xref: /llvm-project/llvm/lib/CodeGen/MachineScheduler.cpp (revision 17dc729bd42947b839c9717a2efa9e1e04248616)
1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // MachineScheduler schedules machine instructions after phi elimination. It
10 // preserves LiveIntervals so it can be invoked before register allocation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineScheduler.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/PriorityQueue.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineLoopInfo.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachinePassRegistry.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegisterClassInfo.h"
37 #include "llvm/CodeGen/RegisterPressure.h"
38 #include "llvm/CodeGen/ScheduleDAG.h"
39 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
40 #include "llvm/CodeGen/ScheduleDAGMutation.h"
41 #include "llvm/CodeGen/ScheduleDFS.h"
42 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
43 #include "llvm/CodeGen/SlotIndexes.h"
44 #include "llvm/CodeGen/TargetFrameLowering.h"
45 #include "llvm/CodeGen/TargetInstrInfo.h"
46 #include "llvm/CodeGen/TargetLowering.h"
47 #include "llvm/CodeGen/TargetPassConfig.h"
48 #include "llvm/CodeGen/TargetRegisterInfo.h"
49 #include "llvm/CodeGen/TargetSchedule.h"
50 #include "llvm/CodeGen/TargetSubtargetInfo.h"
51 #include "llvm/Config/llvm-config.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/MC/LaneBitmask.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Compiler.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/GraphWriter.h"
60 #include "llvm/Support/MachineValueType.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <cstdint>
65 #include <iterator>
66 #include <limits>
67 #include <memory>
68 #include <string>
69 #include <tuple>
70 #include <utility>
71 #include <vector>
72 
73 using namespace llvm;
74 
75 #define DEBUG_TYPE "machine-scheduler"
76 
77 STATISTIC(NumClustered, "Number of load/store pairs clustered");
78 
79 namespace llvm {
80 
81 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
82                            cl::desc("Force top-down list scheduling"));
83 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
84                             cl::desc("Force bottom-up list scheduling"));
85 cl::opt<bool>
86 DumpCriticalPathLength("misched-dcpl", cl::Hidden,
87                        cl::desc("Print critical path length to stdout"));
88 
89 cl::opt<bool> VerifyScheduling(
90     "verify-misched", cl::Hidden,
91     cl::desc("Verify machine instrs before and after machine scheduling"));
92 
93 } // end namespace llvm
94 
95 #ifndef NDEBUG
96 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
97   cl::desc("Pop up a window to show MISched dags after they are processed"));
98 
99 /// In some situations a few uninteresting nodes depend on nearly all other
100 /// nodes in the graph, provide a cutoff to hide them.
101 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
102   cl::desc("Hide nodes with more predecessor/successor than cutoff"));
103 
104 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
105   cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
106 
107 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
108   cl::desc("Only schedule this function"));
109 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
110                                         cl::desc("Only schedule this MBB#"));
111 static cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden,
112                               cl::desc("Print schedule DAGs"));
113 #else
114 static const bool ViewMISchedDAGs = false;
115 static const bool PrintDAGs = false;
116 #endif // NDEBUG
117 
118 /// Avoid quadratic complexity in unusually large basic blocks by limiting the
119 /// size of the ready lists.
120 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden,
121   cl::desc("Limit ready list to N instructions"), cl::init(256));
122 
123 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
124   cl::desc("Enable register pressure scheduling."), cl::init(true));
125 
126 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
127   cl::desc("Enable cyclic critical path analysis."), cl::init(true));
128 
129 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden,
130                                         cl::desc("Enable memop clustering."),
131                                         cl::init(true));
132 
133 // DAG subtrees must have at least this many nodes.
134 static const unsigned MinSubtreeSize = 8;
135 
136 // Pin the vtables to this file.
137 void MachineSchedStrategy::anchor() {}
138 
139 void ScheduleDAGMutation::anchor() {}
140 
141 //===----------------------------------------------------------------------===//
142 // Machine Instruction Scheduling Pass and Registry
143 //===----------------------------------------------------------------------===//
144 
145 MachineSchedContext::MachineSchedContext() {
146   RegClassInfo = new RegisterClassInfo();
147 }
148 
149 MachineSchedContext::~MachineSchedContext() {
150   delete RegClassInfo;
151 }
152 
153 namespace {
154 
155 /// Base class for a machine scheduler class that can run at any point.
156 class MachineSchedulerBase : public MachineSchedContext,
157                              public MachineFunctionPass {
158 public:
159   MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
160 
161   void print(raw_ostream &O, const Module* = nullptr) const override;
162 
163 protected:
164   void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
165 };
166 
167 /// MachineScheduler runs after coalescing and before register allocation.
168 class MachineScheduler : public MachineSchedulerBase {
169 public:
170   MachineScheduler();
171 
172   void getAnalysisUsage(AnalysisUsage &AU) const override;
173 
174   bool runOnMachineFunction(MachineFunction&) override;
175 
176   static char ID; // Class identification, replacement for typeinfo
177 
178 protected:
179   ScheduleDAGInstrs *createMachineScheduler();
180 };
181 
182 /// PostMachineScheduler runs after shortly before code emission.
183 class PostMachineScheduler : public MachineSchedulerBase {
184 public:
185   PostMachineScheduler();
186 
187   void getAnalysisUsage(AnalysisUsage &AU) const override;
188 
189   bool runOnMachineFunction(MachineFunction&) override;
190 
191   static char ID; // Class identification, replacement for typeinfo
192 
193 protected:
194   ScheduleDAGInstrs *createPostMachineScheduler();
195 };
196 
197 } // end anonymous namespace
198 
199 char MachineScheduler::ID = 0;
200 
201 char &llvm::MachineSchedulerID = MachineScheduler::ID;
202 
203 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE,
204                       "Machine Instruction Scheduler", false, false)
205 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
206 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
207 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
208 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
209 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
210 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE,
211                     "Machine Instruction Scheduler", false, false)
212 
213 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) {
214   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
215 }
216 
217 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
218   AU.setPreservesCFG();
219   AU.addRequired<MachineDominatorTree>();
220   AU.addRequired<MachineLoopInfo>();
221   AU.addRequired<AAResultsWrapperPass>();
222   AU.addRequired<TargetPassConfig>();
223   AU.addRequired<SlotIndexes>();
224   AU.addPreserved<SlotIndexes>();
225   AU.addRequired<LiveIntervals>();
226   AU.addPreserved<LiveIntervals>();
227   MachineFunctionPass::getAnalysisUsage(AU);
228 }
229 
230 char PostMachineScheduler::ID = 0;
231 
232 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
233 
234 INITIALIZE_PASS(PostMachineScheduler, "postmisched",
235                 "PostRA Machine Instruction Scheduler", false, false)
236 
237 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) {
238   initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
239 }
240 
241 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
242   AU.setPreservesCFG();
243   AU.addRequired<MachineDominatorTree>();
244   AU.addRequired<MachineLoopInfo>();
245   AU.addRequired<AAResultsWrapperPass>();
246   AU.addRequired<TargetPassConfig>();
247   MachineFunctionPass::getAnalysisUsage(AU);
248 }
249 
250 MachinePassRegistry<MachineSchedRegistry::ScheduleDAGCtor>
251     MachineSchedRegistry::Registry;
252 
253 /// A dummy default scheduler factory indicates whether the scheduler
254 /// is overridden on the command line.
255 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
256   return nullptr;
257 }
258 
259 /// MachineSchedOpt allows command line selection of the scheduler.
260 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
261                RegisterPassParser<MachineSchedRegistry>>
262 MachineSchedOpt("misched",
263                 cl::init(&useDefaultMachineSched), cl::Hidden,
264                 cl::desc("Machine instruction scheduler to use"));
265 
266 static MachineSchedRegistry
267 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
268                      useDefaultMachineSched);
269 
270 static cl::opt<bool> EnableMachineSched(
271     "enable-misched",
272     cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
273     cl::Hidden);
274 
275 static cl::opt<bool> EnablePostRAMachineSched(
276     "enable-post-misched",
277     cl::desc("Enable the post-ra machine instruction scheduling pass."),
278     cl::init(true), cl::Hidden);
279 
280 /// Decrement this iterator until reaching the top or a non-debug instr.
281 static MachineBasicBlock::const_iterator
282 priorNonDebug(MachineBasicBlock::const_iterator I,
283               MachineBasicBlock::const_iterator Beg) {
284   assert(I != Beg && "reached the top of the region, cannot decrement");
285   while (--I != Beg) {
286     if (!I->isDebugInstr())
287       break;
288   }
289   return I;
290 }
291 
292 /// Non-const version.
293 static MachineBasicBlock::iterator
294 priorNonDebug(MachineBasicBlock::iterator I,
295               MachineBasicBlock::const_iterator Beg) {
296   return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)
297       .getNonConstIterator();
298 }
299 
300 /// If this iterator is a debug value, increment until reaching the End or a
301 /// non-debug instruction.
302 static MachineBasicBlock::const_iterator
303 nextIfDebug(MachineBasicBlock::const_iterator I,
304             MachineBasicBlock::const_iterator End) {
305   for(; I != End; ++I) {
306     if (!I->isDebugInstr())
307       break;
308   }
309   return I;
310 }
311 
312 /// Non-const version.
313 static MachineBasicBlock::iterator
314 nextIfDebug(MachineBasicBlock::iterator I,
315             MachineBasicBlock::const_iterator End) {
316   return nextIfDebug(MachineBasicBlock::const_iterator(I), End)
317       .getNonConstIterator();
318 }
319 
320 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
321 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
322   // Select the scheduler, or set the default.
323   MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
324   if (Ctor != useDefaultMachineSched)
325     return Ctor(this);
326 
327   // Get the default scheduler set by the target for this function.
328   ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
329   if (Scheduler)
330     return Scheduler;
331 
332   // Default to GenericScheduler.
333   return createGenericSchedLive(this);
334 }
335 
336 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
337 /// the caller. We don't have a command line option to override the postRA
338 /// scheduler. The Target must configure it.
339 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
340   // Get the postRA scheduler set by the target for this function.
341   ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
342   if (Scheduler)
343     return Scheduler;
344 
345   // Default to GenericScheduler.
346   return createGenericSchedPostRA(this);
347 }
348 
349 /// Top-level MachineScheduler pass driver.
350 ///
351 /// Visit blocks in function order. Divide each block into scheduling regions
352 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
353 /// consistent with the DAG builder, which traverses the interior of the
354 /// scheduling regions bottom-up.
355 ///
356 /// This design avoids exposing scheduling boundaries to the DAG builder,
357 /// simplifying the DAG builder's support for "special" target instructions.
358 /// At the same time the design allows target schedulers to operate across
359 /// scheduling boundaries, for example to bundle the boundary instructions
360 /// without reordering them. This creates complexity, because the target
361 /// scheduler must update the RegionBegin and RegionEnd positions cached by
362 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
363 /// design would be to split blocks at scheduling boundaries, but LLVM has a
364 /// general bias against block splitting purely for implementation simplicity.
365 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
366   if (skipFunction(mf.getFunction()))
367     return false;
368 
369   if (EnableMachineSched.getNumOccurrences()) {
370     if (!EnableMachineSched)
371       return false;
372   } else if (!mf.getSubtarget().enableMachineScheduler())
373     return false;
374 
375   LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
376 
377   // Initialize the context of the pass.
378   MF = &mf;
379   MLI = &getAnalysis<MachineLoopInfo>();
380   MDT = &getAnalysis<MachineDominatorTree>();
381   PassConfig = &getAnalysis<TargetPassConfig>();
382   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
383 
384   LIS = &getAnalysis<LiveIntervals>();
385 
386   if (VerifyScheduling) {
387     LLVM_DEBUG(LIS->dump());
388     MF->verify(this, "Before machine scheduling.");
389   }
390   RegClassInfo->runOnMachineFunction(*MF);
391 
392   // Instantiate the selected scheduler for this target, function, and
393   // optimization level.
394   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
395   scheduleRegions(*Scheduler, false);
396 
397   LLVM_DEBUG(LIS->dump());
398   if (VerifyScheduling)
399     MF->verify(this, "After machine scheduling.");
400   return true;
401 }
402 
403 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
404   if (skipFunction(mf.getFunction()))
405     return false;
406 
407   if (EnablePostRAMachineSched.getNumOccurrences()) {
408     if (!EnablePostRAMachineSched)
409       return false;
410   } else if (!mf.getSubtarget().enablePostRAMachineScheduler()) {
411     LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
412     return false;
413   }
414   LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
415 
416   // Initialize the context of the pass.
417   MF = &mf;
418   MLI = &getAnalysis<MachineLoopInfo>();
419   PassConfig = &getAnalysis<TargetPassConfig>();
420   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
421 
422   if (VerifyScheduling)
423     MF->verify(this, "Before post machine scheduling.");
424 
425   // Instantiate the selected scheduler for this target, function, and
426   // optimization level.
427   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
428   scheduleRegions(*Scheduler, true);
429 
430   if (VerifyScheduling)
431     MF->verify(this, "After post machine scheduling.");
432   return true;
433 }
434 
435 /// Return true of the given instruction should not be included in a scheduling
436 /// region.
437 ///
438 /// MachineScheduler does not currently support scheduling across calls. To
439 /// handle calls, the DAG builder needs to be modified to create register
440 /// anti/output dependencies on the registers clobbered by the call's regmask
441 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
442 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
443 /// the boundary, but there would be no benefit to postRA scheduling across
444 /// calls this late anyway.
445 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
446                             MachineBasicBlock *MBB,
447                             MachineFunction *MF,
448                             const TargetInstrInfo *TII) {
449   return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF);
450 }
451 
452 /// A region of an MBB for scheduling.
453 namespace {
454 struct SchedRegion {
455   /// RegionBegin is the first instruction in the scheduling region, and
456   /// RegionEnd is either MBB->end() or the scheduling boundary after the
457   /// last instruction in the scheduling region. These iterators cannot refer
458   /// to instructions outside of the identified scheduling region because
459   /// those may be reordered before scheduling this region.
460   MachineBasicBlock::iterator RegionBegin;
461   MachineBasicBlock::iterator RegionEnd;
462   unsigned NumRegionInstrs;
463 
464   SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E,
465               unsigned N) :
466     RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {}
467 };
468 } // end anonymous namespace
469 
470 using MBBRegionsVector = SmallVector<SchedRegion, 16>;
471 
472 static void
473 getSchedRegions(MachineBasicBlock *MBB,
474                 MBBRegionsVector &Regions,
475                 bool RegionsTopDown) {
476   MachineFunction *MF = MBB->getParent();
477   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
478 
479   MachineBasicBlock::iterator I = nullptr;
480   for(MachineBasicBlock::iterator RegionEnd = MBB->end();
481       RegionEnd != MBB->begin(); RegionEnd = I) {
482 
483     // Avoid decrementing RegionEnd for blocks with no terminator.
484     if (RegionEnd != MBB->end() ||
485         isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
486       --RegionEnd;
487     }
488 
489     // The next region starts above the previous region. Look backward in the
490     // instruction stream until we find the nearest boundary.
491     unsigned NumRegionInstrs = 0;
492     I = RegionEnd;
493     for (;I != MBB->begin(); --I) {
494       MachineInstr &MI = *std::prev(I);
495       if (isSchedBoundary(&MI, &*MBB, MF, TII))
496         break;
497       if (!MI.isDebugInstr()) {
498         // MBB::size() uses instr_iterator to count. Here we need a bundle to
499         // count as a single instruction.
500         ++NumRegionInstrs;
501       }
502     }
503 
504     // It's possible we found a scheduling region that only has debug
505     // instructions. Don't bother scheduling these.
506     if (NumRegionInstrs != 0)
507       Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs));
508   }
509 
510   if (RegionsTopDown)
511     std::reverse(Regions.begin(), Regions.end());
512 }
513 
514 /// Main driver for both MachineScheduler and PostMachineScheduler.
515 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
516                                            bool FixKillFlags) {
517   // Visit all machine basic blocks.
518   //
519   // TODO: Visit blocks in global postorder or postorder within the bottom-up
520   // loop tree. Then we can optionally compute global RegPressure.
521   for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
522        MBB != MBBEnd; ++MBB) {
523 
524     Scheduler.startBlock(&*MBB);
525 
526 #ifndef NDEBUG
527     if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
528       continue;
529     if (SchedOnlyBlock.getNumOccurrences()
530         && (int)SchedOnlyBlock != MBB->getNumber())
531       continue;
532 #endif
533 
534     // Break the block into scheduling regions [I, RegionEnd). RegionEnd
535     // points to the scheduling boundary at the bottom of the region. The DAG
536     // does not include RegionEnd, but the region does (i.e. the next
537     // RegionEnd is above the previous RegionBegin). If the current block has
538     // no terminator then RegionEnd == MBB->end() for the bottom region.
539     //
540     // All the regions of MBB are first found and stored in MBBRegions, which
541     // will be processed (MBB) top-down if initialized with true.
542     //
543     // The Scheduler may insert instructions during either schedule() or
544     // exitRegion(), even for empty regions. So the local iterators 'I' and
545     // 'RegionEnd' are invalid across these calls. Instructions must not be
546     // added to other regions than the current one without updating MBBRegions.
