 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2715 GenericSchedulerBase::SchedCandidate &Cand, 2716 SchedBoundary &Zone) { 2717 if (Zone.isTop()) { 2718 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2719 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2720 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2721 return true; 2722 } 2723 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2724 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2725 return true; 2726 } else { 2727 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2728 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2729 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2730 return true; 2731 } 2732 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2733 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2734 return true; 2735 } 2736 return false; 2737 } 2738 } // end namespace llvm 2739 2740 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) { 2741 LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2742 << GenericSchedulerBase::getReasonStr(Reason) << '\n'); 2743 } 2744 2745 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) { 2746 tracePick(Cand.Reason, Cand.AtTop); 2747 } 2748 2749 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2750 assert(dag->hasVRegLiveness() && 2751 "(PreRA)GenericScheduler needs vreg liveness"); 2752 DAG = static_cast<ScheduleDAGMILive*>(dag); 2753 SchedModel = DAG->getSchedModel(); 2754 TRI = DAG->TRI; 2755 2756 if (RegionPolicy.ComputeDFSResult) 2757 DAG->computeDFSResult(); 2758 2759 Rem.init(DAG, SchedModel); 2760 Top.init(DAG, SchedModel, &Rem); 2761 Bot.init(DAG, SchedModel, &Rem); 2762 2763 // Initialize resource counts. 2764 2765 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2766 // are disabled, then these HazardRecs will be disabled. 2767 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2768 if (!Top.HazardRec) { 2769 Top.HazardRec = 2770 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2771 Itin, DAG); 2772 } 2773 if (!Bot.HazardRec) { 2774 Bot.HazardRec = 2775 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2776 Itin, DAG); 2777 } 2778 TopCand.SU = nullptr; 2779 BotCand.SU = nullptr; 2780 } 2781 2782 /// Initialize the per-region scheduling policy. 2783 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2784 MachineBasicBlock::iterator End, 2785 unsigned NumRegionInstrs) { 2786 const MachineFunction &MF = *Begin->getMF(); 2787 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2788 2789 // Avoid setting up the register pressure tracker for small regions to save 2790 // compile time. As a rough heuristic, only track pressure when the number of 2791 // schedulable instructions exceeds half the integer register file. 2792 RegionPolicy.ShouldTrackPressure = true; 2793 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2794 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2795 if (TLI->isTypeLegal(LegalIntVT)) { 2796 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2797 TLI->getRegClassFor(LegalIntVT)); 2798 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2799 } 2800 } 2801 2802 // For generic targets, we default to bottom-up, because it's simpler and more 2803 // compile-time optimizations have been implemented in that direction. 2804 RegionPolicy.OnlyBottomUp = true; 2805 2806 // Allow the subtarget to override default policy. 2807 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs); 2808 2809 // After subtarget overrides, apply command line options. 2810 if (!EnableRegPressure) { 2811 RegionPolicy.ShouldTrackPressure = false; 2812 RegionPolicy.ShouldTrackLaneMasks = false; 2813 } 2814 2815 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2816 // e.g. -misched-bottomup=false allows scheduling in both directions. 2817 assert((!ForceTopDown || !ForceBottomUp) && 2818 "-misched-topdown incompatible with -misched-bottomup"); 2819 if (ForceBottomUp.getNumOccurrences() > 0) { 2820 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2821 if (RegionPolicy.OnlyBottomUp) 2822 RegionPolicy.OnlyTopDown = false; 2823 } 2824 if (ForceTopDown.getNumOccurrences() > 0) { 2825 RegionPolicy.OnlyTopDown = ForceTopDown; 2826 if (RegionPolicy.OnlyTopDown) 2827 RegionPolicy.OnlyBottomUp = false; 2828 } 2829 } 2830 2831 void GenericScheduler::dumpPolicy() const { 2832 // Cannot completely remove virtual function even in release mode. 2833 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2834 dbgs() << "GenericScheduler RegionPolicy: " 2835 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure 2836 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown 2837 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp 2838 << "\n"; 2839 #endif 2840 } 2841 2842 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 2843 /// critical path by more cycles than it takes to drain the instruction buffer. 