xref: /llvm-project/llvm/lib/CodeGen/MachineScheduler.cpp (revision 1241dcb3cf469c3de9c5ca35af0a64fbb69cc10b)
1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // MachineScheduler schedules machine instructions after phi elimination. It
11 // preserves LiveIntervals so it can be invoked before register allocation.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/MachineScheduler.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/PriorityQueue.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineLoopInfo.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachinePassRegistry.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegisterClassInfo.h"
37 #include "llvm/CodeGen/RegisterPressure.h"
38 #include "llvm/CodeGen/ScheduleDAG.h"
39 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
40 #include "llvm/CodeGen/ScheduleDAGMutation.h"
41 #include "llvm/CodeGen/ScheduleDFS.h"
42 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
43 #include "llvm/CodeGen/SlotIndexes.h"
44 #include "llvm/CodeGen/TargetInstrInfo.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/CodeGen/TargetPassConfig.h"
47 #include "llvm/CodeGen/TargetRegisterInfo.h"
48 #include "llvm/CodeGen/TargetSchedule.h"
49 #include "llvm/CodeGen/TargetSubtargetInfo.h"
50 #include "llvm/Config/llvm-config.h"
51 #include "llvm/MC/LaneBitmask.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/GraphWriter.h"
58 #include "llvm/Support/MachineValueType.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstdint>
63 #include <iterator>
64 #include <limits>
65 #include <memory>
66 #include <string>
67 #include <tuple>
68 #include <utility>
69 #include <vector>
70 
71 using namespace llvm;
72 
73 #define DEBUG_TYPE "machine-scheduler"
74 
75 namespace llvm {
76 
77 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
78                            cl::desc("Force top-down list scheduling"));
79 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
80                             cl::desc("Force bottom-up list scheduling"));
81 cl::opt<bool>
82 DumpCriticalPathLength("misched-dcpl", cl::Hidden,
83                        cl::desc("Print critical path length to stdout"));
84 
85 } // end namespace llvm
86 
87 #ifndef NDEBUG
88 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
89   cl::desc("Pop up a window to show MISched dags after they are processed"));
90 
91 /// In some situations a few uninteresting nodes depend on nearly all other
92 /// nodes in the graph, provide a cutoff to hide them.
93 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
94   cl::desc("Hide nodes with more predecessor/successor than cutoff"));
95 
96 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
97   cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
98 
99 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
100   cl::desc("Only schedule this function"));
101 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
102                                         cl::desc("Only schedule this MBB#"));
103 static cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden,
104                               cl::desc("Print schedule DAGs"));
105 #else
106 static const bool ViewMISchedDAGs = false;
107 static const bool PrintDAGs = false;
108 #endif // NDEBUG
109 
110 /// Avoid quadratic complexity in unusually large basic blocks by limiting the
111 /// size of the ready lists.
112 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden,
113   cl::desc("Limit ready list to N instructions"), cl::init(256));
114 
115 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
116   cl::desc("Enable register pressure scheduling."), cl::init(true));
117 
118 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
119   cl::desc("Enable cyclic critical path analysis."), cl::init(true));
120 
121 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden,
122                                         cl::desc("Enable memop clustering."),
123                                         cl::init(true));
124 
125 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
126   cl::desc("Verify machine instrs before and after machine scheduling"));
127 
128 // DAG subtrees must have at least this many nodes.
129 static const unsigned MinSubtreeSize = 8;
130 
131 // Pin the vtables to this file.
132 void MachineSchedStrategy::anchor() {}
133 
134 void ScheduleDAGMutation::anchor() {}
135 
136 //===----------------------------------------------------------------------===//
137 // Machine Instruction Scheduling Pass and Registry
138 //===----------------------------------------------------------------------===//
139 
140 MachineSchedContext::MachineSchedContext() {
141   RegClassInfo = new RegisterClassInfo();
142 }
143 
144 MachineSchedContext::~MachineSchedContext() {
145   delete RegClassInfo;
146 }
147 
148 namespace {
149 
150 /// Base class for a machine scheduler class that can run at any point.
151 class MachineSchedulerBase : public MachineSchedContext,
152                              public MachineFunctionPass {
153 public:
154   MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
155 
156   void print(raw_ostream &O, const Module* = nullptr) const override;
157 
158 protected:
159   void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
160 };
161 
162 /// MachineScheduler runs after coalescing and before register allocation.
163 class MachineScheduler : public MachineSchedulerBase {
164 public:
165   MachineScheduler();
166 
167   void getAnalysisUsage(AnalysisUsage &AU) const override;
168 
169   bool runOnMachineFunction(MachineFunction&) override;
170 
171   static char ID; // Class identification, replacement for typeinfo
172 
173 protected:
174   ScheduleDAGInstrs *createMachineScheduler();
175 };
176 
177 /// PostMachineScheduler runs after shortly before code emission.
178 class PostMachineScheduler : public MachineSchedulerBase {
179 public:
180   PostMachineScheduler();
181 
182   void getAnalysisUsage(AnalysisUsage &AU) const override;
183 
184   bool runOnMachineFunction(MachineFunction&) override;
185 
186   static char ID; // Class identification, replacement for typeinfo
187 
188 protected:
189   ScheduleDAGInstrs *createPostMachineScheduler();
190 };
191 
192 } // end anonymous namespace
193 
194 char MachineScheduler::ID = 0;
195 
196 char &llvm::MachineSchedulerID = MachineScheduler::ID;
197 
198 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE,
199                       "Machine Instruction Scheduler", false, false)
200 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
201 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
202 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
203 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
204 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE,
205                     "Machine Instruction Scheduler", false, false)
206 
207 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) {
208   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
209 }
210 
211 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
212   AU.setPreservesCFG();
213   AU.addRequiredID(MachineDominatorsID);
214   AU.addRequired<MachineLoopInfo>();
215   AU.addRequired<AAResultsWrapperPass>();
216   AU.addRequired<TargetPassConfig>();
217   AU.addRequired<SlotIndexes>();
218   AU.addPreserved<SlotIndexes>();
219   AU.addRequired<LiveIntervals>();
220   AU.addPreserved<LiveIntervals>();
221   MachineFunctionPass::getAnalysisUsage(AU);
222 }
223 
224 char PostMachineScheduler::ID = 0;
225 
226 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
227 
228 INITIALIZE_PASS(PostMachineScheduler, "postmisched",
229                 "PostRA Machine Instruction Scheduler", false, false)
230 
231 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) {
232   initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
233 }
234 
235 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
236   AU.setPreservesCFG();
237   AU.addRequiredID(MachineDominatorsID);
238   AU.addRequired<MachineLoopInfo>();
239   AU.addRequired<TargetPassConfig>();
240   MachineFunctionPass::getAnalysisUsage(AU);
241 }
242 
243 MachinePassRegistry<MachineSchedRegistry::ScheduleDAGCtor>
244     MachineSchedRegistry::Registry;
245 
246 /// A dummy default scheduler factory indicates whether the scheduler
247 /// is overridden on the command line.
248 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
249   return nullptr;
250 }
251 
252 /// MachineSchedOpt allows command line selection of the scheduler.
253 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
254                RegisterPassParser<MachineSchedRegistry>>
255 MachineSchedOpt("misched",
256                 cl::init(&useDefaultMachineSched), cl::Hidden,
257                 cl::desc("Machine instruction scheduler to use"));
258 
259 static MachineSchedRegistry
260 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
261                      useDefaultMachineSched);
262 
263 static cl::opt<bool> EnableMachineSched(
264     "enable-misched",
265     cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
266     cl::Hidden);
267 
268 static cl::opt<bool> EnablePostRAMachineSched(
269     "enable-post-misched",
270     cl::desc("Enable the post-ra machine instruction scheduling pass."),
271     cl::init(true), cl::Hidden);
272 
273 /// Decrement this iterator until reaching the top or a non-debug instr.
274 static MachineBasicBlock::const_iterator
275 priorNonDebug(MachineBasicBlock::const_iterator I,
276               MachineBasicBlock::const_iterator Beg) {
277   assert(I != Beg && "reached the top of the region, cannot decrement");
278   while (--I != Beg) {
279     if (!I->isDebugInstr())
280       break;
281   }
282   return I;
283 }
284 
285 /// Non-const version.
286 static MachineBasicBlock::iterator
287 priorNonDebug(MachineBasicBlock::iterator I,
288               MachineBasicBlock::const_iterator Beg) {
289   return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)
290       .getNonConstIterator();
291 }
292 
293 /// If this iterator is a debug value, increment until reaching the End or a
294 /// non-debug instruction.
295 static MachineBasicBlock::const_iterator
296 nextIfDebug(MachineBasicBlock::const_iterator I,
297             MachineBasicBlock::const_iterator End) {
298   for(; I != End; ++I) {
299     if (!I->isDebugInstr())
300       break;
301   }
302   return I;
303 }
304 
305 /// Non-const version.
306 static MachineBasicBlock::iterator
307 nextIfDebug(MachineBasicBlock::iterator I,
308             MachineBasicBlock::const_iterator End) {
309   return nextIfDebug(MachineBasicBlock::const_iterator(I), End)
310       .getNonConstIterator();
311 }
312 
313 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
314 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
315   // Select the scheduler, or set the default.
316   MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
317   if (Ctor != useDefaultMachineSched)
318     return Ctor(this);
319 
320   // Get the default scheduler set by the target for this function.
321   ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
322   if (Scheduler)
323     return Scheduler;
324 
325   // Default to GenericScheduler.
326   return createGenericSchedLive(this);
327 }
328 
329 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
330 /// the caller. We don't have a command line option to override the postRA
331 /// scheduler. The Target must configure it.
332 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
333   // Get the postRA scheduler set by the target for this function.
334   ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
335   if (Scheduler)
336     return Scheduler;
337 
338   // Default to GenericScheduler.
339   return createGenericSchedPostRA(this);
340 }
341 
342 /// Top-level MachineScheduler pass driver.
343 ///
344 /// Visit blocks in function order. Divide each block into scheduling regions
345 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
346 /// consistent with the DAG builder, which traverses the interior of the
347 /// scheduling regions bottom-up.
348 ///
349 /// This design avoids exposing scheduling boundaries to the DAG builder,
350 /// simplifying the DAG builder's support for "special" target instructions.
351 /// At the same time the design allows target schedulers to operate across
352 /// scheduling boundaries, for example to bundle the boundary instructions
353 /// without reordering them. This creates complexity, because the target
354 /// scheduler must update the RegionBegin and RegionEnd positions cached by
355 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
356 /// design would be to split blocks at scheduling boundaries, but LLVM has a
357 /// general bias against block splitting purely for implementation simplicity.
358 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
359   if (skipFunction(mf.getFunction()))
360     return false;
361 
362   if (EnableMachineSched.getNumOccurrences()) {
363     if (!EnableMachineSched)
364       return false;
365   } else if (!mf.getSubtarget().enableMachineScheduler())
366     return false;
367 
368   LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
369 
370   // Initialize the context of the pass.
371   MF = &mf;
372   MLI = &getAnalysis<MachineLoopInfo>();
373   MDT = &getAnalysis<MachineDominatorTree>();
374   PassConfig = &getAnalysis<TargetPassConfig>();
375   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
376 
377   LIS = &getAnalysis<LiveIntervals>();
378 
379   if (VerifyScheduling) {
380     LLVM_DEBUG(LIS->dump());
381     MF->verify(this, "Before machine scheduling.");
382   }
383   RegClassInfo->runOnMachineFunction(*MF);
384 
385   // Instantiate the selected scheduler for this target, function, and
386   // optimization level.
387   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
388   scheduleRegions(*Scheduler, false);
389 
390   LLVM_DEBUG(LIS->dump());
391   if (VerifyScheduling)
392     MF->verify(this, "After machine scheduling.");
393   return true;
394 }
395 
396 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
397   if (skipFunction(mf.getFunction()))
398     return false;
399 
400   if (EnablePostRAMachineSched.getNumOccurrences()) {
401     if (!EnablePostRAMachineSched)
402       return false;
403   } else if (!mf.getSubtarget().enablePostRAScheduler()) {
404     LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
405     return false;
406   }
407   LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
408 
409   // Initialize the context of the pass.
410   MF = &mf;
411   MLI = &getAnalysis<MachineLoopInfo>();
412   PassConfig = &getAnalysis<TargetPassConfig>();
413 
414   if (VerifyScheduling)
415     MF->verify(this, "Before post machine scheduling.");
416 
417   // Instantiate the selected scheduler for this target, function, and
418   // optimization level.
419   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
420   scheduleRegions(*Scheduler, true);
421 
422   if (VerifyScheduling)
423     MF->verify(this, "After post machine scheduling.");
424   return true;
425 }
426 
427 /// Return true of the given instruction should not be included in a scheduling
428 /// region.
429 ///
430 /// MachineScheduler does not currently support scheduling across calls. To
431 /// handle calls, the DAG builder needs to be modified to create register
432 /// anti/output dependencies on the registers clobbered by the call's regmask
433 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
434 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
435 /// the boundary, but there would be no benefit to postRA scheduling across
436 /// calls this late anyway.
437 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
438                             MachineBasicBlock *MBB,
439                             MachineFunction *MF,
440                             const TargetInstrInfo *TII) {
441   return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF);
442 }
443 
444 /// A region of an MBB for scheduling.
445 namespace {
446 struct SchedRegion {
447   /// RegionBegin is the first instruction in the scheduling region, and
448   /// RegionEnd is either MBB->end() or the scheduling boundary after the
449   /// last instruction in the scheduling region. These iterators cannot refer
450   /// to instructions outside of the identified scheduling region because
451   /// those may be reordered before scheduling this region.
452   MachineBasicBlock::iterator RegionBegin;
453   MachineBasicBlock::iterator RegionEnd;
454   unsigned NumRegionInstrs;
455 
456   SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E,
457               unsigned N) :
458     RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {}
459 };
460 } // end anonymous namespace
461 
462 using MBBRegionsVector = SmallVector<SchedRegion, 16>;
463 
464 static void
465 getSchedRegions(MachineBasicBlock *MBB,
466                 MBBRegionsVector &Regions,
467                 bool RegionsTopDown) {
468   MachineFunction *MF = MBB->getParent();
469   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
470 
471   MachineBasicBlock::iterator I = nullptr;
472   for(MachineBasicBlock::iterator RegionEnd = MBB->end();
473       RegionEnd != MBB->begin(); RegionEnd = I) {
474 
475     // Avoid decrementing RegionEnd for blocks with no terminator.
476     if (RegionEnd != MBB->end() ||
477         isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
478       --RegionEnd;
479     }
480 
481     // The next region starts above the previous region. Look backward in the
482     // instruction stream until we find the nearest boundary.
483     unsigned NumRegionInstrs = 0;
484     I = RegionEnd;
485     for (;I != MBB->begin(); --I) {
486       MachineInstr &MI = *std::prev(I);
487       if (isSchedBoundary(&MI, &*MBB, MF, TII))
488         break;
489       if (!MI.isDebugInstr())
490         // MBB::size() uses instr_iterator to count. Here we need a bundle to
491         // count as a single instruction.
492         ++NumRegionInstrs;
493     }
494 
495     Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs));
496   }
497 
498   if (RegionsTopDown)
499     std::reverse(Regions.begin(), Regions.end());
500 }
501 
502 /// Main driver for both MachineScheduler and PostMachineScheduler.
503 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
504                                            bool FixKillFlags) {
505   // Visit all machine basic blocks.
506   //
507   // TODO: Visit blocks in global postorder or postorder within the bottom-up
508   // loop tree. Then we can optionally compute global RegPressure.
509   for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
510        MBB != MBBEnd; ++MBB) {
511 
512     Scheduler.startBlock(&*MBB);
513 
514 #ifndef NDEBUG
515     if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
516       continue;
517     if (SchedOnlyBlock.getNumOccurrences()
518         && (int)SchedOnlyBlock != MBB->getNumber())
519       continue;
520 #endif
521 
522     // Break the block into scheduling regions [I, RegionEnd). RegionEnd
523     // points to the scheduling boundary at the bottom of the region. The DAG
524     // does not include RegionEnd, but the region does (i.e. the next
525     // RegionEnd is above the previous RegionBegin). If the current block has
526     // no terminator then RegionEnd == MBB->end() for the bottom region.
