xref: /llvm-project/llvm/lib/CodeGen/MachineScheduler.cpp (revision 0345d88de654259ae90494bf9b015416e2cccacb)
1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // MachineScheduler schedules machine instructions after phi elimination. It
10 // preserves LiveIntervals so it can be invoked before register allocation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineScheduler.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/PriorityQueue.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineLoopInfo.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachinePassRegistry.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegisterClassInfo.h"
37 #include "llvm/CodeGen/RegisterPressure.h"
38 #include "llvm/CodeGen/ScheduleDAG.h"
39 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
40 #include "llvm/CodeGen/ScheduleDAGMutation.h"
41 #include "llvm/CodeGen/ScheduleDFS.h"
42 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
43 #include "llvm/CodeGen/SlotIndexes.h"
44 #include "llvm/CodeGen/TargetFrameLowering.h"
45 #include "llvm/CodeGen/TargetInstrInfo.h"
46 #include "llvm/CodeGen/TargetLowering.h"
47 #include "llvm/CodeGen/TargetPassConfig.h"
48 #include "llvm/CodeGen/TargetRegisterInfo.h"
49 #include "llvm/CodeGen/TargetSchedule.h"
50 #include "llvm/CodeGen/TargetSubtargetInfo.h"
51 #include "llvm/Config/llvm-config.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/MC/LaneBitmask.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Compiler.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/GraphWriter.h"
60 #include "llvm/Support/MachineValueType.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <cstdint>
65 #include <iterator>
66 #include <limits>
67 #include <memory>
68 #include <string>
69 #include <tuple>
70 #include <utility>
71 #include <vector>
72 
73 using namespace llvm;
74 
75 #define DEBUG_TYPE "machine-scheduler"
76 
77 STATISTIC(NumClustered, "Number of load/store pairs clustered");
78 
79 namespace llvm {
80 
81 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
82                            cl::desc("Force top-down list scheduling"));
83 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
84                             cl::desc("Force bottom-up list scheduling"));
85 cl::opt<bool>
86 DumpCriticalPathLength("misched-dcpl", cl::Hidden,
87                        cl::desc("Print critical path length to stdout"));
88 
89 cl::opt<bool> VerifyScheduling(
90     "verify-misched", cl::Hidden,
91     cl::desc("Verify machine instrs before and after machine scheduling"));
92 
93 } // end namespace llvm
94 
95 #ifndef NDEBUG
96 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
97   cl::desc("Pop up a window to show MISched dags after they are processed"));
98 
99 /// In some situations a few uninteresting nodes depend on nearly all other
100 /// nodes in the graph, provide a cutoff to hide them.
101 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
102   cl::desc("Hide nodes with more predecessor/successor than cutoff"));
103 
104 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
105   cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
106 
107 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
108   cl::desc("Only schedule this function"));
109 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
110                                         cl::desc("Only schedule this MBB#"));
111 static cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden,
112                               cl::desc("Print schedule DAGs"));
113 #else
114 static const bool ViewMISchedDAGs = false;
115 static const bool PrintDAGs = false;
116 #endif // NDEBUG
117 
118 /// Avoid quadratic complexity in unusually large basic blocks by limiting the
119 /// size of the ready lists.
120 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden,
121   cl::desc("Limit ready list to N instructions"), cl::init(256));
122 
123 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
124   cl::desc("Enable register pressure scheduling."), cl::init(true));
125 
126 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
127   cl::desc("Enable cyclic critical path analysis."), cl::init(true));
128 
129 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden,
130                                         cl::desc("Enable memop clustering."),
131                                         cl::init(true));
132 
133 // DAG subtrees must have at least this many nodes.
134 static const unsigned MinSubtreeSize = 8;
135 
136 // Pin the vtables to this file.
137 void MachineSchedStrategy::anchor() {}
138 
139 void ScheduleDAGMutation::anchor() {}
140 
141 //===----------------------------------------------------------------------===//
142 // Machine Instruction Scheduling Pass and Registry
143 //===----------------------------------------------------------------------===//
144 
145 MachineSchedContext::MachineSchedContext() {
146   RegClassInfo = new RegisterClassInfo();
147 }
148 
149 MachineSchedContext::~MachineSchedContext() {
150   delete RegClassInfo;
151 }
152 
153 namespace {
154 
155 /// Base class for a machine scheduler class that can run at any point.
156 class MachineSchedulerBase : public MachineSchedContext,
157                              public MachineFunctionPass {
158 public:
159   MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
160 
161   void print(raw_ostream &O, const Module* = nullptr) const override;
162 
163 protected:
164   void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
165 };
166 
167 /// MachineScheduler runs after coalescing and before register allocation.
168 class MachineScheduler : public MachineSchedulerBase {
169 public:
170   MachineScheduler();
171 
172   void getAnalysisUsage(AnalysisUsage &AU) const override;
173 
174   bool runOnMachineFunction(MachineFunction&) override;
175 
176   static char ID; // Class identification, replacement for typeinfo
177 
178 protected:
179   ScheduleDAGInstrs *createMachineScheduler();
180 };
181 
182 /// PostMachineScheduler runs after shortly before code emission.
183 class PostMachineScheduler : public MachineSchedulerBase {
184 public:
185   PostMachineScheduler();
186 
187   void getAnalysisUsage(AnalysisUsage &AU) const override;
188 
189   bool runOnMachineFunction(MachineFunction&) override;
190 
191   static char ID; // Class identification, replacement for typeinfo
192 
193 protected:
194   ScheduleDAGInstrs *createPostMachineScheduler();
195 };
196 
197 } // end anonymous namespace
198 
199 char MachineScheduler::ID = 0;
200 
201 char &llvm::MachineSchedulerID = MachineScheduler::ID;
202 
203 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE,
204                       "Machine Instruction Scheduler", false, false)
205 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
206 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
207 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
208 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
209 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
210 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE,
211                     "Machine Instruction Scheduler", false, false)
212 
213 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) {
214   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
215 }
216 
217 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
218   AU.setPreservesCFG();
219   AU.addRequired<MachineDominatorTree>();
220   AU.addRequired<MachineLoopInfo>();
221   AU.addRequired<AAResultsWrapperPass>();
222   AU.addRequired<TargetPassConfig>();
223   AU.addRequired<SlotIndexes>();
224   AU.addPreserved<SlotIndexes>();
225   AU.addRequired<LiveIntervals>();
226   AU.addPreserved<LiveIntervals>();
227   MachineFunctionPass::getAnalysisUsage(AU);
228 }
229 
230 char PostMachineScheduler::ID = 0;
231 
232 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
233 
234 INITIALIZE_PASS(PostMachineScheduler, "postmisched",
235                 "PostRA Machine Instruction Scheduler", false, false)
236 
237 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) {
238   initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
239 }
240 
241 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
242   AU.setPreservesCFG();
243   AU.addRequired<MachineDominatorTree>();
244   AU.addRequired<MachineLoopInfo>();
245   AU.addRequired<AAResultsWrapperPass>();
246   AU.addRequired<TargetPassConfig>();
247   MachineFunctionPass::getAnalysisUsage(AU);
248 }
249 
250 MachinePassRegistry<MachineSchedRegistry::ScheduleDAGCtor>
251     MachineSchedRegistry::Registry;
252 
253 /// A dummy default scheduler factory indicates whether the scheduler
254 /// is overridden on the command line.
255 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
256   return nullptr;
257 }
258 
259 /// MachineSchedOpt allows command line selection of the scheduler.
260 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
261                RegisterPassParser<MachineSchedRegistry>>
262 MachineSchedOpt("misched",
263                 cl::init(&useDefaultMachineSched), cl::Hidden,
264                 cl::desc("Machine instruction scheduler to use"));
265 
266 static MachineSchedRegistry
267 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
268                      useDefaultMachineSched);
269 
270 static cl::opt<bool> EnableMachineSched(
271     "enable-misched",
272     cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
273     cl::Hidden);
274 
275 static cl::opt<bool> EnablePostRAMachineSched(
276     "enable-post-misched",
277     cl::desc("Enable the post-ra machine instruction scheduling pass."),
278     cl::init(true), cl::Hidden);
279 
280 /// Decrement this iterator until reaching the top or a non-debug instr.
281 static MachineBasicBlock::const_iterator
282 priorNonDebug(MachineBasicBlock::const_iterator I,
283               MachineBasicBlock::const_iterator Beg) {
284   assert(I != Beg && "reached the top of the region, cannot decrement");
285   while (--I != Beg) {
286     if (!I->isDebugInstr())
287       break;
288   }
289   return I;
290 }
291 
292 /// Non-const version.
293 static MachineBasicBlock::iterator
294 priorNonDebug(MachineBasicBlock::iterator I,
295               MachineBasicBlock::const_iterator Beg) {
296   return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)
297       .getNonConstIterator();
298 }
299 
300 /// If this iterator is a debug value, increment until reaching the End or a
301 /// non-debug instruction.
302 static MachineBasicBlock::const_iterator
303 nextIfDebug(MachineBasicBlock::const_iterator I,
304             MachineBasicBlock::const_iterator End) {
305   for(; I != End; ++I) {
306     if (!I->isDebugInstr())
307       break;
308   }
309   return I;
310 }
311 
312 /// Non-const version.
313 static MachineBasicBlock::iterator
314 nextIfDebug(MachineBasicBlock::iterator I,
315             MachineBasicBlock::const_iterator End) {
316   return nextIfDebug(MachineBasicBlock::const_iterator(I), End)
317       .getNonConstIterator();
318 }
319 
320 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
321 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
322   // Select the scheduler, or set the default.
323   MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
324   if (Ctor != useDefaultMachineSched)
325     return Ctor(this);
326 
327   // Get the default scheduler set by the target for this function.
328   ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
329   if (Scheduler)
330     return Scheduler;
331 
332   // Default to GenericScheduler.
333   return createGenericSchedLive(this);
334 }
335 
336 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
337 /// the caller. We don't have a command line option to override the postRA
338 /// scheduler. The Target must configure it.
339 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
340   // Get the postRA scheduler set by the target for this function.
341   ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
342   if (Scheduler)
343     return Scheduler;
344 
345   // Default to GenericScheduler.
346   return createGenericSchedPostRA(this);
347 }
348 
349 /// Top-level MachineScheduler pass driver.
350 ///
351 /// Visit blocks in function order. Divide each block into scheduling regions
352 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
353 /// consistent with the DAG builder, which traverses the interior of the
354 /// scheduling regions bottom-up.
355 ///
356 /// This design avoids exposing scheduling boundaries to the DAG builder,
357 /// simplifying the DAG builder's support for "special" target instructions.
358 /// At the same time the design allows target schedulers to operate across
359 /// scheduling boundaries, for example to bundle the boundary instructions
360 /// without reordering them. This creates complexity, because the target
361 /// scheduler must update the RegionBegin and RegionEnd positions cached by
362 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
363 /// design would be to split blocks at scheduling boundaries, but LLVM has a
364 /// general bias against block splitting purely for implementation simplicity.
365 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
366   if (skipFunction(mf.getFunction()))
367     return false;
368 
369   if (EnableMachineSched.getNumOccurrences()) {
370     if (!EnableMachineSched)
371       return false;
372   } else if (!mf.getSubtarget().enableMachineScheduler())
373     return false;
374 
375   LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
376 
377   // Initialize the context of the pass.
378   MF = &mf;
379   MLI = &getAnalysis<MachineLoopInfo>();
380   MDT = &getAnalysis<MachineDominatorTree>();
381   PassConfig = &getAnalysis<TargetPassConfig>();
382   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
383 
384   LIS = &getAnalysis<LiveIntervals>();
385 
386   if (VerifyScheduling) {
387     LLVM_DEBUG(LIS->dump());
388     MF->verify(this, "Before machine scheduling.");
389   }
390   RegClassInfo->runOnMachineFunction(*MF);
391 
392   // Instantiate the selected scheduler for this target, function, and
393   // optimization level.
394   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
395   scheduleRegions(*Scheduler, false);
396 
397   LLVM_DEBUG(LIS->dump());
398   if (VerifyScheduling)
399     MF->verify(this, "After machine scheduling.");
400   return true;
401 }
402 
403 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
404   if (skipFunction(mf.getFunction()))
405     return false;
406 
407   if (EnablePostRAMachineSched.getNumOccurrences()) {
408     if (!EnablePostRAMachineSched)
409       return false;
410   } else if (!mf.getSubtarget().enablePostRAMachineScheduler()) {
411     LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
412     return false;
413   }
414   LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
415 
416   // Initialize the context of the pass.
417   MF = &mf;
418   MLI = &getAnalysis<MachineLoopInfo>();
419   PassConfig = &getAnalysis<TargetPassConfig>();
420   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
421 
422   if (VerifyScheduling)
423     MF->verify(this, "Before post machine scheduling.");
424 
425   // Instantiate the selected scheduler for this target, function, and
426   // optimization level.
427   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
428   scheduleRegions(*Scheduler, true);
429 
430   if (VerifyScheduling)
431     MF->verify(this, "After post machine scheduling.");
432   return true;
433 }
434 
435 /// Return true of the given instruction should not be included in a scheduling
436 /// region.
437 ///
438 /// MachineScheduler does not currently support scheduling across calls. To
439 /// handle calls, the DAG builder needs to be modified to create register
440 /// anti/output dependencies on the registers clobbered by the call's regmask
441 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
442 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
443 /// the boundary, but there would be no benefit to postRA scheduling across
444 /// calls this late anyway.
445 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
446                             MachineBasicBlock *MBB,
447                             MachineFunction *MF,
448                             const TargetInstrInfo *TII) {
449   return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF);
450 }
451 
452 /// A region of an MBB for scheduling.
453 namespace {
454 struct SchedRegion {
455   /// RegionBegin is the first instruction in the scheduling region, and
456   /// RegionEnd is either MBB->end() or the scheduling boundary after the
457   /// last instruction in the scheduling region. These iterators cannot refer
458   /// to instructions outside of the identified scheduling region because
459   /// those may be reordered before scheduling this region.
460   MachineBasicBlock::iterator RegionBegin;
461   MachineBasicBlock::iterator RegionEnd;
462   unsigned NumRegionInstrs;
463 
464   SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E,
465               unsigned N) :
466     RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {}
467 };
468 } // end anonymous namespace
469 
470 using MBBRegionsVector = SmallVector<SchedRegion, 16>;
471 
472 static void
473 getSchedRegions(MachineBasicBlock *MBB,
474                 MBBRegionsVector &Regions,
475                 bool RegionsTopDown) {
476   MachineFunction *MF = MBB->getParent();
477   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
478 
479   MachineBasicBlock::iterator I = nullptr;
480   for(MachineBasicBlock::iterator RegionEnd = MBB->end();
481       RegionEnd != MBB->begin(); RegionEnd = I) {
482 
483     // Avoid decrementing RegionEnd for blocks with no terminator.