2844 /// We estimate an upper bounds on in-flight instructions as: 2845 /// 2846 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 2847 /// InFlightIterations = AcyclicPath / CyclesPerIteration 2848 /// InFlightResources = InFlightIterations * LoopResources 2849 /// 2850 /// TODO: Check execution resources in addition to IssueCount. 2851 void GenericScheduler::checkAcyclicLatency() { 2852 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 2853 return; 2854 2855 // Scaled number of cycles per loop iteration. 2856 unsigned IterCount = 2857 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 2858 Rem.RemIssueCount); 2859 // Scaled acyclic critical path. 2860 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 2861 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 2862 unsigned InFlightCount = 2863 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 2864 unsigned BufferLimit = 2865 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 2866 2867 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 2868 2869 LLVM_DEBUG( 2870 dbgs() << "IssueCycles=" 2871 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 2872 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 2873 << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount 2874 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 2875 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 2876 if (Rem.IsAcyclicLatencyLimited) dbgs() << " ACYCLIC LATENCY LIMIT\n"); 2877 } 2878 2879 void GenericScheduler::registerRoots() { 2880 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2881 2882 // Some roots may not feed into ExitSU. Check all of them in case. 2883 for (const SUnit *SU : Bot.Available) { 2884 if (SU->getDepth() > Rem.CriticalPath) 2885 Rem.CriticalPath = SU->getDepth(); 2886 } 2887 LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 2888 if (DumpCriticalPathLength) { 2889 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 2890 } 2891 2892 if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) { 2893 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 2894 checkAcyclicLatency(); 2895 } 2896 } 2897 2898 namespace llvm { 2899 bool tryPressure(const PressureChange &TryP, 2900 const PressureChange &CandP, 2901 GenericSchedulerBase::SchedCandidate &TryCand, 2902 GenericSchedulerBase::SchedCandidate &Cand, 2903 GenericSchedulerBase::CandReason Reason, 2904 const TargetRegisterInfo *TRI, 2905 const MachineFunction &MF) { 2906 // If one candidate decreases and the other increases, go with it. 2907 // Invalid candidates have UnitInc==0. 2908 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 2909 Reason)) { 2910 return true; 2911 } 2912 // Do not compare the magnitude of pressure changes between top and bottom 2913 // boundary. 2914 if (Cand.AtTop != TryCand.AtTop) 2915 return false; 2916 2917 // If both candidates affect the same set in the same boundary, go with the 2918 // smallest increase. 2919 unsigned TryPSet = TryP.getPSetOrMax(); 2920 unsigned CandPSet = CandP.getPSetOrMax(); 2921 if (TryPSet == CandPSet) { 2922 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 2923 Reason); 2924 } 2925 2926 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) : 2927 std::numeric_limits<int>::max(); 2928 2929 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) : 2930 std::numeric_limits<int>::max(); 2931 2932 // If the candidates are decreasing pressure, reverse priority. 2933 if (TryP.getUnitInc() < 0) 2934 std::swap(TryRank, CandRank); 2935 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2936 } 2937 2938 unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2939 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2940 } 2941 2942 /// Minimize physical register live ranges. Regalloc wants them adjacent to 2943 /// their physreg def/use. 2944 /// 2945 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2946 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2947 /// with the operation that produces or consumes the physreg. We'll do this when 2948 /// regalloc has support for parallel copies. 2949 int biasPhysReg(const SUnit *SU, bool isTop) { 2950 const MachineInstr *MI = SU->getInstr(); 2951 2952 if (MI->isCopy()) { 2953 unsigned ScheduledOper = isTop ? 1 : 0; 2954 unsigned UnscheduledOper = isTop ? 0 : 1; 2955 // If we have already scheduled the physreg produce/consumer, immediately 2956 // schedule the copy. 2957 if (Register::isPhysicalRegister(MI->getOperand(ScheduledOper).getReg())) 2958 return 1; 2959 // If the physreg is at the boundary, defer it. Otherwise schedule it 2960 // immediately to free the dependent. We can hoist the copy later. 