527     //
528     // All the regions of MBB are first found and stored in MBBRegions, which
529     // will be processed (MBB) top-down if initialized with true.
530     //
531     // The Scheduler may insert instructions during either schedule() or
532     // exitRegion(), even for empty regions. So the local iterators 'I' and
533     // 'RegionEnd' are invalid across these calls. Instructions must not be
534     // added to other regions than the current one without updating MBBRegions.
535 
536     MBBRegionsVector MBBRegions;
537     getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown());
538     for (MBBRegionsVector::iterator R = MBBRegions.begin();
539          R != MBBRegions.end(); ++R) {
540       MachineBasicBlock::iterator I = R->RegionBegin;
541       MachineBasicBlock::iterator RegionEnd = R->RegionEnd;
542       unsigned NumRegionInstrs = R->NumRegionInstrs;
543 
544       // Notify the scheduler of the region, even if we may skip scheduling
545       // it. Perhaps it still needs to be bundled.
546       Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
547 
548       // Skip empty scheduling regions (0 or 1 schedulable instructions).
549       if (I == RegionEnd || I == std::prev(RegionEnd)) {
550         // Close the current region. Bundle the terminator if needed.
551         // This invalidates 'RegionEnd' and 'I'.
552         Scheduler.exitRegion();
553         continue;
554       }
555       LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
556       LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB)
557                         << " " << MBB->getName() << "\n  From: " << *I
558                         << "    To: ";
559                  if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
560                  else dbgs() << "End";
561                  dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
562       if (DumpCriticalPathLength) {
563         errs() << MF->getName();
564         errs() << ":%bb. " << MBB->getNumber();
565         errs() << " " << MBB->getName() << " \n";
566       }
567 
568       // Schedule a region: possibly reorder instructions.
569       // This invalidates the original region iterators.
570       Scheduler.schedule();
571 
572       // Close the current region.
573       Scheduler.exitRegion();
574     }
575     Scheduler.finishBlock();
576     // FIXME: Ideally, no further passes should rely on kill flags. However,
577     // thumb2 size reduction is currently an exception, so the PostMIScheduler
578     // needs to do this.
579     if (FixKillFlags)
580       Scheduler.fixupKills(*MBB);
581   }
582   Scheduler.finalizeSchedule();
583 }
584 
585 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
586   // unimplemented
587 }
588 
589 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
590 LLVM_DUMP_METHOD void ReadyQueue::dump() const {
591   dbgs() << "Queue " << Name << ": ";
592   for (const SUnit *SU : Queue)
593     dbgs() << SU->NodeNum << " ";
594   dbgs() << "\n";
595 }
596 #endif
597 
598 //===----------------------------------------------------------------------===//
599 // ScheduleDAGMI - Basic machine instruction scheduling. This is
600 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
601 // virtual registers.
602 // ===----------------------------------------------------------------------===/
603 
604 // Provide a vtable anchor.
605 ScheduleDAGMI::~ScheduleDAGMI() = default;
606 
607 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
608   return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
609 }
610 
611 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
612   if (SuccSU != &ExitSU) {
613     // Do not use WillCreateCycle, it assumes SD scheduling.
614     // If Pred is reachable from Succ, then the edge creates a cycle.
615     if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
616       return false;
617     Topo.AddPred(SuccSU, PredDep.getSUnit());
618   }
619   SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
620   // Return true regardless of whether a new edge needed to be inserted.
621   return true;
622 }
623 
624 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
625 /// NumPredsLeft reaches zero, release the successor node.
626 ///
627 /// FIXME: Adjust SuccSU height based on MinLatency.
628 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
629   SUnit *SuccSU = SuccEdge->getSUnit();
630 
631   if (SuccEdge->isWeak()) {
632     --SuccSU->WeakPredsLeft;
633     if (SuccEdge->isCluster())
634       NextClusterSucc = SuccSU;
635     return;
636   }
637 #ifndef NDEBUG
638   if (SuccSU->NumPredsLeft == 0) {
639     dbgs() << "*** Scheduling failed! ***\n";
640     dumpNode(*SuccSU);
641     dbgs() << " has been released too many times!\n";
642     llvm_unreachable(nullptr);
643   }
644 #endif
645   // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
646   // CurrCycle may have advanced since then.
647   if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
648     SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
649 
650   --SuccSU->NumPredsLeft;
651   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
652     SchedImpl->releaseTopNode(SuccSU);
653 }
654 
655 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
656 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
657   for (SDep &Succ : SU->Succs)
658     releaseSucc(SU, &Succ);
659 }
660 
661 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
662 /// NumSuccsLeft reaches zero, release the predecessor node.
663 ///
664 /// FIXME: Adjust PredSU height based on MinLatency.
665 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
666   SUnit *PredSU = PredEdge->getSUnit();
667 
668   if (PredEdge->isWeak()) {
669     --PredSU->WeakSuccsLeft;
670     if (PredEdge->isCluster())
671       NextClusterPred = PredSU;
672     return;
673   }
674 #ifndef NDEBUG
675   if (PredSU->NumSuccsLeft == 0) {
676     dbgs() << "*** Scheduling failed! ***\n";
677     dumpNode(*PredSU);
678     dbgs() << " has been released too many times!\n";
679     llvm_unreachable(nullptr);
680   }
681 #endif
682   // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
683   // CurrCycle may have advanced since then.
684   if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
685     PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
686 
687   --PredSU->NumSuccsLeft;
688   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
689     SchedImpl->releaseBottomNode(PredSU);
690 }
691 
692 /// releasePredecessors - Call releasePred on each of SU's predecessors.
693 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
694   for (SDep &Pred : SU->Preds)
695     releasePred(SU, &Pred);
696 }
697 
698 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) {
699   ScheduleDAGInstrs::startBlock(bb);
700   SchedImpl->enterMBB(bb);
701 }
702 
703 void ScheduleDAGMI::finishBlock() {
704   SchedImpl->leaveMBB();
705   ScheduleDAGInstrs::finishBlock();
706 }
707 
708 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
709 /// crossing a scheduling boundary. [begin, end) includes all instructions in
710 /// the region, including the boundary itself and single-instruction regions
711 /// that don't get scheduled.
712 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
713                                      MachineBasicBlock::iterator begin,
714                                      MachineBasicBlock::iterator end,
715                                      unsigned regioninstrs)
716 {
717   ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
718 
719   SchedImpl->initPolicy(begin, end, regioninstrs);
720 }
721 
722 /// This is normally called from the main scheduler loop but may also be invoked
723 /// by the scheduling strategy to perform additional code motion.
724 void ScheduleDAGMI::moveInstruction(
725   MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
726   // Advance RegionBegin if the first instruction moves down.
727   if (&*RegionBegin == MI)
728     ++RegionBegin;
729 
730   // Update the instruction stream.
731   BB->splice(InsertPos, BB, MI);
732 
733   // Update LiveIntervals
734   if (LIS)
735     LIS->handleMove(*MI, /*UpdateFlags=*/true);
736 
737   // Recede RegionBegin if an instruction moves above the first.
738   if (RegionBegin == InsertPos)
739     RegionBegin = MI;
740 }
741 
742 bool ScheduleDAGMI::checkSchedLimit() {
743 #ifndef NDEBUG
744   if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
745     CurrentTop = CurrentBottom;
746     return false;
747   }
748   ++NumInstrsScheduled;
749 #endif
750   return true;
751 }
752 
753 /// Per-region scheduling driver, called back from
754 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that
755 /// does not consider liveness or register pressure. It is useful for PostRA
756 /// scheduling and potentially other custom schedulers.
757 void ScheduleDAGMI::schedule() {
758   LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
759   LLVM_DEBUG(SchedImpl->dumpPolicy());
760 
761   // Build the DAG.
762   buildSchedGraph(AA);
763 
764   Topo.InitDAGTopologicalSorting();
765 
766   postprocessDAG();
767 
768   SmallVector<SUnit*, 8> TopRoots, BotRoots;
769   findRootsAndBiasEdges(TopRoots, BotRoots);
770 
771   LLVM_DEBUG(dump());
772   if (PrintDAGs) dump();
773   if (ViewMISchedDAGs) viewGraph();
774 
775   // Initialize the strategy before modifying the DAG.
776   // This may initialize a DFSResult to be used for queue priority.
777   SchedImpl->initialize(this);
778 
779   // Initialize ready queues now that the DAG and priority data are finalized.
780   initQueues(TopRoots, BotRoots);
781 
782   bool IsTopNode = false;
783   while (true) {
784     LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
785     SUnit *SU = SchedImpl->pickNode(IsTopNode);
786     if (!SU) break;
787 
788     assert(!SU->isScheduled && "Node already scheduled");
789     if (!checkSchedLimit())
790       break;
791 
792     MachineInstr *MI = SU->getInstr();
793     if (IsTopNode) {
794       assert(SU->isTopReady() && "node still has unscheduled dependencies");
795       if (&*CurrentTop == MI)
796         CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
797       else
798         moveInstruction(MI, CurrentTop);
799     } else {
800       assert(SU->isBottomReady() && "node still has unscheduled dependencies");
801       MachineBasicBlock::iterator priorII =
802         priorNonDebug(CurrentBottom, CurrentTop);
803       if (&*priorII == MI)
804         CurrentBottom = priorII;
805       else {
806         if (&*CurrentTop == MI)
807           CurrentTop = nextIfDebug(++CurrentTop, priorII);
808         moveInstruction(MI, CurrentBottom);
809         CurrentBottom = MI;
810       }
811     }
812     // Notify the scheduling strategy before updating the DAG.
813     // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
814     // runs, it can then use the accurate ReadyCycle time to determine whether
815     // newly released nodes can move to the readyQ.
816     SchedImpl->schedNode(SU, IsTopNode);
817 
818     updateQueues(SU, IsTopNode);
819   }
820   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
821 
822   placeDebugValues();
823 
824   LLVM_DEBUG({
825     dbgs() << "*** Final schedule for "
826            << printMBBReference(*begin()->getParent()) << " ***\n";
827     dumpSchedule();
828     dbgs() << '\n';
829   });
830 }
831 
832 /// Apply each ScheduleDAGMutation step in order.
833 void ScheduleDAGMI::postprocessDAG() {
834   for (auto &m : Mutations)
835     m->apply(this);
836 }
837 
838 void ScheduleDAGMI::
839 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
840                       SmallVectorImpl<SUnit*> &BotRoots) {
841   for (SUnit &SU : SUnits) {
842     assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits");
843 
844     // Order predecessors so DFSResult follows the critical path.
845     SU.biasCriticalPath();
846 
847     // A SUnit is ready to top schedule if it has no predecessors.
848     if (!SU.NumPredsLeft)
849       TopRoots.push_back(&SU);
850     // A SUnit is ready to bottom schedule if it has no successors.
851     if (!SU.NumSuccsLeft)
852       BotRoots.push_back(&SU);
853   }
854   ExitSU.biasCriticalPath();
855 }
856 
857 /// Identify DAG roots and setup scheduler queues.
858 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
859                                ArrayRef<SUnit*> BotRoots) {
860   NextClusterSucc = nullptr;
861   NextClusterPred = nullptr;
862 
863   // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
864   //
865   // Nodes with unreleased weak edges can still be roots.
866   // Release top roots in forward order.
867   for (SUnit *SU : TopRoots)
868     SchedImpl->releaseTopNode(SU);
869 
870   // Release bottom roots in reverse order so the higher priority nodes appear
871   // first. This is more natural and slightly more efficient.
872   for (SmallVectorImpl<SUnit*>::const_reverse_iterator
873          I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
874     SchedImpl->releaseBottomNode(*I);
875   }
876 
877   releaseSuccessors(&EntrySU);
878   releasePredecessors(&ExitSU);
879 
880   SchedImpl->registerRoots();
881 
882   // Advance past initial DebugValues.
883   CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
884   CurrentBottom = RegionEnd;
885 }
886 
887 /// Update scheduler queues after scheduling an instruction.
888 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
889   // Release dependent instructions for scheduling.
890   if (IsTopNode)
891     releaseSuccessors(SU);
892   else
893     releasePredecessors(SU);
894 
895   SU->isScheduled = true;
896 }
897 
898 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
899 void ScheduleDAGMI::placeDebugValues() {
900   // If first instruction was a DBG_VALUE then put it back.
901   if (FirstDbgValue) {
902     BB->splice(RegionBegin, BB, FirstDbgValue);
903     RegionBegin = FirstDbgValue;
904   }
905 
906   for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator
907          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
908     std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
909     MachineInstr *DbgValue = P.first;
910     MachineBasicBlock::iterator OrigPrevMI = P.second;
911     if (&*RegionBegin == DbgValue)
912       ++RegionBegin;
913     BB->splice(++OrigPrevMI, BB, DbgValue);
914     if (OrigPrevMI == std::prev(RegionEnd))
915       RegionEnd = DbgValue;
916   }
917   DbgValues.clear();
918   FirstDbgValue = nullptr;
919 }
920 
921 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
922 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const {
923   for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
924     if (SUnit *SU = getSUnit(&(*MI)))
925       dumpNode(*SU);
926     else
927       dbgs() << "Missing SUnit\n";
928   }
929 }
930 #endif
931 
932 //===----------------------------------------------------------------------===//
933 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
934 // preservation.
935 //===----------------------------------------------------------------------===//
936 
937 ScheduleDAGMILive::~ScheduleDAGMILive() {
938   delete DFSResult;
939 }
940 
941 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) {
942   const MachineInstr &MI = *SU.getInstr();
943   for (const MachineOperand &MO : MI.operands()) {
944     if (!MO.isReg())
945       continue;
946     if (!MO.readsReg())
947       continue;
948     if (TrackLaneMasks && !MO.isUse())
949       continue;
950 
951     unsigned Reg = MO.getReg();
952     if (!TargetRegisterInfo::isVirtualRegister(Reg))
953       continue;
954 
955     // Ignore re-defs.
956     if (TrackLaneMasks) {
957       bool FoundDef = false;
958       for (const MachineOperand &MO2 : MI.operands()) {
959         if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) {
960           FoundDef = true;
961           break;
962         }
963       }
964       if (FoundDef)
965         continue;
966     }
967 
968     // Record this local VReg use.
969     VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
970     for (; UI != VRegUses.end(); ++UI) {
971       if (UI->SU == &SU)
972         break;
973     }
974     if (UI == VRegUses.end())
975       VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU));
976   }
977 }
978 
979 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
980 /// crossing a scheduling boundary. [begin, end) includes all instructions in
981 /// the region, including the boundary itself and single-instruction regions
982 /// that don't get scheduled.
983 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
984                                 MachineBasicBlock::iterator begin,
985                                 MachineBasicBlock::iterator end,
986                                 unsigned regioninstrs)
987 {
988   // ScheduleDAGMI initializes SchedImpl's per-region policy.
989   ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
990 
991   // For convenience remember the end of the liveness region.
992   LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
993 
994   SUPressureDiffs.clear();
995 
996   ShouldTrackPressure = SchedImpl->shouldTrackPressure();
997   ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks();
998 
999   assert((!ShouldTrackLaneMasks || ShouldTrackPressure) &&
1000          "ShouldTrackLaneMasks requires ShouldTrackPressure");
1001 }
1002 
1003 // Setup the register pressure trackers for the top scheduled top and bottom
1004 // scheduled regions.
1005 void ScheduleDAGMILive::initRegPressure() {
1006   VRegUses.clear();
1007   VRegUses.setUniverse(MRI.getNumVirtRegs());
1008   for (SUnit &SU : SUnits)
1009     collectVRegUses(SU);
1010 
1011   TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin,
1012                     ShouldTrackLaneMasks, false);
1013   BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1014                     ShouldTrackLaneMasks, false);
1015 
1016   // Close the RPTracker to finalize live ins.
1017   RPTracker.closeRegion();
1018 
1019   LLVM_DEBUG(RPTracker.dump());
1020 
1021   // Initialize the live ins and live outs.
1022   TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
1023   BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
1024 
1025   // Close one end of the tracker so we can call
1026   // getMaxUpward/DownwardPressureDelta before advancing across any
1027   // instructions. This converts currently live regs into live ins/outs.