484     if (RegionEnd != MBB->end() ||
485         isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
486       --RegionEnd;
487     }
488 
489     // The next region starts above the previous region. Look backward in the
490     // instruction stream until we find the nearest boundary.
491     unsigned NumRegionInstrs = 0;
492     I = RegionEnd;
493     for (;I != MBB->begin(); --I) {
494       MachineInstr &MI = *std::prev(I);
495       if (isSchedBoundary(&MI, &*MBB, MF, TII))
496         break;
497       if (!MI.isDebugInstr()) {
498         // MBB::size() uses instr_iterator to count. Here we need a bundle to
499         // count as a single instruction.
500         ++NumRegionInstrs;
501       }
502     }
503 
504     // It's possible we found a scheduling region that only has debug
505     // instructions. Don't bother scheduling these.
506     if (NumRegionInstrs != 0)
507       Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs));
508   }
509 
510   if (RegionsTopDown)
511     std::reverse(Regions.begin(), Regions.end());
512 }
513 
514 /// Main driver for both MachineScheduler and PostMachineScheduler.
515 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
516                                            bool FixKillFlags) {
517   // Visit all machine basic blocks.
518   //
519   // TODO: Visit blocks in global postorder or postorder within the bottom-up
520   // loop tree. Then we can optionally compute global RegPressure.
521   for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
522        MBB != MBBEnd; ++MBB) {
523 
524     Scheduler.startBlock(&*MBB);
525 
526 #ifndef NDEBUG
527     if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
528       continue;
529     if (SchedOnlyBlock.getNumOccurrences()
530         && (int)SchedOnlyBlock != MBB->getNumber())
531       continue;
532 #endif
533 
534     // Break the block into scheduling regions [I, RegionEnd). RegionEnd
535     // points to the scheduling boundary at the bottom of the region. The DAG
536     // does not include RegionEnd, but the region does (i.e. the next
537     // RegionEnd is above the previous RegionBegin). If the current block has
538     // no terminator then RegionEnd == MBB->end() for the bottom region.
539     //
540     // All the regions of MBB are first found and stored in MBBRegions, which
541     // will be processed (MBB) top-down if initialized with true.
542     //
543     // The Scheduler may insert instructions during either schedule() or
544     // exitRegion(), even for empty regions. So the local iterators 'I' and
545     // 'RegionEnd' are invalid across these calls. Instructions must not be
546     // added to other regions than the current one without updating MBBRegions.
547 
548     MBBRegionsVector MBBRegions;
549     getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown());
550     for (MBBRegionsVector::iterator R = MBBRegions.begin();
551          R != MBBRegions.end(); ++R) {
552       MachineBasicBlock::iterator I = R->RegionBegin;
553       MachineBasicBlock::iterator RegionEnd = R->RegionEnd;
554       unsigned NumRegionInstrs = R->NumRegionInstrs;
555 
556       // Notify the scheduler of the region, even if we may skip scheduling
557       // it. Perhaps it still needs to be bundled.
558       Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
559 
560       // Skip empty scheduling regions (0 or 1 schedulable instructions).
561       if (I == RegionEnd || I == std::prev(RegionEnd)) {
562         // Close the current region. Bundle the terminator if needed.
563         // This invalidates 'RegionEnd' and 'I'.
564         Scheduler.exitRegion();
565         continue;
566       }
567       LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
568       LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB)
569                         << " " << MBB->getName() << "\n  From: " << *I
570                         << "    To: ";
571                  if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
572                  else dbgs() << "End";
573                  dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
574       if (DumpCriticalPathLength) {
575         errs() << MF->getName();
576         errs() << ":%bb. " << MBB->getNumber();
577         errs() << " " << MBB->getName() << " \n";
578       }
579 
580       // Schedule a region: possibly reorder instructions.
581       // This invalidates the original region iterators.
582       Scheduler.schedule();
583 
584       // Close the current region.
585       Scheduler.exitRegion();
586     }
587     Scheduler.finishBlock();
588     // FIXME: Ideally, no further passes should rely on kill flags. However,
589     // thumb2 size reduction is currently an exception, so the PostMIScheduler
590     // needs to do this.
591     if (FixKillFlags)
592       Scheduler.fixupKills(*MBB);
593   }
594   Scheduler.finalizeSchedule();
595 }
596 
597 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
598   // unimplemented
599 }
600 
601 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
602 LLVM_DUMP_METHOD void ReadyQueue::dump() const {
603   dbgs() << "Queue " << Name << ": ";
604   for (const SUnit *SU : Queue)
605     dbgs() << SU->NodeNum << " ";
606   dbgs() << "\n";
607 }
608 #endif
609 
610 //===----------------------------------------------------------------------===//
611 // ScheduleDAGMI - Basic machine instruction scheduling. This is
612 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
613 // virtual registers.
614 // ===----------------------------------------------------------------------===/
615 
616 // Provide a vtable anchor.
617 ScheduleDAGMI::~ScheduleDAGMI() = default;
618 
619 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
620 /// NumPredsLeft reaches zero, release the successor node.
621 ///
622 /// FIXME: Adjust SuccSU height based on MinLatency.
623 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
624   SUnit *SuccSU = SuccEdge->getSUnit();
625 
626   if (SuccEdge->isWeak()) {
627     --SuccSU->WeakPredsLeft;
628     if (SuccEdge->isCluster())
629       NextClusterSucc = SuccSU;
630     return;
631   }
632 #ifndef NDEBUG
633   if (SuccSU->NumPredsLeft == 0) {
634     dbgs() << "*** Scheduling failed! ***\n";
635     dumpNode(*SuccSU);
636     dbgs() << " has been released too many times!\n";
637     llvm_unreachable(nullptr);
638   }
639 #endif
640   // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
641   // CurrCycle may have advanced since then.
642   if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
643     SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
644 
645   --SuccSU->NumPredsLeft;
646   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
647     SchedImpl->releaseTopNode(SuccSU);
648 }
649 
650 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
651 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
652   for (SDep &Succ : SU->Succs)
653     releaseSucc(SU, &Succ);
654 }
655 
656 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
657 /// NumSuccsLeft reaches zero, release the predecessor node.
658 ///
659 /// FIXME: Adjust PredSU height based on MinLatency.
660 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
661   SUnit *PredSU = PredEdge->getSUnit();
662 
663   if (PredEdge->isWeak()) {
664     --PredSU->WeakSuccsLeft;
665     if (PredEdge->isCluster())
666       NextClusterPred = PredSU;
667     return;
668   }
669 #ifndef NDEBUG
670   if (PredSU->NumSuccsLeft == 0) {
671     dbgs() << "*** Scheduling failed! ***\n";
672     dumpNode(*PredSU);
673     dbgs() << " has been released too many times!\n";
674     llvm_unreachable(nullptr);
675   }
676 #endif
677   // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
678   // CurrCycle may have advanced since then.
679   if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
680     PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
681 
682   --PredSU->NumSuccsLeft;
683   if (PredSU->NumSuccsLeft == 0)
684     SchedImpl->releaseBottomNode(PredSU);
685 }
686 
687 /// releasePredecessors - Call releasePred on each of SU's predecessors.
688 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
689   for (SDep &Pred : SU->Preds)
690     releasePred(SU, &Pred);
691 }
692 
693 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) {
694   ScheduleDAGInstrs::startBlock(bb);
695   SchedImpl->enterMBB(bb);
696 }
697 
698 void ScheduleDAGMI::finishBlock() {
699   SchedImpl->leaveMBB();
700   ScheduleDAGInstrs::finishBlock();
701 }
702 
703 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
704 /// crossing a scheduling boundary. [begin, end) includes all instructions in
705 /// the region, including the boundary itself and single-instruction regions
706 /// that don't get scheduled.
707 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
708                                      MachineBasicBlock::iterator begin,
709                                      MachineBasicBlock::iterator end,
710                                      unsigned regioninstrs)
711 {
712   ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
713 
714   SchedImpl->initPolicy(begin, end, regioninstrs);
715 }
716 
717 /// This is normally called from the main scheduler loop but may also be invoked
718 /// by the scheduling strategy to perform additional code motion.
719 void ScheduleDAGMI::moveInstruction(
720   MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
721   // Advance RegionBegin if the first instruction moves down.
722   if (&*RegionBegin == MI)
723     ++RegionBegin;
724 
725   // Update the instruction stream.
726   BB->splice(InsertPos, BB, MI);
727 
728   // Update LiveIntervals
729   if (LIS)
730     LIS->handleMove(*MI, /*UpdateFlags=*/true);
731 
732   // Recede RegionBegin if an instruction moves above the first.
733   if (RegionBegin == InsertPos)
734     RegionBegin = MI;
735 }
736 
737 bool ScheduleDAGMI::checkSchedLimit() {
738 #ifndef NDEBUG
739   if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
740     CurrentTop = CurrentBottom;
741     return false;
742   }
743   ++NumInstrsScheduled;
744 #endif
745   return true;
746 }
747 
748 /// Per-region scheduling driver, called back from
749 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that
750 /// does not consider liveness or register pressure. It is useful for PostRA
751 /// scheduling and potentially other custom schedulers.
752 void ScheduleDAGMI::schedule() {
753   LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
754   LLVM_DEBUG(SchedImpl->dumpPolicy());
755 
756   // Build the DAG.
757   buildSchedGraph(AA);
758 
759   postprocessDAG();
760 
761   SmallVector<SUnit*, 8> TopRoots, BotRoots;
762   findRootsAndBiasEdges(TopRoots, BotRoots);
763 
764   LLVM_DEBUG(dump());
765   if (PrintDAGs) dump();
766   if (ViewMISchedDAGs) viewGraph();
767 
768   // Initialize the strategy before modifying the DAG.
769   // This may initialize a DFSResult to be used for queue priority.
770   SchedImpl->initialize(this);
771 
772   // Initialize ready queues now that the DAG and priority data are finalized.
773   initQueues(TopRoots, BotRoots);
774 
775   bool IsTopNode = false;
776   while (true) {
777     LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
778     SUnit *SU = SchedImpl->pickNode(IsTopNode);
779     if (!SU) break;
780 
781     assert(!SU->isScheduled && "Node already scheduled");
782     if (!checkSchedLimit())
783       break;
784 
785     MachineInstr *MI = SU->getInstr();
786     if (IsTopNode) {
787       assert(SU->isTopReady() && "node still has unscheduled dependencies");
788       if (&*CurrentTop == MI)
789         CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
790       else
791         moveInstruction(MI, CurrentTop);
792     } else {
793       assert(SU->isBottomReady() && "node still has unscheduled dependencies");
794       MachineBasicBlock::iterator priorII =
795         priorNonDebug(CurrentBottom, CurrentTop);
796       if (&*priorII == MI)
797         CurrentBottom = priorII;
798       else {
799         if (&*CurrentTop == MI)
800           CurrentTop = nextIfDebug(++CurrentTop, priorII);
801         moveInstruction(MI, CurrentBottom);
802         CurrentBottom = MI;
803       }
804     }
805     // Notify the scheduling strategy before updating the DAG.
806     // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
807     // runs, it can then use the accurate ReadyCycle time to determine whether
808     // newly released nodes can move to the readyQ.
809     SchedImpl->schedNode(SU, IsTopNode);
810 
811     updateQueues(SU, IsTopNode);
812   }
813   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
814 
815   placeDebugValues();
816 
817   LLVM_DEBUG({
818     dbgs() << "*** Final schedule for "
819            << printMBBReference(*begin()->getParent()) << " ***\n";
820     dumpSchedule();
821     dbgs() << '\n';
822   });
823 }
824 
825 /// Apply each ScheduleDAGMutation step in order.
826 void ScheduleDAGMI::postprocessDAG() {
827   for (auto &m : Mutations)
828     m->apply(this);
829 }
830 
831 void ScheduleDAGMI::
832 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
833                       SmallVectorImpl<SUnit*> &BotRoots) {
834   for (SUnit &SU : SUnits) {
835     assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits");
836 
837     // Order predecessors so DFSResult follows the critical path.
838     SU.biasCriticalPath();
839 
840     // A SUnit is ready to top schedule if it has no predecessors.
841     if (!SU.NumPredsLeft)
842       TopRoots.push_back(&SU);
843     // A SUnit is ready to bottom schedule if it has no successors.
844     if (!SU.NumSuccsLeft)
845       BotRoots.push_back(&SU);
846   }
847   ExitSU.biasCriticalPath();
848 }
849 
850 /// Identify DAG roots and setup scheduler queues.
851 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
852                                ArrayRef<SUnit*> BotRoots) {
853   NextClusterSucc = nullptr;
854   NextClusterPred = nullptr;
855 
856   // Release all DAG roots for scheduling, not including ExitSU.
857   //
858   // Nodes with unreleased weak edges can still be roots.
859   // Release top roots in forward order.
860   for (SUnit *SU : TopRoots)
861     SchedImpl->releaseTopNode(SU);
862 
863   // Release bottom roots in reverse order so the higher priority nodes appear
864   // first. This is more natural and slightly more efficient.
865   for (SmallVectorImpl<SUnit*>::const_reverse_iterator
866          I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
867     SchedImpl->releaseBottomNode(*I);
868   }
869 
870   releasePredecessors(&ExitSU);
871 
872   SchedImpl->registerRoots();
873 
874   // Advance past initial DebugValues.
875   CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
876   CurrentBottom = RegionEnd;
877 }
878 
879 /// Update scheduler queues after scheduling an instruction.
880 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
881   // Release dependent instructions for scheduling.
882   if (IsTopNode)
883     releaseSuccessors(SU);
884   else
885     releasePredecessors(SU);
886 
887   SU->isScheduled = true;
888 }
889 
890 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
891 void ScheduleDAGMI::placeDebugValues() {
892   // If first instruction was a DBG_VALUE then put it back.
893   if (FirstDbgValue) {
894     BB->splice(RegionBegin, BB, FirstDbgValue);
895     RegionBegin = FirstDbgValue;
896   }
897 
898   for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator
899          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
900     std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
901     MachineInstr *DbgValue = P.first;
902     MachineBasicBlock::iterator OrigPrevMI = P.second;
903     if (&*RegionBegin == DbgValue)
904       ++RegionBegin;
905     BB->splice(++OrigPrevMI, BB, DbgValue);
906     if (OrigPrevMI == std::prev(RegionEnd))
907       RegionEnd = DbgValue;
908   }
909   DbgValues.clear();
910   FirstDbgValue = nullptr;
911 }
912 
913 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
914 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const {
915   for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
916     if (SUnit *SU = getSUnit(&(*MI)))
917       dumpNode(*SU);
918     else
919       dbgs() << "Missing SUnit\n";
920   }
921 }
922 #endif
923 
924 //===----------------------------------------------------------------------===//
925 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
926 // preservation.