2961 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2962 if (Register::isPhysicalRegister(MI->getOperand(UnscheduledOper).getReg())) 2963 return AtBoundary ? -1 : 1; 2964 } 2965 2966 if (MI->isMoveImmediate()) { 2967 // If we have a move immediate and all successors have been assigned, bias 2968 // towards scheduling this later. Make sure all register defs are to 2969 // physical registers. 2970 bool DoBias = true; 2971 for (const MachineOperand &Op : MI->defs()) { 2972 if (Op.isReg() && !Register::isPhysicalRegister(Op.getReg())) { 2973 DoBias = false; 2974 break; 2975 } 2976 } 2977 2978 if (DoBias) 2979 return isTop ? -1 : 1; 2980 } 2981 2982 return 0; 2983 } 2984 } // end namespace llvm 2985 2986 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU, 2987 bool AtTop, 2988 const RegPressureTracker &RPTracker, 2989 RegPressureTracker &TempTracker) { 2990 Cand.SU = SU; 2991 Cand.AtTop = AtTop; 2992 if (DAG->isTrackingPressure()) { 2993 if (AtTop) { 2994 TempTracker.getMaxDownwardPressureDelta( 2995 Cand.SU->getInstr(), 2996 Cand.RPDelta, 2997 DAG->getRegionCriticalPSets(), 2998 DAG->getRegPressure().MaxSetPressure); 2999 } else { 3000 if (VerifyScheduling) { 3001 TempTracker.getMaxUpwardPressureDelta( 3002 Cand.SU->getInstr(), 3003 &DAG->getPressureDiff(Cand.SU), 3004 Cand.RPDelta, 3005 DAG->getRegionCriticalPSets(), 3006 DAG->getRegPressure().MaxSetPressure); 3007 } else { 3008 RPTracker.getUpwardPressureDelta( 3009 Cand.SU->getInstr(), 3010 DAG->getPressureDiff(Cand.SU), 3011 Cand.RPDelta, 3012 DAG->getRegionCriticalPSets(), 3013 DAG->getRegPressure().MaxSetPressure); 3014 } 3015 } 3016 } 3017 LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs() 3018 << " Try SU(" << Cand.SU->NodeNum << ") " 3019 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":" 3020 << Cand.RPDelta.Excess.getUnitInc() << "\n"); 3021 } 3022 3023 /// Apply a set of heuristics to a new candidate. Heuristics are currently 3024 /// hierarchical. This may be more efficient than a graduated cost model because 3025 /// we don't need to evaluate all aspects of the model for each node in the 3026 /// queue. But it's really done to make the heuristics easier to debug and 3027 /// statistically analyze. 3028 /// 3029 /// \param Cand provides the policy and current best candidate. 3030 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3031 /// \param Zone describes the scheduled zone that we are extending, or nullptr 3032 // if Cand is from a different zone than TryCand. 3033 void GenericScheduler::tryCandidate(SchedCandidate &Cand, 3034 SchedCandidate &TryCand, 3035 SchedBoundary *Zone) const { 3036 // Initialize the candidate if needed. 3037 if (!Cand.isValid()) { 3038 TryCand.Reason = NodeOrder; 3039 return; 3040 } 3041 3042 // Bias PhysReg Defs and copies to their uses and defined respectively. 3043 if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop), 3044 biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg)) 3045 return; 3046 3047 // Avoid exceeding the target's limit. 3048 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 3049 Cand.RPDelta.Excess, 3050 TryCand, Cand, RegExcess, TRI, 3051 DAG->MF)) 3052 return; 3053 3054 // Avoid increasing the max critical pressure in the scheduled region. 3055 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 3056 Cand.RPDelta.CriticalMax, 3057 TryCand, Cand, RegCritical, TRI, 3058 DAG->MF)) 3059 return; 3060 3061 // We only compare a subset of features when comparing nodes between 3062 // Top and Bottom boundary. Some properties are simply incomparable, in many 3063 // other instances we should only override the other boundary if something 3064 // is a clear good pick on one boundary. Skip heuristics that are more 3065 // "tie-breaking" in nature. 3066 bool SameBoundary = Zone != nullptr; 3067 if (SameBoundary) { 3068 // For loops that are acyclic path limited, aggressively schedule for 3069 // latency. Within an single cycle, whenever CurrMOps > 0, allow normal 3070 // heuristics to take precedence. 3071 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() && 3072 tryLatency(TryCand, Cand, *Zone)) 3073 return; 3074 3075 // Prioritize instructions that read unbuffered resources by stall cycles. 3076 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU), 3077 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3078 return; 3079 } 3080 3081 // Keep clustered nodes together to encourage downstream peephole 3082 // optimizations which may reduce resource requirements. 3083 // 3084 // This is a best effort to set things up for a post-RA pass. Optimizations 3085 // like generating loads of multiple registers should ideally be done within 3086 // the scheduler pass by combining the loads during DAG postprocessing. 3087 const SUnit *CandNextClusterSU = 3088 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 3089 const SUnit *TryCandNextClusterSU = 3090 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 3091 if (tryGreater(TryCand.SU == TryCandNextClusterSU, 3092 Cand.SU == CandNextClusterSU, 3093 TryCand, Cand, Cluster)) 3094 return; 3095 3096 if (SameBoundary) { 3097 // Weak edges are for clustering and other constraints. 