xref: /llvm-project/llvm/lib/CodeGen/MachineScheduler.cpp (revision 1a77bcc0d2317b97b19f6386b1d40ab864e2a26e)
1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // MachineScheduler schedules machine instructions after phi elimination. It
11 // preserves LiveIntervals so it can be invoked before register allocation.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/MachineScheduler.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/PriorityQueue.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineLoopInfo.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachinePassRegistry.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/MachineValueType.h"
36 #include "llvm/CodeGen/Passes.h"
37 #include "llvm/CodeGen/RegisterClassInfo.h"
38 #include "llvm/CodeGen/RegisterPressure.h"
39 #include "llvm/CodeGen/ScheduleDAG.h"
40 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
41 #include "llvm/CodeGen/ScheduleDAGMutation.h"
42 #include "llvm/CodeGen/ScheduleDFS.h"
43 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
44 #include "llvm/CodeGen/SlotIndexes.h"
45 #include "llvm/CodeGen/TargetPassConfig.h"
46 #include "llvm/CodeGen/TargetSchedule.h"
47 #include "llvm/MC/LaneBitmask.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/GraphWriter.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Target/TargetInstrInfo.h"
56 #include "llvm/Target/TargetLowering.h"
57 #include "llvm/Target/TargetRegisterInfo.h"
58 #include "llvm/Target/TargetSubtargetInfo.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <cstdint>
62 #include <iterator>
63 #include <limits>
64 #include <memory>
65 #include <string>
66 #include <tuple>
67 #include <utility>
68 #include <vector>
69 
70 using namespace llvm;
71 
72 #define DEBUG_TYPE "machine-scheduler"
73 
74 namespace llvm {
75 
76 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
77                            cl::desc("Force top-down list scheduling"));
78 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
79                             cl::desc("Force bottom-up list scheduling"));
80 cl::opt<bool>
81 DumpCriticalPathLength("misched-dcpl", cl::Hidden,
82                        cl::desc("Print critical path length to stdout"));
83 
84 } // end namespace llvm
85 
86 #ifndef NDEBUG
87 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
88   cl::desc("Pop up a window to show MISched dags after they are processed"));
89 
90 /// In some situations a few uninteresting nodes depend on nearly all other
91 /// nodes in the graph, provide a cutoff to hide them.
92 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
93   cl::desc("Hide nodes with more predecessor/successor than cutoff"));
94 
95 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
96   cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
97 
98 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
99   cl::desc("Only schedule this function"));
100 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
101   cl::desc("Only schedule this MBB#"));
102 #else
103 static bool ViewMISchedDAGs = false;
104 #endif // NDEBUG
105 
106 /// Avoid quadratic complexity in unusually large basic blocks by limiting the
107 /// size of the ready lists.
108 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden,
109   cl::desc("Limit ready list to N instructions"), cl::init(256));
110 
111 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
112   cl::desc("Enable register pressure scheduling."), cl::init(true));
113 
114 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
115   cl::desc("Enable cyclic critical path analysis."), cl::init(true));
116 
117 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden,
118                                         cl::desc("Enable memop clustering."),
119                                         cl::init(true));
120 
121 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
122   cl::desc("Verify machine instrs before and after machine scheduling"));
123 
124 // DAG subtrees must have at least this many nodes.
125 static const unsigned MinSubtreeSize = 8;
126 
127 // Pin the vtables to this file.
128 void MachineSchedStrategy::anchor() {}
129 
130 void ScheduleDAGMutation::anchor() {}
131 
132 //===----------------------------------------------------------------------===//
133 // Machine Instruction Scheduling Pass and Registry
134 //===----------------------------------------------------------------------===//
135 
136 MachineSchedContext::MachineSchedContext() {
137   RegClassInfo = new RegisterClassInfo();
138 }
139 
140 MachineSchedContext::~MachineSchedContext() {
141   delete RegClassInfo;
142 }
143 
144 namespace {
145 
146 /// Base class for a machine scheduler class that can run at any point.
147 class MachineSchedulerBase : public MachineSchedContext,
148                              public MachineFunctionPass {
149 public:
150   MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
151 
152   void print(raw_ostream &O, const Module* = nullptr) const override;
153 
154 protected:
155   void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
156 };
157 
158 /// MachineScheduler runs after coalescing and before register allocation.
159 class MachineScheduler : public MachineSchedulerBase {
160 public:
161   MachineScheduler();
162 
163   void getAnalysisUsage(AnalysisUsage &AU) const override;
164 
165   bool runOnMachineFunction(MachineFunction&) override;
166 
167   static char ID; // Class identification, replacement for typeinfo
168 
169 protected:
170   ScheduleDAGInstrs *createMachineScheduler();
171 };
172 
173 /// PostMachineScheduler runs after shortly before code emission.
174 class PostMachineScheduler : public MachineSchedulerBase {
175 public:
176   PostMachineScheduler();
177 
178   void getAnalysisUsage(AnalysisUsage &AU) const override;
179 
180   bool runOnMachineFunction(MachineFunction&) override;
181 
182   static char ID; // Class identification, replacement for typeinfo
183 
184 protected:
185   ScheduleDAGInstrs *createPostMachineScheduler();
186 };
187 
188 } // end anonymous namespace
189 
190 char MachineScheduler::ID = 0;
191 
192 char &llvm::MachineSchedulerID = MachineScheduler::ID;
193 
194 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE,
195                       "Machine Instruction Scheduler", false, false)
196 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
197 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
198 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
199 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
200 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE,
201                     "Machine Instruction Scheduler", false, false)
202 
203 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) {
204   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
205 }
206 
207 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
208   AU.setPreservesCFG();
209   AU.addRequiredID(MachineDominatorsID);
210   AU.addRequired<MachineLoopInfo>();
211   AU.addRequired<AAResultsWrapperPass>();
212   AU.addRequired<TargetPassConfig>();
213   AU.addRequired<SlotIndexes>();
214   AU.addPreserved<SlotIndexes>();
215   AU.addRequired<LiveIntervals>();
216   AU.addPreserved<LiveIntervals>();
217   MachineFunctionPass::getAnalysisUsage(AU);
218 }
219 
220 char PostMachineScheduler::ID = 0;
221 
222 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
223 
224 INITIALIZE_PASS(PostMachineScheduler, "postmisched",
225                 "PostRA Machine Instruction Scheduler", false, false)
226 
227 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) {
228   initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
229 }
230 
231 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
232   AU.setPreservesCFG();
233   AU.addRequiredID(MachineDominatorsID);
234   AU.addRequired<MachineLoopInfo>();
235   AU.addRequired<TargetPassConfig>();
236   MachineFunctionPass::getAnalysisUsage(AU);
237 }
238 
239 MachinePassRegistry MachineSchedRegistry::Registry;
240 
241 /// A dummy default scheduler factory indicates whether the scheduler
242 /// is overridden on the command line.
243 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
244   return nullptr;
245 }
246 
247 /// MachineSchedOpt allows command line selection of the scheduler.
248 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
249                RegisterPassParser<MachineSchedRegistry>>
250 MachineSchedOpt("misched",
251                 cl::init(&useDefaultMachineSched), cl::Hidden,
252                 cl::desc("Machine instruction scheduler to use"));
253 
254 static MachineSchedRegistry
255 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
256                      useDefaultMachineSched);
257 
258 static cl::opt<bool> EnableMachineSched(
259     "enable-misched",
260     cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
261     cl::Hidden);
262 
263 static cl::opt<bool> EnablePostRAMachineSched(
264     "enable-post-misched",
265     cl::desc("Enable the post-ra machine instruction scheduling pass."),
266     cl::init(true), cl::Hidden);
267 
268 /// Decrement this iterator until reaching the top or a non-debug instr.
269 static MachineBasicBlock::const_iterator
270 priorNonDebug(MachineBasicBlock::const_iterator I,
271               MachineBasicBlock::const_iterator Beg) {
272   assert(I != Beg && "reached the top of the region, cannot decrement");
273   while (--I != Beg) {
274     if (!I->isDebugValue())
275       break;
276   }
277   return I;
278 }
279 
280 /// Non-const version.
281 static MachineBasicBlock::iterator
282 priorNonDebug(MachineBasicBlock::iterator I,
283               MachineBasicBlock::const_iterator Beg) {
284   return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)
285       .getNonConstIterator();
286 }
287 
288 /// If this iterator is a debug value, increment until reaching the End or a
289 /// non-debug instruction.
290 static MachineBasicBlock::const_iterator
291 nextIfDebug(MachineBasicBlock::const_iterator I,
292             MachineBasicBlock::const_iterator End) {
293   for(; I != End; ++I) {
294     if (!I->isDebugValue())
295       break;
296   }
297   return I;
298 }
299 
300 /// Non-const version.
301 static MachineBasicBlock::iterator
302 nextIfDebug(MachineBasicBlock::iterator I,
303             MachineBasicBlock::const_iterator End) {
304   return nextIfDebug(MachineBasicBlock::const_iterator(I), End)
305       .getNonConstIterator();
306 }
307 
308 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
309 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
310   // Select the scheduler, or set the default.
311   MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
312   if (Ctor != useDefaultMachineSched)
313     return Ctor(this);
314 
315   // Get the default scheduler set by the target for this function.
316   ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
317   if (Scheduler)
318     return Scheduler;
319 
320   // Default to GenericScheduler.
321   return createGenericSchedLive(this);
322 }
323 
324 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
325 /// the caller. We don't have a command line option to override the postRA
326 /// scheduler. The Target must configure it.
327 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
328   // Get the postRA scheduler set by the target for this function.
329   ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
330   if (Scheduler)
331     return Scheduler;
332 
333   // Default to GenericScheduler.
334   return createGenericSchedPostRA(this);
335 }
336 
337 /// Top-level MachineScheduler pass driver.
338 ///
339 /// Visit blocks in function order. Divide each block into scheduling regions
340 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
341 /// consistent with the DAG builder, which traverses the interior of the
342 /// scheduling regions bottom-up.
343 ///
344 /// This design avoids exposing scheduling boundaries to the DAG builder,
345 /// simplifying the DAG builder's support for "special" target instructions.
346 /// At the same time the design allows target schedulers to operate across
347 /// scheduling boundaries, for example to bundle the boudary instructions
348 /// without reordering them. This creates complexity, because the target
349 /// scheduler must update the RegionBegin and RegionEnd positions cached by
350 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
351 /// design would be to split blocks at scheduling boundaries, but LLVM has a
352 /// general bias against block splitting purely for implementation simplicity.
353 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
354   if (skipFunction(*mf.getFunction()))
355     return false;
356 
357   if (EnableMachineSched.getNumOccurrences()) {
358     if (!EnableMachineSched)
359       return false;
360   } else if (!mf.getSubtarget().enableMachineScheduler())
361     return false;
362 
363   DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
364 
365   // Initialize the context of the pass.
366   MF = &mf;
367   MLI = &getAnalysis<MachineLoopInfo>();
368   MDT = &getAnalysis<MachineDominatorTree>();
369   PassConfig = &getAnalysis<TargetPassConfig>();
370   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
371 
372   LIS = &getAnalysis<LiveIntervals>();
373 
374   if (VerifyScheduling) {
375     DEBUG(LIS->dump());
376     MF->verify(this, "Before machine scheduling.");
377   }
378   RegClassInfo->runOnMachineFunction(*MF);
379 
380   // Instantiate the selected scheduler for this target, function, and
381   // optimization level.
382   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
383   scheduleRegions(*Scheduler, false);
384 
385   DEBUG(LIS->dump());
386   if (VerifyScheduling)
387     MF->verify(this, "After machine scheduling.");
388   return true;
389 }
390 
391 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
392   if (skipFunction(*mf.getFunction()))
393     return false;
394 
395   if (EnablePostRAMachineSched.getNumOccurrences()) {
396     if (!EnablePostRAMachineSched)
397       return false;
398   } else if (!mf.getSubtarget().enablePostRAScheduler()) {
399     DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
400     return false;
401   }
402   DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
403 
404   // Initialize the context of the pass.
405   MF = &mf;
406   MLI = &getAnalysis<MachineLoopInfo>();
407   PassConfig = &getAnalysis<TargetPassConfig>();
408 
409   if (VerifyScheduling)
410     MF->verify(this, "Before post machine scheduling.");
411 
412   // Instantiate the selected scheduler for this target, function, and
413   // optimization level.
414   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
415   scheduleRegions(*Scheduler, true);
416 
417   if (VerifyScheduling)
418     MF->verify(this, "After post machine scheduling.");
419   return true;
420 }
421 
422 /// Return true of the given instruction should not be included in a scheduling
423 /// region.
424 ///
425 /// MachineScheduler does not currently support scheduling across calls. To
426 /// handle calls, the DAG builder needs to be modified to create register
427 /// anti/output dependencies on the registers clobbered by the call's regmask
428 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
429 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
430 /// the boundary, but there would be no benefit to postRA scheduling across
431 /// calls this late anyway.
432 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
433                             MachineBasicBlock *MBB,
434                             MachineFunction *MF,
435                             const TargetInstrInfo *TII) {
436   return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF);
437 }
438 
439 /// A region of an MBB for scheduling.
440 namespace {
441 struct SchedRegion {
442   /// RegionBegin is the first instruction in the scheduling region, and
443   /// RegionEnd is either MBB->end() or the scheduling boundary after the
444   /// last instruction in the scheduling region. These iterators cannot refer
445   /// to instructions outside of the identified scheduling region because
446   /// those may be reordered before scheduling this region.
447   MachineBasicBlock::iterator RegionBegin;
448   MachineBasicBlock::iterator RegionEnd;
449   unsigned NumRegionInstrs;
450 
451   SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E,
452               unsigned N) :
453     RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {}
454 };
455 } // end anonymous namespace
456 
457 using MBBRegionsVector = SmallVector<SchedRegion, 16>;
458 
459 static void
460 getSchedRegions(MachineBasicBlock *MBB,
461                 MBBRegionsVector &Regions,
462                 bool RegionsTopDown) {
463   MachineFunction *MF = MBB->getParent();
464   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
465 
466   MachineBasicBlock::iterator I = nullptr;
467   for(MachineBasicBlock::iterator RegionEnd = MBB->end();
468       RegionEnd != MBB->begin(); RegionEnd = I) {
469 
470     // Avoid decrementing RegionEnd for blocks with no terminator.
471     if (RegionEnd != MBB->end() ||
472         isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
473       --RegionEnd;
474     }
475 
476     // The next region starts above the previous region. Look backward in the
477     // instruction stream until we find the nearest boundary.
478     unsigned NumRegionInstrs = 0;
479     I = RegionEnd;
480     for (;I != MBB->begin(); --I) {
481       MachineInstr &MI = *std::prev(I);
482       if (isSchedBoundary(&MI, &*MBB, MF, TII))
483         break;
484       if (!MI.isDebugValue())
485         // MBB::size() uses instr_iterator to count. Here we need a bundle to
486         // count as a single instruction.
487         ++NumRegionInstrs;
488     }
489 
490     Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs));
491   }
492 
493   if (RegionsTopDown)
494     std::reverse(Regions.begin(), Regions.end());
495 }
496 
497 /// Main driver for both MachineScheduler and PostMachineScheduler.
498 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
499                                            bool FixKillFlags) {
500   // Visit all machine basic blocks.
501   //
502   // TODO: Visit blocks in global postorder or postorder within the bottom-up
503   // loop tree. Then we can optionally compute global RegPressure.
504   for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
505        MBB != MBBEnd; ++MBB) {
506 
507     Scheduler.startBlock(&*MBB);
508 
509 #ifndef NDEBUG
510     if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
511       continue;
512     if (SchedOnlyBlock.getNumOccurrences()
513         && (int)SchedOnlyBlock != MBB->getNumber())
514       continue;
515 #endif
516 
517     // Break the block into scheduling regions [I, RegionEnd). RegionEnd
518     // points to the scheduling boundary at the bottom of the region. The DAG
519     // does not include RegionEnd, but the region does (i.e. the next
520     // RegionEnd is above the previous RegionBegin). If the current block has
521     // no terminator then RegionEnd == MBB->end() for the bottom region.
