xref: /llvm-project/llvm/lib/CodeGen/MachineScheduler.cpp (revision 0cac726a00a2be06a959a89efe6587dba28e5822)
1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // MachineScheduler schedules machine instructions after phi elimination. It
11 // preserves LiveIntervals so it can be invoked before register allocation.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/MachineScheduler.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/PriorityQueue.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineLoopInfo.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachinePassRegistry.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegisterClassInfo.h"
37 #include "llvm/CodeGen/RegisterPressure.h"
38 #include "llvm/CodeGen/ScheduleDAG.h"
39 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
40 #include "llvm/CodeGen/ScheduleDAGMutation.h"
41 #include "llvm/CodeGen/ScheduleDFS.h"
42 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
43 #include "llvm/CodeGen/SlotIndexes.h"
44 #include "llvm/CodeGen/TargetInstrInfo.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/CodeGen/TargetPassConfig.h"
47 #include "llvm/CodeGen/TargetRegisterInfo.h"
48 #include "llvm/CodeGen/TargetSchedule.h"
49 #include "llvm/CodeGen/TargetSubtargetInfo.h"
50 #include "llvm/Config/llvm-config.h"
51 #include "llvm/MC/LaneBitmask.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/GraphWriter.h"
58 #include "llvm/Support/MachineValueType.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstdint>
63 #include <iterator>
64 #include <limits>
65 #include <memory>
66 #include <string>
67 #include <tuple>
68 #include <utility>
69 #include <vector>
70 
71 using namespace llvm;
72 
73 #define DEBUG_TYPE "machine-scheduler"
74 
75 namespace llvm {
76 
77 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
78                            cl::desc("Force top-down list scheduling"));
79 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
80                             cl::desc("Force bottom-up list scheduling"));
81 cl::opt<bool>
82 DumpCriticalPathLength("misched-dcpl", cl::Hidden,
83                        cl::desc("Print critical path length to stdout"));
84 
85 } // end namespace llvm
86 
87 #ifndef NDEBUG
88 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
89   cl::desc("Pop up a window to show MISched dags after they are processed"));
90 
91 /// In some situations a few uninteresting nodes depend on nearly all other
92 /// nodes in the graph, provide a cutoff to hide them.
93 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
94   cl::desc("Hide nodes with more predecessor/successor than cutoff"));
95 
96 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
97   cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
98 
99 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
100   cl::desc("Only schedule this function"));
101 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
102                                         cl::desc("Only schedule this MBB#"));
103 static cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden,
104                               cl::desc("Print schedule DAGs"));
105 #else
106 static const bool ViewMISchedDAGs = false;
107 static const bool PrintDAGs = false;
108 #endif // NDEBUG
109 
110 /// Avoid quadratic complexity in unusually large basic blocks by limiting the
111 /// size of the ready lists.
112 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden,
113   cl::desc("Limit ready list to N instructions"), cl::init(256));
114 
115 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
116   cl::desc("Enable register pressure scheduling."), cl::init(true));
117 
118 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
119   cl::desc("Enable cyclic critical path analysis."), cl::init(true));
120 
121 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden,
122                                         cl::desc("Enable memop clustering."),
123                                         cl::init(true));
124 
125 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
126   cl::desc("Verify machine instrs before and after machine scheduling"));
127 
128 // DAG subtrees must have at least this many nodes.
129 static const unsigned MinSubtreeSize = 8;
130 
131 // Pin the vtables to this file.
132 void MachineSchedStrategy::anchor() {}
133 
134 void ScheduleDAGMutation::anchor() {}
135 
136 //===----------------------------------------------------------------------===//
137 // Machine Instruction Scheduling Pass and Registry
138 //===----------------------------------------------------------------------===//
139 
140 MachineSchedContext::MachineSchedContext() {
141   RegClassInfo = new RegisterClassInfo();
142 }
143 
144 MachineSchedContext::~MachineSchedContext() {
145   delete RegClassInfo;
146 }
147 
148 namespace {
149 
150 /// Base class for a machine scheduler class that can run at any point.
151 class MachineSchedulerBase : public MachineSchedContext,
152                              public MachineFunctionPass {
153 public:
154   MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
155 
156   void print(raw_ostream &O, const Module* = nullptr) const override;
157 
158 protected:
159   void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
160 };
161 
162 /// MachineScheduler runs after coalescing and before register allocation.
163 class MachineScheduler : public MachineSchedulerBase {
164 public:
165   MachineScheduler();
166 
167   void getAnalysisUsage(AnalysisUsage &AU) const override;
168 
169   bool runOnMachineFunction(MachineFunction&) override;
170 
171   static char ID; // Class identification, replacement for typeinfo
172 
173 protected:
174   ScheduleDAGInstrs *createMachineScheduler();
175 };
176 
177 /// PostMachineScheduler runs after shortly before code emission.
178 class PostMachineScheduler : public MachineSchedulerBase {
179 public:
180   PostMachineScheduler();
181 
182   void getAnalysisUsage(AnalysisUsage &AU) const override;
183 
184   bool runOnMachineFunction(MachineFunction&) override;
185 
186   static char ID; // Class identification, replacement for typeinfo
187 
188 protected:
189   ScheduleDAGInstrs *createPostMachineScheduler();
190 };
191 
192 } // end anonymous namespace
193 
194 char MachineScheduler::ID = 0;
195 
196 char &llvm::MachineSchedulerID = MachineScheduler::ID;
197 
198 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE,
199                       "Machine Instruction Scheduler", false, false)
200 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
201 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
202 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
203 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
204 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE,
205                     "Machine Instruction Scheduler", false, false)
206 
207 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) {
208   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
209 }
210 
211 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
212   AU.setPreservesCFG();
213   AU.addRequiredID(MachineDominatorsID);
214   AU.addRequired<MachineLoopInfo>();
215   AU.addRequired<AAResultsWrapperPass>();
216   AU.addRequired<TargetPassConfig>();
217   AU.addRequired<SlotIndexes>();
218   AU.addPreserved<SlotIndexes>();
219   AU.addRequired<LiveIntervals>();
220   AU.addPreserved<LiveIntervals>();
221   MachineFunctionPass::getAnalysisUsage(AU);
222 }
223 
224 char PostMachineScheduler::ID = 0;
225 
226 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
227 
228 INITIALIZE_PASS(PostMachineScheduler, "postmisched",
229                 "PostRA Machine Instruction Scheduler", false, false)
230 
231 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) {
232   initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
233 }
234 
235 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
236   AU.setPreservesCFG();
237   AU.addRequiredID(MachineDominatorsID);
238   AU.addRequired<MachineLoopInfo>();
239   AU.addRequired<TargetPassConfig>();
240   MachineFunctionPass::getAnalysisUsage(AU);
241 }
242 
243 MachinePassRegistry MachineSchedRegistry::Registry;
244 
245 /// A dummy default scheduler factory indicates whether the scheduler
246 /// is overridden on the command line.
247 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
248   return nullptr;
249 }
250 
251 /// MachineSchedOpt allows command line selection of the scheduler.
252 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
253                RegisterPassParser<MachineSchedRegistry>>
254 MachineSchedOpt("misched",
255                 cl::init(&useDefaultMachineSched), cl::Hidden,
256                 cl::desc("Machine instruction scheduler to use"));
257 
258 static MachineSchedRegistry
259 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
260                      useDefaultMachineSched);
261 
262 static cl::opt<bool> EnableMachineSched(
263     "enable-misched",
264     cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
265     cl::Hidden);
266 
267 static cl::opt<bool> EnablePostRAMachineSched(
268     "enable-post-misched",
269     cl::desc("Enable the post-ra machine instruction scheduling pass."),
270     cl::init(true), cl::Hidden);
271 
272 /// Decrement this iterator until reaching the top or a non-debug instr.
273 static MachineBasicBlock::const_iterator
274 priorNonDebug(MachineBasicBlock::const_iterator I,
275               MachineBasicBlock::const_iterator Beg) {
276   assert(I != Beg && "reached the top of the region, cannot decrement");
277   while (--I != Beg) {
278     if (!I->isDebugInstr())
279       break;
280   }
281   return I;
282 }
283 
284 /// Non-const version.
285 static MachineBasicBlock::iterator
286 priorNonDebug(MachineBasicBlock::iterator I,
287               MachineBasicBlock::const_iterator Beg) {
288   return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)
289       .getNonConstIterator();
290 }
291 
292 /// If this iterator is a debug value, increment until reaching the End or a
293 /// non-debug instruction.
294 static MachineBasicBlock::const_iterator
295 nextIfDebug(MachineBasicBlock::const_iterator I,
296             MachineBasicBlock::const_iterator End) {
297   for(; I != End; ++I) {
298     if (!I->isDebugInstr())
299       break;
300   }
301   return I;
302 }
303 
304 /// Non-const version.
305 static MachineBasicBlock::iterator
306 nextIfDebug(MachineBasicBlock::iterator I,
307             MachineBasicBlock::const_iterator End) {
308   return nextIfDebug(MachineBasicBlock::const_iterator(I), End)
309       .getNonConstIterator();
310 }
311 
312 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
313 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
314   // Select the scheduler, or set the default.
315   MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
316   if (Ctor != useDefaultMachineSched)
317     return Ctor(this);
318 
319   // Get the default scheduler set by the target for this function.
320   ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
321   if (Scheduler)
322     return Scheduler;
323 
324   // Default to GenericScheduler.
325   return createGenericSchedLive(this);
326 }
327 
328 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
329 /// the caller. We don't have a command line option to override the postRA
330 /// scheduler. The Target must configure it.
331 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
332   // Get the postRA scheduler set by the target for this function.
333   ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
334   if (Scheduler)
335     return Scheduler;
336 
337   // Default to GenericScheduler.
338   return createGenericSchedPostRA(this);
339 }
340 
341 /// Top-level MachineScheduler pass driver.
342 ///
343 /// Visit blocks in function order. Divide each block into scheduling regions
344 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
345 /// consistent with the DAG builder, which traverses the interior of the
346 /// scheduling regions bottom-up.
347 ///
348 /// This design avoids exposing scheduling boundaries to the DAG builder,
349 /// simplifying the DAG builder's support for "special" target instructions.
350 /// At the same time the design allows target schedulers to operate across
351 /// scheduling boundaries, for example to bundle the boundary instructions
352 /// without reordering them. This creates complexity, because the target
353 /// scheduler must update the RegionBegin and RegionEnd positions cached by
354 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
355 /// design would be to split blocks at scheduling boundaries, but LLVM has a
356 /// general bias against block splitting purely for implementation simplicity.
357 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
358   if (skipFunction(mf.getFunction()))
359     return false;
360 
361   if (EnableMachineSched.getNumOccurrences()) {
362     if (!EnableMachineSched)
363       return false;
364   } else if (!mf.getSubtarget().enableMachineScheduler())
365     return false;
366 
367   LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
368 
369   // Initialize the context of the pass.
370   MF = &mf;
371   MLI = &getAnalysis<MachineLoopInfo>();
372   MDT = &getAnalysis<MachineDominatorTree>();
373   PassConfig = &getAnalysis<TargetPassConfig>();
374   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
375 
376   LIS = &getAnalysis<LiveIntervals>();
377 
378   if (VerifyScheduling) {
379     LLVM_DEBUG(LIS->dump());
380     MF->verify(this, "Before machine scheduling.");
381   }
382   RegClassInfo->runOnMachineFunction(*MF);
383 
384   // Instantiate the selected scheduler for this target, function, and
385   // optimization level.
386   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
387   scheduleRegions(*Scheduler, false);
388 
389   LLVM_DEBUG(LIS->dump());
390   if (VerifyScheduling)
391     MF->verify(this, "After machine scheduling.");
392   return true;
393 }
394 
395 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
396   if (skipFunction(mf.getFunction()))
397     return false;
398 
399   if (EnablePostRAMachineSched.getNumOccurrences()) {
400     if (!EnablePostRAMachineSched)
401       return false;
402   } else if (!mf.getSubtarget().enablePostRAScheduler()) {
403     LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
404     return false;
405   }
406   LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
407 
408   // Initialize the context of the pass.
409   MF = &mf;
410   MLI = &getAnalysis<MachineLoopInfo>();
411   PassConfig = &getAnalysis<TargetPassConfig>();
412 
413   if (VerifyScheduling)
414     MF->verify(this, "Before post machine scheduling.");
415 
416   // Instantiate the selected scheduler for this target, function, and
417   // optimization level.
418   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
419   scheduleRegions(*Scheduler, true);
420 
421   if (VerifyScheduling)
422     MF->verify(this, "After post machine scheduling.");
423   return true;
424 }
425 
426 /// Return true of the given instruction should not be included in a scheduling
427 /// region.
428 ///
429 /// MachineScheduler does not currently support scheduling across calls. To
430 /// handle calls, the DAG builder needs to be modified to create register
431 /// anti/output dependencies on the registers clobbered by the call's regmask
432 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
433 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
434 /// the boundary, but there would be no benefit to postRA scheduling across
435 /// calls this late anyway.
436 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
437                             MachineBasicBlock *MBB,
438                             MachineFunction *MF,
439                             const TargetInstrInfo *TII) {
440   return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF);
441 }
442 
443 /// A region of an MBB for scheduling.
444 namespace {
445 struct SchedRegion {
446   /// RegionBegin is the first instruction in the scheduling region, and
447   /// RegionEnd is either MBB->end() or the scheduling boundary after the
448   /// last instruction in the scheduling region. These iterators cannot refer
449   /// to instructions outside of the identified scheduling region because
450   /// those may be reordered before scheduling this region.
451   MachineBasicBlock::iterator RegionBegin;
452   MachineBasicBlock::iterator RegionEnd;
453   unsigned NumRegionInstrs;
454 
455   SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E,
456               unsigned N) :
457     RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {}
458 };
459 } // end anonymous namespace
460 
461 using MBBRegionsVector = SmallVector<SchedRegion, 16>;
462 
463 static void
464 getSchedRegions(MachineBasicBlock *MBB,
465                 MBBRegionsVector &Regions,
466                 bool RegionsTopDown) {
467   MachineFunction *MF = MBB->getParent();
468   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
469 
470   MachineBasicBlock::iterator I = nullptr;
471   for(MachineBasicBlock::iterator RegionEnd = MBB->end();
472       RegionEnd != MBB->begin(); RegionEnd = I) {
473 
474     // Avoid decrementing RegionEnd for blocks with no terminator.
475     if (RegionEnd != MBB->end() ||
476         isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
477       --RegionEnd;
478     }
479 
480     // The next region starts above the previous region. Look backward in the
481     // instruction stream until we find the nearest boundary.
482     unsigned NumRegionInstrs = 0;
483     I = RegionEnd;
484     for (;I != MBB->begin(); --I) {
485       MachineInstr &MI = *std::prev(I);
486       if (isSchedBoundary(&MI, &*MBB, MF, TII))
487         break;
488       if (!MI.isDebugInstr())
489         // MBB::size() uses instr_iterator to count. Here we need a bundle to
490         // count as a single instruction.
491         ++NumRegionInstrs;
492     }
493 
494     Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs));
495   }
496 
497   if (RegionsTopDown)
498     std::reverse(Regions.begin(), Regions.end());
499 }
500 
501 /// Main driver for both MachineScheduler and PostMachineScheduler.
502 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
503                                            bool FixKillFlags) {
504   // Visit all machine basic blocks.
505   //
506   // TODO: Visit blocks in global postorder or postorder within the bottom-up
507   // loop tree. Then we can optionally compute global RegPressure.
508   for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
509        MBB != MBBEnd; ++MBB) {
510 
511     Scheduler.startBlock(&*MBB);
512 
513 #ifndef NDEBUG
514     if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
515       continue;
516     if (SchedOnlyBlock.getNumOccurrences()
517         && (int)SchedOnlyBlock != MBB->getNumber())
518       continue;
519 #endif
520 
521     // Break the block into scheduling regions [I, RegionEnd). RegionEnd
522     // points to the scheduling boundary at the bottom of the region. The DAG
523     // does not include RegionEnd, but the region does (i.e. the next
524     // RegionEnd is above the previous RegionBegin). If the current block has
525     // no terminator then RegionEnd == MBB->end() for the bottom region.