3098 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop), 3099 getWeakLeft(Cand.SU, Cand.AtTop), 3100 TryCand, Cand, Weak)) 3101 return; 3102 } 3103 3104 // Avoid increasing the max pressure of the entire region. 3105 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 3106 Cand.RPDelta.CurrentMax, 3107 TryCand, Cand, RegMax, TRI, 3108 DAG->MF)) 3109 return; 3110 3111 if (SameBoundary) { 3112 // Avoid critical resource consumption and balance the schedule. 3113 TryCand.initResourceDelta(DAG, SchedModel); 3114 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3115 TryCand, Cand, ResourceReduce)) 3116 return; 3117 if (tryGreater(TryCand.ResDelta.DemandedResources, 3118 Cand.ResDelta.DemandedResources, 3119 TryCand, Cand, ResourceDemand)) 3120 return; 3121 3122 // Avoid serializing long latency dependence chains. 3123 // For acyclic path limited loops, latency was already checked above. 3124 if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency && 3125 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone)) 3126 return; 3127 3128 // Fall through to original instruction order. 3129 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 3130 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 3131 TryCand.Reason = NodeOrder; 3132 } 3133 } 3134 } 3135 3136 /// Pick the best candidate from the queue. 3137 /// 3138 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 3139 /// DAG building. To adjust for the current scheduling location we need to 3140 /// maintain the number of vreg uses remaining to be top-scheduled. 3141 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 3142 const CandPolicy &ZonePolicy, 3143 const RegPressureTracker &RPTracker, 3144 SchedCandidate &Cand) { 3145 // getMaxPressureDelta temporarily modifies the tracker. 3146 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 3147 3148 ReadyQueue &Q = Zone.Available; 3149 for (SUnit *SU : Q) { 3150 3151 SchedCandidate TryCand(ZonePolicy); 3152 initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker); 3153 // Pass SchedBoundary only when comparing nodes from the same boundary. 3154 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; 3155 tryCandidate(Cand, TryCand, ZoneArg); 3156 if (TryCand.Reason != NoCand) { 3157 // Initialize resource delta if needed in case future heuristics query it. 3158 if (TryCand.ResDelta == SchedResourceDelta()) 3159 TryCand.initResourceDelta(DAG, SchedModel); 3160 Cand.setBest(TryCand); 3161 LLVM_DEBUG(traceCandidate(Cand)); 3162 } 3163 } 3164 } 3165 3166 /// Pick the best candidate node from either the top or bottom queue. 3167 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 3168 // Schedule as far as possible in the direction of no choice. This is most 3169 // efficient, but also provides the best heuristics for CriticalPSets. 3170 if (SUnit *SU = Bot.pickOnlyChoice()) { 3171 IsTopNode = false; 3172 tracePick(Only1, false); 3173 return SU; 3174 } 3175 if (SUnit *SU = Top.pickOnlyChoice()) { 3176 IsTopNode = true; 3177 tracePick(Only1, true); 3178 return SU; 3179 } 3180 // Set the bottom-up policy based on the state of the current bottom zone and 3181 // the instructions outside the zone, including the top zone. 3182 CandPolicy BotPolicy; 3183 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); 3184 // Set the top-down policy based on the state of the current top zone and 3185 // the instructions outside the zone, including the bottom zone. 3186 CandPolicy TopPolicy; 3187 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); 3188 3189 // See if BotCand is still valid (because we previously scheduled from Top). 3190 LLVM_DEBUG(dbgs() << "Picking from Bot:\n"); 3191 if (!BotCand.isValid() || BotCand.SU->isScheduled || 3192 BotCand.Policy != BotPolicy) { 3193 BotCand.reset(CandPolicy()); 3194 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); 3195 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 3196 } else { 3197 LLVM_DEBUG(traceCandidate(BotCand)); 3198 #ifndef NDEBUG 3199 if (VerifyScheduling) { 3200 SchedCandidate TCand; 3201 TCand.reset(CandPolicy()); 3202 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand); 3203 assert(TCand.SU == BotCand.SU && 3204 "Last pick result should correspond to re-picking right now"); 3205 } 3206 #endif 3207 } 3208 3209 // Check if the top Q has a better candidate. 