1028   TopRPTracker.closeTop();
1029   BotRPTracker.closeBottom();
1030 
1031   BotRPTracker.initLiveThru(RPTracker);
1032   if (!BotRPTracker.getLiveThru().empty()) {
1033     TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
1034     LLVM_DEBUG(dbgs() << "Live Thru: ";
1035                dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
1036   };
1037 
1038   // For each live out vreg reduce the pressure change associated with other
1039   // uses of the same vreg below the live-out reaching def.
1040   updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
1041 
1042   // Account for liveness generated by the region boundary.
1043   if (LiveRegionEnd != RegionEnd) {
1044     SmallVector<RegisterMaskPair, 8> LiveUses;
1045     BotRPTracker.recede(&LiveUses);
1046     updatePressureDiffs(LiveUses);
1047   }
1048 
1049   LLVM_DEBUG(dbgs() << "Top Pressure:\n";
1050              dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
1051              dbgs() << "Bottom Pressure:\n";
1052              dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI););
1053 
1054   assert((BotRPTracker.getPos() == RegionEnd ||
1055           (RegionEnd->isDebugInstr() &&
1056            BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) &&
1057          "Can't find the region bottom");
1058 
1059   // Cache the list of excess pressure sets in this region. This will also track
1060   // the max pressure in the scheduled code for these sets.
1061   RegionCriticalPSets.clear();
1062   const std::vector<unsigned> &RegionPressure =
1063     RPTracker.getPressure().MaxSetPressure;
1064   for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
1065     unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
1066     if (RegionPressure[i] > Limit) {
1067       LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit
1068                         << " Actual " << RegionPressure[i] << "\n");
1069       RegionCriticalPSets.push_back(PressureChange(i));
1070     }
1071   }
1072   LLVM_DEBUG(dbgs() << "Excess PSets: ";
1073              for (const PressureChange &RCPS
1074                   : RegionCriticalPSets) dbgs()
1075              << TRI->getRegPressureSetName(RCPS.getPSet()) << " ";
1076              dbgs() << "\n");
1077 }
1078 
1079 void ScheduleDAGMILive::
1080 updateScheduledPressure(const SUnit *SU,
1081                         const std::vector<unsigned> &NewMaxPressure) {
1082   const PressureDiff &PDiff = getPressureDiff(SU);
1083   unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
1084   for (const PressureChange &PC : PDiff) {
1085     if (!PC.isValid())
1086       break;
1087     unsigned ID = PC.getPSet();
1088     while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
1089       ++CritIdx;
1090     if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
1091       if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
1092           && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max())
1093         RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
1094     }
1095     unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
1096     if (NewMaxPressure[ID] >= Limit - 2) {
1097       LLVM_DEBUG(dbgs() << "  " << TRI->getRegPressureSetName(ID) << ": "
1098                         << NewMaxPressure[ID]
1099                         << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ")
1100                         << Limit << "(+ " << BotRPTracker.getLiveThru()[ID]
1101                         << " livethru)\n");
1102     }
1103   }
1104 }
1105 
1106 /// Update the PressureDiff array for liveness after scheduling this
1107 /// instruction.
1108 void ScheduleDAGMILive::updatePressureDiffs(
1109     ArrayRef<RegisterMaskPair> LiveUses) {
1110   for (const RegisterMaskPair &P : LiveUses) {
1111     unsigned Reg = P.RegUnit;
1112     /// FIXME: Currently assuming single-use physregs.
1113     if (!TRI->isVirtualRegister(Reg))
1114       continue;
1115 
1116     if (ShouldTrackLaneMasks) {
1117       // If the register has just become live then other uses won't change
1118       // this fact anymore => decrement pressure.
1119       // If the register has just become dead then other uses make it come
1120       // back to life => increment pressure.
1121       bool Decrement = P.LaneMask.any();
1122 
1123       for (const VReg2SUnit &V2SU
1124            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1125         SUnit &SU = *V2SU.SU;
1126         if (SU.isScheduled || &SU == &ExitSU)
1127           continue;
1128 
1129         PressureDiff &PDiff = getPressureDiff(&SU);
1130         PDiff.addPressureChange(Reg, Decrement, &MRI);
1131         LLVM_DEBUG(dbgs() << "  UpdateRegP: SU(" << SU.NodeNum << ") "
1132                           << printReg(Reg, TRI) << ':'
1133                           << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr();
1134                    dbgs() << "              to "; PDiff.dump(*TRI););
1135       }
1136     } else {
1137       assert(P.LaneMask.any());
1138       LLVM_DEBUG(dbgs() << "  LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n");
1139       // This may be called before CurrentBottom has been initialized. However,
1140       // BotRPTracker must have a valid position. We want the value live into the
1141       // instruction or live out of the block, so ask for the previous
1142       // instruction's live-out.
1143       const LiveInterval &LI = LIS->getInterval(Reg);
1144       VNInfo *VNI;
1145       MachineBasicBlock::const_iterator I =
1146         nextIfDebug(BotRPTracker.getPos(), BB->end());
1147       if (I == BB->end())
1148         VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1149       else {
1150         LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I));
1151         VNI = LRQ.valueIn();
1152       }
1153       // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
1154       assert(VNI && "No live value at use.");
1155       for (const VReg2SUnit &V2SU
1156            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1157         SUnit *SU = V2SU.SU;
1158         // If this use comes before the reaching def, it cannot be a last use,
1159         // so decrease its pressure change.
1160         if (!SU->isScheduled && SU != &ExitSU) {
1161           LiveQueryResult LRQ =
1162               LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1163           if (LRQ.valueIn() == VNI) {
1164             PressureDiff &PDiff = getPressureDiff(SU);
1165             PDiff.addPressureChange(Reg, true, &MRI);
1166             LLVM_DEBUG(dbgs() << "  UpdateRegP: SU(" << SU->NodeNum << ") "
1167                               << *SU->getInstr();
1168                        dbgs() << "              to "; PDiff.dump(*TRI););
1169           }
1170         }
1171       }
1172     }
1173   }
1174 }
1175 
1176 void ScheduleDAGMILive::dump() const {
1177 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1178   if (EntrySU.getInstr() != nullptr)
1179     dumpNodeAll(EntrySU);
1180   for (const SUnit &SU : SUnits) {
1181     dumpNodeAll(SU);
1182     if (ShouldTrackPressure) {
1183       dbgs() << "  Pressure Diff      : ";
1184       getPressureDiff(&SU).dump(*TRI);
1185     }
1186     dbgs() << "  Single Issue       : ";
1187     if (SchedModel.mustBeginGroup(SU.getInstr()) &&
1188         SchedModel.mustEndGroup(SU.getInstr()))
1189       dbgs() << "true;";
1190     else
1191       dbgs() << "false;";
1192     dbgs() << '\n';
1193   }
1194   if (ExitSU.getInstr() != nullptr)
1195     dumpNodeAll(ExitSU);
1196 #endif
1197 }
1198 
1199 /// schedule - Called back from MachineScheduler::runOnMachineFunction
1200 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
1201 /// only includes instructions that have DAG nodes, not scheduling boundaries.
1202 ///
1203 /// This is a skeletal driver, with all the functionality pushed into helpers,
1204 /// so that it can be easily extended by experimental schedulers. Generally,
1205 /// implementing MachineSchedStrategy should be sufficient to implement a new
1206 /// scheduling algorithm. However, if a scheduler further subclasses
1207 /// ScheduleDAGMILive then it will want to override this virtual method in order
1208 /// to update any specialized state.
1209 void ScheduleDAGMILive::schedule() {
1210   LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
1211   LLVM_DEBUG(SchedImpl->dumpPolicy());
1212   buildDAGWithRegPressure();
1213 
1214   Topo.InitDAGTopologicalSorting();
1215 
1216   postprocessDAG();
1217 
1218   SmallVector<SUnit*, 8> TopRoots, BotRoots;
1219   findRootsAndBiasEdges(TopRoots, BotRoots);
1220 
1221   // Initialize the strategy before modifying the DAG.
1222   // This may initialize a DFSResult to be used for queue priority.
1223   SchedImpl->initialize(this);
1224 
1225   LLVM_DEBUG(dump());
1226   if (PrintDAGs) dump();
1227   if (ViewMISchedDAGs) viewGraph();
1228 
1229   // Initialize ready queues now that the DAG and priority data are finalized.
1230   initQueues(TopRoots, BotRoots);
1231 
1232   bool IsTopNode = false;
1233   while (true) {
1234     LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
1235     SUnit *SU = SchedImpl->pickNode(IsTopNode);
1236     if (!SU) break;
1237 
1238     assert(!SU->isScheduled && "Node already scheduled");
1239     if (!checkSchedLimit())
1240       break;
1241 
1242     scheduleMI(SU, IsTopNode);
1243 
1244     if (DFSResult) {
1245       unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1246       if (!ScheduledTrees.test(SubtreeID)) {
1247         ScheduledTrees.set(SubtreeID);
1248         DFSResult->scheduleTree(SubtreeID);
1249         SchedImpl->scheduleTree(SubtreeID);
1250       }
1251     }
1252 
1253     // Notify the scheduling strategy after updating the DAG.
1254     SchedImpl->schedNode(SU, IsTopNode);
1255 
1256     updateQueues(SU, IsTopNode);
1257   }
1258   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1259 
1260   placeDebugValues();
1261 
1262   LLVM_DEBUG({
1263     dbgs() << "*** Final schedule for "
1264            << printMBBReference(*begin()->getParent()) << " ***\n";
1265     dumpSchedule();
1266     dbgs() << '\n';
1267   });
1268 }
1269 
1270 /// Build the DAG and setup three register pressure trackers.
1271 void ScheduleDAGMILive::buildDAGWithRegPressure() {
1272   if (!ShouldTrackPressure) {
1273     RPTracker.reset();
1274     RegionCriticalPSets.clear();
1275     buildSchedGraph(AA);
1276     return;
1277   }
1278 
1279   // Initialize the register pressure tracker used by buildSchedGraph.
1280   RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1281                  ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true);
1282 
1283   // Account for liveness generate by the region boundary.
1284   if (LiveRegionEnd != RegionEnd)
1285     RPTracker.recede();
1286 
1287   // Build the DAG, and compute current register pressure.
1288   buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks);
1289 
1290   // Initialize top/bottom trackers after computing region pressure.
1291   initRegPressure();
1292 }
1293 
1294 void ScheduleDAGMILive::computeDFSResult() {
1295   if (!DFSResult)
1296     DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1297   DFSResult->clear();
1298   ScheduledTrees.clear();
1299   DFSResult->resize(SUnits.size());
1300   DFSResult->compute(SUnits);
1301   ScheduledTrees.resize(DFSResult->getNumSubtrees());
1302 }
1303 
1304 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
1305 /// only provides the critical path for single block loops. To handle loops that
1306 /// span blocks, we could use the vreg path latencies provided by
1307 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1308 /// available for use in the scheduler.
1309 ///
1310 /// The cyclic path estimation identifies a def-use pair that crosses the back
1311 /// edge and considers the depth and height of the nodes. For example, consider
1312 /// the following instruction sequence where each instruction has unit latency
1313 /// and defines an epomymous virtual register:
1314 ///
1315 /// a->b(a,c)->c(b)->d(c)->exit
1316 ///
1317 /// The cyclic critical path is a two cycles: b->c->b
1318 /// The acyclic critical path is four cycles: a->b->c->d->exit
1319 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
1320 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1321 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1322 /// LiveInDepth = depth(b) = len(a->b) = 1
1323 ///
1324 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1325 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1326 /// CyclicCriticalPath = min(2, 2) = 2
1327 ///
1328 /// This could be relevant to PostRA scheduling, but is currently implemented
1329 /// assuming LiveIntervals.
1330 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1331   // This only applies to single block loop.
1332   if (!BB->isSuccessor(BB))
1333     return 0;
1334 
1335   unsigned MaxCyclicLatency = 0;
1336   // Visit each live out vreg def to find def/use pairs that cross iterations.
1337   for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) {
1338     unsigned Reg = P.RegUnit;
1339     if (!TRI->isVirtualRegister(Reg))
1340         continue;
1341     const LiveInterval &LI = LIS->getInterval(Reg);
1342     const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1343     if (!DefVNI)
1344       continue;
1345 
1346     MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1347     const SUnit *DefSU = getSUnit(DefMI);
1348     if (!DefSU)
1349       continue;
1350 
1351     unsigned LiveOutHeight = DefSU->getHeight();
1352     unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1353     // Visit all local users of the vreg def.
1354     for (const VReg2SUnit &V2SU
1355          : make_range(VRegUses.find(Reg), VRegUses.end())) {
1356       SUnit *SU = V2SU.SU;
1357       if (SU == &ExitSU)
1358         continue;
1359 
1360       // Only consider uses of the phi.
1361       LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1362       if (!LRQ.valueIn()->isPHIDef())
1363         continue;
1364 
1365       // Assume that a path spanning two iterations is a cycle, which could
1366       // overestimate in strange cases. This allows cyclic latency to be
1367       // estimated as the minimum slack of the vreg's depth or height.
1368       unsigned CyclicLatency = 0;
1369       if (LiveOutDepth > SU->getDepth())
1370         CyclicLatency = LiveOutDepth - SU->getDepth();
1371 
1372       unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
1373       if (LiveInHeight > LiveOutHeight) {
1374         if (LiveInHeight - LiveOutHeight < CyclicLatency)
1375           CyclicLatency = LiveInHeight - LiveOutHeight;
1376       } else
1377         CyclicLatency = 0;
1378 
1379       LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1380                         << SU->NodeNum << ") = " << CyclicLatency << "c\n");
1381       if (CyclicLatency > MaxCyclicLatency)
1382         MaxCyclicLatency = CyclicLatency;
1383     }
1384   }
1385   LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1386   return MaxCyclicLatency;
1387 }
1388 
1389 /// Release ExitSU predecessors and setup scheduler queues. Re-position
1390 /// the Top RP tracker in case the region beginning has changed.
1391 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots,
1392                                    ArrayRef<SUnit*> BotRoots) {
1393   ScheduleDAGMI::initQueues(TopRoots, BotRoots);
1394   if (ShouldTrackPressure) {
1395     assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1396     TopRPTracker.setPos(CurrentTop);
1397   }
1398 }
1399 
1400 /// Move an instruction and update register pressure.
1401 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1402   // Move the instruction to its new location in the instruction stream.
1403   MachineInstr *MI = SU->getInstr();
1404 
1405   if (IsTopNode) {
1406     assert(SU->isTopReady() && "node still has unscheduled dependencies");
1407     if (&*CurrentTop == MI)
1408       CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1409     else {
1410       moveInstruction(MI, CurrentTop);
1411       TopRPTracker.setPos(MI);
1412     }
1413 
1414     if (ShouldTrackPressure) {
1415       // Update top scheduled pressure.
1416       RegisterOperands RegOpers;
1417       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1418       if (ShouldTrackLaneMasks) {
1419         // Adjust liveness and add missing dead+read-undef flags.
1420         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1421         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1422       } else {
1423         // Adjust for missing dead-def flags.
1424         RegOpers.detectDeadDefs(*MI, *LIS);
1425       }
1426 
1427       TopRPTracker.advance(RegOpers);
1428       assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1429       LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure(
1430                      TopRPTracker.getRegSetPressureAtPos(), TRI););
1431 
1432       updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1433     }
1434   } else {
1435     assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1436     MachineBasicBlock::iterator priorII =
1437       priorNonDebug(CurrentBottom, CurrentTop);
1438     if (&*priorII == MI)
1439       CurrentBottom = priorII;
1440     else {
1441       if (&*CurrentTop == MI) {
1442         CurrentTop = nextIfDebug(++CurrentTop, priorII);
1443         TopRPTracker.setPos(CurrentTop);
1444       }
1445       moveInstruction(MI, CurrentBottom);
1446       CurrentBottom = MI;
1447       BotRPTracker.setPos(CurrentBottom);
1448     }
1449     if (ShouldTrackPressure) {
1450       RegisterOperands RegOpers;
1451       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1452       if (ShouldTrackLaneMasks) {
1453         // Adjust liveness and add missing dead+read-undef flags.
