xref: /llvm-project/llvm/lib/CodeGen/MachineScheduler.cpp (revision 2b2bfdb474da0bf070a8e5a06f704a37a06500d6)
1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // MachineScheduler schedules machine instructions after phi elimination. It
10 // preserves LiveIntervals so it can be invoked before register allocation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineScheduler.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/PriorityQueue.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineLoopInfo.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachinePassRegistry.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegisterClassInfo.h"
37 #include "llvm/CodeGen/RegisterPressure.h"
38 #include "llvm/CodeGen/ScheduleDAG.h"
39 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
40 #include "llvm/CodeGen/ScheduleDAGMutation.h"
41 #include "llvm/CodeGen/ScheduleDFS.h"
42 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
43 #include "llvm/CodeGen/SlotIndexes.h"
44 #include "llvm/CodeGen/TargetFrameLowering.h"
45 #include "llvm/CodeGen/TargetInstrInfo.h"
46 #include "llvm/CodeGen/TargetLowering.h"
47 #include "llvm/CodeGen/TargetPassConfig.h"
48 #include "llvm/CodeGen/TargetRegisterInfo.h"
49 #include "llvm/CodeGen/TargetSchedule.h"
50 #include "llvm/CodeGen/TargetSubtargetInfo.h"
51 #include "llvm/Config/llvm-config.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/MC/LaneBitmask.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Compiler.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/GraphWriter.h"
60 #include "llvm/Support/MachineValueType.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <cstdint>
65 #include <iterator>
66 #include <limits>
67 #include <memory>
68 #include <string>
69 #include <tuple>
70 #include <utility>
71 #include <vector>
72 
73 using namespace llvm;
74 
75 #define DEBUG_TYPE "machine-scheduler"
76 
77 STATISTIC(NumClustered, "Number of load/store pairs clustered");
78 
79 namespace llvm {
80 
81 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
82                            cl::desc("Force top-down list scheduling"));
83 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
84                             cl::desc("Force bottom-up list scheduling"));
85 cl::opt<bool>
86 DumpCriticalPathLength("misched-dcpl", cl::Hidden,
87                        cl::desc("Print critical path length to stdout"));
88 
89 cl::opt<bool> VerifyScheduling(
90     "verify-misched", cl::Hidden,
91     cl::desc("Verify machine instrs before and after machine scheduling"));
92 
93 } // end namespace llvm
94 
95 #ifndef NDEBUG
96 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
97   cl::desc("Pop up a window to show MISched dags after they are processed"));
98 
99 /// In some situations a few uninteresting nodes depend on nearly all other
100 /// nodes in the graph, provide a cutoff to hide them.
101 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
102   cl::desc("Hide nodes with more predecessor/successor than cutoff"));
103 
104 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
105   cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
106 
107 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
108   cl::desc("Only schedule this function"));
109 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
110                                         cl::desc("Only schedule this MBB#"));
111 static cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden,
112                               cl::desc("Print schedule DAGs"));
113 #else
114 static const bool ViewMISchedDAGs = false;
115 static const bool PrintDAGs = false;
116 #endif // NDEBUG
117 
118 /// Avoid quadratic complexity in unusually large basic blocks by limiting the
119 /// size of the ready lists.
120 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden,
121   cl::desc("Limit ready list to N instructions"), cl::init(256));
122 
123 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
124   cl::desc("Enable register pressure scheduling."), cl::init(true));
125 
126 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
127   cl::desc("Enable cyclic critical path analysis."), cl::init(true));
128 
129 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden,
130                                         cl::desc("Enable memop clustering."),
131                                         cl::init(true));
132 
133 // DAG subtrees must have at least this many nodes.
134 static const unsigned MinSubtreeSize = 8;
135 
136 // Pin the vtables to this file.
137 void MachineSchedStrategy::anchor() {}
138 
139 void ScheduleDAGMutation::anchor() {}
140 
141 //===----------------------------------------------------------------------===//
142 // Machine Instruction Scheduling Pass and Registry
143 //===----------------------------------------------------------------------===//
144 
145 MachineSchedContext::MachineSchedContext() {
146   RegClassInfo = new RegisterClassInfo();
147 }
148 
149 MachineSchedContext::~MachineSchedContext() {
150   delete RegClassInfo;
151 }
152 
153 namespace {
154 
155 /// Base class for a machine scheduler class that can run at any point.
156 class MachineSchedulerBase : public MachineSchedContext,
157                              public MachineFunctionPass {
158 public:
159   MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
160 
161   void print(raw_ostream &O, const Module* = nullptr) const override;
162 
163 protected:
164   void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
165 };
166 
167 /// MachineScheduler runs after coalescing and before register allocation.
168 class MachineScheduler : public MachineSchedulerBase {
169 public:
170   MachineScheduler();
171 
172   void getAnalysisUsage(AnalysisUsage &AU) const override;
173 
174   bool runOnMachineFunction(MachineFunction&) override;
175 
176   static char ID; // Class identification, replacement for typeinfo
177 
178 protected:
179   ScheduleDAGInstrs *createMachineScheduler();
180 };
181 
182 /// PostMachineScheduler runs after shortly before code emission.
183 class PostMachineScheduler : public MachineSchedulerBase {
184 public:
185   PostMachineScheduler();
186 
187   void getAnalysisUsage(AnalysisUsage &AU) const override;
188 
189   bool runOnMachineFunction(MachineFunction&) override;
190 
191   static char ID; // Class identification, replacement for typeinfo
192 
193 protected:
194   ScheduleDAGInstrs *createPostMachineScheduler();
195 };
196 
197 } // end anonymous namespace
198 
199 char MachineScheduler::ID = 0;
200 
201 char &llvm::MachineSchedulerID = MachineScheduler::ID;
202 
203 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE,
204                       "Machine Instruction Scheduler", false, false)
205 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
206 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
207 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
208 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
209 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
210 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE,
211                     "Machine Instruction Scheduler", false, false)
212 
213 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) {
214   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
215 }
216 
217 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
218   AU.setPreservesCFG();
219   AU.addRequired<MachineDominatorTree>();
220   AU.addRequired<MachineLoopInfo>();
221   AU.addRequired<AAResultsWrapperPass>();
222   AU.addRequired<TargetPassConfig>();
223   AU.addRequired<SlotIndexes>();
224   AU.addPreserved<SlotIndexes>();
225   AU.addRequired<LiveIntervals>();
226   AU.addPreserved<LiveIntervals>();
227   MachineFunctionPass::getAnalysisUsage(AU);
228 }
229 
230 char PostMachineScheduler::ID = 0;
231 
232 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
233 
234 INITIALIZE_PASS(PostMachineScheduler, "postmisched",
235                 "PostRA Machine Instruction Scheduler", false, false)
236 
237 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) {
238   initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
239 }
240 
241 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
242   AU.setPreservesCFG();
243   AU.addRequired<MachineDominatorTree>();
244   AU.addRequired<MachineLoopInfo>();
245   AU.addRequired<AAResultsWrapperPass>();
246   AU.addRequired<TargetPassConfig>();
247   MachineFunctionPass::getAnalysisUsage(AU);
248 }
249 
250 MachinePassRegistry<MachineSchedRegistry::ScheduleDAGCtor>
251     MachineSchedRegistry::Registry;
252 
253 /// A dummy default scheduler factory indicates whether the scheduler
254 /// is overridden on the command line.
255 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
256   return nullptr;
257 }
258 
259 /// MachineSchedOpt allows command line selection of the scheduler.
260 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
261                RegisterPassParser<MachineSchedRegistry>>
262 MachineSchedOpt("misched",
263                 cl::init(&useDefaultMachineSched), cl::Hidden,
264                 cl::desc("Machine instruction scheduler to use"));
265 
266 static MachineSchedRegistry
267 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
268                      useDefaultMachineSched);
269 
270 static cl::opt<bool> EnableMachineSched(
271     "enable-misched",
272     cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
273     cl::Hidden);
274 
275 static cl::opt<bool> EnablePostRAMachineSched(
276     "enable-post-misched",
277     cl::desc("Enable the post-ra machine instruction scheduling pass."),
278     cl::init(true), cl::Hidden);
279 
280 /// Decrement this iterator until reaching the top or a non-debug instr.
281 static MachineBasicBlock::const_iterator
282 priorNonDebug(MachineBasicBlock::const_iterator I,
283               MachineBasicBlock::const_iterator Beg) {
284   assert(I != Beg && "reached the top of the region, cannot decrement");
285   while (--I != Beg) {
286     if (!I->isDebugInstr())
287       break;
288   }
289   return I;
290 }
291 
292 /// Non-const version.
293 static MachineBasicBlock::iterator
294 priorNonDebug(MachineBasicBlock::iterator I,
295               MachineBasicBlock::const_iterator Beg) {
296   return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)
297       .getNonConstIterator();
298 }
299 
300 /// If this iterator is a debug value, increment until reaching the End or a
301 /// non-debug instruction.
302 static MachineBasicBlock::const_iterator
303 nextIfDebug(MachineBasicBlock::const_iterator I,
304             MachineBasicBlock::const_iterator End) {
305   for(; I != End; ++I) {
306     if (!I->isDebugInstr())
307       break;
308   }
309   return I;
310 }
311 
312 /// Non-const version.
313 static MachineBasicBlock::iterator
314 nextIfDebug(MachineBasicBlock::iterator I,
315             MachineBasicBlock::const_iterator End) {
316   return nextIfDebug(MachineBasicBlock::const_iterator(I), End)
317       .getNonConstIterator();
318 }
319 
320 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
321 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
322   // Select the scheduler, or set the default.
323   MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
324   if (Ctor != useDefaultMachineSched)
325     return Ctor(this);
326 
327   // Get the default scheduler set by the target for this function.
328   ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
329   if (Scheduler)
330     return Scheduler;
331 
332   // Default to GenericScheduler.
333   return createGenericSchedLive(this);
334 }
335 
336 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
337 /// the caller. We don't have a command line option to override the postRA
338 /// scheduler. The Target must configure it.
339 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
340   // Get the postRA scheduler set by the target for this function.
341   ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
342   if (Scheduler)
343     return Scheduler;
344 
345   // Default to GenericScheduler.
346   return createGenericSchedPostRA(this);
347 }
348 
349 /// Top-level MachineScheduler pass driver.
350 ///
351 /// Visit blocks in function order. Divide each block into scheduling regions
352 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
353 /// consistent with the DAG builder, which traverses the interior of the
354 /// scheduling regions bottom-up.
355 ///
356 /// This design avoids exposing scheduling boundaries to the DAG builder,
357 /// simplifying the DAG builder's support for "special" target instructions.
358 /// At the same time the design allows target schedulers to operate across
359 /// scheduling boundaries, for example to bundle the boundary instructions
360 /// without reordering them. This creates complexity, because the target
361 /// scheduler must update the RegionBegin and RegionEnd positions cached by
362 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
363 /// design would be to split blocks at scheduling boundaries, but LLVM has a
364 /// general bias against block splitting purely for implementation simplicity.
365 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
366   if (skipFunction(mf.getFunction()))
367     return false;
368 
369   if (EnableMachineSched.getNumOccurrences()) {
370     if (!EnableMachineSched)
371       return false;
372   } else if (!mf.getSubtarget().enableMachineScheduler())
373     return false;
374 
375   LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
376 
377   // Initialize the context of the pass.
378   MF = &mf;
379   MLI = &getAnalysis<MachineLoopInfo>();
380   MDT = &getAnalysis<MachineDominatorTree>();
381   PassConfig = &getAnalysis<TargetPassConfig>();
382   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
383 
384   LIS = &getAnalysis<LiveIntervals>();
385 
386   if (VerifyScheduling) {
387     LLVM_DEBUG(LIS->dump());
388     MF->verify(this, "Before machine scheduling.");
389   }
390   RegClassInfo->runOnMachineFunction(*MF);
391 
392   // Instantiate the selected scheduler for this target, function, and
393   // optimization level.
394   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
395   scheduleRegions(*Scheduler, false);
396 
397   LLVM_DEBUG(LIS->dump());
398   if (VerifyScheduling)
399     MF->verify(this, "After machine scheduling.");
400   return true;
401 }
402 
403 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
404   if (skipFunction(mf.getFunction()))
405     return false;
406 
407   if (EnablePostRAMachineSched.getNumOccurrences()) {
408     if (!EnablePostRAMachineSched)
409       return false;
410   } else if (!mf.getSubtarget().enablePostRAMachineScheduler()) {
411     LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
412     return false;
413   }
414   LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
415 
416   // Initialize the context of the pass.
417   MF = &mf;
418   MLI = &getAnalysis<MachineLoopInfo>();
419   PassConfig = &getAnalysis<TargetPassConfig>();
420   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
421 
422   if (VerifyScheduling)
423     MF->verify(this, "Before post machine scheduling.");
424 
425   // Instantiate the selected scheduler for this target, function, and
426   // optimization level.
427   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
428   scheduleRegions(*Scheduler, true);
429 
430   if (VerifyScheduling)
431     MF->verify(this, "After post machine scheduling.");
432   return true;
433 }
434 
435 /// Return true of the given instruction should not be included in a scheduling
436 /// region.
437 ///
438 /// MachineScheduler does not currently support scheduling across calls. To
439 /// handle calls, the DAG builder needs to be modified to create register
440 /// anti/output dependencies on the registers clobbered by the call's regmask
441 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
442 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
443 /// the boundary, but there would be no benefit to postRA scheduling across
444 /// calls this late anyway.
445 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
446                             MachineBasicBlock *MBB,
447                             MachineFunction *MF,
448                             const TargetInstrInfo *TII) {
449   return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF);
450 }
451 
452 /// A region of an MBB for scheduling.
453 namespace {
454 struct SchedRegion {
455   /// RegionBegin is the first instruction in the scheduling region, and
456   /// RegionEnd is either MBB->end() or the scheduling boundary after the
457   /// last instruction in the scheduling region. These iterators cannot refer
458   /// to instructions outside of the identified scheduling region because
459   /// those may be reordered before scheduling this region.
460   MachineBasicBlock::iterator RegionBegin;
461   MachineBasicBlock::iterator RegionEnd;
462   unsigned NumRegionInstrs;
463 
464   SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E,
465               unsigned N) :
466     RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {}
467 };
468 } // end anonymous namespace
469 
470 using MBBRegionsVector = SmallVector<SchedRegion, 16>;
471 
472 static void
473 getSchedRegions(MachineBasicBlock *MBB,
474                 MBBRegionsVector &Regions,
475                 bool RegionsTopDown) {
476   MachineFunction *MF = MBB->getParent();
477   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
478 
479   MachineBasicBlock::iterator I = nullptr;
480   for(MachineBasicBlock::iterator RegionEnd = MBB->end();
481       RegionEnd != MBB->begin(); RegionEnd = I) {
482 
483     // Avoid decrementing RegionEnd for blocks with no terminator.
484     if (RegionEnd != MBB->end() ||
485         isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
486       --RegionEnd;
487     }
488 
489     // The next region starts above the previous region. Look backward in the
490     // instruction stream until we find the nearest boundary.
491     unsigned NumRegionInstrs = 0;
492     I = RegionEnd;
493     for (;I != MBB->begin(); --I) {
494       MachineInstr &MI = *std::prev(I);
495       if (isSchedBoundary(&MI, &*MBB, MF, TII))
496         break;
497       if (!MI.isDebugInstr()) {
498         // MBB::size() uses instr_iterator to count. Here we need a bundle to
499         // count as a single instruction.
500         ++NumRegionInstrs;
501       }
502     }
503 
504     // It's possible we found a scheduling region that only has debug
505     // instructions. Don't bother scheduling these.
506     if (NumRegionInstrs != 0)
507       Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs));
508   }
509 
510   if (RegionsTopDown)
511     std::reverse(Regions.begin(), Regions.end());
512 }
513 
514 /// Main driver for both MachineScheduler and PostMachineScheduler.
515 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
516                                            bool FixKillFlags) {
517   // Visit all machine basic blocks.
518   //
519   // TODO: Visit blocks in global postorder or postorder within the bottom-up
520   // loop tree. Then we can optionally compute global RegPressure.
521   for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
522        MBB != MBBEnd; ++MBB) {
523 
524     Scheduler.startBlock(&*MBB);
525 
526 #ifndef NDEBUG
527     if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
528       continue;
529     if (SchedOnlyBlock.getNumOccurrences()
530         && (int)SchedOnlyBlock != MBB->getNumber())
531       continue;
532 #endif
533 
534     // Break the block into scheduling regions [I, RegionEnd). RegionEnd
535     // points to the scheduling boundary at the bottom of the region. The DAG
536     // does not include RegionEnd, but the region does (i.e. the next
537     // RegionEnd is above the previous RegionBegin). If the current block has
538     // no terminator then RegionEnd == MBB->end() for the bottom region.
539     //
540     // All the regions of MBB are first found and stored in MBBRegions, which
541     // will be processed (MBB) top-down if initialized with true.
542     //
543     // The Scheduler may insert instructions during either schedule() or
544     // exitRegion(), even for empty regions. So the local iterators 'I' and
545     // 'RegionEnd' are invalid across these calls. Instructions must not be
546     // added to other regions than the current one without updating MBBRegions.
