1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // MachineScheduler schedules machine instructions after phi elimination. It 11 // preserves LiveIntervals so it can be invoked before register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineScheduler.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/PriorityQueue.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/LiveInterval.h" 25 #include "llvm/CodeGen/LiveIntervals.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineDominators.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineLoopInfo.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/MachinePassRegistry.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/RegisterClassInfo.h" 37 #include "llvm/CodeGen/RegisterPressure.h" 38 #include "llvm/CodeGen/ScheduleDAG.h" 39 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 40 #include "llvm/CodeGen/ScheduleDAGMutation.h" 41 #include "llvm/CodeGen/ScheduleDFS.h" 42 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 43 #include "llvm/CodeGen/SlotIndexes.h" 44 #include "llvm/CodeGen/TargetInstrInfo.h" 45 #include "llvm/CodeGen/TargetLowering.h" 46 #include "llvm/CodeGen/TargetPassConfig.h" 47 #include "llvm/CodeGen/TargetRegisterInfo.h" 48 #include "llvm/CodeGen/TargetSchedule.h" 49 #include "llvm/CodeGen/TargetSubtargetInfo.h" 50 #include "llvm/Config/llvm-config.h" 51 #include "llvm/MC/LaneBitmask.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Compiler.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/GraphWriter.h" 58 #include "llvm/Support/MachineValueType.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <algorithm> 61 #include <cassert> 62 #include <cstdint> 63 #include <iterator> 64 #include <limits> 65 #include <memory> 66 #include <string> 67 #include <tuple> 68 #include <utility> 69 #include <vector> 70 71 using namespace llvm; 72 73 #define DEBUG_TYPE "machine-scheduler" 74 75 namespace llvm { 76 77 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 78 cl::desc("Force top-down list scheduling")); 79 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 80 cl::desc("Force bottom-up list scheduling")); 81 cl::opt<bool> 82 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 83 cl::desc("Print critical path length to stdout")); 84 85 } // end namespace llvm 86 87 #ifndef NDEBUG 88 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 89 cl::desc("Pop up a window to show MISched dags after they are processed")); 90 91 /// In some situations a few uninteresting nodes depend on nearly all other 92 /// nodes in the graph, provide a cutoff to hide them. 93 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 94 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 95 96 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 97 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 98 99 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 100 cl::desc("Only schedule this function")); 101 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 102 cl::desc("Only schedule this MBB#")); 103 static cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden, 104 cl::desc("Print schedule DAGs")); 105 #else 106 static const bool ViewMISchedDAGs = false; 107 static const bool PrintDAGs = false; 108 #endif // NDEBUG 109 110 /// Avoid quadratic complexity in unusually large basic blocks by limiting the 111 /// size of the ready lists. 112 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden, 113 cl::desc("Limit ready list to N instructions"), cl::init(256)); 114 115 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 116 cl::desc("Enable register pressure scheduling."), cl::init(true)); 117 118 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 119 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 120 121 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden, 122 cl::desc("Enable memop clustering."), 123 cl::init(true)); 124 125 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, 126 cl::desc("Verify machine instrs before and after machine scheduling")); 127 128 // DAG subtrees must have at least this many nodes. 129 static const unsigned MinSubtreeSize = 8; 130 131 // Pin the vtables to this file. 132 void MachineSchedStrategy::anchor() {} 133 134 void ScheduleDAGMutation::anchor() {} 135 136 //===----------------------------------------------------------------------===// 137 // Machine Instruction Scheduling Pass and Registry 138 //===----------------------------------------------------------------------===// 139 140 MachineSchedContext::MachineSchedContext() { 141 RegClassInfo = new RegisterClassInfo(); 142 } 143 144 MachineSchedContext::~MachineSchedContext() { 145 delete RegClassInfo; 146 } 147 148 namespace { 149 150 /// Base class for a machine scheduler class that can run at any point. 151 class MachineSchedulerBase : public MachineSchedContext, 152 public MachineFunctionPass { 153 public: 154 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 155 156 void print(raw_ostream &O, const Module* = nullptr) const override; 157 158 protected: 159 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); 160 }; 161 162 /// MachineScheduler runs after coalescing and before register allocation. 163 class MachineScheduler : public MachineSchedulerBase { 164 public: 165 MachineScheduler(); 166 167 void getAnalysisUsage(AnalysisUsage &AU) const override; 168 169 bool runOnMachineFunction(MachineFunction&) override; 170 171 static char ID; // Class identification, replacement for typeinfo 172 173 protected: 174 ScheduleDAGInstrs *createMachineScheduler(); 175 }; 176 177 /// PostMachineScheduler runs after shortly before code emission. 178 class PostMachineScheduler : public MachineSchedulerBase { 179 public: 180 PostMachineScheduler(); 181 182 void getAnalysisUsage(AnalysisUsage &AU) const override; 183 184 bool runOnMachineFunction(MachineFunction&) override; 185 186 static char ID; // Class identification, replacement for typeinfo 187 188 protected: 189 ScheduleDAGInstrs *createPostMachineScheduler(); 190 }; 191 192 } // end anonymous namespace 193 194 char MachineScheduler::ID = 0; 195 196 char &llvm::MachineSchedulerID = MachineScheduler::ID; 197 198 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE, 199 "Machine Instruction Scheduler", false, false) 200 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 201 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 202 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 203 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 204 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE, 205 "Machine Instruction Scheduler", false, false) 206 207 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) { 208 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 209 } 210 211 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 212 AU.setPreservesCFG(); 213 AU.addRequiredID(MachineDominatorsID); 214 AU.addRequired<MachineLoopInfo>(); 215 AU.addRequired<AAResultsWrapperPass>(); 216 AU.addRequired<TargetPassConfig>(); 217 AU.addRequired<SlotIndexes>(); 218 AU.addPreserved<SlotIndexes>(); 219 AU.addRequired<LiveIntervals>(); 220 AU.addPreserved<LiveIntervals>(); 221 MachineFunctionPass::getAnalysisUsage(AU); 222 } 223 224 char PostMachineScheduler::ID = 0; 225 226 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 227 228 INITIALIZE_PASS(PostMachineScheduler, "postmisched", 229 "PostRA Machine Instruction Scheduler", false, false) 230 231 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) { 232 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 233 } 234 235 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 236 AU.setPreservesCFG(); 237 AU.addRequiredID(MachineDominatorsID); 238 AU.addRequired<MachineLoopInfo>(); 239 AU.addRequired<TargetPassConfig>(); 240 MachineFunctionPass::getAnalysisUsage(AU); 241 } 242 243 MachinePassRegistry MachineSchedRegistry::Registry; 244 245 /// A dummy default scheduler factory indicates whether the scheduler 246 /// is overridden on the command line. 247 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 248 return nullptr; 249 } 250 251 /// MachineSchedOpt allows command line selection of the scheduler. 252 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 253 RegisterPassParser<MachineSchedRegistry>> 254 MachineSchedOpt("misched", 255 cl::init(&useDefaultMachineSched), cl::Hidden, 256 cl::desc("Machine instruction scheduler to use")); 257 258 static MachineSchedRegistry 259 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 260 useDefaultMachineSched); 261 262 static cl::opt<bool> EnableMachineSched( 263 "enable-misched", 264 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 265 cl::Hidden); 266 267 static cl::opt<bool> EnablePostRAMachineSched( 268 "enable-post-misched", 269 cl::desc("Enable the post-ra machine instruction scheduling pass."), 270 cl::init(true), cl::Hidden); 271 272 /// Decrement this iterator until reaching the top or a non-debug instr. 273 static MachineBasicBlock::const_iterator 274 priorNonDebug(MachineBasicBlock::const_iterator I, 275 MachineBasicBlock::const_iterator Beg) { 276 assert(I != Beg && "reached the top of the region, cannot decrement"); 277 while (--I != Beg) { 278 if (!I->isDebugInstr()) 279 break; 280 } 281 return I; 282 } 283 284 /// Non-const version. 285 static MachineBasicBlock::iterator 286 priorNonDebug(MachineBasicBlock::iterator I, 287 MachineBasicBlock::const_iterator Beg) { 288 return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg) 289 .getNonConstIterator(); 290 } 291 292 /// If this iterator is a debug value, increment until reaching the End or a 293 /// non-debug instruction. 294 static MachineBasicBlock::const_iterator 295 nextIfDebug(MachineBasicBlock::const_iterator I, 296 MachineBasicBlock::const_iterator End) { 297 for(; I != End; ++I) { 298 if (!I->isDebugInstr()) 299 break; 300 } 301 return I; 302 } 303 304 /// Non-const version. 305 static MachineBasicBlock::iterator 306 nextIfDebug(MachineBasicBlock::iterator I, 307 MachineBasicBlock::const_iterator End) { 308 return nextIfDebug(MachineBasicBlock::const_iterator(I), End) 309 .getNonConstIterator(); 310 } 311 312 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 313 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 314 // Select the scheduler, or set the default. 315 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 316 if (Ctor != useDefaultMachineSched) 317 return Ctor(this); 318 319 // Get the default scheduler set by the target for this function. 320 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 321 if (Scheduler) 322 return Scheduler; 323 324 // Default to GenericScheduler. 325 return createGenericSchedLive(this); 326 } 327 328 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 329 /// the caller. We don't have a command line option to override the postRA 330 /// scheduler. The Target must configure it. 331 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 332 // Get the postRA scheduler set by the target for this function. 333 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 334 if (Scheduler) 335 return Scheduler; 336 337 // Default to GenericScheduler. 338 return createGenericSchedPostRA(this); 339 } 340 341 /// Top-level MachineScheduler pass driver. 342 /// 343 /// Visit blocks in function order. Divide each block into scheduling regions 344 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 345 /// consistent with the DAG builder, which traverses the interior of the 346 /// scheduling regions bottom-up. 347 /// 348 /// This design avoids exposing scheduling boundaries to the DAG builder, 349 /// simplifying the DAG builder's support for "special" target instructions. 350 /// At the same time the design allows target schedulers to operate across 351 /// scheduling boundaries, for example to bundle the boundary instructions 352 /// without reordering them. This creates complexity, because the target 353 /// scheduler must update the RegionBegin and RegionEnd positions cached by 354 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 355 /// design would be to split blocks at scheduling boundaries, but LLVM has a 356 /// general bias against block splitting purely for implementation simplicity. 357 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 358 if (skipFunction(mf.getFunction())) 359 return false; 360 361 if (EnableMachineSched.getNumOccurrences()) { 362 if (!EnableMachineSched) 363 return false; 364 } else if (!mf.getSubtarget().enableMachineScheduler()) 365 return false; 366 367 LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs())); 368 369 // Initialize the context of the pass. 370 MF = &mf; 371 MLI = &getAnalysis<MachineLoopInfo>(); 372 MDT = &getAnalysis<MachineDominatorTree>(); 373 PassConfig = &getAnalysis<TargetPassConfig>(); 374 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 375 376 LIS = &getAnalysis<LiveIntervals>(); 377 378 if (VerifyScheduling) { 379 LLVM_DEBUG(LIS->dump()); 380 MF->verify(this, "Before machine scheduling."); 381 } 382 RegClassInfo->runOnMachineFunction(*MF); 383 384 // Instantiate the selected scheduler for this target, function, and 385 // optimization level. 386 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 387 scheduleRegions(*Scheduler, false); 388 389 LLVM_DEBUG(LIS->dump()); 390 if (VerifyScheduling) 391 MF->verify(this, "After machine scheduling."); 392 return true; 393 } 394 395 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 396 if (skipFunction(mf.getFunction())) 397 return false; 398 399 if (EnablePostRAMachineSched.getNumOccurrences()) { 400 if (!EnablePostRAMachineSched) 401 return false; 402 } else if (!mf.getSubtarget().enablePostRAScheduler()) { 403 LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 404 return false; 405 } 406 LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 407 408 // Initialize the context of the pass. 409 MF = &mf; 410 MLI = &getAnalysis<MachineLoopInfo>(); 411 PassConfig = &getAnalysis<TargetPassConfig>(); 412 413 if (VerifyScheduling) 414 MF->verify(this, "Before post machine scheduling."); 415 416 // Instantiate the selected scheduler for this target, function, and 417 // optimization level. 418 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 419 scheduleRegions(*Scheduler, true); 420 421 if (VerifyScheduling) 422 MF->verify(this, "After post machine scheduling."); 423 return true; 424 } 425 426 /// Return true of the given instruction should not be included in a scheduling 427 /// region. 428 /// 429 /// MachineScheduler does not currently support scheduling across calls. To 430 /// handle calls, the DAG builder needs to be modified to create register 431 /// anti/output dependencies on the registers clobbered by the call's regmask 432 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 433 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 434 /// the boundary, but there would be no benefit to postRA scheduling across 435 /// calls this late anyway. 436 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 437 MachineBasicBlock *MBB, 438 MachineFunction *MF, 439 const TargetInstrInfo *TII) { 440 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF); 441 } 442 443 /// A region of an MBB for scheduling. 444 namespace { 445 struct SchedRegion { 446 /// RegionBegin is the first instruction in the scheduling region, and 447 /// RegionEnd is either MBB->end() or the scheduling boundary after the 448 /// last instruction in the scheduling region. These iterators cannot refer 449 /// to instructions outside of the identified scheduling region because 450 /// those may be reordered before scheduling this region. 451 MachineBasicBlock::iterator RegionBegin; 452 MachineBasicBlock::iterator RegionEnd; 453 unsigned NumRegionInstrs; 454 455 SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E, 456 unsigned N) : 457 RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {} 458 }; 459 } // end anonymous namespace 460 461 using MBBRegionsVector = SmallVector<SchedRegion, 16>; 462 463 static void 464 getSchedRegions(MachineBasicBlock *MBB, 465 MBBRegionsVector &Regions, 466 bool RegionsTopDown) { 467 MachineFunction *MF = MBB->getParent(); 468 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 469 470 MachineBasicBlock::iterator I = nullptr; 471 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 472 RegionEnd != MBB->begin(); RegionEnd = I) { 473 474 // Avoid decrementing RegionEnd for blocks with no terminator. 