526     //
527     // All the regions of MBB are first found and stored in MBBRegions, which
528     // will be processed (MBB) top-down if initialized with true.
529     //
530     // The Scheduler may insert instructions during either schedule() or
531     // exitRegion(), even for empty regions. So the local iterators 'I' and
532     // 'RegionEnd' are invalid across these calls. Instructions must not be
533     // added to other regions than the current one without updating MBBRegions.
534 
535     MBBRegionsVector MBBRegions;
536     getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown());
537     for (MBBRegionsVector::iterator R = MBBRegions.begin();
538          R != MBBRegions.end(); ++R) {
539       MachineBasicBlock::iterator I = R->RegionBegin;
540       MachineBasicBlock::iterator RegionEnd = R->RegionEnd;
541       unsigned NumRegionInstrs = R->NumRegionInstrs;
542 
543       // Notify the scheduler of the region, even if we may skip scheduling
544       // it. Perhaps it still needs to be bundled.
545       Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
546 
547       // Skip empty scheduling regions (0 or 1 schedulable instructions).
548       if (I == RegionEnd || I == std::prev(RegionEnd)) {
549         // Close the current region. Bundle the terminator if needed.
550         // This invalidates 'RegionEnd' and 'I'.
551         Scheduler.exitRegion();
552         continue;
553       }
554       LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
555       LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB)
556                         << " " << MBB->getName() << "\n  From: " << *I
557                         << "    To: ";
558                  if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
559                  else dbgs() << "End";
560                  dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
561       if (DumpCriticalPathLength) {
562         errs() << MF->getName();
563         errs() << ":%bb. " << MBB->getNumber();
564         errs() << " " << MBB->getName() << " \n";
565       }
566 
567       // Schedule a region: possibly reorder instructions.
568       // This invalidates the original region iterators.
569       Scheduler.schedule();
570 
571       // Close the current region.
572       Scheduler.exitRegion();
573     }
574     Scheduler.finishBlock();
575     // FIXME: Ideally, no further passes should rely on kill flags. However,
576     // thumb2 size reduction is currently an exception, so the PostMIScheduler
577     // needs to do this.
578     if (FixKillFlags)
579       Scheduler.fixupKills(*MBB);
580   }
581   Scheduler.finalizeSchedule();
582 }
583 
584 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
585   // unimplemented
586 }
587 
588 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
589 LLVM_DUMP_METHOD void ReadyQueue::dump() const {
590   dbgs() << "Queue " << Name << ": ";
591   for (const SUnit *SU : Queue)
592     dbgs() << SU->NodeNum << " ";
593   dbgs() << "\n";
594 }
595 #endif
596 
597 //===----------------------------------------------------------------------===//
598 // ScheduleDAGMI - Basic machine instruction scheduling. This is
599 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
600 // virtual registers.
601 // ===----------------------------------------------------------------------===/
602 
603 // Provide a vtable anchor.
604 ScheduleDAGMI::~ScheduleDAGMI() = default;
605 
606 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
607   return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
608 }
609 
610 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
611   if (SuccSU != &ExitSU) {
612     // Do not use WillCreateCycle, it assumes SD scheduling.
613     // If Pred is reachable from Succ, then the edge creates a cycle.
614     if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
615       return false;
616     Topo.AddPred(SuccSU, PredDep.getSUnit());
617   }
618   SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
619   // Return true regardless of whether a new edge needed to be inserted.
620   return true;
621 }
622 
623 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
624 /// NumPredsLeft reaches zero, release the successor node.
625 ///
626 /// FIXME: Adjust SuccSU height based on MinLatency.
627 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
628   SUnit *SuccSU = SuccEdge->getSUnit();
629 
630   if (SuccEdge->isWeak()) {
631     --SuccSU->WeakPredsLeft;
632     if (SuccEdge->isCluster())
633       NextClusterSucc = SuccSU;
634     return;
635   }
636 #ifndef NDEBUG
637   if (SuccSU->NumPredsLeft == 0) {
638     dbgs() << "*** Scheduling failed! ***\n";
639     dumpNode(*SuccSU);
640     dbgs() << " has been released too many times!\n";
641     llvm_unreachable(nullptr);
642   }
643 #endif
644   // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
645   // CurrCycle may have advanced since then.
646   if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
647     SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
648 
649   --SuccSU->NumPredsLeft;
650   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
651     SchedImpl->releaseTopNode(SuccSU);
652 }
653 
654 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
655 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
656   for (SDep &Succ : SU->Succs)
657     releaseSucc(SU, &Succ);
658 }
659 
660 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
661 /// NumSuccsLeft reaches zero, release the predecessor node.
662 ///
663 /// FIXME: Adjust PredSU height based on MinLatency.
664 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
665   SUnit *PredSU = PredEdge->getSUnit();
666 
667   if (PredEdge->isWeak()) {
668     --PredSU->WeakSuccsLeft;
669     if (PredEdge->isCluster())
670       NextClusterPred = PredSU;
671     return;
672   }
673 #ifndef NDEBUG
674   if (PredSU->NumSuccsLeft == 0) {
675     dbgs() << "*** Scheduling failed! ***\n";
676     dumpNode(*PredSU);
677     dbgs() << " has been released too many times!\n";
678     llvm_unreachable(nullptr);
679   }
680 #endif
681   // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
682   // CurrCycle may have advanced since then.
683   if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
684     PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
685 
686   --PredSU->NumSuccsLeft;
687   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
688     SchedImpl->releaseBottomNode(PredSU);
689 }
690 
691 /// releasePredecessors - Call releasePred on each of SU's predecessors.
692 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
693   for (SDep &Pred : SU->Preds)
694     releasePred(SU, &Pred);
695 }
696 
697 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) {
698   ScheduleDAGInstrs::startBlock(bb);
699   SchedImpl->enterMBB(bb);
700 }
701 
702 void ScheduleDAGMI::finishBlock() {
703   SchedImpl->leaveMBB();
704   ScheduleDAGInstrs::finishBlock();
705 }
706 
707 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
708 /// crossing a scheduling boundary. [begin, end) includes all instructions in
709 /// the region, including the boundary itself and single-instruction regions
710 /// that don't get scheduled.
711 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
712                                      MachineBasicBlock::iterator begin,
713                                      MachineBasicBlock::iterator end,
714                                      unsigned regioninstrs)
715 {
716   ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
717 
718   SchedImpl->initPolicy(begin, end, regioninstrs);
719 }
720 
721 /// This is normally called from the main scheduler loop but may also be invoked
722 /// by the scheduling strategy to perform additional code motion.
723 void ScheduleDAGMI::moveInstruction(
724   MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
725   // Advance RegionBegin if the first instruction moves down.
726   if (&*RegionBegin == MI)
727     ++RegionBegin;
728 
729   // Update the instruction stream.
730   BB->splice(InsertPos, BB, MI);
731 
732   // Update LiveIntervals
733   if (LIS)
734     LIS->handleMove(*MI, /*UpdateFlags=*/true);
735 
736   // Recede RegionBegin if an instruction moves above the first.
737   if (RegionBegin == InsertPos)
738     RegionBegin = MI;
739 }
740 
741 bool ScheduleDAGMI::checkSchedLimit() {
742 #ifndef NDEBUG
743   if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
744     CurrentTop = CurrentBottom;
745     return false;
746   }
747   ++NumInstrsScheduled;
748 #endif
749   return true;
750 }
751 
752 /// Per-region scheduling driver, called back from
753 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that
754 /// does not consider liveness or register pressure. It is useful for PostRA
755 /// scheduling and potentially other custom schedulers.
756 void ScheduleDAGMI::schedule() {
757   LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
758   LLVM_DEBUG(SchedImpl->dumpPolicy());
759 
760   // Build the DAG.
761   buildSchedGraph(AA);
762 
763   Topo.InitDAGTopologicalSorting();
764 
765   postprocessDAG();
766 
767   SmallVector<SUnit*, 8> TopRoots, BotRoots;
768   findRootsAndBiasEdges(TopRoots, BotRoots);
769 
770   LLVM_DEBUG(dump());
771   if (PrintDAGs) dump();
772   if (ViewMISchedDAGs) viewGraph();
773 
774   // Initialize the strategy before modifying the DAG.
775   // This may initialize a DFSResult to be used for queue priority.
776   SchedImpl->initialize(this);
777 
778   // Initialize ready queues now that the DAG and priority data are finalized.
779   initQueues(TopRoots, BotRoots);
780 
781   bool IsTopNode = false;
782   while (true) {
783     LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
784     SUnit *SU = SchedImpl->pickNode(IsTopNode);
785     if (!SU) break;
786 
787     assert(!SU->isScheduled && "Node already scheduled");
788     if (!checkSchedLimit())
789       break;
790 
791     MachineInstr *MI = SU->getInstr();
792     if (IsTopNode) {
793       assert(SU->isTopReady() && "node still has unscheduled dependencies");
794       if (&*CurrentTop == MI)
795         CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
796       else
797         moveInstruction(MI, CurrentTop);
798     } else {
799       assert(SU->isBottomReady() && "node still has unscheduled dependencies");
800       MachineBasicBlock::iterator priorII =
801         priorNonDebug(CurrentBottom, CurrentTop);
802       if (&*priorII == MI)
803         CurrentBottom = priorII;
804       else {
805         if (&*CurrentTop == MI)
806           CurrentTop = nextIfDebug(++CurrentTop, priorII);
807         moveInstruction(MI, CurrentBottom);
808         CurrentBottom = MI;
809       }
810     }
811     // Notify the scheduling strategy before updating the DAG.
812     // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
813     // runs, it can then use the accurate ReadyCycle time to determine whether
814     // newly released nodes can move to the readyQ.
815     SchedImpl->schedNode(SU, IsTopNode);
816 
817     updateQueues(SU, IsTopNode);
818   }
819   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
820 
821   placeDebugValues();
822 
823   LLVM_DEBUG({
824     dbgs() << "*** Final schedule for "
825            << printMBBReference(*begin()->getParent()) << " ***\n";
826     dumpSchedule();
827     dbgs() << '\n';
828   });
829 }
830 
831 /// Apply each ScheduleDAGMutation step in order.
832 void ScheduleDAGMI::postprocessDAG() {
833   for (auto &m : Mutations)
834     m->apply(this);
835 }
836 
837 void ScheduleDAGMI::
838 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
839                       SmallVectorImpl<SUnit*> &BotRoots) {
840   for (SUnit &SU : SUnits) {
841     assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits");
842 
843     // Order predecessors so DFSResult follows the critical path.
844     SU.biasCriticalPath();
845 
846     // A SUnit is ready to top schedule if it has no predecessors.
847     if (!SU.NumPredsLeft)
848       TopRoots.push_back(&SU);
849     // A SUnit is ready to bottom schedule if it has no successors.
850     if (!SU.NumSuccsLeft)
851       BotRoots.push_back(&SU);
852   }
853   ExitSU.biasCriticalPath();
854 }
855 
856 /// Identify DAG roots and setup scheduler queues.
857 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
858                                ArrayRef<SUnit*> BotRoots) {
859   NextClusterSucc = nullptr;
860   NextClusterPred = nullptr;
861 
862   // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
863   //
864   // Nodes with unreleased weak edges can still be roots.
865   // Release top roots in forward order.
866   for (SUnit *SU : TopRoots)
867     SchedImpl->releaseTopNode(SU);
868 
869   // Release bottom roots in reverse order so the higher priority nodes appear
870   // first. This is more natural and slightly more efficient.
871   for (SmallVectorImpl<SUnit*>::const_reverse_iterator
872          I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
873     SchedImpl->releaseBottomNode(*I);
874   }
875 
876   releaseSuccessors(&EntrySU);
877   releasePredecessors(&ExitSU);
878 
879   SchedImpl->registerRoots();
880 
881   // Advance past initial DebugValues.
882   CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
883   CurrentBottom = RegionEnd;
884 }
885 
886 /// Update scheduler queues after scheduling an instruction.
887 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
888   // Release dependent instructions for scheduling.
889   if (IsTopNode)
890     releaseSuccessors(SU);
891   else
892     releasePredecessors(SU);
893 
894   SU->isScheduled = true;
895 }
896 
897 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
898 void ScheduleDAGMI::placeDebugValues() {
899   // If first instruction was a DBG_VALUE then put it back.
900   if (FirstDbgValue) {
901     BB->splice(RegionBegin, BB, FirstDbgValue);
902     RegionBegin = FirstDbgValue;
903   }
904 
905   for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator
906          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
907     std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
908     MachineInstr *DbgValue = P.first;
909     MachineBasicBlock::iterator OrigPrevMI = P.second;
910     if (&*RegionBegin == DbgValue)
911       ++RegionBegin;
912     BB->splice(++OrigPrevMI, BB, DbgValue);
913     if (OrigPrevMI == std::prev(RegionEnd))
914       RegionEnd = DbgValue;
915   }
916   DbgValues.clear();
917   FirstDbgValue = nullptr;
918 }
919 
920 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
921 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const {
922   for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
923     if (SUnit *SU = getSUnit(&(*MI)))
924       dumpNode(*SU);
925     else
926       dbgs() << "Missing SUnit\n";
927   }
928 }
929 #endif
930 
931 //===----------------------------------------------------------------------===//
932 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
933 // preservation.
934 //===----------------------------------------------------------------------===//
935 
936 ScheduleDAGMILive::~ScheduleDAGMILive() {
937   delete DFSResult;
938 }
939 
940 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) {
941   const MachineInstr &MI = *SU.getInstr();
942   for (const MachineOperand &MO : MI.operands()) {
943     if (!MO.isReg())
944       continue;
945     if (!MO.readsReg())
946       continue;
947     if (TrackLaneMasks && !MO.isUse())
948       continue;
949 
950     unsigned Reg = MO.getReg();
951     if (!TargetRegisterInfo::isVirtualRegister(Reg))
952       continue;
953 
954     // Ignore re-defs.
955     if (TrackLaneMasks) {
956       bool FoundDef = false;
957       for (const MachineOperand &MO2 : MI.operands()) {
958         if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) {
959           FoundDef = true;
960           break;
961         }
962       }
963       if (FoundDef)
964         continue;
965     }
966 
967     // Record this local VReg use.
968     VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
969     for (; UI != VRegUses.end(); ++UI) {
970       if (UI->SU == &SU)
971         break;
972     }
973     if (UI == VRegUses.end())
974       VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU));
975   }
976 }
977 
978 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
979 /// crossing a scheduling boundary. [begin, end) includes all instructions in
980 /// the region, including the boundary itself and single-instruction regions
981 /// that don't get scheduled.
982 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
983                                 MachineBasicBlock::iterator begin,
984                                 MachineBasicBlock::iterator end,
985                                 unsigned regioninstrs)
986 {
987   // ScheduleDAGMI initializes SchedImpl's per-region policy.
988   ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
989 
990   // For convenience remember the end of the liveness region.
991   LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
992 
993   SUPressureDiffs.clear();
994 
995   ShouldTrackPressure = SchedImpl->shouldTrackPressure();
996   ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks();
997 
998   assert((!ShouldTrackLaneMasks || ShouldTrackPressure) &&
999          "ShouldTrackLaneMasks requires ShouldTrackPressure");
1000 }
1001 
1002 // Setup the register pressure trackers for the top scheduled top and bottom
1003 // scheduled regions.
1004 void ScheduleDAGMILive::initRegPressure() {
1005   VRegUses.clear();
1006   VRegUses.setUniverse(MRI.getNumVirtRegs());
1007   for (SUnit &SU : SUnits)
1008     collectVRegUses(SU);
1009 
1010   TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin,
1011                     ShouldTrackLaneMasks, false);
1012   BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1013                     ShouldTrackLaneMasks, false);
1014 
1015   // Close the RPTracker to finalize live ins.
1016   RPTracker.closeRegion();
1017 
1018   LLVM_DEBUG(RPTracker.dump());
1019 
1020   // Initialize the live ins and live outs.