547 
548     MBBRegionsVector MBBRegions;
549     getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown());
550     for (MBBRegionsVector::iterator R = MBBRegions.begin();
551          R != MBBRegions.end(); ++R) {
552       MachineBasicBlock::iterator I = R->RegionBegin;
553       MachineBasicBlock::iterator RegionEnd = R->RegionEnd;
554       unsigned NumRegionInstrs = R->NumRegionInstrs;
555 
556       // Notify the scheduler of the region, even if we may skip scheduling
557       // it. Perhaps it still needs to be bundled.
558       Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
559 
560       // Skip empty scheduling regions (0 or 1 schedulable instructions).
561       if (I == RegionEnd || I == std::prev(RegionEnd)) {
562         // Close the current region. Bundle the terminator if needed.
563         // This invalidates 'RegionEnd' and 'I'.
564         Scheduler.exitRegion();
565         continue;
566       }
567       LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
568       LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB)
569                         << " " << MBB->getName() << "\n  From: " << *I
570                         << "    To: ";
571                  if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
572                  else dbgs() << "End";
573                  dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
574       if (DumpCriticalPathLength) {
575         errs() << MF->getName();
576         errs() << ":%bb. " << MBB->getNumber();
577         errs() << " " << MBB->getName() << " \n";
578       }
579 
580       // Schedule a region: possibly reorder instructions.
581       // This invalidates the original region iterators.
582       Scheduler.schedule();
583 
584       // Close the current region.
585       Scheduler.exitRegion();
586     }
587     Scheduler.finishBlock();
588     // FIXME: Ideally, no further passes should rely on kill flags. However,
589     // thumb2 size reduction is currently an exception, so the PostMIScheduler
590     // needs to do this.
591     if (FixKillFlags)
592       Scheduler.fixupKills(*MBB);
593   }
594   Scheduler.finalizeSchedule();
595 }
596 
597 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
598   // unimplemented
599 }
600 
601 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
602 LLVM_DUMP_METHOD void ReadyQueue::dump() const {
603   dbgs() << "Queue " << Name << ": ";
604   for (const SUnit *SU : Queue)
605     dbgs() << SU->NodeNum << " ";
606   dbgs() << "\n";
607 }
608 #endif
609 
610 //===----------------------------------------------------------------------===//
611 // ScheduleDAGMI - Basic machine instruction scheduling. This is
612 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
613 // virtual registers.
614 // ===----------------------------------------------------------------------===/
615 
616 // Provide a vtable anchor.
617 ScheduleDAGMI::~ScheduleDAGMI() = default;
618 
619 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
620 /// NumPredsLeft reaches zero, release the successor node.
621 ///
622 /// FIXME: Adjust SuccSU height based on MinLatency.
623 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
624   SUnit *SuccSU = SuccEdge->getSUnit();
625 
626   if (SuccEdge->isWeak()) {
627     --SuccSU->WeakPredsLeft;
628     if (SuccEdge->isCluster())
629       NextClusterSucc = SuccSU;
630     return;
631   }
632 #ifndef NDEBUG
633   if (SuccSU->NumPredsLeft == 0) {
634     dbgs() << "*** Scheduling failed! ***\n";
635     dumpNode(*SuccSU);
636     dbgs() << " has been released too many times!\n";
637     llvm_unreachable(nullptr);
638   }
639 #endif
640   // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
641   // CurrCycle may have advanced since then.
642   if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
643     SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
644 
645   --SuccSU->NumPredsLeft;
646   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
647     SchedImpl->releaseTopNode(SuccSU);
648 }
649 
650 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
651 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
652   for (SDep &Succ : SU->Succs)
653     releaseSucc(SU, &Succ);
654 }
655 
656 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
657 /// NumSuccsLeft reaches zero, release the predecessor node.
658 ///
659 /// FIXME: Adjust PredSU height based on MinLatency.
660 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
661   SUnit *PredSU = PredEdge->getSUnit();
662 
663   if (PredEdge->isWeak()) {
664     --PredSU->WeakSuccsLeft;
665     if (PredEdge->isCluster())
666       NextClusterPred = PredSU;
667     return;
668   }
669 #ifndef NDEBUG
670   if (PredSU->NumSuccsLeft == 0) {
671     dbgs() << "*** Scheduling failed! ***\n";
672     dumpNode(*PredSU);
673     dbgs() << " has been released too many times!\n";
674     llvm_unreachable(nullptr);
675   }
676 #endif
677   // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
678   // CurrCycle may have advanced since then.
679   if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
680     PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
681 
682   --PredSU->NumSuccsLeft;
683   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
684     SchedImpl->releaseBottomNode(PredSU);
685 }
686 
687 /// releasePredecessors - Call releasePred on each of SU's predecessors.
688 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
689   for (SDep &Pred : SU->Preds)
690     releasePred(SU, &Pred);
691 }
692 
693 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) {
694   ScheduleDAGInstrs::startBlock(bb);
695   SchedImpl->enterMBB(bb);
696 }
697 
698 void ScheduleDAGMI::finishBlock() {
699   SchedImpl->leaveMBB();
700   ScheduleDAGInstrs::finishBlock();
701 }
702 
703 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
704 /// crossing a scheduling boundary. [begin, end) includes all instructions in
705 /// the region, including the boundary itself and single-instruction regions
706 /// that don't get scheduled.
707 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
708                                      MachineBasicBlock::iterator begin,
709                                      MachineBasicBlock::iterator end,
710                                      unsigned regioninstrs)
711 {
712   ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
713 
714   SchedImpl->initPolicy(begin, end, regioninstrs);
715 }
716 
717 /// This is normally called from the main scheduler loop but may also be invoked
718 /// by the scheduling strategy to perform additional code motion.
719 void ScheduleDAGMI::moveInstruction(
720   MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
721   // Advance RegionBegin if the first instruction moves down.
722   if (&*RegionBegin == MI)
723     ++RegionBegin;
724 
725   // Update the instruction stream.
726   BB->splice(InsertPos, BB, MI);
727 
728   // Update LiveIntervals
729   if (LIS)
730     LIS->handleMove(*MI, /*UpdateFlags=*/true);
731 
732   // Recede RegionBegin if an instruction moves above the first.
733   if (RegionBegin == InsertPos)
734     RegionBegin = MI;
735 }
736 
737 bool ScheduleDAGMI::checkSchedLimit() {
738 #ifndef NDEBUG
739   if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
740     CurrentTop = CurrentBottom;
741     return false;
742   }
743   ++NumInstrsScheduled;
744 #endif
745   return true;
746 }
747 
748 /// Per-region scheduling driver, called back from
749 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that
750 /// does not consider liveness or register pressure. It is useful for PostRA
751 /// scheduling and potentially other custom schedulers.
752 void ScheduleDAGMI::schedule() {
753   LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
754   LLVM_DEBUG(SchedImpl->dumpPolicy());
755 
756   // Build the DAG.
757   buildSchedGraph(AA);
758 
759   postprocessDAG();
760 
761   SmallVector<SUnit*, 8> TopRoots, BotRoots;
762   findRootsAndBiasEdges(TopRoots, BotRoots);
763 
764   LLVM_DEBUG(dump());
765   if (PrintDAGs) dump();
766   if (ViewMISchedDAGs) viewGraph();
767 
768   // Initialize the strategy before modifying the DAG.
769   // This may initialize a DFSResult to be used for queue priority.
770   SchedImpl->initialize(this);
771 
772   // Initialize ready queues now that the DAG and priority data are finalized.
773   initQueues(TopRoots, BotRoots);
774 
775   bool IsTopNode = false;
776   while (true) {
777     LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
778     SUnit *SU = SchedImpl->pickNode(IsTopNode);
779     if (!SU) break;
780 
781     assert(!SU->isScheduled && "Node already scheduled");
782     if (!checkSchedLimit())
783       break;
784 
785     MachineInstr *MI = SU->getInstr();
786     if (IsTopNode) {
787       assert(SU->isTopReady() && "node still has unscheduled dependencies");
788       if (&*CurrentTop == MI)
789         CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
790       else
791         moveInstruction(MI, CurrentTop);
792     } else {
793       assert(SU->isBottomReady() && "node still has unscheduled dependencies");
794       MachineBasicBlock::iterator priorII =
795         priorNonDebug(CurrentBottom, CurrentTop);
796       if (&*priorII == MI)
797         CurrentBottom = priorII;
798       else {
799         if (&*CurrentTop == MI)
800           CurrentTop = nextIfDebug(++CurrentTop, priorII);
801         moveInstruction(MI, CurrentBottom);
802         CurrentBottom = MI;
803       }
804     }
805     // Notify the scheduling strategy before updating the DAG.
806     // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
807     // runs, it can then use the accurate ReadyCycle time to determine whether
808     // newly released nodes can move to the readyQ.
809     SchedImpl->schedNode(SU, IsTopNode);
810 
811     updateQueues(SU, IsTopNode);
812   }
813   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
814 
815   placeDebugValues();
816 
817   LLVM_DEBUG({
818     dbgs() << "*** Final schedule for "
819            << printMBBReference(*begin()->getParent()) << " ***\n";
820     dumpSchedule();
821     dbgs() << '\n';
822   });
823 }
824 
825 /// Apply each ScheduleDAGMutation step in order.
826 void ScheduleDAGMI::postprocessDAG() {
827   for (auto &m : Mutations)
828     m->apply(this);
829 }
830 
831 void ScheduleDAGMI::
832 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
833                       SmallVectorImpl<SUnit*> &BotRoots) {
834   for (SUnit &SU : SUnits) {
835     assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits");
836 
837     // Order predecessors so DFSResult follows the critical path.
838     SU.biasCriticalPath();
839 
840     // A SUnit is ready to top schedule if it has no predecessors.
841     if (!SU.NumPredsLeft)
842       TopRoots.push_back(&SU);
843     // A SUnit is ready to bottom schedule if it has no successors.
844     if (!SU.NumSuccsLeft)
845       BotRoots.push_back(&SU);
846   }
847   ExitSU.biasCriticalPath();
848 }
849 
850 /// Identify DAG roots and setup scheduler queues.
851 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
852                                ArrayRef<SUnit*> BotRoots) {
853   NextClusterSucc = nullptr;
854   NextClusterPred = nullptr;
855 
856   // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
857   //
858   // Nodes with unreleased weak edges can still be roots.
859   // Release top roots in forward order.
860   for (SUnit *SU : TopRoots)
861     SchedImpl->releaseTopNode(SU);
862 
863   // Release bottom roots in reverse order so the higher priority nodes appear
864   // first. This is more natural and slightly more efficient.
865   for (SmallVectorImpl<SUnit*>::const_reverse_iterator
866          I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
867     SchedImpl->releaseBottomNode(*I);
868   }
869 
870   releaseSuccessors(&EntrySU);
871   releasePredecessors(&ExitSU);
872 
873   SchedImpl->registerRoots();
874 
875   // Advance past initial DebugValues.
876   CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
877   CurrentBottom = RegionEnd;
878 }
879 
880 /// Update scheduler queues after scheduling an instruction.
881 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
882   // Release dependent instructions for scheduling.
883   if (IsTopNode)
884     releaseSuccessors(SU);
885   else
886     releasePredecessors(SU);
887 
888   SU->isScheduled = true;
889 }
890 
891 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
892 void ScheduleDAGMI::placeDebugValues() {
893   // If first instruction was a DBG_VALUE then put it back.
894   if (FirstDbgValue) {
895     BB->splice(RegionBegin, BB, FirstDbgValue);
896     RegionBegin = FirstDbgValue;
897   }
898 
899   for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator
900          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
901     std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
902     MachineInstr *DbgValue = P.first;
903     MachineBasicBlock::iterator OrigPrevMI = P.second;
904     if (&*RegionBegin == DbgValue)
905       ++RegionBegin;
906     BB->splice(++OrigPrevMI, BB, DbgValue);
907     if (OrigPrevMI == std::prev(RegionEnd))
908       RegionEnd = DbgValue;
909   }
910   DbgValues.clear();
911   FirstDbgValue = nullptr;
912 }
913 
914 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
915 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const {
916   for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
917     if (SUnit *SU = getSUnit(&(*MI)))
918       dumpNode(*SU);
919     else
920       dbgs() << "Missing SUnit\n";
921   }
922 }
923 #endif
924 
925 //===----------------------------------------------------------------------===//
926 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
927 // preservation.
928 //===----------------------------------------------------------------------===//
929 
930 ScheduleDAGMILive::~ScheduleDAGMILive() {
931   delete DFSResult;
932 }
933 
934 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) {
935   const MachineInstr &MI = *SU.getInstr();
936   for (const MachineOperand &MO : MI.operands()) {
937     if (!MO.isReg())
938       continue;
939     if (!MO.readsReg())
940       continue;
941     if (TrackLaneMasks && !MO.isUse())
942       continue;
943 
944     Register Reg = MO.getReg();
945     if (!Register::isVirtualRegister(Reg))
946       continue;
947 
948     // Ignore re-defs.
949     if (TrackLaneMasks) {
950       bool FoundDef = false;
951       for (const MachineOperand &MO2 : MI.operands()) {
952         if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) {
953           FoundDef = true;
954           break;
955         }
956       }
957       if (FoundDef)
958         continue;
959     }
960 
961     // Record this local VReg use.
962     VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
963     for (; UI != VRegUses.end(); ++UI) {
964       if (UI->SU == &SU)
965         break;
966     }
967     if (UI == VRegUses.end())
968       VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU));
969   }
970 }
971 
972 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
973 /// crossing a scheduling boundary. [begin, end) includes all instructions in
974 /// the region, including the boundary itself and single-instruction regions
975 /// that don't get scheduled.
976 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
977                                 MachineBasicBlock::iterator begin,
978                                 MachineBasicBlock::iterator end,
979                                 unsigned regioninstrs)
980 {
981   // ScheduleDAGMI initializes SchedImpl's per-region policy.
982   ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
983 
984   // For convenience remember the end of the liveness region.
985   LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
986 
987   SUPressureDiffs.clear();
988 
989   ShouldTrackPressure = SchedImpl->shouldTrackPressure();
990   ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks();
991 
992   assert((!ShouldTrackLaneMasks || ShouldTrackPressure) &&
993          "ShouldTrackLaneMasks requires ShouldTrackPressure");
994 }
995 
996 // Setup the register pressure trackers for the top scheduled and bottom
997 // scheduled regions.
998 void ScheduleDAGMILive::initRegPressure() {
999   VRegUses.clear();
1000   VRegUses.setUniverse(MRI.getNumVirtRegs());
1001   for (SUnit &SU : SUnits)
1002     collectVRegUses(SU);
1003 
1004   TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin,
1005                     ShouldTrackLaneMasks, false);
1006   BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1007                     ShouldTrackLaneMasks, false);
1008 
1009   // Close the RPTracker to finalize live ins.
1010   RPTracker.closeRegion();
1011 
1012   LLVM_DEBUG(RPTracker.dump());
1013 
1014   // Initialize the live ins and live outs.
1015   TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
1016   BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
1017 
1018   // Close one end of the tracker so we can call
1019   // getMaxUpward/DownwardPressureDelta before advancing across any
1020   // instructions. This converts currently live regs into live ins/outs.
1021   TopRPTracker.closeTop();
1022   BotRPTracker.closeBottom();
1023 
1024   BotRPTracker.initLiveThru(RPTracker);
1025   if (!BotRPTracker.getLiveThru().empty()) {
1026     TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
1027     LLVM_DEBUG(dbgs() << "Live Thru: ";
1028                dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
1029   };
1030 
1031   // For each live out vreg reduce the pressure change associated with other
1032   // uses of the same vreg below the live-out reaching def.
1033   updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
1034 
1035   // Account for liveness generated by the region boundary.
1036   if (LiveRegionEnd != RegionEnd) {
1037     SmallVector<RegisterMaskPair, 8> LiveUses;
1038     BotRPTracker.recede(&LiveUses);
1039     updatePressureDiffs(LiveUses);
1040   }
1041 
1042   LLVM_DEBUG(dbgs() << "Top Pressure:\n";
1043              dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
1044              dbgs() << "Bottom Pressure:\n";
1045              dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI););
1046 
1047   assert((BotRPTracker.getPos() == RegionEnd ||
1048           (RegionEnd->isDebugInstr() &&
1049            BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) &&
1050          "Can't find the region bottom");
1051 
1052   // Cache the list of excess pressure sets in this region. This will also track
1053   // the max pressure in the scheduled code for these sets.