3210 LLVM_DEBUG(dbgs() << "Picking from Top:\n"); 3211 if (!TopCand.isValid() || TopCand.SU->isScheduled || 3212 TopCand.Policy != TopPolicy) { 3213 TopCand.reset(CandPolicy()); 3214 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); 3215 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 3216 } else { 3217 LLVM_DEBUG(traceCandidate(TopCand)); 3218 #ifndef NDEBUG 3219 if (VerifyScheduling) { 3220 SchedCandidate TCand; 3221 TCand.reset(CandPolicy()); 3222 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand); 3223 assert(TCand.SU == TopCand.SU && 3224 "Last pick result should correspond to re-picking right now"); 3225 } 3226 #endif 3227 } 3228 3229 // Pick best from BotCand and TopCand. 3230 assert(BotCand.isValid()); 3231 assert(TopCand.isValid()); 3232 SchedCandidate Cand = BotCand; 3233 TopCand.Reason = NoCand; 3234 tryCandidate(Cand, TopCand, nullptr); 3235 if (TopCand.Reason != NoCand) { 3236 Cand.setBest(TopCand); 3237 LLVM_DEBUG(traceCandidate(Cand)); 3238 } 3239 3240 IsTopNode = Cand.AtTop; 3241 tracePick(Cand); 3242 return Cand.SU; 3243 } 3244 3245 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 3246 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 3247 if (DAG->top() == DAG->bottom()) { 3248 assert(Top.Available.empty() && Top.Pending.empty() && 3249 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 3250 return nullptr; 3251 } 3252 SUnit *SU; 3253 do { 3254 if (RegionPolicy.OnlyTopDown) { 3255 SU = Top.pickOnlyChoice(); 3256 if (!SU) { 3257 CandPolicy NoPolicy; 3258 TopCand.reset(NoPolicy); 3259 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); 3260 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3261 tracePick(TopCand); 3262 SU = TopCand.SU; 3263 } 3264 IsTopNode = true; 3265 } else if (RegionPolicy.OnlyBottomUp) { 3266 SU = Bot.pickOnlyChoice(); 3267 if (!SU) { 3268 CandPolicy NoPolicy; 3269 BotCand.reset(NoPolicy); 3270 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); 3271 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 3272 tracePick(BotCand); 3273 SU = BotCand.SU; 3274 } 3275 IsTopNode = false; 3276 } else { 3277 SU = pickNodeBidirectional(IsTopNode); 3278 } 3279 } while (SU->isScheduled); 3280 3281 if (SU->isTopReady()) 3282 Top.removeReady(SU); 3283 if (SU->isBottomReady()) 3284 Bot.removeReady(SU); 3285 3286 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 3287 << *SU->getInstr()); 3288 return SU; 3289 } 3290 3291 void GenericScheduler::reschedulePhysReg(SUnit *SU, bool isTop) { 3292 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 3293 if (!isTop) 3294 ++InsertPos; 3295 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 3296 3297 // Find already scheduled copies with a single physreg dependence and move 3298 // them just above the scheduled instruction. 3299 for (SDep &Dep : Deps) { 3300 if (Dep.getKind() != SDep::Data || 3301 !Register::isPhysicalRegister(Dep.getReg())) 3302 continue; 3303 SUnit *DepSU = Dep.getSUnit(); 3304 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 3305 continue; 3306 MachineInstr *Copy = DepSU->getInstr(); 3307 if (!Copy->isCopy() && !Copy->isMoveImmediate()) 3308 continue; 3309 LLVM_DEBUG(dbgs() << " Rescheduling physreg copy "; 3310 DAG->dumpNode(*Dep.getSUnit())); 3311 DAG->moveInstruction(Copy, InsertPos); 3312 } 3313 } 3314 3315 /// Update the scheduler's state after scheduling a node. This is the same node 3316 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 3317 /// update it's state based on the current cycle before MachineSchedStrategy 3318 /// does. 3319 /// 3320 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 3321 /// them here. See comments in biasPhysReg. 3322 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3323 if (IsTopNode) { 3324 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3325 Top.bumpNode(SU); 3326 if (SU->hasPhysRegUses) 3327 reschedulePhysReg(SU, true); 3328 } else { 3329 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 3330 Bot.bumpNode(SU); 3331 if (SU->hasPhysRegDefs) 3332 reschedulePhysReg(SU, false); 3333 } 3334 } 3335 3336 /// Create the standard converging machine scheduler. This will be used as the 3337 /// default scheduler if the target does not set a default. 3338 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) { 3339 ScheduleDAGMILive *DAG = 3340 new ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C)); 3341 // Register DAG post-processors. 3342 // 3343 // FIXME: extend the mutation API to allow earlier mutations to instantiate 3344 // data and pass it to later mutations. Have a single mutation that gathers 3345 // the interesting nodes in one pass. 3346 DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI)); 3347 return DAG; 3348 } 3349 3350 static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) { 3351 return createGenericSchedLive(C); 3352 } 3353 3354 static MachineSchedRegistry 3355 GenericSchedRegistry("converge", "Standard converging scheduler.", 3356 createConveringSched); 3357 3358 //===----------------------------------------------------------------------===// 3359 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 3360 //===----------------------------------------------------------------------===// 3361 3362 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 3363 DAG = Dag; 3364 SchedModel = DAG->getSchedModel(); 3365 TRI = DAG->TRI; 3366 3367 Rem.init(DAG, SchedModel); 3368 Top.init(DAG, SchedModel, &Rem); 3369 BotRoots.clear(); 3370 3371 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 3372 // or are disabled, then these HazardRecs will be disabled. 