475 if (RegionEnd != MBB->end() || 476 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { 477 --RegionEnd; 478 } 479 480 // The next region starts above the previous region. Look backward in the 481 // instruction stream until we find the nearest boundary. 482 unsigned NumRegionInstrs = 0; 483 I = RegionEnd; 484 for (;I != MBB->begin(); --I) { 485 MachineInstr &MI = *std::prev(I); 486 if (isSchedBoundary(&MI, &*MBB, MF, TII)) 487 break; 488 if (!MI.isDebugInstr()) 489 // MBB::size() uses instr_iterator to count. Here we need a bundle to 490 // count as a single instruction. 491 ++NumRegionInstrs; 492 } 493 494 Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs)); 495 } 496 497 if (RegionsTopDown) 498 std::reverse(Regions.begin(), Regions.end()); 499 } 500 501 /// Main driver for both MachineScheduler and PostMachineScheduler. 502 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, 503 bool FixKillFlags) { 504 // Visit all machine basic blocks. 505 // 506 // TODO: Visit blocks in global postorder or postorder within the bottom-up 507 // loop tree. Then we can optionally compute global RegPressure. 508 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 509 MBB != MBBEnd; ++MBB) { 510 511 Scheduler.startBlock(&*MBB); 512 513 #ifndef NDEBUG 514 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 515 continue; 516 if (SchedOnlyBlock.getNumOccurrences() 517 && (int)SchedOnlyBlock != MBB->getNumber()) 518 continue; 519 #endif 520 521 // Break the block into scheduling regions [I, RegionEnd). RegionEnd 522 // points to the scheduling boundary at the bottom of the region. The DAG 523 // does not include RegionEnd, but the region does (i.e. the next 524 // RegionEnd is above the previous RegionBegin). If the current block has 525 // no terminator then RegionEnd == MBB->end() for the bottom region. 526 // 527 // All the regions of MBB are first found and stored in MBBRegions, which 528 // will be processed (MBB) top-down if initialized with true. 529 // 530 // The Scheduler may insert instructions during either schedule() or 531 // exitRegion(), even for empty regions. So the local iterators 'I' and 532 // 'RegionEnd' are invalid across these calls. Instructions must not be 533 // added to other regions than the current one without updating MBBRegions. 534 535 MBBRegionsVector MBBRegions; 536 getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown()); 537 for (MBBRegionsVector::iterator R = MBBRegions.begin(); 538 R != MBBRegions.end(); ++R) { 539 MachineBasicBlock::iterator I = R->RegionBegin; 540 MachineBasicBlock::iterator RegionEnd = R->RegionEnd; 541 unsigned NumRegionInstrs = R->NumRegionInstrs; 542 543 // Notify the scheduler of the region, even if we may skip scheduling 544 // it. Perhaps it still needs to be bundled. 545 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); 546 547 // Skip empty scheduling regions (0 or 1 schedulable instructions). 548 if (I == RegionEnd || I == std::prev(RegionEnd)) { 549 // Close the current region. Bundle the terminator if needed. 550 // This invalidates 'RegionEnd' and 'I'. 551 Scheduler.exitRegion(); 552 continue; 553 } 554 LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n"); 555 LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB) 556 << " " << MBB->getName() << "\n From: " << *I 557 << " To: "; 558 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 559 else dbgs() << "End"; 560 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); 561 if (DumpCriticalPathLength) { 562 errs() << MF->getName(); 563 errs() << ":%bb. " << MBB->getNumber(); 564 errs() << " " << MBB->getName() << " \n"; 565 } 566 567 // Schedule a region: possibly reorder instructions. 568 // This invalidates the original region iterators. 569 Scheduler.schedule(); 570 571 // Close the current region. 572 Scheduler.exitRegion(); 573 } 574 Scheduler.finishBlock(); 575 // FIXME: Ideally, no further passes should rely on kill flags. However, 576 // thumb2 size reduction is currently an exception, so the PostMIScheduler 577 // needs to do this. 578 if (FixKillFlags) 579 Scheduler.fixupKills(*MBB); 580 } 581 Scheduler.finalizeSchedule(); 582 } 583 584 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 585 // unimplemented 586 } 587 588 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 589 LLVM_DUMP_METHOD void ReadyQueue::dump() const { 590 dbgs() << "Queue " << Name << ": "; 591 for (const SUnit *SU : Queue) 592 dbgs() << SU->NodeNum << " "; 593 dbgs() << "\n"; 594 } 595 #endif 596 597 //===----------------------------------------------------------------------===// 598 // ScheduleDAGMI - Basic machine instruction scheduling. This is 599 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 600 // virtual registers. 601 // ===----------------------------------------------------------------------===/ 602 603 // Provide a vtable anchor. 604 ScheduleDAGMI::~ScheduleDAGMI() = default; 605 606 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 607 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 608 } 609 610 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { 611 if (SuccSU != &ExitSU) { 612 // Do not use WillCreateCycle, it assumes SD scheduling. 613 // If Pred is reachable from Succ, then the edge creates a cycle. 614 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 615 return false; 616 Topo.AddPred(SuccSU, PredDep.getSUnit()); 617 } 618 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 619 // Return true regardless of whether a new edge needed to be inserted. 620 return true; 621 } 622 623 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 624 /// NumPredsLeft reaches zero, release the successor node. 625 /// 626 /// FIXME: Adjust SuccSU height based on MinLatency. 627 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 628 SUnit *SuccSU = SuccEdge->getSUnit(); 629 630 if (SuccEdge->isWeak()) { 631 --SuccSU->WeakPredsLeft; 632 if (SuccEdge->isCluster()) 633 NextClusterSucc = SuccSU; 634 return; 635 } 636 #ifndef NDEBUG 637 if (SuccSU->NumPredsLeft == 0) { 638 dbgs() << "*** Scheduling failed! ***\n"; 639 dumpNode(*SuccSU); 640 dbgs() << " has been released too many times!\n"; 641 llvm_unreachable(nullptr); 642 } 643 #endif 644 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 645 // CurrCycle may have advanced since then. 646 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 647 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 648 649 --SuccSU->NumPredsLeft; 650 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 651 SchedImpl->releaseTopNode(SuccSU); 652 } 653 654 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 655 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 656 for (SDep &Succ : SU->Succs) 657 releaseSucc(SU, &Succ); 658 } 659 660 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 661 /// NumSuccsLeft reaches zero, release the predecessor node. 662 /// 663 /// FIXME: Adjust PredSU height based on MinLatency. 664 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 665 SUnit *PredSU = PredEdge->getSUnit(); 666 667 if (PredEdge->isWeak()) { 668 --PredSU->WeakSuccsLeft; 669 if (PredEdge->isCluster()) 670 NextClusterPred = PredSU; 671 return; 672 } 673 #ifndef NDEBUG 674 if (PredSU->NumSuccsLeft == 0) { 675 dbgs() << "*** Scheduling failed! ***\n"; 676 dumpNode(*PredSU); 677 dbgs() << " has been released too many times!\n"; 678 llvm_unreachable(nullptr); 679 } 680 #endif 681 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 682 // CurrCycle may have advanced since then. 683 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 684 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 685 686 --PredSU->NumSuccsLeft; 687 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 688 SchedImpl->releaseBottomNode(PredSU); 689 } 690 691 /// releasePredecessors - Call releasePred on each of SU's predecessors. 692 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 693 for (SDep &Pred : SU->Preds) 694 releasePred(SU, &Pred); 695 } 696 697 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) { 698 ScheduleDAGInstrs::startBlock(bb); 699 SchedImpl->enterMBB(bb); 700 } 701 702 void ScheduleDAGMI::finishBlock() { 703 SchedImpl->leaveMBB(); 704 ScheduleDAGInstrs::finishBlock(); 705 } 706 707 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 708 /// crossing a scheduling boundary. [begin, end) includes all instructions in 709 /// the region, including the boundary itself and single-instruction regions 710 /// that don't get scheduled. 711 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 712 MachineBasicBlock::iterator begin, 713 MachineBasicBlock::iterator end, 714 unsigned regioninstrs) 715 { 716 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 717 718 SchedImpl->initPolicy(begin, end, regioninstrs); 719 } 720 721 /// This is normally called from the main scheduler loop but may also be invoked 722 /// by the scheduling strategy to perform additional code motion. 723 void ScheduleDAGMI::moveInstruction( 724 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 725 // Advance RegionBegin if the first instruction moves down. 726 if (&*RegionBegin == MI) 727 ++RegionBegin; 728 729 // Update the instruction stream. 730 BB->splice(InsertPos, BB, MI); 731 732 // Update LiveIntervals 733 if (LIS) 734 LIS->handleMove(*MI, /*UpdateFlags=*/true); 735 736 // Recede RegionBegin if an instruction moves above the first. 737 if (RegionBegin == InsertPos) 738 RegionBegin = MI; 739 } 740 741 bool ScheduleDAGMI::checkSchedLimit() { 742 #ifndef NDEBUG 743 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 744 CurrentTop = CurrentBottom; 745 return false; 746 } 747 ++NumInstrsScheduled; 748 #endif 749 return true; 750 } 751 752 /// Per-region scheduling driver, called back from 753 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that 754 /// does not consider liveness or register pressure. It is useful for PostRA 755 /// scheduling and potentially other custom schedulers. 756 void ScheduleDAGMI::schedule() { 757 LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); 758 LLVM_DEBUG(SchedImpl->dumpPolicy()); 759 760 // Build the DAG. 761 buildSchedGraph(AA); 762 763 Topo.InitDAGTopologicalSorting(); 764 765 postprocessDAG(); 766 767 SmallVector<SUnit*, 8> TopRoots, BotRoots; 768 findRootsAndBiasEdges(TopRoots, BotRoots); 769 770 LLVM_DEBUG(dump()); 771 if (PrintDAGs) dump(); 772 if (ViewMISchedDAGs) viewGraph(); 773 774 // Initialize the strategy before modifying the DAG. 775 // This may initialize a DFSResult to be used for queue priority. 776 SchedImpl->initialize(this); 777 778 // Initialize ready queues now that the DAG and priority data are finalized. 779 initQueues(TopRoots, BotRoots); 780 781 bool IsTopNode = false; 782 while (true) { 783 LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); 784 SUnit *SU = SchedImpl->pickNode(IsTopNode); 785 if (!SU) break; 786 787 assert(!SU->isScheduled && "Node already scheduled"); 788 if (!checkSchedLimit()) 789 break; 790 791 MachineInstr *MI = SU->getInstr(); 792 if (IsTopNode) { 793 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 794 if (&*CurrentTop == MI) 795 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 796 else 797 moveInstruction(MI, CurrentTop); 798 } else { 799 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 800 MachineBasicBlock::iterator priorII = 801 priorNonDebug(CurrentBottom, CurrentTop); 802 if (&*priorII == MI) 803 CurrentBottom = priorII; 804 else { 805 if (&*CurrentTop == MI) 806 CurrentTop = nextIfDebug(++CurrentTop, priorII); 807 moveInstruction(MI, CurrentBottom); 808 CurrentBottom = MI; 809 } 810 } 811 // Notify the scheduling strategy before updating the DAG. 812 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 813 // runs, it can then use the accurate ReadyCycle time to determine whether 814 // newly released nodes can move to the readyQ. 815 SchedImpl->schedNode(SU, IsTopNode); 816 817 updateQueues(SU, IsTopNode); 818 } 819 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 820 821 placeDebugValues(); 822 823 LLVM_DEBUG({ 824 dbgs() << "*** Final schedule for " 825 << printMBBReference(*begin()->getParent()) << " ***\n"; 826 dumpSchedule(); 827 dbgs() << '\n'; 828 }); 829 } 830 831 /// Apply each ScheduleDAGMutation step in order. 832 void ScheduleDAGMI::postprocessDAG() { 833 for (auto &m : Mutations) 834 m->apply(this); 835 } 836 837 void ScheduleDAGMI:: 838 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 839 SmallVectorImpl<SUnit*> &BotRoots) { 840 for (SUnit &SU : SUnits) { 841 assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits"); 842 843 // Order predecessors so DFSResult follows the critical path. 844 SU.biasCriticalPath(); 845 846 // A SUnit is ready to top schedule if it has no predecessors. 847 if (!SU.NumPredsLeft) 848 TopRoots.push_back(&SU); 849 // A SUnit is ready to bottom schedule if it has no successors. 850 if (!SU.NumSuccsLeft) 851 BotRoots.push_back(&SU); 852 } 853 ExitSU.biasCriticalPath(); 854 } 855 856 /// Identify DAG roots and setup scheduler queues. 857 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 858 ArrayRef<SUnit*> BotRoots) { 859 NextClusterSucc = nullptr; 860 NextClusterPred = nullptr; 861 862 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 863 // 864 // Nodes with unreleased weak edges can still be roots. 865 // Release top roots in forward order. 866 for (SUnit *SU : TopRoots) 867 SchedImpl->releaseTopNode(SU); 868 869 // Release bottom roots in reverse order so the higher priority nodes appear 870 // first. This is more natural and slightly more efficient. 871 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 872 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 873 SchedImpl->releaseBottomNode(*I); 874 } 875 876 releaseSuccessors(&EntrySU); 877 releasePredecessors(&ExitSU); 878 879 SchedImpl->registerRoots(); 880 881 // Advance past initial DebugValues. 882 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 883 CurrentBottom = RegionEnd; 884 } 885 886 /// Update scheduler queues after scheduling an instruction. 887 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 888 // Release dependent instructions for scheduling. 889 if (IsTopNode) 890 releaseSuccessors(SU); 891 else 892 releasePredecessors(SU); 893 894 SU->isScheduled = true; 895 } 896 897 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 898 void ScheduleDAGMI::placeDebugValues() { 899 // If first instruction was a DBG_VALUE then put it back. 900 if (FirstDbgValue) { 901 BB->splice(RegionBegin, BB, FirstDbgValue); 902 RegionBegin = FirstDbgValue; 903 } 904 905 for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator 906 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 907 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 908 MachineInstr *DbgValue = P.first; 909 MachineBasicBlock::iterator OrigPrevMI = P.second; 910 if (&*RegionBegin == DbgValue) 911 ++RegionBegin; 912 BB->splice(++OrigPrevMI, BB, DbgValue); 913 if (OrigPrevMI == std::prev(RegionEnd)) 914 RegionEnd = DbgValue; 915 } 916 DbgValues.clear(); 917 FirstDbgValue = nullptr; 918 } 919 920 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 921 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const { 922 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 923 if (SUnit *SU = getSUnit(&(*MI))) 924 dumpNode(*SU); 925 else 926 dbgs() << "Missing SUnit\n"; 927 } 928 } 929 #endif 930 931 //===----------------------------------------------------------------------===// 932 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 933 // preservation. 934 //===----------------------------------------------------------------------===// 935 936 ScheduleDAGMILive::~ScheduleDAGMILive() { 937 delete DFSResult; 938 } 939 940 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) { 941 const MachineInstr &MI = *SU.getInstr(); 942 for (const MachineOperand &MO : MI.operands()) { 943 if (!MO.isReg()) 944 continue; 945 if (!MO.readsReg()) 946 continue; 947 if (TrackLaneMasks && !MO.isUse()) 948 continue; 949 950 unsigned Reg = MO.getReg(); 951 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 952 continue; 953 954 // Ignore re-defs. 955 if (TrackLaneMasks) { 956 bool FoundDef = false; 957 for (const MachineOperand &MO2 : MI.operands()) { 958 if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) { 959 FoundDef = true; 960 break; 961 } 962 } 963 if (FoundDef) 964 continue; 965 } 966 967 // Record this local VReg use. 968 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg); 969 for (; UI != VRegUses.end(); ++UI) { 970 if (UI->SU == &SU) 971 break; 972 } 973 if (UI == VRegUses.end()) 974 VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU)); 975 } 976 } 977 978 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 979 /// crossing a scheduling boundary. [begin, end) includes all instructions in 980 /// the region, including the boundary itself and single-instruction regions 981 /// that don't get scheduled. 