1054   RegionCriticalPSets.clear();
1055   const std::vector<unsigned> &RegionPressure =
1056     RPTracker.getPressure().MaxSetPressure;
1057   for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
1058     unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
1059     if (RegionPressure[i] > Limit) {
1060       LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit
1061                         << " Actual " << RegionPressure[i] << "\n");
1062       RegionCriticalPSets.push_back(PressureChange(i));
1063     }
1064   }
1065   LLVM_DEBUG(dbgs() << "Excess PSets: ";
1066              for (const PressureChange &RCPS
1067                   : RegionCriticalPSets) dbgs()
1068              << TRI->getRegPressureSetName(RCPS.getPSet()) << " ";
1069              dbgs() << "\n");
1070 }
1071 
1072 void ScheduleDAGMILive::
1073 updateScheduledPressure(const SUnit *SU,
1074                         const std::vector<unsigned> &NewMaxPressure) {
1075   const PressureDiff &PDiff = getPressureDiff(SU);
1076   unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
1077   for (const PressureChange &PC : PDiff) {
1078     if (!PC.isValid())
1079       break;
1080     unsigned ID = PC.getPSet();
1081     while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
1082       ++CritIdx;
1083     if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
1084       if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
1085           && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max())
1086         RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
1087     }
1088     unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
1089     if (NewMaxPressure[ID] >= Limit - 2) {
1090       LLVM_DEBUG(dbgs() << "  " << TRI->getRegPressureSetName(ID) << ": "
1091                         << NewMaxPressure[ID]
1092                         << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ")
1093                         << Limit << "(+ " << BotRPTracker.getLiveThru()[ID]
1094                         << " livethru)\n");
1095     }
1096   }
1097 }
1098 
1099 /// Update the PressureDiff array for liveness after scheduling this
1100 /// instruction.
1101 void ScheduleDAGMILive::updatePressureDiffs(
1102     ArrayRef<RegisterMaskPair> LiveUses) {
1103   for (const RegisterMaskPair &P : LiveUses) {
1104     unsigned Reg = P.RegUnit;
1105     /// FIXME: Currently assuming single-use physregs.
1106     if (!Register::isVirtualRegister(Reg))
1107       continue;
1108 
1109     if (ShouldTrackLaneMasks) {
1110       // If the register has just become live then other uses won't change
1111       // this fact anymore => decrement pressure.
1112       // If the register has just become dead then other uses make it come
1113       // back to life => increment pressure.
1114       bool Decrement = P.LaneMask.any();
1115 
1116       for (const VReg2SUnit &V2SU
1117            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1118         SUnit &SU = *V2SU.SU;
1119         if (SU.isScheduled || &SU == &ExitSU)
1120           continue;
1121 
1122         PressureDiff &PDiff = getPressureDiff(&SU);
1123         PDiff.addPressureChange(Reg, Decrement, &MRI);
1124         LLVM_DEBUG(dbgs() << "  UpdateRegP: SU(" << SU.NodeNum << ") "
1125                           << printReg(Reg, TRI) << ':'
1126                           << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr();
1127                    dbgs() << "              to "; PDiff.dump(*TRI););
1128       }
1129     } else {
1130       assert(P.LaneMask.any());
1131       LLVM_DEBUG(dbgs() << "  LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n");
1132       // This may be called before CurrentBottom has been initialized. However,
1133       // BotRPTracker must have a valid position. We want the value live into the
1134       // instruction or live out of the block, so ask for the previous
1135       // instruction's live-out.
1136       const LiveInterval &LI = LIS->getInterval(Reg);
1137       VNInfo *VNI;
1138       MachineBasicBlock::const_iterator I =
1139         nextIfDebug(BotRPTracker.getPos(), BB->end());
1140       if (I == BB->end())
1141         VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1142       else {
1143         LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I));
1144         VNI = LRQ.valueIn();
1145       }
1146       // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
1147       assert(VNI && "No live value at use.");
1148       for (const VReg2SUnit &V2SU
1149            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1150         SUnit *SU = V2SU.SU;
1151         // If this use comes before the reaching def, it cannot be a last use,
1152         // so decrease its pressure change.
1153         if (!SU->isScheduled && SU != &ExitSU) {
1154           LiveQueryResult LRQ =
1155               LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1156           if (LRQ.valueIn() == VNI) {
1157             PressureDiff &PDiff = getPressureDiff(SU);
1158             PDiff.addPressureChange(Reg, true, &MRI);
1159             LLVM_DEBUG(dbgs() << "  UpdateRegP: SU(" << SU->NodeNum << ") "
1160                               << *SU->getInstr();
1161                        dbgs() << "              to "; PDiff.dump(*TRI););
1162           }
1163         }
1164       }
1165     }
1166   }
1167 }
1168 
1169 void ScheduleDAGMILive::dump() const {
1170 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1171   if (EntrySU.getInstr() != nullptr)
1172     dumpNodeAll(EntrySU);
1173   for (const SUnit &SU : SUnits) {
1174     dumpNodeAll(SU);
1175     if (ShouldTrackPressure) {
1176       dbgs() << "  Pressure Diff      : ";
1177       getPressureDiff(&SU).dump(*TRI);
1178     }
1179     dbgs() << "  Single Issue       : ";
1180     if (SchedModel.mustBeginGroup(SU.getInstr()) &&
1181         SchedModel.mustEndGroup(SU.getInstr()))
1182       dbgs() << "true;";
1183     else
1184       dbgs() << "false;";
1185     dbgs() << '\n';
1186   }
1187   if (ExitSU.getInstr() != nullptr)
1188     dumpNodeAll(ExitSU);
1189 #endif
1190 }
1191 
1192 /// schedule - Called back from MachineScheduler::runOnMachineFunction
1193 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
1194 /// only includes instructions that have DAG nodes, not scheduling boundaries.
1195 ///
1196 /// This is a skeletal driver, with all the functionality pushed into helpers,
1197 /// so that it can be easily extended by experimental schedulers. Generally,
1198 /// implementing MachineSchedStrategy should be sufficient to implement a new
1199 /// scheduling algorithm. However, if a scheduler further subclasses
1200 /// ScheduleDAGMILive then it will want to override this virtual method in order
1201 /// to update any specialized state.
1202 void ScheduleDAGMILive::schedule() {
1203   LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
1204   LLVM_DEBUG(SchedImpl->dumpPolicy());
1205   buildDAGWithRegPressure();
1206 
1207   postprocessDAG();
1208 
1209   SmallVector<SUnit*, 8> TopRoots, BotRoots;
1210   findRootsAndBiasEdges(TopRoots, BotRoots);
1211 
1212   // Initialize the strategy before modifying the DAG.
1213   // This may initialize a DFSResult to be used for queue priority.
1214   SchedImpl->initialize(this);
1215 
1216   LLVM_DEBUG(dump());
1217   if (PrintDAGs) dump();
1218   if (ViewMISchedDAGs) viewGraph();
1219 
1220   // Initialize ready queues now that the DAG and priority data are finalized.
1221   initQueues(TopRoots, BotRoots);
1222 
1223   bool IsTopNode = false;
1224   while (true) {
1225     LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
1226     SUnit *SU = SchedImpl->pickNode(IsTopNode);
1227     if (!SU) break;
1228 
1229     assert(!SU->isScheduled && "Node already scheduled");
1230     if (!checkSchedLimit())
1231       break;
1232 
1233     scheduleMI(SU, IsTopNode);
1234 
1235     if (DFSResult) {
1236       unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1237       if (!ScheduledTrees.test(SubtreeID)) {
1238         ScheduledTrees.set(SubtreeID);
1239         DFSResult->scheduleTree(SubtreeID);
1240         SchedImpl->scheduleTree(SubtreeID);
1241       }
1242     }
1243 
1244     // Notify the scheduling strategy after updating the DAG.
1245     SchedImpl->schedNode(SU, IsTopNode);
1246 
1247     updateQueues(SU, IsTopNode);
1248   }
1249   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1250 
1251   placeDebugValues();
1252 
1253   LLVM_DEBUG({
1254     dbgs() << "*** Final schedule for "
1255            << printMBBReference(*begin()->getParent()) << " ***\n";
1256     dumpSchedule();
1257     dbgs() << '\n';
1258   });
1259 }
1260 
1261 /// Build the DAG and setup three register pressure trackers.
1262 void ScheduleDAGMILive::buildDAGWithRegPressure() {
1263   if (!ShouldTrackPressure) {
1264     RPTracker.reset();
1265     RegionCriticalPSets.clear();
1266     buildSchedGraph(AA);
1267     return;
1268   }
1269 
1270   // Initialize the register pressure tracker used by buildSchedGraph.
1271   RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1272                  ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true);
1273 
1274   // Account for liveness generate by the region boundary.
1275   if (LiveRegionEnd != RegionEnd)
1276     RPTracker.recede();
1277 
1278   // Build the DAG, and compute current register pressure.
1279   buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks);
1280 
1281   // Initialize top/bottom trackers after computing region pressure.
1282   initRegPressure();
1283 }
1284 
1285 void ScheduleDAGMILive::computeDFSResult() {
1286   if (!DFSResult)
1287     DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1288   DFSResult->clear();
1289   ScheduledTrees.clear();
1290   DFSResult->resize(SUnits.size());
1291   DFSResult->compute(SUnits);
1292   ScheduledTrees.resize(DFSResult->getNumSubtrees());
1293 }
1294 
1295 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
1296 /// only provides the critical path for single block loops. To handle loops that
1297 /// span blocks, we could use the vreg path latencies provided by
1298 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1299 /// available for use in the scheduler.
1300 ///
1301 /// The cyclic path estimation identifies a def-use pair that crosses the back
1302 /// edge and considers the depth and height of the nodes. For example, consider
1303 /// the following instruction sequence where each instruction has unit latency
1304 /// and defines an eponymous virtual register:
1305 ///
1306 /// a->b(a,c)->c(b)->d(c)->exit
1307 ///
1308 /// The cyclic critical path is a two cycles: b->c->b
1309 /// The acyclic critical path is four cycles: a->b->c->d->exit
1310 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
1311 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1312 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1313 /// LiveInDepth = depth(b) = len(a->b) = 1
1314 ///
1315 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1316 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1317 /// CyclicCriticalPath = min(2, 2) = 2
1318 ///
1319 /// This could be relevant to PostRA scheduling, but is currently implemented
1320 /// assuming LiveIntervals.
1321 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1322   // This only applies to single block loop.
1323   if (!BB->isSuccessor(BB))
1324     return 0;
1325 
1326   unsigned MaxCyclicLatency = 0;
1327   // Visit each live out vreg def to find def/use pairs that cross iterations.
1328   for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) {
1329     unsigned Reg = P.RegUnit;
1330     if (!Register::isVirtualRegister(Reg))
1331       continue;
1332     const LiveInterval &LI = LIS->getInterval(Reg);
1333     const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1334     if (!DefVNI)
1335       continue;
1336 
1337     MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1338     const SUnit *DefSU = getSUnit(DefMI);
1339     if (!DefSU)
1340       continue;
1341 
1342     unsigned LiveOutHeight = DefSU->getHeight();
1343     unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1344     // Visit all local users of the vreg def.
1345     for (const VReg2SUnit &V2SU
1346          : make_range(VRegUses.find(Reg), VRegUses.end())) {
1347       SUnit *SU = V2SU.SU;
1348       if (SU == &ExitSU)
1349         continue;
1350 
1351       // Only consider uses of the phi.
1352       LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1353       if (!LRQ.valueIn()->isPHIDef())
1354         continue;
1355 
1356       // Assume that a path spanning two iterations is a cycle, which could
1357       // overestimate in strange cases. This allows cyclic latency to be
1358       // estimated as the minimum slack of the vreg's depth or height.
1359       unsigned CyclicLatency = 0;
1360       if (LiveOutDepth > SU->getDepth())
1361         CyclicLatency = LiveOutDepth - SU->getDepth();
1362 
1363       unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
1364       if (LiveInHeight > LiveOutHeight) {
1365         if (LiveInHeight - LiveOutHeight < CyclicLatency)
1366           CyclicLatency = LiveInHeight - LiveOutHeight;
1367       } else
1368         CyclicLatency = 0;
1369 
1370       LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1371                         << SU->NodeNum << ") = " << CyclicLatency << "c\n");
1372       if (CyclicLatency > MaxCyclicLatency)
1373         MaxCyclicLatency = CyclicLatency;
1374     }
1375   }
1376   LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1377   return MaxCyclicLatency;
1378 }
1379 
1380 /// Release ExitSU predecessors and setup scheduler queues. Re-position
1381 /// the Top RP tracker in case the region beginning has changed.
1382 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots,
1383                                    ArrayRef<SUnit*> BotRoots) {
1384   ScheduleDAGMI::initQueues(TopRoots, BotRoots);
1385   if (ShouldTrackPressure) {
1386     assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1387     TopRPTracker.setPos(CurrentTop);
1388   }
1389 }
1390 
1391 /// Move an instruction and update register pressure.
1392 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1393   // Move the instruction to its new location in the instruction stream.
1394   MachineInstr *MI = SU->getInstr();
1395 
1396   if (IsTopNode) {
1397     assert(SU->isTopReady() && "node still has unscheduled dependencies");
1398     if (&*CurrentTop == MI)
1399       CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1400     else {
1401       moveInstruction(MI, CurrentTop);
1402       TopRPTracker.setPos(MI);
1403     }
1404 
1405     if (ShouldTrackPressure) {
1406       // Update top scheduled pressure.
1407       RegisterOperands RegOpers;
1408       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1409       if (ShouldTrackLaneMasks) {
1410         // Adjust liveness and add missing dead+read-undef flags.
1411         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1412         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1413       } else {
1414         // Adjust for missing dead-def flags.
1415         RegOpers.detectDeadDefs(*MI, *LIS);
1416       }
1417 
1418       TopRPTracker.advance(RegOpers);
1419       assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1420       LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure(
1421                      TopRPTracker.getRegSetPressureAtPos(), TRI););
1422 
1423       updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1424     }
1425   } else {
1426     assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1427     MachineBasicBlock::iterator priorII =
1428       priorNonDebug(CurrentBottom, CurrentTop);
1429     if (&*priorII == MI)
1430       CurrentBottom = priorII;
1431     else {
1432       if (&*CurrentTop == MI) {
1433         CurrentTop = nextIfDebug(++CurrentTop, priorII);
1434         TopRPTracker.setPos(CurrentTop);
1435       }
1436       moveInstruction(MI, CurrentBottom);
1437       CurrentBottom = MI;
1438       BotRPTracker.setPos(CurrentBottom);
1439     }
1440     if (ShouldTrackPressure) {
1441       RegisterOperands RegOpers;
1442       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1443       if (ShouldTrackLaneMasks) {
1444         // Adjust liveness and add missing dead+read-undef flags.
1445         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1446         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1447       } else {
1448         // Adjust for missing dead-def flags.
1449         RegOpers.detectDeadDefs(*MI, *LIS);
1450       }
1451 
1452       if (BotRPTracker.getPos() != CurrentBottom)
1453         BotRPTracker.recedeSkipDebugValues();
1454       SmallVector<RegisterMaskPair, 8> LiveUses;
1455       BotRPTracker.recede(RegOpers, &LiveUses);
1456       assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1457       LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure(
1458                      BotRPTracker.getRegSetPressureAtPos(), TRI););
1459 
1460       updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1461       updatePressureDiffs(LiveUses);
1462     }
1463   }
1464 }
1465 
1466 //===----------------------------------------------------------------------===//
1467 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores.
1468 //===----------------------------------------------------------------------===//
1469 
1470 namespace {
1471 
1472 /// Post-process the DAG to create cluster edges between neighboring
1473 /// loads or between neighboring stores.
1474 class BaseMemOpClusterMutation : public ScheduleDAGMutation {
1475   struct MemOpInfo {
1476     SUnit *SU;
1477     SmallVector<const MachineOperand *, 4> BaseOps;
1478     int64_t Offset;
1479     unsigned Width;
1480 
1481     MemOpInfo(SUnit *SU, ArrayRef<const MachineOperand *> BaseOps,
1482               int64_t Offset, unsigned Width)
1483         : SU(SU), BaseOps(BaseOps.begin(), BaseOps.end()), Offset(Offset),
1484           Width(Width) {}
1485 
1486     static bool Compare(const MachineOperand *const &A,
1487                         const MachineOperand *const &B) {
1488       if (A->getType() != B->getType())
1489         return A->getType() < B->getType();
1490       if (A->isReg())
1491         return A->getReg() < B->getReg();
1492       if (A->isFI()) {
1493         const MachineFunction &MF = *A->getParent()->getParent()->getParent();
1494         const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering();
1495         bool StackGrowsDown = TFI.getStackGrowthDirection() ==
1496                               TargetFrameLowering::StackGrowsDown;
1497         return StackGrowsDown ? A->getIndex() > B->getIndex()
1498                               : A->getIndex() < B->getIndex();
1499       }
1500 
1501       llvm_unreachable("MemOpClusterMutation only supports register or frame "
1502                        "index bases.");
1503     }
1504 
1505     bool operator<(const MemOpInfo &RHS) const {
1506       // FIXME: Don't compare everything twice. Maybe use C++20 three way
1507       // comparison instead when it's available.