927 //===----------------------------------------------------------------------===//
928 
929 ScheduleDAGMILive::~ScheduleDAGMILive() {
930   delete DFSResult;
931 }
932 
933 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) {
934   const MachineInstr &MI = *SU.getInstr();
935   for (const MachineOperand &MO : MI.operands()) {
936     if (!MO.isReg())
937       continue;
938     if (!MO.readsReg())
939       continue;
940     if (TrackLaneMasks && !MO.isUse())
941       continue;
942 
943     Register Reg = MO.getReg();
944     if (!Register::isVirtualRegister(Reg))
945       continue;
946 
947     // Ignore re-defs.
948     if (TrackLaneMasks) {
949       bool FoundDef = false;
950       for (const MachineOperand &MO2 : MI.operands()) {
951         if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) {
952           FoundDef = true;
953           break;
954         }
955       }
956       if (FoundDef)
957         continue;
958     }
959 
960     // Record this local VReg use.
961     VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
962     for (; UI != VRegUses.end(); ++UI) {
963       if (UI->SU == &SU)
964         break;
965     }
966     if (UI == VRegUses.end())
967       VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU));
968   }
969 }
970 
971 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
972 /// crossing a scheduling boundary. [begin, end) includes all instructions in
973 /// the region, including the boundary itself and single-instruction regions
974 /// that don't get scheduled.
975 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
976                                 MachineBasicBlock::iterator begin,
977                                 MachineBasicBlock::iterator end,
978                                 unsigned regioninstrs)
979 {
980   // ScheduleDAGMI initializes SchedImpl's per-region policy.
981   ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
982 
983   // For convenience remember the end of the liveness region.
984   LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
985 
986   SUPressureDiffs.clear();
987 
988   ShouldTrackPressure = SchedImpl->shouldTrackPressure();
989   ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks();
990 
991   assert((!ShouldTrackLaneMasks || ShouldTrackPressure) &&
992          "ShouldTrackLaneMasks requires ShouldTrackPressure");
993 }
994 
995 // Setup the register pressure trackers for the top scheduled and bottom
996 // scheduled regions.
997 void ScheduleDAGMILive::initRegPressure() {
998   VRegUses.clear();
999   VRegUses.setUniverse(MRI.getNumVirtRegs());
1000   for (SUnit &SU : SUnits)
1001     collectVRegUses(SU);
1002 
1003   TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin,
1004                     ShouldTrackLaneMasks, false);
1005   BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1006                     ShouldTrackLaneMasks, false);
1007 
1008   // Close the RPTracker to finalize live ins.
1009   RPTracker.closeRegion();
1010 
1011   LLVM_DEBUG(RPTracker.dump());
1012 
1013   // Initialize the live ins and live outs.
1014   TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
1015   BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
1016 
1017   // Close one end of the tracker so we can call
1018   // getMaxUpward/DownwardPressureDelta before advancing across any
1019   // instructions. This converts currently live regs into live ins/outs.
1020   TopRPTracker.closeTop();
1021   BotRPTracker.closeBottom();
1022 
1023   BotRPTracker.initLiveThru(RPTracker);
1024   if (!BotRPTracker.getLiveThru().empty()) {
1025     TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
1026     LLVM_DEBUG(dbgs() << "Live Thru: ";
1027                dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
1028   };
1029 
1030   // For each live out vreg reduce the pressure change associated with other
1031   // uses of the same vreg below the live-out reaching def.
1032   updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
1033 
1034   // Account for liveness generated by the region boundary.
1035   if (LiveRegionEnd != RegionEnd) {
1036     SmallVector<RegisterMaskPair, 8> LiveUses;
1037     BotRPTracker.recede(&LiveUses);
1038     updatePressureDiffs(LiveUses);
1039   }
1040 
1041   LLVM_DEBUG(dbgs() << "Top Pressure:\n";
1042              dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
1043              dbgs() << "Bottom Pressure:\n";
1044              dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI););
1045 
1046   assert((BotRPTracker.getPos() == RegionEnd ||
1047           (RegionEnd->isDebugInstr() &&
1048            BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) &&
1049          "Can't find the region bottom");
1050 
1051   // Cache the list of excess pressure sets in this region. This will also track
1052   // the max pressure in the scheduled code for these sets.
1053   RegionCriticalPSets.clear();
1054   const std::vector<unsigned> &RegionPressure =
1055     RPTracker.getPressure().MaxSetPressure;
1056   for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
1057     unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
1058     if (RegionPressure[i] > Limit) {
1059       LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit
1060                         << " Actual " << RegionPressure[i] << "\n");
1061       RegionCriticalPSets.push_back(PressureChange(i));
1062     }
1063   }
1064   LLVM_DEBUG(dbgs() << "Excess PSets: ";
1065              for (const PressureChange &RCPS
1066                   : RegionCriticalPSets) dbgs()
1067              << TRI->getRegPressureSetName(RCPS.getPSet()) << " ";
1068              dbgs() << "\n");
1069 }
1070 
1071 void ScheduleDAGMILive::
1072 updateScheduledPressure(const SUnit *SU,
1073                         const std::vector<unsigned> &NewMaxPressure) {
1074   const PressureDiff &PDiff = getPressureDiff(SU);
1075   unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
1076   for (const PressureChange &PC : PDiff) {
1077     if (!PC.isValid())
1078       break;
1079     unsigned ID = PC.getPSet();
1080     while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
1081       ++CritIdx;
1082     if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
1083       if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
1084           && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max())
1085         RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
1086     }
1087     unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
1088     if (NewMaxPressure[ID] >= Limit - 2) {
1089       LLVM_DEBUG(dbgs() << "  " << TRI->getRegPressureSetName(ID) << ": "
1090                         << NewMaxPressure[ID]
1091                         << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ")
1092                         << Limit << "(+ " << BotRPTracker.getLiveThru()[ID]
1093                         << " livethru)\n");
1094     }
1095   }
1096 }
1097 
1098 /// Update the PressureDiff array for liveness after scheduling this
1099 /// instruction.
1100 void ScheduleDAGMILive::updatePressureDiffs(
1101     ArrayRef<RegisterMaskPair> LiveUses) {
1102   for (const RegisterMaskPair &P : LiveUses) {
1103     unsigned Reg = P.RegUnit;
1104     /// FIXME: Currently assuming single-use physregs.
1105     if (!Register::isVirtualRegister(Reg))
1106       continue;
1107 
1108     if (ShouldTrackLaneMasks) {
1109       // If the register has just become live then other uses won't change
1110       // this fact anymore => decrement pressure.
1111       // If the register has just become dead then other uses make it come
1112       // back to life => increment pressure.
1113       bool Decrement = P.LaneMask.any();
1114 
1115       for (const VReg2SUnit &V2SU
1116            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1117         SUnit &SU = *V2SU.SU;
1118         if (SU.isScheduled || &SU == &ExitSU)
1119           continue;
1120 
1121         PressureDiff &PDiff = getPressureDiff(&SU);
1122         PDiff.addPressureChange(Reg, Decrement, &MRI);
1123         LLVM_DEBUG(dbgs() << "  UpdateRegP: SU(" << SU.NodeNum << ") "
1124                           << printReg(Reg, TRI) << ':'
1125                           << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr();
1126                    dbgs() << "              to "; PDiff.dump(*TRI););
1127       }
1128     } else {
1129       assert(P.LaneMask.any());
1130       LLVM_DEBUG(dbgs() << "  LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n");
1131       // This may be called before CurrentBottom has been initialized. However,
1132       // BotRPTracker must have a valid position. We want the value live into the
1133       // instruction or live out of the block, so ask for the previous
1134       // instruction's live-out.
1135       const LiveInterval &LI = LIS->getInterval(Reg);
1136       VNInfo *VNI;
1137       MachineBasicBlock::const_iterator I =
1138         nextIfDebug(BotRPTracker.getPos(), BB->end());
1139       if (I == BB->end())
1140         VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1141       else {
1142         LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I));
1143         VNI = LRQ.valueIn();
1144       }
1145       // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
1146       assert(VNI && "No live value at use.");
1147       for (const VReg2SUnit &V2SU
1148            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1149         SUnit *SU = V2SU.SU;
1150         // If this use comes before the reaching def, it cannot be a last use,
1151         // so decrease its pressure change.
1152         if (!SU->isScheduled && SU != &ExitSU) {
1153           LiveQueryResult LRQ =
1154               LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1155           if (LRQ.valueIn() == VNI) {
1156             PressureDiff &PDiff = getPressureDiff(SU);
1157             PDiff.addPressureChange(Reg, true, &MRI);
1158             LLVM_DEBUG(dbgs() << "  UpdateRegP: SU(" << SU->NodeNum << ") "
1159                               << *SU->getInstr();
1160                        dbgs() << "              to "; PDiff.dump(*TRI););
1161           }
1162         }
1163       }
1164     }
1165   }
1166 }
1167 
1168 void ScheduleDAGMILive::dump() const {
1169 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1170   for (const SUnit &SU : SUnits) {
1171     dumpNodeAll(SU);
1172     if (ShouldTrackPressure) {
1173       dbgs() << "  Pressure Diff      : ";
1174       getPressureDiff(&SU).dump(*TRI);
1175     }
1176     dbgs() << "  Single Issue       : ";
1177     if (SchedModel.mustBeginGroup(SU.getInstr()) &&
1178         SchedModel.mustEndGroup(SU.getInstr()))
1179       dbgs() << "true;";
1180     else
1181       dbgs() << "false;";
1182     dbgs() << '\n';
1183   }
1184   if (ExitSU.getInstr() != nullptr)
1185     dumpNodeAll(ExitSU);
1186 #endif
1187 }
1188 
1189 /// schedule - Called back from MachineScheduler::runOnMachineFunction
1190 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
1191 /// only includes instructions that have DAG nodes, not scheduling boundaries.
1192 ///
1193 /// This is a skeletal driver, with all the functionality pushed into helpers,
1194 /// so that it can be easily extended by experimental schedulers. Generally,
1195 /// implementing MachineSchedStrategy should be sufficient to implement a new
1196 /// scheduling algorithm. However, if a scheduler further subclasses
1197 /// ScheduleDAGMILive then it will want to override this virtual method in order
1198 /// to update any specialized state.
1199 void ScheduleDAGMILive::schedule() {
1200   LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
1201   LLVM_DEBUG(SchedImpl->dumpPolicy());
1202   buildDAGWithRegPressure();
1203 
1204   postprocessDAG();
1205 
1206   SmallVector<SUnit*, 8> TopRoots, BotRoots;
1207   findRootsAndBiasEdges(TopRoots, BotRoots);
1208 
1209   // Initialize the strategy before modifying the DAG.
1210   // This may initialize a DFSResult to be used for queue priority.
1211   SchedImpl->initialize(this);
1212 
1213   LLVM_DEBUG(dump());
1214   if (PrintDAGs) dump();
1215   if (ViewMISchedDAGs) viewGraph();
1216 
1217   // Initialize ready queues now that the DAG and priority data are finalized.
1218   initQueues(TopRoots, BotRoots);
1219 
1220   bool IsTopNode = false;
1221   while (true) {
1222     LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
1223     SUnit *SU = SchedImpl->pickNode(IsTopNode);
1224     if (!SU) break;
1225 
1226     assert(!SU->isScheduled && "Node already scheduled");
1227     if (!checkSchedLimit())
1228       break;
1229 
1230     scheduleMI(SU, IsTopNode);
1231 
1232     if (DFSResult) {
1233       unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1234       if (!ScheduledTrees.test(SubtreeID)) {
1235         ScheduledTrees.set(SubtreeID);
1236         DFSResult->scheduleTree(SubtreeID);
1237         SchedImpl->scheduleTree(SubtreeID);
1238       }
1239     }
1240 
1241     // Notify the scheduling strategy after updating the DAG.
1242     SchedImpl->schedNode(SU, IsTopNode);
1243 
1244     updateQueues(SU, IsTopNode);
1245   }
1246   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1247 
1248   placeDebugValues();
1249 
1250   LLVM_DEBUG({
1251     dbgs() << "*** Final schedule for "
1252            << printMBBReference(*begin()->getParent()) << " ***\n";
1253     dumpSchedule();
1254     dbgs() << '\n';
1255   });
1256 }
1257 
1258 /// Build the DAG and setup three register pressure trackers.
1259 void ScheduleDAGMILive::buildDAGWithRegPressure() {
1260   if (!ShouldTrackPressure) {
1261     RPTracker.reset();
1262     RegionCriticalPSets.clear();
1263     buildSchedGraph(AA);
1264     return;
1265   }
1266 
1267   // Initialize the register pressure tracker used by buildSchedGraph.
1268   RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1269                  ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true);
1270 
1271   // Account for liveness generate by the region boundary.
1272   if (LiveRegionEnd != RegionEnd)
1273     RPTracker.recede();
1274 
1275   // Build the DAG, and compute current register pressure.
1276   buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks);
1277 
1278   // Initialize top/bottom trackers after computing region pressure.
1279   initRegPressure();
1280 }
1281 
1282 void ScheduleDAGMILive::computeDFSResult() {
1283   if (!DFSResult)
1284     DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1285   DFSResult->clear();
1286   ScheduledTrees.clear();
1287   DFSResult->resize(SUnits.size());
1288   DFSResult->compute(SUnits);
1289   ScheduledTrees.resize(DFSResult->getNumSubtrees());
1290 }
1291 
1292 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
1293 /// only provides the critical path for single block loops. To handle loops that
1294 /// span blocks, we could use the vreg path latencies provided by
1295 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1296 /// available for use in the scheduler.
1297 ///
1298 /// The cyclic path estimation identifies a def-use pair that crosses the back
1299 /// edge and considers the depth and height of the nodes. For example, consider
1300 /// the following instruction sequence where each instruction has unit latency
1301 /// and defines an eponymous virtual register:
1302 ///
1303 /// a->b(a,c)->c(b)->d(c)->exit
1304 ///
1305 /// The cyclic critical path is a two cycles: b->c->b
1306 /// The acyclic critical path is four cycles: a->b->c->d->exit
1307 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
1308 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1309 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1310 /// LiveInDepth = depth(b) = len(a->b) = 1
1311 ///
1312 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1313 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1314 /// CyclicCriticalPath = min(2, 2) = 2
1315 ///
1316 /// This could be relevant to PostRA scheduling, but is currently implemented
1317 /// assuming LiveIntervals.
1318 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1319   // This only applies to single block loop.