3373 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3374 if (!Top.HazardRec) { 3375 Top.HazardRec = 3376 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 3377 Itin, DAG); 3378 } 3379 } 3380 3381 void PostGenericScheduler::registerRoots() { 3382 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3383 3384 // Some roots may not feed into ExitSU. Check all of them in case. 3385 for (const SUnit *SU : BotRoots) { 3386 if (SU->getDepth() > Rem.CriticalPath) 3387 Rem.CriticalPath = SU->getDepth(); 3388 } 3389 LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 3390 if (DumpCriticalPathLength) { 3391 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 3392 } 3393 } 3394 3395 /// Apply a set of heuristics to a new candidate for PostRA scheduling. 3396 /// 3397 /// \param Cand provides the policy and current best candidate. 3398 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3399 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 3400 SchedCandidate &TryCand) { 3401 // Initialize the candidate if needed. 3402 if (!Cand.isValid()) { 3403 TryCand.Reason = NodeOrder; 3404 return; 3405 } 3406 3407 // Prioritize instructions that read unbuffered resources by stall cycles. 3408 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3409 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3410 return; 3411 3412 // Keep clustered nodes together. 3413 if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(), 3414 Cand.SU == DAG->getNextClusterSucc(), 3415 TryCand, Cand, Cluster)) 3416 return; 3417 3418 // Avoid critical resource consumption and balance the schedule. 3419 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3420 TryCand, Cand, ResourceReduce)) 3421 return; 3422 if (tryGreater(TryCand.ResDelta.DemandedResources, 3423 Cand.ResDelta.DemandedResources, 3424 TryCand, Cand, ResourceDemand)) 3425 return; 3426 3427 // Avoid serializing long latency dependence chains. 3428 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 3429 return; 3430 } 3431 3432 // Fall through to original instruction order. 3433 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) 3434 TryCand.Reason = NodeOrder; 3435 } 3436 3437 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 3438 ReadyQueue &Q = Top.Available; 3439 for (SUnit *SU : Q) { 3440 SchedCandidate TryCand(Cand.Policy); 3441 TryCand.SU = SU; 3442 TryCand.AtTop = true; 3443 TryCand.initResourceDelta(DAG, SchedModel); 3444 tryCandidate(Cand, TryCand); 3445 if (TryCand.Reason != NoCand) { 3446 Cand.setBest(TryCand); 3447 LLVM_DEBUG(traceCandidate(Cand)); 3448 } 3449 } 3450 } 3451 3452 /// Pick the next node to schedule. 3453 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 3454 if (DAG->top() == DAG->bottom()) { 3455 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 3456 return nullptr; 3457 } 3458 SUnit *SU; 3459 do { 3460 SU = Top.pickOnlyChoice(); 3461 if (SU) { 3462 tracePick(Only1, true); 3463 } else { 3464 CandPolicy NoPolicy; 3465 SchedCandidate TopCand(NoPolicy); 3466 // Set the top-down policy based on the state of the current top zone and 3467 // the instructions outside the zone, including the bottom zone. 3468 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 3469 pickNodeFromQueue(TopCand); 3470 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3471 tracePick(TopCand); 3472 SU = TopCand.SU; 3473 } 3474 } while (SU->isScheduled); 3475 3476 IsTopNode = true; 3477 Top.removeReady(SU); 3478 3479 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 3480 << *SU->getInstr()); 3481 return SU; 3482 } 3483 3484 /// Called after ScheduleDAGMI has scheduled an instruction and updated 3485 /// scheduled/remaining flags in the DAG nodes. 3486 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3487 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3488 Top.bumpNode(SU); 3489 } 3490 3491 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) { 3492 return new ScheduleDAGMI(C, std::make_unique<PostGenericScheduler>(C), 3493 /*RemoveKillFlags=*/true); 3494 } 3495 3496 //===----------------------------------------------------------------------===// 3497 // ILP Scheduler. Currently for experimental analysis of heuristics. 3498 //===----------------------------------------------------------------------===// 3499 3500 namespace { 3501 3502 /// Order nodes by the ILP metric. 