1454         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1455         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1456       } else {
1457         // Adjust for missing dead-def flags.
1458         RegOpers.detectDeadDefs(*MI, *LIS);
1459       }
1460 
1461       if (BotRPTracker.getPos() != CurrentBottom)
1462         BotRPTracker.recedeSkipDebugValues();
1463       SmallVector<RegisterMaskPair, 8> LiveUses;
1464       BotRPTracker.recede(RegOpers, &LiveUses);
1465       assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1466       LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure(
1467                      BotRPTracker.getRegSetPressureAtPos(), TRI););
1468 
1469       updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1470       updatePressureDiffs(LiveUses);
1471     }
1472   }
1473 }
1474 
1475 //===----------------------------------------------------------------------===//
1476 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores.
1477 //===----------------------------------------------------------------------===//
1478 
1479 namespace {
1480 
1481 /// Post-process the DAG to create cluster edges between neighboring
1482 /// loads or between neighboring stores.
1483 class BaseMemOpClusterMutation : public ScheduleDAGMutation {
1484   struct MemOpInfo {
1485     SUnit *SU;
1486     unsigned BaseReg;
1487     int64_t Offset;
1488 
1489     MemOpInfo(SUnit *su, unsigned reg, int64_t ofs)
1490         : SU(su), BaseReg(reg), Offset(ofs) {}
1491 
1492     bool operator<(const MemOpInfo&RHS) const {
1493       return std::tie(BaseReg, Offset, SU->NodeNum) <
1494              std::tie(RHS.BaseReg, RHS.Offset, RHS.SU->NodeNum);
1495     }
1496   };
1497 
1498   const TargetInstrInfo *TII;
1499   const TargetRegisterInfo *TRI;
1500   bool IsLoad;
1501 
1502 public:
1503   BaseMemOpClusterMutation(const TargetInstrInfo *tii,
1504                            const TargetRegisterInfo *tri, bool IsLoad)
1505       : TII(tii), TRI(tri), IsLoad(IsLoad) {}
1506 
1507   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1508 
1509 protected:
1510   void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG);
1511 };
1512 
1513 class StoreClusterMutation : public BaseMemOpClusterMutation {
1514 public:
1515   StoreClusterMutation(const TargetInstrInfo *tii,
1516                        const TargetRegisterInfo *tri)
1517       : BaseMemOpClusterMutation(tii, tri, false) {}
1518 };
1519 
1520 class LoadClusterMutation : public BaseMemOpClusterMutation {
1521 public:
1522   LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri)
1523       : BaseMemOpClusterMutation(tii, tri, true) {}
1524 };
1525 
1526 } // end anonymous namespace
1527 
1528 namespace llvm {
1529 
1530 std::unique_ptr<ScheduleDAGMutation>
1531 createLoadClusterDAGMutation(const TargetInstrInfo *TII,
1532                              const TargetRegisterInfo *TRI) {
1533   return EnableMemOpCluster ? llvm::make_unique<LoadClusterMutation>(TII, TRI)
1534                             : nullptr;
1535 }
1536 
1537 std::unique_ptr<ScheduleDAGMutation>
1538 createStoreClusterDAGMutation(const TargetInstrInfo *TII,
1539                               const TargetRegisterInfo *TRI) {
1540   return EnableMemOpCluster ? llvm::make_unique<StoreClusterMutation>(TII, TRI)
1541                             : nullptr;
1542 }
1543 
1544 } // end namespace llvm
1545 
1546 void BaseMemOpClusterMutation::clusterNeighboringMemOps(
1547     ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG) {
1548   SmallVector<MemOpInfo, 32> MemOpRecords;
1549   for (SUnit *SU : MemOps) {
1550     unsigned BaseReg;
1551     int64_t Offset;
1552     if (TII->getMemOpBaseRegImmOfs(*SU->getInstr(), BaseReg, Offset, TRI))
1553       MemOpRecords.push_back(MemOpInfo(SU, BaseReg, Offset));
1554   }
1555   if (MemOpRecords.size() < 2)
1556     return;
1557 
1558   llvm::sort(MemOpRecords);
1559   unsigned ClusterLength = 1;
1560   for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) {
1561     SUnit *SUa = MemOpRecords[Idx].SU;
1562     SUnit *SUb = MemOpRecords[Idx+1].SU;
1563     if (TII->shouldClusterMemOps(*SUa->getInstr(), MemOpRecords[Idx].BaseReg,
1564                                  *SUb->getInstr(), MemOpRecords[Idx+1].BaseReg,
1565                                  ClusterLength) &&
1566         DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
1567       LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU("
1568                         << SUb->NodeNum << ")\n");
1569       // Copy successor edges from SUa to SUb. Interleaving computation
1570       // dependent on SUa can prevent load combining due to register reuse.
1571       // Predecessor edges do not need to be copied from SUb to SUa since nearby
1572       // loads should have effectively the same inputs.
1573       for (const SDep &Succ : SUa->Succs) {
1574         if (Succ.getSUnit() == SUb)
1575           continue;
1576         LLVM_DEBUG(dbgs() << "  Copy Succ SU(" << Succ.getSUnit()->NodeNum
1577                           << ")\n");
1578         DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial));
1579       }
1580       ++ClusterLength;
1581     } else
1582       ClusterLength = 1;
1583   }
1584 }
1585 
1586 /// Callback from DAG postProcessing to create cluster edges for loads.
1587 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAGInstrs) {
1588   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1589 
1590   // Map DAG NodeNum to store chain ID.
1591   DenseMap<unsigned, unsigned> StoreChainIDs;
1592   // Map each store chain to a set of dependent MemOps.
1593   SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
1594   for (SUnit &SU : DAG->SUnits) {
1595     if ((IsLoad && !SU.getInstr()->mayLoad()) ||
1596         (!IsLoad && !SU.getInstr()->mayStore()))
1597       continue;
1598 
1599     unsigned ChainPredID = DAG->SUnits.size();
1600     for (const SDep &Pred : SU.Preds) {
1601       if (Pred.isCtrl()) {
1602         ChainPredID = Pred.getSUnit()->NodeNum;
1603         break;
1604       }
1605     }
1606     // Check if this chain-like pred has been seen
1607     // before. ChainPredID==MaxNodeID at the top of the schedule.
1608     unsigned NumChains = StoreChainDependents.size();
1609     std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
1610       StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
1611     if (Result.second)
1612       StoreChainDependents.resize(NumChains + 1);
1613     StoreChainDependents[Result.first->second].push_back(&SU);
1614   }
1615 
1616   // Iterate over the store chains.
1617   for (auto &SCD : StoreChainDependents)
1618     clusterNeighboringMemOps(SCD, DAG);
1619 }
1620 
1621 //===----------------------------------------------------------------------===//
1622 // CopyConstrain - DAG post-processing to encourage copy elimination.
1623 //===----------------------------------------------------------------------===//
1624 
1625 namespace {
1626 
1627 /// Post-process the DAG to create weak edges from all uses of a copy to
1628 /// the one use that defines the copy's source vreg, most likely an induction
1629 /// variable increment.
1630 class CopyConstrain : public ScheduleDAGMutation {
1631   // Transient state.
1632   SlotIndex RegionBeginIdx;
1633 
1634   // RegionEndIdx is the slot index of the last non-debug instruction in the
1635   // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1636   SlotIndex RegionEndIdx;
1637 
1638 public:
1639   CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1640 
1641   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1642 
1643 protected:
1644   void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
1645 };
1646 
1647 } // end anonymous namespace
1648 
1649 namespace llvm {
1650 
1651 std::unique_ptr<ScheduleDAGMutation>
1652 createCopyConstrainDAGMutation(const TargetInstrInfo *TII,
1653                                const TargetRegisterInfo *TRI) {
1654   return llvm::make_unique<CopyConstrain>(TII, TRI);
1655 }
1656 
1657 } // end namespace llvm
1658 
1659 /// constrainLocalCopy handles two possibilities:
1660 /// 1) Local src:
1661 /// I0:     = dst
1662 /// I1: src = ...
1663 /// I2:     = dst
1664 /// I3: dst = src (copy)
1665 /// (create pred->succ edges I0->I1, I2->I1)
1666 ///
1667 /// 2) Local copy:
1668 /// I0: dst = src (copy)
1669 /// I1:     = dst
1670 /// I2: src = ...
1671 /// I3:     = dst
1672 /// (create pred->succ edges I1->I2, I3->I2)
1673 ///
1674 /// Although the MachineScheduler is currently constrained to single blocks,
1675 /// this algorithm should handle extended blocks. An EBB is a set of
1676 /// contiguously numbered blocks such that the previous block in the EBB is
1677 /// always the single predecessor.
1678 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
1679   LiveIntervals *LIS = DAG->getLIS();
1680   MachineInstr *Copy = CopySU->getInstr();
1681 
1682   // Check for pure vreg copies.
1683   const MachineOperand &SrcOp = Copy->getOperand(1);
1684   unsigned SrcReg = SrcOp.getReg();
1685   if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !SrcOp.readsReg())
1686     return;
1687 
1688   const MachineOperand &DstOp = Copy->getOperand(0);
1689   unsigned DstReg = DstOp.getReg();
1690   if (!TargetRegisterInfo::isVirtualRegister(DstReg) || DstOp.isDead())
1691     return;
1692 
1693   // Check if either the dest or source is local. If it's live across a back
1694   // edge, it's not local. Note that if both vregs are live across the back
1695   // edge, we cannot successfully contrain the copy without cyclic scheduling.
1696   // If both the copy's source and dest are local live intervals, then we
1697   // should treat the dest as the global for the purpose of adding
1698   // constraints. This adds edges from source's other uses to the copy.
1699   unsigned LocalReg = SrcReg;
1700   unsigned GlobalReg = DstReg;
1701   LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
1702   if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
1703     LocalReg = DstReg;
1704     GlobalReg = SrcReg;
1705     LocalLI = &LIS->getInterval(LocalReg);
1706     if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
1707       return;
1708   }
1709   LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1710 
1711   // Find the global segment after the start of the local LI.
1712   LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1713   // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1714   // local live range. We could create edges from other global uses to the local
1715   // start, but the coalescer should have already eliminated these cases, so
1716   // don't bother dealing with it.
1717   if (GlobalSegment == GlobalLI->end())
1718     return;
1719 
1720   // If GlobalSegment is killed at the LocalLI->start, the call to find()
1721   // returned the next global segment. But if GlobalSegment overlaps with
1722   // LocalLI->start, then advance to the next segment. If a hole in GlobalLI
1723   // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1724   if (GlobalSegment->contains(LocalLI->beginIndex()))
1725     ++GlobalSegment;
1726 
1727   if (GlobalSegment == GlobalLI->end())
1728     return;
1729 
1730   // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1731   if (GlobalSegment != GlobalLI->begin()) {
1732     // Two address defs have no hole.
1733     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
1734                                GlobalSegment->start)) {
1735       return;
1736     }
1737     // If the prior global segment may be defined by the same two-address
1738     // instruction that also defines LocalLI, then can't make a hole here.
1739     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
1740                                LocalLI->beginIndex())) {
1741       return;
1742     }
1743     // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1744     // it would be a disconnected component in the live range.
1745     assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
1746            "Disconnected LRG within the scheduling region.");
1747   }
1748   MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1749   if (!GlobalDef)
1750     return;
1751 
1752   SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1753   if (!GlobalSU)
1754     return;
1755 
1756   // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1757   // constraining the uses of the last local def to precede GlobalDef.
1758   SmallVector<SUnit*,8> LocalUses;
1759   const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1760   MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1761   SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1762   for (const SDep &Succ : LastLocalSU->Succs) {
1763     if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg)
1764       continue;
1765     if (Succ.getSUnit() == GlobalSU)
1766       continue;
1767     if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit()))
1768       return;
1769     LocalUses.push_back(Succ.getSUnit());
1770   }
1771   // Open the top of the GlobalLI hole by constraining any earlier global uses
1772   // to precede the start of LocalLI.
1773   SmallVector<SUnit*,8> GlobalUses;
1774   MachineInstr *FirstLocalDef =
1775     LIS->getInstructionFromIndex(LocalLI->beginIndex());
1776   SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1777   for (const SDep &Pred : GlobalSU->Preds) {
1778     if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg)
1779       continue;
1780     if (Pred.getSUnit() == FirstLocalSU)
1781       continue;
1782     if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit()))
1783       return;
1784     GlobalUses.push_back(Pred.getSUnit());
1785   }
1786   LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1787   // Add the weak edges.
1788   for (SmallVectorImpl<SUnit*>::const_iterator
1789          I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
1790     LLVM_DEBUG(dbgs() << "  Local use SU(" << (*I)->NodeNum << ") -> SU("
1791                       << GlobalSU->NodeNum << ")\n");
1792     DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
1793   }
1794   for (SmallVectorImpl<SUnit*>::const_iterator
1795          I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
1796     LLVM_DEBUG(dbgs() << "  Global use SU(" << (*I)->NodeNum << ") -> SU("
1797                       << FirstLocalSU->NodeNum << ")\n");
1798     DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
1799   }
1800 }
1801 
1802 /// Callback from DAG postProcessing to create weak edges to encourage
1803 /// copy elimination.
1804 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) {
1805   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1806   assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
1807 
1808   MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1809   if (FirstPos == DAG->end())
1810     return;
1811   RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos);
1812   RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1813       *priorNonDebug(DAG->end(), DAG->begin()));
1814 
1815   for (SUnit &SU : DAG->SUnits) {
1816     if (!SU.getInstr()->isCopy())
1817       continue;
1818 
1819     constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG));
1820   }
1821 }
1822 
1823 //===----------------------------------------------------------------------===//
1824 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
1825 // and possibly other custom schedulers.
1826 //===----------------------------------------------------------------------===//
1827 
1828 static const unsigned InvalidCycle = ~0U;
1829 
1830 SchedBoundary::~SchedBoundary() { delete HazardRec; }
1831 
1832 /// Given a Count of resource usage and a Latency value, return true if a
1833 /// SchedBoundary becomes resource limited.
1834 static bool checkResourceLimit(unsigned LFactor, unsigned Count,
1835                                unsigned Latency) {
1836   return (int)(Count - (Latency * LFactor)) > (int)LFactor;
1837 }
1838 
1839 void SchedBoundary::reset() {
1840   // A new HazardRec is created for each DAG and owned by SchedBoundary.
1841   // Destroying and reconstructing it is very expensive though. So keep
1842   // invalid, placeholder HazardRecs.
1843   if (HazardRec && HazardRec->isEnabled()) {
1844     delete HazardRec;
1845     HazardRec = nullptr;
1846   }
1847   Available.clear();
1848   Pending.clear();
1849   CheckPending = false;
1850   CurrCycle = 0;
1851   CurrMOps = 0;
1852   MinReadyCycle = std::numeric_limits<unsigned>::max();
1853   ExpectedLatency = 0;
1854   DependentLatency = 0;
1855   RetiredMOps = 0;
1856   MaxExecutedResCount = 0;
1857   ZoneCritResIdx = 0;
1858   IsResourceLimited = false;
1859   ReservedCycles.clear();
1860 #ifndef NDEBUG
1861   // Track the maximum number of stall cycles that could arise either from the
1862   // latency of a DAG edge or the number of cycles that a processor resource is
1863   // reserved (SchedBoundary::ReservedCycles).
1864   MaxObservedStall = 0;
1865 #endif
1866   // Reserve a zero-count for invalid CritResIdx.