1320   if (!BB->isSuccessor(BB))
1321     return 0;
1322 
1323   unsigned MaxCyclicLatency = 0;
1324   // Visit each live out vreg def to find def/use pairs that cross iterations.
1325   for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) {
1326     unsigned Reg = P.RegUnit;
1327     if (!Register::isVirtualRegister(Reg))
1328       continue;
1329     const LiveInterval &LI = LIS->getInterval(Reg);
1330     const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1331     if (!DefVNI)
1332       continue;
1333 
1334     MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1335     const SUnit *DefSU = getSUnit(DefMI);
1336     if (!DefSU)
1337       continue;
1338 
1339     unsigned LiveOutHeight = DefSU->getHeight();
1340     unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1341     // Visit all local users of the vreg def.
1342     for (const VReg2SUnit &V2SU
1343          : make_range(VRegUses.find(Reg), VRegUses.end())) {
1344       SUnit *SU = V2SU.SU;
1345       if (SU == &ExitSU)
1346         continue;
1347 
1348       // Only consider uses of the phi.
1349       LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1350       if (!LRQ.valueIn()->isPHIDef())
1351         continue;
1352 
1353       // Assume that a path spanning two iterations is a cycle, which could
1354       // overestimate in strange cases. This allows cyclic latency to be
1355       // estimated as the minimum slack of the vreg's depth or height.
1356       unsigned CyclicLatency = 0;
1357       if (LiveOutDepth > SU->getDepth())
1358         CyclicLatency = LiveOutDepth - SU->getDepth();
1359 
1360       unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
1361       if (LiveInHeight > LiveOutHeight) {
1362         if (LiveInHeight - LiveOutHeight < CyclicLatency)
1363           CyclicLatency = LiveInHeight - LiveOutHeight;
1364       } else
1365         CyclicLatency = 0;
1366 
1367       LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1368                         << SU->NodeNum << ") = " << CyclicLatency << "c\n");
1369       if (CyclicLatency > MaxCyclicLatency)
1370         MaxCyclicLatency = CyclicLatency;
1371     }
1372   }
1373   LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1374   return MaxCyclicLatency;
1375 }
1376 
1377 /// Release ExitSU predecessors and setup scheduler queues. Re-position
1378 /// the Top RP tracker in case the region beginning has changed.
1379 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots,
1380                                    ArrayRef<SUnit*> BotRoots) {
1381   ScheduleDAGMI::initQueues(TopRoots, BotRoots);
1382   if (ShouldTrackPressure) {
1383     assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1384     TopRPTracker.setPos(CurrentTop);
1385   }
1386 }
1387 
1388 /// Move an instruction and update register pressure.
1389 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1390   // Move the instruction to its new location in the instruction stream.
1391   MachineInstr *MI = SU->getInstr();
1392 
1393   if (IsTopNode) {
1394     assert(SU->isTopReady() && "node still has unscheduled dependencies");
1395     if (&*CurrentTop == MI)
1396       CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1397     else {
1398       moveInstruction(MI, CurrentTop);
1399       TopRPTracker.setPos(MI);
1400     }
1401 
1402     if (ShouldTrackPressure) {
1403       // Update top scheduled pressure.
1404       RegisterOperands RegOpers;
1405       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1406       if (ShouldTrackLaneMasks) {
1407         // Adjust liveness and add missing dead+read-undef flags.
1408         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1409         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1410       } else {
1411         // Adjust for missing dead-def flags.
1412         RegOpers.detectDeadDefs(*MI, *LIS);
1413       }
1414 
1415       TopRPTracker.advance(RegOpers);
1416       assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1417       LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure(
1418                      TopRPTracker.getRegSetPressureAtPos(), TRI););
1419 
1420       updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1421     }
1422   } else {
1423     assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1424     MachineBasicBlock::iterator priorII =
1425       priorNonDebug(CurrentBottom, CurrentTop);
1426     if (&*priorII == MI)
1427       CurrentBottom = priorII;
1428     else {
1429       if (&*CurrentTop == MI) {
1430         CurrentTop = nextIfDebug(++CurrentTop, priorII);
1431         TopRPTracker.setPos(CurrentTop);
1432       }
1433       moveInstruction(MI, CurrentBottom);
1434       CurrentBottom = MI;
1435       BotRPTracker.setPos(CurrentBottom);
1436     }
1437     if (ShouldTrackPressure) {
1438       RegisterOperands RegOpers;
1439       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1440       if (ShouldTrackLaneMasks) {
1441         // Adjust liveness and add missing dead+read-undef flags.
1442         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1443         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1444       } else {
1445         // Adjust for missing dead-def flags.
1446         RegOpers.detectDeadDefs(*MI, *LIS);
1447       }
1448 
1449       if (BotRPTracker.getPos() != CurrentBottom)
1450         BotRPTracker.recedeSkipDebugValues();
1451       SmallVector<RegisterMaskPair, 8> LiveUses;
1452       BotRPTracker.recede(RegOpers, &LiveUses);
1453       assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1454       LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure(
1455                      BotRPTracker.getRegSetPressureAtPos(), TRI););
1456 
1457       updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1458       updatePressureDiffs(LiveUses);
1459     }
1460   }
1461 }
1462 
1463 //===----------------------------------------------------------------------===//
1464 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores.
1465 //===----------------------------------------------------------------------===//
1466 
1467 namespace {
1468 
1469 /// Post-process the DAG to create cluster edges between neighboring
1470 /// loads or between neighboring stores.
1471 class BaseMemOpClusterMutation : public ScheduleDAGMutation {
1472   struct MemOpInfo {
1473     SUnit *SU;
1474     SmallVector<const MachineOperand *, 4> BaseOps;
1475     int64_t Offset;
1476     unsigned Width;
1477 
1478     MemOpInfo(SUnit *SU, ArrayRef<const MachineOperand *> BaseOps,
1479               int64_t Offset, unsigned Width)
1480         : SU(SU), BaseOps(BaseOps.begin(), BaseOps.end()), Offset(Offset),
1481           Width(Width) {}
1482 
1483     static bool Compare(const MachineOperand *const &A,
1484                         const MachineOperand *const &B) {
1485       if (A->getType() != B->getType())
1486         return A->getType() < B->getType();
1487       if (A->isReg())
1488         return A->getReg() < B->getReg();
1489       if (A->isFI()) {
1490         const MachineFunction &MF = *A->getParent()->getParent()->getParent();
1491         const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering();
1492         bool StackGrowsDown = TFI.getStackGrowthDirection() ==
1493                               TargetFrameLowering::StackGrowsDown;
1494         return StackGrowsDown ? A->getIndex() > B->getIndex()
1495                               : A->getIndex() < B->getIndex();
1496       }
1497 
1498       llvm_unreachable("MemOpClusterMutation only supports register or frame "
1499                        "index bases.");
1500     }
1501 
1502     bool operator<(const MemOpInfo &RHS) const {
1503       // FIXME: Don't compare everything twice. Maybe use C++20 three way
1504       // comparison instead when it's available.
1505       if (std::lexicographical_compare(BaseOps.begin(), BaseOps.end(),
1506                                        RHS.BaseOps.begin(), RHS.BaseOps.end(),
1507                                        Compare))
1508         return true;
1509       if (std::lexicographical_compare(RHS.BaseOps.begin(), RHS.BaseOps.end(),
1510                                        BaseOps.begin(), BaseOps.end(), Compare))
1511         return false;
1512       if (Offset != RHS.Offset)
1513         return Offset < RHS.Offset;
1514       return SU->NodeNum < RHS.SU->NodeNum;
1515     }
1516   };
1517 
1518   const TargetInstrInfo *TII;
1519   const TargetRegisterInfo *TRI;
1520   bool IsLoad;
1521 
1522 public:
1523   BaseMemOpClusterMutation(const TargetInstrInfo *tii,
1524                            const TargetRegisterInfo *tri, bool IsLoad)
1525       : TII(tii), TRI(tri), IsLoad(IsLoad) {}
1526 
1527   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1528 
1529 protected:
1530   void clusterNeighboringMemOps(ArrayRef<MemOpInfo> MemOps,
1531                                 ScheduleDAGInstrs *DAG);
1532   void collectMemOpRecords(std::vector<SUnit> &SUnits,
1533                            SmallVectorImpl<MemOpInfo> &MemOpRecords);
1534 };
1535 
1536 class StoreClusterMutation : public BaseMemOpClusterMutation {
1537 public:
1538   StoreClusterMutation(const TargetInstrInfo *tii,
1539                        const TargetRegisterInfo *tri)
1540       : BaseMemOpClusterMutation(tii, tri, false) {}
1541 };
1542 
1543 class LoadClusterMutation : public BaseMemOpClusterMutation {
1544 public:
1545   LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri)
1546       : BaseMemOpClusterMutation(tii, tri, true) {}
1547 };
1548 
1549 } // end anonymous namespace
1550 
1551 namespace llvm {
1552 
1553 std::unique_ptr<ScheduleDAGMutation>
1554 createLoadClusterDAGMutation(const TargetInstrInfo *TII,
1555                              const TargetRegisterInfo *TRI) {
1556   return EnableMemOpCluster ? std::make_unique<LoadClusterMutation>(TII, TRI)
1557                             : nullptr;
1558 }
1559 
1560 std::unique_ptr<ScheduleDAGMutation>
1561 createStoreClusterDAGMutation(const TargetInstrInfo *TII,
1562                               const TargetRegisterInfo *TRI) {
1563   return EnableMemOpCluster ? std::make_unique<StoreClusterMutation>(TII, TRI)
1564                             : nullptr;
1565 }
1566 
1567 } // end namespace llvm
1568 
1569 // Sorting all the loads/stores first, then for each load/store, checking the
1570 // following load/store one by one, until reach the first non-dependent one and
1571 // call target hook to see if they can cluster.
1572 void BaseMemOpClusterMutation::clusterNeighboringMemOps(
1573     ArrayRef<MemOpInfo> MemOpRecords, ScheduleDAGInstrs *DAG) {
1574   // Keep track of the current cluster length and bytes for each SUnit.
1575   DenseMap<unsigned, std::pair<unsigned, unsigned>> SUnit2ClusterInfo;
1576 
1577   // At this point, `MemOpRecords` array must hold atleast two mem ops. Try to
1578   // cluster mem ops collected within `MemOpRecords` array.
1579   for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) {
1580     // Decision to cluster mem ops is taken based on target dependent logic
1581     auto MemOpa = MemOpRecords[Idx];
1582 
1583     // Seek for the next load/store to do the cluster.
1584     unsigned NextIdx = Idx + 1;
1585     for (; NextIdx < End; ++NextIdx)
1586       // Skip if MemOpb has been clustered already or has dependency with
1587       // MemOpa.
1588       if (!SUnit2ClusterInfo.count(MemOpRecords[NextIdx].SU->NodeNum) &&
1589           !DAG->IsReachable(MemOpRecords[NextIdx].SU, MemOpa.SU) &&
1590           !DAG->IsReachable(MemOpa.SU, MemOpRecords[NextIdx].SU))
1591         break;
1592     if (NextIdx == End)
1593       continue;
1594 
1595     auto MemOpb = MemOpRecords[NextIdx];
1596     unsigned ClusterLength = 2;
1597     unsigned CurrentClusterBytes = MemOpa.Width + MemOpb.Width;
1598     if (SUnit2ClusterInfo.count(MemOpa.SU->NodeNum)) {
1599       ClusterLength = SUnit2ClusterInfo[MemOpa.SU->NodeNum].first + 1;
1600       CurrentClusterBytes =
1601           SUnit2ClusterInfo[MemOpa.SU->NodeNum].second + MemOpb.Width;
1602     }
1603 
1604     if (!TII->shouldClusterMemOps(MemOpa.BaseOps, MemOpb.BaseOps, ClusterLength,
1605                                   CurrentClusterBytes))
1606       continue;
1607 
1608     SUnit *SUa = MemOpa.SU;
1609     SUnit *SUb = MemOpb.SU;
1610     if (SUa->NodeNum > SUb->NodeNum)
1611       std::swap(SUa, SUb);
1612 
1613     // FIXME: Is this check really required?
1614     if (!DAG->addEdge(SUb, SDep(SUa, SDep::Cluster)))
1615       continue;
1616 
1617     LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU("
1618                       << SUb->NodeNum << ")\n");
1619     ++NumClustered;
1620 
1621     if (IsLoad) {
1622       // Copy successor edges from SUa to SUb. Interleaving computation
1623       // dependent on SUa can prevent load combining due to register reuse.
1624       // Predecessor edges do not need to be copied from SUb to SUa since
1625       // nearby loads should have effectively the same inputs.
1626       for (const SDep &Succ : SUa->Succs) {
1627         if (Succ.getSUnit() == SUb)
1628           continue;
1629         LLVM_DEBUG(dbgs() << "  Copy Succ SU(" << Succ.getSUnit()->NodeNum
1630                           << ")\n");
1631         DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial));
1632       }
1633     } else {
1634       // Copy predecessor edges from SUb to SUa to avoid the SUnits that
1635       // SUb dependent on scheduled in-between SUb and SUa. Successor edges
1636       // do not need to be copied from SUa to SUb since no one will depend
1637       // on stores.
1638       // Notice that, we don't need to care about the memory dependency as
1639       // we won't try to cluster them if they have any memory dependency.
1640       for (const SDep &Pred : SUb->Preds) {
1641         if (Pred.getSUnit() == SUa)
1642           continue;
1643         LLVM_DEBUG(dbgs() << "  Copy Pred SU(" << Pred.getSUnit()->NodeNum
1644                           << ")\n");
1645         DAG->addEdge(SUa, SDep(Pred.getSUnit(), SDep::Artificial));
1646       }
1647     }
1648 
1649     SUnit2ClusterInfo[MemOpb.SU->NodeNum] = {ClusterLength,
1650                                              CurrentClusterBytes};
1651 
1652     LLVM_DEBUG(dbgs() << "  Curr cluster length: " << ClusterLength
1653                       << ", Curr cluster bytes: " << CurrentClusterBytes
1654                       << "\n");
1655   }
1656 }
1657 
1658 void BaseMemOpClusterMutation::collectMemOpRecords(
1659     std::vector<SUnit> &SUnits, SmallVectorImpl<MemOpInfo> &MemOpRecords) {
1660   for (auto &SU : SUnits) {
1661     if ((IsLoad && !SU.getInstr()->mayLoad()) ||
1662         (!IsLoad && !SU.getInstr()->mayStore()))
1663       continue;
1664 
1665     const MachineInstr &MI = *SU.getInstr();
1666     SmallVector<const MachineOperand *, 4> BaseOps;
1667     int64_t Offset;
1668     bool OffsetIsScalable;
1669     unsigned Width;
1670     if (TII->getMemOperandsWithOffsetWidth(MI, BaseOps, Offset,
1671                                            OffsetIsScalable, Width, TRI)) {
1672       MemOpRecords.push_back(MemOpInfo(&SU, BaseOps, Offset, Width));
1673 
1674       LLVM_DEBUG(dbgs() << "Num BaseOps: " << BaseOps.size() << ", Offset: "
1675                         << Offset << ", OffsetIsScalable: " << OffsetIsScalable
1676                         << ", Width: " << Width << "\n");
1677     }
1678 #ifndef NDEBUG
1679     for (auto *Op : BaseOps)
1680       assert(Op);
1681 #endif
1682   }
1683 }
1684 
1685 /// Callback from DAG postProcessing to create cluster edges for loads/stores.