547 
548     MBBRegionsVector MBBRegions;
549     getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown());
550     for (MBBRegionsVector::iterator R = MBBRegions.begin();
551          R != MBBRegions.end(); ++R) {
552       MachineBasicBlock::iterator I = R->RegionBegin;
553       MachineBasicBlock::iterator RegionEnd = R->RegionEnd;
554       unsigned NumRegionInstrs = R->NumRegionInstrs;
555 
556       // Notify the scheduler of the region, even if we may skip scheduling
557       // it. Perhaps it still needs to be bundled.
558       Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
559 
560       // Skip empty scheduling regions (0 or 1 schedulable instructions).
561       if (I == RegionEnd || I == std::prev(RegionEnd)) {
562         // Close the current region. Bundle the terminator if needed.
563         // This invalidates 'RegionEnd' and 'I'.
564         Scheduler.exitRegion();
565         continue;
566       }
567       LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
568       LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB)
569                         << " " << MBB->getName() << "\n  From: " << *I
570                         << "    To: ";
571                  if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
572                  else dbgs() << "End";
573                  dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
574       if (DumpCriticalPathLength) {
575         errs() << MF->getName();
576         errs() << ":%bb. " << MBB->getNumber();
577         errs() << " " << MBB->getName() << " \n";
578       }
579 
580       // Schedule a region: possibly reorder instructions.
581       // This invalidates the original region iterators.
582       Scheduler.schedule();
583 
584       // Close the current region.
585       Scheduler.exitRegion();
586     }
587     Scheduler.finishBlock();
588     // FIXME: Ideally, no further passes should rely on kill flags. However,
589     // thumb2 size reduction is currently an exception, so the PostMIScheduler
590     // needs to do this.
591     if (FixKillFlags)
592       Scheduler.fixupKills(*MBB);
593   }
594   Scheduler.finalizeSchedule();
595 }
596 
597 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
598   // unimplemented
599 }
600 
601 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
602 LLVM_DUMP_METHOD void ReadyQueue::dump() const {
603   dbgs() << "Queue " << Name << ": ";
604   for (const SUnit *SU : Queue)
605     dbgs() << SU->NodeNum << " ";
606   dbgs() << "\n";
607 }
608 #endif
609 
610 //===----------------------------------------------------------------------===//
611 // ScheduleDAGMI - Basic machine instruction scheduling. This is
612 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
613 // virtual registers.
614 // ===----------------------------------------------------------------------===/
615 
616 // Provide a vtable anchor.
617 ScheduleDAGMI::~ScheduleDAGMI() = default;
618 
619 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
620 /// NumPredsLeft reaches zero, release the successor node.
621 ///
622 /// FIXME: Adjust SuccSU height based on MinLatency.
623 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
624   SUnit *SuccSU = SuccEdge->getSUnit();
625 
626   if (SuccEdge->isWeak()) {
627     --SuccSU->WeakPredsLeft;
628     if (SuccEdge->isCluster())
629       NextClusterSucc = SuccSU;
630     return;
631   }
632 #ifndef NDEBUG
633   if (SuccSU->NumPredsLeft == 0) {
634     dbgs() << "*** Scheduling failed! ***\n";
635     dumpNode(*SuccSU);
636     dbgs() << " has been released too many times!\n";
637     llvm_unreachable(nullptr);
638   }
639 #endif
640   // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
641   // CurrCycle may have advanced since then.
642   if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
643     SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
644 
645   --SuccSU->NumPredsLeft;
646   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
647     SchedImpl->releaseTopNode(SuccSU);
648 }
649 
650 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
651 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
652   for (SDep &Succ : SU->Succs)
653     releaseSucc(SU, &Succ);
654 }
655 
656 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
657 /// NumSuccsLeft reaches zero, release the predecessor node.
658 ///
659 /// FIXME: Adjust PredSU height based on MinLatency.
660 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
661   SUnit *PredSU = PredEdge->getSUnit();
662 
663   if (PredEdge->isWeak()) {
664     --PredSU->WeakSuccsLeft;
665     if (PredEdge->isCluster())
666       NextClusterPred = PredSU;
667     return;
668   }
669 #ifndef NDEBUG
670   if (PredSU->NumSuccsLeft == 0) {
671     dbgs() << "*** Scheduling failed! ***\n";
672     dumpNode(*PredSU);
673     dbgs() << " has been released too many times!\n";
674     llvm_unreachable(nullptr);
675   }
676 #endif
677   // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
678   // CurrCycle may have advanced since then.
679   if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
680     PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
681 
682   --PredSU->NumSuccsLeft;
683   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
684     SchedImpl->releaseBottomNode(PredSU);
685 }
686 
687 /// releasePredecessors - Call releasePred on each of SU's predecessors.
688 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
689   for (SDep &Pred : SU->Preds)
690     releasePred(SU, &Pred);
691 }
692 
693 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) {
694   ScheduleDAGInstrs::startBlock(bb);
695   SchedImpl->enterMBB(bb);
696 }
697 
698 void ScheduleDAGMI::finishBlock() {
699   SchedImpl->leaveMBB();
700   ScheduleDAGInstrs::finishBlock();
701 }
702 
703 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
704 /// crossing a scheduling boundary. [begin, end) includes all instructions in
705 /// the region, including the boundary itself and single-instruction regions
706 /// that don't get scheduled.
707 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
708                                      MachineBasicBlock::iterator begin,
709                                      MachineBasicBlock::iterator end,
710                                      unsigned regioninstrs)
711 {
712   ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
713 
714   SchedImpl->initPolicy(begin, end, regioninstrs);
715 }
716 
717 /// This is normally called from the main scheduler loop but may also be invoked
718 /// by the scheduling strategy to perform additional code motion.
719 void ScheduleDAGMI::moveInstruction(
720   MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
721   // Advance RegionBegin if the first instruction moves down.
722   if (&*RegionBegin == MI)
723     ++RegionBegin;
724 
725   // Update the instruction stream.
726   BB->splice(InsertPos, BB, MI);
727 
728   // Update LiveIntervals
729   if (LIS)
730     LIS->handleMove(*MI, /*UpdateFlags=*/true);
731 
732   // Recede RegionBegin if an instruction moves above the first.
733   if (RegionBegin == InsertPos)
734     RegionBegin = MI;
735 }
736 
737 bool ScheduleDAGMI::checkSchedLimit() {
738 #ifndef NDEBUG
739   if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
740     CurrentTop = CurrentBottom;
741     return false;
742   }
743   ++NumInstrsScheduled;
744 #endif
745   return true;
746 }
747 
748 /// Per-region scheduling driver, called back from
749 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that
750 /// does not consider liveness or register pressure. It is useful for PostRA
751 /// scheduling and potentially other custom schedulers.
752 void ScheduleDAGMI::schedule() {
753   LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
754   LLVM_DEBUG(SchedImpl->dumpPolicy());
755 
756   // Build the DAG.
757   buildSchedGraph(AA);
758 
759   postprocessDAG();
760 
761   SmallVector<SUnit*, 8> TopRoots, BotRoots;
762   findRootsAndBiasEdges(TopRoots, BotRoots);
763 
764   LLVM_DEBUG(dump());
765   if (PrintDAGs) dump();
766   if (ViewMISchedDAGs) viewGraph();
767 
768   // Initialize the strategy before modifying the DAG.
769   // This may initialize a DFSResult to be used for queue priority.
770   SchedImpl->initialize(this);
771 
772   // Initialize ready queues now that the DAG and priority data are finalized.
773   initQueues(TopRoots, BotRoots);
774 
775   bool IsTopNode = false;
776   while (true) {
777     LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
778     SUnit *SU = SchedImpl->pickNode(IsTopNode);
779     if (!SU) break;
780 
781     assert(!SU->isScheduled && "Node already scheduled");
782     if (!checkSchedLimit())
783       break;
784 
785     MachineInstr *MI = SU->getInstr();
786     if (IsTopNode) {
787       assert(SU->isTopReady() && "node still has unscheduled dependencies");
788       if (&*CurrentTop == MI)
789         CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
790       else
791         moveInstruction(MI, CurrentTop);
792     } else {
793       assert(SU->isBottomReady() && "node still has unscheduled dependencies");
794       MachineBasicBlock::iterator priorII =
795         priorNonDebug(CurrentBottom, CurrentTop);
796       if (&*priorII == MI)
797         CurrentBottom = priorII;
798       else {
799         if (&*CurrentTop == MI)
800           CurrentTop = nextIfDebug(++CurrentTop, priorII);
801         moveInstruction(MI, CurrentBottom);
802         CurrentBottom = MI;
803       }
804     }
805     // Notify the scheduling strategy before updating the DAG.
806     // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
807     // runs, it can then use the accurate ReadyCycle time to determine whether
808     // newly released nodes can move to the readyQ.
809     SchedImpl->schedNode(SU, IsTopNode);
810 
811     updateQueues(SU, IsTopNode);
812   }
813   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
814 
815   placeDebugValues();
816 
817   LLVM_DEBUG({
818     dbgs() << "*** Final schedule for "
819            << printMBBReference(*begin()->getParent()) << " ***\n";
820     dumpSchedule();
821     dbgs() << '\n';
822   });
823 }
824 
825 /// Apply each ScheduleDAGMutation step in order.
826 void ScheduleDAGMI::postprocessDAG() {
827   for (auto &m : Mutations)
828     m->apply(this);
829 }
830 
831 void ScheduleDAGMI::
832 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
833                       SmallVectorImpl<SUnit*> &BotRoots) {
834   for (SUnit &SU : SUnits) {
835     assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits");
836 
837     // Order predecessors so DFSResult follows the critical path.
838     SU.biasCriticalPath();
839 
840     // A SUnit is ready to top schedule if it has no predecessors.
841     if (!SU.NumPredsLeft)
842       TopRoots.push_back(&SU);
843     // A SUnit is ready to bottom schedule if it has no successors.
844     if (!SU.NumSuccsLeft)
845       BotRoots.push_back(&SU);
846   }
847   ExitSU.biasCriticalPath();
848 }
849 
850 /// Identify DAG roots and setup scheduler queues.
851 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
852                                ArrayRef<SUnit*> BotRoots) {
853   NextClusterSucc = nullptr;
854   NextClusterPred = nullptr;
855 
856   // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
857   //
858   // Nodes with unreleased weak edges can still be roots.
859   // Release top roots in forward order.
860   for (SUnit *SU : TopRoots)
861     SchedImpl->releaseTopNode(SU);
862 
863   // Release bottom roots in reverse order so the higher priority nodes appear
864   // first. This is more natural and slightly more efficient.
865   for (SmallVectorImpl<SUnit*>::const_reverse_iterator
866          I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
867     SchedImpl->releaseBottomNode(*I);
868   }
869 
870   releaseSuccessors(&EntrySU);
871   releasePredecessors(&ExitSU);
872 
873   SchedImpl->registerRoots();
874 
875   // Advance past initial DebugValues.
876   CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
877   CurrentBottom = RegionEnd;
878 }
879 
880 /// Update scheduler queues after scheduling an instruction.
881 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
882   // Release dependent instructions for scheduling.
883   if (IsTopNode)
884     releaseSuccessors(SU);
885   else
886     releasePredecessors(SU);
887 
888   SU->isScheduled = true;
889 }
890 
891 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
892 void ScheduleDAGMI::placeDebugValues() {
893   // If first instruction was a DBG_VALUE then put it back.
894   if (FirstDbgValue) {
895     BB->splice(RegionBegin, BB, FirstDbgValue);
896     RegionBegin = FirstDbgValue;
897   }
898 
899   for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator
900          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
901     std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
902     MachineInstr *DbgValue = P.first;
903     MachineBasicBlock::iterator OrigPrevMI = P.second;
904     if (&*RegionBegin == DbgValue)
905       ++RegionBegin;
906     BB->splice(++OrigPrevMI, BB, DbgValue);
907     if (OrigPrevMI == std::prev(RegionEnd))
908       RegionEnd = DbgValue;
909   }
910   DbgValues.clear();
911   FirstDbgValue = nullptr;
912 }
913 
914 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
915 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const {
916   for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
917     if (SUnit *SU = getSUnit(&(*MI)))
918       dumpNode(*SU);
919     else
920       dbgs() << "Missing SUnit\n";
921   }
922 }
923 #endif
924 
925 //===----------------------------------------------------------------------===//
926 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
927 // preservation.
928 //===----------------------------------------------------------------------===//
929 
930 ScheduleDAGMILive::~ScheduleDAGMILive() {
931   delete DFSResult;
932 }
933 
934 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) {
935   const MachineInstr &MI = *SU.getInstr();
936   for (const MachineOperand &MO : MI.operands()) {
937     if (!MO.isReg())
938       continue;
939     if (!MO.readsReg())
940       continue;
941     if (TrackLaneMasks && !MO.isUse())
942       continue;
943 
944     Register Reg = MO.getReg();
945     if (!Register::isVirtualRegister(Reg))
946       continue;
947 
948     // Ignore re-defs.
949     if (TrackLaneMasks) {
950       bool FoundDef = false;
951       for (const MachineOperand &MO2 : MI.operands()) {
952         if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) {
953           FoundDef = true;
954           break;
955         }
956       }
957       if (FoundDef)
958         continue;
959     }
960 
961     // Record this local VReg use.
962     VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
963     for (; UI != VRegUses.end(); ++UI) {
964       if (UI->SU == &SU)
965         break;
966     }
967     if (UI == VRegUses.end())
968       VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU));
969   }
970 }
971 
972 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
973 /// crossing a scheduling boundary. [begin, end) includes all instructions in
974 /// the region, including the boundary itself and single-instruction regions
975 /// that don't get scheduled.
976 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
977                                 MachineBasicBlock::iterator begin,
978                                 MachineBasicBlock::iterator end,
979                                 unsigned regioninstrs)
980 {
981   // ScheduleDAGMI initializes SchedImpl's per-region policy.
982   ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
983 
984   // For convenience remember the end of the liveness region.
985   LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
986 
987   SUPressureDiffs.clear();
988 
989   ShouldTrackPressure = SchedImpl->shouldTrackPressure();
990   ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks();
991 
992   assert((!ShouldTrackLaneMasks || ShouldTrackPressure) &&
993          "ShouldTrackLaneMasks requires ShouldTrackPressure");
994 }
995 
996 // Setup the register pressure trackers for the top scheduled and bottom
997 // scheduled regions.
998 void ScheduleDAGMILive::initRegPressure() {
999   VRegUses.clear();
1000   VRegUses.setUniverse(MRI.getNumVirtRegs());
1001   for (SUnit &SU : SUnits)
1002     collectVRegUses(SU);
1003 
1004   TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin,
1005                     ShouldTrackLaneMasks, false);
1006   BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1007                     ShouldTrackLaneMasks, false);
1008 
1009   // Close the RPTracker to finalize live ins.
1010   RPTracker.closeRegion();
1011 
1012   LLVM_DEBUG(RPTracker.dump());
1013 
1014   // Initialize the live ins and live outs.
1015   TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
1016   BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
1017 
1018   // Close one end of the tracker so we can call
1019   // getMaxUpward/DownwardPressureDelta before advancing across any
1020   // instructions. This converts currently live regs into live ins/outs.
1021   TopRPTracker.closeTop();
1022   BotRPTracker.closeBottom();
1023 
1024   BotRPTracker.initLiveThru(RPTracker);
1025   if (!BotRPTracker.getLiveThru().empty()) {
1026     TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
1027     LLVM_DEBUG(dbgs() << "Live Thru: ";
1028                dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
1029   };
1030 
1031   // For each live out vreg reduce the pressure change associated with other
1032   // uses of the same vreg below the live-out reaching def.
1033   updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
1034 
1035   // Account for liveness generated by the region boundary.
1036   if (LiveRegionEnd != RegionEnd) {
1037     SmallVector<RegisterMaskPair, 8> LiveUses;
1038     BotRPTracker.recede(&LiveUses);
1039     updatePressureDiffs(LiveUses);
1040   }
1041 
1042   LLVM_DEBUG(dbgs() << "Top Pressure:\n";
1043              dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
1044              dbgs() << "Bottom Pressure:\n";
1045              dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI););
1046 
1047   assert((BotRPTracker.getPos() == RegionEnd ||
1048           (RegionEnd->isDebugInstr() &&
1049            BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) &&
1050          "Can't find the region bottom");
1051 
1052   // Cache the list of excess pressure sets in this region. This will also track
1053   // the max pressure in the scheduled code for these sets.