3503 struct ILPOrder { 3504 const SchedDFSResult *DFSResult = nullptr; 3505 const BitVector *ScheduledTrees = nullptr; 3506 bool MaximizeILP; 3507 3508 ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {} 3509 3510 /// Apply a less-than relation on node priority. 3511 /// 3512 /// (Return true if A comes after B in the Q.) 3513 bool operator()(const SUnit *A, const SUnit *B) const { 3514 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3515 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3516 if (SchedTreeA != SchedTreeB) { 3517 // Unscheduled trees have lower priority. 3518 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3519 return ScheduledTrees->test(SchedTreeB); 3520 3521 // Trees with shallower connections have have lower priority. 3522 if (DFSResult->getSubtreeLevel(SchedTreeA) 3523 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3524 return DFSResult->getSubtreeLevel(SchedTreeA) 3525 < DFSResult->getSubtreeLevel(SchedTreeB); 3526 } 3527 } 3528 if (MaximizeILP) 3529 return DFSResult->getILP(A) < DFSResult->getILP(B); 3530 else 3531 return DFSResult->getILP(A) > DFSResult->getILP(B); 3532 } 3533 }; 3534 3535 /// Schedule based on the ILP metric. 3536 class ILPScheduler : public MachineSchedStrategy { 3537 ScheduleDAGMILive *DAG = nullptr; 3538 ILPOrder Cmp; 3539 3540 std::vector<SUnit*> ReadyQ; 3541 3542 public: 3543 ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {} 3544 3545 void initialize(ScheduleDAGMI *dag) override { 3546 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3547 DAG = static_cast<ScheduleDAGMILive*>(dag); 3548 DAG->computeDFSResult(); 3549 Cmp.DFSResult = DAG->getDFSResult(); 3550 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3551 ReadyQ.clear(); 3552 } 3553 3554 void registerRoots() override { 3555 // Restore the heap in ReadyQ with the updated DFS results. 3556 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3557 } 3558 3559 /// Implement MachineSchedStrategy interface. 3560 /// ----------------------------------------- 3561 3562 /// Callback to select the highest priority node from the ready Q. 3563 SUnit *pickNode(bool &IsTopNode) override { 3564 if (ReadyQ.empty()) return nullptr; 3565 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3566 SUnit *SU = ReadyQ.back(); 3567 ReadyQ.pop_back(); 3568 IsTopNode = false; 3569 LLVM_DEBUG(dbgs() << "Pick node " 3570 << "SU(" << SU->NodeNum << ") " 3571 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3572 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) 3573 << " @" 3574 << DAG->getDFSResult()->getSubtreeLevel( 3575 DAG->getDFSResult()->getSubtreeID(SU)) 3576 << '\n' 3577 << "Scheduling " << *SU->getInstr()); 3578 return SU; 3579 } 3580 3581 /// Scheduler callback to notify that a new subtree is scheduled. 3582 void scheduleTree(unsigned SubtreeID) override { 3583 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3584 } 3585 3586 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3587 /// DFSResults, and resort the priority Q. 3588 void schedNode(SUnit *SU, bool IsTopNode) override { 3589 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3590 } 3591 3592 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3593 3594 void releaseBottomNode(SUnit *SU) override { 3595 ReadyQ.push_back(SU); 3596 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3597 } 3598 }; 3599 3600 } // end anonymous namespace 3601 3602 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3603 return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(true)); 3604 } 3605 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3606 return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(false)); 3607 } 3608 3609 static MachineSchedRegistry ILPMaxRegistry( 3610 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3611 static MachineSchedRegistry ILPMinRegistry( 3612 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3613 3614 //===----------------------------------------------------------------------===// 3615 // Machine Instruction Shuffler for Correctness Testing 3616 //===----------------------------------------------------------------------===// 3617 3618 #ifndef NDEBUG 3619 namespace { 3620 3621 /// Apply a less-than relation on the node order, which corresponds to the 3622 /// instruction order prior to scheduling. IsReverse implements greater-than. 3623 template<bool IsReverse> 3624 struct SUnitOrder { 3625 bool operator()(SUnit *A, SUnit *B) const { 3626 if (IsReverse) 3627 return A->NodeNum > B->NodeNum; 3628 else 3629 return A->NodeNum < B->NodeNum; 3630 } 3631 }; 3632 3633 /// Reorder instructions as much as possible. 3634 class InstructionShuffler : public MachineSchedStrategy { 3635 bool IsAlternating; 3636 bool IsTopDown; 3637 3638 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3639 // gives nodes with a higher number higher priority causing the latest 3640 // instructions to be scheduled first. 