522     //
523     // All the regions of MBB are first found and stored in MBBRegions, which
524     // will be processed (MBB) top-down if initialized with true.
525     //
526     // The Scheduler may insert instructions during either schedule() or
527     // exitRegion(), even for empty regions. So the local iterators 'I' and
528     // 'RegionEnd' are invalid across these calls. Instructions must not be
529     // added to other regions than the current one without updating MBBRegions.
530 
531     MBBRegionsVector MBBRegions;
532     getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown());
533     for (MBBRegionsVector::iterator R = MBBRegions.begin();
534          R != MBBRegions.end(); ++R) {
535       MachineBasicBlock::iterator I = R->RegionBegin;
536       MachineBasicBlock::iterator RegionEnd = R->RegionEnd;
537       unsigned NumRegionInstrs = R->NumRegionInstrs;
538 
539       // Notify the scheduler of the region, even if we may skip scheduling
540       // it. Perhaps it still needs to be bundled.
541       Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
542 
543       // Skip empty scheduling regions (0 or 1 schedulable instructions).
544       if (I == RegionEnd || I == std::prev(RegionEnd)) {
545         // Close the current region. Bundle the terminator if needed.
546         // This invalidates 'RegionEnd' and 'I'.
547         Scheduler.exitRegion();
548         continue;
549       }
550       DEBUG(dbgs() << "********** MI Scheduling **********\n");
551       DEBUG(dbgs() << MF->getName()
552             << ":BB#" << MBB->getNumber() << " " << MBB->getName()
553             << "\n  From: " << *I << "    To: ";
554             if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
555             else dbgs() << "End";
556             dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
557       if (DumpCriticalPathLength) {
558         errs() << MF->getName();
559         errs() << ":BB# " << MBB->getNumber();
560         errs() << " " << MBB->getName() << " \n";
561       }
562 
563       // Schedule a region: possibly reorder instructions.
564       // This invalidates the original region iterators.
565       Scheduler.schedule();
566 
567       // Close the current region.
568       Scheduler.exitRegion();
569     }
570     Scheduler.finishBlock();
571     // FIXME: Ideally, no further passes should rely on kill flags. However,
572     // thumb2 size reduction is currently an exception, so the PostMIScheduler
573     // needs to do this.
574     if (FixKillFlags)
575       Scheduler.fixupKills(*MBB);
576   }
577   Scheduler.finalizeSchedule();
578 }
579 
580 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
581   // unimplemented
582 }
583 
584 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
585 LLVM_DUMP_METHOD void ReadyQueue::dump() const {
586   dbgs() << "Queue " << Name << ": ";
587   for (const SUnit *SU : Queue)
588     dbgs() << SU->NodeNum << " ";
589   dbgs() << "\n";
590 }
591 #endif
592 
593 //===----------------------------------------------------------------------===//
594 // ScheduleDAGMI - Basic machine instruction scheduling. This is
595 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
596 // virtual registers.
597 // ===----------------------------------------------------------------------===/
598 
599 // Provide a vtable anchor.
600 ScheduleDAGMI::~ScheduleDAGMI() = default;
601 
602 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
603   return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
604 }
605 
606 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
607   if (SuccSU != &ExitSU) {
608     // Do not use WillCreateCycle, it assumes SD scheduling.
609     // If Pred is reachable from Succ, then the edge creates a cycle.
610     if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
611       return false;
612     Topo.AddPred(SuccSU, PredDep.getSUnit());
613   }
614   SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
615   // Return true regardless of whether a new edge needed to be inserted.
616   return true;
617 }
618 
619 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
620 /// NumPredsLeft reaches zero, release the successor node.
621 ///
622 /// FIXME: Adjust SuccSU height based on MinLatency.
623 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
624   SUnit *SuccSU = SuccEdge->getSUnit();
625 
626   if (SuccEdge->isWeak()) {
627     --SuccSU->WeakPredsLeft;
628     if (SuccEdge->isCluster())
629       NextClusterSucc = SuccSU;
630     return;
631   }
632 #ifndef NDEBUG
633   if (SuccSU->NumPredsLeft == 0) {
634     dbgs() << "*** Scheduling failed! ***\n";
635     SuccSU->dump(this);
636     dbgs() << " has been released too many times!\n";
637     llvm_unreachable(nullptr);
638   }
639 #endif
640   // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
641   // CurrCycle may have advanced since then.
642   if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
643     SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
644 
645   --SuccSU->NumPredsLeft;
646   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
647     SchedImpl->releaseTopNode(SuccSU);
648 }
649 
650 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
651 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
652   for (SDep &Succ : SU->Succs)
653     releaseSucc(SU, &Succ);
654 }
655 
656 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
657 /// NumSuccsLeft reaches zero, release the predecessor node.
658 ///
659 /// FIXME: Adjust PredSU height based on MinLatency.
660 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
661   SUnit *PredSU = PredEdge->getSUnit();
662 
663   if (PredEdge->isWeak()) {
664     --PredSU->WeakSuccsLeft;
665     if (PredEdge->isCluster())
666       NextClusterPred = PredSU;
667     return;
668   }
669 #ifndef NDEBUG
670   if (PredSU->NumSuccsLeft == 0) {
671     dbgs() << "*** Scheduling failed! ***\n";
672     PredSU->dump(this);
673     dbgs() << " has been released too many times!\n";
674     llvm_unreachable(nullptr);
675   }
676 #endif
677   // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
678   // CurrCycle may have advanced since then.
679   if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
680     PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
681 
682   --PredSU->NumSuccsLeft;
683   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
684     SchedImpl->releaseBottomNode(PredSU);
685 }
686 
687 /// releasePredecessors - Call releasePred on each of SU's predecessors.
688 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
689   for (SDep &Pred : SU->Preds)
690     releasePred(SU, &Pred);
691 }
692 
693 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) {
694   ScheduleDAGInstrs::startBlock(bb);
695   SchedImpl->enterMBB(bb);
696 }
697 
698 void ScheduleDAGMI::finishBlock() {
699   SchedImpl->leaveMBB();
700   ScheduleDAGInstrs::finishBlock();
701 }
702 
703 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
704 /// crossing a scheduling boundary. [begin, end) includes all instructions in
705 /// the region, including the boundary itself and single-instruction regions
706 /// that don't get scheduled.
707 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
708                                      MachineBasicBlock::iterator begin,
709                                      MachineBasicBlock::iterator end,
710                                      unsigned regioninstrs)
711 {
712   ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
713 
714   SchedImpl->initPolicy(begin, end, regioninstrs);
715 }
716 
717 /// This is normally called from the main scheduler loop but may also be invoked
718 /// by the scheduling strategy to perform additional code motion.
719 void ScheduleDAGMI::moveInstruction(
720   MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
721   // Advance RegionBegin if the first instruction moves down.
722   if (&*RegionBegin == MI)
723     ++RegionBegin;
724 
725   // Update the instruction stream.
726   BB->splice(InsertPos, BB, MI);
727 
728   // Update LiveIntervals
729   if (LIS)
730     LIS->handleMove(*MI, /*UpdateFlags=*/true);
731 
732   // Recede RegionBegin if an instruction moves above the first.
733   if (RegionBegin == InsertPos)
734     RegionBegin = MI;
735 }
736 
737 bool ScheduleDAGMI::checkSchedLimit() {
738 #ifndef NDEBUG
739   if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
740     CurrentTop = CurrentBottom;
741     return false;
742   }
743   ++NumInstrsScheduled;
744 #endif
745   return true;
746 }
747 
748 /// Per-region scheduling driver, called back from
749 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that
750 /// does not consider liveness or register pressure. It is useful for PostRA
751 /// scheduling and potentially other custom schedulers.
752 void ScheduleDAGMI::schedule() {
753   DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
754   DEBUG(SchedImpl->dumpPolicy());
755 
756   // Build the DAG.
757   buildSchedGraph(AA);
758 
759   Topo.InitDAGTopologicalSorting();
760 
761   postprocessDAG();
762 
763   SmallVector<SUnit*, 8> TopRoots, BotRoots;
764   findRootsAndBiasEdges(TopRoots, BotRoots);
765 
766   // Initialize the strategy before modifying the DAG.
767   // This may initialize a DFSResult to be used for queue priority.
768   SchedImpl->initialize(this);
769 
770   DEBUG(
771     if (EntrySU.getInstr() != nullptr)
772       EntrySU.dumpAll(this);
773     for (const SUnit &SU : SUnits)
774       SU.dumpAll(this);
775     if (ExitSU.getInstr() != nullptr)
776       ExitSU.dumpAll(this);
777   );
778   if (ViewMISchedDAGs) viewGraph();
779 
780   // Initialize ready queues now that the DAG and priority data are finalized.
781   initQueues(TopRoots, BotRoots);
782 
783   bool IsTopNode = false;
784   while (true) {
785     DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
786     SUnit *SU = SchedImpl->pickNode(IsTopNode);
787     if (!SU) break;
788 
789     assert(!SU->isScheduled && "Node already scheduled");
790     if (!checkSchedLimit())
791       break;
792 
793     MachineInstr *MI = SU->getInstr();
794     if (IsTopNode) {
795       assert(SU->isTopReady() && "node still has unscheduled dependencies");
796       if (&*CurrentTop == MI)
797         CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
798       else
799         moveInstruction(MI, CurrentTop);
800     } else {
801       assert(SU->isBottomReady() && "node still has unscheduled dependencies");
802       MachineBasicBlock::iterator priorII =
803         priorNonDebug(CurrentBottom, CurrentTop);
804       if (&*priorII == MI)
805         CurrentBottom = priorII;
806       else {
807         if (&*CurrentTop == MI)
808           CurrentTop = nextIfDebug(++CurrentTop, priorII);
809         moveInstruction(MI, CurrentBottom);
810         CurrentBottom = MI;
811       }
812     }
813     // Notify the scheduling strategy before updating the DAG.
814     // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
815     // runs, it can then use the accurate ReadyCycle time to determine whether
816     // newly released nodes can move to the readyQ.
817     SchedImpl->schedNode(SU, IsTopNode);
818 
819     updateQueues(SU, IsTopNode);
820   }
821   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
822 
823   placeDebugValues();
824 
825   DEBUG({
826       unsigned BBNum = begin()->getParent()->getNumber();
827       dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
828       dumpSchedule();
829       dbgs() << '\n';
830     });
831 }
832 
833 /// Apply each ScheduleDAGMutation step in order.
834 void ScheduleDAGMI::postprocessDAG() {
835   for (auto &m : Mutations)
836     m->apply(this);
837 }
838 
839 void ScheduleDAGMI::
840 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
841                       SmallVectorImpl<SUnit*> &BotRoots) {
842   for (SUnit &SU : SUnits) {
843     assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits");
844 
845     // Order predecessors so DFSResult follows the critical path.
846     SU.biasCriticalPath();
847 
848     // A SUnit is ready to top schedule if it has no predecessors.
849     if (!SU.NumPredsLeft)
850       TopRoots.push_back(&SU);
851     // A SUnit is ready to bottom schedule if it has no successors.
852     if (!SU.NumSuccsLeft)
853       BotRoots.push_back(&SU);
854   }
855   ExitSU.biasCriticalPath();
856 }
857 
858 /// Identify DAG roots and setup scheduler queues.
859 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
860                                ArrayRef<SUnit*> BotRoots) {
861   NextClusterSucc = nullptr;
862   NextClusterPred = nullptr;
863 
864   // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
865   //
866   // Nodes with unreleased weak edges can still be roots.
867   // Release top roots in forward order.
868   for (SUnit *SU : TopRoots)
869     SchedImpl->releaseTopNode(SU);
870 
871   // Release bottom roots in reverse order so the higher priority nodes appear
872   // first. This is more natural and slightly more efficient.
873   for (SmallVectorImpl<SUnit*>::const_reverse_iterator
874          I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
875     SchedImpl->releaseBottomNode(*I);
876   }
877 
878   releaseSuccessors(&EntrySU);
879   releasePredecessors(&ExitSU);
880 
881   SchedImpl->registerRoots();
882 
883   // Advance past initial DebugValues.
884   CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
885   CurrentBottom = RegionEnd;
886 }
887 
888 /// Update scheduler queues after scheduling an instruction.
889 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
890   // Release dependent instructions for scheduling.
891   if (IsTopNode)
892     releaseSuccessors(SU);
893   else
894     releasePredecessors(SU);
895 
896   SU->isScheduled = true;
897 }
898 
899 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
900 void ScheduleDAGMI::placeDebugValues() {
901   // If first instruction was a DBG_VALUE then put it back.
902   if (FirstDbgValue) {
903     BB->splice(RegionBegin, BB, FirstDbgValue);
904     RegionBegin = FirstDbgValue;
905   }
906 
907   for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator
908          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
909     std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
910     MachineInstr *DbgValue = P.first;
911     MachineBasicBlock::iterator OrigPrevMI = P.second;
912     if (&*RegionBegin == DbgValue)
913       ++RegionBegin;
914     BB->splice(++OrigPrevMI, BB, DbgValue);
915     if (OrigPrevMI == std::prev(RegionEnd))
916       RegionEnd = DbgValue;
917   }
918   DbgValues.clear();
919   FirstDbgValue = nullptr;
920 }
921 
922 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
923 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const {
924   for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
925     if (SUnit *SU = getSUnit(&(*MI)))
926       SU->dump(this);
927     else
928       dbgs() << "Missing SUnit\n";
929   }
930 }
931 #endif
932 
933 //===----------------------------------------------------------------------===//
934 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
935 // preservation.
936 //===----------------------------------------------------------------------===//
937 
938 ScheduleDAGMILive::~ScheduleDAGMILive() {
939   delete DFSResult;
940 }
941 
942 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) {
943   const MachineInstr &MI = *SU.getInstr();
944   for (const MachineOperand &MO : MI.operands()) {
945     if (!MO.isReg())
946       continue;
947     if (!MO.readsReg())
948       continue;
949     if (TrackLaneMasks && !MO.isUse())
950       continue;
951 
952     unsigned Reg = MO.getReg();
953     if (!TargetRegisterInfo::isVirtualRegister(Reg))
954       continue;
955 
956     // Ignore re-defs.
957     if (TrackLaneMasks) {
958       bool FoundDef = false;
959       for (const MachineOperand &MO2 : MI.operands()) {
960         if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) {
961           FoundDef = true;
962           break;
963         }
964       }
965       if (FoundDef)
966         continue;
967     }
968 
969     // Record this local VReg use.
970     VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
971     for (; UI != VRegUses.end(); ++UI) {
972       if (UI->SU == &SU)
973         break;
974     }
975     if (UI == VRegUses.end())
976       VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU));
977   }
978 }
979 
980 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
981 /// crossing a scheduling boundary. [begin, end) includes all instructions in
982 /// the region, including the boundary itself and single-instruction regions
983 /// that don't get scheduled.
984 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
985                                 MachineBasicBlock::iterator begin,
986                                 MachineBasicBlock::iterator end,
987                                 unsigned regioninstrs)
988 {
989   // ScheduleDAGMI initializes SchedImpl's per-region policy.
990   ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
991 
992   // For convenience remember the end of the liveness region.
993   LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
994 
995   SUPressureDiffs.clear();
996 
997   ShouldTrackPressure = SchedImpl->shouldTrackPressure();
998   ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks();
999 
1000   assert((!ShouldTrackLaneMasks || ShouldTrackPressure) &&
1001          "ShouldTrackLaneMasks requires ShouldTrackPressure");
1002 }
1003 
1004 // Setup the register pressure trackers for the top scheduled top and bottom
1005 // scheduled regions.