1686 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAG) {
1687   // Collect all the clusterable loads/stores
1688   SmallVector<MemOpInfo, 32> MemOpRecords;
1689   collectMemOpRecords(DAG->SUnits, MemOpRecords);
1690 
1691   if (MemOpRecords.size() < 2)
1692     return;
1693 
1694   // Sorting the loads/stores, so that, we can stop the cluster as early as
1695   // possible.
1696   llvm::sort(MemOpRecords);
1697 
1698   // Trying to cluster all the neighboring loads/stores.
1699   clusterNeighboringMemOps(MemOpRecords, DAG);
1700 }
1701 
1702 //===----------------------------------------------------------------------===//
1703 // CopyConstrain - DAG post-processing to encourage copy elimination.
1704 //===----------------------------------------------------------------------===//
1705 
1706 namespace {
1707 
1708 /// Post-process the DAG to create weak edges from all uses of a copy to
1709 /// the one use that defines the copy's source vreg, most likely an induction
1710 /// variable increment.
1711 class CopyConstrain : public ScheduleDAGMutation {
1712   // Transient state.
1713   SlotIndex RegionBeginIdx;
1714 
1715   // RegionEndIdx is the slot index of the last non-debug instruction in the
1716   // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1717   SlotIndex RegionEndIdx;
1718 
1719 public:
1720   CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1721 
1722   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1723 
1724 protected:
1725   void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
1726 };
1727 
1728 } // end anonymous namespace
1729 
1730 namespace llvm {
1731 
1732 std::unique_ptr<ScheduleDAGMutation>
1733 createCopyConstrainDAGMutation(const TargetInstrInfo *TII,
1734                                const TargetRegisterInfo *TRI) {
1735   return std::make_unique<CopyConstrain>(TII, TRI);
1736 }
1737 
1738 } // end namespace llvm
1739 
1740 /// constrainLocalCopy handles two possibilities:
1741 /// 1) Local src:
1742 /// I0:     = dst
1743 /// I1: src = ...
1744 /// I2:     = dst
1745 /// I3: dst = src (copy)
1746 /// (create pred->succ edges I0->I1, I2->I1)
1747 ///
1748 /// 2) Local copy:
1749 /// I0: dst = src (copy)
1750 /// I1:     = dst
1751 /// I2: src = ...
1752 /// I3:     = dst
1753 /// (create pred->succ edges I1->I2, I3->I2)
1754 ///
1755 /// Although the MachineScheduler is currently constrained to single blocks,
1756 /// this algorithm should handle extended blocks. An EBB is a set of
1757 /// contiguously numbered blocks such that the previous block in the EBB is
1758 /// always the single predecessor.
1759 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
1760   LiveIntervals *LIS = DAG->getLIS();
1761   MachineInstr *Copy = CopySU->getInstr();
1762 
1763   // Check for pure vreg copies.
1764   const MachineOperand &SrcOp = Copy->getOperand(1);
1765   Register SrcReg = SrcOp.getReg();
1766   if (!Register::isVirtualRegister(SrcReg) || !SrcOp.readsReg())
1767     return;
1768 
1769   const MachineOperand &DstOp = Copy->getOperand(0);
1770   Register DstReg = DstOp.getReg();
1771   if (!Register::isVirtualRegister(DstReg) || DstOp.isDead())
1772     return;
1773 
1774   // Check if either the dest or source is local. If it's live across a back
1775   // edge, it's not local. Note that if both vregs are live across the back
1776   // edge, we cannot successfully contrain the copy without cyclic scheduling.
1777   // If both the copy's source and dest are local live intervals, then we
1778   // should treat the dest as the global for the purpose of adding
1779   // constraints. This adds edges from source's other uses to the copy.
1780   unsigned LocalReg = SrcReg;
1781   unsigned GlobalReg = DstReg;
1782   LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
1783   if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
1784     LocalReg = DstReg;
1785     GlobalReg = SrcReg;
1786     LocalLI = &LIS->getInterval(LocalReg);
1787     if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
1788       return;
1789   }
1790   LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1791 
1792   // Find the global segment after the start of the local LI.
1793   LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1794   // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1795   // local live range. We could create edges from other global uses to the local
1796   // start, but the coalescer should have already eliminated these cases, so
1797   // don't bother dealing with it.
1798   if (GlobalSegment == GlobalLI->end())
1799     return;
1800 
1801   // If GlobalSegment is killed at the LocalLI->start, the call to find()
1802   // returned the next global segment. But if GlobalSegment overlaps with
1803   // LocalLI->start, then advance to the next segment. If a hole in GlobalLI
1804   // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1805   if (GlobalSegment->contains(LocalLI->beginIndex()))
1806     ++GlobalSegment;
1807 
1808   if (GlobalSegment == GlobalLI->end())
1809     return;
1810 
1811   // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1812   if (GlobalSegment != GlobalLI->begin()) {
1813     // Two address defs have no hole.
1814     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
1815                                GlobalSegment->start)) {
1816       return;
1817     }
1818     // If the prior global segment may be defined by the same two-address
1819     // instruction that also defines LocalLI, then can't make a hole here.
1820     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
1821                                LocalLI->beginIndex())) {
1822       return;
1823     }
1824     // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1825     // it would be a disconnected component in the live range.
1826     assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
1827            "Disconnected LRG within the scheduling region.");
1828   }
1829   MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1830   if (!GlobalDef)
1831     return;
1832 
1833   SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1834   if (!GlobalSU)
1835     return;
1836 
1837   // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1838   // constraining the uses of the last local def to precede GlobalDef.
1839   SmallVector<SUnit*,8> LocalUses;
1840   const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1841   MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1842   SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1843   for (const SDep &Succ : LastLocalSU->Succs) {
1844     if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg)
1845       continue;
1846     if (Succ.getSUnit() == GlobalSU)
1847       continue;
1848     if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit()))
1849       return;
1850     LocalUses.push_back(Succ.getSUnit());
1851   }
1852   // Open the top of the GlobalLI hole by constraining any earlier global uses
1853   // to precede the start of LocalLI.
1854   SmallVector<SUnit*,8> GlobalUses;
1855   MachineInstr *FirstLocalDef =
1856     LIS->getInstructionFromIndex(LocalLI->beginIndex());
1857   SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1858   for (const SDep &Pred : GlobalSU->Preds) {
1859     if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg)
1860       continue;
1861     if (Pred.getSUnit() == FirstLocalSU)
1862       continue;
1863     if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit()))
1864       return;
1865     GlobalUses.push_back(Pred.getSUnit());
1866   }
1867   LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1868   // Add the weak edges.
1869   for (SmallVectorImpl<SUnit*>::const_iterator
1870          I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
1871     LLVM_DEBUG(dbgs() << "  Local use SU(" << (*I)->NodeNum << ") -> SU("
1872                       << GlobalSU->NodeNum << ")\n");
1873     DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
1874   }
1875   for (SmallVectorImpl<SUnit*>::const_iterator
1876          I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
1877     LLVM_DEBUG(dbgs() << "  Global use SU(" << (*I)->NodeNum << ") -> SU("
1878                       << FirstLocalSU->NodeNum << ")\n");
1879     DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
1880   }
1881 }
1882 
1883 /// Callback from DAG postProcessing to create weak edges to encourage
1884 /// copy elimination.
1885 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) {
1886   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1887   assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
1888 
1889   MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1890   if (FirstPos == DAG->end())
1891     return;
1892   RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos);
1893   RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1894       *priorNonDebug(DAG->end(), DAG->begin()));
1895 
1896   for (SUnit &SU : DAG->SUnits) {
1897     if (!SU.getInstr()->isCopy())
1898       continue;
1899 
1900     constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG));
1901   }
1902 }
1903 
1904 //===----------------------------------------------------------------------===//
1905 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
1906 // and possibly other custom schedulers.
1907 //===----------------------------------------------------------------------===//
1908 
1909 static const unsigned InvalidCycle = ~0U;
1910 
1911 SchedBoundary::~SchedBoundary() { delete HazardRec; }
1912 
1913 /// Given a Count of resource usage and a Latency value, return true if a
1914 /// SchedBoundary becomes resource limited.
1915 /// If we are checking after scheduling a node, we should return true when
1916 /// we just reach the resource limit.
1917 static bool checkResourceLimit(unsigned LFactor, unsigned Count,
1918                                unsigned Latency, bool AfterSchedNode) {
1919   int ResCntFactor = (int)(Count - (Latency * LFactor));
1920   if (AfterSchedNode)
1921     return ResCntFactor >= (int)LFactor;
1922   else
1923     return ResCntFactor > (int)LFactor;
1924 }
1925 
1926 void SchedBoundary::reset() {
1927   // A new HazardRec is created for each DAG and owned by SchedBoundary.
1928   // Destroying and reconstructing it is very expensive though. So keep
1929   // invalid, placeholder HazardRecs.
1930   if (HazardRec && HazardRec->isEnabled()) {
1931     delete HazardRec;
1932     HazardRec = nullptr;
1933   }
1934   Available.clear();
1935   Pending.clear();
1936   CheckPending = false;
1937   CurrCycle = 0;
1938   CurrMOps = 0;
1939   MinReadyCycle = std::numeric_limits<unsigned>::max();
1940   ExpectedLatency = 0;
1941   DependentLatency = 0;
1942   RetiredMOps = 0;
1943   MaxExecutedResCount = 0;
1944   ZoneCritResIdx = 0;
1945   IsResourceLimited = false;
1946   ReservedCycles.clear();
1947   ReservedCyclesIndex.clear();
1948 #ifndef NDEBUG
1949   // Track the maximum number of stall cycles that could arise either from the
1950   // latency of a DAG edge or the number of cycles that a processor resource is
1951   // reserved (SchedBoundary::ReservedCycles).
1952   MaxObservedStall = 0;
1953 #endif
1954   // Reserve a zero-count for invalid CritResIdx.
1955   ExecutedResCounts.resize(1);
1956   assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
1957 }
1958 
1959 void SchedRemainder::
1960 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
1961   reset();
1962   if (!SchedModel->hasInstrSchedModel())
1963     return;
1964   RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
1965   for (SUnit &SU : DAG->SUnits) {
1966     const MCSchedClassDesc *SC = DAG->getSchedClass(&SU);
1967     RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC)
1968       * SchedModel->getMicroOpFactor();
1969     for (TargetSchedModel::ProcResIter
1970            PI = SchedModel->getWriteProcResBegin(SC),
1971            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1972       unsigned PIdx = PI->ProcResourceIdx;
1973       unsigned Factor = SchedModel->getResourceFactor(PIdx);
1974       RemainingCounts[PIdx] += (Factor * PI->Cycles);
1975     }
1976   }
1977 }
1978 
1979 void SchedBoundary::
1980 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
1981   reset();
1982   DAG = dag;
1983   SchedModel = smodel;
1984   Rem = rem;
1985   if (SchedModel->hasInstrSchedModel()) {
1986     unsigned ResourceCount = SchedModel->getNumProcResourceKinds();
1987     ReservedCyclesIndex.resize(ResourceCount);
1988     ExecutedResCounts.resize(ResourceCount);
1989     unsigned NumUnits = 0;
1990 
1991     for (unsigned i = 0; i < ResourceCount; ++i) {
1992       ReservedCyclesIndex[i] = NumUnits;
1993       NumUnits += SchedModel->getProcResource(i)->NumUnits;
1994     }
1995 
1996     ReservedCycles.resize(NumUnits, InvalidCycle);
1997   }
1998 }
1999 
2000 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
2001 /// these "soft stalls" differently than the hard stall cycles based on CPU
2002 /// resources and computed by checkHazard(). A fully in-order model
2003 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
2004 /// available for scheduling until they are ready. However, a weaker in-order
2005 /// model may use this for heuristics. For example, if a processor has in-order
2006 /// behavior when reading certain resources, this may come into play.
2007 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
2008   if (!SU->isUnbuffered)
2009     return 0;
2010 
2011   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2012   if (ReadyCycle > CurrCycle)
2013     return ReadyCycle - CurrCycle;
2014   return 0;
2015 }
2016 
2017 /// Compute the next cycle at which the given processor resource unit
2018 /// can be scheduled.
2019 unsigned SchedBoundary::getNextResourceCycleByInstance(unsigned InstanceIdx,
2020                                                        unsigned Cycles) {
2021   unsigned NextUnreserved = ReservedCycles[InstanceIdx];
2022   // If this resource has never been used, always return cycle zero.
2023   if (NextUnreserved == InvalidCycle)
2024     return 0;
2025   // For bottom-up scheduling add the cycles needed for the current operation.
2026   if (!isTop())
2027     NextUnreserved += Cycles;
2028   return NextUnreserved;
2029 }
2030 
2031 /// Compute the next cycle at which the given processor resource can be
2032 /// scheduled.  Returns the next cycle and the index of the processor resource
2033 /// instance in the reserved cycles vector.
2034 std::pair<unsigned, unsigned>
2035 SchedBoundary::getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
2036   unsigned MinNextUnreserved = InvalidCycle;
2037   unsigned InstanceIdx = 0;
2038   unsigned StartIndex = ReservedCyclesIndex[PIdx];
2039   unsigned NumberOfInstances = SchedModel->getProcResource(PIdx)->NumUnits;
2040   assert(NumberOfInstances > 0 &&
2041          "Cannot have zero instances of a ProcResource");
2042 
2043   for (unsigned I = StartIndex, End = StartIndex + NumberOfInstances; I < End;
2044        ++I) {
2045     unsigned NextUnreserved = getNextResourceCycleByInstance(I, Cycles);
2046     if (MinNextUnreserved > NextUnreserved) {
2047       InstanceIdx = I;
2048       MinNextUnreserved = NextUnreserved;
2049     }
2050   }
2051   return std::make_pair(MinNextUnreserved, InstanceIdx);
2052 }
2053 
2054 /// Does this SU have a hazard within the current instruction group.