1054   RegionCriticalPSets.clear();
1055   const std::vector<unsigned> &RegionPressure =
1056     RPTracker.getPressure().MaxSetPressure;
1057   for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
1058     unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
1059     if (RegionPressure[i] > Limit) {
1060       LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit
1061                         << " Actual " << RegionPressure[i] << "\n");
1062       RegionCriticalPSets.push_back(PressureChange(i));
1063     }
1064   }
1065   LLVM_DEBUG(dbgs() << "Excess PSets: ";
1066              for (const PressureChange &RCPS
1067                   : RegionCriticalPSets) dbgs()
1068              << TRI->getRegPressureSetName(RCPS.getPSet()) << " ";
1069              dbgs() << "\n");
1070 }
1071 
1072 void ScheduleDAGMILive::
1073 updateScheduledPressure(const SUnit *SU,
1074                         const std::vector<unsigned> &NewMaxPressure) {
1075   const PressureDiff &PDiff = getPressureDiff(SU);
1076   unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
1077   for (const PressureChange &PC : PDiff) {
1078     if (!PC.isValid())
1079       break;
1080     unsigned ID = PC.getPSet();
1081     while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
1082       ++CritIdx;
1083     if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
1084       if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
1085           && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max())
1086         RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
1087     }
1088     unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
1089     if (NewMaxPressure[ID] >= Limit - 2) {
1090       LLVM_DEBUG(dbgs() << "  " << TRI->getRegPressureSetName(ID) << ": "
1091                         << NewMaxPressure[ID]
1092                         << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ")
1093                         << Limit << "(+ " << BotRPTracker.getLiveThru()[ID]
1094                         << " livethru)\n");
1095     }
1096   }
1097 }
1098 
1099 /// Update the PressureDiff array for liveness after scheduling this
1100 /// instruction.
1101 void ScheduleDAGMILive::updatePressureDiffs(
1102     ArrayRef<RegisterMaskPair> LiveUses) {
1103   for (const RegisterMaskPair &P : LiveUses) {
1104     unsigned Reg = P.RegUnit;
1105     /// FIXME: Currently assuming single-use physregs.
1106     if (!Register::isVirtualRegister(Reg))
1107       continue;
1108 
1109     if (ShouldTrackLaneMasks) {
1110       // If the register has just become live then other uses won't change
1111       // this fact anymore => decrement pressure.
1112       // If the register has just become dead then other uses make it come
1113       // back to life => increment pressure.
1114       bool Decrement = P.LaneMask.any();
1115 
1116       for (const VReg2SUnit &V2SU
1117            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1118         SUnit &SU = *V2SU.SU;
1119         if (SU.isScheduled || &SU == &ExitSU)
1120           continue;
1121 
1122         PressureDiff &PDiff = getPressureDiff(&SU);
1123         PDiff.addPressureChange(Reg, Decrement, &MRI);
1124         LLVM_DEBUG(dbgs() << "  UpdateRegP: SU(" << SU.NodeNum << ") "
1125                           << printReg(Reg, TRI) << ':'
1126                           << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr();
1127                    dbgs() << "              to "; PDiff.dump(*TRI););
1128       }
1129     } else {
1130       assert(P.LaneMask.any());
1131       LLVM_DEBUG(dbgs() << "  LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n");
1132       // This may be called before CurrentBottom has been initialized. However,
1133       // BotRPTracker must have a valid position. We want the value live into the
1134       // instruction or live out of the block, so ask for the previous
1135       // instruction's live-out.
1136       const LiveInterval &LI = LIS->getInterval(Reg);
1137       VNInfo *VNI;
1138       MachineBasicBlock::const_iterator I =
1139         nextIfDebug(BotRPTracker.getPos(), BB->end());
1140       if (I == BB->end())
1141         VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1142       else {
1143         LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I));
1144         VNI = LRQ.valueIn();
1145       }
1146       // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
1147       assert(VNI && "No live value at use.");
1148       for (const VReg2SUnit &V2SU
1149            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1150         SUnit *SU = V2SU.SU;
1151         // If this use comes before the reaching def, it cannot be a last use,
1152         // so decrease its pressure change.
1153         if (!SU->isScheduled && SU != &ExitSU) {
1154           LiveQueryResult LRQ =
1155               LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1156           if (LRQ.valueIn() == VNI) {
1157             PressureDiff &PDiff = getPressureDiff(SU);
1158             PDiff.addPressureChange(Reg, true, &MRI);
1159             LLVM_DEBUG(dbgs() << "  UpdateRegP: SU(" << SU->NodeNum << ") "
1160                               << *SU->getInstr();
1161                        dbgs() << "              to "; PDiff.dump(*TRI););
1162           }
1163         }
1164       }
1165     }
1166   }
1167 }
1168 
1169 void ScheduleDAGMILive::dump() const {
1170 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1171   if (EntrySU.getInstr() != nullptr)
1172     dumpNodeAll(EntrySU);
1173   for (const SUnit &SU : SUnits) {
1174     dumpNodeAll(SU);
1175     if (ShouldTrackPressure) {
1176       dbgs() << "  Pressure Diff      : ";
1177       getPressureDiff(&SU).dump(*TRI);
1178     }
1179     dbgs() << "  Single Issue       : ";
1180     if (SchedModel.mustBeginGroup(SU.getInstr()) &&
1181         SchedModel.mustEndGroup(SU.getInstr()))
1182       dbgs() << "true;";
1183     else
1184       dbgs() << "false;";
1185     dbgs() << '\n';
1186   }
1187   if (ExitSU.getInstr() != nullptr)
1188     dumpNodeAll(ExitSU);
1189 #endif
1190 }
1191 
1192 /// schedule - Called back from MachineScheduler::runOnMachineFunction
1193 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
1194 /// only includes instructions that have DAG nodes, not scheduling boundaries.
1195 ///
1196 /// This is a skeletal driver, with all the functionality pushed into helpers,
1197 /// so that it can be easily extended by experimental schedulers. Generally,
1198 /// implementing MachineSchedStrategy should be sufficient to implement a new
1199 /// scheduling algorithm. However, if a scheduler further subclasses
1200 /// ScheduleDAGMILive then it will want to override this virtual method in order
1201 /// to update any specialized state.
1202 void ScheduleDAGMILive::schedule() {
1203   LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
1204   LLVM_DEBUG(SchedImpl->dumpPolicy());
1205   buildDAGWithRegPressure();
1206 
1207   postprocessDAG();
1208 
1209   SmallVector<SUnit*, 8> TopRoots, BotRoots;
1210   findRootsAndBiasEdges(TopRoots, BotRoots);
1211 
1212   // Initialize the strategy before modifying the DAG.
1213   // This may initialize a DFSResult to be used for queue priority.
1214   SchedImpl->initialize(this);
1215 
1216   LLVM_DEBUG(dump());
1217   if (PrintDAGs) dump();
1218   if (ViewMISchedDAGs) viewGraph();
1219 
1220   // Initialize ready queues now that the DAG and priority data are finalized.
1221   initQueues(TopRoots, BotRoots);
1222 
1223   bool IsTopNode = false;
1224   while (true) {
1225     LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
1226     SUnit *SU = SchedImpl->pickNode(IsTopNode);
1227     if (!SU) break;
1228 
1229     assert(!SU->isScheduled && "Node already scheduled");
1230     if (!checkSchedLimit())
1231       break;
1232 
1233     scheduleMI(SU, IsTopNode);
1234 
1235     if (DFSResult) {
1236       unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1237       if (!ScheduledTrees.test(SubtreeID)) {
1238         ScheduledTrees.set(SubtreeID);
1239         DFSResult->scheduleTree(SubtreeID);
1240         SchedImpl->scheduleTree(SubtreeID);
1241       }
1242     }
1243 
1244     // Notify the scheduling strategy after updating the DAG.
1245     SchedImpl->schedNode(SU, IsTopNode);
1246 
1247     updateQueues(SU, IsTopNode);
1248   }
1249   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1250 
1251   placeDebugValues();
1252 
1253   LLVM_DEBUG({
1254     dbgs() << "*** Final schedule for "
1255            << printMBBReference(*begin()->getParent()) << " ***\n";
1256     dumpSchedule();
1257     dbgs() << '\n';
1258   });
1259 }
1260 
1261 /// Build the DAG and setup three register pressure trackers.
1262 void ScheduleDAGMILive::buildDAGWithRegPressure() {
1263   if (!ShouldTrackPressure) {
1264     RPTracker.reset();
1265     RegionCriticalPSets.clear();
1266     buildSchedGraph(AA);
1267     return;
1268   }
1269 
1270   // Initialize the register pressure tracker used by buildSchedGraph.
1271   RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1272                  ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true);
1273 
1274   // Account for liveness generate by the region boundary.
1275   if (LiveRegionEnd != RegionEnd)
1276     RPTracker.recede();
1277 
1278   // Build the DAG, and compute current register pressure.
1279   buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks);
1280 
1281   // Initialize top/bottom trackers after computing region pressure.
1282   initRegPressure();
1283 }
1284 
1285 void ScheduleDAGMILive::computeDFSResult() {
1286   if (!DFSResult)
1287     DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1288   DFSResult->clear();
1289   ScheduledTrees.clear();
1290   DFSResult->resize(SUnits.size());
1291   DFSResult->compute(SUnits);
1292   ScheduledTrees.resize(DFSResult->getNumSubtrees());
1293 }
1294 
1295 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
1296 /// only provides the critical path for single block loops. To handle loops that
1297 /// span blocks, we could use the vreg path latencies provided by
1298 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1299 /// available for use in the scheduler.
1300 ///
1301 /// The cyclic path estimation identifies a def-use pair that crosses the back
1302 /// edge and considers the depth and height of the nodes. For example, consider
1303 /// the following instruction sequence where each instruction has unit latency
1304 /// and defines an eponymous virtual register:
1305 ///
1306 /// a->b(a,c)->c(b)->d(c)->exit
1307 ///
1308 /// The cyclic critical path is a two cycles: b->c->b
1309 /// The acyclic critical path is four cycles: a->b->c->d->exit
1310 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
1311 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1312 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1313 /// LiveInDepth = depth(b) = len(a->b) = 1
1314 ///
1315 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1316 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1317 /// CyclicCriticalPath = min(2, 2) = 2
1318 ///
1319 /// This could be relevant to PostRA scheduling, but is currently implemented
1320 /// assuming LiveIntervals.
1321 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1322   // This only applies to single block loop.
1323   if (!BB->isSuccessor(BB))
1324     return 0;
1325 
1326   unsigned MaxCyclicLatency = 0;
1327   // Visit each live out vreg def to find def/use pairs that cross iterations.
1328   for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) {
1329     unsigned Reg = P.RegUnit;
1330     if (!Register::isVirtualRegister(Reg))
1331       continue;
1332     const LiveInterval &LI = LIS->getInterval(Reg);
1333     const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1334     if (!DefVNI)
1335       continue;
1336 
1337     MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1338     const SUnit *DefSU = getSUnit(DefMI);
1339     if (!DefSU)
1340       continue;
1341 
1342     unsigned LiveOutHeight = DefSU->getHeight();
1343     unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1344     // Visit all local users of the vreg def.
1345     for (const VReg2SUnit &V2SU
1346          : make_range(VRegUses.find(Reg), VRegUses.end())) {
1347       SUnit *SU = V2SU.SU;
1348       if (SU == &ExitSU)
1349         continue;
1350 
1351       // Only consider uses of the phi.
1352       LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1353       if (!LRQ.valueIn()->isPHIDef())
1354         continue;
1355 
1356       // Assume that a path spanning two iterations is a cycle, which could
1357       // overestimate in strange cases. This allows cyclic latency to be
1358       // estimated as the minimum slack of the vreg's depth or height.
1359       unsigned CyclicLatency = 0;
1360       if (LiveOutDepth > SU->getDepth())
1361         CyclicLatency = LiveOutDepth - SU->getDepth();
1362 
1363       unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
1364       if (LiveInHeight > LiveOutHeight) {
1365         if (LiveInHeight - LiveOutHeight < CyclicLatency)
1366           CyclicLatency = LiveInHeight - LiveOutHeight;
1367       } else
1368         CyclicLatency = 0;
1369 
1370       LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1371                         << SU->NodeNum << ") = " << CyclicLatency << "c\n");
1372       if (CyclicLatency > MaxCyclicLatency)
1373         MaxCyclicLatency = CyclicLatency;
1374     }
1375   }
1376   LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1377   return MaxCyclicLatency;
1378 }
1379 
1380 /// Release ExitSU predecessors and setup scheduler queues. Re-position
1381 /// the Top RP tracker in case the region beginning has changed.
1382 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots,
1383                                    ArrayRef<SUnit*> BotRoots) {
1384   ScheduleDAGMI::initQueues(TopRoots, BotRoots);
1385   if (ShouldTrackPressure) {
1386     assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1387     TopRPTracker.setPos(CurrentTop);
1388   }
1389 }
1390 
1391 /// Move an instruction and update register pressure.
1392 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1393   // Move the instruction to its new location in the instruction stream.
1394   MachineInstr *MI = SU->getInstr();
1395 
1396   if (IsTopNode) {
1397     assert(SU->isTopReady() && "node still has unscheduled dependencies");
1398     if (&*CurrentTop == MI)
1399       CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1400     else {
1401       moveInstruction(MI, CurrentTop);
1402       TopRPTracker.setPos(MI);
1403     }
1404 
1405     if (ShouldTrackPressure) {
1406       // Update top scheduled pressure.
1407       RegisterOperands RegOpers;
1408       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1409       if (ShouldTrackLaneMasks) {
1410         // Adjust liveness and add missing dead+read-undef flags.
1411         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1412         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1413       } else {
1414         // Adjust for missing dead-def flags.
1415         RegOpers.detectDeadDefs(*MI, *LIS);
1416       }
1417 
1418       TopRPTracker.advance(RegOpers);
1419       assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1420       LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure(
1421                      TopRPTracker.getRegSetPressureAtPos(), TRI););
1422 
1423       updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1424     }
1425   } else {
1426     assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1427     MachineBasicBlock::iterator priorII =
1428       priorNonDebug(CurrentBottom, CurrentTop);
1429     if (&*priorII == MI)
1430       CurrentBottom = priorII;
1431     else {
1432       if (&*CurrentTop == MI) {
1433         CurrentTop = nextIfDebug(++CurrentTop, priorII);
1434         TopRPTracker.setPos(CurrentTop);
1435       }
1436       moveInstruction(MI, CurrentBottom);
1437       CurrentBottom = MI;
1438       BotRPTracker.setPos(CurrentBottom);
1439     }
1440     if (ShouldTrackPressure) {
1441       RegisterOperands RegOpers;
1442       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1443       if (ShouldTrackLaneMasks) {
1444         // Adjust liveness and add missing dead+read-undef flags.
1445         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1446         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1447       } else {
1448         // Adjust for missing dead-def flags.
1449         RegOpers.detectDeadDefs(*MI, *LIS);
1450       }
1451 
1452       if (BotRPTracker.getPos() != CurrentBottom)
1453         BotRPTracker.recedeSkipDebugValues();
1454       SmallVector<RegisterMaskPair, 8> LiveUses;
1455       BotRPTracker.recede(RegOpers, &LiveUses);
1456       assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1457       LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure(
1458                      BotRPTracker.getRegSetPressureAtPos(), TRI););
1459 
1460       updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1461       updatePressureDiffs(LiveUses);
1462     }
1463   }
1464 }
1465 
1466 //===----------------------------------------------------------------------===//
1467 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores.
1468 //===----------------------------------------------------------------------===//
1469 
1470 namespace {
1471 
1472 /// Post-process the DAG to create cluster edges between neighboring
1473 /// loads or between neighboring stores.
1474 class BaseMemOpClusterMutation : public ScheduleDAGMutation {
1475   struct MemOpInfo {
1476     SUnit *SU;
1477     SmallVector<const MachineOperand *, 4> BaseOps;
1478     int64_t Offset;
1479     unsigned Width;
1480 
1481     MemOpInfo(SUnit *SU, ArrayRef<const MachineOperand *> BaseOps,
1482               int64_t Offset, unsigned Width)
1483         : SU(SU), BaseOps(BaseOps.begin(), BaseOps.end()), Offset(Offset),
1484           Width(Width) {}
1485 
1486     static bool Compare(const MachineOperand *const &A,
1487                         const MachineOperand *const &B) {
1488       if (A->getType() != B->getType())
1489         return A->getType() < B->getType();
1490       if (A->isReg())
1491         return A->getReg() < B->getReg();
1492       if (A->isFI()) {
1493         const MachineFunction &MF = *A->getParent()->getParent()->getParent();
1494         const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering();
1495         bool StackGrowsDown = TFI.getStackGrowthDirection() ==
1496                               TargetFrameLowering::StackGrowsDown;
1497         return StackGrowsDown ? A->getIndex() > B->getIndex()
1498                               : A->getIndex() < B->getIndex();
1499       }
1500 
1501       llvm_unreachable("MemOpClusterMutation only supports register or frame "
1502                        "index bases.");
1503     }
1504 
1505     bool operator<(const MemOpInfo &RHS) const {
1506       // FIXME: Don't compare everything twice. Maybe use C++20 three way
1507       // comparison instead when it's available.