982 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 983 MachineBasicBlock::iterator begin, 984 MachineBasicBlock::iterator end, 985 unsigned regioninstrs) 986 { 987 // ScheduleDAGMI initializes SchedImpl's per-region policy. 988 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 989 990 // For convenience remember the end of the liveness region. 991 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 992 993 SUPressureDiffs.clear(); 994 995 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 996 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks(); 997 998 assert((!ShouldTrackLaneMasks || ShouldTrackPressure) && 999 "ShouldTrackLaneMasks requires ShouldTrackPressure"); 1000 } 1001 1002 // Setup the register pressure trackers for the top scheduled top and bottom 1003 // scheduled regions. 1004 void ScheduleDAGMILive::initRegPressure() { 1005 VRegUses.clear(); 1006 VRegUses.setUniverse(MRI.getNumVirtRegs()); 1007 for (SUnit &SU : SUnits) 1008 collectVRegUses(SU); 1009 1010 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin, 1011 ShouldTrackLaneMasks, false); 1012 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1013 ShouldTrackLaneMasks, false); 1014 1015 // Close the RPTracker to finalize live ins. 1016 RPTracker.closeRegion(); 1017 1018 LLVM_DEBUG(RPTracker.dump()); 1019 1020 // Initialize the live ins and live outs. 1021 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 1022 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 1023 1024 // Close one end of the tracker so we can call 1025 // getMaxUpward/DownwardPressureDelta before advancing across any 1026 // instructions. This converts currently live regs into live ins/outs. 1027 TopRPTracker.closeTop(); 1028 BotRPTracker.closeBottom(); 1029 1030 BotRPTracker.initLiveThru(RPTracker); 1031 if (!BotRPTracker.getLiveThru().empty()) { 1032 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 1033 LLVM_DEBUG(dbgs() << "Live Thru: "; 1034 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 1035 }; 1036 1037 // For each live out vreg reduce the pressure change associated with other 1038 // uses of the same vreg below the live-out reaching def. 1039 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 1040 1041 // Account for liveness generated by the region boundary. 1042 if (LiveRegionEnd != RegionEnd) { 1043 SmallVector<RegisterMaskPair, 8> LiveUses; 1044 BotRPTracker.recede(&LiveUses); 1045 updatePressureDiffs(LiveUses); 1046 } 1047 1048 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; 1049 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1050 dbgs() << "Bottom Pressure:\n"; 1051 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);); 1052 1053 assert((BotRPTracker.getPos() == RegionEnd || 1054 (RegionEnd->isDebugInstr() && 1055 BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) && 1056 "Can't find the region bottom"); 1057 1058 // Cache the list of excess pressure sets in this region. This will also track 1059 // the max pressure in the scheduled code for these sets. 1060 RegionCriticalPSets.clear(); 1061 const std::vector<unsigned> &RegionPressure = 1062 RPTracker.getPressure().MaxSetPressure; 1063 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 1064 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 1065 if (RegionPressure[i] > Limit) { 1066 LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit 1067 << " Actual " << RegionPressure[i] << "\n"); 1068 RegionCriticalPSets.push_back(PressureChange(i)); 1069 } 1070 } 1071 LLVM_DEBUG(dbgs() << "Excess PSets: "; 1072 for (const PressureChange &RCPS 1073 : RegionCriticalPSets) dbgs() 1074 << TRI->getRegPressureSetName(RCPS.getPSet()) << " "; 1075 dbgs() << "\n"); 1076 } 1077 1078 void ScheduleDAGMILive:: 1079 updateScheduledPressure(const SUnit *SU, 1080 const std::vector<unsigned> &NewMaxPressure) { 1081 const PressureDiff &PDiff = getPressureDiff(SU); 1082 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 1083 for (const PressureChange &PC : PDiff) { 1084 if (!PC.isValid()) 1085 break; 1086 unsigned ID = PC.getPSet(); 1087 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 1088 ++CritIdx; 1089 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 1090 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 1091 && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max()) 1092 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 1093 } 1094 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 1095 if (NewMaxPressure[ID] >= Limit - 2) { 1096 LLVM_DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 1097 << NewMaxPressure[ID] 1098 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") 1099 << Limit << "(+ " << BotRPTracker.getLiveThru()[ID] 1100 << " livethru)\n"); 1101 } 1102 } 1103 } 1104 1105 /// Update the PressureDiff array for liveness after scheduling this 1106 /// instruction. 1107 void ScheduleDAGMILive::updatePressureDiffs( 1108 ArrayRef<RegisterMaskPair> LiveUses) { 1109 for (const RegisterMaskPair &P : LiveUses) { 1110 unsigned Reg = P.RegUnit; 1111 /// FIXME: Currently assuming single-use physregs. 1112 if (!TRI->isVirtualRegister(Reg)) 1113 continue; 1114 1115 if (ShouldTrackLaneMasks) { 1116 // If the register has just become live then other uses won't change 1117 // this fact anymore => decrement pressure. 1118 // If the register has just become dead then other uses make it come 1119 // back to life => increment pressure. 1120 bool Decrement = P.LaneMask.any(); 1121 1122 for (const VReg2SUnit &V2SU 1123 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1124 SUnit &SU = *V2SU.SU; 1125 if (SU.isScheduled || &SU == &ExitSU) 1126 continue; 1127 1128 PressureDiff &PDiff = getPressureDiff(&SU); 1129 PDiff.addPressureChange(Reg, Decrement, &MRI); 1130 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") " 1131 << printReg(Reg, TRI) << ':' 1132 << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr(); 1133 dbgs() << " to "; PDiff.dump(*TRI);); 1134 } 1135 } else { 1136 assert(P.LaneMask.any()); 1137 LLVM_DEBUG(dbgs() << " LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n"); 1138 // This may be called before CurrentBottom has been initialized. However, 1139 // BotRPTracker must have a valid position. We want the value live into the 1140 // instruction or live out of the block, so ask for the previous 1141 // instruction's live-out. 1142 const LiveInterval &LI = LIS->getInterval(Reg); 1143 VNInfo *VNI; 1144 MachineBasicBlock::const_iterator I = 1145 nextIfDebug(BotRPTracker.getPos(), BB->end()); 1146 if (I == BB->end()) 1147 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1148 else { 1149 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I)); 1150 VNI = LRQ.valueIn(); 1151 } 1152 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 1153 assert(VNI && "No live value at use."); 1154 for (const VReg2SUnit &V2SU 1155 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1156 SUnit *SU = V2SU.SU; 1157 // If this use comes before the reaching def, it cannot be a last use, 1158 // so decrease its pressure change. 1159 if (!SU->isScheduled && SU != &ExitSU) { 1160 LiveQueryResult LRQ = 1161 LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1162 if (LRQ.valueIn() == VNI) { 1163 PressureDiff &PDiff = getPressureDiff(SU); 1164 PDiff.addPressureChange(Reg, true, &MRI); 1165 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 1166 << *SU->getInstr(); 1167 dbgs() << " to "; PDiff.dump(*TRI);); 1168 } 1169 } 1170 } 1171 } 1172 } 1173 } 1174 1175 void ScheduleDAGMILive::dump() const { 1176 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1177 if (EntrySU.getInstr() != nullptr) 1178 dumpNodeAll(EntrySU); 1179 for (const SUnit &SU : SUnits) { 1180 dumpNodeAll(SU); 1181 if (ShouldTrackPressure) { 1182 dbgs() << " Pressure Diff : "; 1183 getPressureDiff(&SU).dump(*TRI); 1184 } 1185 dbgs() << " Single Issue : "; 1186 if (SchedModel.mustBeginGroup(SU.getInstr()) && 1187 SchedModel.mustEndGroup(SU.getInstr())) 1188 dbgs() << "true;"; 1189 else 1190 dbgs() << "false;"; 1191 dbgs() << '\n'; 1192 } 1193 if (ExitSU.getInstr() != nullptr) 1194 dumpNodeAll(ExitSU); 1195 #endif 1196 } 1197 1198 /// schedule - Called back from MachineScheduler::runOnMachineFunction 1199 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1200 /// only includes instructions that have DAG nodes, not scheduling boundaries. 1201 /// 1202 /// This is a skeletal driver, with all the functionality pushed into helpers, 1203 /// so that it can be easily extended by experimental schedulers. Generally, 1204 /// implementing MachineSchedStrategy should be sufficient to implement a new 1205 /// scheduling algorithm. However, if a scheduler further subclasses 1206 /// ScheduleDAGMILive then it will want to override this virtual method in order 1207 /// to update any specialized state. 1208 void ScheduleDAGMILive::schedule() { 1209 LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); 1210 LLVM_DEBUG(SchedImpl->dumpPolicy()); 1211 buildDAGWithRegPressure(); 1212 1213 Topo.InitDAGTopologicalSorting(); 1214 1215 postprocessDAG(); 1216 1217 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1218 findRootsAndBiasEdges(TopRoots, BotRoots); 1219 1220 // Initialize the strategy before modifying the DAG. 1221 // This may initialize a DFSResult to be used for queue priority. 1222 SchedImpl->initialize(this); 1223 1224 LLVM_DEBUG(dump()); 1225 if (PrintDAGs) dump(); 1226 if (ViewMISchedDAGs) viewGraph(); 1227 1228 // Initialize ready queues now that the DAG and priority data are finalized. 1229 initQueues(TopRoots, BotRoots); 1230 1231 bool IsTopNode = false; 1232 while (true) { 1233 LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); 1234 SUnit *SU = SchedImpl->pickNode(IsTopNode); 1235 if (!SU) break; 1236 1237 assert(!SU->isScheduled && "Node already scheduled"); 1238 if (!checkSchedLimit()) 1239 break; 1240 1241 scheduleMI(SU, IsTopNode); 1242 1243 if (DFSResult) { 1244 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1245 if (!ScheduledTrees.test(SubtreeID)) { 1246 ScheduledTrees.set(SubtreeID); 1247 DFSResult->scheduleTree(SubtreeID); 1248 SchedImpl->scheduleTree(SubtreeID); 1249 } 1250 } 1251 1252 // Notify the scheduling strategy after updating the DAG. 1253 SchedImpl->schedNode(SU, IsTopNode); 1254 1255 updateQueues(SU, IsTopNode); 1256 } 1257 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1258 1259 placeDebugValues(); 1260 1261 LLVM_DEBUG({ 1262 dbgs() << "*** Final schedule for " 1263 << printMBBReference(*begin()->getParent()) << " ***\n"; 1264 dumpSchedule(); 1265 dbgs() << '\n'; 1266 }); 1267 } 1268 1269 /// Build the DAG and setup three register pressure trackers. 1270 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1271 if (!ShouldTrackPressure) { 1272 RPTracker.reset(); 1273 RegionCriticalPSets.clear(); 1274 buildSchedGraph(AA); 1275 return; 1276 } 1277 1278 // Initialize the register pressure tracker used by buildSchedGraph. 1279 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1280 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true); 1281 1282 // Account for liveness generate by the region boundary. 1283 if (LiveRegionEnd != RegionEnd) 1284 RPTracker.recede(); 1285 1286 // Build the DAG, and compute current register pressure. 1287 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks); 1288 1289 // Initialize top/bottom trackers after computing region pressure. 1290 initRegPressure(); 1291 } 1292 1293 void ScheduleDAGMILive::computeDFSResult() { 1294 if (!DFSResult) 1295 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1296 DFSResult->clear(); 1297 ScheduledTrees.clear(); 1298 DFSResult->resize(SUnits.size()); 1299 DFSResult->compute(SUnits); 1300 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1301 } 1302 1303 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1304 /// only provides the critical path for single block loops. To handle loops that 1305 /// span blocks, we could use the vreg path latencies provided by 1306 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1307 /// available for use in the scheduler. 1308 /// 1309 /// The cyclic path estimation identifies a def-use pair that crosses the back 1310 /// edge and considers the depth and height of the nodes. For example, consider 1311 /// the following instruction sequence where each instruction has unit latency 1312 /// and defines an epomymous virtual register: 1313 /// 1314 /// a->b(a,c)->c(b)->d(c)->exit 1315 /// 1316 /// The cyclic critical path is a two cycles: b->c->b 1317 /// The acyclic critical path is four cycles: a->b->c->d->exit 1318 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1319 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1320 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1321 /// LiveInDepth = depth(b) = len(a->b) = 1 1322 /// 1323 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1324 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1325 /// CyclicCriticalPath = min(2, 2) = 2 1326 /// 1327 /// This could be relevant to PostRA scheduling, but is currently implemented 1328 /// assuming LiveIntervals. 1329 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1330 // This only applies to single block loop. 1331 if (!BB->isSuccessor(BB)) 1332 return 0; 1333 1334 unsigned MaxCyclicLatency = 0; 1335 // Visit each live out vreg def to find def/use pairs that cross iterations. 1336 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) { 1337 unsigned Reg = P.RegUnit; 1338 if (!TRI->isVirtualRegister(Reg)) 1339 continue; 1340 const LiveInterval &LI = LIS->getInterval(Reg); 1341 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1342 if (!DefVNI) 1343 continue; 1344 1345 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1346 const SUnit *DefSU = getSUnit(DefMI); 1347 if (!DefSU) 1348 continue; 1349 1350 unsigned LiveOutHeight = DefSU->getHeight(); 1351 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1352 // Visit all local users of the vreg def. 1353 for (const VReg2SUnit &V2SU 1354 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1355 SUnit *SU = V2SU.SU; 1356 if (SU == &ExitSU) 1357 continue; 1358 1359 // Only consider uses of the phi. 1360 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1361 if (!LRQ.valueIn()->isPHIDef()) 1362 continue; 1363 1364 // Assume that a path spanning two iterations is a cycle, which could 1365 // overestimate in strange cases. This allows cyclic latency to be 1366 // estimated as the minimum slack of the vreg's depth or height. 1367 unsigned CyclicLatency = 0; 1368 if (LiveOutDepth > SU->getDepth()) 1369 CyclicLatency = LiveOutDepth - SU->getDepth(); 1370 1371 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; 1372 if (LiveInHeight > LiveOutHeight) { 1373 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1374 CyclicLatency = LiveInHeight - LiveOutHeight; 1375 } else 1376 CyclicLatency = 0; 1377 1378 LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1379 << SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1380 if (CyclicLatency > MaxCyclicLatency) 1381 MaxCyclicLatency = CyclicLatency; 1382 } 1383 } 1384 LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1385 return MaxCyclicLatency; 1386 } 1387 1388 /// Release ExitSU predecessors and setup scheduler queues. Re-position 1389 /// the Top RP tracker in case the region beginning has changed. 1390 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots, 1391 ArrayRef<SUnit*> BotRoots) { 1392 ScheduleDAGMI::initQueues(TopRoots, BotRoots); 1393 if (ShouldTrackPressure) { 1394 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1395 TopRPTracker.setPos(CurrentTop); 1396 } 1397 } 1398 1399 /// Move an instruction and update register pressure. 1400 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1401 // Move the instruction to its new location in the instruction stream. 1402 MachineInstr *MI = SU->getInstr(); 1403 1404 if (IsTopNode) { 1405 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1406 if (&*CurrentTop == MI) 1407 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1408 else { 1409 moveInstruction(MI, CurrentTop); 1410 TopRPTracker.setPos(MI); 1411 } 1412 1413 if (ShouldTrackPressure) { 1414 // Update top scheduled pressure. 