3641 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>> 3642 TopQ; 3643 3644 // When scheduling bottom-up, use greater-than as the queue priority. 3645 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>> 3646 BottomQ; 3647 3648 public: 3649 InstructionShuffler(bool alternate, bool topdown) 3650 : IsAlternating(alternate), IsTopDown(topdown) {} 3651 3652 void initialize(ScheduleDAGMI*) override { 3653 TopQ.clear(); 3654 BottomQ.clear(); 3655 } 3656 3657 /// Implement MachineSchedStrategy interface. 3658 /// ----------------------------------------- 3659 3660 SUnit *pickNode(bool &IsTopNode) override { 3661 SUnit *SU; 3662 if (IsTopDown) { 3663 do { 3664 if (TopQ.empty()) return nullptr; 3665 SU = TopQ.top(); 3666 TopQ.pop(); 3667 } while (SU->isScheduled); 3668 IsTopNode = true; 3669 } else { 3670 do { 3671 if (BottomQ.empty()) return nullptr; 3672 SU = BottomQ.top(); 3673 BottomQ.pop(); 3674 } while (SU->isScheduled); 3675 IsTopNode = false; 3676 } 3677 if (IsAlternating) 3678 IsTopDown = !IsTopDown; 3679 return SU; 3680 } 3681 3682 void schedNode(SUnit *SU, bool IsTopNode) override {} 3683 3684 void releaseTopNode(SUnit *SU) override { 3685 TopQ.push(SU); 3686 } 3687 void releaseBottomNode(SUnit *SU) override { 3688 BottomQ.push(SU); 3689 } 3690 }; 3691 3692 } // end anonymous namespace 3693 3694 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3695 bool Alternate = !ForceTopDown && !ForceBottomUp; 3696 bool TopDown = !ForceBottomUp; 3697 assert((TopDown || !ForceTopDown) && 3698 "-misched-topdown incompatible with -misched-bottomup"); 3699 return new ScheduleDAGMILive( 3700 C, std::make_unique<InstructionShuffler>(Alternate, TopDown)); 3701 } 3702 3703 static MachineSchedRegistry ShufflerRegistry( 3704 "shuffle", "Shuffle machine instructions alternating directions", 3705 createInstructionShuffler); 3706 #endif // !NDEBUG 3707 3708 //===----------------------------------------------------------------------===// 3709 // GraphWriter support for ScheduleDAGMILive. 3710 //===----------------------------------------------------------------------===// 3711 3712 #ifndef NDEBUG 3713 namespace llvm { 3714 3715 template<> struct GraphTraits< 3716 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3717 3718 template<> 3719 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3720 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3721 3722 static std::string getGraphName(const ScheduleDAG *G) { 3723 return std::string(G->MF.getName()); 3724 } 3725 3726 static bool renderGraphFromBottomUp() { 3727 return true; 3728 } 3729 3730 static bool isNodeHidden(const SUnit *Node) { 3731 if (ViewMISchedCutoff == 0) 3732 return false; 3733 return (Node->Preds.size() > ViewMISchedCutoff 3734 || Node->Succs.size() > ViewMISchedCutoff); 3735 } 3736 3737 /// If you want to override the dot attributes printed for a particular 3738 /// edge, override this method. 3739 static std::string getEdgeAttributes(const SUnit *Node, 3740 SUnitIterator EI, 3741 const ScheduleDAG *Graph) { 3742 if (EI.isArtificialDep()) 3743 return "color=cyan,style=dashed"; 3744 if (EI.isCtrlDep()) 3745 return "color=blue,style=dashed"; 3746 return ""; 3747 } 3748 3749 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3750 std::string Str; 3751 raw_string_ostream SS(Str); 3752 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3753 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3754 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3755 SS << "SU:" << SU->NodeNum; 3756 if (DFS) 3757 SS << " I:" << DFS->getNumInstrs(SU); 3758 return SS.str(); 3759 } 3760 3761 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3762 return G->getGraphNodeLabel(SU); 3763 } 3764 3765 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3766 std::string Str("shape=Mrecord"); 3767 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3768 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3769 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3770 if (DFS) { 3771 Str += ",style=filled,fillcolor=\"#"; 3772 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3773 Str += '"'; 3774 } 3775 return Str; 3776 } 3777 }; 3778 3779 } // end namespace llvm 3780 #endif // NDEBUG 3781 3782 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3783 /// rendered using 'dot'. 3784 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3785 #ifndef NDEBUG 3786 ViewGraph(this, Name, false, Title); 3787 #else 3788 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3789 << "systems with Graphviz or gv!\n"; 3790 #endif // NDEBUG 3791 } 3792 3793 /// Out-of-line implementation with no arguments is handy for gdb. 3794 void ScheduleDAGMI::viewGraph() { 3795 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3796 } 3797