1508       if (std::lexicographical_compare(BaseOps.begin(), BaseOps.end(),
1509                                        RHS.BaseOps.begin(), RHS.BaseOps.end(),
1510                                        Compare))
1511         return true;
1512       if (std::lexicographical_compare(RHS.BaseOps.begin(), RHS.BaseOps.end(),
1513                                        BaseOps.begin(), BaseOps.end(), Compare))
1514         return false;
1515       if (Offset != RHS.Offset)
1516         return Offset < RHS.Offset;
1517       return SU->NodeNum < RHS.SU->NodeNum;
1518     }
1519   };
1520 
1521   const TargetInstrInfo *TII;
1522   const TargetRegisterInfo *TRI;
1523   bool IsLoad;
1524 
1525 public:
1526   BaseMemOpClusterMutation(const TargetInstrInfo *tii,
1527                            const TargetRegisterInfo *tri, bool IsLoad)
1528       : TII(tii), TRI(tri), IsLoad(IsLoad) {}
1529 
1530   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1531 
1532 protected:
1533   void clusterNeighboringMemOps(ArrayRef<MemOpInfo> MemOps,
1534                                 ScheduleDAGInstrs *DAG);
1535   void collectMemOpRecords(std::vector<SUnit> &SUnits,
1536                            SmallVectorImpl<MemOpInfo> &MemOpRecords);
1537 };
1538 
1539 class StoreClusterMutation : public BaseMemOpClusterMutation {
1540 public:
1541   StoreClusterMutation(const TargetInstrInfo *tii,
1542                        const TargetRegisterInfo *tri)
1543       : BaseMemOpClusterMutation(tii, tri, false) {}
1544 };
1545 
1546 class LoadClusterMutation : public BaseMemOpClusterMutation {
1547 public:
1548   LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri)
1549       : BaseMemOpClusterMutation(tii, tri, true) {}
1550 };
1551 
1552 } // end anonymous namespace
1553 
1554 namespace llvm {
1555 
1556 std::unique_ptr<ScheduleDAGMutation>
1557 createLoadClusterDAGMutation(const TargetInstrInfo *TII,
1558                              const TargetRegisterInfo *TRI) {
1559   return EnableMemOpCluster ? std::make_unique<LoadClusterMutation>(TII, TRI)
1560                             : nullptr;
1561 }
1562 
1563 std::unique_ptr<ScheduleDAGMutation>
1564 createStoreClusterDAGMutation(const TargetInstrInfo *TII,
1565                               const TargetRegisterInfo *TRI) {
1566   return EnableMemOpCluster ? std::make_unique<StoreClusterMutation>(TII, TRI)
1567                             : nullptr;
1568 }
1569 
1570 } // end namespace llvm
1571 
1572 // Sorting all the loads/stores first, then for each load/store, checking the
1573 // following load/store one by one, until reach the first non-dependent one and
1574 // call target hook to see if they can cluster.
1575 void BaseMemOpClusterMutation::clusterNeighboringMemOps(
1576     ArrayRef<MemOpInfo> MemOpRecords, ScheduleDAGInstrs *DAG) {
1577   // Keep track of the current cluster length and bytes for each SUnit.
1578   DenseMap<unsigned, std::pair<unsigned, unsigned>> SUnit2ClusterInfo;
1579 
1580   // At this point, `MemOpRecords` array must hold atleast two mem ops. Try to
1581   // cluster mem ops collected within `MemOpRecords` array.
1582   for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) {
1583     // Decision to cluster mem ops is taken based on target dependent logic
1584     auto MemOpa = MemOpRecords[Idx];
1585 
1586     // Seek for the next load/store to do the cluster.
1587     unsigned NextIdx = Idx + 1;
1588     for (; NextIdx < End; ++NextIdx)
1589       // Skip if MemOpb has been clustered already or has dependency with
1590       // MemOpa.
1591       if (!SUnit2ClusterInfo.count(MemOpRecords[NextIdx].SU->NodeNum) &&
1592           !DAG->IsReachable(MemOpRecords[NextIdx].SU, MemOpa.SU) &&
1593           !DAG->IsReachable(MemOpa.SU, MemOpRecords[NextIdx].SU))
1594         break;
1595     if (NextIdx == End)
1596       continue;
1597 
1598     auto MemOpb = MemOpRecords[NextIdx];
1599     unsigned ClusterLength = 2;
1600     unsigned CurrentClusterBytes = MemOpa.Width + MemOpb.Width;
1601     if (SUnit2ClusterInfo.count(MemOpa.SU->NodeNum)) {
1602       ClusterLength = SUnit2ClusterInfo[MemOpa.SU->NodeNum].first + 1;
1603       CurrentClusterBytes =
1604           SUnit2ClusterInfo[MemOpa.SU->NodeNum].second + MemOpb.Width;
1605     }
1606 
1607     if (!TII->shouldClusterMemOps(MemOpa.BaseOps, MemOpb.BaseOps, ClusterLength,
1608                                   CurrentClusterBytes))
1609       continue;
1610 
1611     SUnit *SUa = MemOpa.SU;
1612     SUnit *SUb = MemOpb.SU;
1613     if (SUa->NodeNum > SUb->NodeNum)
1614       std::swap(SUa, SUb);
1615 
1616     // FIXME: Is this check really required?
1617     if (!DAG->addEdge(SUb, SDep(SUa, SDep::Cluster)))
1618       continue;
1619 
1620     LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU("
1621                       << SUb->NodeNum << ")\n");
1622     ++NumClustered;
1623 
1624     if (IsLoad) {
1625       // Copy successor edges from SUa to SUb. Interleaving computation
1626       // dependent on SUa can prevent load combining due to register reuse.
1627       // Predecessor edges do not need to be copied from SUb to SUa since
1628       // nearby loads should have effectively the same inputs.
1629       for (const SDep &Succ : SUa->Succs) {
1630         if (Succ.getSUnit() == SUb)
1631           continue;
1632         LLVM_DEBUG(dbgs() << "  Copy Succ SU(" << Succ.getSUnit()->NodeNum
1633                           << ")\n");
1634         DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial));
1635       }
1636     } else {
1637       // Copy predecessor edges from SUb to SUa to avoid the SUnits that
1638       // SUb dependent on scheduled in-between SUb and SUa. Successor edges
1639       // do not need to be copied from SUa to SUb since no one will depend
1640       // on stores.
1641       // Notice that, we don't need to care about the memory dependency as
1642       // we won't try to cluster them if they have any memory dependency.
1643       for (const SDep &Pred : SUb->Preds) {
1644         if (Pred.getSUnit() == SUa)
1645           continue;
1646         LLVM_DEBUG(dbgs() << "  Copy Pred SU(" << Pred.getSUnit()->NodeNum
1647                           << ")\n");
1648         DAG->addEdge(SUa, SDep(Pred.getSUnit(), SDep::Artificial));
1649       }
1650     }
1651 
1652     SUnit2ClusterInfo[MemOpb.SU->NodeNum] = {ClusterLength,
1653                                              CurrentClusterBytes};
1654 
1655     LLVM_DEBUG(dbgs() << "  Curr cluster length: " << ClusterLength
1656                       << ", Curr cluster bytes: " << CurrentClusterBytes
1657                       << "\n");
1658   }
1659 }
1660 
1661 void BaseMemOpClusterMutation::collectMemOpRecords(
1662     std::vector<SUnit> &SUnits, SmallVectorImpl<MemOpInfo> &MemOpRecords) {
1663   for (auto &SU : SUnits) {
1664     if ((IsLoad && !SU.getInstr()->mayLoad()) ||
1665         (!IsLoad && !SU.getInstr()->mayStore()))
1666       continue;
1667 
1668     const MachineInstr &MI = *SU.getInstr();
1669     SmallVector<const MachineOperand *, 4> BaseOps;
1670     int64_t Offset;
1671     bool OffsetIsScalable;
1672     unsigned Width;
1673     if (TII->getMemOperandsWithOffsetWidth(MI, BaseOps, Offset,
1674                                            OffsetIsScalable, Width, TRI)) {
1675       MemOpRecords.push_back(MemOpInfo(&SU, BaseOps, Offset, Width));
1676 
1677       LLVM_DEBUG(dbgs() << "Num BaseOps: " << BaseOps.size() << ", Offset: "
1678                         << Offset << ", OffsetIsScalable: " << OffsetIsScalable
1679                         << ", Width: " << Width << "\n");
1680     }
1681 #ifndef NDEBUG
1682     for (auto *Op : BaseOps)
1683       assert(Op);
1684 #endif
1685   }
1686 }
1687 
1688 /// Callback from DAG postProcessing to create cluster edges for loads/stores.
1689 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAG) {
1690   // Collect all the clusterable loads/stores
1691   SmallVector<MemOpInfo, 32> MemOpRecords;
1692   collectMemOpRecords(DAG->SUnits, MemOpRecords);
1693 
1694   if (MemOpRecords.size() < 2)
1695     return;
1696 
1697   // Sorting the loads/stores, so that, we can stop the cluster as early as
1698   // possible.
1699   llvm::sort(MemOpRecords);
1700 
1701   // Trying to cluster all the neighboring loads/stores.
1702   clusterNeighboringMemOps(MemOpRecords, DAG);
1703 }
1704 
1705 //===----------------------------------------------------------------------===//
1706 // CopyConstrain - DAG post-processing to encourage copy elimination.
1707 //===----------------------------------------------------------------------===//
1708 
1709 namespace {
1710 
1711 /// Post-process the DAG to create weak edges from all uses of a copy to
1712 /// the one use that defines the copy's source vreg, most likely an induction
1713 /// variable increment.
1714 class CopyConstrain : public ScheduleDAGMutation {
1715   // Transient state.
1716   SlotIndex RegionBeginIdx;
1717 
1718   // RegionEndIdx is the slot index of the last non-debug instruction in the
1719   // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1720   SlotIndex RegionEndIdx;
1721 
1722 public:
1723   CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1724 
1725   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1726 
1727 protected:
1728   void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
1729 };
1730 
1731 } // end anonymous namespace
1732 
1733 namespace llvm {
1734 
1735 std::unique_ptr<ScheduleDAGMutation>
1736 createCopyConstrainDAGMutation(const TargetInstrInfo *TII,
1737                                const TargetRegisterInfo *TRI) {
1738   return std::make_unique<CopyConstrain>(TII, TRI);
1739 }
1740 
1741 } // end namespace llvm
1742 
1743 /// constrainLocalCopy handles two possibilities:
1744 /// 1) Local src:
1745 /// I0:     = dst
1746 /// I1: src = ...
1747 /// I2:     = dst
1748 /// I3: dst = src (copy)
1749 /// (create pred->succ edges I0->I1, I2->I1)
1750 ///
1751 /// 2) Local copy:
1752 /// I0: dst = src (copy)
1753 /// I1:     = dst
1754 /// I2: src = ...
1755 /// I3:     = dst
1756 /// (create pred->succ edges I1->I2, I3->I2)
1757 ///
1758 /// Although the MachineScheduler is currently constrained to single blocks,
1759 /// this algorithm should handle extended blocks. An EBB is a set of
1760 /// contiguously numbered blocks such that the previous block in the EBB is
1761 /// always the single predecessor.
1762 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
1763   LiveIntervals *LIS = DAG->getLIS();
1764   MachineInstr *Copy = CopySU->getInstr();
1765 
1766   // Check for pure vreg copies.
1767   const MachineOperand &SrcOp = Copy->getOperand(1);
1768   Register SrcReg = SrcOp.getReg();
1769   if (!Register::isVirtualRegister(SrcReg) || !SrcOp.readsReg())
1770     return;
1771 
1772   const MachineOperand &DstOp = Copy->getOperand(0);
1773   Register DstReg = DstOp.getReg();
1774   if (!Register::isVirtualRegister(DstReg) || DstOp.isDead())
1775     return;
1776 
1777   // Check if either the dest or source is local. If it's live across a back
1778   // edge, it's not local. Note that if both vregs are live across the back
1779   // edge, we cannot successfully contrain the copy without cyclic scheduling.
1780   // If both the copy's source and dest are local live intervals, then we
1781   // should treat the dest as the global for the purpose of adding
1782   // constraints. This adds edges from source's other uses to the copy.
1783   unsigned LocalReg = SrcReg;
1784   unsigned GlobalReg = DstReg;
1785   LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
1786   if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
1787     LocalReg = DstReg;
1788     GlobalReg = SrcReg;
1789     LocalLI = &LIS->getInterval(LocalReg);
1790     if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
1791       return;
1792   }
1793   LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1794 
1795   // Find the global segment after the start of the local LI.
1796   LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1797   // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1798   // local live range. We could create edges from other global uses to the local
1799   // start, but the coalescer should have already eliminated these cases, so
1800   // don't bother dealing with it.
1801   if (GlobalSegment == GlobalLI->end())
1802     return;
1803 
1804   // If GlobalSegment is killed at the LocalLI->start, the call to find()
1805   // returned the next global segment. But if GlobalSegment overlaps with
1806   // LocalLI->start, then advance to the next segment. If a hole in GlobalLI
1807   // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1808   if (GlobalSegment->contains(LocalLI->beginIndex()))
1809     ++GlobalSegment;
1810 
1811   if (GlobalSegment == GlobalLI->end())
1812     return;
1813 
1814   // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1815   if (GlobalSegment != GlobalLI->begin()) {
1816     // Two address defs have no hole.
1817     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
1818                                GlobalSegment->start)) {
1819       return;
1820     }
1821     // If the prior global segment may be defined by the same two-address
1822     // instruction that also defines LocalLI, then can't make a hole here.
1823     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
1824                                LocalLI->beginIndex())) {
1825       return;
1826     }
1827     // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1828     // it would be a disconnected component in the live range.
1829     assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
1830            "Disconnected LRG within the scheduling region.");
1831   }
1832   MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1833   if (!GlobalDef)
1834     return;
1835 
1836   SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1837   if (!GlobalSU)
1838     return;
1839 
1840   // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1841   // constraining the uses of the last local def to precede GlobalDef.
1842   SmallVector<SUnit*,8> LocalUses;
1843   const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1844   MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1845   SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1846   for (const SDep &Succ : LastLocalSU->Succs) {
1847     if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg)
1848       continue;
1849     if (Succ.getSUnit() == GlobalSU)
1850       continue;
1851     if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit()))
1852       return;
1853     LocalUses.push_back(Succ.getSUnit());
1854   }
1855   // Open the top of the GlobalLI hole by constraining any earlier global uses
1856   // to precede the start of LocalLI.
1857   SmallVector<SUnit*,8> GlobalUses;
1858   MachineInstr *FirstLocalDef =
1859     LIS->getInstructionFromIndex(LocalLI->beginIndex());
1860   SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1861   for (const SDep &Pred : GlobalSU->Preds) {
1862     if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg)
1863       continue;
1864     if (Pred.getSUnit() == FirstLocalSU)
1865       continue;
1866     if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit()))
1867       return;
1868     GlobalUses.push_back(Pred.getSUnit());
1869   }
1870   LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1871   // Add the weak edges.
1872   for (SmallVectorImpl<SUnit*>::const_iterator
1873          I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
1874     LLVM_DEBUG(dbgs() << "  Local use SU(" << (*I)->NodeNum << ") -> SU("
1875                       << GlobalSU->NodeNum << ")\n");
1876     DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
1877   }
1878   for (SmallVectorImpl<SUnit*>::const_iterator
1879          I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
1880     LLVM_DEBUG(dbgs() << "  Global use SU(" << (*I)->NodeNum << ") -> SU("
1881                       << FirstLocalSU->NodeNum << ")\n");
1882     DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
1883   }
1884 }
1885 
1886 /// Callback from DAG postProcessing to create weak edges to encourage
1887 /// copy elimination.
1888 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) {
1889   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1890   assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
1891 
1892   MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1893   if (FirstPos == DAG->end())
1894     return;
1895   RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos);
1896   RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1897       *priorNonDebug(DAG->end(), DAG->begin()));
1898 
1899   for (SUnit &SU : DAG->SUnits) {
1900     if (!SU.getInstr()->isCopy())
1901       continue;
1902 
1903     constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG));
1904   }
1905 }
1906 
1907 //===----------------------------------------------------------------------===//
1908 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
1909 // and possibly other custom schedulers.
1910 //===----------------------------------------------------------------------===//
1911 
1912 static const unsigned InvalidCycle = ~0U;
1913 
1914 SchedBoundary::~SchedBoundary() { delete HazardRec; }
1915 
1916 /// Given a Count of resource usage and a Latency value, return true if a
1917 /// SchedBoundary becomes resource limited.
1918 /// If we are checking after scheduling a node, we should return true when
1919 /// we just reach the resource limit.
1920 static bool checkResourceLimit(unsigned LFactor, unsigned Count,
1921                                unsigned Latency, bool AfterSchedNode) {
1922   int ResCntFactor = (int)(Count - (Latency * LFactor));
1923   if (AfterSchedNode)
1924     return ResCntFactor >= (int)LFactor;
1925   else
1926     return ResCntFactor > (int)LFactor;
1927 }
1928 
1929 void SchedBoundary::reset() {
1930   // A new HazardRec is created for each DAG and owned by SchedBoundary.
1931   // Destroying and reconstructing it is very expensive though. So keep
1932   // invalid, placeholder HazardRecs.
1933   if (HazardRec && HazardRec->isEnabled()) {
1934     delete HazardRec;
1935     HazardRec = nullptr;
1936   }
1937   Available.clear();
1938   Pending.clear();
1939   CheckPending = false;
1940   CurrCycle = 0;
1941   CurrMOps = 0;
1942   MinReadyCycle = std::numeric_limits<unsigned>::max();
1943   ExpectedLatency = 0;
1944   DependentLatency = 0;
1945   RetiredMOps = 0;
1946   MaxExecutedResCount = 0;
1947   ZoneCritResIdx = 0;
1948   IsResourceLimited = false;
1949   ReservedCycles.clear();
1950   ReservedCyclesIndex.clear();
1951 #ifndef NDEBUG
1952   // Track the maximum number of stall cycles that could arise either from the
1953   // latency of a DAG edge or the number of cycles that a processor resource is
1954   // reserved (SchedBoundary::ReservedCycles).