1508       if (std::lexicographical_compare(BaseOps.begin(), BaseOps.end(),
1509                                        RHS.BaseOps.begin(), RHS.BaseOps.end(),
1510                                        Compare))
1511         return true;
1512       if (std::lexicographical_compare(RHS.BaseOps.begin(), RHS.BaseOps.end(),
1513                                        BaseOps.begin(), BaseOps.end(), Compare))
1514         return false;
1515       if (Offset != RHS.Offset)
1516         return Offset < RHS.Offset;
1517       return SU->NodeNum < RHS.SU->NodeNum;
1518     }
1519   };
1520 
1521   const TargetInstrInfo *TII;
1522   const TargetRegisterInfo *TRI;
1523   bool IsLoad;
1524 
1525 public:
1526   BaseMemOpClusterMutation(const TargetInstrInfo *tii,
1527                            const TargetRegisterInfo *tri, bool IsLoad)
1528       : TII(tii), TRI(tri), IsLoad(IsLoad) {}
1529 
1530   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1531 
1532 protected:
1533   void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGInstrs *DAG);
1534 };
1535 
1536 class StoreClusterMutation : public BaseMemOpClusterMutation {
1537 public:
1538   StoreClusterMutation(const TargetInstrInfo *tii,
1539                        const TargetRegisterInfo *tri)
1540       : BaseMemOpClusterMutation(tii, tri, false) {}
1541 };
1542 
1543 class LoadClusterMutation : public BaseMemOpClusterMutation {
1544 public:
1545   LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri)
1546       : BaseMemOpClusterMutation(tii, tri, true) {}
1547 };
1548 
1549 } // end anonymous namespace
1550 
1551 namespace llvm {
1552 
1553 std::unique_ptr<ScheduleDAGMutation>
1554 createLoadClusterDAGMutation(const TargetInstrInfo *TII,
1555                              const TargetRegisterInfo *TRI) {
1556   return EnableMemOpCluster ? std::make_unique<LoadClusterMutation>(TII, TRI)
1557                             : nullptr;
1558 }
1559 
1560 std::unique_ptr<ScheduleDAGMutation>
1561 createStoreClusterDAGMutation(const TargetInstrInfo *TII,
1562                               const TargetRegisterInfo *TRI) {
1563   return EnableMemOpCluster ? std::make_unique<StoreClusterMutation>(TII, TRI)
1564                             : nullptr;
1565 }
1566 
1567 } // end namespace llvm
1568 
1569 void BaseMemOpClusterMutation::clusterNeighboringMemOps(
1570     ArrayRef<SUnit *> MemOps, ScheduleDAGInstrs *DAG) {
1571   SmallVector<MemOpInfo, 32> MemOpRecords;
1572   for (SUnit *SU : MemOps) {
1573     const MachineInstr &MI = *SU->getInstr();
1574     SmallVector<const MachineOperand *, 4> BaseOps;
1575     int64_t Offset;
1576     bool OffsetIsScalable;
1577     unsigned Width;
1578     if (TII->getMemOperandsWithOffsetWidth(MI, BaseOps, Offset,
1579                                            OffsetIsScalable, Width, TRI)) {
1580       MemOpRecords.push_back(MemOpInfo(SU, BaseOps, Offset, Width));
1581 
1582       LLVM_DEBUG(dbgs() << "Num BaseOps: " << BaseOps.size() << ", Offset: "
1583                         << Offset << ", OffsetIsScalable: " << OffsetIsScalable
1584                         << ", Width: " << Width << "\n");
1585     }
1586 #ifndef NDEBUG
1587     for (auto *Op : BaseOps)
1588       assert(Op);
1589 #endif
1590   }
1591   if (MemOpRecords.size() < 2)
1592     return;
1593 
1594   llvm::sort(MemOpRecords);
1595 
1596   // At this point, `MemOpRecords` array must hold atleast two mem ops. Try to
1597   // cluster mem ops collected within `MemOpRecords` array.
1598   unsigned ClusterLength = 1;
1599   unsigned CurrentClusterBytes = MemOpRecords[0].Width;
1600   for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) {
1601     // Decision to cluster mem ops is taken based on target dependent logic
1602     auto MemOpa = MemOpRecords[Idx];
1603     auto MemOpb = MemOpRecords[Idx + 1];
1604     ++ClusterLength;
1605     CurrentClusterBytes += MemOpb.Width;
1606     if (!TII->shouldClusterMemOps(MemOpa.BaseOps, MemOpb.BaseOps, ClusterLength,
1607                                   CurrentClusterBytes)) {
1608       // Current mem ops pair could not be clustered, reset cluster length, and
1609       // go to next pair
1610       ClusterLength = 1;
1611       CurrentClusterBytes = MemOpb.Width;
1612       continue;
1613     }
1614 
1615     SUnit *SUa = MemOpa.SU;
1616     SUnit *SUb = MemOpb.SU;
1617     if (SUa->NodeNum > SUb->NodeNum)
1618       std::swap(SUa, SUb);
1619 
1620     // FIXME: Is this check really required?
1621     if (!DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
1622       ClusterLength = 1;
1623       CurrentClusterBytes = MemOpb.Width;
1624       continue;
1625     }
1626 
1627     LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU("
1628                       << SUb->NodeNum << ")\n");
1629     ++NumClustered;
1630 
1631     if (IsLoad) {
1632       // Copy successor edges from SUa to SUb. Interleaving computation
1633       // dependent on SUa can prevent load combining due to register reuse.
1634       // Predecessor edges do not need to be copied from SUb to SUa since
1635       // nearby loads should have effectively the same inputs.
1636       for (const SDep &Succ : SUa->Succs) {
1637         if (Succ.getSUnit() == SUb)
1638           continue;
1639         LLVM_DEBUG(dbgs() << "  Copy Succ SU(" << Succ.getSUnit()->NodeNum
1640                           << ")\n");
1641         DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial));
1642       }
1643     } else {
1644       // Copy predecessor edges from SUb to SUa to avoid the SUnits that
1645       // SUb dependent on scheduled in-between SUb and SUa. Successor edges
1646       // do not need to be copied from SUa to SUb since no one will depend
1647       // on stores.
1648       // Notice that, we don't need to care about the memory dependency as
1649       // we won't try to cluster them if they have any memory dependency.
1650       for (const SDep &Pred : SUb->Preds) {
1651         if (Pred.getSUnit() == SUa)
1652           continue;
1653         LLVM_DEBUG(dbgs() << "  Copy Pred SU(" << Pred.getSUnit()->NodeNum
1654                           << ")\n");
1655         DAG->addEdge(SUa, SDep(Pred.getSUnit(), SDep::Artificial));
1656       }
1657     }
1658 
1659     LLVM_DEBUG(dbgs() << "  Curr cluster length: " << ClusterLength
1660                       << ", Curr cluster bytes: " << CurrentClusterBytes
1661                       << "\n");
1662   }
1663 }
1664 
1665 /// Callback from DAG postProcessing to create cluster edges for loads.
1666 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAG) {
1667   // Map DAG NodeNum to a set of dependent MemOps in store chain.
1668   DenseMap<unsigned, SmallVector<SUnit *, 4>> StoreChains;
1669   for (SUnit &SU : DAG->SUnits) {
1670     if ((IsLoad && !SU.getInstr()->mayLoad()) ||
1671         (!IsLoad && !SU.getInstr()->mayStore()))
1672       continue;
1673 
1674     unsigned ChainPredID = DAG->SUnits.size();
1675     for (const SDep &Pred : SU.Preds) {
1676       // We only want to cluster the mem ops that have the same ctrl(non-data)
1677       // pred so that they didn't have ctrl dependency for each other. But for
1678       // store instrs, we can still cluster them if the pred is load instr.
1679       if ((Pred.isCtrl() &&
1680            (IsLoad ||
1681             (Pred.getSUnit() && Pred.getSUnit()->getInstr()->mayStore()))) &&
1682           !Pred.isArtificial()) {
1683         ChainPredID = Pred.getSUnit()->NodeNum;
1684         break;
1685       }
1686     }
1687     // Insert the SU to corresponding store chain.
1688     auto &Chain = StoreChains.FindAndConstruct(ChainPredID).second;
1689     Chain.push_back(&SU);
1690   }
1691 
1692   // Iterate over the store chains.
1693   for (auto &SCD : StoreChains)
1694     clusterNeighboringMemOps(SCD.second, DAG);
1695 }
1696 
1697 //===----------------------------------------------------------------------===//
1698 // CopyConstrain - DAG post-processing to encourage copy elimination.
1699 //===----------------------------------------------------------------------===//
1700 
1701 namespace {
1702 
1703 /// Post-process the DAG to create weak edges from all uses of a copy to
1704 /// the one use that defines the copy's source vreg, most likely an induction
1705 /// variable increment.
1706 class CopyConstrain : public ScheduleDAGMutation {
1707   // Transient state.
1708   SlotIndex RegionBeginIdx;
1709 
1710   // RegionEndIdx is the slot index of the last non-debug instruction in the
1711   // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1712   SlotIndex RegionEndIdx;
1713 
1714 public:
1715   CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1716 
1717   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1718 
1719 protected:
1720   void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
1721 };
1722 
1723 } // end anonymous namespace
1724 
1725 namespace llvm {
1726 
1727 std::unique_ptr<ScheduleDAGMutation>
1728 createCopyConstrainDAGMutation(const TargetInstrInfo *TII,
1729                                const TargetRegisterInfo *TRI) {
1730   return std::make_unique<CopyConstrain>(TII, TRI);
1731 }
1732 
1733 } // end namespace llvm
1734 
1735 /// constrainLocalCopy handles two possibilities:
1736 /// 1) Local src:
1737 /// I0:     = dst
1738 /// I1: src = ...
1739 /// I2:     = dst
1740 /// I3: dst = src (copy)
1741 /// (create pred->succ edges I0->I1, I2->I1)
1742 ///
1743 /// 2) Local copy:
1744 /// I0: dst = src (copy)
1745 /// I1:     = dst
1746 /// I2: src = ...
1747 /// I3:     = dst
1748 /// (create pred->succ edges I1->I2, I3->I2)
1749 ///
1750 /// Although the MachineScheduler is currently constrained to single blocks,
1751 /// this algorithm should handle extended blocks. An EBB is a set of
1752 /// contiguously numbered blocks such that the previous block in the EBB is
1753 /// always the single predecessor.
1754 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
1755   LiveIntervals *LIS = DAG->getLIS();
1756   MachineInstr *Copy = CopySU->getInstr();
1757 
1758   // Check for pure vreg copies.
1759   const MachineOperand &SrcOp = Copy->getOperand(1);
1760   Register SrcReg = SrcOp.getReg();
1761   if (!Register::isVirtualRegister(SrcReg) || !SrcOp.readsReg())
1762     return;
1763 
1764   const MachineOperand &DstOp = Copy->getOperand(0);
1765   Register DstReg = DstOp.getReg();
1766   if (!Register::isVirtualRegister(DstReg) || DstOp.isDead())
1767     return;
1768 
1769   // Check if either the dest or source is local. If it's live across a back
1770   // edge, it's not local. Note that if both vregs are live across the back
1771   // edge, we cannot successfully contrain the copy without cyclic scheduling.
1772   // If both the copy's source and dest are local live intervals, then we
1773   // should treat the dest as the global for the purpose of adding
1774   // constraints. This adds edges from source's other uses to the copy.
1775   unsigned LocalReg = SrcReg;
1776   unsigned GlobalReg = DstReg;
1777   LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
1778   if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
1779     LocalReg = DstReg;
1780     GlobalReg = SrcReg;
1781     LocalLI = &LIS->getInterval(LocalReg);
1782     if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
1783       return;
1784   }
1785   LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1786 
1787   // Find the global segment after the start of the local LI.
1788   LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1789   // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1790   // local live range. We could create edges from other global uses to the local
1791   // start, but the coalescer should have already eliminated these cases, so
1792   // don't bother dealing with it.
1793   if (GlobalSegment == GlobalLI->end())
1794     return;
1795 
1796   // If GlobalSegment is killed at the LocalLI->start, the call to find()
1797   // returned the next global segment. But if GlobalSegment overlaps with
1798   // LocalLI->start, then advance to the next segment. If a hole in GlobalLI
1799   // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1800   if (GlobalSegment->contains(LocalLI->beginIndex()))
1801     ++GlobalSegment;
1802 
1803   if (GlobalSegment == GlobalLI->end())
1804     return;
1805 
1806   // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1807   if (GlobalSegment != GlobalLI->begin()) {
1808     // Two address defs have no hole.
1809     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
1810                                GlobalSegment->start)) {
1811       return;
1812     }
1813     // If the prior global segment may be defined by the same two-address
1814     // instruction that also defines LocalLI, then can't make a hole here.
1815     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
1816                                LocalLI->beginIndex())) {
1817       return;
1818     }
1819     // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1820     // it would be a disconnected component in the live range.
1821     assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
1822            "Disconnected LRG within the scheduling region.");
1823   }
1824   MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1825   if (!GlobalDef)
1826     return;
1827 
1828   SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1829   if (!GlobalSU)
1830     return;
1831 
1832   // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1833   // constraining the uses of the last local def to precede GlobalDef.
1834   SmallVector<SUnit*,8> LocalUses;
1835   const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1836   MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1837   SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1838   for (const SDep &Succ : LastLocalSU->Succs) {
1839     if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg)
1840       continue;
1841     if (Succ.getSUnit() == GlobalSU)
1842       continue;
1843     if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit()))
1844       return;
1845     LocalUses.push_back(Succ.getSUnit());
1846   }
1847   // Open the top of the GlobalLI hole by constraining any earlier global uses
1848   // to precede the start of LocalLI.
1849   SmallVector<SUnit*,8> GlobalUses;
1850   MachineInstr *FirstLocalDef =
1851     LIS->getInstructionFromIndex(LocalLI->beginIndex());
1852   SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1853   for (const SDep &Pred : GlobalSU->Preds) {
1854     if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg)
1855       continue;
1856     if (Pred.getSUnit() == FirstLocalSU)
1857       continue;
1858     if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit()))
1859       return;
1860     GlobalUses.push_back(Pred.getSUnit());
1861   }
1862   LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1863   // Add the weak edges.
1864   for (SmallVectorImpl<SUnit*>::const_iterator
1865          I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
1866     LLVM_DEBUG(dbgs() << "  Local use SU(" << (*I)->NodeNum << ") -> SU("
1867                       << GlobalSU->NodeNum << ")\n");
1868     DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
1869   }
1870   for (SmallVectorImpl<SUnit*>::const_iterator
1871          I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
1872     LLVM_DEBUG(dbgs() << "  Global use SU(" << (*I)->NodeNum << ") -> SU("
1873                       << FirstLocalSU->NodeNum << ")\n");
1874     DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
1875   }
1876 }
1877 
1878 /// Callback from DAG postProcessing to create weak edges to encourage
1879 /// copy elimination.
1880 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) {
1881   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1882   assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
1883 
1884   MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1885   if (FirstPos == DAG->end())
1886     return;
1887   RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos);
1888   RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1889       *priorNonDebug(DAG->end(), DAG->begin()));
1890 
1891   for (SUnit &SU : DAG->SUnits) {
1892     if (!SU.getInstr()->isCopy())
1893       continue;
1894 
1895     constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG));
1896   }
1897 }
1898 
1899 //===----------------------------------------------------------------------===//
1900 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
1901 // and possibly other custom schedulers.
1902 //===----------------------------------------------------------------------===//
1903 
1904 static const unsigned InvalidCycle = ~0U;
1905 
1906 SchedBoundary::~SchedBoundary() { delete HazardRec; }
1907 
1908 /// Given a Count of resource usage and a Latency value, return true if a
1909 /// SchedBoundary becomes resource limited.
1910 /// If we are checking after scheduling a node, we should return true when
1911 /// we just reach the resource limit.
1912 static bool checkResourceLimit(unsigned LFactor, unsigned Count,
1913                                unsigned Latency, bool AfterSchedNode) {
1914   int ResCntFactor = (int)(Count - (Latency * LFactor));
1915   if (AfterSchedNode)
1916     return ResCntFactor >= (int)LFactor;
1917   else
1918     return ResCntFactor > (int)LFactor;
1919 }
1920 
1921 void SchedBoundary::reset() {
1922   // A new HazardRec is created for each DAG and owned by SchedBoundary.
1923   // Destroying and reconstructing it is very expensive though. So keep
1924   // invalid, placeholder HazardRecs.
1925   if (HazardRec && HazardRec->isEnabled()) {
1926     delete HazardRec;
1927     HazardRec = nullptr;
1928   }
1929   Available.clear();
1930   Pending.clear();
1931   CheckPending = false;
1932   CurrCycle = 0;
1933   CurrMOps = 0;
1934   MinReadyCycle = std::numeric_limits<unsigned>::max();
1935   ExpectedLatency = 0;
1936   DependentLatency = 0;
1937   RetiredMOps = 0;
1938   MaxExecutedResCount = 0;
1939   ZoneCritResIdx = 0;
1940   IsResourceLimited = false;
1941   ReservedCycles.clear();
1942   ReservedCyclesIndex.clear();
1943 #ifndef NDEBUG
1944   // Track the maximum number of stall cycles that could arise either from the
1945   // latency of a DAG edge or the number of cycles that a processor resource is
1946   // reserved (SchedBoundary::ReservedCycles).
1947   MaxObservedStall = 0;
1948 #endif
1949   // Reserve a zero-count for invalid CritResIdx.