1415 RegisterOperands RegOpers; 1416 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1417 if (ShouldTrackLaneMasks) { 1418 // Adjust liveness and add missing dead+read-undef flags. 1419 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1420 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1421 } else { 1422 // Adjust for missing dead-def flags. 1423 RegOpers.detectDeadDefs(*MI, *LIS); 1424 } 1425 1426 TopRPTracker.advance(RegOpers); 1427 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1428 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure( 1429 TopRPTracker.getRegSetPressureAtPos(), TRI);); 1430 1431 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1432 } 1433 } else { 1434 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1435 MachineBasicBlock::iterator priorII = 1436 priorNonDebug(CurrentBottom, CurrentTop); 1437 if (&*priorII == MI) 1438 CurrentBottom = priorII; 1439 else { 1440 if (&*CurrentTop == MI) { 1441 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1442 TopRPTracker.setPos(CurrentTop); 1443 } 1444 moveInstruction(MI, CurrentBottom); 1445 CurrentBottom = MI; 1446 BotRPTracker.setPos(CurrentBottom); 1447 } 1448 if (ShouldTrackPressure) { 1449 RegisterOperands RegOpers; 1450 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1451 if (ShouldTrackLaneMasks) { 1452 // Adjust liveness and add missing dead+read-undef flags. 1453 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1454 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1455 } else { 1456 // Adjust for missing dead-def flags. 1457 RegOpers.detectDeadDefs(*MI, *LIS); 1458 } 1459 1460 if (BotRPTracker.getPos() != CurrentBottom) 1461 BotRPTracker.recedeSkipDebugValues(); 1462 SmallVector<RegisterMaskPair, 8> LiveUses; 1463 BotRPTracker.recede(RegOpers, &LiveUses); 1464 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1465 LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure( 1466 BotRPTracker.getRegSetPressureAtPos(), TRI);); 1467 1468 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1469 updatePressureDiffs(LiveUses); 1470 } 1471 } 1472 } 1473 1474 //===----------------------------------------------------------------------===// 1475 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores. 1476 //===----------------------------------------------------------------------===// 1477 1478 namespace { 1479 1480 /// Post-process the DAG to create cluster edges between neighboring 1481 /// loads or between neighboring stores. 1482 class BaseMemOpClusterMutation : public ScheduleDAGMutation { 1483 struct MemOpInfo { 1484 SUnit *SU; 1485 unsigned BaseReg; 1486 int64_t Offset; 1487 1488 MemOpInfo(SUnit *su, unsigned reg, int64_t ofs) 1489 : SU(su), BaseReg(reg), Offset(ofs) {} 1490 1491 bool operator<(const MemOpInfo&RHS) const { 1492 return std::tie(BaseReg, Offset, SU->NodeNum) < 1493 std::tie(RHS.BaseReg, RHS.Offset, RHS.SU->NodeNum); 1494 } 1495 }; 1496 1497 const TargetInstrInfo *TII; 1498 const TargetRegisterInfo *TRI; 1499 bool IsLoad; 1500 1501 public: 1502 BaseMemOpClusterMutation(const TargetInstrInfo *tii, 1503 const TargetRegisterInfo *tri, bool IsLoad) 1504 : TII(tii), TRI(tri), IsLoad(IsLoad) {} 1505 1506 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1507 1508 protected: 1509 void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG); 1510 }; 1511 1512 class StoreClusterMutation : public BaseMemOpClusterMutation { 1513 public: 1514 StoreClusterMutation(const TargetInstrInfo *tii, 1515 const TargetRegisterInfo *tri) 1516 : BaseMemOpClusterMutation(tii, tri, false) {} 1517 }; 1518 1519 class LoadClusterMutation : public BaseMemOpClusterMutation { 1520 public: 1521 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri) 1522 : BaseMemOpClusterMutation(tii, tri, true) {} 1523 }; 1524 1525 } // end anonymous namespace 1526 1527 namespace llvm { 1528 1529 std::unique_ptr<ScheduleDAGMutation> 1530 createLoadClusterDAGMutation(const TargetInstrInfo *TII, 1531 const TargetRegisterInfo *TRI) { 1532 return EnableMemOpCluster ? llvm::make_unique<LoadClusterMutation>(TII, TRI) 1533 : nullptr; 1534 } 1535 1536 std::unique_ptr<ScheduleDAGMutation> 1537 createStoreClusterDAGMutation(const TargetInstrInfo *TII, 1538 const TargetRegisterInfo *TRI) { 1539 return EnableMemOpCluster ? llvm::make_unique<StoreClusterMutation>(TII, TRI) 1540 : nullptr; 1541 } 1542 1543 } // end namespace llvm 1544 1545 void BaseMemOpClusterMutation::clusterNeighboringMemOps( 1546 ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG) { 1547 SmallVector<MemOpInfo, 32> MemOpRecords; 1548 for (SUnit *SU : MemOps) { 1549 unsigned BaseReg; 1550 int64_t Offset; 1551 if (TII->getMemOpBaseRegImmOfs(*SU->getInstr(), BaseReg, Offset, TRI)) 1552 MemOpRecords.push_back(MemOpInfo(SU, BaseReg, Offset)); 1553 } 1554 if (MemOpRecords.size() < 2) 1555 return; 1556 1557 llvm::sort(MemOpRecords); 1558 unsigned ClusterLength = 1; 1559 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) { 1560 SUnit *SUa = MemOpRecords[Idx].SU; 1561 SUnit *SUb = MemOpRecords[Idx+1].SU; 1562 if (TII->shouldClusterMemOps(*SUa->getInstr(), MemOpRecords[Idx].BaseReg, 1563 *SUb->getInstr(), MemOpRecords[Idx+1].BaseReg, 1564 ClusterLength) && 1565 DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 1566 LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU(" 1567 << SUb->NodeNum << ")\n"); 1568 // Copy successor edges from SUa to SUb. Interleaving computation 1569 // dependent on SUa can prevent load combining due to register reuse. 1570 // Predecessor edges do not need to be copied from SUb to SUa since nearby 1571 // loads should have effectively the same inputs. 1572 for (const SDep &Succ : SUa->Succs) { 1573 if (Succ.getSUnit() == SUb) 1574 continue; 1575 LLVM_DEBUG(dbgs() << " Copy Succ SU(" << Succ.getSUnit()->NodeNum 1576 << ")\n"); 1577 DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial)); 1578 } 1579 ++ClusterLength; 1580 } else 1581 ClusterLength = 1; 1582 } 1583 } 1584 1585 /// Callback from DAG postProcessing to create cluster edges for loads. 1586 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAGInstrs) { 1587 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1588 1589 // Map DAG NodeNum to store chain ID. 1590 DenseMap<unsigned, unsigned> StoreChainIDs; 1591 // Map each store chain to a set of dependent MemOps. 1592 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 1593 for (SUnit &SU : DAG->SUnits) { 1594 if ((IsLoad && !SU.getInstr()->mayLoad()) || 1595 (!IsLoad && !SU.getInstr()->mayStore())) 1596 continue; 1597 1598 unsigned ChainPredID = DAG->SUnits.size(); 1599 for (const SDep &Pred : SU.Preds) { 1600 if (Pred.isCtrl()) { 1601 ChainPredID = Pred.getSUnit()->NodeNum; 1602 break; 1603 } 1604 } 1605 // Check if this chain-like pred has been seen 1606 // before. ChainPredID==MaxNodeID at the top of the schedule. 1607 unsigned NumChains = StoreChainDependents.size(); 1608 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 1609 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 1610 if (Result.second) 1611 StoreChainDependents.resize(NumChains + 1); 1612 StoreChainDependents[Result.first->second].push_back(&SU); 1613 } 1614 1615 // Iterate over the store chains. 1616 for (auto &SCD : StoreChainDependents) 1617 clusterNeighboringMemOps(SCD, DAG); 1618 } 1619 1620 //===----------------------------------------------------------------------===// 1621 // CopyConstrain - DAG post-processing to encourage copy elimination. 1622 //===----------------------------------------------------------------------===// 1623 1624 namespace { 1625 1626 /// Post-process the DAG to create weak edges from all uses of a copy to 1627 /// the one use that defines the copy's source vreg, most likely an induction 1628 /// variable increment. 1629 class CopyConstrain : public ScheduleDAGMutation { 1630 // Transient state. 1631 SlotIndex RegionBeginIdx; 1632 1633 // RegionEndIdx is the slot index of the last non-debug instruction in the 1634 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1635 SlotIndex RegionEndIdx; 1636 1637 public: 1638 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1639 1640 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1641 1642 protected: 1643 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1644 }; 1645 1646 } // end anonymous namespace 1647 1648 namespace llvm { 1649 1650 std::unique_ptr<ScheduleDAGMutation> 1651 createCopyConstrainDAGMutation(const TargetInstrInfo *TII, 1652 const TargetRegisterInfo *TRI) { 1653 return llvm::make_unique<CopyConstrain>(TII, TRI); 1654 } 1655 1656 } // end namespace llvm 1657 1658 /// constrainLocalCopy handles two possibilities: 1659 /// 1) Local src: 1660 /// I0: = dst 1661 /// I1: src = ... 1662 /// I2: = dst 1663 /// I3: dst = src (copy) 1664 /// (create pred->succ edges I0->I1, I2->I1) 1665 /// 1666 /// 2) Local copy: 1667 /// I0: dst = src (copy) 1668 /// I1: = dst 1669 /// I2: src = ... 1670 /// I3: = dst 1671 /// (create pred->succ edges I1->I2, I3->I2) 1672 /// 1673 /// Although the MachineScheduler is currently constrained to single blocks, 1674 /// this algorithm should handle extended blocks. An EBB is a set of 1675 /// contiguously numbered blocks such that the previous block in the EBB is 1676 /// always the single predecessor. 1677 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1678 LiveIntervals *LIS = DAG->getLIS(); 1679 MachineInstr *Copy = CopySU->getInstr(); 1680 1681 // Check for pure vreg copies. 1682 const MachineOperand &SrcOp = Copy->getOperand(1); 1683 unsigned SrcReg = SrcOp.getReg(); 1684 if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !SrcOp.readsReg()) 1685 return; 1686 1687 const MachineOperand &DstOp = Copy->getOperand(0); 1688 unsigned DstReg = DstOp.getReg(); 1689 if (!TargetRegisterInfo::isVirtualRegister(DstReg) || DstOp.isDead()) 1690 return; 1691 1692 // Check if either the dest or source is local. If it's live across a back 1693 // edge, it's not local. Note that if both vregs are live across the back 1694 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1695 // If both the copy's source and dest are local live intervals, then we 1696 // should treat the dest as the global for the purpose of adding 1697 // constraints. This adds edges from source's other uses to the copy. 1698 unsigned LocalReg = SrcReg; 1699 unsigned GlobalReg = DstReg; 1700 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1701 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1702 LocalReg = DstReg; 1703 GlobalReg = SrcReg; 1704 LocalLI = &LIS->getInterval(LocalReg); 1705 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1706 return; 1707 } 1708 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1709 1710 // Find the global segment after the start of the local LI. 1711 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1712 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1713 // local live range. We could create edges from other global uses to the local 1714 // start, but the coalescer should have already eliminated these cases, so 1715 // don't bother dealing with it. 1716 if (GlobalSegment == GlobalLI->end()) 1717 return; 1718 1719 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1720 // returned the next global segment. But if GlobalSegment overlaps with 1721 // LocalLI->start, then advance to the next segment. If a hole in GlobalLI 1722 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1723 if (GlobalSegment->contains(LocalLI->beginIndex())) 1724 ++GlobalSegment; 1725 1726 if (GlobalSegment == GlobalLI->end()) 1727 return; 1728 1729 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1730 if (GlobalSegment != GlobalLI->begin()) { 1731 // Two address defs have no hole. 1732 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1733 GlobalSegment->start)) { 1734 return; 1735 } 1736 // If the prior global segment may be defined by the same two-address 1737 // instruction that also defines LocalLI, then can't make a hole here. 1738 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1739 LocalLI->beginIndex())) { 1740 return; 1741 } 1742 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1743 // it would be a disconnected component in the live range. 1744 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1745 "Disconnected LRG within the scheduling region."); 1746 } 1747 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1748 if (!GlobalDef) 1749 return; 1750 1751 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1752 if (!GlobalSU) 1753 return; 1754 1755 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1756 // constraining the uses of the last local def to precede GlobalDef. 1757 SmallVector<SUnit*,8> LocalUses; 1758 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1759 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1760 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1761 for (const SDep &Succ : LastLocalSU->Succs) { 1762 if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg) 1763 continue; 1764 if (Succ.getSUnit() == GlobalSU) 1765 continue; 1766 if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit())) 1767 return; 1768 LocalUses.push_back(Succ.getSUnit()); 1769 } 1770 // Open the top of the GlobalLI hole by constraining any earlier global uses 1771 // to precede the start of LocalLI. 1772 SmallVector<SUnit*,8> GlobalUses; 1773 MachineInstr *FirstLocalDef = 1774 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1775 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1776 for (const SDep &Pred : GlobalSU->Preds) { 1777 if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg) 1778 continue; 1779 if (Pred.getSUnit() == FirstLocalSU) 1780 continue; 1781 if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit())) 1782 return; 1783 GlobalUses.push_back(Pred.getSUnit()); 1784 } 1785 LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1786 // Add the weak edges. 1787 for (SmallVectorImpl<SUnit*>::const_iterator 1788 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1789 LLVM_DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1790 << GlobalSU->NodeNum << ")\n"); 1791 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1792 } 1793 for (SmallVectorImpl<SUnit*>::const_iterator 1794 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1795 LLVM_DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1796 << FirstLocalSU->NodeNum << ")\n"); 1797 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1798 } 1799 } 1800 1801 /// Callback from DAG postProcessing to create weak edges to encourage 1802 /// copy elimination. 1803 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) { 1804 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1805 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1806 1807 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1808 if (FirstPos == DAG->end()) 1809 return; 1810 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos); 1811 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1812 *priorNonDebug(DAG->end(), DAG->begin())); 1813 1814 for (SUnit &SU : DAG->SUnits) { 1815 if (!SU.getInstr()->isCopy()) 1816 continue; 1817 1818 constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG)); 1819 } 1820 } 1821 1822 //===----------------------------------------------------------------------===// 1823 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1824 // and possibly other custom schedulers. 1825 //===----------------------------------------------------------------------===// 1826 1827 static const unsigned InvalidCycle = ~0U; 1828 1829 SchedBoundary::~SchedBoundary() { delete HazardRec; } 1830 1831 /// Given a Count of resource usage and a Latency value, return true if a 1832 /// SchedBoundary becomes resource limited. 1833 static bool checkResourceLimit(unsigned LFactor, unsigned Count, 1834 unsigned Latency) { 1835 return (int)(Count - (Latency * LFactor)) > (int)LFactor; 1836 } 1837 1838 void SchedBoundary::reset() { 1839 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1840 // Destroying and reconstructing it is very expensive though. So keep 1841 // invalid, placeholder HazardRecs. 1842 if (HazardRec && HazardRec->isEnabled()) { 1843 delete HazardRec; 1844 HazardRec = nullptr; 1845 } 1846 Available.clear(); 1847 Pending.clear(); 1848 CheckPending = false; 1849 CurrCycle = 0; 1850 CurrMOps = 0; 1851 MinReadyCycle = std::numeric_limits<unsigned>::max(); 1852 ExpectedLatency = 0; 1853 DependentLatency = 0; 1854 RetiredMOps = 0; 1855 MaxExecutedResCount = 0; 1856 ZoneCritResIdx = 0; 1857 IsResourceLimited = false; 1858 ReservedCycles.clear(); 1859 #ifndef NDEBUG 1860 // Track the maximum number of stall cycles that could arise either from the 1861 // latency of a DAG edge or the number of cycles that a processor resource is 1862 // reserved (SchedBoundary::ReservedCycles). 