2055 ///
2056 /// The scheduler supports two modes of hazard recognition. The first is the
2057 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
2058 /// supports highly complicated in-order reservation tables
2059 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
2060 ///
2061 /// The second is a streamlined mechanism that checks for hazards based on
2062 /// simple counters that the scheduler itself maintains. It explicitly checks
2063 /// for instruction dispatch limitations, including the number of micro-ops that
2064 /// can dispatch per cycle.
2065 ///
2066 /// TODO: Also check whether the SU must start a new group.
2067 bool SchedBoundary::checkHazard(SUnit *SU) {
2068   if (HazardRec->isEnabled()
2069       && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
2070     return true;
2071   }
2072 
2073   unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
2074   if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
2075     LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
2076                       << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
2077     return true;
2078   }
2079 
2080   if (CurrMOps > 0 &&
2081       ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) ||
2082        (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) {
2083     LLVM_DEBUG(dbgs() << "  hazard: SU(" << SU->NodeNum << ") must "
2084                       << (isTop() ? "begin" : "end") << " group\n");
2085     return true;
2086   }
2087 
2088   if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
2089     const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2090     for (const MCWriteProcResEntry &PE :
2091           make_range(SchedModel->getWriteProcResBegin(SC),
2092                      SchedModel->getWriteProcResEnd(SC))) {
2093       unsigned ResIdx = PE.ProcResourceIdx;
2094       unsigned Cycles = PE.Cycles;
2095       unsigned NRCycle, InstanceIdx;
2096       std::tie(NRCycle, InstanceIdx) = getNextResourceCycle(ResIdx, Cycles);
2097       if (NRCycle > CurrCycle) {
2098 #ifndef NDEBUG
2099         MaxObservedStall = std::max(Cycles, MaxObservedStall);
2100 #endif
2101         LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") "
2102                           << SchedModel->getResourceName(ResIdx)
2103                           << '[' << InstanceIdx - ReservedCyclesIndex[ResIdx]  << ']'
2104                           << "=" << NRCycle << "c\n");
2105         return true;
2106       }
2107     }
2108   }
2109   return false;
2110 }
2111 
2112 // Find the unscheduled node in ReadySUs with the highest latency.
2113 unsigned SchedBoundary::
2114 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
2115   SUnit *LateSU = nullptr;
2116   unsigned RemLatency = 0;
2117   for (SUnit *SU : ReadySUs) {
2118     unsigned L = getUnscheduledLatency(SU);
2119     if (L > RemLatency) {
2120       RemLatency = L;
2121       LateSU = SU;
2122     }
2123   }
2124   if (LateSU) {
2125     LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU("
2126                       << LateSU->NodeNum << ") " << RemLatency << "c\n");
2127   }
2128   return RemLatency;
2129 }
2130 
2131 // Count resources in this zone and the remaining unscheduled
2132 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
2133 // resource index, or zero if the zone is issue limited.
2134 unsigned SchedBoundary::
2135 getOtherResourceCount(unsigned &OtherCritIdx) {
2136   OtherCritIdx = 0;
2137   if (!SchedModel->hasInstrSchedModel())
2138     return 0;
2139 
2140   unsigned OtherCritCount = Rem->RemIssueCount
2141     + (RetiredMOps * SchedModel->getMicroOpFactor());
2142   LLVM_DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
2143                     << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
2144   for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
2145        PIdx != PEnd; ++PIdx) {
2146     unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
2147     if (OtherCount > OtherCritCount) {
2148       OtherCritCount = OtherCount;
2149       OtherCritIdx = PIdx;
2150     }
2151   }
2152   if (OtherCritIdx) {
2153     LLVM_DEBUG(
2154         dbgs() << "  " << Available.getName() << " + Remain CritRes: "
2155                << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
2156                << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
2157   }
2158   return OtherCritCount;
2159 }
2160 
2161 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle, bool InPQueue,
2162                                 unsigned Idx) {
2163   assert(SU->getInstr() && "Scheduled SUnit must have instr");
2164 
2165 #ifndef NDEBUG
2166   // ReadyCycle was been bumped up to the CurrCycle when this node was
2167   // scheduled, but CurrCycle may have been eagerly advanced immediately after
2168   // scheduling, so may now be greater than ReadyCycle.
2169   if (ReadyCycle > CurrCycle)
2170     MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
2171 #endif
2172 
2173   if (ReadyCycle < MinReadyCycle)
2174     MinReadyCycle = ReadyCycle;
2175 
2176   // Check for interlocks first. For the purpose of other heuristics, an
2177   // instruction that cannot issue appears as if it's not in the ReadyQueue.
2178   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2179   bool HazardDetected = (!IsBuffered && ReadyCycle > CurrCycle) ||
2180                         checkHazard(SU) || (Available.size() >= ReadyListLimit);
2181 
2182   if (!HazardDetected) {
2183     Available.push(SU);
2184 
2185     if (InPQueue)
2186       Pending.remove(Pending.begin() + Idx);
2187     return;
2188   }
2189 
2190   if (!InPQueue)
2191     Pending.push(SU);
2192 }
2193 
2194 /// Move the boundary of scheduled code by one cycle.
2195 void SchedBoundary::bumpCycle(unsigned NextCycle) {
2196   if (SchedModel->getMicroOpBufferSize() == 0) {
2197     assert(MinReadyCycle < std::numeric_limits<unsigned>::max() &&
2198            "MinReadyCycle uninitialized");
2199     if (MinReadyCycle > NextCycle)
2200       NextCycle = MinReadyCycle;
2201   }
2202   // Update the current micro-ops, which will issue in the next cycle.
2203   unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
2204   CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
2205 
2206   // Decrement DependentLatency based on the next cycle.
2207   if ((NextCycle - CurrCycle) > DependentLatency)
2208     DependentLatency = 0;
2209   else
2210     DependentLatency -= (NextCycle - CurrCycle);
2211 
2212   if (!HazardRec->isEnabled()) {
2213     // Bypass HazardRec virtual calls.
2214     CurrCycle = NextCycle;
2215   } else {
2216     // Bypass getHazardType calls in case of long latency.
2217     for (; CurrCycle != NextCycle; ++CurrCycle) {
2218       if (isTop())
2219         HazardRec->AdvanceCycle();
2220       else
2221         HazardRec->RecedeCycle();
2222     }
2223   }
2224   CheckPending = true;
2225   IsResourceLimited =
2226       checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2227                          getScheduledLatency(), true);
2228 
2229   LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName()
2230                     << '\n');
2231 }
2232 
2233 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
2234   ExecutedResCounts[PIdx] += Count;
2235   if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
2236     MaxExecutedResCount = ExecutedResCounts[PIdx];
2237 }
2238 
2239 /// Add the given processor resource to this scheduled zone.
2240 ///
2241 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
2242 /// during which this resource is consumed.
2243 ///
2244 /// \return the next cycle at which the instruction may execute without
2245 /// oversubscribing resources.
2246 unsigned SchedBoundary::
2247 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
2248   unsigned Factor = SchedModel->getResourceFactor(PIdx);
2249   unsigned Count = Factor * Cycles;
2250   LLVM_DEBUG(dbgs() << "  " << SchedModel->getResourceName(PIdx) << " +"
2251                     << Cycles << "x" << Factor << "u\n");
2252 
2253   // Update Executed resources counts.
2254   incExecutedResources(PIdx, Count);
2255   assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
2256   Rem->RemainingCounts[PIdx] -= Count;
2257 
2258   // Check if this resource exceeds the current critical resource. If so, it
2259   // becomes the critical resource.
2260   if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
2261     ZoneCritResIdx = PIdx;
2262     LLVM_DEBUG(dbgs() << "  *** Critical resource "
2263                       << SchedModel->getResourceName(PIdx) << ": "
2264                       << getResourceCount(PIdx) / SchedModel->getLatencyFactor()
2265                       << "c\n");
2266   }
2267   // For reserved resources, record the highest cycle using the resource.
2268   unsigned NextAvailable, InstanceIdx;
2269   std::tie(NextAvailable, InstanceIdx) = getNextResourceCycle(PIdx, Cycles);
2270   if (NextAvailable > CurrCycle) {
2271     LLVM_DEBUG(dbgs() << "  Resource conflict: "
2272                       << SchedModel->getResourceName(PIdx)
2273                       << '[' << InstanceIdx - ReservedCyclesIndex[PIdx]  << ']'
2274                       << " reserved until @" << NextAvailable << "\n");
2275   }
2276   return NextAvailable;
2277 }
2278 
2279 /// Move the boundary of scheduled code by one SUnit.
2280 void SchedBoundary::bumpNode(SUnit *SU) {
2281   // Update the reservation table.
2282   if (HazardRec->isEnabled()) {
2283     if (!isTop() && SU->isCall) {
2284       // Calls are scheduled with their preceding instructions. For bottom-up
2285       // scheduling, clear the pipeline state before emitting.
2286       HazardRec->Reset();
2287     }
2288     HazardRec->EmitInstruction(SU);
2289     // Scheduling an instruction may have made pending instructions available.
2290     CheckPending = true;
2291   }
2292   // checkHazard should prevent scheduling multiple instructions per cycle that
2293   // exceed the issue width.
2294   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2295   unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
2296   assert(
2297       (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
2298       "Cannot schedule this instruction's MicroOps in the current cycle.");
2299 
2300   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2301   LLVM_DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
2302 
2303   unsigned NextCycle = CurrCycle;
2304   switch (SchedModel->getMicroOpBufferSize()) {
2305   case 0:
2306     assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
2307     break;
2308   case 1:
2309     if (ReadyCycle > NextCycle) {
2310       NextCycle = ReadyCycle;
2311       LLVM_DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
2312     }
2313     break;
2314   default:
2315     // We don't currently model the OOO reorder buffer, so consider all
2316     // scheduled MOps to be "retired". We do loosely model in-order resource
2317     // latency. If this instruction uses an in-order resource, account for any
2318     // likely stall cycles.
2319     if (SU->isUnbuffered && ReadyCycle > NextCycle)
2320       NextCycle = ReadyCycle;
2321     break;
2322   }
2323   RetiredMOps += IncMOps;
2324 
2325   // Update resource counts and critical resource.
2326   if (SchedModel->hasInstrSchedModel()) {
2327     unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
2328     assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
2329     Rem->RemIssueCount -= DecRemIssue;
2330     if (ZoneCritResIdx) {
2331       // Scale scheduled micro-ops for comparing with the critical resource.
2332       unsigned ScaledMOps =
2333         RetiredMOps * SchedModel->getMicroOpFactor();
2334 
2335       // If scaled micro-ops are now more than the previous critical resource by
2336       // a full cycle, then micro-ops issue becomes critical.
2337       if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
2338           >= (int)SchedModel->getLatencyFactor()) {
2339         ZoneCritResIdx = 0;
2340         LLVM_DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
2341                           << ScaledMOps / SchedModel->getLatencyFactor()
2342                           << "c\n");
2343       }
2344     }
2345     for (TargetSchedModel::ProcResIter
2346            PI = SchedModel->getWriteProcResBegin(SC),
2347            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2348       unsigned RCycle =
2349         countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
2350       if (RCycle > NextCycle)
2351         NextCycle = RCycle;
2352     }
2353     if (SU->hasReservedResource) {
2354       // For reserved resources, record the highest cycle using the resource.
2355       // For top-down scheduling, this is the cycle in which we schedule this
2356       // instruction plus the number of cycles the operations reserves the
2357       // resource. For bottom-up is it simply the instruction's cycle.
2358       for (TargetSchedModel::ProcResIter
2359              PI = SchedModel->getWriteProcResBegin(SC),
2360              PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2361         unsigned PIdx = PI->ProcResourceIdx;
2362         if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
2363           unsigned ReservedUntil, InstanceIdx;
2364           std::tie(ReservedUntil, InstanceIdx) = getNextResourceCycle(PIdx, 0);
2365           if (isTop()) {
2366             ReservedCycles[InstanceIdx] =
2367                 std::max(ReservedUntil, NextCycle + PI->Cycles);
2368           } else
2369             ReservedCycles[InstanceIdx] = NextCycle;
2370         }
2371       }
2372     }
2373   }
2374   // Update ExpectedLatency and DependentLatency.
2375   unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2376   unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2377   if (SU->getDepth() > TopLatency) {
2378     TopLatency = SU->getDepth();
2379     LLVM_DEBUG(dbgs() << "  " << Available.getName() << " TopLatency SU("
2380                       << SU->NodeNum << ") " << TopLatency << "c\n");
2381   }
2382   if (SU->getHeight() > BotLatency) {
2383     BotLatency = SU->getHeight();
2384     LLVM_DEBUG(dbgs() << "  " << Available.getName() << " BotLatency SU("
2385                       << SU->NodeNum << ") " << BotLatency << "c\n");
2386   }
2387   // If we stall for any reason, bump the cycle.
2388   if (NextCycle > CurrCycle)
2389     bumpCycle(NextCycle);
2390   else
2391     // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2392     // resource limited. If a stall occurred, bumpCycle does this.
2393     IsResourceLimited =
2394         checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2395                            getScheduledLatency(), true);
2396 
2397   // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2398   // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2399   // one cycle.  Since we commonly reach the max MOps here, opportunistically
2400   // bump the cycle to avoid uselessly checking everything in the readyQ.
2401   CurrMOps += IncMOps;
2402 
2403   // Bump the cycle count for issue group constraints.
2404   // This must be done after NextCycle has been adjust for all other stalls.
2405   // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set
2406   // currCycle to X.
2407   if ((isTop() &&  SchedModel->mustEndGroup(SU->getInstr())) ||
2408       (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) {
2409     LLVM_DEBUG(dbgs() << "  Bump cycle to " << (isTop() ? "end" : "begin")
2410                       << " group\n");
2411     bumpCycle(++NextCycle);
2412   }
2413 
2414   while (CurrMOps >= SchedModel->getIssueWidth()) {
2415     LLVM_DEBUG(dbgs() << "  *** Max MOps " << CurrMOps << " at cycle "
2416                       << CurrCycle << '\n');
2417     bumpCycle(++NextCycle);
2418   }
2419   LLVM_DEBUG(dumpScheduledState());
2420 }
2421 
2422 /// Release pending ready nodes in to the available queue. This makes them
2423 /// visible to heuristics.
2424 void SchedBoundary::releasePending() {
2425   // If the available queue is empty, it is safe to reset MinReadyCycle.
2426   if (Available.empty())
2427     MinReadyCycle = std::numeric_limits<unsigned>::max();
2428 
2429   // Check to see if any of the pending instructions are ready to issue.  If
2430   // so, add them to the available queue.