1867   ExecutedResCounts.resize(1);
1868   assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
1869 }
1870 
1871 void SchedRemainder::
1872 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
1873   reset();
1874   if (!SchedModel->hasInstrSchedModel())
1875     return;
1876   RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
1877   for (SUnit &SU : DAG->SUnits) {
1878     const MCSchedClassDesc *SC = DAG->getSchedClass(&SU);
1879     RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC)
1880       * SchedModel->getMicroOpFactor();
1881     for (TargetSchedModel::ProcResIter
1882            PI = SchedModel->getWriteProcResBegin(SC),
1883            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1884       unsigned PIdx = PI->ProcResourceIdx;
1885       unsigned Factor = SchedModel->getResourceFactor(PIdx);
1886       RemainingCounts[PIdx] += (Factor * PI->Cycles);
1887     }
1888   }
1889 }
1890 
1891 void SchedBoundary::
1892 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
1893   reset();
1894   DAG = dag;
1895   SchedModel = smodel;
1896   Rem = rem;
1897   if (SchedModel->hasInstrSchedModel()) {
1898     ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
1899     ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle);
1900   }
1901 }
1902 
1903 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
1904 /// these "soft stalls" differently than the hard stall cycles based on CPU
1905 /// resources and computed by checkHazard(). A fully in-order model
1906 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
1907 /// available for scheduling until they are ready. However, a weaker in-order
1908 /// model may use this for heuristics. For example, if a processor has in-order
1909 /// behavior when reading certain resources, this may come into play.
1910 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
1911   if (!SU->isUnbuffered)
1912     return 0;
1913 
1914   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1915   if (ReadyCycle > CurrCycle)
1916     return ReadyCycle - CurrCycle;
1917   return 0;
1918 }
1919 
1920 /// Compute the next cycle at which the given processor resource can be
1921 /// scheduled.
1922 unsigned SchedBoundary::
1923 getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
1924   unsigned NextUnreserved = ReservedCycles[PIdx];
1925   // If this resource has never been used, always return cycle zero.
1926   if (NextUnreserved == InvalidCycle)
1927     return 0;
1928   // For bottom-up scheduling add the cycles needed for the current operation.
1929   if (!isTop())
1930     NextUnreserved += Cycles;
1931   return NextUnreserved;
1932 }
1933 
1934 /// Does this SU have a hazard within the current instruction group.
1935 ///
1936 /// The scheduler supports two modes of hazard recognition. The first is the
1937 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
1938 /// supports highly complicated in-order reservation tables
1939 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
1940 ///
1941 /// The second is a streamlined mechanism that checks for hazards based on
1942 /// simple counters that the scheduler itself maintains. It explicitly checks
1943 /// for instruction dispatch limitations, including the number of micro-ops that
1944 /// can dispatch per cycle.
1945 ///
1946 /// TODO: Also check whether the SU must start a new group.
1947 bool SchedBoundary::checkHazard(SUnit *SU) {
1948   if (HazardRec->isEnabled()
1949       && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
1950     return true;
1951   }
1952 
1953   unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
1954   if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
1955     LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
1956                       << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
1957     return true;
1958   }
1959 
1960   if (CurrMOps > 0 &&
1961       ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) ||
1962        (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) {
1963     LLVM_DEBUG(dbgs() << "  hazard: SU(" << SU->NodeNum << ") must "
1964                       << (isTop() ? "begin" : "end") << " group\n");
1965     return true;
1966   }
1967 
1968   if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
1969     const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1970     for (const MCWriteProcResEntry &PE :
1971           make_range(SchedModel->getWriteProcResBegin(SC),
1972                      SchedModel->getWriteProcResEnd(SC))) {
1973       unsigned ResIdx = PE.ProcResourceIdx;
1974       unsigned Cycles = PE.Cycles;
1975       unsigned NRCycle = getNextResourceCycle(ResIdx, Cycles);
1976       if (NRCycle > CurrCycle) {
1977 #ifndef NDEBUG
1978         MaxObservedStall = std::max(Cycles, MaxObservedStall);
1979 #endif
1980         LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") "
1981                           << SchedModel->getResourceName(ResIdx) << "="
1982                           << NRCycle << "c\n");
1983         return true;
1984       }
1985     }
1986   }
1987   return false;
1988 }
1989 
1990 // Find the unscheduled node in ReadySUs with the highest latency.
1991 unsigned SchedBoundary::
1992 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
1993   SUnit *LateSU = nullptr;
1994   unsigned RemLatency = 0;
1995   for (SUnit *SU : ReadySUs) {
1996     unsigned L = getUnscheduledLatency(SU);
1997     if (L > RemLatency) {
1998       RemLatency = L;
1999       LateSU = SU;
2000     }
2001   }
2002   if (LateSU) {
2003     LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU("
2004                       << LateSU->NodeNum << ") " << RemLatency << "c\n");
2005   }
2006   return RemLatency;
2007 }
2008 
2009 // Count resources in this zone and the remaining unscheduled
2010 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
2011 // resource index, or zero if the zone is issue limited.
2012 unsigned SchedBoundary::
2013 getOtherResourceCount(unsigned &OtherCritIdx) {
2014   OtherCritIdx = 0;
2015   if (!SchedModel->hasInstrSchedModel())
2016     return 0;
2017 
2018   unsigned OtherCritCount = Rem->RemIssueCount
2019     + (RetiredMOps * SchedModel->getMicroOpFactor());
2020   LLVM_DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
2021                     << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
2022   for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
2023        PIdx != PEnd; ++PIdx) {
2024     unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
2025     if (OtherCount > OtherCritCount) {
2026       OtherCritCount = OtherCount;
2027       OtherCritIdx = PIdx;
2028     }
2029   }
2030   if (OtherCritIdx) {
2031     LLVM_DEBUG(
2032         dbgs() << "  " << Available.getName() << " + Remain CritRes: "
2033                << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
2034                << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
2035   }
2036   return OtherCritCount;
2037 }
2038 
2039 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) {
2040   assert(SU->getInstr() && "Scheduled SUnit must have instr");
2041 
2042 #ifndef NDEBUG
2043   // ReadyCycle was been bumped up to the CurrCycle when this node was
2044   // scheduled, but CurrCycle may have been eagerly advanced immediately after
2045   // scheduling, so may now be greater than ReadyCycle.
2046   if (ReadyCycle > CurrCycle)
2047     MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
2048 #endif
2049 
2050   if (ReadyCycle < MinReadyCycle)
2051     MinReadyCycle = ReadyCycle;
2052 
2053   // Check for interlocks first. For the purpose of other heuristics, an
2054   // instruction that cannot issue appears as if it's not in the ReadyQueue.
2055   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2056   if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) ||
2057       Available.size() >= ReadyListLimit)
2058     Pending.push(SU);
2059   else
2060     Available.push(SU);
2061 }
2062 
2063 /// Move the boundary of scheduled code by one cycle.
2064 void SchedBoundary::bumpCycle(unsigned NextCycle) {
2065   if (SchedModel->getMicroOpBufferSize() == 0) {
2066     assert(MinReadyCycle < std::numeric_limits<unsigned>::max() &&
2067            "MinReadyCycle uninitialized");
2068     if (MinReadyCycle > NextCycle)
2069       NextCycle = MinReadyCycle;
2070   }
2071   // Update the current micro-ops, which will issue in the next cycle.
2072   unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
2073   CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
2074 
2075   // Decrement DependentLatency based on the next cycle.
2076   if ((NextCycle - CurrCycle) > DependentLatency)
2077     DependentLatency = 0;
2078   else
2079     DependentLatency -= (NextCycle - CurrCycle);
2080 
2081   if (!HazardRec->isEnabled()) {
2082     // Bypass HazardRec virtual calls.
2083     CurrCycle = NextCycle;
2084   } else {
2085     // Bypass getHazardType calls in case of long latency.
2086     for (; CurrCycle != NextCycle; ++CurrCycle) {
2087       if (isTop())
2088         HazardRec->AdvanceCycle();
2089       else
2090         HazardRec->RecedeCycle();
2091     }
2092   }
2093   CheckPending = true;
2094   IsResourceLimited =
2095       checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2096                          getScheduledLatency());
2097 
2098   LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName()
2099                     << '\n');
2100 }
2101 
2102 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
2103   ExecutedResCounts[PIdx] += Count;
2104   if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
2105     MaxExecutedResCount = ExecutedResCounts[PIdx];
2106 }
2107 
2108 /// Add the given processor resource to this scheduled zone.
2109 ///
2110 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
2111 /// during which this resource is consumed.
2112 ///
2113 /// \return the next cycle at which the instruction may execute without
2114 /// oversubscribing resources.
2115 unsigned SchedBoundary::
2116 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
2117   unsigned Factor = SchedModel->getResourceFactor(PIdx);
2118   unsigned Count = Factor * Cycles;
2119   LLVM_DEBUG(dbgs() << "  " << SchedModel->getResourceName(PIdx) << " +"
2120                     << Cycles << "x" << Factor << "u\n");
2121 
2122   // Update Executed resources counts.
2123   incExecutedResources(PIdx, Count);
2124   assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
2125   Rem->RemainingCounts[PIdx] -= Count;
2126 
2127   // Check if this resource exceeds the current critical resource. If so, it
2128   // becomes the critical resource.
2129   if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
2130     ZoneCritResIdx = PIdx;
2131     LLVM_DEBUG(dbgs() << "  *** Critical resource "
2132                       << SchedModel->getResourceName(PIdx) << ": "
2133                       << getResourceCount(PIdx) / SchedModel->getLatencyFactor()
2134                       << "c\n");
2135   }
2136   // For reserved resources, record the highest cycle using the resource.
2137   unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles);
2138   if (NextAvailable > CurrCycle) {
2139     LLVM_DEBUG(dbgs() << "  Resource conflict: "
2140                       << SchedModel->getProcResource(PIdx)->Name
2141                       << " reserved until @" << NextAvailable << "\n");
2142   }
2143   return NextAvailable;
2144 }
2145 
2146 /// Move the boundary of scheduled code by one SUnit.
2147 void SchedBoundary::bumpNode(SUnit *SU) {
2148   // Update the reservation table.
2149   if (HazardRec->isEnabled()) {
2150     if (!isTop() && SU->isCall) {
2151       // Calls are scheduled with their preceding instructions. For bottom-up
2152       // scheduling, clear the pipeline state before emitting.
2153       HazardRec->Reset();
2154     }
2155     HazardRec->EmitInstruction(SU);
2156   }
2157   // checkHazard should prevent scheduling multiple instructions per cycle that
2158   // exceed the issue width.
2159   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2160   unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
2161   assert(
2162       (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
2163       "Cannot schedule this instruction's MicroOps in the current cycle.");
2164 
2165   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2166   LLVM_DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
2167 
2168   unsigned NextCycle = CurrCycle;
2169   switch (SchedModel->getMicroOpBufferSize()) {
2170   case 0:
2171     assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
2172     break;
2173   case 1:
2174     if (ReadyCycle > NextCycle) {
2175       NextCycle = ReadyCycle;
2176       LLVM_DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
2177     }
2178     break;
2179   default:
2180     // We don't currently model the OOO reorder buffer, so consider all
2181     // scheduled MOps to be "retired". We do loosely model in-order resource
2182     // latency. If this instruction uses an in-order resource, account for any
2183     // likely stall cycles.
2184     if (SU->isUnbuffered && ReadyCycle > NextCycle)
2185       NextCycle = ReadyCycle;
2186     break;
2187   }
2188   RetiredMOps += IncMOps;
2189 
2190   // Update resource counts and critical resource.
2191   if (SchedModel->hasInstrSchedModel()) {
2192     unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
2193     assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
2194     Rem->RemIssueCount -= DecRemIssue;
2195     if (ZoneCritResIdx) {
2196       // Scale scheduled micro-ops for comparing with the critical resource.
2197       unsigned ScaledMOps =
2198         RetiredMOps * SchedModel->getMicroOpFactor();
2199 
2200       // If scaled micro-ops are now more than the previous critical resource by
2201       // a full cycle, then micro-ops issue becomes critical.
2202       if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
2203           >= (int)SchedModel->getLatencyFactor()) {
2204         ZoneCritResIdx = 0;
2205         LLVM_DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
2206                           << ScaledMOps / SchedModel->getLatencyFactor()
2207                           << "c\n");
2208       }
2209     }
2210     for (TargetSchedModel::ProcResIter
2211            PI = SchedModel->getWriteProcResBegin(SC),
2212            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2213       unsigned RCycle =
2214         countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
2215       if (RCycle > NextCycle)
2216         NextCycle = RCycle;
2217     }
2218     if (SU->hasReservedResource) {
2219       // For reserved resources, record the highest cycle using the resource.
2220       // For top-down scheduling, this is the cycle in which we schedule this
2221       // instruction plus the number of cycles the operations reserves the
2222       // resource. For bottom-up is it simply the instruction's cycle.
2223       for (TargetSchedModel::ProcResIter
2224              PI = SchedModel->getWriteProcResBegin(SC),
2225              PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2226         unsigned PIdx = PI->ProcResourceIdx;
2227         if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
2228           if (isTop()) {
2229             ReservedCycles[PIdx] =
2230               std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles);
2231           }
2232           else
2233             ReservedCycles[PIdx] = NextCycle;
2234         }
2235       }
2236     }
2237   }
2238   // Update ExpectedLatency and DependentLatency.
2239   unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2240   unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2241   if (SU->getDepth() > TopLatency) {
2242     TopLatency = SU->getDepth();
2243     LLVM_DEBUG(dbgs() << "  " << Available.getName() << " TopLatency SU("
2244                       << SU->NodeNum << ") " << TopLatency << "c\n");
2245   }
2246   if (SU->getHeight() > BotLatency) {
2247     BotLatency = SU->getHeight();
2248     LLVM_DEBUG(dbgs() << "  " << Available.getName() << " BotLatency SU("
2249                       << SU->NodeNum << ") " << BotLatency << "c\n");
2250   }
2251   // If we stall for any reason, bump the cycle.
2252   if (NextCycle > CurrCycle)
2253     bumpCycle(NextCycle);
2254   else
2255     // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2256     // resource limited. If a stall occurred, bumpCycle does this.
2257     IsResourceLimited =
2258         checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2259                            getScheduledLatency());
2260 
2261   // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2262   // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2263   // one cycle.  Since we commonly reach the max MOps here, opportunistically
2264   // bump the cycle to avoid uselessly checking everything in the readyQ.
2265   CurrMOps += IncMOps;
2266 
2267   // Bump the cycle count for issue group constraints.
2268   // This must be done after NextCycle has been adjust for all other stalls.
2269   // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set
2270   // currCycle to X.
2271   if ((isTop() &&  SchedModel->mustEndGroup(SU->getInstr())) ||
2272       (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) {
2273     LLVM_DEBUG(dbgs() << "  Bump cycle to " << (isTop() ? "end" : "begin")
2274                       << " group\n");
2275     bumpCycle(++NextCycle);
2276   }
2277 
2278   while (CurrMOps >= SchedModel->getIssueWidth()) {
2279     LLVM_DEBUG(dbgs() << "  *** Max MOps " << CurrMOps << " at cycle "
2280                       << CurrCycle << '\n');
2281     bumpCycle(++NextCycle);
2282   }
2283   LLVM_DEBUG(dumpScheduledState());
2284 }
2285 
2286 /// Release pending ready nodes in to the available queue. This makes them
2287 /// visible to heuristics.
2288 void SchedBoundary::releasePending() {
2289   // If the available queue is empty, it is safe to reset MinReadyCycle.
2290   if (Available.empty())
2291     MinReadyCycle = std::numeric_limits<unsigned>::max();
2292 
2293   // Check to see if any of the pending instructions are ready to issue.  If
2294   // so, add them to the available queue.
2295   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2296   for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
2297     SUnit *SU = *(Pending.begin()+i);
2298     unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2299 
2300     if (ReadyCycle < MinReadyCycle)
2301       MinReadyCycle = ReadyCycle;
2302 
2303     if (!IsBuffered && ReadyCycle > CurrCycle)
2304       continue;
2305 
2306     if (checkHazard(SU))
2307       continue;
2308 
2309     if (Available.size() >= ReadyListLimit)
2310       break;
2311 
2312     Available.push(SU);
2313     Pending.remove(Pending.begin()+i);
2314     --i; --e;
2315   }
2316   CheckPending = false;
2317 }
2318 
2319 /// Remove SU from the ready set for this boundary.
2320 void SchedBoundary::removeReady(SUnit *SU) {
2321   if (Available.isInQueue(SU))
2322     Available.remove(Available.find(SU));
2323   else {
2324     assert(Pending.isInQueue(SU) && "bad ready count");
2325     Pending.remove(Pending.find(SU));
2326   }
2327 }
2328 
2329 /// If this queue only has one ready candidate, return it. As a side effect,
2330 /// defer any nodes that now hit a hazard, and advance the cycle until at least
2331 /// one node is ready. If multiple instructions are ready, return NULL.