1021   TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
1022   BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
1023 
1024   // Close one end of the tracker so we can call
1025   // getMaxUpward/DownwardPressureDelta before advancing across any
1026   // instructions. This converts currently live regs into live ins/outs.
1027   TopRPTracker.closeTop();
1028   BotRPTracker.closeBottom();
1029 
1030   BotRPTracker.initLiveThru(RPTracker);
1031   if (!BotRPTracker.getLiveThru().empty()) {
1032     TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
1033     LLVM_DEBUG(dbgs() << "Live Thru: ";
1034                dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
1035   };
1036 
1037   // For each live out vreg reduce the pressure change associated with other
1038   // uses of the same vreg below the live-out reaching def.
1039   updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
1040 
1041   // Account for liveness generated by the region boundary.
1042   if (LiveRegionEnd != RegionEnd) {
1043     SmallVector<RegisterMaskPair, 8> LiveUses;
1044     BotRPTracker.recede(&LiveUses);
1045     updatePressureDiffs(LiveUses);
1046   }
1047 
1048   LLVM_DEBUG(dbgs() << "Top Pressure:\n";
1049              dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
1050              dbgs() << "Bottom Pressure:\n";
1051              dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI););
1052 
1053   assert((BotRPTracker.getPos() == RegionEnd ||
1054           (RegionEnd->isDebugInstr() &&
1055            BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) &&
1056          "Can't find the region bottom");
1057 
1058   // Cache the list of excess pressure sets in this region. This will also track
1059   // the max pressure in the scheduled code for these sets.
1060   RegionCriticalPSets.clear();
1061   const std::vector<unsigned> &RegionPressure =
1062     RPTracker.getPressure().MaxSetPressure;
1063   for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
1064     unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
1065     if (RegionPressure[i] > Limit) {
1066       LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit
1067                         << " Actual " << RegionPressure[i] << "\n");
1068       RegionCriticalPSets.push_back(PressureChange(i));
1069     }
1070   }
1071   LLVM_DEBUG(dbgs() << "Excess PSets: ";
1072              for (const PressureChange &RCPS
1073                   : RegionCriticalPSets) dbgs()
1074              << TRI->getRegPressureSetName(RCPS.getPSet()) << " ";
1075              dbgs() << "\n");
1076 }
1077 
1078 void ScheduleDAGMILive::
1079 updateScheduledPressure(const SUnit *SU,
1080                         const std::vector<unsigned> &NewMaxPressure) {
1081   const PressureDiff &PDiff = getPressureDiff(SU);
1082   unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
1083   for (const PressureChange &PC : PDiff) {
1084     if (!PC.isValid())
1085       break;
1086     unsigned ID = PC.getPSet();
1087     while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
1088       ++CritIdx;
1089     if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
1090       if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
1091           && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max())
1092         RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
1093     }
1094     unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
1095     if (NewMaxPressure[ID] >= Limit - 2) {
1096       LLVM_DEBUG(dbgs() << "  " << TRI->getRegPressureSetName(ID) << ": "
1097                         << NewMaxPressure[ID]
1098                         << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ")
1099                         << Limit << "(+ " << BotRPTracker.getLiveThru()[ID]
1100                         << " livethru)\n");
1101     }
1102   }
1103 }
1104 
1105 /// Update the PressureDiff array for liveness after scheduling this
1106 /// instruction.
1107 void ScheduleDAGMILive::updatePressureDiffs(
1108     ArrayRef<RegisterMaskPair> LiveUses) {
1109   for (const RegisterMaskPair &P : LiveUses) {
1110     unsigned Reg = P.RegUnit;
1111     /// FIXME: Currently assuming single-use physregs.
1112     if (!TRI->isVirtualRegister(Reg))
1113       continue;
1114 
1115     if (ShouldTrackLaneMasks) {
1116       // If the register has just become live then other uses won't change
1117       // this fact anymore => decrement pressure.
1118       // If the register has just become dead then other uses make it come
1119       // back to life => increment pressure.
1120       bool Decrement = P.LaneMask.any();
1121 
1122       for (const VReg2SUnit &V2SU
1123            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1124         SUnit &SU = *V2SU.SU;
1125         if (SU.isScheduled || &SU == &ExitSU)
1126           continue;
1127 
1128         PressureDiff &PDiff = getPressureDiff(&SU);
1129         PDiff.addPressureChange(Reg, Decrement, &MRI);
1130         LLVM_DEBUG(dbgs() << "  UpdateRegP: SU(" << SU.NodeNum << ") "
1131                           << printReg(Reg, TRI) << ':'
1132                           << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr();
1133                    dbgs() << "              to "; PDiff.dump(*TRI););
1134       }
1135     } else {
1136       assert(P.LaneMask.any());
1137       LLVM_DEBUG(dbgs() << "  LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n");
1138       // This may be called before CurrentBottom has been initialized. However,
1139       // BotRPTracker must have a valid position. We want the value live into the
1140       // instruction or live out of the block, so ask for the previous
1141       // instruction's live-out.
1142       const LiveInterval &LI = LIS->getInterval(Reg);
1143       VNInfo *VNI;
1144       MachineBasicBlock::const_iterator I =
1145         nextIfDebug(BotRPTracker.getPos(), BB->end());
1146       if (I == BB->end())
1147         VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1148       else {
1149         LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I));
1150         VNI = LRQ.valueIn();
1151       }
1152       // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
1153       assert(VNI && "No live value at use.");
1154       for (const VReg2SUnit &V2SU
1155            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1156         SUnit *SU = V2SU.SU;
1157         // If this use comes before the reaching def, it cannot be a last use,
1158         // so decrease its pressure change.
1159         if (!SU->isScheduled && SU != &ExitSU) {
1160           LiveQueryResult LRQ =
1161               LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1162           if (LRQ.valueIn() == VNI) {
1163             PressureDiff &PDiff = getPressureDiff(SU);
1164             PDiff.addPressureChange(Reg, true, &MRI);
1165             LLVM_DEBUG(dbgs() << "  UpdateRegP: SU(" << SU->NodeNum << ") "
1166                               << *SU->getInstr();
1167                        dbgs() << "              to "; PDiff.dump(*TRI););
1168           }
1169         }
1170       }
1171     }
1172   }
1173 }
1174 
1175 void ScheduleDAGMILive::dump() const {
1176 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1177   if (EntrySU.getInstr() != nullptr)
1178     dumpNodeAll(EntrySU);
1179   for (const SUnit &SU : SUnits) {
1180     dumpNodeAll(SU);
1181     if (ShouldTrackPressure) {
1182       dbgs() << "  Pressure Diff      : ";
1183       getPressureDiff(&SU).dump(*TRI);
1184     }
1185     dbgs() << "  Single Issue       : ";
1186     if (SchedModel.mustBeginGroup(SU.getInstr()) &&
1187         SchedModel.mustEndGroup(SU.getInstr()))
1188       dbgs() << "true;";
1189     else
1190       dbgs() << "false;";
1191     dbgs() << '\n';
1192   }
1193   if (ExitSU.getInstr() != nullptr)
1194     dumpNodeAll(ExitSU);
1195 #endif
1196 }
1197 
1198 /// schedule - Called back from MachineScheduler::runOnMachineFunction
1199 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
1200 /// only includes instructions that have DAG nodes, not scheduling boundaries.
1201 ///
1202 /// This is a skeletal driver, with all the functionality pushed into helpers,
1203 /// so that it can be easily extended by experimental schedulers. Generally,
1204 /// implementing MachineSchedStrategy should be sufficient to implement a new
1205 /// scheduling algorithm. However, if a scheduler further subclasses
1206 /// ScheduleDAGMILive then it will want to override this virtual method in order
1207 /// to update any specialized state.
1208 void ScheduleDAGMILive::schedule() {
1209   LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
1210   LLVM_DEBUG(SchedImpl->dumpPolicy());
1211   buildDAGWithRegPressure();
1212 
1213   Topo.InitDAGTopologicalSorting();
1214 
1215   postprocessDAG();
1216 
1217   SmallVector<SUnit*, 8> TopRoots, BotRoots;
1218   findRootsAndBiasEdges(TopRoots, BotRoots);
1219 
1220   // Initialize the strategy before modifying the DAG.
1221   // This may initialize a DFSResult to be used for queue priority.
1222   SchedImpl->initialize(this);
1223 
1224   LLVM_DEBUG(dump());
1225   if (PrintDAGs) dump();
1226   if (ViewMISchedDAGs) viewGraph();
1227 
1228   // Initialize ready queues now that the DAG and priority data are finalized.
1229   initQueues(TopRoots, BotRoots);
1230 
1231   bool IsTopNode = false;
1232   while (true) {
1233     LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
1234     SUnit *SU = SchedImpl->pickNode(IsTopNode);
1235     if (!SU) break;
1236 
1237     assert(!SU->isScheduled && "Node already scheduled");
1238     if (!checkSchedLimit())
1239       break;
1240 
1241     scheduleMI(SU, IsTopNode);
1242 
1243     if (DFSResult) {
1244       unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1245       if (!ScheduledTrees.test(SubtreeID)) {
1246         ScheduledTrees.set(SubtreeID);
1247         DFSResult->scheduleTree(SubtreeID);
1248         SchedImpl->scheduleTree(SubtreeID);
1249       }
1250     }
1251 
1252     // Notify the scheduling strategy after updating the DAG.
1253     SchedImpl->schedNode(SU, IsTopNode);
1254 
1255     updateQueues(SU, IsTopNode);
1256   }
1257   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1258 
1259   placeDebugValues();
1260 
1261   LLVM_DEBUG({
1262     dbgs() << "*** Final schedule for "
1263            << printMBBReference(*begin()->getParent()) << " ***\n";
1264     dumpSchedule();
1265     dbgs() << '\n';
1266   });
1267 }
1268 
1269 /// Build the DAG and setup three register pressure trackers.
1270 void ScheduleDAGMILive::buildDAGWithRegPressure() {
1271   if (!ShouldTrackPressure) {
1272     RPTracker.reset();
1273     RegionCriticalPSets.clear();
1274     buildSchedGraph(AA);
1275     return;
1276   }
1277 
1278   // Initialize the register pressure tracker used by buildSchedGraph.
1279   RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1280                  ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true);
1281 
1282   // Account for liveness generate by the region boundary.
1283   if (LiveRegionEnd != RegionEnd)
1284     RPTracker.recede();
1285 
1286   // Build the DAG, and compute current register pressure.
1287   buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks);
1288 
1289   // Initialize top/bottom trackers after computing region pressure.
1290   initRegPressure();
1291 }
1292 
1293 void ScheduleDAGMILive::computeDFSResult() {
1294   if (!DFSResult)
1295     DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1296   DFSResult->clear();
1297   ScheduledTrees.clear();
1298   DFSResult->resize(SUnits.size());
1299   DFSResult->compute(SUnits);
1300   ScheduledTrees.resize(DFSResult->getNumSubtrees());
1301 }
1302 
1303 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
1304 /// only provides the critical path for single block loops. To handle loops that
1305 /// span blocks, we could use the vreg path latencies provided by
1306 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1307 /// available for use in the scheduler.
1308 ///
1309 /// The cyclic path estimation identifies a def-use pair that crosses the back
1310 /// edge and considers the depth and height of the nodes. For example, consider
1311 /// the following instruction sequence where each instruction has unit latency
1312 /// and defines an epomymous virtual register:
1313 ///
1314 /// a->b(a,c)->c(b)->d(c)->exit
1315 ///
1316 /// The cyclic critical path is a two cycles: b->c->b
1317 /// The acyclic critical path is four cycles: a->b->c->d->exit
1318 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
1319 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1320 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1321 /// LiveInDepth = depth(b) = len(a->b) = 1
1322 ///
1323 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1324 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1325 /// CyclicCriticalPath = min(2, 2) = 2
1326 ///
1327 /// This could be relevant to PostRA scheduling, but is currently implemented
1328 /// assuming LiveIntervals.
1329 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1330   // This only applies to single block loop.
1331   if (!BB->isSuccessor(BB))
1332     return 0;
1333 
1334   unsigned MaxCyclicLatency = 0;
1335   // Visit each live out vreg def to find def/use pairs that cross iterations.
1336   for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) {
1337     unsigned Reg = P.RegUnit;
1338     if (!TRI->isVirtualRegister(Reg))
1339         continue;
1340     const LiveInterval &LI = LIS->getInterval(Reg);
1341     const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1342     if (!DefVNI)
1343       continue;
1344 
1345     MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1346     const SUnit *DefSU = getSUnit(DefMI);
1347     if (!DefSU)
1348       continue;
1349 
1350     unsigned LiveOutHeight = DefSU->getHeight();
1351     unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1352     // Visit all local users of the vreg def.
1353     for (const VReg2SUnit &V2SU
1354          : make_range(VRegUses.find(Reg), VRegUses.end())) {
1355       SUnit *SU = V2SU.SU;
1356       if (SU == &ExitSU)
1357         continue;
1358 
1359       // Only consider uses of the phi.
1360       LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1361       if (!LRQ.valueIn()->isPHIDef())
1362         continue;
1363 
1364       // Assume that a path spanning two iterations is a cycle, which could
1365       // overestimate in strange cases. This allows cyclic latency to be
1366       // estimated as the minimum slack of the vreg's depth or height.
1367       unsigned CyclicLatency = 0;
1368       if (LiveOutDepth > SU->getDepth())
1369         CyclicLatency = LiveOutDepth - SU->getDepth();
1370 
1371       unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
1372       if (LiveInHeight > LiveOutHeight) {
1373         if (LiveInHeight - LiveOutHeight < CyclicLatency)
1374           CyclicLatency = LiveInHeight - LiveOutHeight;
1375       } else
1376         CyclicLatency = 0;
1377 
1378       LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1379                         << SU->NodeNum << ") = " << CyclicLatency << "c\n");
1380       if (CyclicLatency > MaxCyclicLatency)
1381         MaxCyclicLatency = CyclicLatency;
1382     }
1383   }
1384   LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1385   return MaxCyclicLatency;
1386 }
1387 
1388 /// Release ExitSU predecessors and setup scheduler queues. Re-position
1389 /// the Top RP tracker in case the region beginning has changed.
1390 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots,
1391                                    ArrayRef<SUnit*> BotRoots) {
1392   ScheduleDAGMI::initQueues(TopRoots, BotRoots);
1393   if (ShouldTrackPressure) {
1394     assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1395     TopRPTracker.setPos(CurrentTop);
1396   }
1397 }
1398 
1399 /// Move an instruction and update register pressure.
1400 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1401   // Move the instruction to its new location in the instruction stream.
1402   MachineInstr *MI = SU->getInstr();
1403 
1404   if (IsTopNode) {
1405     assert(SU->isTopReady() && "node still has unscheduled dependencies");
1406     if (&*CurrentTop == MI)
1407       CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1408     else {
1409       moveInstruction(MI, CurrentTop);
1410       TopRPTracker.setPos(MI);
1411     }
1412 
1413     if (ShouldTrackPressure) {
1414       // Update top scheduled pressure.
1415       RegisterOperands RegOpers;
1416       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1417       if (ShouldTrackLaneMasks) {
1418         // Adjust liveness and add missing dead+read-undef flags.
1419         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1420         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1421       } else {
1422         // Adjust for missing dead-def flags.
1423         RegOpers.detectDeadDefs(*MI, *LIS);
1424       }
1425 
1426       TopRPTracker.advance(RegOpers);
1427       assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1428       LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure(
1429                      TopRPTracker.getRegSetPressureAtPos(), TRI););
1430 
1431       updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1432     }
1433   } else {
1434     assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1435     MachineBasicBlock::iterator priorII =
1436       priorNonDebug(CurrentBottom, CurrentTop);
1437     if (&*priorII == MI)
1438       CurrentBottom = priorII;
1439     else {
1440       if (&*CurrentTop == MI) {
1441         CurrentTop = nextIfDebug(++CurrentTop, priorII);
1442         TopRPTracker.setPos(CurrentTop);
1443       }
1444       moveInstruction(MI, CurrentBottom);
1445       CurrentBottom = MI;
1446       BotRPTracker.setPos(CurrentBottom);
1447     }
1448     if (ShouldTrackPressure) {
1449       RegisterOperands RegOpers;
1450       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1451       if (ShouldTrackLaneMasks) {
1452         // Adjust liveness and add missing dead+read-undef flags.