1955   MaxObservedStall = 0;
1956 #endif
1957   // Reserve a zero-count for invalid CritResIdx.
1958   ExecutedResCounts.resize(1);
1959   assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
1960 }
1961 
1962 void SchedRemainder::
1963 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
1964   reset();
1965   if (!SchedModel->hasInstrSchedModel())
1966     return;
1967   RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
1968   for (SUnit &SU : DAG->SUnits) {
1969     const MCSchedClassDesc *SC = DAG->getSchedClass(&SU);
1970     RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC)
1971       * SchedModel->getMicroOpFactor();
1972     for (TargetSchedModel::ProcResIter
1973            PI = SchedModel->getWriteProcResBegin(SC),
1974            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1975       unsigned PIdx = PI->ProcResourceIdx;
1976       unsigned Factor = SchedModel->getResourceFactor(PIdx);
1977       RemainingCounts[PIdx] += (Factor * PI->Cycles);
1978     }
1979   }
1980 }
1981 
1982 void SchedBoundary::
1983 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
1984   reset();
1985   DAG = dag;
1986   SchedModel = smodel;
1987   Rem = rem;
1988   if (SchedModel->hasInstrSchedModel()) {
1989     unsigned ResourceCount = SchedModel->getNumProcResourceKinds();
1990     ReservedCyclesIndex.resize(ResourceCount);
1991     ExecutedResCounts.resize(ResourceCount);
1992     unsigned NumUnits = 0;
1993 
1994     for (unsigned i = 0; i < ResourceCount; ++i) {
1995       ReservedCyclesIndex[i] = NumUnits;
1996       NumUnits += SchedModel->getProcResource(i)->NumUnits;
1997     }
1998 
1999     ReservedCycles.resize(NumUnits, InvalidCycle);
2000   }
2001 }
2002 
2003 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
2004 /// these "soft stalls" differently than the hard stall cycles based on CPU
2005 /// resources and computed by checkHazard(). A fully in-order model
2006 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
2007 /// available for scheduling until they are ready. However, a weaker in-order
2008 /// model may use this for heuristics. For example, if a processor has in-order
2009 /// behavior when reading certain resources, this may come into play.
2010 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
2011   if (!SU->isUnbuffered)
2012     return 0;
2013 
2014   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2015   if (ReadyCycle > CurrCycle)
2016     return ReadyCycle - CurrCycle;
2017   return 0;
2018 }
2019 
2020 /// Compute the next cycle at which the given processor resource unit
2021 /// can be scheduled.
2022 unsigned SchedBoundary::getNextResourceCycleByInstance(unsigned InstanceIdx,
2023                                                        unsigned Cycles) {
2024   unsigned NextUnreserved = ReservedCycles[InstanceIdx];
2025   // If this resource has never been used, always return cycle zero.
2026   if (NextUnreserved == InvalidCycle)
2027     return 0;
2028   // For bottom-up scheduling add the cycles needed for the current operation.
2029   if (!isTop())
2030     NextUnreserved += Cycles;
2031   return NextUnreserved;
2032 }
2033 
2034 /// Compute the next cycle at which the given processor resource can be
2035 /// scheduled.  Returns the next cycle and the index of the processor resource
2036 /// instance in the reserved cycles vector.
2037 std::pair<unsigned, unsigned>
2038 SchedBoundary::getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
2039   unsigned MinNextUnreserved = InvalidCycle;
2040   unsigned InstanceIdx = 0;
2041   unsigned StartIndex = ReservedCyclesIndex[PIdx];
2042   unsigned NumberOfInstances = SchedModel->getProcResource(PIdx)->NumUnits;
2043   assert(NumberOfInstances > 0 &&
2044          "Cannot have zero instances of a ProcResource");
2045 
2046   for (unsigned I = StartIndex, End = StartIndex + NumberOfInstances; I < End;
2047        ++I) {
2048     unsigned NextUnreserved = getNextResourceCycleByInstance(I, Cycles);
2049     if (MinNextUnreserved > NextUnreserved) {
2050       InstanceIdx = I;
2051       MinNextUnreserved = NextUnreserved;
2052     }
2053   }
2054   return std::make_pair(MinNextUnreserved, InstanceIdx);
2055 }
2056 
2057 /// Does this SU have a hazard within the current instruction group.
2058 ///
2059 /// The scheduler supports two modes of hazard recognition. The first is the
2060 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
2061 /// supports highly complicated in-order reservation tables
2062 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
2063 ///
2064 /// The second is a streamlined mechanism that checks for hazards based on
2065 /// simple counters that the scheduler itself maintains. It explicitly checks
2066 /// for instruction dispatch limitations, including the number of micro-ops that
2067 /// can dispatch per cycle.
2068 ///
2069 /// TODO: Also check whether the SU must start a new group.
2070 bool SchedBoundary::checkHazard(SUnit *SU) {
2071   if (HazardRec->isEnabled()
2072       && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
2073     return true;
2074   }
2075 
2076   unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
2077   if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
2078     LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
2079                       << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
2080     return true;
2081   }
2082 
2083   if (CurrMOps > 0 &&
2084       ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) ||
2085        (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) {
2086     LLVM_DEBUG(dbgs() << "  hazard: SU(" << SU->NodeNum << ") must "
2087                       << (isTop() ? "begin" : "end") << " group\n");
2088     return true;
2089   }
2090 
2091   if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
2092     const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2093     for (const MCWriteProcResEntry &PE :
2094           make_range(SchedModel->getWriteProcResBegin(SC),
2095                      SchedModel->getWriteProcResEnd(SC))) {
2096       unsigned ResIdx = PE.ProcResourceIdx;
2097       unsigned Cycles = PE.Cycles;
2098       unsigned NRCycle, InstanceIdx;
2099       std::tie(NRCycle, InstanceIdx) = getNextResourceCycle(ResIdx, Cycles);
2100       if (NRCycle > CurrCycle) {
2101 #ifndef NDEBUG
2102         MaxObservedStall = std::max(Cycles, MaxObservedStall);
2103 #endif
2104         LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") "
2105                           << SchedModel->getResourceName(ResIdx)
2106                           << '[' << InstanceIdx - ReservedCyclesIndex[ResIdx]  << ']'
2107                           << "=" << NRCycle << "c\n");
2108         return true;
2109       }
2110     }
2111   }
2112   return false;
2113 }
2114 
2115 // Find the unscheduled node in ReadySUs with the highest latency.
2116 unsigned SchedBoundary::
2117 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
2118   SUnit *LateSU = nullptr;
2119   unsigned RemLatency = 0;
2120   for (SUnit *SU : ReadySUs) {
2121     unsigned L = getUnscheduledLatency(SU);
2122     if (L > RemLatency) {
2123       RemLatency = L;
2124       LateSU = SU;
2125     }
2126   }
2127   if (LateSU) {
2128     LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU("
2129                       << LateSU->NodeNum << ") " << RemLatency << "c\n");
2130   }
2131   return RemLatency;
2132 }
2133 
2134 // Count resources in this zone and the remaining unscheduled
2135 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
2136 // resource index, or zero if the zone is issue limited.
2137 unsigned SchedBoundary::
2138 getOtherResourceCount(unsigned &OtherCritIdx) {
2139   OtherCritIdx = 0;
2140   if (!SchedModel->hasInstrSchedModel())
2141     return 0;
2142 
2143   unsigned OtherCritCount = Rem->RemIssueCount
2144     + (RetiredMOps * SchedModel->getMicroOpFactor());
2145   LLVM_DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
2146                     << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
2147   for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
2148        PIdx != PEnd; ++PIdx) {
2149     unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
2150     if (OtherCount > OtherCritCount) {
2151       OtherCritCount = OtherCount;
2152       OtherCritIdx = PIdx;
2153     }
2154   }
2155   if (OtherCritIdx) {
2156     LLVM_DEBUG(
2157         dbgs() << "  " << Available.getName() << " + Remain CritRes: "
2158                << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
2159                << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
2160   }
2161   return OtherCritCount;
2162 }
2163 
2164 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle, bool InPQueue,
2165                                 unsigned Idx) {
2166   assert(SU->getInstr() && "Scheduled SUnit must have instr");
2167 
2168 #ifndef NDEBUG
2169   // ReadyCycle was been bumped up to the CurrCycle when this node was
2170   // scheduled, but CurrCycle may have been eagerly advanced immediately after
2171   // scheduling, so may now be greater than ReadyCycle.
2172   if (ReadyCycle > CurrCycle)
2173     MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
2174 #endif
2175 
2176   if (ReadyCycle < MinReadyCycle)
2177     MinReadyCycle = ReadyCycle;
2178 
2179   // Check for interlocks first. For the purpose of other heuristics, an
2180   // instruction that cannot issue appears as if it's not in the ReadyQueue.
2181   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2182   bool HazardDetected = (!IsBuffered && ReadyCycle > CurrCycle) ||
2183                         checkHazard(SU) || (Available.size() >= ReadyListLimit);
2184 
2185   if (!HazardDetected) {
2186     Available.push(SU);
2187 
2188     if (InPQueue)
2189       Pending.remove(Pending.begin() + Idx);
2190     return;
2191   }
2192 
2193   if (!InPQueue)
2194     Pending.push(SU);
2195 }
2196 
2197 /// Move the boundary of scheduled code by one cycle.
2198 void SchedBoundary::bumpCycle(unsigned NextCycle) {
2199   if (SchedModel->getMicroOpBufferSize() == 0) {
2200     assert(MinReadyCycle < std::numeric_limits<unsigned>::max() &&
2201            "MinReadyCycle uninitialized");
2202     if (MinReadyCycle > NextCycle)
2203       NextCycle = MinReadyCycle;
2204   }
2205   // Update the current micro-ops, which will issue in the next cycle.
2206   unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
2207   CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
2208 
2209   // Decrement DependentLatency based on the next cycle.
2210   if ((NextCycle - CurrCycle) > DependentLatency)
2211     DependentLatency = 0;
2212   else
2213     DependentLatency -= (NextCycle - CurrCycle);
2214 
2215   if (!HazardRec->isEnabled()) {
2216     // Bypass HazardRec virtual calls.
2217     CurrCycle = NextCycle;
2218   } else {
2219     // Bypass getHazardType calls in case of long latency.
2220     for (; CurrCycle != NextCycle; ++CurrCycle) {
2221       if (isTop())
2222         HazardRec->AdvanceCycle();
2223       else
2224         HazardRec->RecedeCycle();
2225     }
2226   }
2227   CheckPending = true;
2228   IsResourceLimited =
2229       checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2230                          getScheduledLatency(), true);
2231 
2232   LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName()
2233                     << '\n');
2234 }
2235 
2236 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
2237   ExecutedResCounts[PIdx] += Count;
2238   if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
2239     MaxExecutedResCount = ExecutedResCounts[PIdx];
2240 }
2241 
2242 /// Add the given processor resource to this scheduled zone.
2243 ///
2244 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
2245 /// during which this resource is consumed.
2246 ///
2247 /// \return the next cycle at which the instruction may execute without
2248 /// oversubscribing resources.
2249 unsigned SchedBoundary::
2250 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
2251   unsigned Factor = SchedModel->getResourceFactor(PIdx);
2252   unsigned Count = Factor * Cycles;
2253   LLVM_DEBUG(dbgs() << "  " << SchedModel->getResourceName(PIdx) << " +"
2254                     << Cycles << "x" << Factor << "u\n");
2255 
2256   // Update Executed resources counts.
2257   incExecutedResources(PIdx, Count);
2258   assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
2259   Rem->RemainingCounts[PIdx] -= Count;
2260 
2261   // Check if this resource exceeds the current critical resource. If so, it
2262   // becomes the critical resource.
2263   if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
2264     ZoneCritResIdx = PIdx;
2265     LLVM_DEBUG(dbgs() << "  *** Critical resource "
2266                       << SchedModel->getResourceName(PIdx) << ": "
2267                       << getResourceCount(PIdx) / SchedModel->getLatencyFactor()
2268                       << "c\n");
2269   }
2270   // For reserved resources, record the highest cycle using the resource.
2271   unsigned NextAvailable, InstanceIdx;
2272   std::tie(NextAvailable, InstanceIdx) = getNextResourceCycle(PIdx, Cycles);
2273   if (NextAvailable > CurrCycle) {
2274     LLVM_DEBUG(dbgs() << "  Resource conflict: "
2275                       << SchedModel->getResourceName(PIdx)
2276                       << '[' << InstanceIdx - ReservedCyclesIndex[PIdx]  << ']'
2277                       << " reserved until @" << NextAvailable << "\n");
2278   }
2279   return NextAvailable;
2280 }
2281 
2282 /// Move the boundary of scheduled code by one SUnit.
2283 void SchedBoundary::bumpNode(SUnit *SU) {
2284   // Update the reservation table.
2285   if (HazardRec->isEnabled()) {
2286     if (!isTop() && SU->isCall) {
2287       // Calls are scheduled with their preceding instructions. For bottom-up
2288       // scheduling, clear the pipeline state before emitting.
2289       HazardRec->Reset();
2290     }
2291     HazardRec->EmitInstruction(SU);
2292     // Scheduling an instruction may have made pending instructions available.
2293     CheckPending = true;
2294   }
2295   // checkHazard should prevent scheduling multiple instructions per cycle that
2296   // exceed the issue width.
2297   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2298   unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
2299   assert(
2300       (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
2301       "Cannot schedule this instruction's MicroOps in the current cycle.");
2302 
2303   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2304   LLVM_DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
2305 
2306   unsigned NextCycle = CurrCycle;
2307   switch (SchedModel->getMicroOpBufferSize()) {
2308   case 0:
2309     assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
2310     break;
2311   case 1:
2312     if (ReadyCycle > NextCycle) {
2313       NextCycle = ReadyCycle;
2314       LLVM_DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
2315     }
2316     break;
2317   default:
2318     // We don't currently model the OOO reorder buffer, so consider all
2319     // scheduled MOps to be "retired". We do loosely model in-order resource
2320     // latency. If this instruction uses an in-order resource, account for any
2321     // likely stall cycles.
2322     if (SU->isUnbuffered && ReadyCycle > NextCycle)
2323       NextCycle = ReadyCycle;
2324     break;
2325   }
2326   RetiredMOps += IncMOps;
2327 
2328   // Update resource counts and critical resource.
2329   if (SchedModel->hasInstrSchedModel()) {
2330     unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
2331     assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
2332     Rem->RemIssueCount -= DecRemIssue;
2333     if (ZoneCritResIdx) {
2334       // Scale scheduled micro-ops for comparing with the critical resource.
2335       unsigned ScaledMOps =
2336         RetiredMOps * SchedModel->getMicroOpFactor();
2337 
2338       // If scaled micro-ops are now more than the previous critical resource by
2339       // a full cycle, then micro-ops issue becomes critical.
2340       if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
2341           >= (int)SchedModel->getLatencyFactor()) {
2342         ZoneCritResIdx = 0;
2343         LLVM_DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
2344                           << ScaledMOps / SchedModel->getLatencyFactor()
2345                           << "c\n");
2346       }
2347     }
2348     for (TargetSchedModel::ProcResIter
2349            PI = SchedModel->getWriteProcResBegin(SC),
2350            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2351       unsigned RCycle =
2352         countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
2353       if (RCycle > NextCycle)
2354         NextCycle = RCycle;
2355     }
2356     if (SU->hasReservedResource) {
2357       // For reserved resources, record the highest cycle using the resource.
2358       // For top-down scheduling, this is the cycle in which we schedule this
2359       // instruction plus the number of cycles the operations reserves the
2360       // resource. For bottom-up is it simply the instruction's cycle.
2361       for (TargetSchedModel::ProcResIter
2362              PI = SchedModel->getWriteProcResBegin(SC),
2363              PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2364         unsigned PIdx = PI->ProcResourceIdx;
2365         if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
2366           unsigned ReservedUntil, InstanceIdx;
2367           std::tie(ReservedUntil, InstanceIdx) = getNextResourceCycle(PIdx, 0);
2368           if (isTop()) {
2369             ReservedCycles[InstanceIdx] =
2370                 std::max(ReservedUntil, NextCycle + PI->Cycles);
2371           } else
2372             ReservedCycles[InstanceIdx] = NextCycle;
2373         }
2374       }
2375     }
2376   }
2377   // Update ExpectedLatency and DependentLatency.
2378   unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2379   unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2380   if (SU->getDepth() > TopLatency) {
2381     TopLatency = SU->getDepth();
2382     LLVM_DEBUG(dbgs() << "  " << Available.getName() << " TopLatency SU("
2383                       << SU->NodeNum << ") " << TopLatency << "c\n");
2384   }
2385   if (SU->getHeight() > BotLatency) {
2386     BotLatency = SU->getHeight();
2387     LLVM_DEBUG(dbgs() << "  " << Available.getName() << " BotLatency SU("
2388                       << SU->NodeNum << ") " << BotLatency << "c\n");
2389   }
2390   // If we stall for any reason, bump the cycle.