1006 void ScheduleDAGMILive::initRegPressure() {
1007   VRegUses.clear();
1008   VRegUses.setUniverse(MRI.getNumVirtRegs());
1009   for (SUnit &SU : SUnits)
1010     collectVRegUses(SU);
1011 
1012   TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin,
1013                     ShouldTrackLaneMasks, false);
1014   BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1015                     ShouldTrackLaneMasks, false);
1016 
1017   // Close the RPTracker to finalize live ins.
1018   RPTracker.closeRegion();
1019 
1020   DEBUG(RPTracker.dump());
1021 
1022   // Initialize the live ins and live outs.
1023   TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
1024   BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
1025 
1026   // Close one end of the tracker so we can call
1027   // getMaxUpward/DownwardPressureDelta before advancing across any
1028   // instructions. This converts currently live regs into live ins/outs.
1029   TopRPTracker.closeTop();
1030   BotRPTracker.closeBottom();
1031 
1032   BotRPTracker.initLiveThru(RPTracker);
1033   if (!BotRPTracker.getLiveThru().empty()) {
1034     TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
1035     DEBUG(dbgs() << "Live Thru: ";
1036           dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
1037   };
1038 
1039   // For each live out vreg reduce the pressure change associated with other
1040   // uses of the same vreg below the live-out reaching def.
1041   updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
1042 
1043   // Account for liveness generated by the region boundary.
1044   if (LiveRegionEnd != RegionEnd) {
1045     SmallVector<RegisterMaskPair, 8> LiveUses;
1046     BotRPTracker.recede(&LiveUses);
1047     updatePressureDiffs(LiveUses);
1048   }
1049 
1050   DEBUG(
1051     dbgs() << "Top Pressure:\n";
1052     dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
1053     dbgs() << "Bottom Pressure:\n";
1054     dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);
1055   );
1056 
1057   assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
1058 
1059   // Cache the list of excess pressure sets in this region. This will also track
1060   // the max pressure in the scheduled code for these sets.
1061   RegionCriticalPSets.clear();
1062   const std::vector<unsigned> &RegionPressure =
1063     RPTracker.getPressure().MaxSetPressure;
1064   for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
1065     unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
1066     if (RegionPressure[i] > Limit) {
1067       DEBUG(dbgs() << TRI->getRegPressureSetName(i)
1068             << " Limit " << Limit
1069             << " Actual " << RegionPressure[i] << "\n");
1070       RegionCriticalPSets.push_back(PressureChange(i));
1071     }
1072   }
1073   DEBUG(dbgs() << "Excess PSets: ";
1074         for (const PressureChange &RCPS : RegionCriticalPSets)
1075           dbgs() << TRI->getRegPressureSetName(
1076             RCPS.getPSet()) << " ";
1077         dbgs() << "\n");
1078 }
1079 
1080 void ScheduleDAGMILive::
1081 updateScheduledPressure(const SUnit *SU,
1082                         const std::vector<unsigned> &NewMaxPressure) {
1083   const PressureDiff &PDiff = getPressureDiff(SU);
1084   unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
1085   for (const PressureChange &PC : PDiff) {
1086     if (!PC.isValid())
1087       break;
1088     unsigned ID = PC.getPSet();
1089     while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
1090       ++CritIdx;
1091     if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
1092       if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
1093           && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max())
1094         RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
1095     }
1096     unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
1097     if (NewMaxPressure[ID] >= Limit - 2) {
1098       DEBUG(dbgs() << "  " << TRI->getRegPressureSetName(ID) << ": "
1099             << NewMaxPressure[ID]
1100             << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit
1101             << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n");
1102     }
1103   }
1104 }
1105 
1106 /// Update the PressureDiff array for liveness after scheduling this
1107 /// instruction.
1108 void ScheduleDAGMILive::updatePressureDiffs(
1109     ArrayRef<RegisterMaskPair> LiveUses) {
1110   for (const RegisterMaskPair &P : LiveUses) {
1111     unsigned Reg = P.RegUnit;
1112     /// FIXME: Currently assuming single-use physregs.
1113     if (!TRI->isVirtualRegister(Reg))
1114       continue;
1115 
1116     if (ShouldTrackLaneMasks) {
1117       // If the register has just become live then other uses won't change
1118       // this fact anymore => decrement pressure.
1119       // If the register has just become dead then other uses make it come
1120       // back to life => increment pressure.
1121       bool Decrement = P.LaneMask.any();
1122 
1123       for (const VReg2SUnit &V2SU
1124            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1125         SUnit &SU = *V2SU.SU;
1126         if (SU.isScheduled || &SU == &ExitSU)
1127           continue;
1128 
1129         PressureDiff &PDiff = getPressureDiff(&SU);
1130         PDiff.addPressureChange(Reg, Decrement, &MRI);
1131         DEBUG(
1132           dbgs() << "  UpdateRegP: SU(" << SU.NodeNum << ") "
1133                  << PrintReg(Reg, TRI) << ':' << PrintLaneMask(P.LaneMask)
1134                  << ' ' << *SU.getInstr();
1135           dbgs() << "              to ";
1136           PDiff.dump(*TRI);
1137         );
1138       }
1139     } else {
1140       assert(P.LaneMask.any());
1141       DEBUG(dbgs() << "  LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n");
1142       // This may be called before CurrentBottom has been initialized. However,
1143       // BotRPTracker must have a valid position. We want the value live into the
1144       // instruction or live out of the block, so ask for the previous
1145       // instruction's live-out.
1146       const LiveInterval &LI = LIS->getInterval(Reg);
1147       VNInfo *VNI;
1148       MachineBasicBlock::const_iterator I =
1149         nextIfDebug(BotRPTracker.getPos(), BB->end());
1150       if (I == BB->end())
1151         VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1152       else {
1153         LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I));
1154         VNI = LRQ.valueIn();
1155       }
1156       // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
1157       assert(VNI && "No live value at use.");
1158       for (const VReg2SUnit &V2SU
1159            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1160         SUnit *SU = V2SU.SU;
1161         // If this use comes before the reaching def, it cannot be a last use,
1162         // so decrease its pressure change.
1163         if (!SU->isScheduled && SU != &ExitSU) {
1164           LiveQueryResult LRQ =
1165               LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1166           if (LRQ.valueIn() == VNI) {
1167             PressureDiff &PDiff = getPressureDiff(SU);
1168             PDiff.addPressureChange(Reg, true, &MRI);
1169             DEBUG(
1170               dbgs() << "  UpdateRegP: SU(" << SU->NodeNum << ") "
1171                      << *SU->getInstr();
1172               dbgs() << "              to ";
1173               PDiff.dump(*TRI);
1174             );
1175           }
1176         }
1177       }
1178     }
1179   }
1180 }
1181 
1182 /// schedule - Called back from MachineScheduler::runOnMachineFunction
1183 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
1184 /// only includes instructions that have DAG nodes, not scheduling boundaries.
1185 ///
1186 /// This is a skeletal driver, with all the functionality pushed into helpers,
1187 /// so that it can be easily extended by experimental schedulers. Generally,
1188 /// implementing MachineSchedStrategy should be sufficient to implement a new
1189 /// scheduling algorithm. However, if a scheduler further subclasses
1190 /// ScheduleDAGMILive then it will want to override this virtual method in order
1191 /// to update any specialized state.
1192 void ScheduleDAGMILive::schedule() {
1193   DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
1194   DEBUG(SchedImpl->dumpPolicy());
1195   buildDAGWithRegPressure();
1196 
1197   Topo.InitDAGTopologicalSorting();
1198 
1199   postprocessDAG();
1200 
1201   SmallVector<SUnit*, 8> TopRoots, BotRoots;
1202   findRootsAndBiasEdges(TopRoots, BotRoots);
1203 
1204   // Initialize the strategy before modifying the DAG.
1205   // This may initialize a DFSResult to be used for queue priority.
1206   SchedImpl->initialize(this);
1207 
1208   DEBUG(
1209     if (EntrySU.getInstr() != nullptr)
1210       EntrySU.dumpAll(this);
1211     for (const SUnit &SU : SUnits) {
1212       SU.dumpAll(this);
1213       if (ShouldTrackPressure) {
1214         dbgs() << "  Pressure Diff      : ";
1215         getPressureDiff(&SU).dump(*TRI);
1216       }
1217       dbgs() << "  Single Issue       : ";
1218       if (SchedModel.mustBeginGroup(SU.getInstr()) &&
1219          SchedModel.mustEndGroup(SU.getInstr()))
1220         dbgs() << "true;";
1221       else
1222         dbgs() << "false;";
1223       dbgs() << '\n';
1224     }
1225     if (ExitSU.getInstr() != nullptr)
1226       ExitSU.dumpAll(this);
1227   );
1228   if (ViewMISchedDAGs) viewGraph();
1229 
1230   // Initialize ready queues now that the DAG and priority data are finalized.
1231   initQueues(TopRoots, BotRoots);
1232 
1233   bool IsTopNode = false;
1234   while (true) {
1235     DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
1236     SUnit *SU = SchedImpl->pickNode(IsTopNode);
1237     if (!SU) break;
1238 
1239     assert(!SU->isScheduled && "Node already scheduled");
1240     if (!checkSchedLimit())
1241       break;
1242 
1243     scheduleMI(SU, IsTopNode);
1244 
1245     if (DFSResult) {
1246       unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1247       if (!ScheduledTrees.test(SubtreeID)) {
1248         ScheduledTrees.set(SubtreeID);
1249         DFSResult->scheduleTree(SubtreeID);
1250         SchedImpl->scheduleTree(SubtreeID);
1251       }
1252     }
1253 
1254     // Notify the scheduling strategy after updating the DAG.
1255     SchedImpl->schedNode(SU, IsTopNode);
1256 
1257     updateQueues(SU, IsTopNode);
1258   }
1259   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1260 
1261   placeDebugValues();
1262 
1263   DEBUG({
1264       unsigned BBNum = begin()->getParent()->getNumber();
1265       dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
1266       dumpSchedule();
1267       dbgs() << '\n';
1268     });
1269 }
1270 
1271 /// Build the DAG and setup three register pressure trackers.
1272 void ScheduleDAGMILive::buildDAGWithRegPressure() {
1273   if (!ShouldTrackPressure) {
1274     RPTracker.reset();
1275     RegionCriticalPSets.clear();
1276     buildSchedGraph(AA);
1277     return;
1278   }
1279 
1280   // Initialize the register pressure tracker used by buildSchedGraph.
1281   RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1282                  ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true);
1283 
1284   // Account for liveness generate by the region boundary.
1285   if (LiveRegionEnd != RegionEnd)
1286     RPTracker.recede();
1287 
1288   // Build the DAG, and compute current register pressure.
1289   buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks);
1290 
1291   // Initialize top/bottom trackers after computing region pressure.
1292   initRegPressure();
1293 }
1294 
1295 void ScheduleDAGMILive::computeDFSResult() {
1296   if (!DFSResult)
1297     DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1298   DFSResult->clear();
1299   ScheduledTrees.clear();
1300   DFSResult->resize(SUnits.size());
1301   DFSResult->compute(SUnits);
1302   ScheduledTrees.resize(DFSResult->getNumSubtrees());
1303 }
1304 
1305 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
1306 /// only provides the critical path for single block loops. To handle loops that
1307 /// span blocks, we could use the vreg path latencies provided by
1308 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1309 /// available for use in the scheduler.
1310 ///
1311 /// The cyclic path estimation identifies a def-use pair that crosses the back
1312 /// edge and considers the depth and height of the nodes. For example, consider
1313 /// the following instruction sequence where each instruction has unit latency
1314 /// and defines an epomymous virtual register:
1315 ///
1316 /// a->b(a,c)->c(b)->d(c)->exit
1317 ///
1318 /// The cyclic critical path is a two cycles: b->c->b
1319 /// The acyclic critical path is four cycles: a->b->c->d->exit
1320 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
1321 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1322 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1323 /// LiveInDepth = depth(b) = len(a->b) = 1
1324 ///
1325 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1326 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1327 /// CyclicCriticalPath = min(2, 2) = 2
1328 ///
1329 /// This could be relevant to PostRA scheduling, but is currently implemented
1330 /// assuming LiveIntervals.
1331 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1332   // This only applies to single block loop.
1333   if (!BB->isSuccessor(BB))
1334     return 0;
1335 
1336   unsigned MaxCyclicLatency = 0;
1337   // Visit each live out vreg def to find def/use pairs that cross iterations.
1338   for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) {
1339     unsigned Reg = P.RegUnit;
1340     if (!TRI->isVirtualRegister(Reg))
1341         continue;
1342     const LiveInterval &LI = LIS->getInterval(Reg);
1343     const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1344     if (!DefVNI)
1345       continue;
1346 
1347     MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1348     const SUnit *DefSU = getSUnit(DefMI);
1349     if (!DefSU)
1350       continue;
1351 
1352     unsigned LiveOutHeight = DefSU->getHeight();
1353     unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1354     // Visit all local users of the vreg def.
1355     for (const VReg2SUnit &V2SU
1356          : make_range(VRegUses.find(Reg), VRegUses.end())) {
1357       SUnit *SU = V2SU.SU;
1358       if (SU == &ExitSU)
1359         continue;
1360 
1361       // Only consider uses of the phi.
1362       LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1363       if (!LRQ.valueIn()->isPHIDef())
1364         continue;
1365 
1366       // Assume that a path spanning two iterations is a cycle, which could
1367       // overestimate in strange cases. This allows cyclic latency to be
1368       // estimated as the minimum slack of the vreg's depth or height.
1369       unsigned CyclicLatency = 0;
1370       if (LiveOutDepth > SU->getDepth())
1371         CyclicLatency = LiveOutDepth - SU->getDepth();
1372 
1373       unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
1374       if (LiveInHeight > LiveOutHeight) {
1375         if (LiveInHeight - LiveOutHeight < CyclicLatency)
1376           CyclicLatency = LiveInHeight - LiveOutHeight;
1377       } else
1378         CyclicLatency = 0;
1379 
1380       DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1381             << SU->NodeNum << ") = " << CyclicLatency << "c\n");
1382       if (CyclicLatency > MaxCyclicLatency)
1383         MaxCyclicLatency = CyclicLatency;
1384     }
1385   }
1386   DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1387   return MaxCyclicLatency;
1388 }
1389 
1390 /// Release ExitSU predecessors and setup scheduler queues. Re-position
1391 /// the Top RP tracker in case the region beginning has changed.
1392 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots,
1393                                    ArrayRef<SUnit*> BotRoots) {
1394   ScheduleDAGMI::initQueues(TopRoots, BotRoots);
1395   if (ShouldTrackPressure) {
1396     assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1397     TopRPTracker.setPos(CurrentTop);
1398   }
1399 }
1400 
1401 /// Move an instruction and update register pressure.
1402 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1403   // Move the instruction to its new location in the instruction stream.
1404   MachineInstr *MI = SU->getInstr();
1405 
1406   if (IsTopNode) {
1407     assert(SU->isTopReady() && "node still has unscheduled dependencies");
1408     if (&*CurrentTop == MI)
1409       CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1410     else {
1411       moveInstruction(MI, CurrentTop);
1412       TopRPTracker.setPos(MI);
1413     }
1414 
1415     if (ShouldTrackPressure) {
1416       // Update top scheduled pressure.
1417       RegisterOperands RegOpers;
1418       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1419       if (ShouldTrackLaneMasks) {
1420         // Adjust liveness and add missing dead+read-undef flags.
1421         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1422         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1423       } else {
1424         // Adjust for missing dead-def flags.