1863 MaxObservedStall = 0; 1864 #endif 1865 // Reserve a zero-count for invalid CritResIdx. 1866 ExecutedResCounts.resize(1); 1867 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1868 } 1869 1870 void SchedRemainder:: 1871 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1872 reset(); 1873 if (!SchedModel->hasInstrSchedModel()) 1874 return; 1875 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1876 for (SUnit &SU : DAG->SUnits) { 1877 const MCSchedClassDesc *SC = DAG->getSchedClass(&SU); 1878 RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC) 1879 * SchedModel->getMicroOpFactor(); 1880 for (TargetSchedModel::ProcResIter 1881 PI = SchedModel->getWriteProcResBegin(SC), 1882 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1883 unsigned PIdx = PI->ProcResourceIdx; 1884 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1885 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1886 } 1887 } 1888 } 1889 1890 void SchedBoundary:: 1891 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1892 reset(); 1893 DAG = dag; 1894 SchedModel = smodel; 1895 Rem = rem; 1896 if (SchedModel->hasInstrSchedModel()) { 1897 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds()); 1898 ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle); 1899 } 1900 } 1901 1902 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 1903 /// these "soft stalls" differently than the hard stall cycles based on CPU 1904 /// resources and computed by checkHazard(). A fully in-order model 1905 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 1906 /// available for scheduling until they are ready. However, a weaker in-order 1907 /// model may use this for heuristics. For example, if a processor has in-order 1908 /// behavior when reading certain resources, this may come into play. 1909 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 1910 if (!SU->isUnbuffered) 1911 return 0; 1912 1913 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1914 if (ReadyCycle > CurrCycle) 1915 return ReadyCycle - CurrCycle; 1916 return 0; 1917 } 1918 1919 /// Compute the next cycle at which the given processor resource can be 1920 /// scheduled. 1921 unsigned SchedBoundary:: 1922 getNextResourceCycle(unsigned PIdx, unsigned Cycles) { 1923 unsigned NextUnreserved = ReservedCycles[PIdx]; 1924 // If this resource has never been used, always return cycle zero. 1925 if (NextUnreserved == InvalidCycle) 1926 return 0; 1927 // For bottom-up scheduling add the cycles needed for the current operation. 1928 if (!isTop()) 1929 NextUnreserved += Cycles; 1930 return NextUnreserved; 1931 } 1932 1933 /// Does this SU have a hazard within the current instruction group. 1934 /// 1935 /// The scheduler supports two modes of hazard recognition. The first is the 1936 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1937 /// supports highly complicated in-order reservation tables 1938 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic. 1939 /// 1940 /// The second is a streamlined mechanism that checks for hazards based on 1941 /// simple counters that the scheduler itself maintains. It explicitly checks 1942 /// for instruction dispatch limitations, including the number of micro-ops that 1943 /// can dispatch per cycle. 1944 /// 1945 /// TODO: Also check whether the SU must start a new group. 1946 bool SchedBoundary::checkHazard(SUnit *SU) { 1947 if (HazardRec->isEnabled() 1948 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 1949 return true; 1950 } 1951 1952 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1953 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 1954 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1955 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1956 return true; 1957 } 1958 1959 if (CurrMOps > 0 && 1960 ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) || 1961 (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) { 1962 LLVM_DEBUG(dbgs() << " hazard: SU(" << SU->NodeNum << ") must " 1963 << (isTop() ? "begin" : "end") << " group\n"); 1964 return true; 1965 } 1966 1967 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 1968 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1969 for (const MCWriteProcResEntry &PE : 1970 make_range(SchedModel->getWriteProcResBegin(SC), 1971 SchedModel->getWriteProcResEnd(SC))) { 1972 unsigned ResIdx = PE.ProcResourceIdx; 1973 unsigned Cycles = PE.Cycles; 1974 unsigned NRCycle = getNextResourceCycle(ResIdx, Cycles); 1975 if (NRCycle > CurrCycle) { 1976 #ifndef NDEBUG 1977 MaxObservedStall = std::max(Cycles, MaxObservedStall); 1978 #endif 1979 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 1980 << SchedModel->getResourceName(ResIdx) << "=" 1981 << NRCycle << "c\n"); 1982 return true; 1983 } 1984 } 1985 } 1986 return false; 1987 } 1988 1989 // Find the unscheduled node in ReadySUs with the highest latency. 1990 unsigned SchedBoundary:: 1991 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 1992 SUnit *LateSU = nullptr; 1993 unsigned RemLatency = 0; 1994 for (SUnit *SU : ReadySUs) { 1995 unsigned L = getUnscheduledLatency(SU); 1996 if (L > RemLatency) { 1997 RemLatency = L; 1998 LateSU = SU; 1999 } 2000 } 2001 if (LateSU) { 2002 LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 2003 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 2004 } 2005 return RemLatency; 2006 } 2007 2008 // Count resources in this zone and the remaining unscheduled 2009 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 2010 // resource index, or zero if the zone is issue limited. 2011 unsigned SchedBoundary:: 2012 getOtherResourceCount(unsigned &OtherCritIdx) { 2013 OtherCritIdx = 0; 2014 if (!SchedModel->hasInstrSchedModel()) 2015 return 0; 2016 2017 unsigned OtherCritCount = Rem->RemIssueCount 2018 + (RetiredMOps * SchedModel->getMicroOpFactor()); 2019 LLVM_DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 2020 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 2021 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 2022 PIdx != PEnd; ++PIdx) { 2023 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 2024 if (OtherCount > OtherCritCount) { 2025 OtherCritCount = OtherCount; 2026 OtherCritIdx = PIdx; 2027 } 2028 } 2029 if (OtherCritIdx) { 2030 LLVM_DEBUG( 2031 dbgs() << " " << Available.getName() << " + Remain CritRes: " 2032 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 2033 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 2034 } 2035 return OtherCritCount; 2036 } 2037 2038 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) { 2039 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 2040 2041 #ifndef NDEBUG 2042 // ReadyCycle was been bumped up to the CurrCycle when this node was 2043 // scheduled, but CurrCycle may have been eagerly advanced immediately after 2044 // scheduling, so may now be greater than ReadyCycle. 2045 if (ReadyCycle > CurrCycle) 2046 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 2047 #endif 2048 2049 if (ReadyCycle < MinReadyCycle) 2050 MinReadyCycle = ReadyCycle; 2051 2052 // Check for interlocks first. For the purpose of other heuristics, an 2053 // instruction that cannot issue appears as if it's not in the ReadyQueue. 2054 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2055 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) || 2056 Available.size() >= ReadyListLimit) 2057 Pending.push(SU); 2058 else 2059 Available.push(SU); 2060 } 2061 2062 /// Move the boundary of scheduled code by one cycle. 2063 void SchedBoundary::bumpCycle(unsigned NextCycle) { 2064 if (SchedModel->getMicroOpBufferSize() == 0) { 2065 assert(MinReadyCycle < std::numeric_limits<unsigned>::max() && 2066 "MinReadyCycle uninitialized"); 2067 if (MinReadyCycle > NextCycle) 2068 NextCycle = MinReadyCycle; 2069 } 2070 // Update the current micro-ops, which will issue in the next cycle. 2071 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 2072 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 2073 2074 // Decrement DependentLatency based on the next cycle. 2075 if ((NextCycle - CurrCycle) > DependentLatency) 2076 DependentLatency = 0; 2077 else 2078 DependentLatency -= (NextCycle - CurrCycle); 2079 2080 if (!HazardRec->isEnabled()) { 2081 // Bypass HazardRec virtual calls. 2082 CurrCycle = NextCycle; 2083 } else { 2084 // Bypass getHazardType calls in case of long latency. 2085 for (; CurrCycle != NextCycle; ++CurrCycle) { 2086 if (isTop()) 2087 HazardRec->AdvanceCycle(); 2088 else 2089 HazardRec->RecedeCycle(); 2090 } 2091 } 2092 CheckPending = true; 2093 IsResourceLimited = 2094 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2095 getScheduledLatency()); 2096 2097 LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() 2098 << '\n'); 2099 } 2100 2101 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 2102 ExecutedResCounts[PIdx] += Count; 2103 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 2104 MaxExecutedResCount = ExecutedResCounts[PIdx]; 2105 } 2106 2107 /// Add the given processor resource to this scheduled zone. 2108 /// 2109 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 2110 /// during which this resource is consumed. 2111 /// 2112 /// \return the next cycle at which the instruction may execute without 2113 /// oversubscribing resources. 2114 unsigned SchedBoundary:: 2115 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) { 2116 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2117 unsigned Count = Factor * Cycles; 2118 LLVM_DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) << " +" 2119 << Cycles << "x" << Factor << "u\n"); 2120 2121 // Update Executed resources counts. 2122 incExecutedResources(PIdx, Count); 2123 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 2124 Rem->RemainingCounts[PIdx] -= Count; 2125 2126 // Check if this resource exceeds the current critical resource. If so, it 2127 // becomes the critical resource. 2128 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 2129 ZoneCritResIdx = PIdx; 2130 LLVM_DEBUG(dbgs() << " *** Critical resource " 2131 << SchedModel->getResourceName(PIdx) << ": " 2132 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() 2133 << "c\n"); 2134 } 2135 // For reserved resources, record the highest cycle using the resource. 2136 unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles); 2137 if (NextAvailable > CurrCycle) { 2138 LLVM_DEBUG(dbgs() << " Resource conflict: " 2139 << SchedModel->getProcResource(PIdx)->Name 2140 << " reserved until @" << NextAvailable << "\n"); 2141 } 2142 return NextAvailable; 2143 } 2144 2145 /// Move the boundary of scheduled code by one SUnit. 2146 void SchedBoundary::bumpNode(SUnit *SU) { 2147 // Update the reservation table. 2148 if (HazardRec->isEnabled()) { 2149 if (!isTop() && SU->isCall) { 2150 // Calls are scheduled with their preceding instructions. For bottom-up 2151 // scheduling, clear the pipeline state before emitting. 2152 HazardRec->Reset(); 2153 } 2154 HazardRec->EmitInstruction(SU); 2155 } 2156 // checkHazard should prevent scheduling multiple instructions per cycle that 2157 // exceed the issue width. 2158 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2159 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 2160 assert( 2161 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 2162 "Cannot schedule this instruction's MicroOps in the current cycle."); 2163 2164 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2165 LLVM_DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 2166 2167 unsigned NextCycle = CurrCycle; 2168 switch (SchedModel->getMicroOpBufferSize()) { 2169 case 0: 2170 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 2171 break; 2172 case 1: 2173 if (ReadyCycle > NextCycle) { 2174 NextCycle = ReadyCycle; 2175 LLVM_DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 2176 } 2177 break; 2178 default: 2179 // We don't currently model the OOO reorder buffer, so consider all 2180 // scheduled MOps to be "retired". We do loosely model in-order resource 2181 // latency. If this instruction uses an in-order resource, account for any 2182 // likely stall cycles. 2183 if (SU->isUnbuffered && ReadyCycle > NextCycle) 2184 NextCycle = ReadyCycle; 2185 break; 2186 } 2187 RetiredMOps += IncMOps; 2188 2189 // Update resource counts and critical resource. 2190 if (SchedModel->hasInstrSchedModel()) { 2191 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 2192 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 2193 Rem->RemIssueCount -= DecRemIssue; 2194 if (ZoneCritResIdx) { 2195 // Scale scheduled micro-ops for comparing with the critical resource. 2196 unsigned ScaledMOps = 2197 RetiredMOps * SchedModel->getMicroOpFactor(); 2198 2199 // If scaled micro-ops are now more than the previous critical resource by 2200 // a full cycle, then micro-ops issue becomes critical. 2201 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 2202 >= (int)SchedModel->getLatencyFactor()) { 2203 ZoneCritResIdx = 0; 2204 LLVM_DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2205 << ScaledMOps / SchedModel->getLatencyFactor() 2206 << "c\n"); 2207 } 2208 } 2209 for (TargetSchedModel::ProcResIter 2210 PI = SchedModel->getWriteProcResBegin(SC), 2211 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2212 unsigned RCycle = 2213 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle); 2214 if (RCycle > NextCycle) 2215 NextCycle = RCycle; 2216 } 2217 if (SU->hasReservedResource) { 2218 // For reserved resources, record the highest cycle using the resource. 2219 // For top-down scheduling, this is the cycle in which we schedule this 2220 // instruction plus the number of cycles the operations reserves the 2221 // resource. For bottom-up is it simply the instruction's cycle. 2222 for (TargetSchedModel::ProcResIter 2223 PI = SchedModel->getWriteProcResBegin(SC), 2224 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2225 unsigned PIdx = PI->ProcResourceIdx; 2226 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2227 if (isTop()) { 2228 ReservedCycles[PIdx] = 2229 std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles); 2230 } 2231 else 2232 ReservedCycles[PIdx] = NextCycle; 2233 } 2234 } 2235 } 2236 } 2237 // Update ExpectedLatency and DependentLatency. 2238 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2239 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2240 if (SU->getDepth() > TopLatency) { 2241 TopLatency = SU->getDepth(); 2242 LLVM_DEBUG(dbgs() << " " << Available.getName() << " TopLatency SU(" 2243 << SU->NodeNum << ") " << TopLatency << "c\n"); 2244 } 2245 if (SU->getHeight() > BotLatency) { 2246 BotLatency = SU->getHeight(); 2247 LLVM_DEBUG(dbgs() << " " << Available.getName() << " BotLatency SU(" 2248 << SU->NodeNum << ") " << BotLatency << "c\n"); 2249 } 2250 // If we stall for any reason, bump the cycle. 2251 if (NextCycle > CurrCycle) 2252 bumpCycle(NextCycle); 2253 else 2254 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2255 // resource limited. If a stall occurred, bumpCycle does this. 2256 IsResourceLimited = 2257 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2258 getScheduledLatency()); 2259 2260 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2261 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2262 // one cycle. Since we commonly reach the max MOps here, opportunistically 2263 // bump the cycle to avoid uselessly checking everything in the readyQ. 2264 CurrMOps += IncMOps; 2265 2266 // Bump the cycle count for issue group constraints. 2267 // This must be done after NextCycle has been adjust for all other stalls. 2268 // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set 2269 // currCycle to X. 2270 if ((isTop() && SchedModel->mustEndGroup(SU->getInstr())) || 2271 (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) { 2272 LLVM_DEBUG(dbgs() << " Bump cycle to " << (isTop() ? "end" : "begin") 2273 << " group\n"); 2274 bumpCycle(++NextCycle); 2275 } 2276 2277 while (CurrMOps >= SchedModel->getIssueWidth()) { 2278 LLVM_DEBUG(dbgs() << " *** Max MOps " << CurrMOps << " at cycle " 2279 << CurrCycle << '\n'); 2280 bumpCycle(++NextCycle); 2281 } 2282 LLVM_DEBUG(dumpScheduledState()); 2283 } 2284 2285 /// Release pending ready nodes in to the available queue. This makes them 2286 /// visible to heuristics. 