2391   if (NextCycle > CurrCycle)
2392     bumpCycle(NextCycle);
2393   else
2394     // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2395     // resource limited. If a stall occurred, bumpCycle does this.
2396     IsResourceLimited =
2397         checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2398                            getScheduledLatency(), true);
2399 
2400   // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2401   // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2402   // one cycle.  Since we commonly reach the max MOps here, opportunistically
2403   // bump the cycle to avoid uselessly checking everything in the readyQ.
2404   CurrMOps += IncMOps;
2405 
2406   // Bump the cycle count for issue group constraints.
2407   // This must be done after NextCycle has been adjust for all other stalls.
2408   // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set
2409   // currCycle to X.
2410   if ((isTop() &&  SchedModel->mustEndGroup(SU->getInstr())) ||
2411       (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) {
2412     LLVM_DEBUG(dbgs() << "  Bump cycle to " << (isTop() ? "end" : "begin")
2413                       << " group\n");
2414     bumpCycle(++NextCycle);
2415   }
2416 
2417   while (CurrMOps >= SchedModel->getIssueWidth()) {
2418     LLVM_DEBUG(dbgs() << "  *** Max MOps " << CurrMOps << " at cycle "
2419                       << CurrCycle << '\n');
2420     bumpCycle(++NextCycle);
2421   }
2422   LLVM_DEBUG(dumpScheduledState());
2423 }
2424 
2425 /// Release pending ready nodes in to the available queue. This makes them
2426 /// visible to heuristics.
2427 void SchedBoundary::releasePending() {
2428   // If the available queue is empty, it is safe to reset MinReadyCycle.
2429   if (Available.empty())
2430     MinReadyCycle = std::numeric_limits<unsigned>::max();
2431 
2432   // Check to see if any of the pending instructions are ready to issue.  If
2433   // so, add them to the available queue.
2434   for (unsigned I = 0, E = Pending.size(); I < E; ++I) {
2435     SUnit *SU = *(Pending.begin() + I);
2436     unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2437 
2438     if (ReadyCycle < MinReadyCycle)
2439       MinReadyCycle = ReadyCycle;
2440 
2441     if (Available.size() >= ReadyListLimit)
2442       break;
2443 
2444     releaseNode(SU, ReadyCycle, true, I);
2445     if (E != Pending.size()) {
2446       --I;
2447       --E;
2448     }
2449   }
2450   CheckPending = false;
2451 }
2452 
2453 /// Remove SU from the ready set for this boundary.
2454 void SchedBoundary::removeReady(SUnit *SU) {
2455   if (Available.isInQueue(SU))
2456     Available.remove(Available.find(SU));
2457   else {
2458     assert(Pending.isInQueue(SU) && "bad ready count");
2459     Pending.remove(Pending.find(SU));
2460   }
2461 }
2462 
2463 /// If this queue only has one ready candidate, return it. As a side effect,
2464 /// defer any nodes that now hit a hazard, and advance the cycle until at least
2465 /// one node is ready. If multiple instructions are ready, return NULL.
2466 SUnit *SchedBoundary::pickOnlyChoice() {
2467   if (CheckPending)
2468     releasePending();
2469 
2470   // Defer any ready instrs that now have a hazard.
2471   for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2472     if (checkHazard(*I)) {
2473       Pending.push(*I);
2474       I = Available.remove(I);
2475       continue;
2476     }
2477     ++I;
2478   }
2479   for (unsigned i = 0; Available.empty(); ++i) {
2480 //  FIXME: Re-enable assert once PR20057 is resolved.
2481 //    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2482 //           "permanent hazard");
2483     (void)i;
2484     bumpCycle(CurrCycle + 1);
2485     releasePending();
2486   }
2487 
2488   LLVM_DEBUG(Pending.dump());
2489   LLVM_DEBUG(Available.dump());
2490 
2491   if (Available.size() == 1)
2492     return *Available.begin();
2493   return nullptr;
2494 }
2495 
2496 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2497 // This is useful information to dump after bumpNode.
2498 // Note that the Queue contents are more useful before pickNodeFromQueue.
2499 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const {
2500   unsigned ResFactor;
2501   unsigned ResCount;
2502   if (ZoneCritResIdx) {
2503     ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2504     ResCount = getResourceCount(ZoneCritResIdx);
2505   } else {
2506     ResFactor = SchedModel->getMicroOpFactor();
2507     ResCount = RetiredMOps * ResFactor;
2508   }
2509   unsigned LFactor = SchedModel->getLatencyFactor();
2510   dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2511          << "  Retired: " << RetiredMOps;
2512   dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
2513   dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
2514          << ResCount / ResFactor << " "
2515          << SchedModel->getResourceName(ZoneCritResIdx)
2516          << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
2517          << (IsResourceLimited ? "  - Resource" : "  - Latency")
2518          << " limited.\n";
2519 }
2520 #endif
2521 
2522 //===----------------------------------------------------------------------===//
2523 // GenericScheduler - Generic implementation of MachineSchedStrategy.
2524 //===----------------------------------------------------------------------===//
2525 
2526 void GenericSchedulerBase::SchedCandidate::
2527 initResourceDelta(const ScheduleDAGMI *DAG,
2528                   const TargetSchedModel *SchedModel) {
2529   if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2530     return;
2531 
2532   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2533   for (TargetSchedModel::ProcResIter
2534          PI = SchedModel->getWriteProcResBegin(SC),
2535          PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2536     if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2537       ResDelta.CritResources += PI->Cycles;
2538     if (PI->ProcResourceIdx == Policy.DemandResIdx)
2539       ResDelta.DemandedResources += PI->Cycles;
2540   }
2541 }
2542 
2543 /// Compute remaining latency. We need this both to determine whether the
2544 /// overall schedule has become latency-limited and whether the instructions
2545 /// outside this zone are resource or latency limited.
2546 ///
2547 /// The "dependent" latency is updated incrementally during scheduling as the
2548 /// max height/depth of scheduled nodes minus the cycles since it was
2549 /// scheduled:
2550 ///   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2551 ///
2552 /// The "independent" latency is the max ready queue depth:
2553 ///   ILat = max N.depth for N in Available|Pending
2554 ///
2555 /// RemainingLatency is the greater of independent and dependent latency.
2556 ///
2557 /// These computations are expensive, especially in DAGs with many edges, so
2558 /// only do them if necessary.
2559 static unsigned computeRemLatency(SchedBoundary &CurrZone) {
2560   unsigned RemLatency = CurrZone.getDependentLatency();
2561   RemLatency = std::max(RemLatency,
2562                         CurrZone.findMaxLatency(CurrZone.Available.elements()));
2563   RemLatency = std::max(RemLatency,
2564                         CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2565   return RemLatency;
2566 }
2567 
2568 /// Returns true if the current cycle plus remaning latency is greater than
2569 /// the critical path in the scheduling region.
2570 bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy,
2571                                                SchedBoundary &CurrZone,
2572                                                bool ComputeRemLatency,
2573                                                unsigned &RemLatency) const {
2574   // The current cycle is already greater than the critical path, so we are
2575   // already latency limited and don't need to compute the remaining latency.
2576   if (CurrZone.getCurrCycle() > Rem.CriticalPath)
2577     return true;
2578 
2579   // If we haven't scheduled anything yet, then we aren't latency limited.
2580   if (CurrZone.getCurrCycle() == 0)
2581     return false;
2582 
2583   if (ComputeRemLatency)
2584     RemLatency = computeRemLatency(CurrZone);
2585 
2586   return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath;
2587 }
2588 
2589 /// Set the CandPolicy given a scheduling zone given the current resources and
2590 /// latencies inside and outside the zone.
2591 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA,
2592                                      SchedBoundary &CurrZone,
2593                                      SchedBoundary *OtherZone) {
2594   // Apply preemptive heuristics based on the total latency and resources
2595   // inside and outside this zone. Potential stalls should be considered before
2596   // following this policy.
2597 
2598   // Compute the critical resource outside the zone.
2599   unsigned OtherCritIdx = 0;
2600   unsigned OtherCount =
2601     OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
2602 
2603   bool OtherResLimited = false;
2604   unsigned RemLatency = 0;
2605   bool RemLatencyComputed = false;
2606   if (SchedModel->hasInstrSchedModel() && OtherCount != 0) {
2607     RemLatency = computeRemLatency(CurrZone);
2608     RemLatencyComputed = true;
2609     OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(),
2610                                          OtherCount, RemLatency, false);
2611   }
2612 
2613   // Schedule aggressively for latency in PostRA mode. We don't check for
2614   // acyclic latency during PostRA, and highly out-of-order processors will
2615   // skip PostRA scheduling.
2616   if (!OtherResLimited &&
2617       (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed,
2618                                        RemLatency))) {
2619     Policy.ReduceLatency |= true;
2620     LLVM_DEBUG(dbgs() << "  " << CurrZone.Available.getName()
2621                       << " RemainingLatency " << RemLatency << " + "
2622                       << CurrZone.getCurrCycle() << "c > CritPath "
2623                       << Rem.CriticalPath << "\n");
2624   }
2625   // If the same resource is limiting inside and outside the zone, do nothing.
2626   if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
2627     return;
2628 
2629   LLVM_DEBUG(if (CurrZone.isResourceLimited()) {
2630     dbgs() << "  " << CurrZone.Available.getName() << " ResourceLimited: "
2631            << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n";
2632   } if (OtherResLimited) dbgs()
2633                  << "  RemainingLimit: "
2634                  << SchedModel->getResourceName(OtherCritIdx) << "\n";
2635              if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs()
2636              << "  Latency limited both directions.\n");
2637 
2638   if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
2639     Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
2640 
2641   if (OtherResLimited)
2642     Policy.DemandResIdx = OtherCritIdx;
2643 }
2644 
2645 #ifndef NDEBUG
2646 const char *GenericSchedulerBase::getReasonStr(
2647   GenericSchedulerBase::CandReason Reason) {
2648   switch (Reason) {
2649   case NoCand:         return "NOCAND    ";
2650   case Only1:          return "ONLY1     ";
2651   case PhysReg:        return "PHYS-REG  ";
2652   case RegExcess:      return "REG-EXCESS";
2653   case RegCritical:    return "REG-CRIT  ";
2654   case Stall:          return "STALL     ";
2655   case Cluster:        return "CLUSTER   ";
2656   case Weak:           return "WEAK      ";
2657   case RegMax:         return "REG-MAX   ";
2658   case ResourceReduce: return "RES-REDUCE";
2659   case ResourceDemand: return "RES-DEMAND";
2660   case TopDepthReduce: return "TOP-DEPTH ";
2661   case TopPathReduce:  return "TOP-PATH  ";
2662   case BotHeightReduce:return "BOT-HEIGHT";
2663   case BotPathReduce:  return "BOT-PATH  ";
2664   case NextDefUse:     return "DEF-USE   ";
2665   case NodeOrder:      return "ORDER     ";
2666   };
2667   llvm_unreachable("Unknown reason!");
2668 }
2669 
2670 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
2671   PressureChange P;
2672   unsigned ResIdx = 0;
2673   unsigned Latency = 0;
2674   switch (Cand.Reason) {
2675   default:
2676     break;
2677   case RegExcess:
2678     P = Cand.RPDelta.Excess;
2679     break;
2680   case RegCritical:
2681     P = Cand.RPDelta.CriticalMax;
2682     break;
2683   case RegMax:
2684     P = Cand.RPDelta.CurrentMax;
2685     break;
2686   case ResourceReduce:
2687     ResIdx = Cand.Policy.ReduceResIdx;
2688     break;
2689   case ResourceDemand:
2690     ResIdx = Cand.Policy.DemandResIdx;
2691     break;
2692   case TopDepthReduce:
2693     Latency = Cand.SU->getDepth();
2694     break;
2695   case TopPathReduce:
2696     Latency = Cand.SU->getHeight();
2697     break;
2698   case BotHeightReduce:
2699     Latency = Cand.SU->getHeight();
2700     break;
2701   case BotPathReduce:
2702     Latency = Cand.SU->getDepth();
2703     break;
2704   }
2705   dbgs() << "  Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2706   if (P.isValid())
2707     dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2708            << ":" << P.getUnitInc() << " ";
2709   else
2710     dbgs() << "      ";
2711   if (ResIdx)
2712     dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2713   else
2714     dbgs() << "         ";
2715   if (Latency)
2716     dbgs() << " " << Latency << " cycles ";
2717   else
2718     dbgs() << "          ";
2719   dbgs() << '\n';
2720 }
2721 #endif
2722 
2723 namespace llvm {
2724 /// Return true if this heuristic determines order.
2725 bool tryLess(int TryVal, int CandVal,
2726              GenericSchedulerBase::SchedCandidate &TryCand,
2727              GenericSchedulerBase::SchedCandidate &Cand,
2728              GenericSchedulerBase::CandReason Reason) {
2729   if (TryVal < CandVal) {
2730     TryCand.Reason = Reason;
2731     return true;
2732   }
2733   if (TryVal > CandVal) {
2734     if (Cand.Reason > Reason)
2735       Cand.Reason = Reason;
2736     return true;
2737   }
2738   return false;
2739 }
2740 
2741 bool tryGreater(int TryVal, int CandVal,
2742                 GenericSchedulerBase::SchedCandidate &TryCand,
2743                 GenericSchedulerBase::SchedCandidate &Cand,
2744                 GenericSchedulerBase::CandReason Reason) {
2745   if (TryVal > CandVal) {
2746     TryCand.Reason = Reason;
2747     return true;
2748   }
2749   if (TryVal < CandVal) {
2750     if (Cand.Reason > Reason)
2751       Cand.Reason = Reason;
2752     return true;
2753   }
2754   return false;
2755 }
2756 
2757 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
2758                 GenericSchedulerBase::SchedCandidate &Cand,
2759                 SchedBoundary &Zone) {
2760   if (Zone.isTop()) {
2761     // Prefer the candidate with the lesser depth, but only if one of them has
2762     // depth greater than the total latency scheduled so far, otherwise either
2763     // of them could be scheduled now with no stall.
2764     if (std::max(TryCand.SU->getDepth(), Cand.SU->getDepth()) >
2765         Zone.getScheduledLatency()) {
2766       if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2767                   TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
2768         return true;
2769     }
2770     if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2771                    TryCand, Cand, GenericSchedulerBase::TopPathReduce))
2772       return true;
2773   } else {
2774     // Prefer the candidate with the lesser height, but only if one of them has
2775     // height greater than the total latency scheduled so far, otherwise either
2776     // of them could be scheduled now with no stall.
2777     if (std::max(TryCand.SU->getHeight(), Cand.SU->getHeight()) >
2778         Zone.getScheduledLatency()) {
2779       if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2780                   TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
2781         return true;
2782     }
2783     if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2784                    TryCand, Cand, GenericSchedulerBase::BotPathReduce))
2785       return true;
2786   }
2787   return false;
2788 }
2789 } // end namespace llvm
2790 
2791 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) {
2792   LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2793                     << GenericSchedulerBase::getReasonStr(Reason) << '\n');
2794 }
2795 
2796 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) {
2797   tracePick(Cand.Reason, Cand.AtTop);
2798 }
2799 
2800 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
2801   assert(dag->hasVRegLiveness() &&
2802          "(PreRA)GenericScheduler needs vreg liveness");
2803   DAG = static_cast<ScheduleDAGMILive*>(dag);
2804   SchedModel = DAG->getSchedModel();
2805   TRI = DAG->TRI;
2806 
2807   if (RegionPolicy.ComputeDFSResult)
2808     DAG->computeDFSResult();
2809 
2810   Rem.init(DAG, SchedModel);
2811   Top.init(DAG, SchedModel, &Rem);
2812   Bot.init(DAG, SchedModel, &Rem);
2813 
2814   // Initialize resource counts.
2815 
2816   // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
2817   // are disabled, then these HazardRecs will be disabled.
2818   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2819   if (!Top.HazardRec) {
2820     Top.HazardRec =
2821         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2822             Itin, DAG);
2823   }
2824   if (!Bot.HazardRec) {
2825     Bot.HazardRec =
2826         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2827             Itin, DAG);
2828   }
2829   TopCand.SU = nullptr;
2830   BotCand.SU = nullptr;
2831 }
2832 
2833 /// Initialize the per-region scheduling policy.
2834 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
2835                                   MachineBasicBlock::iterator End,
2836                                   unsigned NumRegionInstrs) {
2837   const MachineFunction &MF = *Begin->getMF();
2838   const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
2839 
2840   // Avoid setting up the register pressure tracker for small regions to save
2841   // compile time. As a rough heuristic, only track pressure when the number of
2842   // schedulable instructions exceeds half the integer register file.
2843   RegionPolicy.ShouldTrackPressure = true;
2844   for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
2845     MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
2846     if (TLI->isTypeLegal(LegalIntVT)) {
2847       unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
2848         TLI->getRegClassFor(LegalIntVT));
2849       RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
2850     }
2851   }
2852 
2853   // For generic targets, we default to bottom-up, because it's simpler and more
2854   // compile-time optimizations have been implemented in that direction.
2855   RegionPolicy.OnlyBottomUp = true;
2856 
2857   // Allow the subtarget to override default policy.
2858   MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs);
2859 
2860   // After subtarget overrides, apply command line options.