1425         RegOpers.detectDeadDefs(*MI, *LIS);
1426       }
1427 
1428       TopRPTracker.advance(RegOpers);
1429       assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1430       DEBUG(
1431         dbgs() << "Top Pressure:\n";
1432         dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
1433       );
1434 
1435       updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1436     }
1437   } else {
1438     assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1439     MachineBasicBlock::iterator priorII =
1440       priorNonDebug(CurrentBottom, CurrentTop);
1441     if (&*priorII == MI)
1442       CurrentBottom = priorII;
1443     else {
1444       if (&*CurrentTop == MI) {
1445         CurrentTop = nextIfDebug(++CurrentTop, priorII);
1446         TopRPTracker.setPos(CurrentTop);
1447       }
1448       moveInstruction(MI, CurrentBottom);
1449       CurrentBottom = MI;
1450     }
1451     if (ShouldTrackPressure) {
1452       RegisterOperands RegOpers;
1453       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1454       if (ShouldTrackLaneMasks) {
1455         // Adjust liveness and add missing dead+read-undef flags.
1456         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1457         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1458       } else {
1459         // Adjust for missing dead-def flags.
1460         RegOpers.detectDeadDefs(*MI, *LIS);
1461       }
1462 
1463       BotRPTracker.recedeSkipDebugValues();
1464       SmallVector<RegisterMaskPair, 8> LiveUses;
1465       BotRPTracker.recede(RegOpers, &LiveUses);
1466       assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1467       DEBUG(
1468         dbgs() << "Bottom Pressure:\n";
1469         dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);
1470       );
1471 
1472       updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1473       updatePressureDiffs(LiveUses);
1474     }
1475   }
1476 }
1477 
1478 //===----------------------------------------------------------------------===//
1479 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores.
1480 //===----------------------------------------------------------------------===//
1481 
1482 namespace {
1483 
1484 /// \brief Post-process the DAG to create cluster edges between neighboring
1485 /// loads or between neighboring stores.
1486 class BaseMemOpClusterMutation : public ScheduleDAGMutation {
1487   struct MemOpInfo {
1488     SUnit *SU;
1489     unsigned BaseReg;
1490     int64_t Offset;
1491 
1492     MemOpInfo(SUnit *su, unsigned reg, int64_t ofs)
1493         : SU(su), BaseReg(reg), Offset(ofs) {}
1494 
1495     bool operator<(const MemOpInfo&RHS) const {
1496       return std::tie(BaseReg, Offset, SU->NodeNum) <
1497              std::tie(RHS.BaseReg, RHS.Offset, RHS.SU->NodeNum);
1498     }
1499   };
1500 
1501   const TargetInstrInfo *TII;
1502   const TargetRegisterInfo *TRI;
1503   bool IsLoad;
1504 
1505 public:
1506   BaseMemOpClusterMutation(const TargetInstrInfo *tii,
1507                            const TargetRegisterInfo *tri, bool IsLoad)
1508       : TII(tii), TRI(tri), IsLoad(IsLoad) {}
1509 
1510   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1511 
1512 protected:
1513   void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG);
1514 };
1515 
1516 class StoreClusterMutation : public BaseMemOpClusterMutation {
1517 public:
1518   StoreClusterMutation(const TargetInstrInfo *tii,
1519                        const TargetRegisterInfo *tri)
1520       : BaseMemOpClusterMutation(tii, tri, false) {}
1521 };
1522 
1523 class LoadClusterMutation : public BaseMemOpClusterMutation {
1524 public:
1525   LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri)
1526       : BaseMemOpClusterMutation(tii, tri, true) {}
1527 };
1528 
1529 } // end anonymous namespace
1530 
1531 namespace llvm {
1532 
1533 std::unique_ptr<ScheduleDAGMutation>
1534 createLoadClusterDAGMutation(const TargetInstrInfo *TII,
1535                              const TargetRegisterInfo *TRI) {
1536   return EnableMemOpCluster ? llvm::make_unique<LoadClusterMutation>(TII, TRI)
1537                             : nullptr;
1538 }
1539 
1540 std::unique_ptr<ScheduleDAGMutation>
1541 createStoreClusterDAGMutation(const TargetInstrInfo *TII,
1542                               const TargetRegisterInfo *TRI) {
1543   return EnableMemOpCluster ? llvm::make_unique<StoreClusterMutation>(TII, TRI)
1544                             : nullptr;
1545 }
1546 
1547 } // end namespace llvm
1548 
1549 void BaseMemOpClusterMutation::clusterNeighboringMemOps(
1550     ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG) {
1551   SmallVector<MemOpInfo, 32> MemOpRecords;
1552   for (SUnit *SU : MemOps) {
1553     unsigned BaseReg;
1554     int64_t Offset;
1555     if (TII->getMemOpBaseRegImmOfs(*SU->getInstr(), BaseReg, Offset, TRI))
1556       MemOpRecords.push_back(MemOpInfo(SU, BaseReg, Offset));
1557   }
1558   if (MemOpRecords.size() < 2)
1559     return;
1560 
1561   std::sort(MemOpRecords.begin(), MemOpRecords.end());
1562   unsigned ClusterLength = 1;
1563   for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) {
1564     SUnit *SUa = MemOpRecords[Idx].SU;
1565     SUnit *SUb = MemOpRecords[Idx+1].SU;
1566     if (TII->shouldClusterMemOps(*SUa->getInstr(), MemOpRecords[Idx].BaseReg,
1567                                  *SUb->getInstr(), MemOpRecords[Idx+1].BaseReg,
1568                                  ClusterLength) &&
1569         DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
1570       DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU("
1571             << SUb->NodeNum << ")\n");
1572       // Copy successor edges from SUa to SUb. Interleaving computation
1573       // dependent on SUa can prevent load combining due to register reuse.
1574       // Predecessor edges do not need to be copied from SUb to SUa since nearby
1575       // loads should have effectively the same inputs.
1576       for (const SDep &Succ : SUa->Succs) {
1577         if (Succ.getSUnit() == SUb)
1578           continue;
1579         DEBUG(dbgs() << "  Copy Succ SU(" << Succ.getSUnit()->NodeNum << ")\n");
1580         DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial));
1581       }
1582       ++ClusterLength;
1583     } else
1584       ClusterLength = 1;
1585   }
1586 }
1587 
1588 /// \brief Callback from DAG postProcessing to create cluster edges for loads.
1589 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAGInstrs) {
1590   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1591 
1592   // Map DAG NodeNum to store chain ID.
1593   DenseMap<unsigned, unsigned> StoreChainIDs;
1594   // Map each store chain to a set of dependent MemOps.
1595   SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
1596   for (SUnit &SU : DAG->SUnits) {
1597     if ((IsLoad && !SU.getInstr()->mayLoad()) ||
1598         (!IsLoad && !SU.getInstr()->mayStore()))
1599       continue;
1600 
1601     unsigned ChainPredID = DAG->SUnits.size();
1602     for (const SDep &Pred : SU.Preds) {
1603       if (Pred.isCtrl()) {
1604         ChainPredID = Pred.getSUnit()->NodeNum;
1605         break;
1606       }
1607     }
1608     // Check if this chain-like pred has been seen
1609     // before. ChainPredID==MaxNodeID at the top of the schedule.
1610     unsigned NumChains = StoreChainDependents.size();
1611     std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
1612       StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
1613     if (Result.second)
1614       StoreChainDependents.resize(NumChains + 1);
1615     StoreChainDependents[Result.first->second].push_back(&SU);
1616   }
1617 
1618   // Iterate over the store chains.
1619   for (auto &SCD : StoreChainDependents)
1620     clusterNeighboringMemOps(SCD, DAG);
1621 }
1622 
1623 //===----------------------------------------------------------------------===//
1624 // CopyConstrain - DAG post-processing to encourage copy elimination.
1625 //===----------------------------------------------------------------------===//
1626 
1627 namespace {
1628 
1629 /// \brief Post-process the DAG to create weak edges from all uses of a copy to
1630 /// the one use that defines the copy's source vreg, most likely an induction
1631 /// variable increment.
1632 class CopyConstrain : public ScheduleDAGMutation {
1633   // Transient state.
1634   SlotIndex RegionBeginIdx;
1635 
1636   // RegionEndIdx is the slot index of the last non-debug instruction in the
1637   // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1638   SlotIndex RegionEndIdx;
1639 
1640 public:
1641   CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1642 
1643   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1644 
1645 protected:
1646   void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
1647 };
1648 
1649 } // end anonymous namespace
1650 
1651 namespace llvm {
1652 
1653 std::unique_ptr<ScheduleDAGMutation>
1654 createCopyConstrainDAGMutation(const TargetInstrInfo *TII,
1655                                const TargetRegisterInfo *TRI) {
1656   return llvm::make_unique<CopyConstrain>(TII, TRI);
1657 }
1658 
1659 } // end namespace llvm
1660 
1661 /// constrainLocalCopy handles two possibilities:
1662 /// 1) Local src:
1663 /// I0:     = dst
1664 /// I1: src = ...
1665 /// I2:     = dst
1666 /// I3: dst = src (copy)
1667 /// (create pred->succ edges I0->I1, I2->I1)
1668 ///
1669 /// 2) Local copy:
1670 /// I0: dst = src (copy)
1671 /// I1:     = dst
1672 /// I2: src = ...
1673 /// I3:     = dst
1674 /// (create pred->succ edges I1->I2, I3->I2)
1675 ///
1676 /// Although the MachineScheduler is currently constrained to single blocks,
1677 /// this algorithm should handle extended blocks. An EBB is a set of
1678 /// contiguously numbered blocks such that the previous block in the EBB is
1679 /// always the single predecessor.
1680 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
1681   LiveIntervals *LIS = DAG->getLIS();
1682   MachineInstr *Copy = CopySU->getInstr();
1683 
1684   // Check for pure vreg copies.
1685   const MachineOperand &SrcOp = Copy->getOperand(1);
1686   unsigned SrcReg = SrcOp.getReg();
1687   if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !SrcOp.readsReg())
1688     return;
1689 
1690   const MachineOperand &DstOp = Copy->getOperand(0);
1691   unsigned DstReg = DstOp.getReg();
1692   if (!TargetRegisterInfo::isVirtualRegister(DstReg) || DstOp.isDead())
1693     return;
1694 
1695   // Check if either the dest or source is local. If it's live across a back
1696   // edge, it's not local. Note that if both vregs are live across the back
1697   // edge, we cannot successfully contrain the copy without cyclic scheduling.
1698   // If both the copy's source and dest are local live intervals, then we
1699   // should treat the dest as the global for the purpose of adding
1700   // constraints. This adds edges from source's other uses to the copy.
1701   unsigned LocalReg = SrcReg;
1702   unsigned GlobalReg = DstReg;
1703   LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
1704   if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
1705     LocalReg = DstReg;
1706     GlobalReg = SrcReg;
1707     LocalLI = &LIS->getInterval(LocalReg);
1708     if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
1709       return;
1710   }
1711   LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1712 
1713   // Find the global segment after the start of the local LI.
1714   LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1715   // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1716   // local live range. We could create edges from other global uses to the local
1717   // start, but the coalescer should have already eliminated these cases, so
1718   // don't bother dealing with it.
1719   if (GlobalSegment == GlobalLI->end())
1720     return;
1721 
1722   // If GlobalSegment is killed at the LocalLI->start, the call to find()
1723   // returned the next global segment. But if GlobalSegment overlaps with
1724   // LocalLI->start, then advance to the next segement. If a hole in GlobalLI
1725   // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1726   if (GlobalSegment->contains(LocalLI->beginIndex()))
1727     ++GlobalSegment;
1728 
1729   if (GlobalSegment == GlobalLI->end())
1730     return;
1731 
1732   // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1733   if (GlobalSegment != GlobalLI->begin()) {
1734     // Two address defs have no hole.
1735     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
1736                                GlobalSegment->start)) {
1737       return;
1738     }
1739     // If the prior global segment may be defined by the same two-address
1740     // instruction that also defines LocalLI, then can't make a hole here.
1741     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
1742                                LocalLI->beginIndex())) {
1743       return;
1744     }
1745     // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1746     // it would be a disconnected component in the live range.
1747     assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
1748            "Disconnected LRG within the scheduling region.");
1749   }
1750   MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1751   if (!GlobalDef)
1752     return;
1753 
1754   SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1755   if (!GlobalSU)
1756     return;
1757 
1758   // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1759   // constraining the uses of the last local def to precede GlobalDef.
1760   SmallVector<SUnit*,8> LocalUses;
1761   const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1762   MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1763   SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1764   for (const SDep &Succ : LastLocalSU->Succs) {
1765     if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg)
1766       continue;
1767     if (Succ.getSUnit() == GlobalSU)
1768       continue;
1769     if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit()))
1770       return;
1771     LocalUses.push_back(Succ.getSUnit());
1772   }
1773   // Open the top of the GlobalLI hole by constraining any earlier global uses
1774   // to precede the start of LocalLI.
1775   SmallVector<SUnit*,8> GlobalUses;
1776   MachineInstr *FirstLocalDef =
1777     LIS->getInstructionFromIndex(LocalLI->beginIndex());
1778   SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1779   for (const SDep &Pred : GlobalSU->Preds) {
1780     if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg)
1781       continue;
1782     if (Pred.getSUnit() == FirstLocalSU)
1783       continue;
1784     if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit()))
1785       return;
1786     GlobalUses.push_back(Pred.getSUnit());
1787   }
1788   DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1789   // Add the weak edges.
1790   for (SmallVectorImpl<SUnit*>::const_iterator
1791          I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
1792     DEBUG(dbgs() << "  Local use SU(" << (*I)->NodeNum << ") -> SU("
1793           << GlobalSU->NodeNum << ")\n");
1794     DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
1795   }
1796   for (SmallVectorImpl<SUnit*>::const_iterator
1797          I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
1798     DEBUG(dbgs() << "  Global use SU(" << (*I)->NodeNum << ") -> SU("
1799           << FirstLocalSU->NodeNum << ")\n");
1800     DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
1801   }
1802 }
1803 
1804 /// \brief Callback from DAG postProcessing to create weak edges to encourage
1805 /// copy elimination.
1806 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) {
1807   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1808   assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
1809 
1810   MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1811   if (FirstPos == DAG->end())
1812     return;
1813   RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos);
1814   RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1815       *priorNonDebug(DAG->end(), DAG->begin()));
1816 
1817   for (SUnit &SU : DAG->SUnits) {
1818     if (!SU.getInstr()->isCopy())
1819       continue;
1820 
1821     constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG));
1822   }
1823 }
1824 
1825 //===----------------------------------------------------------------------===//
1826 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
1827 // and possibly other custom schedulers.
1828 //===----------------------------------------------------------------------===//
1829 
1830 static const unsigned InvalidCycle = ~0U;
1831 
1832 SchedBoundary::~SchedBoundary() { delete HazardRec; }
1833 
1834 void SchedBoundary::reset() {
1835   // A new HazardRec is created for each DAG and owned by SchedBoundary.
1836   // Destroying and reconstructing it is very expensive though. So keep
1837   // invalid, placeholder HazardRecs.
1838   if (HazardRec && HazardRec->isEnabled()) {
1839     delete HazardRec;
1840     HazardRec = nullptr;
1841   }
1842   Available.clear();
1843   Pending.clear();
1844   CheckPending = false;
1845   CurrCycle = 0;
1846   CurrMOps = 0;
1847   MinReadyCycle = std::numeric_limits<unsigned>::max();
1848   ExpectedLatency = 0;
1849   DependentLatency = 0;
1850   RetiredMOps = 0;
1851   MaxExecutedResCount = 0;
1852   ZoneCritResIdx = 0;
1853   IsResourceLimited = false;
1854   ReservedCycles.clear();
1855 #ifndef NDEBUG
1856   // Track the maximum number of stall cycles that could arise either from the
1857   // latency of a DAG edge or the number of cycles that a processor resource is
1858   // reserved (SchedBoundary::ReservedCycles).