1453         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1454         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1455       } else {
1456         // Adjust for missing dead-def flags.
1457         RegOpers.detectDeadDefs(*MI, *LIS);
1458       }
1459 
1460       if (BotRPTracker.getPos() != CurrentBottom)
1461         BotRPTracker.recedeSkipDebugValues();
1462       SmallVector<RegisterMaskPair, 8> LiveUses;
1463       BotRPTracker.recede(RegOpers, &LiveUses);
1464       assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1465       LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure(
1466                      BotRPTracker.getRegSetPressureAtPos(), TRI););
1467 
1468       updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1469       updatePressureDiffs(LiveUses);
1470     }
1471   }
1472 }
1473 
1474 //===----------------------------------------------------------------------===//
1475 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores.
1476 //===----------------------------------------------------------------------===//
1477 
1478 namespace {
1479 
1480 /// Post-process the DAG to create cluster edges between neighboring
1481 /// loads or between neighboring stores.
1482 class BaseMemOpClusterMutation : public ScheduleDAGMutation {
1483   struct MemOpInfo {
1484     SUnit *SU;
1485     unsigned BaseReg;
1486     int64_t Offset;
1487 
1488     MemOpInfo(SUnit *su, unsigned reg, int64_t ofs)
1489         : SU(su), BaseReg(reg), Offset(ofs) {}
1490 
1491     bool operator<(const MemOpInfo&RHS) const {
1492       return std::tie(BaseReg, Offset, SU->NodeNum) <
1493              std::tie(RHS.BaseReg, RHS.Offset, RHS.SU->NodeNum);
1494     }
1495   };
1496 
1497   const TargetInstrInfo *TII;
1498   const TargetRegisterInfo *TRI;
1499   bool IsLoad;
1500 
1501 public:
1502   BaseMemOpClusterMutation(const TargetInstrInfo *tii,
1503                            const TargetRegisterInfo *tri, bool IsLoad)
1504       : TII(tii), TRI(tri), IsLoad(IsLoad) {}
1505 
1506   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1507 
1508 protected:
1509   void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG);
1510 };
1511 
1512 class StoreClusterMutation : public BaseMemOpClusterMutation {
1513 public:
1514   StoreClusterMutation(const TargetInstrInfo *tii,
1515                        const TargetRegisterInfo *tri)
1516       : BaseMemOpClusterMutation(tii, tri, false) {}
1517 };
1518 
1519 class LoadClusterMutation : public BaseMemOpClusterMutation {
1520 public:
1521   LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri)
1522       : BaseMemOpClusterMutation(tii, tri, true) {}
1523 };
1524 
1525 } // end anonymous namespace
1526 
1527 namespace llvm {
1528 
1529 std::unique_ptr<ScheduleDAGMutation>
1530 createLoadClusterDAGMutation(const TargetInstrInfo *TII,
1531                              const TargetRegisterInfo *TRI) {
1532   return EnableMemOpCluster ? llvm::make_unique<LoadClusterMutation>(TII, TRI)
1533                             : nullptr;
1534 }
1535 
1536 std::unique_ptr<ScheduleDAGMutation>
1537 createStoreClusterDAGMutation(const TargetInstrInfo *TII,
1538                               const TargetRegisterInfo *TRI) {
1539   return EnableMemOpCluster ? llvm::make_unique<StoreClusterMutation>(TII, TRI)
1540                             : nullptr;
1541 }
1542 
1543 } // end namespace llvm
1544 
1545 void BaseMemOpClusterMutation::clusterNeighboringMemOps(
1546     ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG) {
1547   SmallVector<MemOpInfo, 32> MemOpRecords;
1548   for (SUnit *SU : MemOps) {
1549     unsigned BaseReg;
1550     int64_t Offset;
1551     if (TII->getMemOpBaseRegImmOfs(*SU->getInstr(), BaseReg, Offset, TRI))
1552       MemOpRecords.push_back(MemOpInfo(SU, BaseReg, Offset));
1553   }
1554   if (MemOpRecords.size() < 2)
1555     return;
1556 
1557   llvm::sort(MemOpRecords);
1558   unsigned ClusterLength = 1;
1559   for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) {
1560     SUnit *SUa = MemOpRecords[Idx].SU;
1561     SUnit *SUb = MemOpRecords[Idx+1].SU;
1562     if (TII->shouldClusterMemOps(*SUa->getInstr(), MemOpRecords[Idx].BaseReg,
1563                                  *SUb->getInstr(), MemOpRecords[Idx+1].BaseReg,
1564                                  ClusterLength) &&
1565         DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
1566       LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU("
1567                         << SUb->NodeNum << ")\n");
1568       // Copy successor edges from SUa to SUb. Interleaving computation
1569       // dependent on SUa can prevent load combining due to register reuse.
1570       // Predecessor edges do not need to be copied from SUb to SUa since nearby
1571       // loads should have effectively the same inputs.
1572       for (const SDep &Succ : SUa->Succs) {
1573         if (Succ.getSUnit() == SUb)
1574           continue;
1575         LLVM_DEBUG(dbgs() << "  Copy Succ SU(" << Succ.getSUnit()->NodeNum
1576                           << ")\n");
1577         DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial));
1578       }
1579       ++ClusterLength;
1580     } else
1581       ClusterLength = 1;
1582   }
1583 }
1584 
1585 /// Callback from DAG postProcessing to create cluster edges for loads.
1586 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAGInstrs) {
1587   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1588 
1589   // Map DAG NodeNum to store chain ID.
1590   DenseMap<unsigned, unsigned> StoreChainIDs;
1591   // Map each store chain to a set of dependent MemOps.
1592   SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
1593   for (SUnit &SU : DAG->SUnits) {
1594     if ((IsLoad && !SU.getInstr()->mayLoad()) ||
1595         (!IsLoad && !SU.getInstr()->mayStore()))
1596       continue;
1597 
1598     unsigned ChainPredID = DAG->SUnits.size();
1599     for (const SDep &Pred : SU.Preds) {
1600       if (Pred.isCtrl()) {
1601         ChainPredID = Pred.getSUnit()->NodeNum;
1602         break;
1603       }
1604     }
1605     // Check if this chain-like pred has been seen
1606     // before. ChainPredID==MaxNodeID at the top of the schedule.
1607     unsigned NumChains = StoreChainDependents.size();
1608     std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
1609       StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
1610     if (Result.second)
1611       StoreChainDependents.resize(NumChains + 1);
1612     StoreChainDependents[Result.first->second].push_back(&SU);
1613   }
1614 
1615   // Iterate over the store chains.
1616   for (auto &SCD : StoreChainDependents)
1617     clusterNeighboringMemOps(SCD, DAG);
1618 }
1619 
1620 //===----------------------------------------------------------------------===//
1621 // CopyConstrain - DAG post-processing to encourage copy elimination.
1622 //===----------------------------------------------------------------------===//
1623 
1624 namespace {
1625 
1626 /// Post-process the DAG to create weak edges from all uses of a copy to
1627 /// the one use that defines the copy's source vreg, most likely an induction
1628 /// variable increment.
1629 class CopyConstrain : public ScheduleDAGMutation {
1630   // Transient state.
1631   SlotIndex RegionBeginIdx;
1632 
1633   // RegionEndIdx is the slot index of the last non-debug instruction in the
1634   // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1635   SlotIndex RegionEndIdx;
1636 
1637 public:
1638   CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1639 
1640   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1641 
1642 protected:
1643   void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
1644 };
1645 
1646 } // end anonymous namespace
1647 
1648 namespace llvm {
1649 
1650 std::unique_ptr<ScheduleDAGMutation>
1651 createCopyConstrainDAGMutation(const TargetInstrInfo *TII,
1652                                const TargetRegisterInfo *TRI) {
1653   return llvm::make_unique<CopyConstrain>(TII, TRI);
1654 }
1655 
1656 } // end namespace llvm
1657 
1658 /// constrainLocalCopy handles two possibilities:
1659 /// 1) Local src:
1660 /// I0:     = dst
1661 /// I1: src = ...
1662 /// I2:     = dst
1663 /// I3: dst = src (copy)
1664 /// (create pred->succ edges I0->I1, I2->I1)
1665 ///
1666 /// 2) Local copy:
1667 /// I0: dst = src (copy)
1668 /// I1:     = dst
1669 /// I2: src = ...
1670 /// I3:     = dst
1671 /// (create pred->succ edges I1->I2, I3->I2)
1672 ///
1673 /// Although the MachineScheduler is currently constrained to single blocks,
1674 /// this algorithm should handle extended blocks. An EBB is a set of
1675 /// contiguously numbered blocks such that the previous block in the EBB is
1676 /// always the single predecessor.
1677 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
1678   LiveIntervals *LIS = DAG->getLIS();
1679   MachineInstr *Copy = CopySU->getInstr();
1680 
1681   // Check for pure vreg copies.
1682   const MachineOperand &SrcOp = Copy->getOperand(1);
1683   unsigned SrcReg = SrcOp.getReg();
1684   if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !SrcOp.readsReg())
1685     return;
1686 
1687   const MachineOperand &DstOp = Copy->getOperand(0);
1688   unsigned DstReg = DstOp.getReg();
1689   if (!TargetRegisterInfo::isVirtualRegister(DstReg) || DstOp.isDead())
1690     return;
1691 
1692   // Check if either the dest or source is local. If it's live across a back
1693   // edge, it's not local. Note that if both vregs are live across the back
1694   // edge, we cannot successfully contrain the copy without cyclic scheduling.
1695   // If both the copy's source and dest are local live intervals, then we
1696   // should treat the dest as the global for the purpose of adding
1697   // constraints. This adds edges from source's other uses to the copy.
1698   unsigned LocalReg = SrcReg;
1699   unsigned GlobalReg = DstReg;
1700   LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
1701   if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
1702     LocalReg = DstReg;
1703     GlobalReg = SrcReg;
1704     LocalLI = &LIS->getInterval(LocalReg);
1705     if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
1706       return;
1707   }
1708   LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1709 
1710   // Find the global segment after the start of the local LI.
1711   LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1712   // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1713   // local live range. We could create edges from other global uses to the local
1714   // start, but the coalescer should have already eliminated these cases, so
1715   // don't bother dealing with it.
1716   if (GlobalSegment == GlobalLI->end())
1717     return;
1718 
1719   // If GlobalSegment is killed at the LocalLI->start, the call to find()
1720   // returned the next global segment. But if GlobalSegment overlaps with
1721   // LocalLI->start, then advance to the next segment. If a hole in GlobalLI
1722   // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1723   if (GlobalSegment->contains(LocalLI->beginIndex()))
1724     ++GlobalSegment;
1725 
1726   if (GlobalSegment == GlobalLI->end())
1727     return;
1728 
1729   // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1730   if (GlobalSegment != GlobalLI->begin()) {
1731     // Two address defs have no hole.
1732     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
1733                                GlobalSegment->start)) {
1734       return;
1735     }
1736     // If the prior global segment may be defined by the same two-address
1737     // instruction that also defines LocalLI, then can't make a hole here.
1738     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
1739                                LocalLI->beginIndex())) {
1740       return;
1741     }
1742     // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1743     // it would be a disconnected component in the live range.
1744     assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
1745            "Disconnected LRG within the scheduling region.");
1746   }
1747   MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1748   if (!GlobalDef)
1749     return;
1750 
1751   SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1752   if (!GlobalSU)
1753     return;
1754 
1755   // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1756   // constraining the uses of the last local def to precede GlobalDef.
1757   SmallVector<SUnit*,8> LocalUses;
1758   const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1759   MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1760   SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1761   for (const SDep &Succ : LastLocalSU->Succs) {
1762     if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg)
1763       continue;
1764     if (Succ.getSUnit() == GlobalSU)
1765       continue;
1766     if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit()))
1767       return;
1768     LocalUses.push_back(Succ.getSUnit());
1769   }
1770   // Open the top of the GlobalLI hole by constraining any earlier global uses
1771   // to precede the start of LocalLI.
1772   SmallVector<SUnit*,8> GlobalUses;
1773   MachineInstr *FirstLocalDef =
1774     LIS->getInstructionFromIndex(LocalLI->beginIndex());
1775   SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1776   for (const SDep &Pred : GlobalSU->Preds) {
1777     if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg)
1778       continue;
1779     if (Pred.getSUnit() == FirstLocalSU)
1780       continue;
1781     if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit()))
1782       return;
1783     GlobalUses.push_back(Pred.getSUnit());
1784   }
1785   LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1786   // Add the weak edges.
1787   for (SmallVectorImpl<SUnit*>::const_iterator
1788          I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
1789     LLVM_DEBUG(dbgs() << "  Local use SU(" << (*I)->NodeNum << ") -> SU("
1790                       << GlobalSU->NodeNum << ")\n");
1791     DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
1792   }
1793   for (SmallVectorImpl<SUnit*>::const_iterator
1794          I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
1795     LLVM_DEBUG(dbgs() << "  Global use SU(" << (*I)->NodeNum << ") -> SU("
1796                       << FirstLocalSU->NodeNum << ")\n");
1797     DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
1798   }
1799 }
1800 
1801 /// Callback from DAG postProcessing to create weak edges to encourage
1802 /// copy elimination.
1803 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) {
1804   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1805   assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
1806 
1807   MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1808   if (FirstPos == DAG->end())
1809     return;
1810   RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos);
1811   RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1812       *priorNonDebug(DAG->end(), DAG->begin()));
1813 
1814   for (SUnit &SU : DAG->SUnits) {
1815     if (!SU.getInstr()->isCopy())
1816       continue;
1817 
1818     constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG));
1819   }
1820 }
1821 
1822 //===----------------------------------------------------------------------===//
1823 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
1824 // and possibly other custom schedulers.
1825 //===----------------------------------------------------------------------===//
1826 
1827 static const unsigned InvalidCycle = ~0U;
1828 
1829 SchedBoundary::~SchedBoundary() { delete HazardRec; }
1830 
1831 /// Given a Count of resource usage and a Latency value, return true if a
1832 /// SchedBoundary becomes resource limited.
1833 static bool checkResourceLimit(unsigned LFactor, unsigned Count,
1834                                unsigned Latency) {
1835   return (int)(Count - (Latency * LFactor)) > (int)LFactor;
1836 }
1837 
1838 void SchedBoundary::reset() {
1839   // A new HazardRec is created for each DAG and owned by SchedBoundary.
1840   // Destroying and reconstructing it is very expensive though. So keep
1841   // invalid, placeholder HazardRecs.
1842   if (HazardRec && HazardRec->isEnabled()) {
1843     delete HazardRec;
1844     HazardRec = nullptr;
1845   }
1846   Available.clear();
1847   Pending.clear();
1848   CheckPending = false;
1849   CurrCycle = 0;
1850   CurrMOps = 0;
1851   MinReadyCycle = std::numeric_limits<unsigned>::max();
1852   ExpectedLatency = 0;
1853   DependentLatency = 0;
1854   RetiredMOps = 0;
1855   MaxExecutedResCount = 0;
1856   ZoneCritResIdx = 0;
1857   IsResourceLimited = false;
1858   ReservedCycles.clear();
1859 #ifndef NDEBUG
1860   // Track the maximum number of stall cycles that could arise either from the
1861   // latency of a DAG edge or the number of cycles that a processor resource is
1862   // reserved (SchedBoundary::ReservedCycles).
1863   MaxObservedStall = 0;
1864 #endif
1865   // Reserve a zero-count for invalid CritResIdx.