2861   if (!EnableRegPressure) {
2862     RegionPolicy.ShouldTrackPressure = false;
2863     RegionPolicy.ShouldTrackLaneMasks = false;
2864   }
2865 
2866   // Check -misched-topdown/bottomup can force or unforce scheduling direction.
2867   // e.g. -misched-bottomup=false allows scheduling in both directions.
2868   assert((!ForceTopDown || !ForceBottomUp) &&
2869          "-misched-topdown incompatible with -misched-bottomup");
2870   if (ForceBottomUp.getNumOccurrences() > 0) {
2871     RegionPolicy.OnlyBottomUp = ForceBottomUp;
2872     if (RegionPolicy.OnlyBottomUp)
2873       RegionPolicy.OnlyTopDown = false;
2874   }
2875   if (ForceTopDown.getNumOccurrences() > 0) {
2876     RegionPolicy.OnlyTopDown = ForceTopDown;
2877     if (RegionPolicy.OnlyTopDown)
2878       RegionPolicy.OnlyBottomUp = false;
2879   }
2880 }
2881 
2882 void GenericScheduler::dumpPolicy() const {
2883   // Cannot completely remove virtual function even in release mode.
2884 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2885   dbgs() << "GenericScheduler RegionPolicy: "
2886          << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
2887          << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
2888          << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
2889          << "\n";
2890 #endif
2891 }
2892 
2893 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
2894 /// critical path by more cycles than it takes to drain the instruction buffer.
2895 /// We estimate an upper bounds on in-flight instructions as:
2896 ///
2897 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
2898 /// InFlightIterations = AcyclicPath / CyclesPerIteration
2899 /// InFlightResources = InFlightIterations * LoopResources
2900 ///
2901 /// TODO: Check execution resources in addition to IssueCount.
2902 void GenericScheduler::checkAcyclicLatency() {
2903   if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
2904     return;
2905 
2906   // Scaled number of cycles per loop iteration.
2907   unsigned IterCount =
2908     std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
2909              Rem.RemIssueCount);
2910   // Scaled acyclic critical path.
2911   unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
2912   // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
2913   unsigned InFlightCount =
2914     (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
2915   unsigned BufferLimit =
2916     SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
2917 
2918   Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
2919 
2920   LLVM_DEBUG(
2921       dbgs() << "IssueCycles="
2922              << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
2923              << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
2924              << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount
2925              << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
2926              << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
2927       if (Rem.IsAcyclicLatencyLimited) dbgs() << "  ACYCLIC LATENCY LIMIT\n");
2928 }
2929 
2930 void GenericScheduler::registerRoots() {
2931   Rem.CriticalPath = DAG->ExitSU.getDepth();
2932 
2933   // Some roots may not feed into ExitSU. Check all of them in case.
2934   for (const SUnit *SU : Bot.Available) {
2935     if (SU->getDepth() > Rem.CriticalPath)
2936       Rem.CriticalPath = SU->getDepth();
2937   }
2938   LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
2939   if (DumpCriticalPathLength) {
2940     errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
2941   }
2942 
2943   if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) {
2944     Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
2945     checkAcyclicLatency();
2946   }
2947 }
2948 
2949 namespace llvm {
2950 bool tryPressure(const PressureChange &TryP,
2951                  const PressureChange &CandP,
2952                  GenericSchedulerBase::SchedCandidate &TryCand,
2953                  GenericSchedulerBase::SchedCandidate &Cand,
2954                  GenericSchedulerBase::CandReason Reason,
2955                  const TargetRegisterInfo *TRI,
2956                  const MachineFunction &MF) {
2957   // If one candidate decreases and the other increases, go with it.
2958   // Invalid candidates have UnitInc==0.
2959   if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
2960                  Reason)) {
2961     return true;
2962   }
2963   // Do not compare the magnitude of pressure changes between top and bottom
2964   // boundary.
2965   if (Cand.AtTop != TryCand.AtTop)
2966     return false;
2967 
2968   // If both candidates affect the same set in the same boundary, go with the
2969   // smallest increase.
2970   unsigned TryPSet = TryP.getPSetOrMax();
2971   unsigned CandPSet = CandP.getPSetOrMax();
2972   if (TryPSet == CandPSet) {
2973     return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
2974                    Reason);
2975   }
2976 
2977   int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
2978                                  std::numeric_limits<int>::max();
2979 
2980   int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
2981                                    std::numeric_limits<int>::max();
2982 
2983   // If the candidates are decreasing pressure, reverse priority.
2984   if (TryP.getUnitInc() < 0)
2985     std::swap(TryRank, CandRank);
2986   return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
2987 }
2988 
2989 unsigned getWeakLeft(const SUnit *SU, bool isTop) {
2990   return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
2991 }
2992 
2993 /// Minimize physical register live ranges. Regalloc wants them adjacent to
2994 /// their physreg def/use.
2995 ///
2996 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
2997 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
2998 /// with the operation that produces or consumes the physreg. We'll do this when
2999 /// regalloc has support for parallel copies.
3000 int biasPhysReg(const SUnit *SU, bool isTop) {
3001   const MachineInstr *MI = SU->getInstr();
3002 
3003   if (MI->isCopy()) {
3004     unsigned ScheduledOper = isTop ? 1 : 0;
3005     unsigned UnscheduledOper = isTop ? 0 : 1;
3006     // If we have already scheduled the physreg produce/consumer, immediately
3007     // schedule the copy.
3008     if (Register::isPhysicalRegister(MI->getOperand(ScheduledOper).getReg()))
3009       return 1;
3010     // If the physreg is at the boundary, defer it. Otherwise schedule it
3011     // immediately to free the dependent. We can hoist the copy later.
3012     bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
3013     if (Register::isPhysicalRegister(MI->getOperand(UnscheduledOper).getReg()))
3014       return AtBoundary ? -1 : 1;
3015   }
3016 
3017   if (MI->isMoveImmediate()) {
3018     // If we have a move immediate and all successors have been assigned, bias
3019     // towards scheduling this later. Make sure all register defs are to
3020     // physical registers.
3021     bool DoBias = true;
3022     for (const MachineOperand &Op : MI->defs()) {
3023       if (Op.isReg() && !Register::isPhysicalRegister(Op.getReg())) {
3024         DoBias = false;
3025         break;
3026       }
3027     }
3028 
3029     if (DoBias)
3030       return isTop ? -1 : 1;
3031   }
3032 
3033   return 0;
3034 }
3035 } // end namespace llvm
3036 
3037 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU,
3038                                      bool AtTop,
3039                                      const RegPressureTracker &RPTracker,
3040                                      RegPressureTracker &TempTracker) {
3041   Cand.SU = SU;
3042   Cand.AtTop = AtTop;
3043   if (DAG->isTrackingPressure()) {
3044     if (AtTop) {
3045       TempTracker.getMaxDownwardPressureDelta(
3046         Cand.SU->getInstr(),
3047         Cand.RPDelta,
3048         DAG->getRegionCriticalPSets(),
3049         DAG->getRegPressure().MaxSetPressure);
3050     } else {
3051       if (VerifyScheduling) {
3052         TempTracker.getMaxUpwardPressureDelta(
3053           Cand.SU->getInstr(),
3054           &DAG->getPressureDiff(Cand.SU),
3055           Cand.RPDelta,
3056           DAG->getRegionCriticalPSets(),
3057           DAG->getRegPressure().MaxSetPressure);
3058       } else {
3059         RPTracker.getUpwardPressureDelta(
3060           Cand.SU->getInstr(),
3061           DAG->getPressureDiff(Cand.SU),
3062           Cand.RPDelta,
3063           DAG->getRegionCriticalPSets(),
3064           DAG->getRegPressure().MaxSetPressure);
3065       }
3066     }
3067   }
3068   LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs()
3069              << "  Try  SU(" << Cand.SU->NodeNum << ") "
3070              << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":"
3071              << Cand.RPDelta.Excess.getUnitInc() << "\n");
3072 }
3073 
3074 /// Apply a set of heuristics to a new candidate. Heuristics are currently
3075 /// hierarchical. This may be more efficient than a graduated cost model because
3076 /// we don't need to evaluate all aspects of the model for each node in the
3077 /// queue. But it's really done to make the heuristics easier to debug and
3078 /// statistically analyze.
3079 ///
3080 /// \param Cand provides the policy and current best candidate.
3081 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3082 /// \param Zone describes the scheduled zone that we are extending, or nullptr
3083 //              if Cand is from a different zone than TryCand.
3084 void GenericScheduler::tryCandidate(SchedCandidate &Cand,
3085                                     SchedCandidate &TryCand,
3086                                     SchedBoundary *Zone) const {
3087   // Initialize the candidate if needed.
3088   if (!Cand.isValid()) {
3089     TryCand.Reason = NodeOrder;
3090     return;
3091   }
3092 
3093   // Bias PhysReg Defs and copies to their uses and defined respectively.
3094   if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop),
3095                  biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg))
3096     return;
3097 
3098   // Avoid exceeding the target's limit.
3099   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
3100                                                Cand.RPDelta.Excess,
3101                                                TryCand, Cand, RegExcess, TRI,
3102                                                DAG->MF))
3103     return;
3104 
3105   // Avoid increasing the max critical pressure in the scheduled region.
3106   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
3107                                                Cand.RPDelta.CriticalMax,
3108                                                TryCand, Cand, RegCritical, TRI,
3109                                                DAG->MF))
3110     return;
3111 
3112   // We only compare a subset of features when comparing nodes between
3113   // Top and Bottom boundary. Some properties are simply incomparable, in many
3114   // other instances we should only override the other boundary if something
3115   // is a clear good pick on one boundary. Skip heuristics that are more
3116   // "tie-breaking" in nature.
3117   bool SameBoundary = Zone != nullptr;
3118   if (SameBoundary) {
3119     // For loops that are acyclic path limited, aggressively schedule for
3120     // latency. Within an single cycle, whenever CurrMOps > 0, allow normal
3121     // heuristics to take precedence.
3122     if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() &&
3123         tryLatency(TryCand, Cand, *Zone))
3124       return;
3125 
3126     // Prioritize instructions that read unbuffered resources by stall cycles.
3127     if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
3128                 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3129       return;
3130   }
3131 
3132   // Keep clustered nodes together to encourage downstream peephole
3133   // optimizations which may reduce resource requirements.
3134   //
3135   // This is a best effort to set things up for a post-RA pass. Optimizations
3136   // like generating loads of multiple registers should ideally be done within
3137   // the scheduler pass by combining the loads during DAG postprocessing.
3138   const SUnit *CandNextClusterSU =
3139     Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3140   const SUnit *TryCandNextClusterSU =
3141     TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3142   if (tryGreater(TryCand.SU == TryCandNextClusterSU,
3143                  Cand.SU == CandNextClusterSU,
3144                  TryCand, Cand, Cluster))
3145     return;
3146 
3147   if (SameBoundary) {
3148     // Weak edges are for clustering and other constraints.
3149     if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
3150                 getWeakLeft(Cand.SU, Cand.AtTop),
3151                 TryCand, Cand, Weak))
3152       return;
3153   }
3154 
3155   // Avoid increasing the max pressure of the entire region.
3156   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
3157                                                Cand.RPDelta.CurrentMax,
3158                                                TryCand, Cand, RegMax, TRI,
3159                                                DAG->MF))
3160     return;
3161 
3162   if (SameBoundary) {
3163     // Avoid critical resource consumption and balance the schedule.
3164     TryCand.initResourceDelta(DAG, SchedModel);
3165     if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3166                 TryCand, Cand, ResourceReduce))
3167       return;
3168     if (tryGreater(TryCand.ResDelta.DemandedResources,
3169                    Cand.ResDelta.DemandedResources,
3170                    TryCand, Cand, ResourceDemand))
3171       return;
3172 
3173     // Avoid serializing long latency dependence chains.
3174     // For acyclic path limited loops, latency was already checked above.
3175     if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency &&
3176         !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone))
3177       return;
3178 
3179     // Fall through to original instruction order.
3180     if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
3181         || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
3182       TryCand.Reason = NodeOrder;
3183     }
3184   }
3185 }
3186 
3187 /// Pick the best candidate from the queue.
3188 ///
3189 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
3190 /// DAG building. To adjust for the current scheduling location we need to
3191 /// maintain the number of vreg uses remaining to be top-scheduled.
3192 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
3193                                          const CandPolicy &ZonePolicy,
3194                                          const RegPressureTracker &RPTracker,
3195                                          SchedCandidate &Cand) {
3196   // getMaxPressureDelta temporarily modifies the tracker.
3197   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
3198 
3199   ReadyQueue &Q = Zone.Available;
3200   for (SUnit *SU : Q) {
3201 
3202     SchedCandidate TryCand(ZonePolicy);
3203     initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker);
3204     // Pass SchedBoundary only when comparing nodes from the same boundary.
3205     SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
3206     tryCandidate(Cand, TryCand, ZoneArg);
3207     if (TryCand.Reason != NoCand) {
3208       // Initialize resource delta if needed in case future heuristics query it.
3209       if (TryCand.ResDelta == SchedResourceDelta())
3210         TryCand.initResourceDelta(DAG, SchedModel);
3211       Cand.setBest(TryCand);
3212       LLVM_DEBUG(traceCandidate(Cand));
3213     }
3214   }
3215 }
3216 
3217 /// Pick the best candidate node from either the top or bottom queue.
3218 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
3219   // Schedule as far as possible in the direction of no choice. This is most
3220   // efficient, but also provides the best heuristics for CriticalPSets.
3221   if (SUnit *SU = Bot.pickOnlyChoice()) {
3222     IsTopNode = false;
3223     tracePick(Only1, false);
3224     return SU;
3225   }
3226   if (SUnit *SU = Top.pickOnlyChoice()) {
3227     IsTopNode = true;
3228     tracePick(Only1, true);
3229     return SU;
3230   }
3231   // Set the bottom-up policy based on the state of the current bottom zone and
3232   // the instructions outside the zone, including the top zone.
3233   CandPolicy BotPolicy;
3234   setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
3235   // Set the top-down policy based on the state of the current top zone and
3236   // the instructions outside the zone, including the bottom zone.
3237   CandPolicy TopPolicy;
3238   setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
3239 
3240   // See if BotCand is still valid (because we previously scheduled from Top).
3241   LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
3242   if (!BotCand.isValid() || BotCand.SU->isScheduled ||
3243       BotCand.Policy != BotPolicy) {
3244     BotCand.reset(CandPolicy());
3245     pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
3246     assert(BotCand.Reason != NoCand && "failed to find the first candidate");
3247   } else {
3248     LLVM_DEBUG(traceCandidate(BotCand));
3249 #ifndef NDEBUG
3250     if (VerifyScheduling) {
3251       SchedCandidate TCand;
3252       TCand.reset(CandPolicy());
3253       pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
3254       assert(TCand.SU == BotCand.SU &&
3255              "Last pick result should correspond to re-picking right now");
3256     }
3257 #endif
3258   }
3259 
3260   // Check if the top Q has a better candidate.
3261   LLVM_DEBUG(dbgs() << "Picking from Top:\n");
3262   if (!TopCand.isValid() || TopCand.SU->isScheduled ||
3263       TopCand.Policy != TopPolicy) {
3264     TopCand.reset(CandPolicy());
3265     pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
3266     assert(TopCand.Reason != NoCand && "failed to find the first candidate");
3267   } else {
3268     LLVM_DEBUG(traceCandidate(TopCand));
3269 #ifndef NDEBUG
3270     if (VerifyScheduling) {
3271       SchedCandidate TCand;
3272       TCand.reset(CandPolicy());
3273       pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
3274       assert(TCand.SU == TopCand.SU &&
3275            "Last pick result should correspond to re-picking right now");
3276     }
3277 #endif
3278   }
3279 
3280   // Pick best from BotCand and TopCand.
3281   assert(BotCand.isValid());
3282   assert(TopCand.isValid());
3283   SchedCandidate Cand = BotCand;
3284   TopCand.Reason = NoCand;
3285   tryCandidate(Cand, TopCand, nullptr);
3286   if (TopCand.Reason != NoCand) {
3287     Cand.setBest(TopCand);
3288     LLVM_DEBUG(traceCandidate(Cand));
3289   }
3290 
3291   IsTopNode = Cand.AtTop;
3292   tracePick(Cand);
3293   return Cand.SU;
3294 }
3295 
3296 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
3297 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
3298   if (DAG->top() == DAG->bottom()) {
3299     assert(Top.Available.empty() && Top.Pending.empty() &&
3300            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
3301     return nullptr;
3302   }
3303   SUnit *SU;
3304   do {
3305     if (RegionPolicy.OnlyTopDown) {
3306       SU = Top.pickOnlyChoice();
3307       if (!SU) {
3308         CandPolicy NoPolicy;
3309         TopCand.reset(NoPolicy);
3310         pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
3311         assert(TopCand.Reason != NoCand && "failed to find a candidate");
3312         tracePick(TopCand);
3313         SU = TopCand.SU;
3314       }
3315       IsTopNode = true;
3316     } else if (RegionPolicy.OnlyBottomUp) {
3317       SU = Bot.pickOnlyChoice();
3318       if (!SU) {
3319         CandPolicy NoPolicy;
3320         BotCand.reset(NoPolicy);
3321         pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
3322         assert(BotCand.Reason != NoCand && "failed to find a candidate");
3323         tracePick(BotCand);
3324         SU = BotCand.SU;
3325       }
3326       IsTopNode = false;
3327     } else {
3328       SU = pickNodeBidirectional(IsTopNode);
3329     }
3330   } while (SU->isScheduled);
3331 
3332   if (SU->isTopReady())
3333     Top.removeReady(SU);
3334   if (SU->isBottomReady())
3335     Bot.removeReady(SU);
3336 
3337   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3338                     << *SU->getInstr());
3339   return SU;
3340 }
3341 
3342 void GenericScheduler::reschedulePhysReg(SUnit *SU, bool isTop) {
3343   MachineBasicBlock::iterator InsertPos = SU->getInstr();
3344   if (!isTop)
3345     ++InsertPos;
3346   SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
3347 
3348   // Find already scheduled copies with a single physreg dependence and move
3349   // them just above the scheduled instruction.