1859   MaxObservedStall = 0;
1860 #endif
1861   // Reserve a zero-count for invalid CritResIdx.
1862   ExecutedResCounts.resize(1);
1863   assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
1864 }
1865 
1866 void SchedRemainder::
1867 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
1868   reset();
1869   if (!SchedModel->hasInstrSchedModel())
1870     return;
1871   RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
1872   for (SUnit &SU : DAG->SUnits) {
1873     const MCSchedClassDesc *SC = DAG->getSchedClass(&SU);
1874     RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC)
1875       * SchedModel->getMicroOpFactor();
1876     for (TargetSchedModel::ProcResIter
1877            PI = SchedModel->getWriteProcResBegin(SC),
1878            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1879       unsigned PIdx = PI->ProcResourceIdx;
1880       unsigned Factor = SchedModel->getResourceFactor(PIdx);
1881       RemainingCounts[PIdx] += (Factor * PI->Cycles);
1882     }
1883   }
1884 }
1885 
1886 void SchedBoundary::
1887 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
1888   reset();
1889   DAG = dag;
1890   SchedModel = smodel;
1891   Rem = rem;
1892   if (SchedModel->hasInstrSchedModel()) {
1893     ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
1894     ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle);
1895   }
1896 }
1897 
1898 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
1899 /// these "soft stalls" differently than the hard stall cycles based on CPU
1900 /// resources and computed by checkHazard(). A fully in-order model
1901 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
1902 /// available for scheduling until they are ready. However, a weaker in-order
1903 /// model may use this for heuristics. For example, if a processor has in-order
1904 /// behavior when reading certain resources, this may come into play.
1905 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
1906   if (!SU->isUnbuffered)
1907     return 0;
1908 
1909   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1910   if (ReadyCycle > CurrCycle)
1911     return ReadyCycle - CurrCycle;
1912   return 0;
1913 }
1914 
1915 /// Compute the next cycle at which the given processor resource can be
1916 /// scheduled.
1917 unsigned SchedBoundary::
1918 getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
1919   unsigned NextUnreserved = ReservedCycles[PIdx];
1920   // If this resource has never been used, always return cycle zero.
1921   if (NextUnreserved == InvalidCycle)
1922     return 0;
1923   // For bottom-up scheduling add the cycles needed for the current operation.
1924   if (!isTop())
1925     NextUnreserved += Cycles;
1926   return NextUnreserved;
1927 }
1928 
1929 /// Does this SU have a hazard within the current instruction group.
1930 ///
1931 /// The scheduler supports two modes of hazard recognition. The first is the
1932 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
1933 /// supports highly complicated in-order reservation tables
1934 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic.
1935 ///
1936 /// The second is a streamlined mechanism that checks for hazards based on
1937 /// simple counters that the scheduler itself maintains. It explicitly checks
1938 /// for instruction dispatch limitations, including the number of micro-ops that
1939 /// can dispatch per cycle.
1940 ///
1941 /// TODO: Also check whether the SU must start a new group.
1942 bool SchedBoundary::checkHazard(SUnit *SU) {
1943   if (HazardRec->isEnabled()
1944       && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
1945     return true;
1946   }
1947 
1948   unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
1949   if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
1950     DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
1951           << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
1952     return true;
1953   }
1954 
1955   if (CurrMOps > 0 &&
1956       ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) ||
1957        (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) {
1958     DEBUG(dbgs() << "  hazard: SU(" << SU->NodeNum << ") must "
1959                  << (isTop()? "begin" : "end") << " group\n");
1960     return true;
1961   }
1962 
1963   if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
1964     const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1965     for (TargetSchedModel::ProcResIter
1966            PI = SchedModel->getWriteProcResBegin(SC),
1967            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1968       unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles);
1969       if (NRCycle > CurrCycle) {
1970 #ifndef NDEBUG
1971         MaxObservedStall = std::max(PI->Cycles, MaxObservedStall);
1972 #endif
1973         DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") "
1974               << SchedModel->getResourceName(PI->ProcResourceIdx)
1975               << "=" << NRCycle << "c\n");
1976         return true;
1977       }
1978     }
1979   }
1980   return false;
1981 }
1982 
1983 // Find the unscheduled node in ReadySUs with the highest latency.
1984 unsigned SchedBoundary::
1985 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
1986   SUnit *LateSU = nullptr;
1987   unsigned RemLatency = 0;
1988   for (SUnit *SU : ReadySUs) {
1989     unsigned L = getUnscheduledLatency(SU);
1990     if (L > RemLatency) {
1991       RemLatency = L;
1992       LateSU = SU;
1993     }
1994   }
1995   if (LateSU) {
1996     DEBUG(dbgs() << Available.getName() << " RemLatency SU("
1997           << LateSU->NodeNum << ") " << RemLatency << "c\n");
1998   }
1999   return RemLatency;
2000 }
2001 
2002 // Count resources in this zone and the remaining unscheduled
2003 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
2004 // resource index, or zero if the zone is issue limited.
2005 unsigned SchedBoundary::
2006 getOtherResourceCount(unsigned &OtherCritIdx) {
2007   OtherCritIdx = 0;
2008   if (!SchedModel->hasInstrSchedModel())
2009     return 0;
2010 
2011   unsigned OtherCritCount = Rem->RemIssueCount
2012     + (RetiredMOps * SchedModel->getMicroOpFactor());
2013   DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
2014         << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
2015   for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
2016        PIdx != PEnd; ++PIdx) {
2017     unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
2018     if (OtherCount > OtherCritCount) {
2019       OtherCritCount = OtherCount;
2020       OtherCritIdx = PIdx;
2021     }
2022   }
2023   if (OtherCritIdx) {
2024     DEBUG(dbgs() << "  " << Available.getName() << " + Remain CritRes: "
2025           << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
2026           << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
2027   }
2028   return OtherCritCount;
2029 }
2030 
2031 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) {
2032   assert(SU->getInstr() && "Scheduled SUnit must have instr");
2033 
2034 #ifndef NDEBUG
2035   // ReadyCycle was been bumped up to the CurrCycle when this node was
2036   // scheduled, but CurrCycle may have been eagerly advanced immediately after
2037   // scheduling, so may now be greater than ReadyCycle.
2038   if (ReadyCycle > CurrCycle)
2039     MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
2040 #endif
2041 
2042   if (ReadyCycle < MinReadyCycle)
2043     MinReadyCycle = ReadyCycle;
2044 
2045   // Check for interlocks first. For the purpose of other heuristics, an
2046   // instruction that cannot issue appears as if it's not in the ReadyQueue.
2047   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2048   if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) ||
2049       Available.size() >= ReadyListLimit)
2050     Pending.push(SU);
2051   else
2052     Available.push(SU);
2053 }
2054 
2055 /// Move the boundary of scheduled code by one cycle.
2056 void SchedBoundary::bumpCycle(unsigned NextCycle) {
2057   if (SchedModel->getMicroOpBufferSize() == 0) {
2058     assert(MinReadyCycle < std::numeric_limits<unsigned>::max() &&
2059            "MinReadyCycle uninitialized");
2060     if (MinReadyCycle > NextCycle)
2061       NextCycle = MinReadyCycle;
2062   }
2063   // Update the current micro-ops, which will issue in the next cycle.
2064   unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
2065   CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
2066 
2067   // Decrement DependentLatency based on the next cycle.
2068   if ((NextCycle - CurrCycle) > DependentLatency)
2069     DependentLatency = 0;
2070   else
2071     DependentLatency -= (NextCycle - CurrCycle);
2072 
2073   if (!HazardRec->isEnabled()) {
2074     // Bypass HazardRec virtual calls.
2075     CurrCycle = NextCycle;
2076   } else {
2077     // Bypass getHazardType calls in case of long latency.
2078     for (; CurrCycle != NextCycle; ++CurrCycle) {
2079       if (isTop())
2080         HazardRec->AdvanceCycle();
2081       else
2082         HazardRec->RecedeCycle();
2083     }
2084   }
2085   CheckPending = true;
2086   unsigned LFactor = SchedModel->getLatencyFactor();
2087   IsResourceLimited =
2088     (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
2089     > (int)LFactor;
2090 
2091   DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n');
2092 }
2093 
2094 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
2095   ExecutedResCounts[PIdx] += Count;
2096   if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
2097     MaxExecutedResCount = ExecutedResCounts[PIdx];
2098 }
2099 
2100 /// Add the given processor resource to this scheduled zone.
2101 ///
2102 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
2103 /// during which this resource is consumed.
2104 ///
2105 /// \return the next cycle at which the instruction may execute without
2106 /// oversubscribing resources.
2107 unsigned SchedBoundary::
2108 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
2109   unsigned Factor = SchedModel->getResourceFactor(PIdx);
2110   unsigned Count = Factor * Cycles;
2111   DEBUG(dbgs() << "  " << SchedModel->getResourceName(PIdx)
2112         << " +" << Cycles << "x" << Factor << "u\n");
2113 
2114   // Update Executed resources counts.
2115   incExecutedResources(PIdx, Count);
2116   assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
2117   Rem->RemainingCounts[PIdx] -= Count;
2118 
2119   // Check if this resource exceeds the current critical resource. If so, it
2120   // becomes the critical resource.
2121   if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
2122     ZoneCritResIdx = PIdx;
2123     DEBUG(dbgs() << "  *** Critical resource "
2124           << SchedModel->getResourceName(PIdx) << ": "
2125           << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n");
2126   }
2127   // For reserved resources, record the highest cycle using the resource.
2128   unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles);
2129   if (NextAvailable > CurrCycle) {
2130     DEBUG(dbgs() << "  Resource conflict: "
2131           << SchedModel->getProcResource(PIdx)->Name << " reserved until @"
2132           << NextAvailable << "\n");
2133   }
2134   return NextAvailable;
2135 }
2136 
2137 /// Move the boundary of scheduled code by one SUnit.
2138 void SchedBoundary::bumpNode(SUnit *SU) {
2139   // Update the reservation table.
2140   if (HazardRec->isEnabled()) {
2141     if (!isTop() && SU->isCall) {
2142       // Calls are scheduled with their preceding instructions. For bottom-up
2143       // scheduling, clear the pipeline state before emitting.
2144       HazardRec->Reset();
2145     }
2146     HazardRec->EmitInstruction(SU);
2147   }
2148   // checkHazard should prevent scheduling multiple instructions per cycle that
2149   // exceed the issue width.
2150   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2151   unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
2152   assert(
2153       (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
2154       "Cannot schedule this instruction's MicroOps in the current cycle.");
2155 
2156   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2157   DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
2158 
2159   unsigned NextCycle = CurrCycle;
2160   switch (SchedModel->getMicroOpBufferSize()) {
2161   case 0:
2162     assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
2163     break;
2164   case 1:
2165     if (ReadyCycle > NextCycle) {
2166       NextCycle = ReadyCycle;
2167       DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
2168     }
2169     break;
2170   default:
2171     // We don't currently model the OOO reorder buffer, so consider all
2172     // scheduled MOps to be "retired". We do loosely model in-order resource
2173     // latency. If this instruction uses an in-order resource, account for any
2174     // likely stall cycles.
2175     if (SU->isUnbuffered && ReadyCycle > NextCycle)
2176       NextCycle = ReadyCycle;
2177     break;
2178   }
2179   RetiredMOps += IncMOps;
2180 
2181   // Update resource counts and critical resource.
2182   if (SchedModel->hasInstrSchedModel()) {
2183     unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
2184     assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
2185     Rem->RemIssueCount -= DecRemIssue;
2186     if (ZoneCritResIdx) {
2187       // Scale scheduled micro-ops for comparing with the critical resource.
2188       unsigned ScaledMOps =
2189         RetiredMOps * SchedModel->getMicroOpFactor();
2190 
2191       // If scaled micro-ops are now more than the previous critical resource by
2192       // a full cycle, then micro-ops issue becomes critical.
2193       if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
2194           >= (int)SchedModel->getLatencyFactor()) {
2195         ZoneCritResIdx = 0;
2196         DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
2197               << ScaledMOps / SchedModel->getLatencyFactor() << "c\n");
2198       }
2199     }
2200     for (TargetSchedModel::ProcResIter
2201            PI = SchedModel->getWriteProcResBegin(SC),
2202            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2203       unsigned RCycle =
2204         countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
2205       if (RCycle > NextCycle)
2206         NextCycle = RCycle;
2207     }
2208     if (SU->hasReservedResource) {
2209       // For reserved resources, record the highest cycle using the resource.
2210       // For top-down scheduling, this is the cycle in which we schedule this
2211       // instruction plus the number of cycles the operations reserves the
2212       // resource. For bottom-up is it simply the instruction's cycle.
2213       for (TargetSchedModel::ProcResIter
2214              PI = SchedModel->getWriteProcResBegin(SC),
2215              PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2216         unsigned PIdx = PI->ProcResourceIdx;
2217         if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
2218           if (isTop()) {
2219             ReservedCycles[PIdx] =
2220               std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles);
2221           }
2222           else
2223             ReservedCycles[PIdx] = NextCycle;
2224         }
2225       }
2226     }
2227   }
2228   // Update ExpectedLatency and DependentLatency.
2229   unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2230   unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2231   if (SU->getDepth() > TopLatency) {
2232     TopLatency = SU->getDepth();
2233     DEBUG(dbgs() << "  " << Available.getName()
2234           << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n");
2235   }
2236   if (SU->getHeight() > BotLatency) {
2237     BotLatency = SU->getHeight();
2238     DEBUG(dbgs() << "  " << Available.getName()
2239           << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n");
2240   }
2241   // If we stall for any reason, bump the cycle.
2242   if (NextCycle > CurrCycle) {
2243     bumpCycle(NextCycle);
2244   } else {
2245     // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2246     // resource limited. If a stall occurred, bumpCycle does this.
2247     unsigned LFactor = SchedModel->getLatencyFactor();
2248     IsResourceLimited =
2249       (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
2250       > (int)LFactor;
2251   }
2252   // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2253   // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2254   // one cycle.  Since we commonly reach the max MOps here, opportunistically
2255   // bump the cycle to avoid uselessly checking everything in the readyQ.
2256   CurrMOps += IncMOps;
2257 
2258   // Bump the cycle count for issue group constraints.
2259   // This must be done after NextCycle has been adjust for all other stalls.
2260   // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set
2261   // currCycle to X.
2262   if ((isTop() &&  SchedModel->mustEndGroup(SU->getInstr())) ||
2263       (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) {
2264     DEBUG(dbgs() << "  Bump cycle to "
2265                  << (isTop() ? "end" : "begin") << " group\n");
2266     bumpCycle(++NextCycle);
2267   }
2268 
2269   while (CurrMOps >= SchedModel->getIssueWidth()) {
2270     DEBUG(dbgs() << "  *** Max MOps " << CurrMOps
2271           << " at cycle " << CurrCycle << '\n');
2272     bumpCycle(++NextCycle);
2273   }
2274   DEBUG(dumpScheduledState());
2275 }
2276 
2277 /// Release pending ready nodes in to the available queue. This makes them
2278 /// visible to heuristics.
2279 void SchedBoundary::releasePending() {
2280   // If the available queue is empty, it is safe to reset MinReadyCycle.
2281   if (Available.empty())
2282     MinReadyCycle = std::numeric_limits<unsigned>::max();
2283 
2284   // Check to see if any of the pending instructions are ready to issue.  If
2285   // so, add them to the available queue.