2332 SUnit *SchedBoundary::pickOnlyChoice() {
2333   if (CheckPending)
2334     releasePending();
2335 
2336   if (CurrMOps > 0) {
2337     // Defer any ready instrs that now have a hazard.
2338     for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2339       if (checkHazard(*I)) {
2340         Pending.push(*I);
2341         I = Available.remove(I);
2342         continue;
2343       }
2344       ++I;
2345     }
2346   }
2347   for (unsigned i = 0; Available.empty(); ++i) {
2348 //  FIXME: Re-enable assert once PR20057 is resolved.
2349 //    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2350 //           "permanent hazard");
2351     (void)i;
2352     bumpCycle(CurrCycle + 1);
2353     releasePending();
2354   }
2355 
2356   LLVM_DEBUG(Pending.dump());
2357   LLVM_DEBUG(Available.dump());
2358 
2359   if (Available.size() == 1)
2360     return *Available.begin();
2361   return nullptr;
2362 }
2363 
2364 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2365 // This is useful information to dump after bumpNode.
2366 // Note that the Queue contents are more useful before pickNodeFromQueue.
2367 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const {
2368   unsigned ResFactor;
2369   unsigned ResCount;
2370   if (ZoneCritResIdx) {
2371     ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2372     ResCount = getResourceCount(ZoneCritResIdx);
2373   } else {
2374     ResFactor = SchedModel->getMicroOpFactor();
2375     ResCount = RetiredMOps * ResFactor;
2376   }
2377   unsigned LFactor = SchedModel->getLatencyFactor();
2378   dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2379          << "  Retired: " << RetiredMOps;
2380   dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
2381   dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
2382          << ResCount / ResFactor << " "
2383          << SchedModel->getResourceName(ZoneCritResIdx)
2384          << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
2385          << (IsResourceLimited ? "  - Resource" : "  - Latency")
2386          << " limited.\n";
2387 }
2388 #endif
2389 
2390 //===----------------------------------------------------------------------===//
2391 // GenericScheduler - Generic implementation of MachineSchedStrategy.
2392 //===----------------------------------------------------------------------===//
2393 
2394 void GenericSchedulerBase::SchedCandidate::
2395 initResourceDelta(const ScheduleDAGMI *DAG,
2396                   const TargetSchedModel *SchedModel) {
2397   if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2398     return;
2399 
2400   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2401   for (TargetSchedModel::ProcResIter
2402          PI = SchedModel->getWriteProcResBegin(SC),
2403          PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2404     if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2405       ResDelta.CritResources += PI->Cycles;
2406     if (PI->ProcResourceIdx == Policy.DemandResIdx)
2407       ResDelta.DemandedResources += PI->Cycles;
2408   }
2409 }
2410 
2411 /// Compute remaining latency. We need this both to determine whether the
2412 /// overall schedule has become latency-limited and whether the instructions
2413 /// outside this zone are resource or latency limited.
2414 ///
2415 /// The "dependent" latency is updated incrementally during scheduling as the
2416 /// max height/depth of scheduled nodes minus the cycles since it was
2417 /// scheduled:
2418 ///   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2419 ///
2420 /// The "independent" latency is the max ready queue depth:
2421 ///   ILat = max N.depth for N in Available|Pending
2422 ///
2423 /// RemainingLatency is the greater of independent and dependent latency.
2424 ///
2425 /// These computations are expensive, especially in DAGs with many edges, so
2426 /// only do them if necessary.
2427 static unsigned computeRemLatency(SchedBoundary &CurrZone) {
2428   unsigned RemLatency = CurrZone.getDependentLatency();
2429   RemLatency = std::max(RemLatency,
2430                         CurrZone.findMaxLatency(CurrZone.Available.elements()));
2431   RemLatency = std::max(RemLatency,
2432                         CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2433   return RemLatency;
2434 }
2435 
2436 /// Returns true if the current cycle plus remaning latency is greater than
2437 /// the cirtical path in the scheduling region.
2438 bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy,
2439                                                SchedBoundary &CurrZone,
2440                                                bool ComputeRemLatency,
2441                                                unsigned &RemLatency) const {
2442   // The current cycle is already greater than the critical path, so we are
2443   // already latnecy limited and don't need to compute the remaining latency.
2444   if (CurrZone.getCurrCycle() > Rem.CriticalPath)
2445     return true;
2446 
2447   // If we haven't scheduled anything yet, then we aren't latency limited.
2448   if (CurrZone.getCurrCycle() == 0)
2449     return false;
2450 
2451   if (ComputeRemLatency)
2452     RemLatency = computeRemLatency(CurrZone);
2453 
2454   return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath;
2455 }
2456 
2457 /// Set the CandPolicy given a scheduling zone given the current resources and
2458 /// latencies inside and outside the zone.
2459 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA,
2460                                      SchedBoundary &CurrZone,
2461                                      SchedBoundary *OtherZone) {
2462   // Apply preemptive heuristics based on the total latency and resources
2463   // inside and outside this zone. Potential stalls should be considered before
2464   // following this policy.
2465 
2466   // Compute the critical resource outside the zone.
2467   unsigned OtherCritIdx = 0;
2468   unsigned OtherCount =
2469     OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
2470 
2471   bool OtherResLimited = false;
2472   unsigned RemLatency = 0;
2473   bool RemLatencyComputed = false;
2474   if (SchedModel->hasInstrSchedModel() && OtherCount != 0) {
2475     RemLatency = computeRemLatency(CurrZone);
2476     RemLatencyComputed = true;
2477     OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(),
2478                                          OtherCount, RemLatency);
2479   }
2480 
2481   // Schedule aggressively for latency in PostRA mode. We don't check for
2482   // acyclic latency during PostRA, and highly out-of-order processors will
2483   // skip PostRA scheduling.
2484   if (!OtherResLimited &&
2485       (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed,
2486                                        RemLatency))) {
2487     Policy.ReduceLatency |= true;
2488     LLVM_DEBUG(dbgs() << "  " << CurrZone.Available.getName()
2489                       << " RemainingLatency " << RemLatency << " + "
2490                       << CurrZone.getCurrCycle() << "c > CritPath "
2491                       << Rem.CriticalPath << "\n");
2492   }
2493   // If the same resource is limiting inside and outside the zone, do nothing.
2494   if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
2495     return;
2496 
2497   LLVM_DEBUG(if (CurrZone.isResourceLimited()) {
2498     dbgs() << "  " << CurrZone.Available.getName() << " ResourceLimited: "
2499            << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n";
2500   } if (OtherResLimited) dbgs()
2501                  << "  RemainingLimit: "
2502                  << SchedModel->getResourceName(OtherCritIdx) << "\n";
2503              if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs()
2504              << "  Latency limited both directions.\n");
2505 
2506   if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
2507     Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
2508 
2509   if (OtherResLimited)
2510     Policy.DemandResIdx = OtherCritIdx;
2511 }
2512 
2513 #ifndef NDEBUG
2514 const char *GenericSchedulerBase::getReasonStr(
2515   GenericSchedulerBase::CandReason Reason) {
2516   switch (Reason) {
2517   case NoCand:         return "NOCAND    ";
2518   case Only1:          return "ONLY1     ";
2519   case PhysReg:        return "PHYS-REG  ";
2520   case RegExcess:      return "REG-EXCESS";
2521   case RegCritical:    return "REG-CRIT  ";
2522   case Stall:          return "STALL     ";
2523   case Cluster:        return "CLUSTER   ";
2524   case Weak:           return "WEAK      ";
2525   case RegMax:         return "REG-MAX   ";
2526   case ResourceReduce: return "RES-REDUCE";
2527   case ResourceDemand: return "RES-DEMAND";
2528   case TopDepthReduce: return "TOP-DEPTH ";
2529   case TopPathReduce:  return "TOP-PATH  ";
2530   case BotHeightReduce:return "BOT-HEIGHT";
2531   case BotPathReduce:  return "BOT-PATH  ";
2532   case NextDefUse:     return "DEF-USE   ";
2533   case NodeOrder:      return "ORDER     ";
2534   };
2535   llvm_unreachable("Unknown reason!");
2536 }
2537 
2538 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
2539   PressureChange P;
2540   unsigned ResIdx = 0;
2541   unsigned Latency = 0;
2542   switch (Cand.Reason) {
2543   default:
2544     break;
2545   case RegExcess:
2546     P = Cand.RPDelta.Excess;
2547     break;
2548   case RegCritical:
2549     P = Cand.RPDelta.CriticalMax;
2550     break;
2551   case RegMax:
2552     P = Cand.RPDelta.CurrentMax;
2553     break;
2554   case ResourceReduce:
2555     ResIdx = Cand.Policy.ReduceResIdx;
2556     break;
2557   case ResourceDemand:
2558     ResIdx = Cand.Policy.DemandResIdx;
2559     break;
2560   case TopDepthReduce:
2561     Latency = Cand.SU->getDepth();
2562     break;
2563   case TopPathReduce:
2564     Latency = Cand.SU->getHeight();
2565     break;
2566   case BotHeightReduce:
2567     Latency = Cand.SU->getHeight();
2568     break;
2569   case BotPathReduce:
2570     Latency = Cand.SU->getDepth();
2571     break;
2572   }
2573   dbgs() << "  Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2574   if (P.isValid())
2575     dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2576            << ":" << P.getUnitInc() << " ";
2577   else
2578     dbgs() << "      ";
2579   if (ResIdx)
2580     dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2581   else
2582     dbgs() << "         ";
2583   if (Latency)
2584     dbgs() << " " << Latency << " cycles ";
2585   else
2586     dbgs() << "          ";
2587   dbgs() << '\n';
2588 }
2589 #endif
2590 
2591 namespace llvm {
2592 /// Return true if this heuristic determines order.
2593 bool tryLess(int TryVal, int CandVal,
2594              GenericSchedulerBase::SchedCandidate &TryCand,
2595              GenericSchedulerBase::SchedCandidate &Cand,
2596              GenericSchedulerBase::CandReason Reason) {
2597   if (TryVal < CandVal) {
2598     TryCand.Reason = Reason;
2599     return true;
2600   }
2601   if (TryVal > CandVal) {
2602     if (Cand.Reason > Reason)
2603       Cand.Reason = Reason;
2604     return true;
2605   }
2606   return false;
2607 }
2608 
2609 bool tryGreater(int TryVal, int CandVal,
2610                 GenericSchedulerBase::SchedCandidate &TryCand,
2611                 GenericSchedulerBase::SchedCandidate &Cand,
2612                 GenericSchedulerBase::CandReason Reason) {
2613   if (TryVal > CandVal) {
2614     TryCand.Reason = Reason;
2615     return true;
2616   }
2617   if (TryVal < CandVal) {
2618     if (Cand.Reason > Reason)
2619       Cand.Reason = Reason;
2620     return true;
2621   }
2622   return false;
2623 }
2624 
2625 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
2626                 GenericSchedulerBase::SchedCandidate &Cand,
2627                 SchedBoundary &Zone) {
2628   if (Zone.isTop()) {
2629     if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
2630       if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2631                   TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
2632         return true;
2633     }
2634     if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2635                    TryCand, Cand, GenericSchedulerBase::TopPathReduce))
2636       return true;
2637   } else {
2638     if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
2639       if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2640                   TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
2641         return true;
2642     }
2643     if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2644                    TryCand, Cand, GenericSchedulerBase::BotPathReduce))
2645       return true;
2646   }
2647   return false;
2648 }
2649 } // end namespace llvm
2650 
2651 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) {
2652   LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2653                     << GenericSchedulerBase::getReasonStr(Reason) << '\n');
2654 }
2655 
2656 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) {
2657   tracePick(Cand.Reason, Cand.AtTop);
2658 }
2659 
2660 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
2661   assert(dag->hasVRegLiveness() &&
2662          "(PreRA)GenericScheduler needs vreg liveness");
2663   DAG = static_cast<ScheduleDAGMILive*>(dag);
2664   SchedModel = DAG->getSchedModel();
2665   TRI = DAG->TRI;
2666 
2667   Rem.init(DAG, SchedModel);
2668   Top.init(DAG, SchedModel, &Rem);
2669   Bot.init(DAG, SchedModel, &Rem);
2670 
2671   // Initialize resource counts.
2672 
2673   // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
2674   // are disabled, then these HazardRecs will be disabled.
2675   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2676   if (!Top.HazardRec) {
2677     Top.HazardRec =
2678         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2679             Itin, DAG);
2680   }
2681   if (!Bot.HazardRec) {
2682     Bot.HazardRec =
2683         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2684             Itin, DAG);
2685   }
2686   TopCand.SU = nullptr;
2687   BotCand.SU = nullptr;
2688 }
2689 
2690 /// Initialize the per-region scheduling policy.
2691 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
2692                                   MachineBasicBlock::iterator End,
2693                                   unsigned NumRegionInstrs) {
2694   const MachineFunction &MF = *Begin->getMF();
2695   const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
2696 
2697   // Avoid setting up the register pressure tracker for small regions to save
2698   // compile time. As a rough heuristic, only track pressure when the number of
2699   // schedulable instructions exceeds half the integer register file.
2700   RegionPolicy.ShouldTrackPressure = true;
2701   for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
2702     MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
2703     if (TLI->isTypeLegal(LegalIntVT)) {
2704       unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
2705         TLI->getRegClassFor(LegalIntVT));
2706       RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
2707     }
2708   }
2709 
2710   // For generic targets, we default to bottom-up, because it's simpler and more
2711   // compile-time optimizations have been implemented in that direction.
2712   RegionPolicy.OnlyBottomUp = true;
2713 
2714   // Allow the subtarget to override default policy.
2715   MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs);
2716 
2717   // After subtarget overrides, apply command line options.
2718   if (!EnableRegPressure)
2719     RegionPolicy.ShouldTrackPressure = false;
2720 
2721   // Check -misched-topdown/bottomup can force or unforce scheduling direction.
2722   // e.g. -misched-bottomup=false allows scheduling in both directions.
2723   assert((!ForceTopDown || !ForceBottomUp) &&
2724          "-misched-topdown incompatible with -misched-bottomup");
2725   if (ForceBottomUp.getNumOccurrences() > 0) {
2726     RegionPolicy.OnlyBottomUp = ForceBottomUp;
2727     if (RegionPolicy.OnlyBottomUp)
2728       RegionPolicy.OnlyTopDown = false;
2729   }
2730   if (ForceTopDown.getNumOccurrences() > 0) {
2731     RegionPolicy.OnlyTopDown = ForceTopDown;
2732     if (RegionPolicy.OnlyTopDown)
2733       RegionPolicy.OnlyBottomUp = false;
2734   }
2735 }
2736 
2737 void GenericScheduler::dumpPolicy() const {
2738   // Cannot completely remove virtual function even in release mode.
2739 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2740   dbgs() << "GenericScheduler RegionPolicy: "
2741          << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
2742          << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
2743          << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
2744          << "\n";
2745 #endif
2746 }
2747 
2748 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
2749 /// critical path by more cycles than it takes to drain the instruction buffer.
2750 /// We estimate an upper bounds on in-flight instructions as:
2751 ///
2752 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
2753 /// InFlightIterations = AcyclicPath / CyclesPerIteration
2754 /// InFlightResources = InFlightIterations * LoopResources
2755 ///
2756 /// TODO: Check execution resources in addition to IssueCount.
2757 void GenericScheduler::checkAcyclicLatency() {
2758   if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
2759     return;
2760 
2761   // Scaled number of cycles per loop iteration.
2762   unsigned IterCount =
2763     std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
2764              Rem.RemIssueCount);
2765   // Scaled acyclic critical path.
2766   unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
2767   // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
2768   unsigned InFlightCount =
2769     (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
2770   unsigned BufferLimit =
2771     SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
2772 
2773   Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
2774 
2775   LLVM_DEBUG(
2776       dbgs() << "IssueCycles="
2777              << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
2778              << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
2779              << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount
2780              << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
2781              << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
2782       if (Rem.IsAcyclicLatencyLimited) dbgs() << "  ACYCLIC LATENCY LIMIT\n");
2783 }
2784 
2785 void GenericScheduler::registerRoots() {
2786   Rem.CriticalPath = DAG->ExitSU.getDepth();
2787 
2788   // Some roots may not feed into ExitSU. Check all of them in case.