2287 void SchedBoundary::releasePending() { 2288 // If the available queue is empty, it is safe to reset MinReadyCycle. 2289 if (Available.empty()) 2290 MinReadyCycle = std::numeric_limits<unsigned>::max(); 2291 2292 // Check to see if any of the pending instructions are ready to issue. If 2293 // so, add them to the available queue. 2294 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2295 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 2296 SUnit *SU = *(Pending.begin()+i); 2297 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2298 2299 if (ReadyCycle < MinReadyCycle) 2300 MinReadyCycle = ReadyCycle; 2301 2302 if (!IsBuffered && ReadyCycle > CurrCycle) 2303 continue; 2304 2305 if (checkHazard(SU)) 2306 continue; 2307 2308 if (Available.size() >= ReadyListLimit) 2309 break; 2310 2311 Available.push(SU); 2312 Pending.remove(Pending.begin()+i); 2313 --i; --e; 2314 } 2315 CheckPending = false; 2316 } 2317 2318 /// Remove SU from the ready set for this boundary. 2319 void SchedBoundary::removeReady(SUnit *SU) { 2320 if (Available.isInQueue(SU)) 2321 Available.remove(Available.find(SU)); 2322 else { 2323 assert(Pending.isInQueue(SU) && "bad ready count"); 2324 Pending.remove(Pending.find(SU)); 2325 } 2326 } 2327 2328 /// If this queue only has one ready candidate, return it. As a side effect, 2329 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2330 /// one node is ready. If multiple instructions are ready, return NULL. 2331 SUnit *SchedBoundary::pickOnlyChoice() { 2332 if (CheckPending) 2333 releasePending(); 2334 2335 if (CurrMOps > 0) { 2336 // Defer any ready instrs that now have a hazard. 2337 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2338 if (checkHazard(*I)) { 2339 Pending.push(*I); 2340 I = Available.remove(I); 2341 continue; 2342 } 2343 ++I; 2344 } 2345 } 2346 for (unsigned i = 0; Available.empty(); ++i) { 2347 // FIXME: Re-enable assert once PR20057 is resolved. 2348 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2349 // "permanent hazard"); 2350 (void)i; 2351 bumpCycle(CurrCycle + 1); 2352 releasePending(); 2353 } 2354 2355 LLVM_DEBUG(Pending.dump()); 2356 LLVM_DEBUG(Available.dump()); 2357 2358 if (Available.size() == 1) 2359 return *Available.begin(); 2360 return nullptr; 2361 } 2362 2363 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2364 // This is useful information to dump after bumpNode. 2365 // Note that the Queue contents are more useful before pickNodeFromQueue. 2366 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const { 2367 unsigned ResFactor; 2368 unsigned ResCount; 2369 if (ZoneCritResIdx) { 2370 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2371 ResCount = getResourceCount(ZoneCritResIdx); 2372 } else { 2373 ResFactor = SchedModel->getMicroOpFactor(); 2374 ResCount = RetiredMOps * ResFactor; 2375 } 2376 unsigned LFactor = SchedModel->getLatencyFactor(); 2377 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2378 << " Retired: " << RetiredMOps; 2379 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2380 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2381 << ResCount / ResFactor << " " 2382 << SchedModel->getResourceName(ZoneCritResIdx) 2383 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2384 << (IsResourceLimited ? " - Resource" : " - Latency") 2385 << " limited.\n"; 2386 } 2387 #endif 2388 2389 //===----------------------------------------------------------------------===// 2390 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2391 //===----------------------------------------------------------------------===// 2392 2393 void GenericSchedulerBase::SchedCandidate:: 2394 initResourceDelta(const ScheduleDAGMI *DAG, 2395 const TargetSchedModel *SchedModel) { 2396 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2397 return; 2398 2399 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2400 for (TargetSchedModel::ProcResIter 2401 PI = SchedModel->getWriteProcResBegin(SC), 2402 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2403 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2404 ResDelta.CritResources += PI->Cycles; 2405 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2406 ResDelta.DemandedResources += PI->Cycles; 2407 } 2408 } 2409 2410 /// Compute remaining latency. We need this both to determine whether the 2411 /// overall schedule has become latency-limited and whether the instructions 2412 /// outside this zone are resource or latency limited. 2413 /// 2414 /// The "dependent" latency is updated incrementally during scheduling as the 2415 /// max height/depth of scheduled nodes minus the cycles since it was 2416 /// scheduled: 2417 /// DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2418 /// 2419 /// The "independent" latency is the max ready queue depth: 2420 /// ILat = max N.depth for N in Available|Pending 2421 /// 2422 /// RemainingLatency is the greater of independent and dependent latency. 2423 /// 2424 /// These computations are expensive, especially in DAGs with many edges, so 2425 /// only do them if necessary. 2426 static unsigned computeRemLatency(SchedBoundary &CurrZone) { 2427 unsigned RemLatency = CurrZone.getDependentLatency(); 2428 RemLatency = std::max(RemLatency, 2429 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2430 RemLatency = std::max(RemLatency, 2431 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2432 return RemLatency; 2433 } 2434 2435 /// Returns true if the current cycle plus remaning latency is greater than 2436 /// the cirtical path in the scheduling region. 2437 bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy, 2438 SchedBoundary &CurrZone, 2439 bool ComputeRemLatency, 2440 unsigned &RemLatency) const { 2441 // The current cycle is already greater than the critical path, so we are 2442 // already latnecy limited and don't need to compute the remaining latency. 2443 if (CurrZone.getCurrCycle() > Rem.CriticalPath) 2444 return true; 2445 2446 // If we haven't scheduled anything yet, then we aren't latency limited. 2447 if (CurrZone.getCurrCycle() == 0) 2448 return false; 2449 2450 if (ComputeRemLatency) 2451 RemLatency = computeRemLatency(CurrZone); 2452 2453 return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath; 2454 } 2455 2456 /// Set the CandPolicy given a scheduling zone given the current resources and 2457 /// latencies inside and outside the zone. 2458 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA, 2459 SchedBoundary &CurrZone, 2460 SchedBoundary *OtherZone) { 2461 // Apply preemptive heuristics based on the total latency and resources 2462 // inside and outside this zone. Potential stalls should be considered before 2463 // following this policy. 2464 2465 // Compute the critical resource outside the zone. 2466 unsigned OtherCritIdx = 0; 2467 unsigned OtherCount = 2468 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2469 2470 bool OtherResLimited = false; 2471 unsigned RemLatency = 0; 2472 bool RemLatencyComputed = false; 2473 if (SchedModel->hasInstrSchedModel() && OtherCount != 0) { 2474 RemLatency = computeRemLatency(CurrZone); 2475 RemLatencyComputed = true; 2476 OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(), 2477 OtherCount, RemLatency); 2478 } 2479 2480 // Schedule aggressively for latency in PostRA mode. We don't check for 2481 // acyclic latency during PostRA, and highly out-of-order processors will 2482 // skip PostRA scheduling. 2483 if (!OtherResLimited && 2484 (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed, 2485 RemLatency))) { 2486 Policy.ReduceLatency |= true; 2487 LLVM_DEBUG(dbgs() << " " << CurrZone.Available.getName() 2488 << " RemainingLatency " << RemLatency << " + " 2489 << CurrZone.getCurrCycle() << "c > CritPath " 2490 << Rem.CriticalPath << "\n"); 2491 } 2492 // If the same resource is limiting inside and outside the zone, do nothing. 2493 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2494 return; 2495 2496 LLVM_DEBUG(if (CurrZone.isResourceLimited()) { 2497 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2498 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n"; 2499 } if (OtherResLimited) dbgs() 2500 << " RemainingLimit: " 2501 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2502 if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs() 2503 << " Latency limited both directions.\n"); 2504 2505 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2506 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2507 2508 if (OtherResLimited) 2509 Policy.DemandResIdx = OtherCritIdx; 2510 } 2511 2512 #ifndef NDEBUG 2513 const char *GenericSchedulerBase::getReasonStr( 2514 GenericSchedulerBase::CandReason Reason) { 2515 switch (Reason) { 2516 case NoCand: return "NOCAND "; 2517 case Only1: return "ONLY1 "; 2518 case PhysRegCopy: return "PREG-COPY "; 2519 case RegExcess: return "REG-EXCESS"; 2520 case RegCritical: return "REG-CRIT "; 2521 case Stall: return "STALL "; 2522 case Cluster: return "CLUSTER "; 2523 case Weak: return "WEAK "; 2524 case RegMax: return "REG-MAX "; 2525 case ResourceReduce: return "RES-REDUCE"; 2526 case ResourceDemand: return "RES-DEMAND"; 2527 case TopDepthReduce: return "TOP-DEPTH "; 2528 case TopPathReduce: return "TOP-PATH "; 2529 case BotHeightReduce:return "BOT-HEIGHT"; 2530 case BotPathReduce: return "BOT-PATH "; 2531 case NextDefUse: return "DEF-USE "; 2532 case NodeOrder: return "ORDER "; 2533 }; 2534 llvm_unreachable("Unknown reason!"); 2535 } 2536 2537 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2538 PressureChange P; 2539 unsigned ResIdx = 0; 2540 unsigned Latency = 0; 2541 switch (Cand.Reason) { 2542 default: 2543 break; 2544 case RegExcess: 2545 P = Cand.RPDelta.Excess; 2546 break; 2547 case RegCritical: 2548 P = Cand.RPDelta.CriticalMax; 2549 break; 2550 case RegMax: 2551 P = Cand.RPDelta.CurrentMax; 2552 break; 2553 case ResourceReduce: 2554 ResIdx = Cand.Policy.ReduceResIdx; 2555 break; 2556 case ResourceDemand: 2557 ResIdx = Cand.Policy.DemandResIdx; 2558 break; 2559 case TopDepthReduce: 2560 Latency = Cand.SU->getDepth(); 2561 break; 2562 case TopPathReduce: 2563 Latency = Cand.SU->getHeight(); 2564 break; 2565 case BotHeightReduce: 2566 Latency = Cand.SU->getHeight(); 2567 break; 2568 case BotPathReduce: 2569 Latency = Cand.SU->getDepth(); 2570 break; 2571 } 2572 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2573 if (P.isValid()) 2574 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2575 << ":" << P.getUnitInc() << " "; 2576 else 2577 dbgs() << " "; 2578 if (ResIdx) 2579 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2580 else 2581 dbgs() << " "; 2582 if (Latency) 2583 dbgs() << " " << Latency << " cycles "; 2584 else 2585 dbgs() << " "; 2586 dbgs() << '\n'; 2587 } 2588 #endif 2589 2590 namespace llvm { 2591 /// Return true if this heuristic determines order. 2592 bool tryLess(int TryVal, int CandVal, 2593 GenericSchedulerBase::SchedCandidate &TryCand, 2594 GenericSchedulerBase::SchedCandidate &Cand, 2595 GenericSchedulerBase::CandReason Reason) { 2596 if (TryVal < CandVal) { 2597 TryCand.Reason = Reason; 2598 return true; 2599 } 2600 if (TryVal > CandVal) { 2601 if (Cand.Reason > Reason) 2602 Cand.Reason = Reason; 2603 return true; 2604 } 2605 return false; 2606 } 2607 2608 bool tryGreater(int TryVal, int CandVal, 2609 GenericSchedulerBase::SchedCandidate &TryCand, 2610 GenericSchedulerBase::SchedCandidate &Cand, 2611 GenericSchedulerBase::CandReason Reason) { 2612 if (TryVal > CandVal) { 2613 TryCand.Reason = Reason; 2614 return true; 2615 } 2616 if (TryVal < CandVal) { 2617 if (Cand.Reason > Reason) 2618 Cand.Reason = Reason; 2619 return true; 2620 } 2621 return false; 2622 } 2623 2624 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2625 GenericSchedulerBase::SchedCandidate &Cand, 2626 SchedBoundary &Zone) { 2627 if (Zone.isTop()) { 2628 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2629 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2630 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2631 return true; 2632 } 2633 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2634 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2635 return true; 2636 } else { 2637 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2638 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2639 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2640 return true; 2641 } 2642 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2643 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2644 return true; 2645 } 2646 return false; 2647 } 2648 } // end namespace llvm 2649 2650 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) { 2651 LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2652 << GenericSchedulerBase::getReasonStr(Reason) << '\n'); 2653 } 2654 2655 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) { 2656 tracePick(Cand.Reason, Cand.AtTop); 2657 } 2658 2659 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2660 assert(dag->hasVRegLiveness() && 2661 "(PreRA)GenericScheduler needs vreg liveness"); 2662 DAG = static_cast<ScheduleDAGMILive*>(dag); 2663 SchedModel = DAG->getSchedModel(); 2664 TRI = DAG->TRI; 2665 2666 Rem.init(DAG, SchedModel); 2667 Top.init(DAG, SchedModel, &Rem); 2668 Bot.init(DAG, SchedModel, &Rem); 2669 2670 // Initialize resource counts. 2671 2672 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2673 // are disabled, then these HazardRecs will be disabled. 2674 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2675 if (!Top.HazardRec) { 2676 Top.HazardRec = 2677 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2678 Itin, DAG); 2679 } 2680 if (!Bot.HazardRec) { 2681 Bot.HazardRec = 2682 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2683 Itin, DAG); 2684 } 2685 TopCand.SU = nullptr; 2686 BotCand.SU = nullptr; 2687 } 2688 2689 /// Initialize the per-region scheduling policy. 2690 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2691 MachineBasicBlock::iterator End, 2692 unsigned NumRegionInstrs) { 2693 const MachineFunction &MF = *Begin->getMF(); 2694 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2695 2696 // Avoid setting up the register pressure tracker for small regions to save 2697 // compile time. As a rough heuristic, only track pressure when the number of 2698 // schedulable instructions exceeds half the integer register file. 2699 RegionPolicy.ShouldTrackPressure = true; 2700 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2701 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2702 if (TLI->isTypeLegal(LegalIntVT)) { 2703 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2704 TLI->getRegClassFor(LegalIntVT)); 2705 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2706 } 2707 } 2708 2709 // For generic targets, we default to bottom-up, because it's simpler and more 2710 // compile-time optimizations have been implemented in that direction. 2711 RegionPolicy.OnlyBottomUp = true; 2712 2713 // Allow the subtarget to override default policy. 2714 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs); 2715 2716 // After subtarget overrides, apply command line options. 2717 if (!EnableRegPressure) 2718 RegionPolicy.ShouldTrackPressure = false; 2719 2720 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2721 // e.g. -misched-bottomup=false allows scheduling in both directions. 2722 assert((!ForceTopDown || !ForceBottomUp) && 2723 "-misched-topdown incompatible with -misched-bottomup"); 2724 if (ForceBottomUp.getNumOccurrences() > 0) { 2725 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2726 if (RegionPolicy.OnlyBottomUp) 2727 RegionPolicy.OnlyTopDown = false; 2728 } 2729 if (ForceTopDown.getNumOccurrences() > 0) { 2730 RegionPolicy.OnlyTopDown = ForceTopDown; 2731 if (RegionPolicy.OnlyTopDown) 2732 RegionPolicy.OnlyBottomUp = false; 2733 } 2734 } 2735 2736 void GenericScheduler::dumpPolicy() const { 2737 // Cannot completely remove virtual function even in release mode. 2738 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2739 dbgs() << "GenericScheduler RegionPolicy: " 2740 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure 2741 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown 2742 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp 2743 << "\n"; 2744 #endif 2745 } 2746 2747 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 2748 /// critical path by more cycles than it takes to drain the instruction buffer. 