2286   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2287   for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
2288     SUnit *SU = *(Pending.begin()+i);
2289     unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2290 
2291     if (ReadyCycle < MinReadyCycle)
2292       MinReadyCycle = ReadyCycle;
2293 
2294     if (!IsBuffered && ReadyCycle > CurrCycle)
2295       continue;
2296 
2297     if (checkHazard(SU))
2298       continue;
2299 
2300     if (Available.size() >= ReadyListLimit)
2301       break;
2302 
2303     Available.push(SU);
2304     Pending.remove(Pending.begin()+i);
2305     --i; --e;
2306   }
2307   CheckPending = false;
2308 }
2309 
2310 /// Remove SU from the ready set for this boundary.
2311 void SchedBoundary::removeReady(SUnit *SU) {
2312   if (Available.isInQueue(SU))
2313     Available.remove(Available.find(SU));
2314   else {
2315     assert(Pending.isInQueue(SU) && "bad ready count");
2316     Pending.remove(Pending.find(SU));
2317   }
2318 }
2319 
2320 /// If this queue only has one ready candidate, return it. As a side effect,
2321 /// defer any nodes that now hit a hazard, and advance the cycle until at least
2322 /// one node is ready. If multiple instructions are ready, return NULL.
2323 SUnit *SchedBoundary::pickOnlyChoice() {
2324   if (CheckPending)
2325     releasePending();
2326 
2327   if (CurrMOps > 0) {
2328     // Defer any ready instrs that now have a hazard.
2329     for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2330       if (checkHazard(*I)) {
2331         Pending.push(*I);
2332         I = Available.remove(I);
2333         continue;
2334       }
2335       ++I;
2336     }
2337   }
2338   for (unsigned i = 0; Available.empty(); ++i) {
2339 //  FIXME: Re-enable assert once PR20057 is resolved.
2340 //    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2341 //           "permanent hazard");
2342     (void)i;
2343     bumpCycle(CurrCycle + 1);
2344     releasePending();
2345   }
2346 
2347   DEBUG(Pending.dump());
2348   DEBUG(Available.dump());
2349 
2350   if (Available.size() == 1)
2351     return *Available.begin();
2352   return nullptr;
2353 }
2354 
2355 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2356 // This is useful information to dump after bumpNode.
2357 // Note that the Queue contents are more useful before pickNodeFromQueue.
2358 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const {
2359   unsigned ResFactor;
2360   unsigned ResCount;
2361   if (ZoneCritResIdx) {
2362     ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2363     ResCount = getResourceCount(ZoneCritResIdx);
2364   } else {
2365     ResFactor = SchedModel->getMicroOpFactor();
2366     ResCount = RetiredMOps * ResFactor;
2367   }
2368   unsigned LFactor = SchedModel->getLatencyFactor();
2369   dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2370          << "  Retired: " << RetiredMOps;
2371   dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
2372   dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
2373          << ResCount / ResFactor << " "
2374          << SchedModel->getResourceName(ZoneCritResIdx)
2375          << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
2376          << (IsResourceLimited ? "  - Resource" : "  - Latency")
2377          << " limited.\n";
2378 }
2379 #endif
2380 
2381 //===----------------------------------------------------------------------===//
2382 // GenericScheduler - Generic implementation of MachineSchedStrategy.
2383 //===----------------------------------------------------------------------===//
2384 
2385 void GenericSchedulerBase::SchedCandidate::
2386 initResourceDelta(const ScheduleDAGMI *DAG,
2387                   const TargetSchedModel *SchedModel) {
2388   if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2389     return;
2390 
2391   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2392   for (TargetSchedModel::ProcResIter
2393          PI = SchedModel->getWriteProcResBegin(SC),
2394          PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2395     if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2396       ResDelta.CritResources += PI->Cycles;
2397     if (PI->ProcResourceIdx == Policy.DemandResIdx)
2398       ResDelta.DemandedResources += PI->Cycles;
2399   }
2400 }
2401 
2402 /// Set the CandPolicy given a scheduling zone given the current resources and
2403 /// latencies inside and outside the zone.
2404 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA,
2405                                      SchedBoundary &CurrZone,
2406                                      SchedBoundary *OtherZone) {
2407   // Apply preemptive heuristics based on the total latency and resources
2408   // inside and outside this zone. Potential stalls should be considered before
2409   // following this policy.
2410 
2411   // Compute remaining latency. We need this both to determine whether the
2412   // overall schedule has become latency-limited and whether the instructions
2413   // outside this zone are resource or latency limited.
2414   //
2415   // The "dependent" latency is updated incrementally during scheduling as the
2416   // max height/depth of scheduled nodes minus the cycles since it was
2417   // scheduled:
2418   //   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2419   //
2420   // The "independent" latency is the max ready queue depth:
2421   //   ILat = max N.depth for N in Available|Pending
2422   //
2423   // RemainingLatency is the greater of independent and dependent latency.
2424   unsigned RemLatency = CurrZone.getDependentLatency();
2425   RemLatency = std::max(RemLatency,
2426                         CurrZone.findMaxLatency(CurrZone.Available.elements()));
2427   RemLatency = std::max(RemLatency,
2428                         CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2429 
2430   // Compute the critical resource outside the zone.
2431   unsigned OtherCritIdx = 0;
2432   unsigned OtherCount =
2433     OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
2434 
2435   bool OtherResLimited = false;
2436   if (SchedModel->hasInstrSchedModel()) {
2437     unsigned LFactor = SchedModel->getLatencyFactor();
2438     OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor;
2439   }
2440   // Schedule aggressively for latency in PostRA mode. We don't check for
2441   // acyclic latency during PostRA, and highly out-of-order processors will
2442   // skip PostRA scheduling.
2443   if (!OtherResLimited) {
2444     if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) {
2445       Policy.ReduceLatency |= true;
2446       DEBUG(dbgs() << "  " << CurrZone.Available.getName()
2447             << " RemainingLatency " << RemLatency << " + "
2448             << CurrZone.getCurrCycle() << "c > CritPath "
2449             << Rem.CriticalPath << "\n");
2450     }
2451   }
2452   // If the same resource is limiting inside and outside the zone, do nothing.
2453   if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
2454     return;
2455 
2456   DEBUG(
2457     if (CurrZone.isResourceLimited()) {
2458       dbgs() << "  " << CurrZone.Available.getName() << " ResourceLimited: "
2459              << SchedModel->getResourceName(CurrZone.getZoneCritResIdx())
2460              << "\n";
2461     }
2462     if (OtherResLimited)
2463       dbgs() << "  RemainingLimit: "
2464              << SchedModel->getResourceName(OtherCritIdx) << "\n";
2465     if (!CurrZone.isResourceLimited() && !OtherResLimited)
2466       dbgs() << "  Latency limited both directions.\n");
2467 
2468   if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
2469     Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
2470 
2471   if (OtherResLimited)
2472     Policy.DemandResIdx = OtherCritIdx;
2473 }
2474 
2475 #ifndef NDEBUG
2476 const char *GenericSchedulerBase::getReasonStr(
2477   GenericSchedulerBase::CandReason Reason) {
2478   switch (Reason) {
2479   case NoCand:         return "NOCAND    ";
2480   case Only1:          return "ONLY1     ";
2481   case PhysRegCopy:    return "PREG-COPY ";
2482   case RegExcess:      return "REG-EXCESS";
2483   case RegCritical:    return "REG-CRIT  ";
2484   case Stall:          return "STALL     ";
2485   case Cluster:        return "CLUSTER   ";
2486   case Weak:           return "WEAK      ";
2487   case RegMax:         return "REG-MAX   ";
2488   case ResourceReduce: return "RES-REDUCE";
2489   case ResourceDemand: return "RES-DEMAND";
2490   case TopDepthReduce: return "TOP-DEPTH ";
2491   case TopPathReduce:  return "TOP-PATH  ";
2492   case BotHeightReduce:return "BOT-HEIGHT";
2493   case BotPathReduce:  return "BOT-PATH  ";
2494   case NextDefUse:     return "DEF-USE   ";
2495   case NodeOrder:      return "ORDER     ";
2496   };
2497   llvm_unreachable("Unknown reason!");
2498 }
2499 
2500 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
2501   PressureChange P;
2502   unsigned ResIdx = 0;
2503   unsigned Latency = 0;
2504   switch (Cand.Reason) {
2505   default:
2506     break;
2507   case RegExcess:
2508     P = Cand.RPDelta.Excess;
2509     break;
2510   case RegCritical:
2511     P = Cand.RPDelta.CriticalMax;
2512     break;
2513   case RegMax:
2514     P = Cand.RPDelta.CurrentMax;
2515     break;
2516   case ResourceReduce:
2517     ResIdx = Cand.Policy.ReduceResIdx;
2518     break;
2519   case ResourceDemand:
2520     ResIdx = Cand.Policy.DemandResIdx;
2521     break;
2522   case TopDepthReduce:
2523     Latency = Cand.SU->getDepth();
2524     break;
2525   case TopPathReduce:
2526     Latency = Cand.SU->getHeight();
2527     break;
2528   case BotHeightReduce:
2529     Latency = Cand.SU->getHeight();
2530     break;
2531   case BotPathReduce:
2532     Latency = Cand.SU->getDepth();
2533     break;
2534   }
2535   dbgs() << "  Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2536   if (P.isValid())
2537     dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2538            << ":" << P.getUnitInc() << " ";
2539   else
2540     dbgs() << "      ";
2541   if (ResIdx)
2542     dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2543   else
2544     dbgs() << "         ";
2545   if (Latency)
2546     dbgs() << " " << Latency << " cycles ";
2547   else
2548     dbgs() << "          ";
2549   dbgs() << '\n';
2550 }
2551 #endif
2552 
2553 /// Return true if this heuristic determines order.
2554 static bool tryLess(int TryVal, int CandVal,
2555                     GenericSchedulerBase::SchedCandidate &TryCand,
2556                     GenericSchedulerBase::SchedCandidate &Cand,
2557                     GenericSchedulerBase::CandReason Reason) {
2558   if (TryVal < CandVal) {
2559     TryCand.Reason = Reason;
2560     return true;
2561   }
2562   if (TryVal > CandVal) {
2563     if (Cand.Reason > Reason)
2564       Cand.Reason = Reason;
2565     return true;
2566   }
2567   return false;
2568 }
2569 
2570 static bool tryGreater(int TryVal, int CandVal,
2571                        GenericSchedulerBase::SchedCandidate &TryCand,
2572                        GenericSchedulerBase::SchedCandidate &Cand,
2573                        GenericSchedulerBase::CandReason Reason) {
2574   if (TryVal > CandVal) {
2575     TryCand.Reason = Reason;
2576     return true;
2577   }
2578   if (TryVal < CandVal) {
2579     if (Cand.Reason > Reason)
2580       Cand.Reason = Reason;
2581     return true;
2582   }
2583   return false;
2584 }
2585 
2586 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
2587                        GenericSchedulerBase::SchedCandidate &Cand,
2588                        SchedBoundary &Zone) {
2589   if (Zone.isTop()) {
2590     if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
2591       if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2592                   TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
2593         return true;
2594     }
2595     if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2596                    TryCand, Cand, GenericSchedulerBase::TopPathReduce))
2597       return true;
2598   } else {
2599     if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
2600       if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2601                   TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
2602         return true;
2603     }
2604     if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2605                    TryCand, Cand, GenericSchedulerBase::BotPathReduce))
2606       return true;
2607   }
2608   return false;
2609 }
2610 
2611 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) {
2612   DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2613         << GenericSchedulerBase::getReasonStr(Reason) << '\n');
2614 }
2615 
2616 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) {
2617   tracePick(Cand.Reason, Cand.AtTop);
2618 }
2619 
2620 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
2621   assert(dag->hasVRegLiveness() &&
2622          "(PreRA)GenericScheduler needs vreg liveness");
2623   DAG = static_cast<ScheduleDAGMILive*>(dag);
2624   SchedModel = DAG->getSchedModel();
2625   TRI = DAG->TRI;
2626 
2627   Rem.init(DAG, SchedModel);
2628   Top.init(DAG, SchedModel, &Rem);
2629   Bot.init(DAG, SchedModel, &Rem);
2630 
2631   // Initialize resource counts.
2632 
2633   // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
2634   // are disabled, then these HazardRecs will be disabled.
2635   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2636   if (!Top.HazardRec) {
2637     Top.HazardRec =
2638         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2639             Itin, DAG);
2640   }
2641   if (!Bot.HazardRec) {
2642     Bot.HazardRec =
2643         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2644             Itin, DAG);
2645   }
2646   TopCand.SU = nullptr;
2647   BotCand.SU = nullptr;
2648 }
2649 
2650 /// Initialize the per-region scheduling policy.
2651 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
2652                                   MachineBasicBlock::iterator End,
2653                                   unsigned NumRegionInstrs) {
2654   const MachineFunction &MF = *Begin->getParent()->getParent();
2655   const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
2656 
2657   // Avoid setting up the register pressure tracker for small regions to save
2658   // compile time. As a rough heuristic, only track pressure when the number of
2659   // schedulable instructions exceeds half the integer register file.
2660   RegionPolicy.ShouldTrackPressure = true;
2661   for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
2662     MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
2663     if (TLI->isTypeLegal(LegalIntVT)) {
2664       unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
2665         TLI->getRegClassFor(LegalIntVT));
2666       RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
2667     }
2668   }
2669 
2670   // For generic targets, we default to bottom-up, because it's simpler and more
2671   // compile-time optimizations have been implemented in that direction.
2672   RegionPolicy.OnlyBottomUp = true;
2673 
2674   // Allow the subtarget to override default policy.
2675   MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs);
2676 
2677   // After subtarget overrides, apply command line options.
2678   if (!EnableRegPressure)
2679     RegionPolicy.ShouldTrackPressure = false;
2680 
2681   // Check -misched-topdown/bottomup can force or unforce scheduling direction.
2682   // e.g. -misched-bottomup=false allows scheduling in both directions.
2683   assert((!ForceTopDown || !ForceBottomUp) &&
2684          "-misched-topdown incompatible with -misched-bottomup");
2685   if (ForceBottomUp.getNumOccurrences() > 0) {
2686     RegionPolicy.OnlyBottomUp = ForceBottomUp;
2687     if (RegionPolicy.OnlyBottomUp)
2688       RegionPolicy.OnlyTopDown = false;
2689   }
2690   if (ForceTopDown.getNumOccurrences() > 0) {
2691     RegionPolicy.OnlyTopDown = ForceTopDown;
2692     if (RegionPolicy.OnlyTopDown)
2693       RegionPolicy.OnlyBottomUp = false;
2694   }
2695 }
2696 
2697 void GenericScheduler::dumpPolicy() const {
2698   // Cannot completely remove virtual function even in release mode.
2699 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2700   dbgs() << "GenericScheduler RegionPolicy: "
2701          << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
2702          << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
2703          << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
2704          << "\n";
2705 #endif
2706 }
2707 
2708 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
2709 /// critical path by more cycles than it takes to drain the instruction buffer.
2710 /// We estimate an upper bounds on in-flight instructions as:
2711 ///
2712 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
2713 /// InFlightIterations = AcyclicPath / CyclesPerIteration
2714 /// InFlightResources = InFlightIterations * LoopResources
2715 ///
2716 /// TODO: Check execution resources in addition to IssueCount.
2717 void GenericScheduler::checkAcyclicLatency() {
2718   if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
2719     return;
2720 
2721   // Scaled number of cycles per loop iteration.
2722   unsigned IterCount =
2723     std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
2724              Rem.RemIssueCount);
2725   // Scaled acyclic critical path.
2726   unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
2727   // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
2728   unsigned InFlightCount =
2729     (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
2730   unsigned BufferLimit =
2731     SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
2732 
2733   Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
2734 
2735   DEBUG(dbgs() << "IssueCycles="
2736         << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
2737         << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
2738         << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount
2739         << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
2740         << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
2741         if (Rem.IsAcyclicLatencyLimited)
2742           dbgs() << "  ACYCLIC LATENCY LIMIT\n");
2743 }
2744 
2745 void GenericScheduler::registerRoots() {
2746   Rem.CriticalPath = DAG->ExitSU.getDepth();
2747 
2748   // Some roots may not feed into ExitSU. Check all of them in case.