1866   ExecutedResCounts.resize(1);
1867   assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
1868 }
1869 
1870 void SchedRemainder::
1871 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
1872   reset();
1873   if (!SchedModel->hasInstrSchedModel())
1874     return;
1875   RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
1876   for (SUnit &SU : DAG->SUnits) {
1877     const MCSchedClassDesc *SC = DAG->getSchedClass(&SU);
1878     RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC)
1879       * SchedModel->getMicroOpFactor();
1880     for (TargetSchedModel::ProcResIter
1881            PI = SchedModel->getWriteProcResBegin(SC),
1882            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1883       unsigned PIdx = PI->ProcResourceIdx;
1884       unsigned Factor = SchedModel->getResourceFactor(PIdx);
1885       RemainingCounts[PIdx] += (Factor * PI->Cycles);
1886     }
1887   }
1888 }
1889 
1890 void SchedBoundary::
1891 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
1892   reset();
1893   DAG = dag;
1894   SchedModel = smodel;
1895   Rem = rem;
1896   if (SchedModel->hasInstrSchedModel()) {
1897     ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
1898     ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle);
1899   }
1900 }
1901 
1902 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
1903 /// these "soft stalls" differently than the hard stall cycles based on CPU
1904 /// resources and computed by checkHazard(). A fully in-order model
1905 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
1906 /// available for scheduling until they are ready. However, a weaker in-order
1907 /// model may use this for heuristics. For example, if a processor has in-order
1908 /// behavior when reading certain resources, this may come into play.
1909 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
1910   if (!SU->isUnbuffered)
1911     return 0;
1912 
1913   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1914   if (ReadyCycle > CurrCycle)
1915     return ReadyCycle - CurrCycle;
1916   return 0;
1917 }
1918 
1919 /// Compute the next cycle at which the given processor resource can be
1920 /// scheduled.
1921 unsigned SchedBoundary::
1922 getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
1923   unsigned NextUnreserved = ReservedCycles[PIdx];
1924   // If this resource has never been used, always return cycle zero.
1925   if (NextUnreserved == InvalidCycle)
1926     return 0;
1927   // For bottom-up scheduling add the cycles needed for the current operation.
1928   if (!isTop())
1929     NextUnreserved += Cycles;
1930   return NextUnreserved;
1931 }
1932 
1933 /// Does this SU have a hazard within the current instruction group.
1934 ///
1935 /// The scheduler supports two modes of hazard recognition. The first is the
1936 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
1937 /// supports highly complicated in-order reservation tables
1938 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
1939 ///
1940 /// The second is a streamlined mechanism that checks for hazards based on
1941 /// simple counters that the scheduler itself maintains. It explicitly checks
1942 /// for instruction dispatch limitations, including the number of micro-ops that
1943 /// can dispatch per cycle.
1944 ///
1945 /// TODO: Also check whether the SU must start a new group.
1946 bool SchedBoundary::checkHazard(SUnit *SU) {
1947   if (HazardRec->isEnabled()
1948       && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
1949     return true;
1950   }
1951 
1952   unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
1953   if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
1954     LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
1955                       << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
1956     return true;
1957   }
1958 
1959   if (CurrMOps > 0 &&
1960       ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) ||
1961        (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) {
1962     LLVM_DEBUG(dbgs() << "  hazard: SU(" << SU->NodeNum << ") must "
1963                       << (isTop() ? "begin" : "end") << " group\n");
1964     return true;
1965   }
1966 
1967   if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
1968     const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1969     for (const MCWriteProcResEntry &PE :
1970           make_range(SchedModel->getWriteProcResBegin(SC),
1971                      SchedModel->getWriteProcResEnd(SC))) {
1972       unsigned ResIdx = PE.ProcResourceIdx;
1973       unsigned Cycles = PE.Cycles;
1974       unsigned NRCycle = getNextResourceCycle(ResIdx, Cycles);
1975       if (NRCycle > CurrCycle) {
1976 #ifndef NDEBUG
1977         MaxObservedStall = std::max(Cycles, MaxObservedStall);
1978 #endif
1979         LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") "
1980                           << SchedModel->getResourceName(ResIdx) << "="
1981                           << NRCycle << "c\n");
1982         return true;
1983       }
1984     }
1985   }
1986   return false;
1987 }
1988 
1989 // Find the unscheduled node in ReadySUs with the highest latency.
1990 unsigned SchedBoundary::
1991 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
1992   SUnit *LateSU = nullptr;
1993   unsigned RemLatency = 0;
1994   for (SUnit *SU : ReadySUs) {
1995     unsigned L = getUnscheduledLatency(SU);
1996     if (L > RemLatency) {
1997       RemLatency = L;
1998       LateSU = SU;
1999     }
2000   }
2001   if (LateSU) {
2002     LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU("
2003                       << LateSU->NodeNum << ") " << RemLatency << "c\n");
2004   }
2005   return RemLatency;
2006 }
2007 
2008 // Count resources in this zone and the remaining unscheduled
2009 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
2010 // resource index, or zero if the zone is issue limited.
2011 unsigned SchedBoundary::
2012 getOtherResourceCount(unsigned &OtherCritIdx) {
2013   OtherCritIdx = 0;
2014   if (!SchedModel->hasInstrSchedModel())
2015     return 0;
2016 
2017   unsigned OtherCritCount = Rem->RemIssueCount
2018     + (RetiredMOps * SchedModel->getMicroOpFactor());
2019   LLVM_DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
2020                     << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
2021   for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
2022        PIdx != PEnd; ++PIdx) {
2023     unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
2024     if (OtherCount > OtherCritCount) {
2025       OtherCritCount = OtherCount;
2026       OtherCritIdx = PIdx;
2027     }
2028   }
2029   if (OtherCritIdx) {
2030     LLVM_DEBUG(
2031         dbgs() << "  " << Available.getName() << " + Remain CritRes: "
2032                << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
2033                << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
2034   }
2035   return OtherCritCount;
2036 }
2037 
2038 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) {
2039   assert(SU->getInstr() && "Scheduled SUnit must have instr");
2040 
2041 #ifndef NDEBUG
2042   // ReadyCycle was been bumped up to the CurrCycle when this node was
2043   // scheduled, but CurrCycle may have been eagerly advanced immediately after
2044   // scheduling, so may now be greater than ReadyCycle.
2045   if (ReadyCycle > CurrCycle)
2046     MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
2047 #endif
2048 
2049   if (ReadyCycle < MinReadyCycle)
2050     MinReadyCycle = ReadyCycle;
2051 
2052   // Check for interlocks first. For the purpose of other heuristics, an
2053   // instruction that cannot issue appears as if it's not in the ReadyQueue.
2054   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2055   if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) ||
2056       Available.size() >= ReadyListLimit)
2057     Pending.push(SU);
2058   else
2059     Available.push(SU);
2060 }
2061 
2062 /// Move the boundary of scheduled code by one cycle.
2063 void SchedBoundary::bumpCycle(unsigned NextCycle) {
2064   if (SchedModel->getMicroOpBufferSize() == 0) {
2065     assert(MinReadyCycle < std::numeric_limits<unsigned>::max() &&
2066            "MinReadyCycle uninitialized");
2067     if (MinReadyCycle > NextCycle)
2068       NextCycle = MinReadyCycle;
2069   }
2070   // Update the current micro-ops, which will issue in the next cycle.
2071   unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
2072   CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
2073 
2074   // Decrement DependentLatency based on the next cycle.
2075   if ((NextCycle - CurrCycle) > DependentLatency)
2076     DependentLatency = 0;
2077   else
2078     DependentLatency -= (NextCycle - CurrCycle);
2079 
2080   if (!HazardRec->isEnabled()) {
2081     // Bypass HazardRec virtual calls.
2082     CurrCycle = NextCycle;
2083   } else {
2084     // Bypass getHazardType calls in case of long latency.
2085     for (; CurrCycle != NextCycle; ++CurrCycle) {
2086       if (isTop())
2087         HazardRec->AdvanceCycle();
2088       else
2089         HazardRec->RecedeCycle();
2090     }
2091   }
2092   CheckPending = true;
2093   IsResourceLimited =
2094       checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2095                          getScheduledLatency());
2096 
2097   LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName()
2098                     << '\n');
2099 }
2100 
2101 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
2102   ExecutedResCounts[PIdx] += Count;
2103   if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
2104     MaxExecutedResCount = ExecutedResCounts[PIdx];
2105 }
2106 
2107 /// Add the given processor resource to this scheduled zone.
2108 ///
2109 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
2110 /// during which this resource is consumed.
2111 ///
2112 /// \return the next cycle at which the instruction may execute without
2113 /// oversubscribing resources.
2114 unsigned SchedBoundary::
2115 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
2116   unsigned Factor = SchedModel->getResourceFactor(PIdx);
2117   unsigned Count = Factor * Cycles;
2118   LLVM_DEBUG(dbgs() << "  " << SchedModel->getResourceName(PIdx) << " +"
2119                     << Cycles << "x" << Factor << "u\n");
2120 
2121   // Update Executed resources counts.
2122   incExecutedResources(PIdx, Count);
2123   assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
2124   Rem->RemainingCounts[PIdx] -= Count;
2125 
2126   // Check if this resource exceeds the current critical resource. If so, it
2127   // becomes the critical resource.
2128   if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
2129     ZoneCritResIdx = PIdx;
2130     LLVM_DEBUG(dbgs() << "  *** Critical resource "
2131                       << SchedModel->getResourceName(PIdx) << ": "
2132                       << getResourceCount(PIdx) / SchedModel->getLatencyFactor()
2133                       << "c\n");
2134   }
2135   // For reserved resources, record the highest cycle using the resource.
2136   unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles);
2137   if (NextAvailable > CurrCycle) {
2138     LLVM_DEBUG(dbgs() << "  Resource conflict: "
2139                       << SchedModel->getProcResource(PIdx)->Name
2140                       << " reserved until @" << NextAvailable << "\n");
2141   }
2142   return NextAvailable;
2143 }
2144 
2145 /// Move the boundary of scheduled code by one SUnit.
2146 void SchedBoundary::bumpNode(SUnit *SU) {
2147   // Update the reservation table.
2148   if (HazardRec->isEnabled()) {
2149     if (!isTop() && SU->isCall) {
2150       // Calls are scheduled with their preceding instructions. For bottom-up
2151       // scheduling, clear the pipeline state before emitting.
2152       HazardRec->Reset();
2153     }
2154     HazardRec->EmitInstruction(SU);
2155   }
2156   // checkHazard should prevent scheduling multiple instructions per cycle that
2157   // exceed the issue width.
2158   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2159   unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
2160   assert(
2161       (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
2162       "Cannot schedule this instruction's MicroOps in the current cycle.");
2163 
2164   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2165   LLVM_DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
2166 
2167   unsigned NextCycle = CurrCycle;
2168   switch (SchedModel->getMicroOpBufferSize()) {
2169   case 0:
2170     assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
2171     break;
2172   case 1:
2173     if (ReadyCycle > NextCycle) {
2174       NextCycle = ReadyCycle;
2175       LLVM_DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
2176     }
2177     break;
2178   default:
2179     // We don't currently model the OOO reorder buffer, so consider all
2180     // scheduled MOps to be "retired". We do loosely model in-order resource
2181     // latency. If this instruction uses an in-order resource, account for any
2182     // likely stall cycles.
2183     if (SU->isUnbuffered && ReadyCycle > NextCycle)
2184       NextCycle = ReadyCycle;
2185     break;
2186   }
2187   RetiredMOps += IncMOps;
2188 
2189   // Update resource counts and critical resource.
2190   if (SchedModel->hasInstrSchedModel()) {
2191     unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
2192     assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
2193     Rem->RemIssueCount -= DecRemIssue;
2194     if (ZoneCritResIdx) {
2195       // Scale scheduled micro-ops for comparing with the critical resource.
2196       unsigned ScaledMOps =
2197         RetiredMOps * SchedModel->getMicroOpFactor();
2198 
2199       // If scaled micro-ops are now more than the previous critical resource by
2200       // a full cycle, then micro-ops issue becomes critical.
2201       if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
2202           >= (int)SchedModel->getLatencyFactor()) {
2203         ZoneCritResIdx = 0;
2204         LLVM_DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
2205                           << ScaledMOps / SchedModel->getLatencyFactor()
2206                           << "c\n");
2207       }
2208     }
2209     for (TargetSchedModel::ProcResIter
2210            PI = SchedModel->getWriteProcResBegin(SC),
2211            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2212       unsigned RCycle =
2213         countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
2214       if (RCycle > NextCycle)
2215         NextCycle = RCycle;
2216     }
2217     if (SU->hasReservedResource) {
2218       // For reserved resources, record the highest cycle using the resource.
2219       // For top-down scheduling, this is the cycle in which we schedule this
2220       // instruction plus the number of cycles the operations reserves the
2221       // resource. For bottom-up is it simply the instruction's cycle.
2222       for (TargetSchedModel::ProcResIter
2223              PI = SchedModel->getWriteProcResBegin(SC),
2224              PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2225         unsigned PIdx = PI->ProcResourceIdx;
2226         if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
2227           if (isTop()) {
2228             ReservedCycles[PIdx] =
2229               std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles);
2230           }
2231           else
2232             ReservedCycles[PIdx] = NextCycle;
2233         }
2234       }
2235     }
2236   }
2237   // Update ExpectedLatency and DependentLatency.
2238   unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2239   unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2240   if (SU->getDepth() > TopLatency) {
2241     TopLatency = SU->getDepth();
2242     LLVM_DEBUG(dbgs() << "  " << Available.getName() << " TopLatency SU("
2243                       << SU->NodeNum << ") " << TopLatency << "c\n");
2244   }
2245   if (SU->getHeight() > BotLatency) {
2246     BotLatency = SU->getHeight();
2247     LLVM_DEBUG(dbgs() << "  " << Available.getName() << " BotLatency SU("
2248                       << SU->NodeNum << ") " << BotLatency << "c\n");
2249   }
2250   // If we stall for any reason, bump the cycle.
2251   if (NextCycle > CurrCycle)
2252     bumpCycle(NextCycle);
2253   else
2254     // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2255     // resource limited. If a stall occurred, bumpCycle does this.
2256     IsResourceLimited =
2257         checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2258                            getScheduledLatency());
2259 
2260   // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2261   // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2262   // one cycle.  Since we commonly reach the max MOps here, opportunistically
2263   // bump the cycle to avoid uselessly checking everything in the readyQ.
2264   CurrMOps += IncMOps;
2265 
2266   // Bump the cycle count for issue group constraints.
2267   // This must be done after NextCycle has been adjust for all other stalls.
2268   // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set
2269   // currCycle to X.
2270   if ((isTop() &&  SchedModel->mustEndGroup(SU->getInstr())) ||
2271       (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) {
2272     LLVM_DEBUG(dbgs() << "  Bump cycle to " << (isTop() ? "end" : "begin")
2273                       << " group\n");
2274     bumpCycle(++NextCycle);
2275   }
2276 
2277   while (CurrMOps >= SchedModel->getIssueWidth()) {
2278     LLVM_DEBUG(dbgs() << "  *** Max MOps " << CurrMOps << " at cycle "
2279                       << CurrCycle << '\n');
2280     bumpCycle(++NextCycle);
2281   }
2282   LLVM_DEBUG(dumpScheduledState());
2283 }
2284 
2285 /// Release pending ready nodes in to the available queue. This makes them
2286 /// visible to heuristics.
2287 void SchedBoundary::releasePending() {
2288   // If the available queue is empty, it is safe to reset MinReadyCycle.
2289   if (Available.empty())
2290     MinReadyCycle = std::numeric_limits<unsigned>::max();
2291 
2292   // Check to see if any of the pending instructions are ready to issue.  If
2293   // so, add them to the available queue.
2294   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2295   for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
2296     SUnit *SU = *(Pending.begin()+i);
2297     unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2298 
2299     if (ReadyCycle < MinReadyCycle)
2300       MinReadyCycle = ReadyCycle;
2301 
2302     if (!IsBuffered && ReadyCycle > CurrCycle)
2303       continue;
2304 
2305     if (checkHazard(SU))
2306       continue;
2307 
2308     if (Available.size() >= ReadyListLimit)
2309       break;
2310 
2311     Available.push(SU);
2312     Pending.remove(Pending.begin()+i);
2313     --i; --e;
2314   }
2315   CheckPending = false;
2316 }
2317 
2318 /// Remove SU from the ready set for this boundary.