1950   ExecutedResCounts.resize(1);
1951   assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
1952 }
1953 
1954 void SchedRemainder::
1955 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
1956   reset();
1957   if (!SchedModel->hasInstrSchedModel())
1958     return;
1959   RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
1960   for (SUnit &SU : DAG->SUnits) {
1961     const MCSchedClassDesc *SC = DAG->getSchedClass(&SU);
1962     RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC)
1963       * SchedModel->getMicroOpFactor();
1964     for (TargetSchedModel::ProcResIter
1965            PI = SchedModel->getWriteProcResBegin(SC),
1966            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1967       unsigned PIdx = PI->ProcResourceIdx;
1968       unsigned Factor = SchedModel->getResourceFactor(PIdx);
1969       RemainingCounts[PIdx] += (Factor * PI->Cycles);
1970     }
1971   }
1972 }
1973 
1974 void SchedBoundary::
1975 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
1976   reset();
1977   DAG = dag;
1978   SchedModel = smodel;
1979   Rem = rem;
1980   if (SchedModel->hasInstrSchedModel()) {
1981     unsigned ResourceCount = SchedModel->getNumProcResourceKinds();
1982     ReservedCyclesIndex.resize(ResourceCount);
1983     ExecutedResCounts.resize(ResourceCount);
1984     unsigned NumUnits = 0;
1985 
1986     for (unsigned i = 0; i < ResourceCount; ++i) {
1987       ReservedCyclesIndex[i] = NumUnits;
1988       NumUnits += SchedModel->getProcResource(i)->NumUnits;
1989     }
1990 
1991     ReservedCycles.resize(NumUnits, InvalidCycle);
1992   }
1993 }
1994 
1995 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
1996 /// these "soft stalls" differently than the hard stall cycles based on CPU
1997 /// resources and computed by checkHazard(). A fully in-order model
1998 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
1999 /// available for scheduling until they are ready. However, a weaker in-order
2000 /// model may use this for heuristics. For example, if a processor has in-order
2001 /// behavior when reading certain resources, this may come into play.
2002 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
2003   if (!SU->isUnbuffered)
2004     return 0;
2005 
2006   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2007   if (ReadyCycle > CurrCycle)
2008     return ReadyCycle - CurrCycle;
2009   return 0;
2010 }
2011 
2012 /// Compute the next cycle at which the given processor resource unit
2013 /// can be scheduled.
2014 unsigned SchedBoundary::getNextResourceCycleByInstance(unsigned InstanceIdx,
2015                                                        unsigned Cycles) {
2016   unsigned NextUnreserved = ReservedCycles[InstanceIdx];
2017   // If this resource has never been used, always return cycle zero.
2018   if (NextUnreserved == InvalidCycle)
2019     return 0;
2020   // For bottom-up scheduling add the cycles needed for the current operation.
2021   if (!isTop())
2022     NextUnreserved += Cycles;
2023   return NextUnreserved;
2024 }
2025 
2026 /// Compute the next cycle at which the given processor resource can be
2027 /// scheduled.  Returns the next cycle and the index of the processor resource
2028 /// instance in the reserved cycles vector.
2029 std::pair<unsigned, unsigned>
2030 SchedBoundary::getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
2031   unsigned MinNextUnreserved = InvalidCycle;
2032   unsigned InstanceIdx = 0;
2033   unsigned StartIndex = ReservedCyclesIndex[PIdx];
2034   unsigned NumberOfInstances = SchedModel->getProcResource(PIdx)->NumUnits;
2035   assert(NumberOfInstances > 0 &&
2036          "Cannot have zero instances of a ProcResource");
2037 
2038   for (unsigned I = StartIndex, End = StartIndex + NumberOfInstances; I < End;
2039        ++I) {
2040     unsigned NextUnreserved = getNextResourceCycleByInstance(I, Cycles);
2041     if (MinNextUnreserved > NextUnreserved) {
2042       InstanceIdx = I;
2043       MinNextUnreserved = NextUnreserved;
2044     }
2045   }
2046   return std::make_pair(MinNextUnreserved, InstanceIdx);
2047 }
2048 
2049 /// Does this SU have a hazard within the current instruction group.
2050 ///
2051 /// The scheduler supports two modes of hazard recognition. The first is the
2052 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
2053 /// supports highly complicated in-order reservation tables
2054 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
2055 ///
2056 /// The second is a streamlined mechanism that checks for hazards based on
2057 /// simple counters that the scheduler itself maintains. It explicitly checks
2058 /// for instruction dispatch limitations, including the number of micro-ops that
2059 /// can dispatch per cycle.
2060 ///
2061 /// TODO: Also check whether the SU must start a new group.
2062 bool SchedBoundary::checkHazard(SUnit *SU) {
2063   if (HazardRec->isEnabled()
2064       && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
2065     return true;
2066   }
2067 
2068   unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
2069   if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
2070     LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
2071                       << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
2072     return true;
2073   }
2074 
2075   if (CurrMOps > 0 &&
2076       ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) ||
2077        (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) {
2078     LLVM_DEBUG(dbgs() << "  hazard: SU(" << SU->NodeNum << ") must "
2079                       << (isTop() ? "begin" : "end") << " group\n");
2080     return true;
2081   }
2082 
2083   if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
2084     const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2085     for (const MCWriteProcResEntry &PE :
2086           make_range(SchedModel->getWriteProcResBegin(SC),
2087                      SchedModel->getWriteProcResEnd(SC))) {
2088       unsigned ResIdx = PE.ProcResourceIdx;
2089       unsigned Cycles = PE.Cycles;
2090       unsigned NRCycle, InstanceIdx;
2091       std::tie(NRCycle, InstanceIdx) = getNextResourceCycle(ResIdx, Cycles);
2092       if (NRCycle > CurrCycle) {
2093 #ifndef NDEBUG
2094         MaxObservedStall = std::max(Cycles, MaxObservedStall);
2095 #endif
2096         LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") "
2097                           << SchedModel->getResourceName(ResIdx)
2098                           << '[' << InstanceIdx - ReservedCyclesIndex[ResIdx]  << ']'
2099                           << "=" << NRCycle << "c\n");
2100         return true;
2101       }
2102     }
2103   }
2104   return false;
2105 }
2106 
2107 // Find the unscheduled node in ReadySUs with the highest latency.
2108 unsigned SchedBoundary::
2109 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
2110   SUnit *LateSU = nullptr;
2111   unsigned RemLatency = 0;
2112   for (SUnit *SU : ReadySUs) {
2113     unsigned L = getUnscheduledLatency(SU);
2114     if (L > RemLatency) {
2115       RemLatency = L;
2116       LateSU = SU;
2117     }
2118   }
2119   if (LateSU) {
2120     LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU("
2121                       << LateSU->NodeNum << ") " << RemLatency << "c\n");
2122   }
2123   return RemLatency;
2124 }
2125 
2126 // Count resources in this zone and the remaining unscheduled
2127 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
2128 // resource index, or zero if the zone is issue limited.
2129 unsigned SchedBoundary::
2130 getOtherResourceCount(unsigned &OtherCritIdx) {
2131   OtherCritIdx = 0;
2132   if (!SchedModel->hasInstrSchedModel())
2133     return 0;
2134 
2135   unsigned OtherCritCount = Rem->RemIssueCount
2136     + (RetiredMOps * SchedModel->getMicroOpFactor());
2137   LLVM_DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
2138                     << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
2139   for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
2140        PIdx != PEnd; ++PIdx) {
2141     unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
2142     if (OtherCount > OtherCritCount) {
2143       OtherCritCount = OtherCount;
2144       OtherCritIdx = PIdx;
2145     }
2146   }
2147   if (OtherCritIdx) {
2148     LLVM_DEBUG(
2149         dbgs() << "  " << Available.getName() << " + Remain CritRes: "
2150                << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
2151                << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
2152   }
2153   return OtherCritCount;
2154 }
2155 
2156 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle, bool InPQueue,
2157                                 unsigned Idx) {
2158   assert(SU->getInstr() && "Scheduled SUnit must have instr");
2159 
2160 #ifndef NDEBUG
2161   // ReadyCycle was been bumped up to the CurrCycle when this node was
2162   // scheduled, but CurrCycle may have been eagerly advanced immediately after
2163   // scheduling, so may now be greater than ReadyCycle.
2164   if (ReadyCycle > CurrCycle)
2165     MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
2166 #endif
2167 
2168   if (ReadyCycle < MinReadyCycle)
2169     MinReadyCycle = ReadyCycle;
2170 
2171   // Check for interlocks first. For the purpose of other heuristics, an
2172   // instruction that cannot issue appears as if it's not in the ReadyQueue.
2173   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2174   bool HazardDetected = (!IsBuffered && ReadyCycle > CurrCycle) ||
2175                         checkHazard(SU) || (Available.size() >= ReadyListLimit);
2176 
2177   if (!HazardDetected) {
2178     Available.push(SU);
2179 
2180     if (InPQueue)
2181       Pending.remove(Pending.begin() + Idx);
2182     return;
2183   }
2184 
2185   if (!InPQueue)
2186     Pending.push(SU);
2187 }
2188 
2189 /// Move the boundary of scheduled code by one cycle.
2190 void SchedBoundary::bumpCycle(unsigned NextCycle) {
2191   if (SchedModel->getMicroOpBufferSize() == 0) {
2192     assert(MinReadyCycle < std::numeric_limits<unsigned>::max() &&
2193            "MinReadyCycle uninitialized");
2194     if (MinReadyCycle > NextCycle)
2195       NextCycle = MinReadyCycle;
2196   }
2197   // Update the current micro-ops, which will issue in the next cycle.
2198   unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
2199   CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
2200 
2201   // Decrement DependentLatency based on the next cycle.
2202   if ((NextCycle - CurrCycle) > DependentLatency)
2203     DependentLatency = 0;
2204   else
2205     DependentLatency -= (NextCycle - CurrCycle);
2206 
2207   if (!HazardRec->isEnabled()) {
2208     // Bypass HazardRec virtual calls.
2209     CurrCycle = NextCycle;
2210   } else {
2211     // Bypass getHazardType calls in case of long latency.
2212     for (; CurrCycle != NextCycle; ++CurrCycle) {
2213       if (isTop())
2214         HazardRec->AdvanceCycle();
2215       else
2216         HazardRec->RecedeCycle();
2217     }
2218   }
2219   CheckPending = true;
2220   IsResourceLimited =
2221       checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2222                          getScheduledLatency(), true);
2223 
2224   LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName()
2225                     << '\n');
2226 }
2227 
2228 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
2229   ExecutedResCounts[PIdx] += Count;
2230   if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
2231     MaxExecutedResCount = ExecutedResCounts[PIdx];
2232 }
2233 
2234 /// Add the given processor resource to this scheduled zone.
2235 ///
2236 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
2237 /// during which this resource is consumed.
2238 ///
2239 /// \return the next cycle at which the instruction may execute without
2240 /// oversubscribing resources.
2241 unsigned SchedBoundary::
2242 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
2243   unsigned Factor = SchedModel->getResourceFactor(PIdx);
2244   unsigned Count = Factor * Cycles;
2245   LLVM_DEBUG(dbgs() << "  " << SchedModel->getResourceName(PIdx) << " +"
2246                     << Cycles << "x" << Factor << "u\n");
2247 
2248   // Update Executed resources counts.
2249   incExecutedResources(PIdx, Count);
2250   assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
2251   Rem->RemainingCounts[PIdx] -= Count;
2252 
2253   // Check if this resource exceeds the current critical resource. If so, it
2254   // becomes the critical resource.
2255   if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
2256     ZoneCritResIdx = PIdx;
2257     LLVM_DEBUG(dbgs() << "  *** Critical resource "
2258                       << SchedModel->getResourceName(PIdx) << ": "
2259                       << getResourceCount(PIdx) / SchedModel->getLatencyFactor()
2260                       << "c\n");
2261   }
2262   // For reserved resources, record the highest cycle using the resource.
2263   unsigned NextAvailable, InstanceIdx;
2264   std::tie(NextAvailable, InstanceIdx) = getNextResourceCycle(PIdx, Cycles);
2265   if (NextAvailable > CurrCycle) {
2266     LLVM_DEBUG(dbgs() << "  Resource conflict: "
2267                       << SchedModel->getResourceName(PIdx)
2268                       << '[' << InstanceIdx - ReservedCyclesIndex[PIdx]  << ']'
2269                       << " reserved until @" << NextAvailable << "\n");
2270   }
2271   return NextAvailable;
2272 }
2273 
2274 /// Move the boundary of scheduled code by one SUnit.
2275 void SchedBoundary::bumpNode(SUnit *SU) {
2276   // Update the reservation table.
2277   if (HazardRec->isEnabled()) {
2278     if (!isTop() && SU->isCall) {
2279       // Calls are scheduled with their preceding instructions. For bottom-up
2280       // scheduling, clear the pipeline state before emitting.
2281       HazardRec->Reset();
2282     }
2283     HazardRec->EmitInstruction(SU);
2284     // Scheduling an instruction may have made pending instructions available.
2285     CheckPending = true;
2286   }
2287   // checkHazard should prevent scheduling multiple instructions per cycle that
2288   // exceed the issue width.
2289   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2290   unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
2291   assert(
2292       (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
2293       "Cannot schedule this instruction's MicroOps in the current cycle.");
2294 
2295   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2296   LLVM_DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
2297 
2298   unsigned NextCycle = CurrCycle;
2299   switch (SchedModel->getMicroOpBufferSize()) {
2300   case 0:
2301     assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
2302     break;
2303   case 1:
2304     if (ReadyCycle > NextCycle) {
2305       NextCycle = ReadyCycle;
2306       LLVM_DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
2307     }
2308     break;
2309   default:
2310     // We don't currently model the OOO reorder buffer, so consider all
2311     // scheduled MOps to be "retired". We do loosely model in-order resource
2312     // latency. If this instruction uses an in-order resource, account for any
2313     // likely stall cycles.
2314     if (SU->isUnbuffered && ReadyCycle > NextCycle)
2315       NextCycle = ReadyCycle;
2316     break;
2317   }
2318   RetiredMOps += IncMOps;
2319 
2320   // Update resource counts and critical resource.
2321   if (SchedModel->hasInstrSchedModel()) {
2322     unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
2323     assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
2324     Rem->RemIssueCount -= DecRemIssue;
2325     if (ZoneCritResIdx) {
2326       // Scale scheduled micro-ops for comparing with the critical resource.
2327       unsigned ScaledMOps =
2328         RetiredMOps * SchedModel->getMicroOpFactor();
2329 
2330       // If scaled micro-ops are now more than the previous critical resource by
2331       // a full cycle, then micro-ops issue becomes critical.
2332       if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
2333           >= (int)SchedModel->getLatencyFactor()) {
2334         ZoneCritResIdx = 0;
2335         LLVM_DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
2336                           << ScaledMOps / SchedModel->getLatencyFactor()
2337                           << "c\n");
2338       }
2339     }
2340     for (TargetSchedModel::ProcResIter
2341            PI = SchedModel->getWriteProcResBegin(SC),
2342            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2343       unsigned RCycle =
2344         countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
2345       if (RCycle > NextCycle)
2346         NextCycle = RCycle;
2347     }
2348     if (SU->hasReservedResource) {
2349       // For reserved resources, record the highest cycle using the resource.
2350       // For top-down scheduling, this is the cycle in which we schedule this
2351       // instruction plus the number of cycles the operations reserves the
2352       // resource. For bottom-up is it simply the instruction's cycle.
2353       for (TargetSchedModel::ProcResIter
2354              PI = SchedModel->getWriteProcResBegin(SC),
2355              PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2356         unsigned PIdx = PI->ProcResourceIdx;
2357         if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
2358           unsigned ReservedUntil, InstanceIdx;
2359           std::tie(ReservedUntil, InstanceIdx) = getNextResourceCycle(PIdx, 0);
2360           if (isTop()) {
2361             ReservedCycles[InstanceIdx] =
2362                 std::max(ReservedUntil, NextCycle + PI->Cycles);
2363           } else
2364             ReservedCycles[InstanceIdx] = NextCycle;
2365         }
2366       }
2367     }
2368   }
2369   // Update ExpectedLatency and DependentLatency.
2370   unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2371   unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2372   if (SU->getDepth() > TopLatency) {
2373     TopLatency = SU->getDepth();
2374     LLVM_DEBUG(dbgs() << "  " << Available.getName() << " TopLatency SU("
2375                       << SU->NodeNum << ") " << TopLatency << "c\n");
2376   }
2377   if (SU->getHeight() > BotLatency) {
2378     BotLatency = SU->getHeight();
2379     LLVM_DEBUG(dbgs() << "  " << Available.getName() << " BotLatency SU("
2380                       << SU->NodeNum << ") " << BotLatency << "c\n");
2381   }
2382   // If we stall for any reason, bump the cycle.
2383   if (NextCycle > CurrCycle)
2384     bumpCycle(NextCycle);
2385   else
2386     // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2387     // resource limited. If a stall occurred, bumpCycle does this.
2388     IsResourceLimited =
2389         checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2390                            getScheduledLatency(), true);
2391 
2392   // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2393   // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2394   // one cycle.  Since we commonly reach the max MOps here, opportunistically
2395   // bump the cycle to avoid uselessly checking everything in the readyQ.