2431   for (unsigned I = 0, E = Pending.size(); I < E; ++I) {
2432     SUnit *SU = *(Pending.begin() + I);
2433     unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2434 
2435     if (ReadyCycle < MinReadyCycle)
2436       MinReadyCycle = ReadyCycle;
2437 
2438     if (Available.size() >= ReadyListLimit)
2439       break;
2440 
2441     releaseNode(SU, ReadyCycle, true, I);
2442     if (E != Pending.size()) {
2443       --I;
2444       --E;
2445     }
2446   }
2447   CheckPending = false;
2448 }
2449 
2450 /// Remove SU from the ready set for this boundary.
2451 void SchedBoundary::removeReady(SUnit *SU) {
2452   if (Available.isInQueue(SU))
2453     Available.remove(Available.find(SU));
2454   else {
2455     assert(Pending.isInQueue(SU) && "bad ready count");
2456     Pending.remove(Pending.find(SU));
2457   }
2458 }
2459 
2460 /// If this queue only has one ready candidate, return it. As a side effect,
2461 /// defer any nodes that now hit a hazard, and advance the cycle until at least
2462 /// one node is ready. If multiple instructions are ready, return NULL.
2463 SUnit *SchedBoundary::pickOnlyChoice() {
2464   if (CheckPending)
2465     releasePending();
2466 
2467   // Defer any ready instrs that now have a hazard.
2468   for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2469     if (checkHazard(*I)) {
2470       Pending.push(*I);
2471       I = Available.remove(I);
2472       continue;
2473     }
2474     ++I;
2475   }
2476   for (unsigned i = 0; Available.empty(); ++i) {
2477 //  FIXME: Re-enable assert once PR20057 is resolved.
2478 //    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2479 //           "permanent hazard");
2480     (void)i;
2481     bumpCycle(CurrCycle + 1);
2482     releasePending();
2483   }
2484 
2485   LLVM_DEBUG(Pending.dump());
2486   LLVM_DEBUG(Available.dump());
2487 
2488   if (Available.size() == 1)
2489     return *Available.begin();
2490   return nullptr;
2491 }
2492 
2493 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2494 // This is useful information to dump after bumpNode.
2495 // Note that the Queue contents are more useful before pickNodeFromQueue.
2496 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const {
2497   unsigned ResFactor;
2498   unsigned ResCount;
2499   if (ZoneCritResIdx) {
2500     ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2501     ResCount = getResourceCount(ZoneCritResIdx);
2502   } else {
2503     ResFactor = SchedModel->getMicroOpFactor();
2504     ResCount = RetiredMOps * ResFactor;
2505   }
2506   unsigned LFactor = SchedModel->getLatencyFactor();
2507   dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2508          << "  Retired: " << RetiredMOps;
2509   dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
2510   dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
2511          << ResCount / ResFactor << " "
2512          << SchedModel->getResourceName(ZoneCritResIdx)
2513          << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
2514          << (IsResourceLimited ? "  - Resource" : "  - Latency")
2515          << " limited.\n";
2516 }
2517 #endif
2518 
2519 //===----------------------------------------------------------------------===//
2520 // GenericScheduler - Generic implementation of MachineSchedStrategy.
2521 //===----------------------------------------------------------------------===//
2522 
2523 void GenericSchedulerBase::SchedCandidate::
2524 initResourceDelta(const ScheduleDAGMI *DAG,
2525                   const TargetSchedModel *SchedModel) {
2526   if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2527     return;
2528 
2529   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2530   for (TargetSchedModel::ProcResIter
2531          PI = SchedModel->getWriteProcResBegin(SC),
2532          PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2533     if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2534       ResDelta.CritResources += PI->Cycles;
2535     if (PI->ProcResourceIdx == Policy.DemandResIdx)
2536       ResDelta.DemandedResources += PI->Cycles;
2537   }
2538 }
2539 
2540 /// Compute remaining latency. We need this both to determine whether the
2541 /// overall schedule has become latency-limited and whether the instructions
2542 /// outside this zone are resource or latency limited.
2543 ///
2544 /// The "dependent" latency is updated incrementally during scheduling as the
2545 /// max height/depth of scheduled nodes minus the cycles since it was
2546 /// scheduled:
2547 ///   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2548 ///
2549 /// The "independent" latency is the max ready queue depth:
2550 ///   ILat = max N.depth for N in Available|Pending
2551 ///
2552 /// RemainingLatency is the greater of independent and dependent latency.
2553 ///
2554 /// These computations are expensive, especially in DAGs with many edges, so
2555 /// only do them if necessary.
2556 static unsigned computeRemLatency(SchedBoundary &CurrZone) {
2557   unsigned RemLatency = CurrZone.getDependentLatency();
2558   RemLatency = std::max(RemLatency,
2559                         CurrZone.findMaxLatency(CurrZone.Available.elements()));
2560   RemLatency = std::max(RemLatency,
2561                         CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2562   return RemLatency;
2563 }
2564 
2565 /// Returns true if the current cycle plus remaning latency is greater than
2566 /// the critical path in the scheduling region.
2567 bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy,
2568                                                SchedBoundary &CurrZone,
2569                                                bool ComputeRemLatency,
2570                                                unsigned &RemLatency) const {
2571   // The current cycle is already greater than the critical path, so we are
2572   // already latency limited and don't need to compute the remaining latency.
2573   if (CurrZone.getCurrCycle() > Rem.CriticalPath)
2574     return true;
2575 
2576   // If we haven't scheduled anything yet, then we aren't latency limited.
2577   if (CurrZone.getCurrCycle() == 0)
2578     return false;
2579 
2580   if (ComputeRemLatency)
2581     RemLatency = computeRemLatency(CurrZone);
2582 
2583   return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath;
2584 }
2585 
2586 /// Set the CandPolicy given a scheduling zone given the current resources and
2587 /// latencies inside and outside the zone.
2588 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA,
2589                                      SchedBoundary &CurrZone,
2590                                      SchedBoundary *OtherZone) {
2591   // Apply preemptive heuristics based on the total latency and resources
2592   // inside and outside this zone. Potential stalls should be considered before
2593   // following this policy.
2594 
2595   // Compute the critical resource outside the zone.
2596   unsigned OtherCritIdx = 0;
2597   unsigned OtherCount =
2598     OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
2599 
2600   bool OtherResLimited = false;
2601   unsigned RemLatency = 0;
2602   bool RemLatencyComputed = false;
2603   if (SchedModel->hasInstrSchedModel() && OtherCount != 0) {
2604     RemLatency = computeRemLatency(CurrZone);
2605     RemLatencyComputed = true;
2606     OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(),
2607                                          OtherCount, RemLatency, false);
2608   }
2609 
2610   // Schedule aggressively for latency in PostRA mode. We don't check for
2611   // acyclic latency during PostRA, and highly out-of-order processors will
2612   // skip PostRA scheduling.
2613   if (!OtherResLimited &&
2614       (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed,
2615                                        RemLatency))) {
2616     Policy.ReduceLatency |= true;
2617     LLVM_DEBUG(dbgs() << "  " << CurrZone.Available.getName()
2618                       << " RemainingLatency " << RemLatency << " + "
2619                       << CurrZone.getCurrCycle() << "c > CritPath "
2620                       << Rem.CriticalPath << "\n");
2621   }
2622   // If the same resource is limiting inside and outside the zone, do nothing.
2623   if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
2624     return;
2625 
2626   LLVM_DEBUG(if (CurrZone.isResourceLimited()) {
2627     dbgs() << "  " << CurrZone.Available.getName() << " ResourceLimited: "
2628            << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n";
2629   } if (OtherResLimited) dbgs()
2630                  << "  RemainingLimit: "
2631                  << SchedModel->getResourceName(OtherCritIdx) << "\n";
2632              if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs()
2633              << "  Latency limited both directions.\n");
2634 
2635   if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
2636     Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
2637 
2638   if (OtherResLimited)
2639     Policy.DemandResIdx = OtherCritIdx;
2640 }
2641 
2642 #ifndef NDEBUG
2643 const char *GenericSchedulerBase::getReasonStr(
2644   GenericSchedulerBase::CandReason Reason) {
2645   switch (Reason) {
2646   case NoCand:         return "NOCAND    ";
2647   case Only1:          return "ONLY1     ";
2648   case PhysReg:        return "PHYS-REG  ";
2649   case RegExcess:      return "REG-EXCESS";
2650   case RegCritical:    return "REG-CRIT  ";
2651   case Stall:          return "STALL     ";
2652   case Cluster:        return "CLUSTER   ";
2653   case Weak:           return "WEAK      ";
2654   case RegMax:         return "REG-MAX   ";
2655   case ResourceReduce: return "RES-REDUCE";
2656   case ResourceDemand: return "RES-DEMAND";
2657   case TopDepthReduce: return "TOP-DEPTH ";
2658   case TopPathReduce:  return "TOP-PATH  ";
2659   case BotHeightReduce:return "BOT-HEIGHT";
2660   case BotPathReduce:  return "BOT-PATH  ";
2661   case NextDefUse:     return "DEF-USE   ";
2662   case NodeOrder:      return "ORDER     ";
2663   };
2664   llvm_unreachable("Unknown reason!");
2665 }
2666 
2667 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
2668   PressureChange P;
2669   unsigned ResIdx = 0;
2670   unsigned Latency = 0;
2671   switch (Cand.Reason) {
2672   default:
2673     break;
2674   case RegExcess:
2675     P = Cand.RPDelta.Excess;
2676     break;
2677   case RegCritical:
2678     P = Cand.RPDelta.CriticalMax;
2679     break;
2680   case RegMax:
2681     P = Cand.RPDelta.CurrentMax;
2682     break;
2683   case ResourceReduce:
2684     ResIdx = Cand.Policy.ReduceResIdx;
2685     break;
2686   case ResourceDemand:
2687     ResIdx = Cand.Policy.DemandResIdx;
2688     break;
2689   case TopDepthReduce:
2690     Latency = Cand.SU->getDepth();
2691     break;
2692   case TopPathReduce:
2693     Latency = Cand.SU->getHeight();
2694     break;
2695   case BotHeightReduce:
2696     Latency = Cand.SU->getHeight();
2697     break;
2698   case BotPathReduce:
2699     Latency = Cand.SU->getDepth();
2700     break;
2701   }
2702   dbgs() << "  Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2703   if (P.isValid())
2704     dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2705            << ":" << P.getUnitInc() << " ";
2706   else
2707     dbgs() << "      ";
2708   if (ResIdx)
2709     dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2710   else
2711     dbgs() << "         ";
2712   if (Latency)
2713     dbgs() << " " << Latency << " cycles ";
2714   else
2715     dbgs() << "          ";
2716   dbgs() << '\n';
2717 }
2718 #endif
2719 
2720 namespace llvm {
2721 /// Return true if this heuristic determines order.
2722 bool tryLess(int TryVal, int CandVal,
2723              GenericSchedulerBase::SchedCandidate &TryCand,
2724              GenericSchedulerBase::SchedCandidate &Cand,
2725              GenericSchedulerBase::CandReason Reason) {
2726   if (TryVal < CandVal) {
2727     TryCand.Reason = Reason;
2728     return true;
2729   }
2730   if (TryVal > CandVal) {
2731     if (Cand.Reason > Reason)
2732       Cand.Reason = Reason;
2733     return true;
2734   }
2735   return false;
2736 }
2737 
2738 bool tryGreater(int TryVal, int CandVal,
2739                 GenericSchedulerBase::SchedCandidate &TryCand,
2740                 GenericSchedulerBase::SchedCandidate &Cand,
2741                 GenericSchedulerBase::CandReason Reason) {
2742   if (TryVal > CandVal) {
2743     TryCand.Reason = Reason;
2744     return true;
2745   }
2746   if (TryVal < CandVal) {
2747     if (Cand.Reason > Reason)
2748       Cand.Reason = Reason;
2749     return true;
2750   }
2751   return false;
2752 }
2753 
2754 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
2755                 GenericSchedulerBase::SchedCandidate &Cand,
2756                 SchedBoundary &Zone) {
2757   if (Zone.isTop()) {
2758     // Prefer the candidate with the lesser depth, but only if one of them has
2759     // depth greater than the total latency scheduled so far, otherwise either
2760     // of them could be scheduled now with no stall.
2761     if (std::max(TryCand.SU->getDepth(), Cand.SU->getDepth()) >
2762         Zone.getScheduledLatency()) {
2763       if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2764                   TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
2765         return true;
2766     }
2767     if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2768                    TryCand, Cand, GenericSchedulerBase::TopPathReduce))
2769       return true;
2770   } else {
2771     // Prefer the candidate with the lesser height, but only if one of them has
2772     // height greater than the total latency scheduled so far, otherwise either
2773     // of them could be scheduled now with no stall.
2774     if (std::max(TryCand.SU->getHeight(), Cand.SU->getHeight()) >
2775         Zone.getScheduledLatency()) {
2776       if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2777                   TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
2778         return true;
2779     }
2780     if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2781                    TryCand, Cand, GenericSchedulerBase::BotPathReduce))
2782       return true;
2783   }
2784   return false;
2785 }
2786 } // end namespace llvm
2787 
2788 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) {
2789   LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2790                     << GenericSchedulerBase::getReasonStr(Reason) << '\n');
2791 }
2792 
2793 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) {
2794   tracePick(Cand.Reason, Cand.AtTop);
2795 }
2796 
2797 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
2798   assert(dag->hasVRegLiveness() &&
2799          "(PreRA)GenericScheduler needs vreg liveness");
2800   DAG = static_cast<ScheduleDAGMILive*>(dag);
2801   SchedModel = DAG->getSchedModel();
2802   TRI = DAG->TRI;
2803 
2804   if (RegionPolicy.ComputeDFSResult)
2805     DAG->computeDFSResult();
2806 
2807   Rem.init(DAG, SchedModel);
2808   Top.init(DAG, SchedModel, &Rem);
2809   Bot.init(DAG, SchedModel, &Rem);
2810 
2811   // Initialize resource counts.
2812 
2813   // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
2814   // are disabled, then these HazardRecs will be disabled.
2815   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2816   if (!Top.HazardRec) {
2817     Top.HazardRec =
2818         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2819             Itin, DAG);
2820   }
2821   if (!Bot.HazardRec) {
2822     Bot.HazardRec =
2823         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2824             Itin, DAG);
2825   }
2826   TopCand.SU = nullptr;
2827   BotCand.SU = nullptr;
2828 }
2829 
2830 /// Initialize the per-region scheduling policy.