2319 void SchedBoundary::removeReady(SUnit *SU) {
2320   if (Available.isInQueue(SU))
2321     Available.remove(Available.find(SU));
2322   else {
2323     assert(Pending.isInQueue(SU) && "bad ready count");
2324     Pending.remove(Pending.find(SU));
2325   }
2326 }
2327 
2328 /// If this queue only has one ready candidate, return it. As a side effect,
2329 /// defer any nodes that now hit a hazard, and advance the cycle until at least
2330 /// one node is ready. If multiple instructions are ready, return NULL.
2331 SUnit *SchedBoundary::pickOnlyChoice() {
2332   if (CheckPending)
2333     releasePending();
2334 
2335   if (CurrMOps > 0) {
2336     // Defer any ready instrs that now have a hazard.
2337     for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2338       if (checkHazard(*I)) {
2339         Pending.push(*I);
2340         I = Available.remove(I);
2341         continue;
2342       }
2343       ++I;
2344     }
2345   }
2346   for (unsigned i = 0; Available.empty(); ++i) {
2347 //  FIXME: Re-enable assert once PR20057 is resolved.
2348 //    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2349 //           "permanent hazard");
2350     (void)i;
2351     bumpCycle(CurrCycle + 1);
2352     releasePending();
2353   }
2354 
2355   LLVM_DEBUG(Pending.dump());
2356   LLVM_DEBUG(Available.dump());
2357 
2358   if (Available.size() == 1)
2359     return *Available.begin();
2360   return nullptr;
2361 }
2362 
2363 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2364 // This is useful information to dump after bumpNode.
2365 // Note that the Queue contents are more useful before pickNodeFromQueue.
2366 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const {
2367   unsigned ResFactor;
2368   unsigned ResCount;
2369   if (ZoneCritResIdx) {
2370     ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2371     ResCount = getResourceCount(ZoneCritResIdx);
2372   } else {
2373     ResFactor = SchedModel->getMicroOpFactor();
2374     ResCount = RetiredMOps * ResFactor;
2375   }
2376   unsigned LFactor = SchedModel->getLatencyFactor();
2377   dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2378          << "  Retired: " << RetiredMOps;
2379   dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
2380   dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
2381          << ResCount / ResFactor << " "
2382          << SchedModel->getResourceName(ZoneCritResIdx)
2383          << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
2384          << (IsResourceLimited ? "  - Resource" : "  - Latency")
2385          << " limited.\n";
2386 }
2387 #endif
2388 
2389 //===----------------------------------------------------------------------===//
2390 // GenericScheduler - Generic implementation of MachineSchedStrategy.
2391 //===----------------------------------------------------------------------===//
2392 
2393 void GenericSchedulerBase::SchedCandidate::
2394 initResourceDelta(const ScheduleDAGMI *DAG,
2395                   const TargetSchedModel *SchedModel) {
2396   if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2397     return;
2398 
2399   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2400   for (TargetSchedModel::ProcResIter
2401          PI = SchedModel->getWriteProcResBegin(SC),
2402          PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2403     if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2404       ResDelta.CritResources += PI->Cycles;
2405     if (PI->ProcResourceIdx == Policy.DemandResIdx)
2406       ResDelta.DemandedResources += PI->Cycles;
2407   }
2408 }
2409 
2410 /// Compute remaining latency. We need this both to determine whether the
2411 /// overall schedule has become latency-limited and whether the instructions
2412 /// outside this zone are resource or latency limited.
2413 ///
2414 /// The "dependent" latency is updated incrementally during scheduling as the
2415 /// max height/depth of scheduled nodes minus the cycles since it was
2416 /// scheduled:
2417 ///   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2418 ///
2419 /// The "independent" latency is the max ready queue depth:
2420 ///   ILat = max N.depth for N in Available|Pending
2421 ///
2422 /// RemainingLatency is the greater of independent and dependent latency.
2423 ///
2424 /// These computations are expensive, especially in DAGs with many edges, so
2425 /// only do them if necessary.
2426 static unsigned computeRemLatency(SchedBoundary &CurrZone) {
2427   unsigned RemLatency = CurrZone.getDependentLatency();
2428   RemLatency = std::max(RemLatency,
2429                         CurrZone.findMaxLatency(CurrZone.Available.elements()));
2430   RemLatency = std::max(RemLatency,
2431                         CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2432   return RemLatency;
2433 }
2434 
2435 /// Returns true if the current cycle plus remaning latency is greater than
2436 /// the cirtical path in the scheduling region.
2437 bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy,
2438                                                SchedBoundary &CurrZone,
2439                                                bool ComputeRemLatency,
2440                                                unsigned &RemLatency) const {
2441   // The current cycle is already greater than the critical path, so we are
2442   // already latnecy limited and don't need to compute the remaining latency.
2443   if (CurrZone.getCurrCycle() > Rem.CriticalPath)
2444     return true;
2445 
2446   // If we haven't scheduled anything yet, then we aren't latency limited.
2447   if (CurrZone.getCurrCycle() == 0)
2448     return false;
2449 
2450   if (ComputeRemLatency)
2451     RemLatency = computeRemLatency(CurrZone);
2452 
2453   return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath;
2454 }
2455 
2456 /// Set the CandPolicy given a scheduling zone given the current resources and
2457 /// latencies inside and outside the zone.
2458 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA,
2459                                      SchedBoundary &CurrZone,
2460                                      SchedBoundary *OtherZone) {
2461   // Apply preemptive heuristics based on the total latency and resources
2462   // inside and outside this zone. Potential stalls should be considered before
2463   // following this policy.
2464 
2465   // Compute the critical resource outside the zone.
2466   unsigned OtherCritIdx = 0;
2467   unsigned OtherCount =
2468     OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
2469 
2470   bool OtherResLimited = false;
2471   unsigned RemLatency = 0;
2472   bool RemLatencyComputed = false;
2473   if (SchedModel->hasInstrSchedModel() && OtherCount != 0) {
2474     RemLatency = computeRemLatency(CurrZone);
2475     RemLatencyComputed = true;
2476     OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(),
2477                                          OtherCount, RemLatency);
2478   }
2479 
2480   // Schedule aggressively for latency in PostRA mode. We don't check for
2481   // acyclic latency during PostRA, and highly out-of-order processors will
2482   // skip PostRA scheduling.
2483   if (!OtherResLimited &&
2484       (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed,
2485                                        RemLatency))) {
2486     Policy.ReduceLatency |= true;
2487     LLVM_DEBUG(dbgs() << "  " << CurrZone.Available.getName()
2488                       << " RemainingLatency " << RemLatency << " + "
2489                       << CurrZone.getCurrCycle() << "c > CritPath "
2490                       << Rem.CriticalPath << "\n");
2491   }
2492   // If the same resource is limiting inside and outside the zone, do nothing.
2493   if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
2494     return;
2495 
2496   LLVM_DEBUG(if (CurrZone.isResourceLimited()) {
2497     dbgs() << "  " << CurrZone.Available.getName() << " ResourceLimited: "
2498            << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n";
2499   } if (OtherResLimited) dbgs()
2500                  << "  RemainingLimit: "
2501                  << SchedModel->getResourceName(OtherCritIdx) << "\n";
2502              if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs()
2503              << "  Latency limited both directions.\n");
2504 
2505   if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
2506     Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
2507 
2508   if (OtherResLimited)
2509     Policy.DemandResIdx = OtherCritIdx;
2510 }
2511 
2512 #ifndef NDEBUG
2513 const char *GenericSchedulerBase::getReasonStr(
2514   GenericSchedulerBase::CandReason Reason) {
2515   switch (Reason) {
2516   case NoCand:         return "NOCAND    ";
2517   case Only1:          return "ONLY1     ";
2518   case PhysRegCopy:    return "PREG-COPY ";
2519   case RegExcess:      return "REG-EXCESS";
2520   case RegCritical:    return "REG-CRIT  ";
2521   case Stall:          return "STALL     ";
2522   case Cluster:        return "CLUSTER   ";
2523   case Weak:           return "WEAK      ";
2524   case RegMax:         return "REG-MAX   ";
2525   case ResourceReduce: return "RES-REDUCE";
2526   case ResourceDemand: return "RES-DEMAND";
2527   case TopDepthReduce: return "TOP-DEPTH ";
2528   case TopPathReduce:  return "TOP-PATH  ";
2529   case BotHeightReduce:return "BOT-HEIGHT";
2530   case BotPathReduce:  return "BOT-PATH  ";
2531   case NextDefUse:     return "DEF-USE   ";
2532   case NodeOrder:      return "ORDER     ";
2533   };
2534   llvm_unreachable("Unknown reason!");
2535 }
2536 
2537 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
2538   PressureChange P;
2539   unsigned ResIdx = 0;
2540   unsigned Latency = 0;
2541   switch (Cand.Reason) {
2542   default:
2543     break;
2544   case RegExcess:
2545     P = Cand.RPDelta.Excess;
2546     break;
2547   case RegCritical:
2548     P = Cand.RPDelta.CriticalMax;
2549     break;
2550   case RegMax:
2551     P = Cand.RPDelta.CurrentMax;
2552     break;
2553   case ResourceReduce:
2554     ResIdx = Cand.Policy.ReduceResIdx;
2555     break;
2556   case ResourceDemand:
2557     ResIdx = Cand.Policy.DemandResIdx;
2558     break;
2559   case TopDepthReduce:
2560     Latency = Cand.SU->getDepth();
2561     break;
2562   case TopPathReduce:
2563     Latency = Cand.SU->getHeight();
2564     break;
2565   case BotHeightReduce:
2566     Latency = Cand.SU->getHeight();
2567     break;
2568   case BotPathReduce:
2569     Latency = Cand.SU->getDepth();
2570     break;
2571   }
2572   dbgs() << "  Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2573   if (P.isValid())
2574     dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2575            << ":" << P.getUnitInc() << " ";
2576   else
2577     dbgs() << "      ";
2578   if (ResIdx)
2579     dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2580   else
2581     dbgs() << "         ";
2582   if (Latency)
2583     dbgs() << " " << Latency << " cycles ";
2584   else
2585     dbgs() << "          ";
2586   dbgs() << '\n';
2587 }
2588 #endif
2589 
2590 namespace llvm {
2591 /// Return true if this heuristic determines order.
2592 bool tryLess(int TryVal, int CandVal,
2593              GenericSchedulerBase::SchedCandidate &TryCand,
2594              GenericSchedulerBase::SchedCandidate &Cand,
2595              GenericSchedulerBase::CandReason Reason) {
2596   if (TryVal < CandVal) {
2597     TryCand.Reason = Reason;
2598     return true;
2599   }
2600   if (TryVal > CandVal) {
2601     if (Cand.Reason > Reason)
2602       Cand.Reason = Reason;
2603     return true;
2604   }
2605   return false;
2606 }
2607 
2608 bool tryGreater(int TryVal, int CandVal,
2609                 GenericSchedulerBase::SchedCandidate &TryCand,
2610                 GenericSchedulerBase::SchedCandidate &Cand,
2611                 GenericSchedulerBase::CandReason Reason) {
2612   if (TryVal > CandVal) {
2613     TryCand.Reason = Reason;
2614     return true;
2615   }
2616   if (TryVal < CandVal) {
2617     if (Cand.Reason > Reason)
2618       Cand.Reason = Reason;
2619     return true;
2620   }
2621   return false;
2622 }
2623 
2624 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
2625                 GenericSchedulerBase::SchedCandidate &Cand,
2626                 SchedBoundary &Zone) {
2627   if (Zone.isTop()) {
2628     if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
2629       if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2630                   TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
2631         return true;
2632     }
2633     if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2634                    TryCand, Cand, GenericSchedulerBase::TopPathReduce))
2635       return true;
2636   } else {
2637     if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
2638       if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2639                   TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
2640         return true;
2641     }
2642     if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2643                    TryCand, Cand, GenericSchedulerBase::BotPathReduce))
2644       return true;
2645   }
2646   return false;
2647 }
2648 } // end namespace llvm
2649 
2650 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) {
2651   LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2652                     << GenericSchedulerBase::getReasonStr(Reason) << '\n');
2653 }
2654 
2655 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) {
2656   tracePick(Cand.Reason, Cand.AtTop);
2657 }
2658 
2659 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
2660   assert(dag->hasVRegLiveness() &&
2661          "(PreRA)GenericScheduler needs vreg liveness");
2662   DAG = static_cast<ScheduleDAGMILive*>(dag);
2663   SchedModel = DAG->getSchedModel();
2664   TRI = DAG->TRI;
2665 
2666   Rem.init(DAG, SchedModel);
2667   Top.init(DAG, SchedModel, &Rem);
2668   Bot.init(DAG, SchedModel, &Rem);
2669 
2670   // Initialize resource counts.
2671 
2672   // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
2673   // are disabled, then these HazardRecs will be disabled.
2674   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2675   if (!Top.HazardRec) {
2676     Top.HazardRec =
2677         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2678             Itin, DAG);
2679   }
2680   if (!Bot.HazardRec) {
2681     Bot.HazardRec =
2682         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2683             Itin, DAG);
2684   }
2685   TopCand.SU = nullptr;
2686   BotCand.SU = nullptr;
2687 }
2688 
2689 /// Initialize the per-region scheduling policy.
2690 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
2691                                   MachineBasicBlock::iterator End,
2692                                   unsigned NumRegionInstrs) {
2693   const MachineFunction &MF = *Begin->getMF();
2694   const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
2695 
2696   // Avoid setting up the register pressure tracker for small regions to save
2697   // compile time. As a rough heuristic, only track pressure when the number of
2698   // schedulable instructions exceeds half the integer register file.
2699   RegionPolicy.ShouldTrackPressure = true;
2700   for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
2701     MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
2702     if (TLI->isTypeLegal(LegalIntVT)) {
2703       unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
2704         TLI->getRegClassFor(LegalIntVT));
2705       RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
2706     }
2707   }
2708 
2709   // For generic targets, we default to bottom-up, because it's simpler and more
2710   // compile-time optimizations have been implemented in that direction.
2711   RegionPolicy.OnlyBottomUp = true;
2712 
2713   // Allow the subtarget to override default policy.
2714   MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs);
2715 
2716   // After subtarget overrides, apply command line options.
2717   if (!EnableRegPressure)
2718     RegionPolicy.ShouldTrackPressure = false;
2719 
2720   // Check -misched-topdown/bottomup can force or unforce scheduling direction.
2721   // e.g. -misched-bottomup=false allows scheduling in both directions.
2722   assert((!ForceTopDown || !ForceBottomUp) &&
2723          "-misched-topdown incompatible with -misched-bottomup");
2724   if (ForceBottomUp.getNumOccurrences() > 0) {
2725     RegionPolicy.OnlyBottomUp = ForceBottomUp;
2726     if (RegionPolicy.OnlyBottomUp)
2727       RegionPolicy.OnlyTopDown = false;
2728   }
2729   if (ForceTopDown.getNumOccurrences() > 0) {
2730     RegionPolicy.OnlyTopDown = ForceTopDown;
2731     if (RegionPolicy.OnlyTopDown)
2732       RegionPolicy.OnlyBottomUp = false;
2733   }
2734 }
2735 
2736 void GenericScheduler::dumpPolicy() const {
2737   // Cannot completely remove virtual function even in release mode.
2738 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2739   dbgs() << "GenericScheduler RegionPolicy: "
2740          << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
2741          << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
2742          << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
2743          << "\n";
2744 #endif
2745 }
2746 
2747 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
2748 /// critical path by more cycles than it takes to drain the instruction buffer.
2749 /// We estimate an upper bounds on in-flight instructions as:
2750 ///
2751 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
2752 /// InFlightIterations = AcyclicPath / CyclesPerIteration
2753 /// InFlightResources = InFlightIterations * LoopResources
2754 ///
2755 /// TODO: Check execution resources in addition to IssueCount.
2756 void GenericScheduler::checkAcyclicLatency() {
2757   if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
2758     return;
2759 
2760   // Scaled number of cycles per loop iteration.
2761   unsigned IterCount =
2762     std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
2763              Rem.RemIssueCount);
2764   // Scaled acyclic critical path.