2396   CurrMOps += IncMOps;
2397 
2398   // Bump the cycle count for issue group constraints.
2399   // This must be done after NextCycle has been adjust for all other stalls.
2400   // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set
2401   // currCycle to X.
2402   if ((isTop() &&  SchedModel->mustEndGroup(SU->getInstr())) ||
2403       (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) {
2404     LLVM_DEBUG(dbgs() << "  Bump cycle to " << (isTop() ? "end" : "begin")
2405                       << " group\n");
2406     bumpCycle(++NextCycle);
2407   }
2408 
2409   while (CurrMOps >= SchedModel->getIssueWidth()) {
2410     LLVM_DEBUG(dbgs() << "  *** Max MOps " << CurrMOps << " at cycle "
2411                       << CurrCycle << '\n');
2412     bumpCycle(++NextCycle);
2413   }
2414   LLVM_DEBUG(dumpScheduledState());
2415 }
2416 
2417 /// Release pending ready nodes in to the available queue. This makes them
2418 /// visible to heuristics.
2419 void SchedBoundary::releasePending() {
2420   // If the available queue is empty, it is safe to reset MinReadyCycle.
2421   if (Available.empty())
2422     MinReadyCycle = std::numeric_limits<unsigned>::max();
2423 
2424   // Check to see if any of the pending instructions are ready to issue.  If
2425   // so, add them to the available queue.
2426   for (unsigned I = 0, E = Pending.size(); I < E; ++I) {
2427     SUnit *SU = *(Pending.begin() + I);
2428     unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2429 
2430     if (ReadyCycle < MinReadyCycle)
2431       MinReadyCycle = ReadyCycle;
2432 
2433     if (Available.size() >= ReadyListLimit)
2434       break;
2435 
2436     releaseNode(SU, ReadyCycle, true, I);
2437     if (E != Pending.size()) {
2438       --I;
2439       --E;
2440     }
2441   }
2442   CheckPending = false;
2443 }
2444 
2445 /// Remove SU from the ready set for this boundary.
2446 void SchedBoundary::removeReady(SUnit *SU) {
2447   if (Available.isInQueue(SU))
2448     Available.remove(Available.find(SU));
2449   else {
2450     assert(Pending.isInQueue(SU) && "bad ready count");
2451     Pending.remove(Pending.find(SU));
2452   }
2453 }
2454 
2455 /// If this queue only has one ready candidate, return it. As a side effect,
2456 /// defer any nodes that now hit a hazard, and advance the cycle until at least
2457 /// one node is ready. If multiple instructions are ready, return NULL.
2458 SUnit *SchedBoundary::pickOnlyChoice() {
2459   if (CheckPending)
2460     releasePending();
2461 
2462   // Defer any ready instrs that now have a hazard.
2463   for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2464     if (checkHazard(*I)) {
2465       Pending.push(*I);
2466       I = Available.remove(I);
2467       continue;
2468     }
2469     ++I;
2470   }
2471   for (unsigned i = 0; Available.empty(); ++i) {
2472 //  FIXME: Re-enable assert once PR20057 is resolved.
2473 //    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2474 //           "permanent hazard");
2475     (void)i;
2476     bumpCycle(CurrCycle + 1);
2477     releasePending();
2478   }
2479 
2480   LLVM_DEBUG(Pending.dump());
2481   LLVM_DEBUG(Available.dump());
2482 
2483   if (Available.size() == 1)
2484     return *Available.begin();
2485   return nullptr;
2486 }
2487 
2488 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2489 // This is useful information to dump after bumpNode.
2490 // Note that the Queue contents are more useful before pickNodeFromQueue.
2491 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const {
2492   unsigned ResFactor;
2493   unsigned ResCount;
2494   if (ZoneCritResIdx) {
2495     ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2496     ResCount = getResourceCount(ZoneCritResIdx);
2497   } else {
2498     ResFactor = SchedModel->getMicroOpFactor();
2499     ResCount = RetiredMOps * ResFactor;
2500   }
2501   unsigned LFactor = SchedModel->getLatencyFactor();
2502   dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2503          << "  Retired: " << RetiredMOps;
2504   dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
2505   dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
2506          << ResCount / ResFactor << " "
2507          << SchedModel->getResourceName(ZoneCritResIdx)
2508          << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
2509          << (IsResourceLimited ? "  - Resource" : "  - Latency")
2510          << " limited.\n";
2511 }
2512 #endif
2513 
2514 //===----------------------------------------------------------------------===//
2515 // GenericScheduler - Generic implementation of MachineSchedStrategy.
2516 //===----------------------------------------------------------------------===//
2517 
2518 void GenericSchedulerBase::SchedCandidate::
2519 initResourceDelta(const ScheduleDAGMI *DAG,
2520                   const TargetSchedModel *SchedModel) {
2521   if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2522     return;
2523 
2524   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2525   for (TargetSchedModel::ProcResIter
2526          PI = SchedModel->getWriteProcResBegin(SC),
2527          PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2528     if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2529       ResDelta.CritResources += PI->Cycles;
2530     if (PI->ProcResourceIdx == Policy.DemandResIdx)
2531       ResDelta.DemandedResources += PI->Cycles;
2532   }
2533 }
2534 
2535 /// Compute remaining latency. We need this both to determine whether the
2536 /// overall schedule has become latency-limited and whether the instructions
2537 /// outside this zone are resource or latency limited.
2538 ///
2539 /// The "dependent" latency is updated incrementally during scheduling as the
2540 /// max height/depth of scheduled nodes minus the cycles since it was
2541 /// scheduled:
2542 ///   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2543 ///
2544 /// The "independent" latency is the max ready queue depth:
2545 ///   ILat = max N.depth for N in Available|Pending
2546 ///
2547 /// RemainingLatency is the greater of independent and dependent latency.
2548 ///
2549 /// These computations are expensive, especially in DAGs with many edges, so
2550 /// only do them if necessary.
2551 static unsigned computeRemLatency(SchedBoundary &CurrZone) {
2552   unsigned RemLatency = CurrZone.getDependentLatency();
2553   RemLatency = std::max(RemLatency,
2554                         CurrZone.findMaxLatency(CurrZone.Available.elements()));
2555   RemLatency = std::max(RemLatency,
2556                         CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2557   return RemLatency;
2558 }
2559 
2560 /// Returns true if the current cycle plus remaning latency is greater than
2561 /// the critical path in the scheduling region.
2562 bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy,
2563                                                SchedBoundary &CurrZone,
2564                                                bool ComputeRemLatency,
2565                                                unsigned &RemLatency) const {
2566   // The current cycle is already greater than the critical path, so we are
2567   // already latency limited and don't need to compute the remaining latency.
2568   if (CurrZone.getCurrCycle() > Rem.CriticalPath)
2569     return true;
2570 
2571   // If we haven't scheduled anything yet, then we aren't latency limited.
2572   if (CurrZone.getCurrCycle() == 0)
2573     return false;
2574 
2575   if (ComputeRemLatency)
2576     RemLatency = computeRemLatency(CurrZone);
2577 
2578   return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath;
2579 }
2580 
2581 /// Set the CandPolicy given a scheduling zone given the current resources and
2582 /// latencies inside and outside the zone.
2583 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA,
2584                                      SchedBoundary &CurrZone,
2585                                      SchedBoundary *OtherZone) {
2586   // Apply preemptive heuristics based on the total latency and resources
2587   // inside and outside this zone. Potential stalls should be considered before
2588   // following this policy.
2589 
2590   // Compute the critical resource outside the zone.
2591   unsigned OtherCritIdx = 0;
2592   unsigned OtherCount =
2593     OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
2594 
2595   bool OtherResLimited = false;
2596   unsigned RemLatency = 0;
2597   bool RemLatencyComputed = false;
2598   if (SchedModel->hasInstrSchedModel() && OtherCount != 0) {
2599     RemLatency = computeRemLatency(CurrZone);
2600     RemLatencyComputed = true;
2601     OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(),
2602                                          OtherCount, RemLatency, false);
2603   }
2604 
2605   // Schedule aggressively for latency in PostRA mode. We don't check for
2606   // acyclic latency during PostRA, and highly out-of-order processors will
2607   // skip PostRA scheduling.
2608   if (!OtherResLimited &&
2609       (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed,
2610                                        RemLatency))) {
2611     Policy.ReduceLatency |= true;
2612     LLVM_DEBUG(dbgs() << "  " << CurrZone.Available.getName()
2613                       << " RemainingLatency " << RemLatency << " + "
2614                       << CurrZone.getCurrCycle() << "c > CritPath "
2615                       << Rem.CriticalPath << "\n");
2616   }
2617   // If the same resource is limiting inside and outside the zone, do nothing.
2618   if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
2619     return;
2620 
2621   LLVM_DEBUG(if (CurrZone.isResourceLimited()) {
2622     dbgs() << "  " << CurrZone.Available.getName() << " ResourceLimited: "
2623            << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n";
2624   } if (OtherResLimited) dbgs()
2625                  << "  RemainingLimit: "
2626                  << SchedModel->getResourceName(OtherCritIdx) << "\n";
2627              if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs()
2628              << "  Latency limited both directions.\n");
2629 
2630   if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
2631     Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
2632 
2633   if (OtherResLimited)
2634     Policy.DemandResIdx = OtherCritIdx;
2635 }
2636 
2637 #ifndef NDEBUG
2638 const char *GenericSchedulerBase::getReasonStr(
2639   GenericSchedulerBase::CandReason Reason) {
2640   switch (Reason) {
2641   case NoCand:         return "NOCAND    ";
2642   case Only1:          return "ONLY1     ";
2643   case PhysReg:        return "PHYS-REG  ";
2644   case RegExcess:      return "REG-EXCESS";
2645   case RegCritical:    return "REG-CRIT  ";
2646   case Stall:          return "STALL     ";
2647   case Cluster:        return "CLUSTER   ";
2648   case Weak:           return "WEAK      ";
2649   case RegMax:         return "REG-MAX   ";
2650   case ResourceReduce: return "RES-REDUCE";
2651   case ResourceDemand: return "RES-DEMAND";
2652   case TopDepthReduce: return "TOP-DEPTH ";
2653   case TopPathReduce:  return "TOP-PATH  ";
2654   case BotHeightReduce:return "BOT-HEIGHT";
2655   case BotPathReduce:  return "BOT-PATH  ";
2656   case NextDefUse:     return "DEF-USE   ";
2657   case NodeOrder:      return "ORDER     ";
2658   };
2659   llvm_unreachable("Unknown reason!");
2660 }
2661 
2662 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
2663   PressureChange P;
2664   unsigned ResIdx = 0;
2665   unsigned Latency = 0;
2666   switch (Cand.Reason) {
2667   default:
2668     break;
2669   case RegExcess:
2670     P = Cand.RPDelta.Excess;
2671     break;
2672   case RegCritical:
2673     P = Cand.RPDelta.CriticalMax;
2674     break;
2675   case RegMax:
2676     P = Cand.RPDelta.CurrentMax;
2677     break;
2678   case ResourceReduce:
2679     ResIdx = Cand.Policy.ReduceResIdx;
2680     break;
2681   case ResourceDemand:
2682     ResIdx = Cand.Policy.DemandResIdx;
2683     break;
2684   case TopDepthReduce:
2685     Latency = Cand.SU->getDepth();
2686     break;
2687   case TopPathReduce:
2688     Latency = Cand.SU->getHeight();
2689     break;
2690   case BotHeightReduce:
2691     Latency = Cand.SU->getHeight();
2692     break;
2693   case BotPathReduce:
2694     Latency = Cand.SU->getDepth();
2695     break;
2696   }
2697   dbgs() << "  Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2698   if (P.isValid())
2699     dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2700            << ":" << P.getUnitInc() << " ";
2701   else
2702     dbgs() << "      ";
2703   if (ResIdx)
2704     dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2705   else
2706     dbgs() << "         ";
2707   if (Latency)
2708     dbgs() << " " << Latency << " cycles ";
2709   else
2710     dbgs() << "          ";
2711   dbgs() << '\n';
2712 }
2713 #endif
2714 
2715 namespace llvm {
2716 /// Return true if this heuristic determines order.
2717 bool tryLess(int TryVal, int CandVal,
2718              GenericSchedulerBase::SchedCandidate &TryCand,
2719              GenericSchedulerBase::SchedCandidate &Cand,
2720              GenericSchedulerBase::CandReason Reason) {
2721   if (TryVal < CandVal) {
2722     TryCand.Reason = Reason;
2723     return true;
2724   }
2725   if (TryVal > CandVal) {
2726     if (Cand.Reason > Reason)
2727       Cand.Reason = Reason;
2728     return true;
2729   }
2730   return false;
2731 }
2732 
2733 bool tryGreater(int TryVal, int CandVal,
2734                 GenericSchedulerBase::SchedCandidate &TryCand,
2735                 GenericSchedulerBase::SchedCandidate &Cand,
2736                 GenericSchedulerBase::CandReason Reason) {
2737   if (TryVal > CandVal) {
2738     TryCand.Reason = Reason;
2739     return true;
2740   }
2741   if (TryVal < CandVal) {
2742     if (Cand.Reason > Reason)
2743       Cand.Reason = Reason;
2744     return true;
2745   }
2746   return false;
2747 }
2748 
2749 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
2750                 GenericSchedulerBase::SchedCandidate &Cand,
2751                 SchedBoundary &Zone) {
2752   if (Zone.isTop()) {
2753     // Prefer the candidate with the lesser depth, but only if one of them has
2754     // depth greater than the total latency scheduled so far, otherwise either
2755     // of them could be scheduled now with no stall.
2756     if (std::max(TryCand.SU->getDepth(), Cand.SU->getDepth()) >
2757         Zone.getScheduledLatency()) {
2758       if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2759                   TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
2760         return true;
2761     }
2762     if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2763                    TryCand, Cand, GenericSchedulerBase::TopPathReduce))
2764       return true;
2765   } else {
2766     // Prefer the candidate with the lesser height, but only if one of them has
2767     // height greater than the total latency scheduled so far, otherwise either
2768     // of them could be scheduled now with no stall.
2769     if (std::max(TryCand.SU->getHeight(), Cand.SU->getHeight()) >
2770         Zone.getScheduledLatency()) {
2771       if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2772                   TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
2773         return true;
2774     }
2775     if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2776                    TryCand, Cand, GenericSchedulerBase::BotPathReduce))
2777       return true;
2778   }
2779   return false;
2780 }
2781 } // end namespace llvm
2782 
2783 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) {
2784   LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2785                     << GenericSchedulerBase::getReasonStr(Reason) << '\n');
2786 }
2787 
2788 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) {
2789   tracePick(Cand.Reason, Cand.AtTop);
2790 }
2791 
2792 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
2793   assert(dag->hasVRegLiveness() &&
2794          "(PreRA)GenericScheduler needs vreg liveness");
2795   DAG = static_cast<ScheduleDAGMILive*>(dag);
2796   SchedModel = DAG->getSchedModel();
2797   TRI = DAG->TRI;
2798 
2799   if (RegionPolicy.ComputeDFSResult)
2800     DAG->computeDFSResult();
2801 
2802   Rem.init(DAG, SchedModel);
2803   Top.init(DAG, SchedModel, &Rem);
2804   Bot.init(DAG, SchedModel, &Rem);
2805 
2806   // Initialize resource counts.
2807 
2808   // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
2809   // are disabled, then these HazardRecs will be disabled.
2810   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2811   if (!Top.HazardRec) {
2812     Top.HazardRec =
2813         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2814             Itin, DAG);
2815   }
2816   if (!Bot.HazardRec) {
2817     Bot.HazardRec =
2818         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2819             Itin, DAG);
2820   }
2821   TopCand.SU = nullptr;
2822   BotCand.SU = nullptr;
2823 }
2824 
2825 /// Initialize the per-region scheduling policy.
2826 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
2827                                   MachineBasicBlock::iterator End,
2828                                   unsigned NumRegionInstrs) {
2829   const MachineFunction &MF = *Begin->getMF();
2830   const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
2831 
2832   // Avoid setting up the register pressure tracker for small regions to save
2833   // compile time. As a rough heuristic, only track pressure when the number of
2834   // schedulable instructions exceeds half the integer register file.
2835   RegionPolicy.ShouldTrackPressure = true;
2836   for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
2837     MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
2838     if (TLI->isTypeLegal(LegalIntVT)) {
2839       unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
2840         TLI->getRegClassFor(LegalIntVT));
2841       RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
2842     }
2843   }
2844 
2845   // For generic targets, we default to bottom-up, because it's simpler and more
2846   // compile-time optimizations have been implemented in that direction.
2847   RegionPolicy.OnlyBottomUp = true;
2848 
2849   // Allow the subtarget to override default policy.
2850   MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs);
2851 
2852   // After subtarget overrides, apply command line options.
2853   if (!EnableRegPressure) {
2854     RegionPolicy.ShouldTrackPressure = false;
2855     RegionPolicy.ShouldTrackLaneMasks = false;
2856   }
2857 
2858   // Check -misched-topdown/bottomup can force or unforce scheduling direction.