3350   for (SDep &Dep : Deps) {
3351     if (Dep.getKind() != SDep::Data ||
3352         !Register::isPhysicalRegister(Dep.getReg()))
3353       continue;
3354     SUnit *DepSU = Dep.getSUnit();
3355     if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
3356       continue;
3357     MachineInstr *Copy = DepSU->getInstr();
3358     if (!Copy->isCopy() && !Copy->isMoveImmediate())
3359       continue;
3360     LLVM_DEBUG(dbgs() << "  Rescheduling physreg copy ";
3361                DAG->dumpNode(*Dep.getSUnit()));
3362     DAG->moveInstruction(Copy, InsertPos);
3363   }
3364 }
3365 
3366 /// Update the scheduler's state after scheduling a node. This is the same node
3367 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
3368 /// update it's state based on the current cycle before MachineSchedStrategy
3369 /// does.
3370 ///
3371 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
3372 /// them here. See comments in biasPhysReg.
3373 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3374   if (IsTopNode) {
3375     SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3376     Top.bumpNode(SU);
3377     if (SU->hasPhysRegUses)
3378       reschedulePhysReg(SU, true);
3379   } else {
3380     SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
3381     Bot.bumpNode(SU);
3382     if (SU->hasPhysRegDefs)
3383       reschedulePhysReg(SU, false);
3384   }
3385 }
3386 
3387 /// Create the standard converging machine scheduler. This will be used as the
3388 /// default scheduler if the target does not set a default.
3389 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) {
3390   ScheduleDAGMILive *DAG =
3391       new ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C));
3392   // Register DAG post-processors.
3393   //
3394   // FIXME: extend the mutation API to allow earlier mutations to instantiate
3395   // data and pass it to later mutations. Have a single mutation that gathers
3396   // the interesting nodes in one pass.
3397   DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI));
3398   return DAG;
3399 }
3400 
3401 static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) {
3402   return createGenericSchedLive(C);
3403 }
3404 
3405 static MachineSchedRegistry
3406 GenericSchedRegistry("converge", "Standard converging scheduler.",
3407                      createConveringSched);
3408 
3409 //===----------------------------------------------------------------------===//
3410 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
3411 //===----------------------------------------------------------------------===//
3412 
3413 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
3414   DAG = Dag;
3415   SchedModel = DAG->getSchedModel();
3416   TRI = DAG->TRI;
3417 
3418   Rem.init(DAG, SchedModel);
3419   Top.init(DAG, SchedModel, &Rem);
3420   BotRoots.clear();
3421 
3422   // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
3423   // or are disabled, then these HazardRecs will be disabled.
3424   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3425   if (!Top.HazardRec) {
3426     Top.HazardRec =
3427         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3428             Itin, DAG);
3429   }
3430 }
3431 
3432 void PostGenericScheduler::registerRoots() {
3433   Rem.CriticalPath = DAG->ExitSU.getDepth();
3434 
3435   // Some roots may not feed into ExitSU. Check all of them in case.
3436   for (const SUnit *SU : BotRoots) {
3437     if (SU->getDepth() > Rem.CriticalPath)
3438       Rem.CriticalPath = SU->getDepth();
3439   }
3440   LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
3441   if (DumpCriticalPathLength) {
3442     errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
3443   }
3444 }
3445 
3446 /// Apply a set of heuristics to a new candidate for PostRA scheduling.
3447 ///
3448 /// \param Cand provides the policy and current best candidate.
3449 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3450 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
3451                                         SchedCandidate &TryCand) {
3452   // Initialize the candidate if needed.
3453   if (!Cand.isValid()) {
3454     TryCand.Reason = NodeOrder;
3455     return;
3456   }
3457 
3458   // Prioritize instructions that read unbuffered resources by stall cycles.
3459   if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
3460               Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3461     return;
3462 
3463   // Keep clustered nodes together.
3464   if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(),
3465                  Cand.SU == DAG->getNextClusterSucc(),
3466                  TryCand, Cand, Cluster))
3467     return;
3468 
3469   // Avoid critical resource consumption and balance the schedule.
3470   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3471               TryCand, Cand, ResourceReduce))
3472     return;
3473   if (tryGreater(TryCand.ResDelta.DemandedResources,
3474                  Cand.ResDelta.DemandedResources,
3475                  TryCand, Cand, ResourceDemand))
3476     return;
3477 
3478   // Avoid serializing long latency dependence chains.
3479   if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
3480     return;
3481   }
3482 
3483   // Fall through to original instruction order.
3484   if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
3485     TryCand.Reason = NodeOrder;
3486 }
3487 
3488 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
3489   ReadyQueue &Q = Top.Available;
3490   for (SUnit *SU : Q) {
3491     SchedCandidate TryCand(Cand.Policy);
3492     TryCand.SU = SU;
3493     TryCand.AtTop = true;
3494     TryCand.initResourceDelta(DAG, SchedModel);
3495     tryCandidate(Cand, TryCand);
3496     if (TryCand.Reason != NoCand) {
3497       Cand.setBest(TryCand);
3498       LLVM_DEBUG(traceCandidate(Cand));
3499     }
3500   }
3501 }
3502 
3503 /// Pick the next node to schedule.
3504 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
3505   if (DAG->top() == DAG->bottom()) {
3506     assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
3507     return nullptr;
3508   }
3509   SUnit *SU;
3510   do {
3511     SU = Top.pickOnlyChoice();
3512     if (SU) {
3513       tracePick(Only1, true);
3514     } else {
3515       CandPolicy NoPolicy;
3516       SchedCandidate TopCand(NoPolicy);
3517       // Set the top-down policy based on the state of the current top zone and
3518       // the instructions outside the zone, including the bottom zone.
3519       setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
3520       pickNodeFromQueue(TopCand);
3521       assert(TopCand.Reason != NoCand && "failed to find a candidate");
3522       tracePick(TopCand);
3523       SU = TopCand.SU;
3524     }
3525   } while (SU->isScheduled);
3526 
3527   IsTopNode = true;
3528   Top.removeReady(SU);
3529 
3530   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3531                     << *SU->getInstr());
3532   return SU;
3533 }
3534 
3535 /// Called after ScheduleDAGMI has scheduled an instruction and updated
3536 /// scheduled/remaining flags in the DAG nodes.
3537 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3538   SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3539   Top.bumpNode(SU);
3540 }
3541 
3542 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) {
3543   return new ScheduleDAGMI(C, std::make_unique<PostGenericScheduler>(C),
3544                            /*RemoveKillFlags=*/true);
3545 }
3546 
3547 //===----------------------------------------------------------------------===//
3548 // ILP Scheduler. Currently for experimental analysis of heuristics.
3549 //===----------------------------------------------------------------------===//
3550 
3551 namespace {
3552 
3553 /// Order nodes by the ILP metric.
3554 struct ILPOrder {
3555   const SchedDFSResult *DFSResult = nullptr;
3556   const BitVector *ScheduledTrees = nullptr;
3557   bool MaximizeILP;
3558 
3559   ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {}
3560 
3561   /// Apply a less-than relation on node priority.
3562   ///
3563   /// (Return true if A comes after B in the Q.)
3564   bool operator()(const SUnit *A, const SUnit *B) const {
3565     unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3566     unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3567     if (SchedTreeA != SchedTreeB) {
3568       // Unscheduled trees have lower priority.
3569       if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3570         return ScheduledTrees->test(SchedTreeB);
3571 
3572       // Trees with shallower connections have have lower priority.
3573       if (DFSResult->getSubtreeLevel(SchedTreeA)
3574           != DFSResult->getSubtreeLevel(SchedTreeB)) {
3575         return DFSResult->getSubtreeLevel(SchedTreeA)
3576           < DFSResult->getSubtreeLevel(SchedTreeB);
3577       }
3578     }
3579     if (MaximizeILP)
3580       return DFSResult->getILP(A) < DFSResult->getILP(B);
3581     else
3582       return DFSResult->getILP(A) > DFSResult->getILP(B);
3583   }
3584 };
3585 
3586 /// Schedule based on the ILP metric.
3587 class ILPScheduler : public MachineSchedStrategy {
3588   ScheduleDAGMILive *DAG = nullptr;
3589   ILPOrder Cmp;
3590 
3591   std::vector<SUnit*> ReadyQ;
3592 
3593 public:
3594   ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {}
3595 
3596   void initialize(ScheduleDAGMI *dag) override {
3597     assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
3598     DAG = static_cast<ScheduleDAGMILive*>(dag);
3599     DAG->computeDFSResult();
3600     Cmp.DFSResult = DAG->getDFSResult();
3601     Cmp.ScheduledTrees = &DAG->getScheduledTrees();
3602     ReadyQ.clear();
3603   }
3604 
3605   void registerRoots() override {
3606     // Restore the heap in ReadyQ with the updated DFS results.
3607     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3608   }
3609 
3610   /// Implement MachineSchedStrategy interface.
3611   /// -----------------------------------------
3612 
3613   /// Callback to select the highest priority node from the ready Q.
3614   SUnit *pickNode(bool &IsTopNode) override {
3615     if (ReadyQ.empty()) return nullptr;
3616     std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3617     SUnit *SU = ReadyQ.back();
3618     ReadyQ.pop_back();
3619     IsTopNode = false;
3620     LLVM_DEBUG(dbgs() << "Pick node "
3621                       << "SU(" << SU->NodeNum << ") "
3622                       << " ILP: " << DAG->getDFSResult()->getILP(SU)
3623                       << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU)
3624                       << " @"
3625                       << DAG->getDFSResult()->getSubtreeLevel(
3626                              DAG->getDFSResult()->getSubtreeID(SU))
3627                       << '\n'
3628                       << "Scheduling " << *SU->getInstr());
3629     return SU;
3630   }
3631 
3632   /// Scheduler callback to notify that a new subtree is scheduled.
3633   void scheduleTree(unsigned SubtreeID) override {
3634     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3635   }
3636 
3637   /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
3638   /// DFSResults, and resort the priority Q.
3639   void schedNode(SUnit *SU, bool IsTopNode) override {
3640     assert(!IsTopNode && "SchedDFSResult needs bottom-up");
3641   }
3642 
3643   void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
3644 
3645   void releaseBottomNode(SUnit *SU) override {
3646     ReadyQ.push_back(SU);
3647     std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3648   }
3649 };
3650 
3651 } // end anonymous namespace
3652 
3653 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
3654   return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(true));
3655 }
3656 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
3657   return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(false));
3658 }
3659 
3660 static MachineSchedRegistry ILPMaxRegistry(
3661   "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
3662 static MachineSchedRegistry ILPMinRegistry(
3663   "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
3664 
3665 //===----------------------------------------------------------------------===//
3666 // Machine Instruction Shuffler for Correctness Testing
3667 //===----------------------------------------------------------------------===//
3668 
3669 #ifndef NDEBUG
3670 namespace {
3671 
3672 /// Apply a less-than relation on the node order, which corresponds to the
3673 /// instruction order prior to scheduling. IsReverse implements greater-than.
3674 template<bool IsReverse>
3675 struct SUnitOrder {
3676   bool operator()(SUnit *A, SUnit *B) const {
3677     if (IsReverse)
3678       return A->NodeNum > B->NodeNum;
3679     else
3680       return A->NodeNum < B->NodeNum;
3681   }
3682 };
3683 
3684 /// Reorder instructions as much as possible.
3685 class InstructionShuffler : public MachineSchedStrategy {
3686   bool IsAlternating;
3687   bool IsTopDown;
3688 
3689   // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
3690   // gives nodes with a higher number higher priority causing the latest
3691   // instructions to be scheduled first.
3692   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>>
3693     TopQ;
3694 
3695   // When scheduling bottom-up, use greater-than as the queue priority.
3696   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>>
3697     BottomQ;
3698 
3699 public:
3700   InstructionShuffler(bool alternate, bool topdown)
3701     : IsAlternating(alternate), IsTopDown(topdown) {}
3702 
3703   void initialize(ScheduleDAGMI*) override {
3704     TopQ.clear();
3705     BottomQ.clear();
3706   }
3707 
3708   /// Implement MachineSchedStrategy interface.
3709   /// -----------------------------------------
3710 
3711   SUnit *pickNode(bool &IsTopNode) override {
3712     SUnit *SU;
3713     if (IsTopDown) {
3714       do {
3715         if (TopQ.empty()) return nullptr;
3716         SU = TopQ.top();
3717         TopQ.pop();
3718       } while (SU->isScheduled);
3719       IsTopNode = true;
3720     } else {
3721       do {
3722         if (BottomQ.empty()) return nullptr;
3723         SU = BottomQ.top();
3724         BottomQ.pop();
3725       } while (SU->isScheduled);
3726       IsTopNode = false;
3727     }
3728     if (IsAlternating)
3729       IsTopDown = !IsTopDown;
3730     return SU;
3731   }
3732 
3733   void schedNode(SUnit *SU, bool IsTopNode) override {}
3734 
3735   void releaseTopNode(SUnit *SU) override {
3736     TopQ.push(SU);
3737   }
3738   void releaseBottomNode(SUnit *SU) override {
3739     BottomQ.push(SU);
3740   }
3741 };
3742 
3743 } // end anonymous namespace
3744 
3745 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
3746   bool Alternate = !ForceTopDown && !ForceBottomUp;
3747   bool TopDown = !ForceBottomUp;
3748   assert((TopDown || !ForceTopDown) &&
3749          "-misched-topdown incompatible with -misched-bottomup");
3750   return new ScheduleDAGMILive(
3751       C, std::make_unique<InstructionShuffler>(Alternate, TopDown));
3752 }
3753 
3754 static MachineSchedRegistry ShufflerRegistry(
3755   "shuffle", "Shuffle machine instructions alternating directions",
3756   createInstructionShuffler);
3757 #endif // !NDEBUG
3758 
3759 //===----------------------------------------------------------------------===//
3760 // GraphWriter support for ScheduleDAGMILive.
3761 //===----------------------------------------------------------------------===//
3762 
3763 #ifndef NDEBUG
3764 namespace llvm {
3765 
3766 template<> struct GraphTraits<
3767   ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
3768 
3769 template<>
3770 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
3771   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
3772 
3773   static std::string getGraphName(const ScheduleDAG *G) {
3774     return std::string(G->MF.getName());
3775   }
3776 
3777   static bool renderGraphFromBottomUp() {
3778     return true;
3779   }
3780 
3781   static bool isNodeHidden(const SUnit *Node) {
3782     if (ViewMISchedCutoff == 0)
3783       return false;
3784     return (Node->Preds.size() > ViewMISchedCutoff
3785          || Node->Succs.size() > ViewMISchedCutoff);
3786   }
3787 
3788   /// If you want to override the dot attributes printed for a particular
3789   /// edge, override this method.
3790   static std::string getEdgeAttributes(const SUnit *Node,
3791                                        SUnitIterator EI,
3792                                        const ScheduleDAG *Graph) {
3793     if (EI.isArtificialDep())
3794       return "color=cyan,style=dashed";
3795     if (EI.isCtrlDep())
3796       return "color=blue,style=dashed";
3797     return "";
3798   }
3799 
3800   static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
3801     std::string Str;
3802     raw_string_ostream SS(Str);
3803     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3804     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3805       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3806     SS << "SU:" << SU->NodeNum;
3807     if (DFS)
3808       SS << " I:" << DFS->getNumInstrs(SU);
3809     return SS.str();
3810   }
3811 
3812   static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
3813     return G->getGraphNodeLabel(SU);
3814   }
3815 
3816   static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
3817     std::string Str("shape=Mrecord");
3818     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3819     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3820       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3821     if (DFS) {
3822       Str += ",style=filled,fillcolor=\"#";
3823       Str += DOT::getColorString(DFS->getSubtreeID(N));
3824       Str += '"';
3825     }
3826     return Str;
3827   }
3828 };
3829 
3830 } // end namespace llvm
3831 #endif // NDEBUG
3832 
3833 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
3834 /// rendered using 'dot'.
3835 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
3836 #ifndef NDEBUG
3837   ViewGraph(this, Name, false, Title);
3838 #else
3839   errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
3840          << "systems with Graphviz or gv!\n";
3841 #endif  // NDEBUG
3842 }
3843 
3844 /// Out-of-line implementation with no arguments is handy for gdb.
3845 void ScheduleDAGMI::viewGraph() {
3846   viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
3847 }
3848