2765   unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
2766   // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
2767   unsigned InFlightCount =
2768     (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
2769   unsigned BufferLimit =
2770     SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
2771 
2772   Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
2773 
2774   LLVM_DEBUG(
2775       dbgs() << "IssueCycles="
2776              << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
2777              << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
2778              << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount
2779              << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
2780              << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
2781       if (Rem.IsAcyclicLatencyLimited) dbgs() << "  ACYCLIC LATENCY LIMIT\n");
2782 }
2783 
2784 void GenericScheduler::registerRoots() {
2785   Rem.CriticalPath = DAG->ExitSU.getDepth();
2786 
2787   // Some roots may not feed into ExitSU. Check all of them in case.
2788   for (const SUnit *SU : Bot.Available) {
2789     if (SU->getDepth() > Rem.CriticalPath)
2790       Rem.CriticalPath = SU->getDepth();
2791   }
2792   LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
2793   if (DumpCriticalPathLength) {
2794     errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
2795   }
2796 
2797   if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) {
2798     Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
2799     checkAcyclicLatency();
2800   }
2801 }
2802 
2803 namespace llvm {
2804 bool tryPressure(const PressureChange &TryP,
2805                  const PressureChange &CandP,
2806                  GenericSchedulerBase::SchedCandidate &TryCand,
2807                  GenericSchedulerBase::SchedCandidate &Cand,
2808                  GenericSchedulerBase::CandReason Reason,
2809                  const TargetRegisterInfo *TRI,
2810                  const MachineFunction &MF) {
2811   // If one candidate decreases and the other increases, go with it.
2812   // Invalid candidates have UnitInc==0.
2813   if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
2814                  Reason)) {
2815     return true;
2816   }
2817   // Do not compare the magnitude of pressure changes between top and bottom
2818   // boundary.
2819   if (Cand.AtTop != TryCand.AtTop)
2820     return false;
2821 
2822   // If both candidates affect the same set in the same boundary, go with the
2823   // smallest increase.
2824   unsigned TryPSet = TryP.getPSetOrMax();
2825   unsigned CandPSet = CandP.getPSetOrMax();
2826   if (TryPSet == CandPSet) {
2827     return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
2828                    Reason);
2829   }
2830 
2831   int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
2832                                  std::numeric_limits<int>::max();
2833 
2834   int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
2835                                    std::numeric_limits<int>::max();
2836 
2837   // If the candidates are decreasing pressure, reverse priority.
2838   if (TryP.getUnitInc() < 0)
2839     std::swap(TryRank, CandRank);
2840   return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
2841 }
2842 
2843 unsigned getWeakLeft(const SUnit *SU, bool isTop) {
2844   return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
2845 }
2846 
2847 /// Minimize physical register live ranges. Regalloc wants them adjacent to
2848 /// their physreg def/use.
2849 ///
2850 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
2851 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
2852 /// with the operation that produces or consumes the physreg. We'll do this when
2853 /// regalloc has support for parallel copies.
2854 int biasPhysRegCopy(const SUnit *SU, bool isTop) {
2855   const MachineInstr *MI = SU->getInstr();
2856   if (!MI->isCopy())
2857     return 0;
2858 
2859   unsigned ScheduledOper = isTop ? 1 : 0;
2860   unsigned UnscheduledOper = isTop ? 0 : 1;
2861   // If we have already scheduled the physreg produce/consumer, immediately
2862   // schedule the copy.
2863   if (TargetRegisterInfo::isPhysicalRegister(
2864         MI->getOperand(ScheduledOper).getReg()))
2865     return 1;
2866   // If the physreg is at the boundary, defer it. Otherwise schedule it
2867   // immediately to free the dependent. We can hoist the copy later.
2868   bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
2869   if (TargetRegisterInfo::isPhysicalRegister(
2870         MI->getOperand(UnscheduledOper).getReg()))
2871     return AtBoundary ? -1 : 1;
2872   return 0;
2873 }
2874 } // end namespace llvm
2875 
2876 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU,
2877                                      bool AtTop,
2878                                      const RegPressureTracker &RPTracker,
2879                                      RegPressureTracker &TempTracker) {
2880   Cand.SU = SU;
2881   Cand.AtTop = AtTop;
2882   if (DAG->isTrackingPressure()) {
2883     if (AtTop) {
2884       TempTracker.getMaxDownwardPressureDelta(
2885         Cand.SU->getInstr(),
2886         Cand.RPDelta,
2887         DAG->getRegionCriticalPSets(),
2888         DAG->getRegPressure().MaxSetPressure);
2889     } else {
2890       if (VerifyScheduling) {
2891         TempTracker.getMaxUpwardPressureDelta(
2892           Cand.SU->getInstr(),
2893           &DAG->getPressureDiff(Cand.SU),
2894           Cand.RPDelta,
2895           DAG->getRegionCriticalPSets(),
2896           DAG->getRegPressure().MaxSetPressure);
2897       } else {
2898         RPTracker.getUpwardPressureDelta(
2899           Cand.SU->getInstr(),
2900           DAG->getPressureDiff(Cand.SU),
2901           Cand.RPDelta,
2902           DAG->getRegionCriticalPSets(),
2903           DAG->getRegPressure().MaxSetPressure);
2904       }
2905     }
2906   }
2907   LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs()
2908              << "  Try  SU(" << Cand.SU->NodeNum << ") "
2909              << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":"
2910              << Cand.RPDelta.Excess.getUnitInc() << "\n");
2911 }
2912 
2913 /// Apply a set of heuristics to a new candidate. Heuristics are currently
2914 /// hierarchical. This may be more efficient than a graduated cost model because
2915 /// we don't need to evaluate all aspects of the model for each node in the
2916 /// queue. But it's really done to make the heuristics easier to debug and
2917 /// statistically analyze.
2918 ///
2919 /// \param Cand provides the policy and current best candidate.
2920 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
2921 /// \param Zone describes the scheduled zone that we are extending, or nullptr
2922 //              if Cand is from a different zone than TryCand.
2923 void GenericScheduler::tryCandidate(SchedCandidate &Cand,
2924                                     SchedCandidate &TryCand,
2925                                     SchedBoundary *Zone) const {
2926   // Initialize the candidate if needed.
2927   if (!Cand.isValid()) {
2928     TryCand.Reason = NodeOrder;
2929     return;
2930   }
2931 
2932   if (tryGreater(biasPhysRegCopy(TryCand.SU, TryCand.AtTop),
2933                  biasPhysRegCopy(Cand.SU, Cand.AtTop),
2934                  TryCand, Cand, PhysRegCopy))
2935     return;
2936 
2937   // Avoid exceeding the target's limit.
2938   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
2939                                                Cand.RPDelta.Excess,
2940                                                TryCand, Cand, RegExcess, TRI,
2941                                                DAG->MF))
2942     return;
2943 
2944   // Avoid increasing the max critical pressure in the scheduled region.
2945   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
2946                                                Cand.RPDelta.CriticalMax,
2947                                                TryCand, Cand, RegCritical, TRI,
2948                                                DAG->MF))
2949     return;
2950 
2951   // We only compare a subset of features when comparing nodes between
2952   // Top and Bottom boundary. Some properties are simply incomparable, in many
2953   // other instances we should only override the other boundary if something
2954   // is a clear good pick on one boundary. Skip heuristics that are more
2955   // "tie-breaking" in nature.
2956   bool SameBoundary = Zone != nullptr;
2957   if (SameBoundary) {
2958     // For loops that are acyclic path limited, aggressively schedule for
2959     // latency. Within an single cycle, whenever CurrMOps > 0, allow normal
2960     // heuristics to take precedence.
2961     if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() &&
2962         tryLatency(TryCand, Cand, *Zone))
2963       return;
2964 
2965     // Prioritize instructions that read unbuffered resources by stall cycles.
2966     if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
2967                 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
2968       return;
2969   }
2970 
2971   // Keep clustered nodes together to encourage downstream peephole
2972   // optimizations which may reduce resource requirements.
2973   //
2974   // This is a best effort to set things up for a post-RA pass. Optimizations
2975   // like generating loads of multiple registers should ideally be done within
2976   // the scheduler pass by combining the loads during DAG postprocessing.
2977   const SUnit *CandNextClusterSU =
2978     Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
2979   const SUnit *TryCandNextClusterSU =
2980     TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
2981   if (tryGreater(TryCand.SU == TryCandNextClusterSU,
2982                  Cand.SU == CandNextClusterSU,
2983                  TryCand, Cand, Cluster))
2984     return;
2985 
2986   if (SameBoundary) {
2987     // Weak edges are for clustering and other constraints.
2988     if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
2989                 getWeakLeft(Cand.SU, Cand.AtTop),
2990                 TryCand, Cand, Weak))
2991       return;
2992   }
2993 
2994   // Avoid increasing the max pressure of the entire region.
2995   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
2996                                                Cand.RPDelta.CurrentMax,
2997                                                TryCand, Cand, RegMax, TRI,
2998                                                DAG->MF))
2999     return;
3000 
3001   if (SameBoundary) {
3002     // Avoid critical resource consumption and balance the schedule.
3003     TryCand.initResourceDelta(DAG, SchedModel);
3004     if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3005                 TryCand, Cand, ResourceReduce))
3006       return;
3007     if (tryGreater(TryCand.ResDelta.DemandedResources,
3008                    Cand.ResDelta.DemandedResources,
3009                    TryCand, Cand, ResourceDemand))
3010       return;
3011 
3012     // Avoid serializing long latency dependence chains.
3013     // For acyclic path limited loops, latency was already checked above.
3014     if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency &&
3015         !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone))
3016       return;
3017 
3018     // Fall through to original instruction order.
3019     if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
3020         || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
3021       TryCand.Reason = NodeOrder;
3022     }
3023   }
3024 }
3025 
3026 /// Pick the best candidate from the queue.
3027 ///
3028 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
3029 /// DAG building. To adjust for the current scheduling location we need to
3030 /// maintain the number of vreg uses remaining to be top-scheduled.
3031 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
3032                                          const CandPolicy &ZonePolicy,
3033                                          const RegPressureTracker &RPTracker,
3034                                          SchedCandidate &Cand) {
3035   // getMaxPressureDelta temporarily modifies the tracker.
3036   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
3037 
3038   ReadyQueue &Q = Zone.Available;
3039   for (SUnit *SU : Q) {
3040 
3041     SchedCandidate TryCand(ZonePolicy);
3042     initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker);
3043     // Pass SchedBoundary only when comparing nodes from the same boundary.
3044     SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
3045     tryCandidate(Cand, TryCand, ZoneArg);
3046     if (TryCand.Reason != NoCand) {
3047       // Initialize resource delta if needed in case future heuristics query it.
3048       if (TryCand.ResDelta == SchedResourceDelta())
3049         TryCand.initResourceDelta(DAG, SchedModel);
3050       Cand.setBest(TryCand);
3051       LLVM_DEBUG(traceCandidate(Cand));
3052     }
3053   }
3054 }
3055 
3056 /// Pick the best candidate node from either the top or bottom queue.
3057 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
3058   // Schedule as far as possible in the direction of no choice. This is most
3059   // efficient, but also provides the best heuristics for CriticalPSets.
3060   if (SUnit *SU = Bot.pickOnlyChoice()) {
3061     IsTopNode = false;
3062     tracePick(Only1, false);
3063     return SU;
3064   }
3065   if (SUnit *SU = Top.pickOnlyChoice()) {
3066     IsTopNode = true;
3067     tracePick(Only1, true);
3068     return SU;
3069   }
3070   // Set the bottom-up policy based on the state of the current bottom zone and
3071   // the instructions outside the zone, including the top zone.
3072   CandPolicy BotPolicy;
3073   setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
3074   // Set the top-down policy based on the state of the current top zone and
3075   // the instructions outside the zone, including the bottom zone.
3076   CandPolicy TopPolicy;
3077   setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
3078 
3079   // See if BotCand is still valid (because we previously scheduled from Top).
3080   LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
3081   if (!BotCand.isValid() || BotCand.SU->isScheduled ||
3082       BotCand.Policy != BotPolicy) {
3083     BotCand.reset(CandPolicy());
3084     pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
3085     assert(BotCand.Reason != NoCand && "failed to find the first candidate");
3086   } else {
3087     LLVM_DEBUG(traceCandidate(BotCand));
3088 #ifndef NDEBUG
3089     if (VerifyScheduling) {
3090       SchedCandidate TCand;
3091       TCand.reset(CandPolicy());
3092       pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
3093       assert(TCand.SU == BotCand.SU &&
3094              "Last pick result should correspond to re-picking right now");
3095     }
3096 #endif
3097   }
3098 
3099   // Check if the top Q has a better candidate.
3100   LLVM_DEBUG(dbgs() << "Picking from Top:\n");
3101   if (!TopCand.isValid() || TopCand.SU->isScheduled ||
3102       TopCand.Policy != TopPolicy) {
3103     TopCand.reset(CandPolicy());
3104     pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
3105     assert(TopCand.Reason != NoCand && "failed to find the first candidate");
3106   } else {
3107     LLVM_DEBUG(traceCandidate(TopCand));
3108 #ifndef NDEBUG
3109     if (VerifyScheduling) {
3110       SchedCandidate TCand;
3111       TCand.reset(CandPolicy());
3112       pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
3113       assert(TCand.SU == TopCand.SU &&
3114            "Last pick result should correspond to re-picking right now");
3115     }
3116 #endif
3117   }
3118 
3119   // Pick best from BotCand and TopCand.
3120   assert(BotCand.isValid());
3121   assert(TopCand.isValid());
3122   SchedCandidate Cand = BotCand;
3123   TopCand.Reason = NoCand;
3124   tryCandidate(Cand, TopCand, nullptr);
3125   if (TopCand.Reason != NoCand) {
3126     Cand.setBest(TopCand);
3127     LLVM_DEBUG(traceCandidate(Cand));
3128   }
3129 
3130   IsTopNode = Cand.AtTop;
3131   tracePick(Cand);
3132   return Cand.SU;
3133 }
3134 
3135 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
3136 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
3137   if (DAG->top() == DAG->bottom()) {
3138     assert(Top.Available.empty() && Top.Pending.empty() &&
3139            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
3140     return nullptr;
3141   }
3142   SUnit *SU;
3143   do {
3144     if (RegionPolicy.OnlyTopDown) {
3145       SU = Top.pickOnlyChoice();
3146       if (!SU) {
3147         CandPolicy NoPolicy;
3148         TopCand.reset(NoPolicy);
3149         pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
3150         assert(TopCand.Reason != NoCand && "failed to find a candidate");
3151         tracePick(TopCand);
3152         SU = TopCand.SU;
3153       }
3154       IsTopNode = true;
3155     } else if (RegionPolicy.OnlyBottomUp) {
3156       SU = Bot.pickOnlyChoice();
3157       if (!SU) {
3158         CandPolicy NoPolicy;
3159         BotCand.reset(NoPolicy);
3160         pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
3161         assert(BotCand.Reason != NoCand && "failed to find a candidate");
3162         tracePick(BotCand);
3163         SU = BotCand.SU;
3164       }
3165       IsTopNode = false;
3166     } else {
3167       SU = pickNodeBidirectional(IsTopNode);
3168     }
3169   } while (SU->isScheduled);
3170 
3171   if (SU->isTopReady())
3172     Top.removeReady(SU);
3173   if (SU->isBottomReady())
3174     Bot.removeReady(SU);
3175 
3176   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3177                     << *SU->getInstr());
3178   return SU;
3179 }
3180 
3181 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
3182   MachineBasicBlock::iterator InsertPos = SU->getInstr();
3183   if (!isTop)
3184     ++InsertPos;
3185   SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
3186 
3187   // Find already scheduled copies with a single physreg dependence and move
3188   // them just above the scheduled instruction.