2859   // e.g. -misched-bottomup=false allows scheduling in both directions.
2860   assert((!ForceTopDown || !ForceBottomUp) &&
2861          "-misched-topdown incompatible with -misched-bottomup");
2862   if (ForceBottomUp.getNumOccurrences() > 0) {
2863     RegionPolicy.OnlyBottomUp = ForceBottomUp;
2864     if (RegionPolicy.OnlyBottomUp)
2865       RegionPolicy.OnlyTopDown = false;
2866   }
2867   if (ForceTopDown.getNumOccurrences() > 0) {
2868     RegionPolicy.OnlyTopDown = ForceTopDown;
2869     if (RegionPolicy.OnlyTopDown)
2870       RegionPolicy.OnlyBottomUp = false;
2871   }
2872 }
2873 
2874 void GenericScheduler::dumpPolicy() const {
2875   // Cannot completely remove virtual function even in release mode.
2876 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2877   dbgs() << "GenericScheduler RegionPolicy: "
2878          << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
2879          << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
2880          << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
2881          << "\n";
2882 #endif
2883 }
2884 
2885 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
2886 /// critical path by more cycles than it takes to drain the instruction buffer.
2887 /// We estimate an upper bounds on in-flight instructions as:
2888 ///
2889 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
2890 /// InFlightIterations = AcyclicPath / CyclesPerIteration
2891 /// InFlightResources = InFlightIterations * LoopResources
2892 ///
2893 /// TODO: Check execution resources in addition to IssueCount.
2894 void GenericScheduler::checkAcyclicLatency() {
2895   if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
2896     return;
2897 
2898   // Scaled number of cycles per loop iteration.
2899   unsigned IterCount =
2900     std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
2901              Rem.RemIssueCount);
2902   // Scaled acyclic critical path.
2903   unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
2904   // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
2905   unsigned InFlightCount =
2906     (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
2907   unsigned BufferLimit =
2908     SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
2909 
2910   Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
2911 
2912   LLVM_DEBUG(
2913       dbgs() << "IssueCycles="
2914              << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
2915              << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
2916              << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount
2917              << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
2918              << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
2919       if (Rem.IsAcyclicLatencyLimited) dbgs() << "  ACYCLIC LATENCY LIMIT\n");
2920 }
2921 
2922 void GenericScheduler::registerRoots() {
2923   Rem.CriticalPath = DAG->ExitSU.getDepth();
2924 
2925   // Some roots may not feed into ExitSU. Check all of them in case.
2926   for (const SUnit *SU : Bot.Available) {
2927     if (SU->getDepth() > Rem.CriticalPath)
2928       Rem.CriticalPath = SU->getDepth();
2929   }
2930   LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
2931   if (DumpCriticalPathLength) {
2932     errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
2933   }
2934 
2935   if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) {
2936     Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
2937     checkAcyclicLatency();
2938   }
2939 }
2940 
2941 namespace llvm {
2942 bool tryPressure(const PressureChange &TryP,
2943                  const PressureChange &CandP,
2944                  GenericSchedulerBase::SchedCandidate &TryCand,
2945                  GenericSchedulerBase::SchedCandidate &Cand,
2946                  GenericSchedulerBase::CandReason Reason,
2947                  const TargetRegisterInfo *TRI,
2948                  const MachineFunction &MF) {
2949   // If one candidate decreases and the other increases, go with it.
2950   // Invalid candidates have UnitInc==0.
2951   if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
2952                  Reason)) {
2953     return true;
2954   }
2955   // Do not compare the magnitude of pressure changes between top and bottom
2956   // boundary.
2957   if (Cand.AtTop != TryCand.AtTop)
2958     return false;
2959 
2960   // If both candidates affect the same set in the same boundary, go with the
2961   // smallest increase.
2962   unsigned TryPSet = TryP.getPSetOrMax();
2963   unsigned CandPSet = CandP.getPSetOrMax();
2964   if (TryPSet == CandPSet) {
2965     return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
2966                    Reason);
2967   }
2968 
2969   int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
2970                                  std::numeric_limits<int>::max();
2971 
2972   int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
2973                                    std::numeric_limits<int>::max();
2974 
2975   // If the candidates are decreasing pressure, reverse priority.
2976   if (TryP.getUnitInc() < 0)
2977     std::swap(TryRank, CandRank);
2978   return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
2979 }
2980 
2981 unsigned getWeakLeft(const SUnit *SU, bool isTop) {
2982   return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
2983 }
2984 
2985 /// Minimize physical register live ranges. Regalloc wants them adjacent to
2986 /// their physreg def/use.
2987 ///
2988 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
2989 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
2990 /// with the operation that produces or consumes the physreg. We'll do this when
2991 /// regalloc has support for parallel copies.
2992 int biasPhysReg(const SUnit *SU, bool isTop) {
2993   const MachineInstr *MI = SU->getInstr();
2994 
2995   if (MI->isCopy()) {
2996     unsigned ScheduledOper = isTop ? 1 : 0;
2997     unsigned UnscheduledOper = isTop ? 0 : 1;
2998     // If we have already scheduled the physreg produce/consumer, immediately
2999     // schedule the copy.
3000     if (Register::isPhysicalRegister(MI->getOperand(ScheduledOper).getReg()))
3001       return 1;
3002     // If the physreg is at the boundary, defer it. Otherwise schedule it
3003     // immediately to free the dependent. We can hoist the copy later.
3004     bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
3005     if (Register::isPhysicalRegister(MI->getOperand(UnscheduledOper).getReg()))
3006       return AtBoundary ? -1 : 1;
3007   }
3008 
3009   if (MI->isMoveImmediate()) {
3010     // If we have a move immediate and all successors have been assigned, bias
3011     // towards scheduling this later. Make sure all register defs are to
3012     // physical registers.
3013     bool DoBias = true;
3014     for (const MachineOperand &Op : MI->defs()) {
3015       if (Op.isReg() && !Register::isPhysicalRegister(Op.getReg())) {
3016         DoBias = false;
3017         break;
3018       }
3019     }
3020 
3021     if (DoBias)
3022       return isTop ? -1 : 1;
3023   }
3024 
3025   return 0;
3026 }
3027 } // end namespace llvm
3028 
3029 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU,
3030                                      bool AtTop,
3031                                      const RegPressureTracker &RPTracker,
3032                                      RegPressureTracker &TempTracker) {
3033   Cand.SU = SU;
3034   Cand.AtTop = AtTop;
3035   if (DAG->isTrackingPressure()) {
3036     if (AtTop) {
3037       TempTracker.getMaxDownwardPressureDelta(
3038         Cand.SU->getInstr(),
3039         Cand.RPDelta,
3040         DAG->getRegionCriticalPSets(),
3041         DAG->getRegPressure().MaxSetPressure);
3042     } else {
3043       if (VerifyScheduling) {
3044         TempTracker.getMaxUpwardPressureDelta(
3045           Cand.SU->getInstr(),
3046           &DAG->getPressureDiff(Cand.SU),
3047           Cand.RPDelta,
3048           DAG->getRegionCriticalPSets(),
3049           DAG->getRegPressure().MaxSetPressure);
3050       } else {
3051         RPTracker.getUpwardPressureDelta(
3052           Cand.SU->getInstr(),
3053           DAG->getPressureDiff(Cand.SU),
3054           Cand.RPDelta,
3055           DAG->getRegionCriticalPSets(),
3056           DAG->getRegPressure().MaxSetPressure);
3057       }
3058     }
3059   }
3060   LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs()
3061              << "  Try  SU(" << Cand.SU->NodeNum << ") "
3062              << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":"
3063              << Cand.RPDelta.Excess.getUnitInc() << "\n");
3064 }
3065 
3066 /// Apply a set of heuristics to a new candidate. Heuristics are currently
3067 /// hierarchical. This may be more efficient than a graduated cost model because
3068 /// we don't need to evaluate all aspects of the model for each node in the
3069 /// queue. But it's really done to make the heuristics easier to debug and
3070 /// statistically analyze.
3071 ///
3072 /// \param Cand provides the policy and current best candidate.
3073 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3074 /// \param Zone describes the scheduled zone that we are extending, or nullptr
3075 //              if Cand is from a different zone than TryCand.
3076 void GenericScheduler::tryCandidate(SchedCandidate &Cand,
3077                                     SchedCandidate &TryCand,
3078                                     SchedBoundary *Zone) const {
3079   // Initialize the candidate if needed.
3080   if (!Cand.isValid()) {
3081     TryCand.Reason = NodeOrder;
3082     return;
3083   }
3084 
3085   // Bias PhysReg Defs and copies to their uses and defined respectively.
3086   if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop),
3087                  biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg))
3088     return;
3089 
3090   // Avoid exceeding the target's limit.
3091   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
3092                                                Cand.RPDelta.Excess,
3093                                                TryCand, Cand, RegExcess, TRI,
3094                                                DAG->MF))
3095     return;
3096 
3097   // Avoid increasing the max critical pressure in the scheduled region.
3098   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
3099                                                Cand.RPDelta.CriticalMax,
3100                                                TryCand, Cand, RegCritical, TRI,
3101                                                DAG->MF))
3102     return;
3103 
3104   // We only compare a subset of features when comparing nodes between
3105   // Top and Bottom boundary. Some properties are simply incomparable, in many
3106   // other instances we should only override the other boundary if something
3107   // is a clear good pick on one boundary. Skip heuristics that are more
3108   // "tie-breaking" in nature.
3109   bool SameBoundary = Zone != nullptr;
3110   if (SameBoundary) {
3111     // For loops that are acyclic path limited, aggressively schedule for
3112     // latency. Within an single cycle, whenever CurrMOps > 0, allow normal
3113     // heuristics to take precedence.
3114     if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() &&
3115         tryLatency(TryCand, Cand, *Zone))
3116       return;
3117 
3118     // Prioritize instructions that read unbuffered resources by stall cycles.
3119     if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
3120                 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3121       return;
3122   }
3123 
3124   // Keep clustered nodes together to encourage downstream peephole
3125   // optimizations which may reduce resource requirements.
3126   //
3127   // This is a best effort to set things up for a post-RA pass. Optimizations
3128   // like generating loads of multiple registers should ideally be done within
3129   // the scheduler pass by combining the loads during DAG postprocessing.
3130   const SUnit *CandNextClusterSU =
3131     Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3132   const SUnit *TryCandNextClusterSU =
3133     TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3134   if (tryGreater(TryCand.SU == TryCandNextClusterSU,
3135                  Cand.SU == CandNextClusterSU,
3136                  TryCand, Cand, Cluster))
3137     return;
3138 
3139   if (SameBoundary) {
3140     // Weak edges are for clustering and other constraints.
3141     if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
3142                 getWeakLeft(Cand.SU, Cand.AtTop),
3143                 TryCand, Cand, Weak))
3144       return;
3145   }
3146 
3147   // Avoid increasing the max pressure of the entire region.
3148   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
3149                                                Cand.RPDelta.CurrentMax,
3150                                                TryCand, Cand, RegMax, TRI,
3151                                                DAG->MF))
3152     return;
3153 
3154   if (SameBoundary) {
3155     // Avoid critical resource consumption and balance the schedule.
3156     TryCand.initResourceDelta(DAG, SchedModel);
3157     if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3158                 TryCand, Cand, ResourceReduce))
3159       return;
3160     if (tryGreater(TryCand.ResDelta.DemandedResources,
3161                    Cand.ResDelta.DemandedResources,
3162                    TryCand, Cand, ResourceDemand))
3163       return;
3164 
3165     // Avoid serializing long latency dependence chains.
3166     // For acyclic path limited loops, latency was already checked above.
3167     if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency &&
3168         !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone))
3169       return;
3170 
3171     // Fall through to original instruction order.
3172     if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
3173         || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
3174       TryCand.Reason = NodeOrder;
3175     }
3176   }
3177 }
3178 
3179 /// Pick the best candidate from the queue.
3180 ///
3181 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
3182 /// DAG building. To adjust for the current scheduling location we need to
3183 /// maintain the number of vreg uses remaining to be top-scheduled.
3184 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
3185                                          const CandPolicy &ZonePolicy,
3186                                          const RegPressureTracker &RPTracker,
3187                                          SchedCandidate &Cand) {
3188   // getMaxPressureDelta temporarily modifies the tracker.
3189   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
3190 
3191   ReadyQueue &Q = Zone.Available;
3192   for (SUnit *SU : Q) {
3193 
3194     SchedCandidate TryCand(ZonePolicy);
3195     initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker);
3196     // Pass SchedBoundary only when comparing nodes from the same boundary.
3197     SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
3198     tryCandidate(Cand, TryCand, ZoneArg);
3199     if (TryCand.Reason != NoCand) {
3200       // Initialize resource delta if needed in case future heuristics query it.
3201       if (TryCand.ResDelta == SchedResourceDelta())
3202         TryCand.initResourceDelta(DAG, SchedModel);
3203       Cand.setBest(TryCand);
3204       LLVM_DEBUG(traceCandidate(Cand));
3205     }
3206   }
3207 }
3208 
3209 /// Pick the best candidate node from either the top or bottom queue.
3210 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
3211   // Schedule as far as possible in the direction of no choice. This is most
3212   // efficient, but also provides the best heuristics for CriticalPSets.
3213   if (SUnit *SU = Bot.pickOnlyChoice()) {
3214     IsTopNode = false;
3215     tracePick(Only1, false);
3216     return SU;
3217   }
3218   if (SUnit *SU = Top.pickOnlyChoice()) {
3219     IsTopNode = true;
3220     tracePick(Only1, true);
3221     return SU;
3222   }
3223   // Set the bottom-up policy based on the state of the current bottom zone and
3224   // the instructions outside the zone, including the top zone.
3225   CandPolicy BotPolicy;
3226   setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
3227   // Set the top-down policy based on the state of the current top zone and
3228   // the instructions outside the zone, including the bottom zone.
3229   CandPolicy TopPolicy;
3230   setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
3231 
3232   // See if BotCand is still valid (because we previously scheduled from Top).
3233   LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
3234   if (!BotCand.isValid() || BotCand.SU->isScheduled ||
3235       BotCand.Policy != BotPolicy) {
3236     BotCand.reset(CandPolicy());
3237     pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
3238     assert(BotCand.Reason != NoCand && "failed to find the first candidate");
3239   } else {
3240     LLVM_DEBUG(traceCandidate(BotCand));
3241 #ifndef NDEBUG
3242     if (VerifyScheduling) {
3243       SchedCandidate TCand;
3244       TCand.reset(CandPolicy());
3245       pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
3246       assert(TCand.SU == BotCand.SU &&
3247              "Last pick result should correspond to re-picking right now");
3248     }
3249 #endif
3250   }
3251 
3252   // Check if the top Q has a better candidate.
3253   LLVM_DEBUG(dbgs() << "Picking from Top:\n");
3254   if (!TopCand.isValid() || TopCand.SU->isScheduled ||
3255       TopCand.Policy != TopPolicy) {
3256     TopCand.reset(CandPolicy());
3257     pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
3258     assert(TopCand.Reason != NoCand && "failed to find the first candidate");
3259   } else {
3260     LLVM_DEBUG(traceCandidate(TopCand));
3261 #ifndef NDEBUG
3262     if (VerifyScheduling) {
3263       SchedCandidate TCand;
3264       TCand.reset(CandPolicy());
3265       pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
3266       assert(TCand.SU == TopCand.SU &&
3267            "Last pick result should correspond to re-picking right now");
3268     }
3269 #endif
3270   }
3271 
3272   // Pick best from BotCand and TopCand.
3273   assert(BotCand.isValid());
3274   assert(TopCand.isValid());
3275   SchedCandidate Cand = BotCand;
3276   TopCand.Reason = NoCand;
3277   tryCandidate(Cand, TopCand, nullptr);
3278   if (TopCand.Reason != NoCand) {
3279     Cand.setBest(TopCand);
3280     LLVM_DEBUG(traceCandidate(Cand));
3281   }
3282 
3283   IsTopNode = Cand.AtTop;
3284   tracePick(Cand);
3285   return Cand.SU;
3286 }
3287 
3288 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
3289 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
3290   if (DAG->top() == DAG->bottom()) {
3291     assert(Top.Available.empty() && Top.Pending.empty() &&
3292            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
3293     return nullptr;
3294   }
3295   SUnit *SU;
3296   do {
3297     if (RegionPolicy.OnlyTopDown) {
3298       SU = Top.pickOnlyChoice();
3299       if (!SU) {
3300         CandPolicy NoPolicy;
3301         TopCand.reset(NoPolicy);
3302         pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
3303         assert(TopCand.Reason != NoCand && "failed to find a candidate");
3304         tracePick(TopCand);
3305         SU = TopCand.SU;
3306       }
3307       IsTopNode = true;
3308     } else if (RegionPolicy.OnlyBottomUp) {
3309       SU = Bot.pickOnlyChoice();
3310       if (!SU) {
3311         CandPolicy NoPolicy;
3312         BotCand.reset(NoPolicy);
3313         pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
3314         assert(BotCand.Reason != NoCand && "failed to find a candidate");
3315         tracePick(BotCand);
3316         SU = BotCand.SU;
3317       }
3318       IsTopNode = false;
3319     } else {
3320       SU = pickNodeBidirectional(IsTopNode);
3321     }
3322   } while (SU->isScheduled);
3323 
3324   if (SU->isTopReady())
3325     Top.removeReady(SU);
3326   if (SU->isBottomReady())
3327     Bot.removeReady(SU);
3328 
3329   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3330                     << *SU->getInstr());
3331   return SU;
3332 }
3333 
3334 void GenericScheduler::reschedulePhysReg(SUnit *SU, bool isTop) {
3335   MachineBasicBlock::iterator InsertPos = SU->getInstr();
3336   if (!isTop)
3337     ++InsertPos;
3338   SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
3339 
3340   // Find already scheduled copies with a single physreg dependence and move
3341   // them just above the scheduled instruction.