2749   for (const SUnit *SU : Bot.Available) {
2750     if (SU->getDepth() > Rem.CriticalPath)
2751       Rem.CriticalPath = SU->getDepth();
2752   }
2753   DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
2754   if (DumpCriticalPathLength) {
2755     errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
2756   }
2757 
2758   if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) {
2759     Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
2760     checkAcyclicLatency();
2761   }
2762 }
2763 
2764 static bool tryPressure(const PressureChange &TryP,
2765                         const PressureChange &CandP,
2766                         GenericSchedulerBase::SchedCandidate &TryCand,
2767                         GenericSchedulerBase::SchedCandidate &Cand,
2768                         GenericSchedulerBase::CandReason Reason,
2769                         const TargetRegisterInfo *TRI,
2770                         const MachineFunction &MF) {
2771   // If one candidate decreases and the other increases, go with it.
2772   // Invalid candidates have UnitInc==0.
2773   if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
2774                  Reason)) {
2775     return true;
2776   }
2777   // Do not compare the magnitude of pressure changes between top and bottom
2778   // boundary.
2779   if (Cand.AtTop != TryCand.AtTop)
2780     return false;
2781 
2782   // If both candidates affect the same set in the same boundary, go with the
2783   // smallest increase.
2784   unsigned TryPSet = TryP.getPSetOrMax();
2785   unsigned CandPSet = CandP.getPSetOrMax();
2786   if (TryPSet == CandPSet) {
2787     return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
2788                    Reason);
2789   }
2790 
2791   int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
2792                                  std::numeric_limits<int>::max();
2793 
2794   int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
2795                                    std::numeric_limits<int>::max();
2796 
2797   // If the candidates are decreasing pressure, reverse priority.
2798   if (TryP.getUnitInc() < 0)
2799     std::swap(TryRank, CandRank);
2800   return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
2801 }
2802 
2803 static unsigned getWeakLeft(const SUnit *SU, bool isTop) {
2804   return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
2805 }
2806 
2807 /// Minimize physical register live ranges. Regalloc wants them adjacent to
2808 /// their physreg def/use.
2809 ///
2810 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
2811 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
2812 /// with the operation that produces or consumes the physreg. We'll do this when
2813 /// regalloc has support for parallel copies.
2814 static int biasPhysRegCopy(const SUnit *SU, bool isTop) {
2815   const MachineInstr *MI = SU->getInstr();
2816   if (!MI->isCopy())
2817     return 0;
2818 
2819   unsigned ScheduledOper = isTop ? 1 : 0;
2820   unsigned UnscheduledOper = isTop ? 0 : 1;
2821   // If we have already scheduled the physreg produce/consumer, immediately
2822   // schedule the copy.
2823   if (TargetRegisterInfo::isPhysicalRegister(
2824         MI->getOperand(ScheduledOper).getReg()))
2825     return 1;
2826   // If the physreg is at the boundary, defer it. Otherwise schedule it
2827   // immediately to free the dependent. We can hoist the copy later.
2828   bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
2829   if (TargetRegisterInfo::isPhysicalRegister(
2830         MI->getOperand(UnscheduledOper).getReg()))
2831     return AtBoundary ? -1 : 1;
2832   return 0;
2833 }
2834 
2835 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU,
2836                                      bool AtTop,
2837                                      const RegPressureTracker &RPTracker,
2838                                      RegPressureTracker &TempTracker) {
2839   Cand.SU = SU;
2840   Cand.AtTop = AtTop;
2841   if (DAG->isTrackingPressure()) {
2842     if (AtTop) {
2843       TempTracker.getMaxDownwardPressureDelta(
2844         Cand.SU->getInstr(),
2845         Cand.RPDelta,
2846         DAG->getRegionCriticalPSets(),
2847         DAG->getRegPressure().MaxSetPressure);
2848     } else {
2849       if (VerifyScheduling) {
2850         TempTracker.getMaxUpwardPressureDelta(
2851           Cand.SU->getInstr(),
2852           &DAG->getPressureDiff(Cand.SU),
2853           Cand.RPDelta,
2854           DAG->getRegionCriticalPSets(),
2855           DAG->getRegPressure().MaxSetPressure);
2856       } else {
2857         RPTracker.getUpwardPressureDelta(
2858           Cand.SU->getInstr(),
2859           DAG->getPressureDiff(Cand.SU),
2860           Cand.RPDelta,
2861           DAG->getRegionCriticalPSets(),
2862           DAG->getRegPressure().MaxSetPressure);
2863       }
2864     }
2865   }
2866   DEBUG(if (Cand.RPDelta.Excess.isValid())
2867           dbgs() << "  Try  SU(" << Cand.SU->NodeNum << ") "
2868                  << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet())
2869                  << ":" << Cand.RPDelta.Excess.getUnitInc() << "\n");
2870 }
2871 
2872 /// Apply a set of heursitics to a new candidate. Heuristics are currently
2873 /// hierarchical. This may be more efficient than a graduated cost model because
2874 /// we don't need to evaluate all aspects of the model for each node in the
2875 /// queue. But it's really done to make the heuristics easier to debug and
2876 /// statistically analyze.
2877 ///
2878 /// \param Cand provides the policy and current best candidate.
2879 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
2880 /// \param Zone describes the scheduled zone that we are extending, or nullptr
2881 //              if Cand is from a different zone than TryCand.
2882 void GenericScheduler::tryCandidate(SchedCandidate &Cand,
2883                                     SchedCandidate &TryCand,
2884                                     SchedBoundary *Zone) {
2885   // Initialize the candidate if needed.
2886   if (!Cand.isValid()) {
2887     TryCand.Reason = NodeOrder;
2888     return;
2889   }
2890 
2891   if (tryGreater(biasPhysRegCopy(TryCand.SU, TryCand.AtTop),
2892                  biasPhysRegCopy(Cand.SU, Cand.AtTop),
2893                  TryCand, Cand, PhysRegCopy))
2894     return;
2895 
2896   // Avoid exceeding the target's limit.
2897   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
2898                                                Cand.RPDelta.Excess,
2899                                                TryCand, Cand, RegExcess, TRI,
2900                                                DAG->MF))
2901     return;
2902 
2903   // Avoid increasing the max critical pressure in the scheduled region.
2904   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
2905                                                Cand.RPDelta.CriticalMax,
2906                                                TryCand, Cand, RegCritical, TRI,
2907                                                DAG->MF))
2908     return;
2909 
2910   // We only compare a subset of features when comparing nodes between
2911   // Top and Bottom boundary. Some properties are simply incomparable, in many
2912   // other instances we should only override the other boundary if something
2913   // is a clear good pick on one boundary. Skip heuristics that are more
2914   // "tie-breaking" in nature.
2915   bool SameBoundary = Zone != nullptr;
2916   if (SameBoundary) {
2917     // For loops that are acyclic path limited, aggressively schedule for
2918     // latency. Within an single cycle, whenever CurrMOps > 0, allow normal
2919     // heuristics to take precedence.
2920     if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() &&
2921         tryLatency(TryCand, Cand, *Zone))
2922       return;
2923 
2924     // Prioritize instructions that read unbuffered resources by stall cycles.
2925     if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
2926                 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
2927       return;
2928   }
2929 
2930   // Keep clustered nodes together to encourage downstream peephole
2931   // optimizations which may reduce resource requirements.
2932   //
2933   // This is a best effort to set things up for a post-RA pass. Optimizations
2934   // like generating loads of multiple registers should ideally be done within
2935   // the scheduler pass by combining the loads during DAG postprocessing.
2936   const SUnit *CandNextClusterSU =
2937     Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
2938   const SUnit *TryCandNextClusterSU =
2939     TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
2940   if (tryGreater(TryCand.SU == TryCandNextClusterSU,
2941                  Cand.SU == CandNextClusterSU,
2942                  TryCand, Cand, Cluster))
2943     return;
2944 
2945   if (SameBoundary) {
2946     // Weak edges are for clustering and other constraints.
2947     if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
2948                 getWeakLeft(Cand.SU, Cand.AtTop),
2949                 TryCand, Cand, Weak))
2950       return;
2951   }
2952 
2953   // Avoid increasing the max pressure of the entire region.
2954   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
2955                                                Cand.RPDelta.CurrentMax,
2956                                                TryCand, Cand, RegMax, TRI,
2957                                                DAG->MF))
2958     return;
2959 
2960   if (SameBoundary) {
2961     // Avoid critical resource consumption and balance the schedule.
2962     TryCand.initResourceDelta(DAG, SchedModel);
2963     if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
2964                 TryCand, Cand, ResourceReduce))
2965       return;
2966     if (tryGreater(TryCand.ResDelta.DemandedResources,
2967                    Cand.ResDelta.DemandedResources,
2968                    TryCand, Cand, ResourceDemand))
2969       return;
2970 
2971     // Avoid serializing long latency dependence chains.
2972     // For acyclic path limited loops, latency was already checked above.
2973     if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency &&
2974         !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone))
2975       return;
2976 
2977     // Fall through to original instruction order.
2978     if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
2979         || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
2980       TryCand.Reason = NodeOrder;
2981     }
2982   }
2983 }
2984 
2985 /// Pick the best candidate from the queue.
2986 ///
2987 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
2988 /// DAG building. To adjust for the current scheduling location we need to
2989 /// maintain the number of vreg uses remaining to be top-scheduled.
2990 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
2991                                          const CandPolicy &ZonePolicy,
2992                                          const RegPressureTracker &RPTracker,
2993                                          SchedCandidate &Cand) {
2994   // getMaxPressureDelta temporarily modifies the tracker.
2995   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
2996 
2997   ReadyQueue &Q = Zone.Available;
2998   for (SUnit *SU : Q) {
2999 
3000     SchedCandidate TryCand(ZonePolicy);
3001     initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker);
3002     // Pass SchedBoundary only when comparing nodes from the same boundary.
3003     SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
3004     tryCandidate(Cand, TryCand, ZoneArg);
3005     if (TryCand.Reason != NoCand) {
3006       // Initialize resource delta if needed in case future heuristics query it.
3007       if (TryCand.ResDelta == SchedResourceDelta())
3008         TryCand.initResourceDelta(DAG, SchedModel);
3009       Cand.setBest(TryCand);
3010       DEBUG(traceCandidate(Cand));
3011     }
3012   }
3013 }
3014 
3015 /// Pick the best candidate node from either the top or bottom queue.
3016 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
3017   // Schedule as far as possible in the direction of no choice. This is most
3018   // efficient, but also provides the best heuristics for CriticalPSets.
3019   if (SUnit *SU = Bot.pickOnlyChoice()) {
3020     IsTopNode = false;
3021     tracePick(Only1, false);
3022     return SU;
3023   }
3024   if (SUnit *SU = Top.pickOnlyChoice()) {
3025     IsTopNode = true;
3026     tracePick(Only1, true);
3027     return SU;
3028   }
3029   // Set the bottom-up policy based on the state of the current bottom zone and
3030   // the instructions outside the zone, including the top zone.
3031   CandPolicy BotPolicy;
3032   setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
3033   // Set the top-down policy based on the state of the current top zone and
3034   // the instructions outside the zone, including the bottom zone.
3035   CandPolicy TopPolicy;
3036   setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
3037 
3038   // See if BotCand is still valid (because we previously scheduled from Top).
3039   DEBUG(dbgs() << "Picking from Bot:\n");
3040   if (!BotCand.isValid() || BotCand.SU->isScheduled ||
3041       BotCand.Policy != BotPolicy) {
3042     BotCand.reset(CandPolicy());
3043     pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
3044     assert(BotCand.Reason != NoCand && "failed to find the first candidate");
3045   } else {
3046     DEBUG(traceCandidate(BotCand));
3047 #ifndef NDEBUG
3048     if (VerifyScheduling) {
3049       SchedCandidate TCand;
3050       TCand.reset(CandPolicy());
3051       pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
3052       assert(TCand.SU == BotCand.SU &&
3053              "Last pick result should correspond to re-picking right now");
3054     }
3055 #endif
3056   }
3057 
3058   // Check if the top Q has a better candidate.
3059   DEBUG(dbgs() << "Picking from Top:\n");
3060   if (!TopCand.isValid() || TopCand.SU->isScheduled ||
3061       TopCand.Policy != TopPolicy) {
3062     TopCand.reset(CandPolicy());
3063     pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
3064     assert(TopCand.Reason != NoCand && "failed to find the first candidate");
3065   } else {
3066     DEBUG(traceCandidate(TopCand));
3067 #ifndef NDEBUG
3068     if (VerifyScheduling) {
3069       SchedCandidate TCand;
3070       TCand.reset(CandPolicy());
3071       pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
3072       assert(TCand.SU == TopCand.SU &&
3073            "Last pick result should correspond to re-picking right now");
3074     }
3075 #endif
3076   }
3077 
3078   // Pick best from BotCand and TopCand.
3079   assert(BotCand.isValid());
3080   assert(TopCand.isValid());
3081   SchedCandidate Cand = BotCand;
3082   TopCand.Reason = NoCand;
3083   tryCandidate(Cand, TopCand, nullptr);
3084   if (TopCand.Reason != NoCand) {
3085     Cand.setBest(TopCand);
3086     DEBUG(traceCandidate(Cand));
3087   }
3088 
3089   IsTopNode = Cand.AtTop;
3090   tracePick(Cand);
3091   return Cand.SU;
3092 }
3093 
3094 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
3095 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
3096   if (DAG->top() == DAG->bottom()) {
3097     assert(Top.Available.empty() && Top.Pending.empty() &&
3098            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
3099     return nullptr;
3100   }
3101   SUnit *SU;
3102   do {
3103     if (RegionPolicy.OnlyTopDown) {
3104       SU = Top.pickOnlyChoice();
3105       if (!SU) {
3106         CandPolicy NoPolicy;
3107         TopCand.reset(NoPolicy);
3108         pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
3109         assert(TopCand.Reason != NoCand && "failed to find a candidate");
3110         tracePick(TopCand);
3111         SU = TopCand.SU;
3112       }
3113       IsTopNode = true;
3114     } else if (RegionPolicy.OnlyBottomUp) {
3115       SU = Bot.pickOnlyChoice();
3116       if (!SU) {
3117         CandPolicy NoPolicy;
3118         BotCand.reset(NoPolicy);
3119         pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
3120         assert(BotCand.Reason != NoCand && "failed to find a candidate");
3121         tracePick(BotCand);
3122         SU = BotCand.SU;
3123       }
3124       IsTopNode = false;
3125     } else {
3126       SU = pickNodeBidirectional(IsTopNode);
3127     }
3128   } while (SU->isScheduled);
3129 
3130   if (SU->isTopReady())
3131     Top.removeReady(SU);
3132   if (SU->isBottomReady())
3133     Bot.removeReady(SU);
3134 
3135   DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
3136   return SU;
3137 }
3138 
3139 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
3140   MachineBasicBlock::iterator InsertPos = SU->getInstr();
3141   if (!isTop)
3142     ++InsertPos;
3143   SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
3144 
3145   // Find already scheduled copies with a single physreg dependence and move
3146   // them just above the scheduled instruction.
3147   for (SDep &Dep : Deps) {
3148     if (Dep.getKind() != SDep::Data || !TRI->isPhysicalRegister(Dep.getReg()))
3149       continue;
3150     SUnit *DepSU = Dep.getSUnit();
3151     if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
3152       continue;
3153     MachineInstr *Copy = DepSU->getInstr();
3154     if (!Copy->isCopy())
3155       continue;
3156     DEBUG(dbgs() << "  Rescheduling physreg copy ";
3157           Dep.getSUnit()->dump(DAG));
3158     DAG->moveInstruction(Copy, InsertPos);
3159   }
3160 }
3161 
3162 /// Update the scheduler's state after scheduling a node. This is the same node
3163 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
3164 /// update it's state based on the current cycle before MachineSchedStrategy
3165 /// does.