2749 /// We estimate an upper bounds on in-flight instructions as: 2750 /// 2751 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 2752 /// InFlightIterations = AcyclicPath / CyclesPerIteration 2753 /// InFlightResources = InFlightIterations * LoopResources 2754 /// 2755 /// TODO: Check execution resources in addition to IssueCount. 2756 void GenericScheduler::checkAcyclicLatency() { 2757 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 2758 return; 2759 2760 // Scaled number of cycles per loop iteration. 2761 unsigned IterCount = 2762 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 2763 Rem.RemIssueCount); 2764 // Scaled acyclic critical path. 2765 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 2766 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 2767 unsigned InFlightCount = 2768 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 2769 unsigned BufferLimit = 2770 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 2771 2772 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 2773 2774 LLVM_DEBUG( 2775 dbgs() << "IssueCycles=" 2776 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 2777 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 2778 << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount 2779 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 2780 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 2781 if (Rem.IsAcyclicLatencyLimited) dbgs() << " ACYCLIC LATENCY LIMIT\n"); 2782 } 2783 2784 void GenericScheduler::registerRoots() { 2785 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2786 2787 // Some roots may not feed into ExitSU. Check all of them in case. 2788 for (const SUnit *SU : Bot.Available) { 2789 if (SU->getDepth() > Rem.CriticalPath) 2790 Rem.CriticalPath = SU->getDepth(); 2791 } 2792 LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 2793 if (DumpCriticalPathLength) { 2794 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 2795 } 2796 2797 if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) { 2798 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 2799 checkAcyclicLatency(); 2800 } 2801 } 2802 2803 namespace llvm { 2804 bool tryPressure(const PressureChange &TryP, 2805 const PressureChange &CandP, 2806 GenericSchedulerBase::SchedCandidate &TryCand, 2807 GenericSchedulerBase::SchedCandidate &Cand, 2808 GenericSchedulerBase::CandReason Reason, 2809 const TargetRegisterInfo *TRI, 2810 const MachineFunction &MF) { 2811 // If one candidate decreases and the other increases, go with it. 2812 // Invalid candidates have UnitInc==0. 2813 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 2814 Reason)) { 2815 return true; 2816 } 2817 // Do not compare the magnitude of pressure changes between top and bottom 2818 // boundary. 2819 if (Cand.AtTop != TryCand.AtTop) 2820 return false; 2821 2822 // If both candidates affect the same set in the same boundary, go with the 2823 // smallest increase. 2824 unsigned TryPSet = TryP.getPSetOrMax(); 2825 unsigned CandPSet = CandP.getPSetOrMax(); 2826 if (TryPSet == CandPSet) { 2827 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 2828 Reason); 2829 } 2830 2831 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) : 2832 std::numeric_limits<int>::max(); 2833 2834 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) : 2835 std::numeric_limits<int>::max(); 2836 2837 // If the candidates are decreasing pressure, reverse priority. 2838 if (TryP.getUnitInc() < 0) 2839 std::swap(TryRank, CandRank); 2840 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2841 } 2842 2843 unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2844 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2845 } 2846 2847 /// Minimize physical register live ranges. Regalloc wants them adjacent to 2848 /// their physreg def/use. 2849 /// 2850 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2851 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2852 /// with the operation that produces or consumes the physreg. We'll do this when 2853 /// regalloc has support for parallel copies. 2854 int biasPhysRegCopy(const SUnit *SU, bool isTop) { 2855 const MachineInstr *MI = SU->getInstr(); 2856 if (!MI->isCopy()) 2857 return 0; 2858 2859 unsigned ScheduledOper = isTop ? 1 : 0; 2860 unsigned UnscheduledOper = isTop ? 0 : 1; 2861 // If we have already scheduled the physreg produce/consumer, immediately 2862 // schedule the copy. 2863 if (TargetRegisterInfo::isPhysicalRegister( 2864 MI->getOperand(ScheduledOper).getReg())) 2865 return 1; 2866 // If the physreg is at the boundary, defer it. Otherwise schedule it 2867 // immediately to free the dependent. We can hoist the copy later. 2868 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2869 if (TargetRegisterInfo::isPhysicalRegister( 2870 MI->getOperand(UnscheduledOper).getReg())) 2871 return AtBoundary ? -1 : 1; 2872 return 0; 2873 } 2874 } // end namespace llvm 2875 2876 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU, 2877 bool AtTop, 2878 const RegPressureTracker &RPTracker, 2879 RegPressureTracker &TempTracker) { 2880 Cand.SU = SU; 2881 Cand.AtTop = AtTop; 2882 if (DAG->isTrackingPressure()) { 2883 if (AtTop) { 2884 TempTracker.getMaxDownwardPressureDelta( 2885 Cand.SU->getInstr(), 2886 Cand.RPDelta, 2887 DAG->getRegionCriticalPSets(), 2888 DAG->getRegPressure().MaxSetPressure); 2889 } else { 2890 if (VerifyScheduling) { 2891 TempTracker.getMaxUpwardPressureDelta( 2892 Cand.SU->getInstr(), 2893 &DAG->getPressureDiff(Cand.SU), 2894 Cand.RPDelta, 2895 DAG->getRegionCriticalPSets(), 2896 DAG->getRegPressure().MaxSetPressure); 2897 } else { 2898 RPTracker.getUpwardPressureDelta( 2899 Cand.SU->getInstr(), 2900 DAG->getPressureDiff(Cand.SU), 2901 Cand.RPDelta, 2902 DAG->getRegionCriticalPSets(), 2903 DAG->getRegPressure().MaxSetPressure); 2904 } 2905 } 2906 } 2907 LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs() 2908 << " Try SU(" << Cand.SU->NodeNum << ") " 2909 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":" 2910 << Cand.RPDelta.Excess.getUnitInc() << "\n"); 2911 } 2912 2913 /// Apply a set of heuristics to a new candidate. Heuristics are currently 2914 /// hierarchical. This may be more efficient than a graduated cost model because 2915 /// we don't need to evaluate all aspects of the model for each node in the 2916 /// queue. But it's really done to make the heuristics easier to debug and 2917 /// statistically analyze. 2918 /// 2919 /// \param Cand provides the policy and current best candidate. 2920 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2921 /// \param Zone describes the scheduled zone that we are extending, or nullptr 2922 // if Cand is from a different zone than TryCand. 2923 void GenericScheduler::tryCandidate(SchedCandidate &Cand, 2924 SchedCandidate &TryCand, 2925 SchedBoundary *Zone) const { 2926 // Initialize the candidate if needed. 2927 if (!Cand.isValid()) { 2928 TryCand.Reason = NodeOrder; 2929 return; 2930 } 2931 2932 if (tryGreater(biasPhysRegCopy(TryCand.SU, TryCand.AtTop), 2933 biasPhysRegCopy(Cand.SU, Cand.AtTop), 2934 TryCand, Cand, PhysRegCopy)) 2935 return; 2936 2937 // Avoid exceeding the target's limit. 2938 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 2939 Cand.RPDelta.Excess, 2940 TryCand, Cand, RegExcess, TRI, 2941 DAG->MF)) 2942 return; 2943 2944 // Avoid increasing the max critical pressure in the scheduled region. 2945 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 2946 Cand.RPDelta.CriticalMax, 2947 TryCand, Cand, RegCritical, TRI, 2948 DAG->MF)) 2949 return; 2950 2951 // We only compare a subset of features when comparing nodes between 2952 // Top and Bottom boundary. Some properties are simply incomparable, in many 2953 // other instances we should only override the other boundary if something 2954 // is a clear good pick on one boundary. Skip heuristics that are more 2955 // "tie-breaking" in nature. 2956 bool SameBoundary = Zone != nullptr; 2957 if (SameBoundary) { 2958 // For loops that are acyclic path limited, aggressively schedule for 2959 // latency. Within an single cycle, whenever CurrMOps > 0, allow normal 2960 // heuristics to take precedence. 2961 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() && 2962 tryLatency(TryCand, Cand, *Zone)) 2963 return; 2964 2965 // Prioritize instructions that read unbuffered resources by stall cycles. 2966 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU), 2967 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 2968 return; 2969 } 2970 2971 // Keep clustered nodes together to encourage downstream peephole 2972 // optimizations which may reduce resource requirements. 2973 // 2974 // This is a best effort to set things up for a post-RA pass. Optimizations 2975 // like generating loads of multiple registers should ideally be done within 2976 // the scheduler pass by combining the loads during DAG postprocessing. 2977 const SUnit *CandNextClusterSU = 2978 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2979 const SUnit *TryCandNextClusterSU = 2980 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2981 if (tryGreater(TryCand.SU == TryCandNextClusterSU, 2982 Cand.SU == CandNextClusterSU, 2983 TryCand, Cand, Cluster)) 2984 return; 2985 2986 if (SameBoundary) { 2987 // Weak edges are for clustering and other constraints. 2988 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop), 2989 getWeakLeft(Cand.SU, Cand.AtTop), 2990 TryCand, Cand, Weak)) 2991 return; 2992 } 2993 2994 // Avoid increasing the max pressure of the entire region. 2995 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 2996 Cand.RPDelta.CurrentMax, 2997 TryCand, Cand, RegMax, TRI, 2998 DAG->MF)) 2999 return; 3000 3001 if (SameBoundary) { 3002 // Avoid critical resource consumption and balance the schedule. 3003 TryCand.initResourceDelta(DAG, SchedModel); 3004 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3005 TryCand, Cand, ResourceReduce)) 3006 return; 3007 if (tryGreater(TryCand.ResDelta.DemandedResources, 3008 Cand.ResDelta.DemandedResources, 3009 TryCand, Cand, ResourceDemand)) 3010 return; 3011 3012 // Avoid serializing long latency dependence chains. 3013 // For acyclic path limited loops, latency was already checked above. 3014 if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency && 3015 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone)) 3016 return; 3017 3018 // Fall through to original instruction order. 3019 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 3020 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 3021 TryCand.Reason = NodeOrder; 3022 } 3023 } 3024 } 3025 3026 /// Pick the best candidate from the queue. 3027 /// 3028 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 3029 /// DAG building. To adjust for the current scheduling location we need to 3030 /// maintain the number of vreg uses remaining to be top-scheduled. 3031 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 3032 const CandPolicy &ZonePolicy, 3033 const RegPressureTracker &RPTracker, 3034 SchedCandidate &Cand) { 3035 // getMaxPressureDelta temporarily modifies the tracker. 3036 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 3037 3038 ReadyQueue &Q = Zone.Available; 3039 for (SUnit *SU : Q) { 3040 3041 SchedCandidate TryCand(ZonePolicy); 3042 initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker); 3043 // Pass SchedBoundary only when comparing nodes from the same boundary. 3044 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; 3045 tryCandidate(Cand, TryCand, ZoneArg); 3046 if (TryCand.Reason != NoCand) { 3047 // Initialize resource delta if needed in case future heuristics query it. 3048 if (TryCand.ResDelta == SchedResourceDelta()) 3049 TryCand.initResourceDelta(DAG, SchedModel); 3050 Cand.setBest(TryCand); 3051 LLVM_DEBUG(traceCandidate(Cand)); 3052 } 3053 } 3054 } 3055 3056 /// Pick the best candidate node from either the top or bottom queue. 3057 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 3058 // Schedule as far as possible in the direction of no choice. This is most 3059 // efficient, but also provides the best heuristics for CriticalPSets. 3060 if (SUnit *SU = Bot.pickOnlyChoice()) { 3061 IsTopNode = false; 3062 tracePick(Only1, false); 3063 return SU; 3064 } 3065 if (SUnit *SU = Top.pickOnlyChoice()) { 3066 IsTopNode = true; 3067 tracePick(Only1, true); 3068 return SU; 3069 } 3070 // Set the bottom-up policy based on the state of the current bottom zone and 3071 // the instructions outside the zone, including the top zone. 3072 CandPolicy BotPolicy; 3073 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); 3074 // Set the top-down policy based on the state of the current top zone and 3075 // the instructions outside the zone, including the bottom zone. 3076 CandPolicy TopPolicy; 3077 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); 3078 3079 // See if BotCand is still valid (because we previously scheduled from Top). 3080 LLVM_DEBUG(dbgs() << "Picking from Bot:\n"); 3081 if (!BotCand.isValid() || BotCand.SU->isScheduled || 3082 BotCand.Policy != BotPolicy) { 3083 BotCand.reset(CandPolicy()); 3084 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); 3085 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 3086 } else { 3087 LLVM_DEBUG(traceCandidate(BotCand)); 3088 #ifndef NDEBUG 3089 if (VerifyScheduling) { 3090 SchedCandidate TCand; 3091 TCand.reset(CandPolicy()); 3092 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand); 3093 assert(TCand.SU == BotCand.SU && 3094 "Last pick result should correspond to re-picking right now"); 3095 } 3096 #endif 3097 } 3098 3099 // Check if the top Q has a better candidate. 3100 LLVM_DEBUG(dbgs() << "Picking from Top:\n"); 3101 if (!TopCand.isValid() || TopCand.SU->isScheduled || 3102 TopCand.Policy != TopPolicy) { 3103 TopCand.reset(CandPolicy()); 3104 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); 3105 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 3106 } else { 3107 LLVM_DEBUG(traceCandidate(TopCand)); 3108 #ifndef NDEBUG 3109 if (VerifyScheduling) { 3110 SchedCandidate TCand; 3111 TCand.reset(CandPolicy()); 3112 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand); 3113 assert(TCand.SU == TopCand.SU && 3114 "Last pick result should correspond to re-picking right now"); 3115 } 3116 #endif 3117 } 3118 3119 // Pick best from BotCand and TopCand. 3120 assert(BotCand.isValid()); 3121 assert(TopCand.isValid()); 3122 SchedCandidate Cand = BotCand; 3123 TopCand.Reason = NoCand; 3124 tryCandidate(Cand, TopCand, nullptr); 3125 if (TopCand.Reason != NoCand) { 3126 Cand.setBest(TopCand); 3127 LLVM_DEBUG(traceCandidate(Cand)); 3128 } 3129 3130 IsTopNode = Cand.AtTop; 3131 tracePick(Cand); 3132 return Cand.SU; 3133 } 3134 3135 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 3136 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 3137 if (DAG->top() == DAG->bottom()) { 3138 assert(Top.Available.empty() && Top.Pending.empty() && 3139 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 3140 return nullptr; 3141 } 3142 SUnit *SU; 3143 do { 3144 if (RegionPolicy.OnlyTopDown) { 3145 SU = Top.pickOnlyChoice(); 3146 if (!SU) { 3147 CandPolicy NoPolicy; 3148 TopCand.reset(NoPolicy); 3149 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); 3150 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3151 tracePick(TopCand); 3152 SU = TopCand.SU; 3153 } 3154 IsTopNode = true; 3155 } else if (RegionPolicy.OnlyBottomUp) { 3156 SU = Bot.pickOnlyChoice(); 3157 if (!SU) { 3158 CandPolicy NoPolicy; 3159 BotCand.reset(NoPolicy); 3160 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); 3161 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 3162 tracePick(BotCand); 3163 SU = BotCand.SU; 3164 } 3165 IsTopNode = false; 3166 } else { 3167 SU = pickNodeBidirectional(IsTopNode); 3168 } 3169 } while (SU->isScheduled); 3170 3171 if (SU->isTopReady()) 3172 Top.removeReady(SU); 3173 if (SU->isBottomReady()) 3174 Bot.removeReady(SU); 3175 3176 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 3177 << *SU->getInstr()); 3178 return SU; 3179 } 3180 3181 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) { 3182 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 3183 if (!isTop) 3184 ++InsertPos; 3185 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 3186 3187 // Find already scheduled copies with a single physreg dependence and move 3188 // them just above the scheduled instruction. 