3189   for (SDep &Dep : Deps) {
3190     if (Dep.getKind() != SDep::Data || !TRI->isPhysicalRegister(Dep.getReg()))
3191       continue;
3192     SUnit *DepSU = Dep.getSUnit();
3193     if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
3194       continue;
3195     MachineInstr *Copy = DepSU->getInstr();
3196     if (!Copy->isCopy())
3197       continue;
3198     LLVM_DEBUG(dbgs() << "  Rescheduling physreg copy ";
3199                DAG->dumpNode(*Dep.getSUnit()));
3200     DAG->moveInstruction(Copy, InsertPos);
3201   }
3202 }
3203 
3204 /// Update the scheduler's state after scheduling a node. This is the same node
3205 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
3206 /// update it's state based on the current cycle before MachineSchedStrategy
3207 /// does.
3208 ///
3209 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
3210 /// them here. See comments in biasPhysRegCopy.
3211 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3212   if (IsTopNode) {
3213     SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3214     Top.bumpNode(SU);
3215     if (SU->hasPhysRegUses)
3216       reschedulePhysRegCopies(SU, true);
3217   } else {
3218     SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
3219     Bot.bumpNode(SU);
3220     if (SU->hasPhysRegDefs)
3221       reschedulePhysRegCopies(SU, false);
3222   }
3223 }
3224 
3225 /// Create the standard converging machine scheduler. This will be used as the
3226 /// default scheduler if the target does not set a default.
3227 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) {
3228   ScheduleDAGMILive *DAG =
3229       new ScheduleDAGMILive(C, llvm::make_unique<GenericScheduler>(C));
3230   // Register DAG post-processors.
3231   //
3232   // FIXME: extend the mutation API to allow earlier mutations to instantiate
3233   // data and pass it to later mutations. Have a single mutation that gathers
3234   // the interesting nodes in one pass.
3235   DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI));
3236   return DAG;
3237 }
3238 
3239 static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) {
3240   return createGenericSchedLive(C);
3241 }
3242 
3243 static MachineSchedRegistry
3244 GenericSchedRegistry("converge", "Standard converging scheduler.",
3245                      createConveringSched);
3246 
3247 //===----------------------------------------------------------------------===//
3248 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
3249 //===----------------------------------------------------------------------===//
3250 
3251 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
3252   DAG = Dag;
3253   SchedModel = DAG->getSchedModel();
3254   TRI = DAG->TRI;
3255 
3256   Rem.init(DAG, SchedModel);
3257   Top.init(DAG, SchedModel, &Rem);
3258   BotRoots.clear();
3259 
3260   // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
3261   // or are disabled, then these HazardRecs will be disabled.
3262   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3263   if (!Top.HazardRec) {
3264     Top.HazardRec =
3265         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3266             Itin, DAG);
3267   }
3268 }
3269 
3270 void PostGenericScheduler::registerRoots() {
3271   Rem.CriticalPath = DAG->ExitSU.getDepth();
3272 
3273   // Some roots may not feed into ExitSU. Check all of them in case.
3274   for (const SUnit *SU : BotRoots) {
3275     if (SU->getDepth() > Rem.CriticalPath)
3276       Rem.CriticalPath = SU->getDepth();
3277   }
3278   LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
3279   if (DumpCriticalPathLength) {
3280     errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
3281   }
3282 }
3283 
3284 /// Apply a set of heuristics to a new candidate for PostRA scheduling.
3285 ///
3286 /// \param Cand provides the policy and current best candidate.
3287 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3288 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
3289                                         SchedCandidate &TryCand) {
3290   // Initialize the candidate if needed.
3291   if (!Cand.isValid()) {
3292     TryCand.Reason = NodeOrder;
3293     return;
3294   }
3295 
3296   // Prioritize instructions that read unbuffered resources by stall cycles.
3297   if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
3298               Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3299     return;
3300 
3301   // Keep clustered nodes together.
3302   if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(),
3303                  Cand.SU == DAG->getNextClusterSucc(),
3304                  TryCand, Cand, Cluster))
3305     return;
3306 
3307   // Avoid critical resource consumption and balance the schedule.
3308   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3309               TryCand, Cand, ResourceReduce))
3310     return;
3311   if (tryGreater(TryCand.ResDelta.DemandedResources,
3312                  Cand.ResDelta.DemandedResources,
3313                  TryCand, Cand, ResourceDemand))
3314     return;
3315 
3316   // Avoid serializing long latency dependence chains.
3317   if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
3318     return;
3319   }
3320 
3321   // Fall through to original instruction order.
3322   if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
3323     TryCand.Reason = NodeOrder;
3324 }
3325 
3326 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
3327   ReadyQueue &Q = Top.Available;
3328   for (SUnit *SU : Q) {
3329     SchedCandidate TryCand(Cand.Policy);
3330     TryCand.SU = SU;
3331     TryCand.AtTop = true;
3332     TryCand.initResourceDelta(DAG, SchedModel);
3333     tryCandidate(Cand, TryCand);
3334     if (TryCand.Reason != NoCand) {
3335       Cand.setBest(TryCand);
3336       LLVM_DEBUG(traceCandidate(Cand));
3337     }
3338   }
3339 }
3340 
3341 /// Pick the next node to schedule.
3342 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
3343   if (DAG->top() == DAG->bottom()) {
3344     assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
3345     return nullptr;
3346   }
3347   SUnit *SU;
3348   do {
3349     SU = Top.pickOnlyChoice();
3350     if (SU) {
3351       tracePick(Only1, true);
3352     } else {
3353       CandPolicy NoPolicy;
3354       SchedCandidate TopCand(NoPolicy);
3355       // Set the top-down policy based on the state of the current top zone and
3356       // the instructions outside the zone, including the bottom zone.
3357       setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
3358       pickNodeFromQueue(TopCand);
3359       assert(TopCand.Reason != NoCand && "failed to find a candidate");
3360       tracePick(TopCand);
3361       SU = TopCand.SU;
3362     }
3363   } while (SU->isScheduled);
3364 
3365   IsTopNode = true;
3366   Top.removeReady(SU);
3367 
3368   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3369                     << *SU->getInstr());
3370   return SU;
3371 }
3372 
3373 /// Called after ScheduleDAGMI has scheduled an instruction and updated
3374 /// scheduled/remaining flags in the DAG nodes.
3375 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3376   SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3377   Top.bumpNode(SU);
3378 }
3379 
3380 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) {
3381   return new ScheduleDAGMI(C, llvm::make_unique<PostGenericScheduler>(C),
3382                            /*RemoveKillFlags=*/true);
3383 }
3384 
3385 //===----------------------------------------------------------------------===//
3386 // ILP Scheduler. Currently for experimental analysis of heuristics.
3387 //===----------------------------------------------------------------------===//
3388 
3389 namespace {
3390 
3391 /// Order nodes by the ILP metric.
3392 struct ILPOrder {
3393   const SchedDFSResult *DFSResult = nullptr;
3394   const BitVector *ScheduledTrees = nullptr;
3395   bool MaximizeILP;
3396 
3397   ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {}
3398 
3399   /// Apply a less-than relation on node priority.
3400   ///
3401   /// (Return true if A comes after B in the Q.)
3402   bool operator()(const SUnit *A, const SUnit *B) const {
3403     unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3404     unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3405     if (SchedTreeA != SchedTreeB) {
3406       // Unscheduled trees have lower priority.
3407       if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3408         return ScheduledTrees->test(SchedTreeB);
3409 
3410       // Trees with shallower connections have have lower priority.
3411       if (DFSResult->getSubtreeLevel(SchedTreeA)
3412           != DFSResult->getSubtreeLevel(SchedTreeB)) {
3413         return DFSResult->getSubtreeLevel(SchedTreeA)
3414           < DFSResult->getSubtreeLevel(SchedTreeB);
3415       }
3416     }
3417     if (MaximizeILP)
3418       return DFSResult->getILP(A) < DFSResult->getILP(B);
3419     else
3420       return DFSResult->getILP(A) > DFSResult->getILP(B);
3421   }
3422 };
3423 
3424 /// Schedule based on the ILP metric.
3425 class ILPScheduler : public MachineSchedStrategy {
3426   ScheduleDAGMILive *DAG = nullptr;
3427   ILPOrder Cmp;
3428 
3429   std::vector<SUnit*> ReadyQ;
3430 
3431 public:
3432   ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {}
3433 
3434   void initialize(ScheduleDAGMI *dag) override {
3435     assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
3436     DAG = static_cast<ScheduleDAGMILive*>(dag);
3437     DAG->computeDFSResult();
3438     Cmp.DFSResult = DAG->getDFSResult();
3439     Cmp.ScheduledTrees = &DAG->getScheduledTrees();
3440     ReadyQ.clear();
3441   }
3442 
3443   void registerRoots() override {
3444     // Restore the heap in ReadyQ with the updated DFS results.
3445     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3446   }
3447 
3448   /// Implement MachineSchedStrategy interface.
3449   /// -----------------------------------------
3450 
3451   /// Callback to select the highest priority node from the ready Q.
3452   SUnit *pickNode(bool &IsTopNode) override {
3453     if (ReadyQ.empty()) return nullptr;
3454     std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3455     SUnit *SU = ReadyQ.back();
3456     ReadyQ.pop_back();
3457     IsTopNode = false;
3458     LLVM_DEBUG(dbgs() << "Pick node "
3459                       << "SU(" << SU->NodeNum << ") "
3460                       << " ILP: " << DAG->getDFSResult()->getILP(SU)
3461                       << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU)
3462                       << " @"
3463                       << DAG->getDFSResult()->getSubtreeLevel(
3464                              DAG->getDFSResult()->getSubtreeID(SU))
3465                       << '\n'
3466                       << "Scheduling " << *SU->getInstr());
3467     return SU;
3468   }
3469 
3470   /// Scheduler callback to notify that a new subtree is scheduled.
3471   void scheduleTree(unsigned SubtreeID) override {
3472     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3473   }
3474 
3475   /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
3476   /// DFSResults, and resort the priority Q.
3477   void schedNode(SUnit *SU, bool IsTopNode) override {
3478     assert(!IsTopNode && "SchedDFSResult needs bottom-up");
3479   }
3480 
3481   void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
3482 
3483   void releaseBottomNode(SUnit *SU) override {
3484     ReadyQ.push_back(SU);
3485     std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3486   }
3487 };
3488 
3489 } // end anonymous namespace
3490 
3491 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
3492   return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(true));
3493 }
3494 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
3495   return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(false));
3496 }
3497 
3498 static MachineSchedRegistry ILPMaxRegistry(
3499   "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
3500 static MachineSchedRegistry ILPMinRegistry(
3501   "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
3502 
3503 //===----------------------------------------------------------------------===//
3504 // Machine Instruction Shuffler for Correctness Testing
3505 //===----------------------------------------------------------------------===//
3506 
3507 #ifndef NDEBUG
3508 namespace {
3509 
3510 /// Apply a less-than relation on the node order, which corresponds to the
3511 /// instruction order prior to scheduling. IsReverse implements greater-than.
3512 template<bool IsReverse>
3513 struct SUnitOrder {
3514   bool operator()(SUnit *A, SUnit *B) const {
3515     if (IsReverse)
3516       return A->NodeNum > B->NodeNum;
3517     else
3518       return A->NodeNum < B->NodeNum;
3519   }
3520 };
3521 
3522 /// Reorder instructions as much as possible.
3523 class InstructionShuffler : public MachineSchedStrategy {
3524   bool IsAlternating;
3525   bool IsTopDown;
3526 
3527   // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
3528   // gives nodes with a higher number higher priority causing the latest
3529   // instructions to be scheduled first.
3530   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>>
3531     TopQ;
3532 
3533   // When scheduling bottom-up, use greater-than as the queue priority.
3534   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>>
3535     BottomQ;
3536 
3537 public:
3538   InstructionShuffler(bool alternate, bool topdown)
3539     : IsAlternating(alternate), IsTopDown(topdown) {}
3540 
3541   void initialize(ScheduleDAGMI*) override {
3542     TopQ.clear();
3543     BottomQ.clear();
3544   }
3545 
3546   /// Implement MachineSchedStrategy interface.
3547   /// -----------------------------------------
3548 
3549   SUnit *pickNode(bool &IsTopNode) override {
3550     SUnit *SU;
3551     if (IsTopDown) {
3552       do {
3553         if (TopQ.empty()) return nullptr;
3554         SU = TopQ.top();
3555         TopQ.pop();
3556       } while (SU->isScheduled);
3557       IsTopNode = true;
3558     } else {
3559       do {
3560         if (BottomQ.empty()) return nullptr;
3561         SU = BottomQ.top();
3562         BottomQ.pop();
3563       } while (SU->isScheduled);
3564       IsTopNode = false;
3565     }
3566     if (IsAlternating)
3567       IsTopDown = !IsTopDown;
3568     return SU;
3569   }
3570 
3571   void schedNode(SUnit *SU, bool IsTopNode) override {}
3572 
3573   void releaseTopNode(SUnit *SU) override {
3574     TopQ.push(SU);
3575   }
3576   void releaseBottomNode(SUnit *SU) override {
3577     BottomQ.push(SU);
3578   }
3579 };
3580 
3581 } // end anonymous namespace
3582 
3583 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
3584   bool Alternate = !ForceTopDown && !ForceBottomUp;
3585   bool TopDown = !ForceBottomUp;
3586   assert((TopDown || !ForceTopDown) &&
3587          "-misched-topdown incompatible with -misched-bottomup");
3588   return new ScheduleDAGMILive(
3589       C, llvm::make_unique<InstructionShuffler>(Alternate, TopDown));
3590 }
3591 
3592 static MachineSchedRegistry ShufflerRegistry(
3593   "shuffle", "Shuffle machine instructions alternating directions",
3594   createInstructionShuffler);
3595 #endif // !NDEBUG
3596 
3597 //===----------------------------------------------------------------------===//
3598 // GraphWriter support for ScheduleDAGMILive.
3599 //===----------------------------------------------------------------------===//
3600 
3601 #ifndef NDEBUG
3602 namespace llvm {
3603 
3604 template<> struct GraphTraits<
3605   ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
3606 
3607 template<>
3608 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
3609   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
3610 
3611   static std::string getGraphName(const ScheduleDAG *G) {
3612     return G->MF.getName();
3613   }
3614 
3615   static bool renderGraphFromBottomUp() {
3616     return true;
3617   }
3618 
3619   static bool isNodeHidden(const SUnit *Node) {
3620     if (ViewMISchedCutoff == 0)
3621       return false;
3622     return (Node->Preds.size() > ViewMISchedCutoff
3623          || Node->Succs.size() > ViewMISchedCutoff);
3624   }
3625 
3626   /// If you want to override the dot attributes printed for a particular
3627   /// edge, override this method.
3628   static std::string getEdgeAttributes(const SUnit *Node,
3629                                        SUnitIterator EI,
3630                                        const ScheduleDAG *Graph) {
3631     if (EI.isArtificialDep())
3632       return "color=cyan,style=dashed";
3633     if (EI.isCtrlDep())
3634       return "color=blue,style=dashed";
3635     return "";
3636   }
3637 
3638   static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
3639     std::string Str;
3640     raw_string_ostream SS(Str);
3641     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3642     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3643       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3644     SS << "SU:" << SU->NodeNum;
3645     if (DFS)
3646       SS << " I:" << DFS->getNumInstrs(SU);
3647     return SS.str();
3648   }
3649 
3650   static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
3651     return G->getGraphNodeLabel(SU);
3652   }
3653 
3654   static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
3655     std::string Str("shape=Mrecord");
3656     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3657     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3658       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3659     if (DFS) {
3660       Str += ",style=filled,fillcolor=\"#";
3661       Str += DOT::getColorString(DFS->getSubtreeID(N));
3662       Str += '"';
3663     }
3664     return Str;
3665   }
3666 };
3667 
3668 } // end namespace llvm
3669 #endif // NDEBUG
3670 
3671 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
3672 /// rendered using 'dot'.
3673 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
3674 #ifndef NDEBUG
3675   ViewGraph(this, Name, false, Title);
3676 #else
3677   errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
3678          << "systems with Graphviz or gv!\n";
3679 #endif  // NDEBUG
3680 }
3681 
3682 /// Out-of-line implementation with no arguments is handy for gdb.
3683 void ScheduleDAGMI::viewGraph() {
3684   viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
3685 }
3686