3342   for (SDep &Dep : Deps) {
3343     if (Dep.getKind() != SDep::Data ||
3344         !Register::isPhysicalRegister(Dep.getReg()))
3345       continue;
3346     SUnit *DepSU = Dep.getSUnit();
3347     if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
3348       continue;
3349     MachineInstr *Copy = DepSU->getInstr();
3350     if (!Copy->isCopy() && !Copy->isMoveImmediate())
3351       continue;
3352     LLVM_DEBUG(dbgs() << "  Rescheduling physreg copy ";
3353                DAG->dumpNode(*Dep.getSUnit()));
3354     DAG->moveInstruction(Copy, InsertPos);
3355   }
3356 }
3357 
3358 /// Update the scheduler's state after scheduling a node. This is the same node
3359 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
3360 /// update it's state based on the current cycle before MachineSchedStrategy
3361 /// does.
3362 ///
3363 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
3364 /// them here. See comments in biasPhysReg.
3365 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3366   if (IsTopNode) {
3367     SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3368     Top.bumpNode(SU);
3369     if (SU->hasPhysRegUses)
3370       reschedulePhysReg(SU, true);
3371   } else {
3372     SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
3373     Bot.bumpNode(SU);
3374     if (SU->hasPhysRegDefs)
3375       reschedulePhysReg(SU, false);
3376   }
3377 }
3378 
3379 /// Create the standard converging machine scheduler. This will be used as the
3380 /// default scheduler if the target does not set a default.
3381 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) {
3382   ScheduleDAGMILive *DAG =
3383       new ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C));
3384   // Register DAG post-processors.
3385   //
3386   // FIXME: extend the mutation API to allow earlier mutations to instantiate
3387   // data and pass it to later mutations. Have a single mutation that gathers
3388   // the interesting nodes in one pass.
3389   DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI));
3390   return DAG;
3391 }
3392 
3393 static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) {
3394   return createGenericSchedLive(C);
3395 }
3396 
3397 static MachineSchedRegistry
3398 GenericSchedRegistry("converge", "Standard converging scheduler.",
3399                      createConveringSched);
3400 
3401 //===----------------------------------------------------------------------===//
3402 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
3403 //===----------------------------------------------------------------------===//
3404 
3405 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
3406   DAG = Dag;
3407   SchedModel = DAG->getSchedModel();
3408   TRI = DAG->TRI;
3409 
3410   Rem.init(DAG, SchedModel);
3411   Top.init(DAG, SchedModel, &Rem);
3412   BotRoots.clear();
3413 
3414   // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
3415   // or are disabled, then these HazardRecs will be disabled.
3416   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3417   if (!Top.HazardRec) {
3418     Top.HazardRec =
3419         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3420             Itin, DAG);
3421   }
3422 }
3423 
3424 void PostGenericScheduler::registerRoots() {
3425   Rem.CriticalPath = DAG->ExitSU.getDepth();
3426 
3427   // Some roots may not feed into ExitSU. Check all of them in case.
3428   for (const SUnit *SU : BotRoots) {
3429     if (SU->getDepth() > Rem.CriticalPath)
3430       Rem.CriticalPath = SU->getDepth();
3431   }
3432   LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
3433   if (DumpCriticalPathLength) {
3434     errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
3435   }
3436 }
3437 
3438 /// Apply a set of heuristics to a new candidate for PostRA scheduling.
3439 ///
3440 /// \param Cand provides the policy and current best candidate.
3441 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3442 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
3443                                         SchedCandidate &TryCand) {
3444   // Initialize the candidate if needed.
3445   if (!Cand.isValid()) {
3446     TryCand.Reason = NodeOrder;
3447     return;
3448   }
3449 
3450   // Prioritize instructions that read unbuffered resources by stall cycles.
3451   if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
3452               Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3453     return;
3454 
3455   // Keep clustered nodes together.
3456   if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(),
3457                  Cand.SU == DAG->getNextClusterSucc(),
3458                  TryCand, Cand, Cluster))
3459     return;
3460 
3461   // Avoid critical resource consumption and balance the schedule.
3462   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3463               TryCand, Cand, ResourceReduce))
3464     return;
3465   if (tryGreater(TryCand.ResDelta.DemandedResources,
3466                  Cand.ResDelta.DemandedResources,
3467                  TryCand, Cand, ResourceDemand))
3468     return;
3469 
3470   // Avoid serializing long latency dependence chains.
3471   if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
3472     return;
3473   }
3474 
3475   // Fall through to original instruction order.
3476   if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
3477     TryCand.Reason = NodeOrder;
3478 }
3479 
3480 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
3481   ReadyQueue &Q = Top.Available;
3482   for (SUnit *SU : Q) {
3483     SchedCandidate TryCand(Cand.Policy);
3484     TryCand.SU = SU;
3485     TryCand.AtTop = true;
3486     TryCand.initResourceDelta(DAG, SchedModel);
3487     tryCandidate(Cand, TryCand);
3488     if (TryCand.Reason != NoCand) {
3489       Cand.setBest(TryCand);
3490       LLVM_DEBUG(traceCandidate(Cand));
3491     }
3492   }
3493 }
3494 
3495 /// Pick the next node to schedule.
3496 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
3497   if (DAG->top() == DAG->bottom()) {
3498     assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
3499     return nullptr;
3500   }
3501   SUnit *SU;
3502   do {
3503     SU = Top.pickOnlyChoice();
3504     if (SU) {
3505       tracePick(Only1, true);
3506     } else {
3507       CandPolicy NoPolicy;
3508       SchedCandidate TopCand(NoPolicy);
3509       // Set the top-down policy based on the state of the current top zone and
3510       // the instructions outside the zone, including the bottom zone.
3511       setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
3512       pickNodeFromQueue(TopCand);
3513       assert(TopCand.Reason != NoCand && "failed to find a candidate");
3514       tracePick(TopCand);
3515       SU = TopCand.SU;
3516     }
3517   } while (SU->isScheduled);
3518 
3519   IsTopNode = true;
3520   Top.removeReady(SU);
3521 
3522   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3523                     << *SU->getInstr());
3524   return SU;
3525 }
3526 
3527 /// Called after ScheduleDAGMI has scheduled an instruction and updated
3528 /// scheduled/remaining flags in the DAG nodes.
3529 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3530   SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3531   Top.bumpNode(SU);
3532 }
3533 
3534 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) {
3535   return new ScheduleDAGMI(C, std::make_unique<PostGenericScheduler>(C),
3536                            /*RemoveKillFlags=*/true);
3537 }
3538 
3539 //===----------------------------------------------------------------------===//
3540 // ILP Scheduler. Currently for experimental analysis of heuristics.
3541 //===----------------------------------------------------------------------===//
3542 
3543 namespace {
3544 
3545 /// Order nodes by the ILP metric.
3546 struct ILPOrder {
3547   const SchedDFSResult *DFSResult = nullptr;
3548   const BitVector *ScheduledTrees = nullptr;
3549   bool MaximizeILP;
3550 
3551   ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {}
3552 
3553   /// Apply a less-than relation on node priority.
3554   ///
3555   /// (Return true if A comes after B in the Q.)
3556   bool operator()(const SUnit *A, const SUnit *B) const {
3557     unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3558     unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3559     if (SchedTreeA != SchedTreeB) {
3560       // Unscheduled trees have lower priority.
3561       if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3562         return ScheduledTrees->test(SchedTreeB);
3563 
3564       // Trees with shallower connections have have lower priority.
3565       if (DFSResult->getSubtreeLevel(SchedTreeA)
3566           != DFSResult->getSubtreeLevel(SchedTreeB)) {
3567         return DFSResult->getSubtreeLevel(SchedTreeA)
3568           < DFSResult->getSubtreeLevel(SchedTreeB);
3569       }
3570     }
3571     if (MaximizeILP)
3572       return DFSResult->getILP(A) < DFSResult->getILP(B);
3573     else
3574       return DFSResult->getILP(A) > DFSResult->getILP(B);
3575   }
3576 };
3577 
3578 /// Schedule based on the ILP metric.
3579 class ILPScheduler : public MachineSchedStrategy {
3580   ScheduleDAGMILive *DAG = nullptr;
3581   ILPOrder Cmp;
3582 
3583   std::vector<SUnit*> ReadyQ;
3584 
3585 public:
3586   ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {}
3587 
3588   void initialize(ScheduleDAGMI *dag) override {
3589     assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
3590     DAG = static_cast<ScheduleDAGMILive*>(dag);
3591     DAG->computeDFSResult();
3592     Cmp.DFSResult = DAG->getDFSResult();
3593     Cmp.ScheduledTrees = &DAG->getScheduledTrees();
3594     ReadyQ.clear();
3595   }
3596 
3597   void registerRoots() override {
3598     // Restore the heap in ReadyQ with the updated DFS results.
3599     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3600   }
3601 
3602   /// Implement MachineSchedStrategy interface.
3603   /// -----------------------------------------
3604 
3605   /// Callback to select the highest priority node from the ready Q.
3606   SUnit *pickNode(bool &IsTopNode) override {
3607     if (ReadyQ.empty()) return nullptr;
3608     std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3609     SUnit *SU = ReadyQ.back();
3610     ReadyQ.pop_back();
3611     IsTopNode = false;
3612     LLVM_DEBUG(dbgs() << "Pick node "
3613                       << "SU(" << SU->NodeNum << ") "
3614                       << " ILP: " << DAG->getDFSResult()->getILP(SU)
3615                       << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU)
3616                       << " @"
3617                       << DAG->getDFSResult()->getSubtreeLevel(
3618                              DAG->getDFSResult()->getSubtreeID(SU))
3619                       << '\n'
3620                       << "Scheduling " << *SU->getInstr());
3621     return SU;
3622   }
3623 
3624   /// Scheduler callback to notify that a new subtree is scheduled.
3625   void scheduleTree(unsigned SubtreeID) override {
3626     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3627   }
3628 
3629   /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
3630   /// DFSResults, and resort the priority Q.
3631   void schedNode(SUnit *SU, bool IsTopNode) override {
3632     assert(!IsTopNode && "SchedDFSResult needs bottom-up");
3633   }
3634 
3635   void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
3636 
3637   void releaseBottomNode(SUnit *SU) override {
3638     ReadyQ.push_back(SU);
3639     std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3640   }
3641 };
3642 
3643 } // end anonymous namespace
3644 
3645 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
3646   return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(true));
3647 }
3648 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
3649   return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(false));
3650 }
3651 
3652 static MachineSchedRegistry ILPMaxRegistry(
3653   "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
3654 static MachineSchedRegistry ILPMinRegistry(
3655   "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
3656 
3657 //===----------------------------------------------------------------------===//
3658 // Machine Instruction Shuffler for Correctness Testing
3659 //===----------------------------------------------------------------------===//
3660 
3661 #ifndef NDEBUG
3662 namespace {
3663 
3664 /// Apply a less-than relation on the node order, which corresponds to the
3665 /// instruction order prior to scheduling. IsReverse implements greater-than.
3666 template<bool IsReverse>
3667 struct SUnitOrder {
3668   bool operator()(SUnit *A, SUnit *B) const {
3669     if (IsReverse)
3670       return A->NodeNum > B->NodeNum;
3671     else
3672       return A->NodeNum < B->NodeNum;
3673   }
3674 };
3675 
3676 /// Reorder instructions as much as possible.
3677 class InstructionShuffler : public MachineSchedStrategy {
3678   bool IsAlternating;
3679   bool IsTopDown;
3680 
3681   // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
3682   // gives nodes with a higher number higher priority causing the latest
3683   // instructions to be scheduled first.
3684   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>>
3685     TopQ;
3686 
3687   // When scheduling bottom-up, use greater-than as the queue priority.
3688   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>>
3689     BottomQ;
3690 
3691 public:
3692   InstructionShuffler(bool alternate, bool topdown)
3693     : IsAlternating(alternate), IsTopDown(topdown) {}
3694 
3695   void initialize(ScheduleDAGMI*) override {
3696     TopQ.clear();
3697     BottomQ.clear();
3698   }
3699 
3700   /// Implement MachineSchedStrategy interface.
3701   /// -----------------------------------------
3702 
3703   SUnit *pickNode(bool &IsTopNode) override {
3704     SUnit *SU;
3705     if (IsTopDown) {
3706       do {
3707         if (TopQ.empty()) return nullptr;
3708         SU = TopQ.top();
3709         TopQ.pop();
3710       } while (SU->isScheduled);
3711       IsTopNode = true;
3712     } else {
3713       do {
3714         if (BottomQ.empty()) return nullptr;
3715         SU = BottomQ.top();
3716         BottomQ.pop();
3717       } while (SU->isScheduled);
3718       IsTopNode = false;
3719     }
3720     if (IsAlternating)
3721       IsTopDown = !IsTopDown;
3722     return SU;
3723   }
3724 
3725   void schedNode(SUnit *SU, bool IsTopNode) override {}
3726 
3727   void releaseTopNode(SUnit *SU) override {
3728     TopQ.push(SU);
3729   }
3730   void releaseBottomNode(SUnit *SU) override {
3731     BottomQ.push(SU);
3732   }
3733 };
3734 
3735 } // end anonymous namespace
3736 
3737 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
3738   bool Alternate = !ForceTopDown && !ForceBottomUp;
3739   bool TopDown = !ForceBottomUp;
3740   assert((TopDown || !ForceTopDown) &&
3741          "-misched-topdown incompatible with -misched-bottomup");
3742   return new ScheduleDAGMILive(
3743       C, std::make_unique<InstructionShuffler>(Alternate, TopDown));
3744 }
3745 
3746 static MachineSchedRegistry ShufflerRegistry(
3747   "shuffle", "Shuffle machine instructions alternating directions",
3748   createInstructionShuffler);
3749 #endif // !NDEBUG
3750 
3751 //===----------------------------------------------------------------------===//
3752 // GraphWriter support for ScheduleDAGMILive.
3753 //===----------------------------------------------------------------------===//
3754 
3755 #ifndef NDEBUG
3756 namespace llvm {
3757 
3758 template<> struct GraphTraits<
3759   ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
3760 
3761 template<>
3762 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
3763   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
3764 
3765   static std::string getGraphName(const ScheduleDAG *G) {
3766     return std::string(G->MF.getName());
3767   }
3768 
3769   static bool renderGraphFromBottomUp() {
3770     return true;
3771   }
3772 
3773   static bool isNodeHidden(const SUnit *Node) {
3774     if (ViewMISchedCutoff == 0)
3775       return false;
3776     return (Node->Preds.size() > ViewMISchedCutoff
3777          || Node->Succs.size() > ViewMISchedCutoff);
3778   }
3779 
3780   /// If you want to override the dot attributes printed for a particular
3781   /// edge, override this method.
3782   static std::string getEdgeAttributes(const SUnit *Node,
3783                                        SUnitIterator EI,
3784                                        const ScheduleDAG *Graph) {
3785     if (EI.isArtificialDep())
3786       return "color=cyan,style=dashed";
3787     if (EI.isCtrlDep())
3788       return "color=blue,style=dashed";
3789     return "";
3790   }
3791 
3792   static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
3793     std::string Str;
3794     raw_string_ostream SS(Str);
3795     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3796     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3797       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3798     SS << "SU:" << SU->NodeNum;
3799     if (DFS)
3800       SS << " I:" << DFS->getNumInstrs(SU);
3801     return SS.str();
3802   }
3803 
3804   static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
3805     return G->getGraphNodeLabel(SU);
3806   }
3807 
3808   static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
3809     std::string Str("shape=Mrecord");
3810     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3811     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3812       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3813     if (DFS) {
3814       Str += ",style=filled,fillcolor=\"#";
3815       Str += DOT::getColorString(DFS->getSubtreeID(N));
3816       Str += '"';
3817     }
3818     return Str;
3819   }
3820 };
3821 
3822 } // end namespace llvm
3823 #endif // NDEBUG
3824 
3825 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
3826 /// rendered using 'dot'.
3827 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
3828 #ifndef NDEBUG
3829   ViewGraph(this, Name, false, Title);
3830 #else
3831   errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
3832          << "systems with Graphviz or gv!\n";
3833 #endif  // NDEBUG
3834 }
3835 
3836 /// Out-of-line implementation with no arguments is handy for gdb.
3837 void ScheduleDAGMI::viewGraph() {
3838   viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
3839 }
3840