3189 for (SDep &Dep : Deps) { 3190 if (Dep.getKind() != SDep::Data || !TRI->isPhysicalRegister(Dep.getReg())) 3191 continue; 3192 SUnit *DepSU = Dep.getSUnit(); 3193 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 3194 continue; 3195 MachineInstr *Copy = DepSU->getInstr(); 3196 if (!Copy->isCopy()) 3197 continue; 3198 LLVM_DEBUG(dbgs() << " Rescheduling physreg copy "; 3199 DAG->dumpNode(*Dep.getSUnit())); 3200 DAG->moveInstruction(Copy, InsertPos); 3201 } 3202 } 3203 3204 /// Update the scheduler's state after scheduling a node. This is the same node 3205 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 3206 /// update it's state based on the current cycle before MachineSchedStrategy 3207 /// does. 3208 /// 3209 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 3210 /// them here. See comments in biasPhysRegCopy. 3211 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3212 if (IsTopNode) { 3213 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3214 Top.bumpNode(SU); 3215 if (SU->hasPhysRegUses) 3216 reschedulePhysRegCopies(SU, true); 3217 } else { 3218 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 3219 Bot.bumpNode(SU); 3220 if (SU->hasPhysRegDefs) 3221 reschedulePhysRegCopies(SU, false); 3222 } 3223 } 3224 3225 /// Create the standard converging machine scheduler. This will be used as the 3226 /// default scheduler if the target does not set a default. 3227 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) { 3228 ScheduleDAGMILive *DAG = 3229 new ScheduleDAGMILive(C, llvm::make_unique<GenericScheduler>(C)); 3230 // Register DAG post-processors. 3231 // 3232 // FIXME: extend the mutation API to allow earlier mutations to instantiate 3233 // data and pass it to later mutations. Have a single mutation that gathers 3234 // the interesting nodes in one pass. 3235 DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI)); 3236 return DAG; 3237 } 3238 3239 static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) { 3240 return createGenericSchedLive(C); 3241 } 3242 3243 static MachineSchedRegistry 3244 GenericSchedRegistry("converge", "Standard converging scheduler.", 3245 createConveringSched); 3246 3247 //===----------------------------------------------------------------------===// 3248 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 3249 //===----------------------------------------------------------------------===// 3250 3251 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 3252 DAG = Dag; 3253 SchedModel = DAG->getSchedModel(); 3254 TRI = DAG->TRI; 3255 3256 Rem.init(DAG, SchedModel); 3257 Top.init(DAG, SchedModel, &Rem); 3258 BotRoots.clear(); 3259 3260 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 3261 // or are disabled, then these HazardRecs will be disabled. 3262 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3263 if (!Top.HazardRec) { 3264 Top.HazardRec = 3265 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 3266 Itin, DAG); 3267 } 3268 } 3269 3270 void PostGenericScheduler::registerRoots() { 3271 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3272 3273 // Some roots may not feed into ExitSU. Check all of them in case. 3274 for (const SUnit *SU : BotRoots) { 3275 if (SU->getDepth() > Rem.CriticalPath) 3276 Rem.CriticalPath = SU->getDepth(); 3277 } 3278 LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 3279 if (DumpCriticalPathLength) { 3280 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 3281 } 3282 } 3283 3284 /// Apply a set of heuristics to a new candidate for PostRA scheduling. 3285 /// 3286 /// \param Cand provides the policy and current best candidate. 3287 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3288 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 3289 SchedCandidate &TryCand) { 3290 // Initialize the candidate if needed. 3291 if (!Cand.isValid()) { 3292 TryCand.Reason = NodeOrder; 3293 return; 3294 } 3295 3296 // Prioritize instructions that read unbuffered resources by stall cycles. 3297 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3298 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3299 return; 3300 3301 // Keep clustered nodes together. 3302 if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(), 3303 Cand.SU == DAG->getNextClusterSucc(), 3304 TryCand, Cand, Cluster)) 3305 return; 3306 3307 // Avoid critical resource consumption and balance the schedule. 3308 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3309 TryCand, Cand, ResourceReduce)) 3310 return; 3311 if (tryGreater(TryCand.ResDelta.DemandedResources, 3312 Cand.ResDelta.DemandedResources, 3313 TryCand, Cand, ResourceDemand)) 3314 return; 3315 3316 // Avoid serializing long latency dependence chains. 3317 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 3318 return; 3319 } 3320 3321 // Fall through to original instruction order. 3322 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) 3323 TryCand.Reason = NodeOrder; 3324 } 3325 3326 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 3327 ReadyQueue &Q = Top.Available; 3328 for (SUnit *SU : Q) { 3329 SchedCandidate TryCand(Cand.Policy); 3330 TryCand.SU = SU; 3331 TryCand.AtTop = true; 3332 TryCand.initResourceDelta(DAG, SchedModel); 3333 tryCandidate(Cand, TryCand); 3334 if (TryCand.Reason != NoCand) { 3335 Cand.setBest(TryCand); 3336 LLVM_DEBUG(traceCandidate(Cand)); 3337 } 3338 } 3339 } 3340 3341 /// Pick the next node to schedule. 3342 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 3343 if (DAG->top() == DAG->bottom()) { 3344 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 3345 return nullptr; 3346 } 3347 SUnit *SU; 3348 do { 3349 SU = Top.pickOnlyChoice(); 3350 if (SU) { 3351 tracePick(Only1, true); 3352 } else { 3353 CandPolicy NoPolicy; 3354 SchedCandidate TopCand(NoPolicy); 3355 // Set the top-down policy based on the state of the current top zone and 3356 // the instructions outside the zone, including the bottom zone. 3357 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 3358 pickNodeFromQueue(TopCand); 3359 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3360 tracePick(TopCand); 3361 SU = TopCand.SU; 3362 } 3363 } while (SU->isScheduled); 3364 3365 IsTopNode = true; 3366 Top.removeReady(SU); 3367 3368 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 3369 << *SU->getInstr()); 3370 return SU; 3371 } 3372 3373 /// Called after ScheduleDAGMI has scheduled an instruction and updated 3374 /// scheduled/remaining flags in the DAG nodes. 3375 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3376 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3377 Top.bumpNode(SU); 3378 } 3379 3380 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) { 3381 return new ScheduleDAGMI(C, llvm::make_unique<PostGenericScheduler>(C), 3382 /*RemoveKillFlags=*/true); 3383 } 3384 3385 //===----------------------------------------------------------------------===// 3386 // ILP Scheduler. Currently for experimental analysis of heuristics. 3387 //===----------------------------------------------------------------------===// 3388 3389 namespace { 3390 3391 /// Order nodes by the ILP metric. 3392 struct ILPOrder { 3393 const SchedDFSResult *DFSResult = nullptr; 3394 const BitVector *ScheduledTrees = nullptr; 3395 bool MaximizeILP; 3396 3397 ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {} 3398 3399 /// Apply a less-than relation on node priority. 3400 /// 3401 /// (Return true if A comes after B in the Q.) 3402 bool operator()(const SUnit *A, const SUnit *B) const { 3403 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3404 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3405 if (SchedTreeA != SchedTreeB) { 3406 // Unscheduled trees have lower priority. 3407 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3408 return ScheduledTrees->test(SchedTreeB); 3409 3410 // Trees with shallower connections have have lower priority. 3411 if (DFSResult->getSubtreeLevel(SchedTreeA) 3412 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3413 return DFSResult->getSubtreeLevel(SchedTreeA) 3414 < DFSResult->getSubtreeLevel(SchedTreeB); 3415 } 3416 } 3417 if (MaximizeILP) 3418 return DFSResult->getILP(A) < DFSResult->getILP(B); 3419 else 3420 return DFSResult->getILP(A) > DFSResult->getILP(B); 3421 } 3422 }; 3423 3424 /// Schedule based on the ILP metric. 3425 class ILPScheduler : public MachineSchedStrategy { 3426 ScheduleDAGMILive *DAG = nullptr; 3427 ILPOrder Cmp; 3428 3429 std::vector<SUnit*> ReadyQ; 3430 3431 public: 3432 ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {} 3433 3434 void initialize(ScheduleDAGMI *dag) override { 3435 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3436 DAG = static_cast<ScheduleDAGMILive*>(dag); 3437 DAG->computeDFSResult(); 3438 Cmp.DFSResult = DAG->getDFSResult(); 3439 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3440 ReadyQ.clear(); 3441 } 3442 3443 void registerRoots() override { 3444 // Restore the heap in ReadyQ with the updated DFS results. 3445 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3446 } 3447 3448 /// Implement MachineSchedStrategy interface. 3449 /// ----------------------------------------- 3450 3451 /// Callback to select the highest priority node from the ready Q. 3452 SUnit *pickNode(bool &IsTopNode) override { 3453 if (ReadyQ.empty()) return nullptr; 3454 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3455 SUnit *SU = ReadyQ.back(); 3456 ReadyQ.pop_back(); 3457 IsTopNode = false; 3458 LLVM_DEBUG(dbgs() << "Pick node " 3459 << "SU(" << SU->NodeNum << ") " 3460 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3461 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) 3462 << " @" 3463 << DAG->getDFSResult()->getSubtreeLevel( 3464 DAG->getDFSResult()->getSubtreeID(SU)) 3465 << '\n' 3466 << "Scheduling " << *SU->getInstr()); 3467 return SU; 3468 } 3469 3470 /// Scheduler callback to notify that a new subtree is scheduled. 3471 void scheduleTree(unsigned SubtreeID) override { 3472 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3473 } 3474 3475 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3476 /// DFSResults, and resort the priority Q. 3477 void schedNode(SUnit *SU, bool IsTopNode) override { 3478 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3479 } 3480 3481 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3482 3483 void releaseBottomNode(SUnit *SU) override { 3484 ReadyQ.push_back(SU); 3485 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3486 } 3487 }; 3488 3489 } // end anonymous namespace 3490 3491 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3492 return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(true)); 3493 } 3494 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3495 return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(false)); 3496 } 3497 3498 static MachineSchedRegistry ILPMaxRegistry( 3499 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3500 static MachineSchedRegistry ILPMinRegistry( 3501 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3502 3503 //===----------------------------------------------------------------------===// 3504 // Machine Instruction Shuffler for Correctness Testing 3505 //===----------------------------------------------------------------------===// 3506 3507 #ifndef NDEBUG 3508 namespace { 3509 3510 /// Apply a less-than relation on the node order, which corresponds to the 3511 /// instruction order prior to scheduling. IsReverse implements greater-than. 3512 template<bool IsReverse> 3513 struct SUnitOrder { 3514 bool operator()(SUnit *A, SUnit *B) const { 3515 if (IsReverse) 3516 return A->NodeNum > B->NodeNum; 3517 else 3518 return A->NodeNum < B->NodeNum; 3519 } 3520 }; 3521 3522 /// Reorder instructions as much as possible. 3523 class InstructionShuffler : public MachineSchedStrategy { 3524 bool IsAlternating; 3525 bool IsTopDown; 3526 3527 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3528 // gives nodes with a higher number higher priority causing the latest 3529 // instructions to be scheduled first. 3530 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>> 3531 TopQ; 3532 3533 // When scheduling bottom-up, use greater-than as the queue priority. 3534 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>> 3535 BottomQ; 3536 3537 public: 3538 InstructionShuffler(bool alternate, bool topdown) 3539 : IsAlternating(alternate), IsTopDown(topdown) {} 3540 3541 void initialize(ScheduleDAGMI*) override { 3542 TopQ.clear(); 3543 BottomQ.clear(); 3544 } 3545 3546 /// Implement MachineSchedStrategy interface. 3547 /// ----------------------------------------- 3548 3549 SUnit *pickNode(bool &IsTopNode) override { 3550 SUnit *SU; 3551 if (IsTopDown) { 3552 do { 3553 if (TopQ.empty()) return nullptr; 3554 SU = TopQ.top(); 3555 TopQ.pop(); 3556 } while (SU->isScheduled); 3557 IsTopNode = true; 3558 } else { 3559 do { 3560 if (BottomQ.empty()) return nullptr; 3561 SU = BottomQ.top(); 3562 BottomQ.pop(); 3563 } while (SU->isScheduled); 3564 IsTopNode = false; 3565 } 3566 if (IsAlternating) 3567 IsTopDown = !IsTopDown; 3568 return SU; 3569 } 3570 3571 void schedNode(SUnit *SU, bool IsTopNode) override {} 3572 3573 void releaseTopNode(SUnit *SU) override { 3574 TopQ.push(SU); 3575 } 3576 void releaseBottomNode(SUnit *SU) override { 3577 BottomQ.push(SU); 3578 } 3579 }; 3580 3581 } // end anonymous namespace 3582 3583 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3584 bool Alternate = !ForceTopDown && !ForceBottomUp; 3585 bool TopDown = !ForceBottomUp; 3586 assert((TopDown || !ForceTopDown) && 3587 "-misched-topdown incompatible with -misched-bottomup"); 3588 return new ScheduleDAGMILive( 3589 C, llvm::make_unique<InstructionShuffler>(Alternate, TopDown)); 3590 } 3591 3592 static MachineSchedRegistry ShufflerRegistry( 3593 "shuffle", "Shuffle machine instructions alternating directions", 3594 createInstructionShuffler); 3595 #endif // !NDEBUG 3596 3597 //===----------------------------------------------------------------------===// 3598 // GraphWriter support for ScheduleDAGMILive. 3599 //===----------------------------------------------------------------------===// 3600 3601 #ifndef NDEBUG 3602 namespace llvm { 3603 3604 template<> struct GraphTraits< 3605 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3606 3607 template<> 3608 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3609 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3610 3611 static std::string getGraphName(const ScheduleDAG *G) { 3612 return G->MF.getName(); 3613 } 3614 3615 static bool renderGraphFromBottomUp() { 3616 return true; 3617 } 3618 3619 static bool isNodeHidden(const SUnit *Node) { 3620 if (ViewMISchedCutoff == 0) 3621 return false; 3622 return (Node->Preds.size() > ViewMISchedCutoff 3623 || Node->Succs.size() > ViewMISchedCutoff); 3624 } 3625 3626 /// If you want to override the dot attributes printed for a particular 3627 /// edge, override this method. 3628 static std::string getEdgeAttributes(const SUnit *Node, 3629 SUnitIterator EI, 3630 const ScheduleDAG *Graph) { 3631 if (EI.isArtificialDep()) 3632 return "color=cyan,style=dashed"; 3633 if (EI.isCtrlDep()) 3634 return "color=blue,style=dashed"; 3635 return ""; 3636 } 3637 3638 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3639 std::string Str; 3640 raw_string_ostream SS(Str); 3641 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3642 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3643 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3644 SS << "SU:" << SU->NodeNum; 3645 if (DFS) 3646 SS << " I:" << DFS->getNumInstrs(SU); 3647 return SS.str(); 3648 } 3649 3650 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3651 return G->getGraphNodeLabel(SU); 3652 } 3653 3654 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3655 std::string Str("shape=Mrecord"); 3656 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3657 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3658 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3659 if (DFS) { 3660 Str += ",style=filled,fillcolor=\"#"; 3661 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3662 Str += '"'; 3663 } 3664 return Str; 3665 } 3666 }; 3667 3668 } // end namespace llvm 3669 #endif // NDEBUG 3670 3671 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3672 /// rendered using 'dot'. 3673 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3674 #ifndef NDEBUG 3675 ViewGraph(this, Name, false, Title); 3676 #else 3677 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3678 << "systems with Graphviz or gv!\n"; 3679 #endif // NDEBUG 3680 } 3681 3682 /// Out-of-line implementation with no arguments is handy for gdb. 3683 void ScheduleDAGMI::viewGraph() { 3684 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3685 } 3686