2789   for (const SUnit *SU : Bot.Available) {
2790     if (SU->getDepth() > Rem.CriticalPath)
2791       Rem.CriticalPath = SU->getDepth();
2792   }
2793   LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
2794   if (DumpCriticalPathLength) {
2795     errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
2796   }
2797 
2798   if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) {
2799     Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
2800     checkAcyclicLatency();
2801   }
2802 }
2803 
2804 namespace llvm {
2805 bool tryPressure(const PressureChange &TryP,
2806                  const PressureChange &CandP,
2807                  GenericSchedulerBase::SchedCandidate &TryCand,
2808                  GenericSchedulerBase::SchedCandidate &Cand,
2809                  GenericSchedulerBase::CandReason Reason,
2810                  const TargetRegisterInfo *TRI,
2811                  const MachineFunction &MF) {
2812   // If one candidate decreases and the other increases, go with it.
2813   // Invalid candidates have UnitInc==0.
2814   if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
2815                  Reason)) {
2816     return true;
2817   }
2818   // Do not compare the magnitude of pressure changes between top and bottom
2819   // boundary.
2820   if (Cand.AtTop != TryCand.AtTop)
2821     return false;
2822 
2823   // If both candidates affect the same set in the same boundary, go with the
2824   // smallest increase.
2825   unsigned TryPSet = TryP.getPSetOrMax();
2826   unsigned CandPSet = CandP.getPSetOrMax();
2827   if (TryPSet == CandPSet) {
2828     return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
2829                    Reason);
2830   }
2831 
2832   int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
2833                                  std::numeric_limits<int>::max();
2834 
2835   int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
2836                                    std::numeric_limits<int>::max();
2837 
2838   // If the candidates are decreasing pressure, reverse priority.
2839   if (TryP.getUnitInc() < 0)
2840     std::swap(TryRank, CandRank);
2841   return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
2842 }
2843 
2844 unsigned getWeakLeft(const SUnit *SU, bool isTop) {
2845   return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
2846 }
2847 
2848 /// Minimize physical register live ranges. Regalloc wants them adjacent to
2849 /// their physreg def/use.
2850 ///
2851 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
2852 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
2853 /// with the operation that produces or consumes the physreg. We'll do this when
2854 /// regalloc has support for parallel copies.
2855 int biasPhysReg(const SUnit *SU, bool isTop) {
2856   const MachineInstr *MI = SU->getInstr();
2857 
2858   if (MI->isCopy()) {
2859     unsigned ScheduledOper = isTop ? 1 : 0;
2860     unsigned UnscheduledOper = isTop ? 0 : 1;
2861     // If we have already scheduled the physreg produce/consumer, immediately
2862     // schedule the copy.
2863     if (TargetRegisterInfo::isPhysicalRegister(
2864             MI->getOperand(ScheduledOper).getReg()))
2865       return 1;
2866     // If the physreg is at the boundary, defer it. Otherwise schedule it
2867     // immediately to free the dependent. We can hoist the copy later.
2868     bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
2869     if (TargetRegisterInfo::isPhysicalRegister(
2870             MI->getOperand(UnscheduledOper).getReg()))
2871       return AtBoundary ? -1 : 1;
2872   }
2873 
2874   if (MI->isMoveImmediate()) {
2875     // If we have a move immediate and all successors have been assigned, bias
2876     // towards scheduling this later. Make sure all register defs are to
2877     // physical registers.
2878     bool DoBias = true;
2879     for (const MachineOperand &Op : MI->defs()) {
2880       if (Op.isReg() && !TargetRegisterInfo::isPhysicalRegister(Op.getReg())) {
2881         DoBias = false;
2882         break;
2883       }
2884     }
2885 
2886     if (DoBias)
2887       return isTop ? -1 : 1;
2888   }
2889 
2890   return 0;
2891 }
2892 } // end namespace llvm
2893 
2894 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU,
2895                                      bool AtTop,
2896                                      const RegPressureTracker &RPTracker,
2897                                      RegPressureTracker &TempTracker) {
2898   Cand.SU = SU;
2899   Cand.AtTop = AtTop;
2900   if (DAG->isTrackingPressure()) {
2901     if (AtTop) {
2902       TempTracker.getMaxDownwardPressureDelta(
2903         Cand.SU->getInstr(),
2904         Cand.RPDelta,
2905         DAG->getRegionCriticalPSets(),
2906         DAG->getRegPressure().MaxSetPressure);
2907     } else {
2908       if (VerifyScheduling) {
2909         TempTracker.getMaxUpwardPressureDelta(
2910           Cand.SU->getInstr(),
2911           &DAG->getPressureDiff(Cand.SU),
2912           Cand.RPDelta,
2913           DAG->getRegionCriticalPSets(),
2914           DAG->getRegPressure().MaxSetPressure);
2915       } else {
2916         RPTracker.getUpwardPressureDelta(
2917           Cand.SU->getInstr(),
2918           DAG->getPressureDiff(Cand.SU),
2919           Cand.RPDelta,
2920           DAG->getRegionCriticalPSets(),
2921           DAG->getRegPressure().MaxSetPressure);
2922       }
2923     }
2924   }
2925   LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs()
2926              << "  Try  SU(" << Cand.SU->NodeNum << ") "
2927              << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":"
2928              << Cand.RPDelta.Excess.getUnitInc() << "\n");
2929 }
2930 
2931 /// Apply a set of heuristics to a new candidate. Heuristics are currently
2932 /// hierarchical. This may be more efficient than a graduated cost model because
2933 /// we don't need to evaluate all aspects of the model for each node in the
2934 /// queue. But it's really done to make the heuristics easier to debug and
2935 /// statistically analyze.
2936 ///
2937 /// \param Cand provides the policy and current best candidate.
2938 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
2939 /// \param Zone describes the scheduled zone that we are extending, or nullptr
2940 //              if Cand is from a different zone than TryCand.
2941 void GenericScheduler::tryCandidate(SchedCandidate &Cand,
2942                                     SchedCandidate &TryCand,
2943                                     SchedBoundary *Zone) const {
2944   // Initialize the candidate if needed.
2945   if (!Cand.isValid()) {
2946     TryCand.Reason = NodeOrder;
2947     return;
2948   }
2949 
2950   // Bias PhysReg Defs and copies to their uses and defined respectively.
2951   if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop),
2952                  biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg))
2953     return;
2954 
2955   // Avoid exceeding the target's limit.
2956   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
2957                                                Cand.RPDelta.Excess,
2958                                                TryCand, Cand, RegExcess, TRI,
2959                                                DAG->MF))
2960     return;
2961 
2962   // Avoid increasing the max critical pressure in the scheduled region.
2963   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
2964                                                Cand.RPDelta.CriticalMax,
2965                                                TryCand, Cand, RegCritical, TRI,
2966                                                DAG->MF))
2967     return;
2968 
2969   // We only compare a subset of features when comparing nodes between
2970   // Top and Bottom boundary. Some properties are simply incomparable, in many
2971   // other instances we should only override the other boundary if something
2972   // is a clear good pick on one boundary. Skip heuristics that are more
2973   // "tie-breaking" in nature.
2974   bool SameBoundary = Zone != nullptr;
2975   if (SameBoundary) {
2976     // For loops that are acyclic path limited, aggressively schedule for
2977     // latency. Within an single cycle, whenever CurrMOps > 0, allow normal
2978     // heuristics to take precedence.
2979     if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() &&
2980         tryLatency(TryCand, Cand, *Zone))
2981       return;
2982 
2983     // Prioritize instructions that read unbuffered resources by stall cycles.
2984     if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
2985                 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
2986       return;
2987   }
2988 
2989   // Keep clustered nodes together to encourage downstream peephole
2990   // optimizations which may reduce resource requirements.
2991   //
2992   // This is a best effort to set things up for a post-RA pass. Optimizations
2993   // like generating loads of multiple registers should ideally be done within
2994   // the scheduler pass by combining the loads during DAG postprocessing.
2995   const SUnit *CandNextClusterSU =
2996     Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
2997   const SUnit *TryCandNextClusterSU =
2998     TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
2999   if (tryGreater(TryCand.SU == TryCandNextClusterSU,
3000                  Cand.SU == CandNextClusterSU,
3001                  TryCand, Cand, Cluster))
3002     return;
3003 
3004   if (SameBoundary) {
3005     // Weak edges are for clustering and other constraints.
3006     if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
3007                 getWeakLeft(Cand.SU, Cand.AtTop),
3008                 TryCand, Cand, Weak))
3009       return;
3010   }
3011 
3012   // Avoid increasing the max pressure of the entire region.
3013   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
3014                                                Cand.RPDelta.CurrentMax,
3015                                                TryCand, Cand, RegMax, TRI,
3016                                                DAG->MF))
3017     return;
3018 
3019   if (SameBoundary) {
3020     // Avoid critical resource consumption and balance the schedule.
3021     TryCand.initResourceDelta(DAG, SchedModel);
3022     if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3023                 TryCand, Cand, ResourceReduce))
3024       return;
3025     if (tryGreater(TryCand.ResDelta.DemandedResources,
3026                    Cand.ResDelta.DemandedResources,
3027                    TryCand, Cand, ResourceDemand))
3028       return;
3029 
3030     // Avoid serializing long latency dependence chains.
3031     // For acyclic path limited loops, latency was already checked above.
3032     if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency &&
3033         !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone))
3034       return;
3035 
3036     // Fall through to original instruction order.
3037     if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
3038         || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
3039       TryCand.Reason = NodeOrder;
3040     }
3041   }
3042 }
3043 
3044 /// Pick the best candidate from the queue.
3045 ///
3046 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
3047 /// DAG building. To adjust for the current scheduling location we need to
3048 /// maintain the number of vreg uses remaining to be top-scheduled.
3049 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
3050                                          const CandPolicy &ZonePolicy,
3051                                          const RegPressureTracker &RPTracker,
3052                                          SchedCandidate &Cand) {
3053   // getMaxPressureDelta temporarily modifies the tracker.
3054   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
3055 
3056   ReadyQueue &Q = Zone.Available;
3057   for (SUnit *SU : Q) {
3058 
3059     SchedCandidate TryCand(ZonePolicy);
3060     initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker);
3061     // Pass SchedBoundary only when comparing nodes from the same boundary.
3062     SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
3063     tryCandidate(Cand, TryCand, ZoneArg);
3064     if (TryCand.Reason != NoCand) {
3065       // Initialize resource delta if needed in case future heuristics query it.
3066       if (TryCand.ResDelta == SchedResourceDelta())
3067         TryCand.initResourceDelta(DAG, SchedModel);
3068       Cand.setBest(TryCand);
3069       LLVM_DEBUG(traceCandidate(Cand));
3070     }
3071   }
3072 }
3073 
3074 /// Pick the best candidate node from either the top or bottom queue.
3075 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
3076   // Schedule as far as possible in the direction of no choice. This is most
3077   // efficient, but also provides the best heuristics for CriticalPSets.
3078   if (SUnit *SU = Bot.pickOnlyChoice()) {
3079     IsTopNode = false;
3080     tracePick(Only1, false);
3081     return SU;
3082   }
3083   if (SUnit *SU = Top.pickOnlyChoice()) {
3084     IsTopNode = true;
3085     tracePick(Only1, true);
3086     return SU;
3087   }
3088   // Set the bottom-up policy based on the state of the current bottom zone and
3089   // the instructions outside the zone, including the top zone.
3090   CandPolicy BotPolicy;
3091   setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
3092   // Set the top-down policy based on the state of the current top zone and
3093   // the instructions outside the zone, including the bottom zone.
3094   CandPolicy TopPolicy;
3095   setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
3096 
3097   // See if BotCand is still valid (because we previously scheduled from Top).
3098   LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
3099   if (!BotCand.isValid() || BotCand.SU->isScheduled ||
3100       BotCand.Policy != BotPolicy) {
3101     BotCand.reset(CandPolicy());
3102     pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
3103     assert(BotCand.Reason != NoCand && "failed to find the first candidate");
3104   } else {
3105     LLVM_DEBUG(traceCandidate(BotCand));
3106 #ifndef NDEBUG
3107     if (VerifyScheduling) {
3108       SchedCandidate TCand;
3109       TCand.reset(CandPolicy());
3110       pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
3111       assert(TCand.SU == BotCand.SU &&
3112              "Last pick result should correspond to re-picking right now");
3113     }
3114 #endif
3115   }
3116 
3117   // Check if the top Q has a better candidate.
3118   LLVM_DEBUG(dbgs() << "Picking from Top:\n");
3119   if (!TopCand.isValid() || TopCand.SU->isScheduled ||
3120       TopCand.Policy != TopPolicy) {
3121     TopCand.reset(CandPolicy());
3122     pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
3123     assert(TopCand.Reason != NoCand && "failed to find the first candidate");
3124   } else {
3125     LLVM_DEBUG(traceCandidate(TopCand));
3126 #ifndef NDEBUG
3127     if (VerifyScheduling) {
3128       SchedCandidate TCand;
3129       TCand.reset(CandPolicy());
3130       pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
3131       assert(TCand.SU == TopCand.SU &&
3132            "Last pick result should correspond to re-picking right now");
3133     }
3134 #endif
3135   }
3136 
3137   // Pick best from BotCand and TopCand.
3138   assert(BotCand.isValid());
3139   assert(TopCand.isValid());
3140   SchedCandidate Cand = BotCand;
3141   TopCand.Reason = NoCand;
3142   tryCandidate(Cand, TopCand, nullptr);
3143   if (TopCand.Reason != NoCand) {
3144     Cand.setBest(TopCand);
3145     LLVM_DEBUG(traceCandidate(Cand));
3146   }
3147 
3148   IsTopNode = Cand.AtTop;
3149   tracePick(Cand);
3150   return Cand.SU;
3151 }
3152 
3153 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
3154 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
3155   if (DAG->top() == DAG->bottom()) {
3156     assert(Top.Available.empty() && Top.Pending.empty() &&
3157            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
3158     return nullptr;
3159   }
3160   SUnit *SU;
3161   do {
3162     if (RegionPolicy.OnlyTopDown) {
3163       SU = Top.pickOnlyChoice();
3164       if (!SU) {
3165         CandPolicy NoPolicy;
3166         TopCand.reset(NoPolicy);
3167         pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
3168         assert(TopCand.Reason != NoCand && "failed to find a candidate");
3169         tracePick(TopCand);
3170         SU = TopCand.SU;
3171       }
3172       IsTopNode = true;
3173     } else if (RegionPolicy.OnlyBottomUp) {
3174       SU = Bot.pickOnlyChoice();
3175       if (!SU) {
3176         CandPolicy NoPolicy;
3177         BotCand.reset(NoPolicy);
3178         pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
3179         assert(BotCand.Reason != NoCand && "failed to find a candidate");
3180         tracePick(BotCand);
3181         SU = BotCand.SU;
3182       }
3183       IsTopNode = false;
3184     } else {
3185       SU = pickNodeBidirectional(IsTopNode);
3186     }
3187   } while (SU->isScheduled);
3188 
3189   if (SU->isTopReady())
3190     Top.removeReady(SU);
3191   if (SU->isBottomReady())
3192     Bot.removeReady(SU);
3193 
3194   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3195                     << *SU->getInstr());
3196   return SU;
3197 }
3198 
3199 void GenericScheduler::reschedulePhysReg(SUnit *SU, bool isTop) {
3200   MachineBasicBlock::iterator InsertPos = SU->getInstr();
3201   if (!isTop)
3202     ++InsertPos;
3203   SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
3204 
3205   // Find already scheduled copies with a single physreg dependence and move
3206   // them just above the scheduled instruction.