3166 ///
3167 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
3168 /// them here. See comments in biasPhysRegCopy.
3169 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3170   if (IsTopNode) {
3171     SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3172     Top.bumpNode(SU);
3173     if (SU->hasPhysRegUses)
3174       reschedulePhysRegCopies(SU, true);
3175   } else {
3176     SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
3177     Bot.bumpNode(SU);
3178     if (SU->hasPhysRegDefs)
3179       reschedulePhysRegCopies(SU, false);
3180   }
3181 }
3182 
3183 /// Create the standard converging machine scheduler. This will be used as the
3184 /// default scheduler if the target does not set a default.
3185 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) {
3186   ScheduleDAGMILive *DAG =
3187       new ScheduleDAGMILive(C, llvm::make_unique<GenericScheduler>(C));
3188   // Register DAG post-processors.
3189   //
3190   // FIXME: extend the mutation API to allow earlier mutations to instantiate
3191   // data and pass it to later mutations. Have a single mutation that gathers
3192   // the interesting nodes in one pass.
3193   DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI));
3194   return DAG;
3195 }
3196 
3197 static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) {
3198   return createGenericSchedLive(C);
3199 }
3200 
3201 static MachineSchedRegistry
3202 GenericSchedRegistry("converge", "Standard converging scheduler.",
3203                      createConveringSched);
3204 
3205 //===----------------------------------------------------------------------===//
3206 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
3207 //===----------------------------------------------------------------------===//
3208 
3209 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
3210   DAG = Dag;
3211   SchedModel = DAG->getSchedModel();
3212   TRI = DAG->TRI;
3213 
3214   Rem.init(DAG, SchedModel);
3215   Top.init(DAG, SchedModel, &Rem);
3216   BotRoots.clear();
3217 
3218   // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
3219   // or are disabled, then these HazardRecs will be disabled.
3220   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3221   if (!Top.HazardRec) {
3222     Top.HazardRec =
3223         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3224             Itin, DAG);
3225   }
3226 }
3227 
3228 void PostGenericScheduler::registerRoots() {
3229   Rem.CriticalPath = DAG->ExitSU.getDepth();
3230 
3231   // Some roots may not feed into ExitSU. Check all of them in case.
3232   for (const SUnit *SU : BotRoots) {
3233     if (SU->getDepth() > Rem.CriticalPath)
3234       Rem.CriticalPath = SU->getDepth();
3235   }
3236   DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
3237   if (DumpCriticalPathLength) {
3238     errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
3239   }
3240 }
3241 
3242 /// Apply a set of heursitics to a new candidate for PostRA scheduling.
3243 ///
3244 /// \param Cand provides the policy and current best candidate.
3245 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3246 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
3247                                         SchedCandidate &TryCand) {
3248   // Initialize the candidate if needed.
3249   if (!Cand.isValid()) {
3250     TryCand.Reason = NodeOrder;
3251     return;
3252   }
3253 
3254   // Prioritize instructions that read unbuffered resources by stall cycles.
3255   if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
3256               Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3257     return;
3258 
3259   // Keep clustered nodes together.
3260   if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(),
3261                  Cand.SU == DAG->getNextClusterSucc(),
3262                  TryCand, Cand, Cluster))
3263     return;
3264 
3265   // Avoid critical resource consumption and balance the schedule.
3266   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3267               TryCand, Cand, ResourceReduce))
3268     return;
3269   if (tryGreater(TryCand.ResDelta.DemandedResources,
3270                  Cand.ResDelta.DemandedResources,
3271                  TryCand, Cand, ResourceDemand))
3272     return;
3273 
3274   // Avoid serializing long latency dependence chains.
3275   if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
3276     return;
3277   }
3278 
3279   // Fall through to original instruction order.
3280   if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
3281     TryCand.Reason = NodeOrder;
3282 }
3283 
3284 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
3285   ReadyQueue &Q = Top.Available;
3286   for (SUnit *SU : Q) {
3287     SchedCandidate TryCand(Cand.Policy);
3288     TryCand.SU = SU;
3289     TryCand.AtTop = true;
3290     TryCand.initResourceDelta(DAG, SchedModel);
3291     tryCandidate(Cand, TryCand);
3292     if (TryCand.Reason != NoCand) {
3293       Cand.setBest(TryCand);
3294       DEBUG(traceCandidate(Cand));
3295     }
3296   }
3297 }
3298 
3299 /// Pick the next node to schedule.
3300 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
3301   if (DAG->top() == DAG->bottom()) {
3302     assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
3303     return nullptr;
3304   }
3305   SUnit *SU;
3306   do {
3307     SU = Top.pickOnlyChoice();
3308     if (SU) {
3309       tracePick(Only1, true);
3310     } else {
3311       CandPolicy NoPolicy;
3312       SchedCandidate TopCand(NoPolicy);
3313       // Set the top-down policy based on the state of the current top zone and
3314       // the instructions outside the zone, including the bottom zone.
3315       setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
3316       pickNodeFromQueue(TopCand);
3317       assert(TopCand.Reason != NoCand && "failed to find a candidate");
3318       tracePick(TopCand);
3319       SU = TopCand.SU;
3320     }
3321   } while (SU->isScheduled);
3322 
3323   IsTopNode = true;
3324   Top.removeReady(SU);
3325 
3326   DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
3327   return SU;
3328 }
3329 
3330 /// Called after ScheduleDAGMI has scheduled an instruction and updated
3331 /// scheduled/remaining flags in the DAG nodes.
3332 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3333   SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3334   Top.bumpNode(SU);
3335 }
3336 
3337 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) {
3338   return new ScheduleDAGMI(C, llvm::make_unique<PostGenericScheduler>(C),
3339                            /*RemoveKillFlags=*/true);
3340 }
3341 
3342 //===----------------------------------------------------------------------===//
3343 // ILP Scheduler. Currently for experimental analysis of heuristics.
3344 //===----------------------------------------------------------------------===//
3345 
3346 namespace {
3347 
3348 /// \brief Order nodes by the ILP metric.
3349 struct ILPOrder {
3350   const SchedDFSResult *DFSResult = nullptr;
3351   const BitVector *ScheduledTrees = nullptr;
3352   bool MaximizeILP;
3353 
3354   ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {}
3355 
3356   /// \brief Apply a less-than relation on node priority.
3357   ///
3358   /// (Return true if A comes after B in the Q.)
3359   bool operator()(const SUnit *A, const SUnit *B) const {
3360     unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3361     unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3362     if (SchedTreeA != SchedTreeB) {
3363       // Unscheduled trees have lower priority.
3364       if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3365         return ScheduledTrees->test(SchedTreeB);
3366 
3367       // Trees with shallower connections have have lower priority.
3368       if (DFSResult->getSubtreeLevel(SchedTreeA)
3369           != DFSResult->getSubtreeLevel(SchedTreeB)) {
3370         return DFSResult->getSubtreeLevel(SchedTreeA)
3371           < DFSResult->getSubtreeLevel(SchedTreeB);
3372       }
3373     }
3374     if (MaximizeILP)
3375       return DFSResult->getILP(A) < DFSResult->getILP(B);
3376     else
3377       return DFSResult->getILP(A) > DFSResult->getILP(B);
3378   }
3379 };
3380 
3381 /// \brief Schedule based on the ILP metric.
3382 class ILPScheduler : public MachineSchedStrategy {
3383   ScheduleDAGMILive *DAG = nullptr;
3384   ILPOrder Cmp;
3385 
3386   std::vector<SUnit*> ReadyQ;
3387 
3388 public:
3389   ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {}
3390 
3391   void initialize(ScheduleDAGMI *dag) override {
3392     assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
3393     DAG = static_cast<ScheduleDAGMILive*>(dag);
3394     DAG->computeDFSResult();
3395     Cmp.DFSResult = DAG->getDFSResult();
3396     Cmp.ScheduledTrees = &DAG->getScheduledTrees();
3397     ReadyQ.clear();
3398   }
3399 
3400   void registerRoots() override {
3401     // Restore the heap in ReadyQ with the updated DFS results.
3402     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3403   }
3404 
3405   /// Implement MachineSchedStrategy interface.
3406   /// -----------------------------------------
3407 
3408   /// Callback to select the highest priority node from the ready Q.
3409   SUnit *pickNode(bool &IsTopNode) override {
3410     if (ReadyQ.empty()) return nullptr;
3411     std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3412     SUnit *SU = ReadyQ.back();
3413     ReadyQ.pop_back();
3414     IsTopNode = false;
3415     DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") "
3416           << " ILP: " << DAG->getDFSResult()->getILP(SU)
3417           << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @"
3418           << DAG->getDFSResult()->getSubtreeLevel(
3419             DAG->getDFSResult()->getSubtreeID(SU)) << '\n'
3420           << "Scheduling " << *SU->getInstr());
3421     return SU;
3422   }
3423 
3424   /// \brief Scheduler callback to notify that a new subtree is scheduled.
3425   void scheduleTree(unsigned SubtreeID) override {
3426     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3427   }
3428 
3429   /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
3430   /// DFSResults, and resort the priority Q.
3431   void schedNode(SUnit *SU, bool IsTopNode) override {
3432     assert(!IsTopNode && "SchedDFSResult needs bottom-up");
3433   }
3434 
3435   void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
3436 
3437   void releaseBottomNode(SUnit *SU) override {
3438     ReadyQ.push_back(SU);
3439     std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3440   }
3441 };
3442 
3443 } // end anonymous namespace
3444 
3445 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
3446   return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(true));
3447 }
3448 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
3449   return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(false));
3450 }
3451 
3452 static MachineSchedRegistry ILPMaxRegistry(
3453   "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
3454 static MachineSchedRegistry ILPMinRegistry(
3455   "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
3456 
3457 //===----------------------------------------------------------------------===//
3458 // Machine Instruction Shuffler for Correctness Testing
3459 //===----------------------------------------------------------------------===//
3460 
3461 #ifndef NDEBUG
3462 namespace {
3463 
3464 /// Apply a less-than relation on the node order, which corresponds to the
3465 /// instruction order prior to scheduling. IsReverse implements greater-than.
3466 template<bool IsReverse>
3467 struct SUnitOrder {
3468   bool operator()(SUnit *A, SUnit *B) const {
3469     if (IsReverse)
3470       return A->NodeNum > B->NodeNum;
3471     else
3472       return A->NodeNum < B->NodeNum;
3473   }
3474 };
3475 
3476 /// Reorder instructions as much as possible.
3477 class InstructionShuffler : public MachineSchedStrategy {
3478   bool IsAlternating;
3479   bool IsTopDown;
3480 
3481   // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
3482   // gives nodes with a higher number higher priority causing the latest
3483   // instructions to be scheduled first.
3484   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>>
3485     TopQ;
3486 
3487   // When scheduling bottom-up, use greater-than as the queue priority.
3488   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>>
3489     BottomQ;
3490 
3491 public:
3492   InstructionShuffler(bool alternate, bool topdown)
3493     : IsAlternating(alternate), IsTopDown(topdown) {}
3494 
3495   void initialize(ScheduleDAGMI*) override {
3496     TopQ.clear();
3497     BottomQ.clear();
3498   }
3499 
3500   /// Implement MachineSchedStrategy interface.
3501   /// -----------------------------------------
3502 
3503   SUnit *pickNode(bool &IsTopNode) override {
3504     SUnit *SU;
3505     if (IsTopDown) {
3506       do {
3507         if (TopQ.empty()) return nullptr;
3508         SU = TopQ.top();
3509         TopQ.pop();
3510       } while (SU->isScheduled);
3511       IsTopNode = true;
3512     } else {
3513       do {
3514         if (BottomQ.empty()) return nullptr;
3515         SU = BottomQ.top();
3516         BottomQ.pop();
3517       } while (SU->isScheduled);
3518       IsTopNode = false;
3519     }
3520     if (IsAlternating)
3521       IsTopDown = !IsTopDown;
3522     return SU;
3523   }
3524 
3525   void schedNode(SUnit *SU, bool IsTopNode) override {}
3526 
3527   void releaseTopNode(SUnit *SU) override {
3528     TopQ.push(SU);
3529   }
3530   void releaseBottomNode(SUnit *SU) override {
3531     BottomQ.push(SU);
3532   }
3533 };
3534 
3535 } // end anonymous namespace
3536 
3537 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
3538   bool Alternate = !ForceTopDown && !ForceBottomUp;
3539   bool TopDown = !ForceBottomUp;
3540   assert((TopDown || !ForceTopDown) &&
3541          "-misched-topdown incompatible with -misched-bottomup");
3542   return new ScheduleDAGMILive(
3543       C, llvm::make_unique<InstructionShuffler>(Alternate, TopDown));
3544 }
3545 
3546 static MachineSchedRegistry ShufflerRegistry(
3547   "shuffle", "Shuffle machine instructions alternating directions",
3548   createInstructionShuffler);
3549 #endif // !NDEBUG
3550 
3551 //===----------------------------------------------------------------------===//
3552 // GraphWriter support for ScheduleDAGMILive.
3553 //===----------------------------------------------------------------------===//
3554 
3555 #ifndef NDEBUG
3556 namespace llvm {
3557 
3558 template<> struct GraphTraits<
3559   ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
3560 
3561 template<>
3562 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
3563   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
3564 
3565   static std::string getGraphName(const ScheduleDAG *G) {
3566     return G->MF.getName();
3567   }
3568 
3569   static bool renderGraphFromBottomUp() {
3570     return true;
3571   }
3572 
3573   static bool isNodeHidden(const SUnit *Node) {
3574     if (ViewMISchedCutoff == 0)
3575       return false;
3576     return (Node->Preds.size() > ViewMISchedCutoff
3577          || Node->Succs.size() > ViewMISchedCutoff);
3578   }
3579 
3580   /// If you want to override the dot attributes printed for a particular
3581   /// edge, override this method.
3582   static std::string getEdgeAttributes(const SUnit *Node,
3583                                        SUnitIterator EI,
3584                                        const ScheduleDAG *Graph) {
3585     if (EI.isArtificialDep())
3586       return "color=cyan,style=dashed";
3587     if (EI.isCtrlDep())
3588       return "color=blue,style=dashed";
3589     return "";
3590   }
3591 
3592   static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
3593     std::string Str;
3594     raw_string_ostream SS(Str);
3595     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3596     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3597       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3598     SS << "SU:" << SU->NodeNum;
3599     if (DFS)
3600       SS << " I:" << DFS->getNumInstrs(SU);
3601     return SS.str();
3602   }
3603 
3604   static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
3605     return G->getGraphNodeLabel(SU);
3606   }
3607 
3608   static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
3609     std::string Str("shape=Mrecord");
3610     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3611     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3612       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3613     if (DFS) {
3614       Str += ",style=filled,fillcolor=\"#";
3615       Str += DOT::getColorString(DFS->getSubtreeID(N));
3616       Str += '"';
3617     }
3618     return Str;
3619   }
3620 };
3621 
3622 } // end namespace llvm
3623 #endif // NDEBUG
3624 
3625 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
3626 /// rendered using 'dot'.
3627 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
3628 #ifndef NDEBUG
3629   ViewGraph(this, Name, false, Title);
3630 #else
3631   errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
3632          << "systems with Graphviz or gv!\n";
3633 #endif  // NDEBUG
3634 }
3635 
3636 /// Out-of-line implementation with no arguments is handy for gdb.
3637 void ScheduleDAGMI::viewGraph() {
3638   viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
3639 }
3640