3207   for (SDep &Dep : Deps) {
3208     if (Dep.getKind() != SDep::Data || !TRI->isPhysicalRegister(Dep.getReg()))
3209       continue;
3210     SUnit *DepSU = Dep.getSUnit();
3211     if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
3212       continue;
3213     MachineInstr *Copy = DepSU->getInstr();
3214     if (!Copy->isCopy() && !Copy->isMoveImmediate())
3215       continue;
3216     LLVM_DEBUG(dbgs() << "  Rescheduling physreg copy ";
3217                DAG->dumpNode(*Dep.getSUnit()));
3218     DAG->moveInstruction(Copy, InsertPos);
3219   }
3220 }
3221 
3222 /// Update the scheduler's state after scheduling a node. This is the same node
3223 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
3224 /// update it's state based on the current cycle before MachineSchedStrategy
3225 /// does.
3226 ///
3227 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
3228 /// them here. See comments in biasPhysReg.
3229 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3230   if (IsTopNode) {
3231     SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3232     Top.bumpNode(SU);
3233     if (SU->hasPhysRegUses)
3234       reschedulePhysReg(SU, true);
3235   } else {
3236     SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
3237     Bot.bumpNode(SU);
3238     if (SU->hasPhysRegDefs)
3239       reschedulePhysReg(SU, false);
3240   }
3241 }
3242 
3243 /// Create the standard converging machine scheduler. This will be used as the
3244 /// default scheduler if the target does not set a default.
3245 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) {
3246   ScheduleDAGMILive *DAG =
3247       new ScheduleDAGMILive(C, llvm::make_unique<GenericScheduler>(C));
3248   // Register DAG post-processors.
3249   //
3250   // FIXME: extend the mutation API to allow earlier mutations to instantiate
3251   // data and pass it to later mutations. Have a single mutation that gathers
3252   // the interesting nodes in one pass.
3253   DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI));
3254   return DAG;
3255 }
3256 
3257 static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) {
3258   return createGenericSchedLive(C);
3259 }
3260 
3261 static MachineSchedRegistry
3262 GenericSchedRegistry("converge", "Standard converging scheduler.",
3263                      createConveringSched);
3264 
3265 //===----------------------------------------------------------------------===//
3266 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
3267 //===----------------------------------------------------------------------===//
3268 
3269 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
3270   DAG = Dag;
3271   SchedModel = DAG->getSchedModel();
3272   TRI = DAG->TRI;
3273 
3274   Rem.init(DAG, SchedModel);
3275   Top.init(DAG, SchedModel, &Rem);
3276   BotRoots.clear();
3277 
3278   // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
3279   // or are disabled, then these HazardRecs will be disabled.
3280   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3281   if (!Top.HazardRec) {
3282     Top.HazardRec =
3283         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3284             Itin, DAG);
3285   }
3286 }
3287 
3288 void PostGenericScheduler::registerRoots() {
3289   Rem.CriticalPath = DAG->ExitSU.getDepth();
3290 
3291   // Some roots may not feed into ExitSU. Check all of them in case.
3292   for (const SUnit *SU : BotRoots) {
3293     if (SU->getDepth() > Rem.CriticalPath)
3294       Rem.CriticalPath = SU->getDepth();
3295   }
3296   LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
3297   if (DumpCriticalPathLength) {
3298     errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
3299   }
3300 }
3301 
3302 /// Apply a set of heuristics to a new candidate for PostRA scheduling.
3303 ///
3304 /// \param Cand provides the policy and current best candidate.
3305 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3306 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
3307                                         SchedCandidate &TryCand) {
3308   // Initialize the candidate if needed.
3309   if (!Cand.isValid()) {
3310     TryCand.Reason = NodeOrder;
3311     return;
3312   }
3313 
3314   // Prioritize instructions that read unbuffered resources by stall cycles.
3315   if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
3316               Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3317     return;
3318 
3319   // Keep clustered nodes together.
3320   if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(),
3321                  Cand.SU == DAG->getNextClusterSucc(),
3322                  TryCand, Cand, Cluster))
3323     return;
3324 
3325   // Avoid critical resource consumption and balance the schedule.
3326   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3327               TryCand, Cand, ResourceReduce))
3328     return;
3329   if (tryGreater(TryCand.ResDelta.DemandedResources,
3330                  Cand.ResDelta.DemandedResources,
3331                  TryCand, Cand, ResourceDemand))
3332     return;
3333 
3334   // Avoid serializing long latency dependence chains.
3335   if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
3336     return;
3337   }
3338 
3339   // Fall through to original instruction order.
3340   if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
3341     TryCand.Reason = NodeOrder;
3342 }
3343 
3344 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
3345   ReadyQueue &Q = Top.Available;
3346   for (SUnit *SU : Q) {
3347     SchedCandidate TryCand(Cand.Policy);
3348     TryCand.SU = SU;
3349     TryCand.AtTop = true;
3350     TryCand.initResourceDelta(DAG, SchedModel);
3351     tryCandidate(Cand, TryCand);
3352     if (TryCand.Reason != NoCand) {
3353       Cand.setBest(TryCand);
3354       LLVM_DEBUG(traceCandidate(Cand));
3355     }
3356   }
3357 }
3358 
3359 /// Pick the next node to schedule.
3360 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
3361   if (DAG->top() == DAG->bottom()) {
3362     assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
3363     return nullptr;
3364   }
3365   SUnit *SU;
3366   do {
3367     SU = Top.pickOnlyChoice();
3368     if (SU) {
3369       tracePick(Only1, true);
3370     } else {
3371       CandPolicy NoPolicy;
3372       SchedCandidate TopCand(NoPolicy);
3373       // Set the top-down policy based on the state of the current top zone and
3374       // the instructions outside the zone, including the bottom zone.
3375       setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
3376       pickNodeFromQueue(TopCand);
3377       assert(TopCand.Reason != NoCand && "failed to find a candidate");
3378       tracePick(TopCand);
3379       SU = TopCand.SU;
3380     }
3381   } while (SU->isScheduled);
3382 
3383   IsTopNode = true;
3384   Top.removeReady(SU);
3385 
3386   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3387                     << *SU->getInstr());
3388   return SU;
3389 }
3390 
3391 /// Called after ScheduleDAGMI has scheduled an instruction and updated
3392 /// scheduled/remaining flags in the DAG nodes.
3393 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3394   SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3395   Top.bumpNode(SU);
3396 }
3397 
3398 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) {
3399   return new ScheduleDAGMI(C, llvm::make_unique<PostGenericScheduler>(C),
3400                            /*RemoveKillFlags=*/true);
3401 }
3402 
3403 //===----------------------------------------------------------------------===//
3404 // ILP Scheduler. Currently for experimental analysis of heuristics.
3405 //===----------------------------------------------------------------------===//
3406 
3407 namespace {
3408 
3409 /// Order nodes by the ILP metric.
3410 struct ILPOrder {
3411   const SchedDFSResult *DFSResult = nullptr;
3412   const BitVector *ScheduledTrees = nullptr;
3413   bool MaximizeILP;
3414 
3415   ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {}
3416 
3417   /// Apply a less-than relation on node priority.
3418   ///
3419   /// (Return true if A comes after B in the Q.)
3420   bool operator()(const SUnit *A, const SUnit *B) const {
3421     unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3422     unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3423     if (SchedTreeA != SchedTreeB) {
3424       // Unscheduled trees have lower priority.
3425       if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3426         return ScheduledTrees->test(SchedTreeB);
3427 
3428       // Trees with shallower connections have have lower priority.
3429       if (DFSResult->getSubtreeLevel(SchedTreeA)
3430           != DFSResult->getSubtreeLevel(SchedTreeB)) {
3431         return DFSResult->getSubtreeLevel(SchedTreeA)
3432           < DFSResult->getSubtreeLevel(SchedTreeB);
3433       }
3434     }
3435     if (MaximizeILP)
3436       return DFSResult->getILP(A) < DFSResult->getILP(B);
3437     else
3438       return DFSResult->getILP(A) > DFSResult->getILP(B);
3439   }
3440 };
3441 
3442 /// Schedule based on the ILP metric.
3443 class ILPScheduler : public MachineSchedStrategy {
3444   ScheduleDAGMILive *DAG = nullptr;
3445   ILPOrder Cmp;
3446 
3447   std::vector<SUnit*> ReadyQ;
3448 
3449 public:
3450   ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {}
3451 
3452   void initialize(ScheduleDAGMI *dag) override {
3453     assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
3454     DAG = static_cast<ScheduleDAGMILive*>(dag);
3455     DAG->computeDFSResult();
3456     Cmp.DFSResult = DAG->getDFSResult();
3457     Cmp.ScheduledTrees = &DAG->getScheduledTrees();
3458     ReadyQ.clear();
3459   }
3460 
3461   void registerRoots() override {
3462     // Restore the heap in ReadyQ with the updated DFS results.
3463     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3464   }
3465 
3466   /// Implement MachineSchedStrategy interface.
3467   /// -----------------------------------------
3468 
3469   /// Callback to select the highest priority node from the ready Q.
3470   SUnit *pickNode(bool &IsTopNode) override {
3471     if (ReadyQ.empty()) return nullptr;
3472     std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3473     SUnit *SU = ReadyQ.back();
3474     ReadyQ.pop_back();
3475     IsTopNode = false;
3476     LLVM_DEBUG(dbgs() << "Pick node "
3477                       << "SU(" << SU->NodeNum << ") "
3478                       << " ILP: " << DAG->getDFSResult()->getILP(SU)
3479                       << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU)
3480                       << " @"
3481                       << DAG->getDFSResult()->getSubtreeLevel(
3482                              DAG->getDFSResult()->getSubtreeID(SU))
3483                       << '\n'
3484                       << "Scheduling " << *SU->getInstr());
3485     return SU;
3486   }
3487 
3488   /// Scheduler callback to notify that a new subtree is scheduled.
3489   void scheduleTree(unsigned SubtreeID) override {
3490     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3491   }
3492 
3493   /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
3494   /// DFSResults, and resort the priority Q.
3495   void schedNode(SUnit *SU, bool IsTopNode) override {
3496     assert(!IsTopNode && "SchedDFSResult needs bottom-up");
3497   }
3498 
3499   void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
3500 
3501   void releaseBottomNode(SUnit *SU) override {
3502     ReadyQ.push_back(SU);
3503     std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3504   }
3505 };
3506 
3507 } // end anonymous namespace
3508 
3509 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
3510   return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(true));
3511 }
3512 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
3513   return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(false));
3514 }
3515 
3516 static MachineSchedRegistry ILPMaxRegistry(
3517   "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
3518 static MachineSchedRegistry ILPMinRegistry(
3519   "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
3520 
3521 //===----------------------------------------------------------------------===//
3522 // Machine Instruction Shuffler for Correctness Testing
3523 //===----------------------------------------------------------------------===//
3524 
3525 #ifndef NDEBUG
3526 namespace {
3527 
3528 /// Apply a less-than relation on the node order, which corresponds to the
3529 /// instruction order prior to scheduling. IsReverse implements greater-than.
3530 template<bool IsReverse>
3531 struct SUnitOrder {
3532   bool operator()(SUnit *A, SUnit *B) const {
3533     if (IsReverse)
3534       return A->NodeNum > B->NodeNum;
3535     else
3536       return A->NodeNum < B->NodeNum;
3537   }
3538 };
3539 
3540 /// Reorder instructions as much as possible.
3541 class InstructionShuffler : public MachineSchedStrategy {
3542   bool IsAlternating;
3543   bool IsTopDown;
3544 
3545   // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
3546   // gives nodes with a higher number higher priority causing the latest
3547   // instructions to be scheduled first.
3548   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>>
3549     TopQ;
3550 
3551   // When scheduling bottom-up, use greater-than as the queue priority.
3552   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>>
3553     BottomQ;
3554 
3555 public:
3556   InstructionShuffler(bool alternate, bool topdown)
3557     : IsAlternating(alternate), IsTopDown(topdown) {}
3558 
3559   void initialize(ScheduleDAGMI*) override {
3560     TopQ.clear();
3561     BottomQ.clear();
3562   }
3563 
3564   /// Implement MachineSchedStrategy interface.
3565   /// -----------------------------------------
3566 
3567   SUnit *pickNode(bool &IsTopNode) override {
3568     SUnit *SU;
3569     if (IsTopDown) {
3570       do {
3571         if (TopQ.empty()) return nullptr;
3572         SU = TopQ.top();
3573         TopQ.pop();
3574       } while (SU->isScheduled);
3575       IsTopNode = true;
3576     } else {
3577       do {
3578         if (BottomQ.empty()) return nullptr;
3579         SU = BottomQ.top();
3580         BottomQ.pop();
3581       } while (SU->isScheduled);
3582       IsTopNode = false;
3583     }
3584     if (IsAlternating)
3585       IsTopDown = !IsTopDown;
3586     return SU;
3587   }
3588 
3589   void schedNode(SUnit *SU, bool IsTopNode) override {}
3590 
3591   void releaseTopNode(SUnit *SU) override {
3592     TopQ.push(SU);
3593   }
3594   void releaseBottomNode(SUnit *SU) override {
3595     BottomQ.push(SU);
3596   }
3597 };
3598 
3599 } // end anonymous namespace
3600 
3601 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
3602   bool Alternate = !ForceTopDown && !ForceBottomUp;
3603   bool TopDown = !ForceBottomUp;
3604   assert((TopDown || !ForceTopDown) &&
3605          "-misched-topdown incompatible with -misched-bottomup");
3606   return new ScheduleDAGMILive(
3607       C, llvm::make_unique<InstructionShuffler>(Alternate, TopDown));
3608 }
3609 
3610 static MachineSchedRegistry ShufflerRegistry(
3611   "shuffle", "Shuffle machine instructions alternating directions",
3612   createInstructionShuffler);
3613 #endif // !NDEBUG
3614 
3615 //===----------------------------------------------------------------------===//
3616 // GraphWriter support for ScheduleDAGMILive.
3617 //===----------------------------------------------------------------------===//
3618 
3619 #ifndef NDEBUG
3620 namespace llvm {
3621 
3622 template<> struct GraphTraits<
3623   ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
3624 
3625 template<>
3626 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
3627   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
3628 
3629   static std::string getGraphName(const ScheduleDAG *G) {
3630     return G->MF.getName();
3631   }
3632 
3633   static bool renderGraphFromBottomUp() {
3634     return true;
3635   }
3636 
3637   static bool isNodeHidden(const SUnit *Node) {
3638     if (ViewMISchedCutoff == 0)
3639       return false;
3640     return (Node->Preds.size() > ViewMISchedCutoff
3641          || Node->Succs.size() > ViewMISchedCutoff);
3642   }
3643 
3644   /// If you want to override the dot attributes printed for a particular
3645   /// edge, override this method.
3646   static std::string getEdgeAttributes(const SUnit *Node,
3647                                        SUnitIterator EI,
3648                                        const ScheduleDAG *Graph) {
3649     if (EI.isArtificialDep())
3650       return "color=cyan,style=dashed";
3651     if (EI.isCtrlDep())
3652       return "color=blue,style=dashed";
3653     return "";
3654   }
3655 
3656   static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
3657     std::string Str;
3658     raw_string_ostream SS(Str);
3659     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3660     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3661       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3662     SS << "SU:" << SU->NodeNum;
3663     if (DFS)
3664       SS << " I:" << DFS->getNumInstrs(SU);
3665     return SS.str();
3666   }
3667 
3668   static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
3669     return G->getGraphNodeLabel(SU);
3670   }
3671 
3672   static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
3673     std::string Str("shape=Mrecord");
3674     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3675     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3676       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3677     if (DFS) {
3678       Str += ",style=filled,fillcolor=\"#";
3679       Str += DOT::getColorString(DFS->getSubtreeID(N));
3680       Str += '"';
3681     }
3682     return Str;
3683   }
3684 };
3685 
3686 } // end namespace llvm
3687 #endif // NDEBUG
3688 
3689 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
3690 /// rendered using 'dot'.
3691 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
3692 #ifndef NDEBUG
3693   ViewGraph(this, Name, false, Title);
3694 #else
3695   errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
3696          << "systems with Graphviz or gv!\n";
3697 #endif  // NDEBUG
3698 }
3699 
3700 /// Out-of-line implementation with no arguments is handy for gdb.
3701 void ScheduleDAGMI::viewGraph() {
3702   viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
3703 }
3704