2831 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
2832                                   MachineBasicBlock::iterator End,
2833                                   unsigned NumRegionInstrs) {
2834   const MachineFunction &MF = *Begin->getMF();
2835   const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
2836 
2837   // Avoid setting up the register pressure tracker for small regions to save
2838   // compile time. As a rough heuristic, only track pressure when the number of
2839   // schedulable instructions exceeds half the integer register file.
2840   RegionPolicy.ShouldTrackPressure = true;
2841   for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
2842     MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
2843     if (TLI->isTypeLegal(LegalIntVT)) {
2844       unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
2845         TLI->getRegClassFor(LegalIntVT));
2846       RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
2847     }
2848   }
2849 
2850   // For generic targets, we default to bottom-up, because it's simpler and more
2851   // compile-time optimizations have been implemented in that direction.
2852   RegionPolicy.OnlyBottomUp = true;
2853 
2854   // Allow the subtarget to override default policy.
2855   MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs);
2856 
2857   // After subtarget overrides, apply command line options.
2858   if (!EnableRegPressure) {
2859     RegionPolicy.ShouldTrackPressure = false;
2860     RegionPolicy.ShouldTrackLaneMasks = false;
2861   }
2862 
2863   // Check -misched-topdown/bottomup can force or unforce scheduling direction.
2864   // e.g. -misched-bottomup=false allows scheduling in both directions.
2865   assert((!ForceTopDown || !ForceBottomUp) &&
2866          "-misched-topdown incompatible with -misched-bottomup");
2867   if (ForceBottomUp.getNumOccurrences() > 0) {
2868     RegionPolicy.OnlyBottomUp = ForceBottomUp;
2869     if (RegionPolicy.OnlyBottomUp)
2870       RegionPolicy.OnlyTopDown = false;
2871   }
2872   if (ForceTopDown.getNumOccurrences() > 0) {
2873     RegionPolicy.OnlyTopDown = ForceTopDown;
2874     if (RegionPolicy.OnlyTopDown)
2875       RegionPolicy.OnlyBottomUp = false;
2876   }
2877 }
2878 
2879 void GenericScheduler::dumpPolicy() const {
2880   // Cannot completely remove virtual function even in release mode.
2881 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2882   dbgs() << "GenericScheduler RegionPolicy: "
2883          << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
2884          << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
2885          << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
2886          << "\n";
2887 #endif
2888 }
2889 
2890 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
2891 /// critical path by more cycles than it takes to drain the instruction buffer.
2892 /// We estimate an upper bounds on in-flight instructions as:
2893 ///
2894 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
2895 /// InFlightIterations = AcyclicPath / CyclesPerIteration
2896 /// InFlightResources = InFlightIterations * LoopResources
2897 ///
2898 /// TODO: Check execution resources in addition to IssueCount.
2899 void GenericScheduler::checkAcyclicLatency() {
2900   if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
2901     return;
2902 
2903   // Scaled number of cycles per loop iteration.
2904   unsigned IterCount =
2905     std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
2906              Rem.RemIssueCount);
2907   // Scaled acyclic critical path.
2908   unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
2909   // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
2910   unsigned InFlightCount =
2911     (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
2912   unsigned BufferLimit =
2913     SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
2914 
2915   Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
2916 
2917   LLVM_DEBUG(
2918       dbgs() << "IssueCycles="
2919              << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
2920              << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
2921              << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount
2922              << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
2923              << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
2924       if (Rem.IsAcyclicLatencyLimited) dbgs() << "  ACYCLIC LATENCY LIMIT\n");
2925 }
2926 
2927 void GenericScheduler::registerRoots() {
2928   Rem.CriticalPath = DAG->ExitSU.getDepth();
2929 
2930   // Some roots may not feed into ExitSU. Check all of them in case.
2931   for (const SUnit *SU : Bot.Available) {
2932     if (SU->getDepth() > Rem.CriticalPath)
2933       Rem.CriticalPath = SU->getDepth();
2934   }
2935   LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
2936   if (DumpCriticalPathLength) {
2937     errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
2938   }
2939 
2940   if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) {
2941     Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
2942     checkAcyclicLatency();
2943   }
2944 }
2945 
2946 namespace llvm {
2947 bool tryPressure(const PressureChange &TryP,
2948                  const PressureChange &CandP,
2949                  GenericSchedulerBase::SchedCandidate &TryCand,
2950                  GenericSchedulerBase::SchedCandidate &Cand,
2951                  GenericSchedulerBase::CandReason Reason,
2952                  const TargetRegisterInfo *TRI,
2953                  const MachineFunction &MF) {
2954   // If one candidate decreases and the other increases, go with it.
2955   // Invalid candidates have UnitInc==0.
2956   if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
2957                  Reason)) {
2958     return true;
2959   }
2960   // Do not compare the magnitude of pressure changes between top and bottom
2961   // boundary.
2962   if (Cand.AtTop != TryCand.AtTop)
2963     return false;
2964 
2965   // If both candidates affect the same set in the same boundary, go with the
2966   // smallest increase.
2967   unsigned TryPSet = TryP.getPSetOrMax();
2968   unsigned CandPSet = CandP.getPSetOrMax();
2969   if (TryPSet == CandPSet) {
2970     return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
2971                    Reason);
2972   }
2973 
2974   int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
2975                                  std::numeric_limits<int>::max();
2976 
2977   int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
2978                                    std::numeric_limits<int>::max();
2979 
2980   // If the candidates are decreasing pressure, reverse priority.
2981   if (TryP.getUnitInc() < 0)
2982     std::swap(TryRank, CandRank);
2983   return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
2984 }
2985 
2986 unsigned getWeakLeft(const SUnit *SU, bool isTop) {
2987   return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
2988 }
2989 
2990 /// Minimize physical register live ranges. Regalloc wants them adjacent to
2991 /// their physreg def/use.
2992 ///
2993 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
2994 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
2995 /// with the operation that produces or consumes the physreg. We'll do this when
2996 /// regalloc has support for parallel copies.
2997 int biasPhysReg(const SUnit *SU, bool isTop) {
2998   const MachineInstr *MI = SU->getInstr();
2999 
3000   if (MI->isCopy()) {
3001     unsigned ScheduledOper = isTop ? 1 : 0;
3002     unsigned UnscheduledOper = isTop ? 0 : 1;
3003     // If we have already scheduled the physreg produce/consumer, immediately
3004     // schedule the copy.
3005     if (Register::isPhysicalRegister(MI->getOperand(ScheduledOper).getReg()))
3006       return 1;
3007     // If the physreg is at the boundary, defer it. Otherwise schedule it
3008     // immediately to free the dependent. We can hoist the copy later.
3009     bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
3010     if (Register::isPhysicalRegister(MI->getOperand(UnscheduledOper).getReg()))
3011       return AtBoundary ? -1 : 1;
3012   }
3013 
3014   if (MI->isMoveImmediate()) {
3015     // If we have a move immediate and all successors have been assigned, bias
3016     // towards scheduling this later. Make sure all register defs are to
3017     // physical registers.
3018     bool DoBias = true;
3019     for (const MachineOperand &Op : MI->defs()) {
3020       if (Op.isReg() && !Register::isPhysicalRegister(Op.getReg())) {
3021         DoBias = false;
3022         break;
3023       }
3024     }
3025 
3026     if (DoBias)
3027       return isTop ? -1 : 1;
3028   }
3029 
3030   return 0;
3031 }
3032 } // end namespace llvm
3033 
3034 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU,
3035                                      bool AtTop,
3036                                      const RegPressureTracker &RPTracker,
3037                                      RegPressureTracker &TempTracker) {
3038   Cand.SU = SU;
3039   Cand.AtTop = AtTop;
3040   if (DAG->isTrackingPressure()) {
3041     if (AtTop) {
3042       TempTracker.getMaxDownwardPressureDelta(
3043         Cand.SU->getInstr(),
3044         Cand.RPDelta,
3045         DAG->getRegionCriticalPSets(),
3046         DAG->getRegPressure().MaxSetPressure);
3047     } else {
3048       if (VerifyScheduling) {
3049         TempTracker.getMaxUpwardPressureDelta(
3050           Cand.SU->getInstr(),
3051           &DAG->getPressureDiff(Cand.SU),
3052           Cand.RPDelta,
3053           DAG->getRegionCriticalPSets(),
3054           DAG->getRegPressure().MaxSetPressure);
3055       } else {
3056         RPTracker.getUpwardPressureDelta(
3057           Cand.SU->getInstr(),
3058           DAG->getPressureDiff(Cand.SU),
3059           Cand.RPDelta,
3060           DAG->getRegionCriticalPSets(),
3061           DAG->getRegPressure().MaxSetPressure);
3062       }
3063     }
3064   }
3065   LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs()
3066              << "  Try  SU(" << Cand.SU->NodeNum << ") "
3067              << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":"
3068              << Cand.RPDelta.Excess.getUnitInc() << "\n");
3069 }
3070 
3071 /// Apply a set of heuristics to a new candidate. Heuristics are currently
3072 /// hierarchical. This may be more efficient than a graduated cost model because
3073 /// we don't need to evaluate all aspects of the model for each node in the
3074 /// queue. But it's really done to make the heuristics easier to debug and
3075 /// statistically analyze.
3076 ///
3077 /// \param Cand provides the policy and current best candidate.
3078 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3079 /// \param Zone describes the scheduled zone that we are extending, or nullptr
3080 //              if Cand is from a different zone than TryCand.
3081 void GenericScheduler::tryCandidate(SchedCandidate &Cand,
3082                                     SchedCandidate &TryCand,
3083                                     SchedBoundary *Zone) const {
3084   // Initialize the candidate if needed.
3085   if (!Cand.isValid()) {
3086     TryCand.Reason = NodeOrder;
3087     return;
3088   }
3089 
3090   // Bias PhysReg Defs and copies to their uses and defined respectively.
3091   if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop),
3092                  biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg))
3093     return;
3094 
3095   // Avoid exceeding the target's limit.
3096   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
3097                                                Cand.RPDelta.Excess,
3098                                                TryCand, Cand, RegExcess, TRI,
3099                                                DAG->MF))
3100     return;
3101 
3102   // Avoid increasing the max critical pressure in the scheduled region.
3103   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
3104                                                Cand.RPDelta.CriticalMax,
3105                                                TryCand, Cand, RegCritical, TRI,
3106                                                DAG->MF))
3107     return;
3108 
3109   // We only compare a subset of features when comparing nodes between
3110   // Top and Bottom boundary. Some properties are simply incomparable, in many
3111   // other instances we should only override the other boundary if something
3112   // is a clear good pick on one boundary. Skip heuristics that are more
3113   // "tie-breaking" in nature.
3114   bool SameBoundary = Zone != nullptr;
3115   if (SameBoundary) {
3116     // For loops that are acyclic path limited, aggressively schedule for
3117     // latency. Within an single cycle, whenever CurrMOps > 0, allow normal
3118     // heuristics to take precedence.
3119     if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() &&
3120         tryLatency(TryCand, Cand, *Zone))
3121       return;
3122 
3123     // Prioritize instructions that read unbuffered resources by stall cycles.
3124     if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
3125                 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3126       return;
3127   }
3128 
3129   // Keep clustered nodes together to encourage downstream peephole
3130   // optimizations which may reduce resource requirements.
3131   //
3132   // This is a best effort to set things up for a post-RA pass. Optimizations
3133   // like generating loads of multiple registers should ideally be done within
3134   // the scheduler pass by combining the loads during DAG postprocessing.
3135   const SUnit *CandNextClusterSU =
3136     Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3137   const SUnit *TryCandNextClusterSU =
3138     TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3139   if (tryGreater(TryCand.SU == TryCandNextClusterSU,
3140                  Cand.SU == CandNextClusterSU,
3141                  TryCand, Cand, Cluster))
3142     return;
3143 
3144   if (SameBoundary) {
3145     // Weak edges are for clustering and other constraints.
3146     if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
3147                 getWeakLeft(Cand.SU, Cand.AtTop),
3148                 TryCand, Cand, Weak))
3149       return;
3150   }
3151 
3152   // Avoid increasing the max pressure of the entire region.
3153   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
3154                                                Cand.RPDelta.CurrentMax,
3155                                                TryCand, Cand, RegMax, TRI,
3156                                                DAG->MF))
3157     return;
3158 
3159   if (SameBoundary) {
3160     // Avoid critical resource consumption and balance the schedule.
3161     TryCand.initResourceDelta(DAG, SchedModel);
3162     if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3163                 TryCand, Cand, ResourceReduce))
3164       return;
3165     if (tryGreater(TryCand.ResDelta.DemandedResources,
3166                    Cand.ResDelta.DemandedResources,
3167                    TryCand, Cand, ResourceDemand))
3168       return;
3169 
3170     // Avoid serializing long latency dependence chains.
3171     // For acyclic path limited loops, latency was already checked above.
3172     if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency &&
3173         !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone))
3174       return;
3175 
3176     // Fall through to original instruction order.
3177     if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
3178         || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
3179       TryCand.Reason = NodeOrder;
3180     }
3181   }
3182 }
3183 
3184 /// Pick the best candidate from the queue.
3185 ///
3186 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
3187 /// DAG building. To adjust for the current scheduling location we need to
3188 /// maintain the number of vreg uses remaining to be top-scheduled.
3189 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
3190                                          const CandPolicy &ZonePolicy,
3191                                          const RegPressureTracker &RPTracker,
3192                                          SchedCandidate &Cand) {
3193   // getMaxPressureDelta temporarily modifies the tracker.
3194   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
3195 
3196   ReadyQueue &Q = Zone.Available;
3197   for (SUnit *SU : Q) {
3198 
3199     SchedCandidate TryCand(ZonePolicy);
3200     initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker);
3201     // Pass SchedBoundary only when comparing nodes from the same boundary.
3202     SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
3203     tryCandidate(Cand, TryCand, ZoneArg);
3204     if (TryCand.Reason != NoCand) {
3205       // Initialize resource delta if needed in case future heuristics query it.
3206       if (TryCand.ResDelta == SchedResourceDelta())
3207         TryCand.initResourceDelta(DAG, SchedModel);
3208       Cand.setBest(TryCand);
3209       LLVM_DEBUG(traceCandidate(Cand));
3210     }
3211   }
3212 }
3213 
3214 /// Pick the best candidate node from either the top or bottom queue.
3215 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
3216   // Schedule as far as possible in the direction of no choice. This is most
3217   // efficient, but also provides the best heuristics for CriticalPSets.
3218   if (SUnit *SU = Bot.pickOnlyChoice()) {
3219     IsTopNode = false;
3220     tracePick(Only1, false);
3221     return SU;
3222   }
3223   if (SUnit *SU = Top.pickOnlyChoice()) {
3224     IsTopNode = true;
3225     tracePick(Only1, true);
3226     return SU;
3227   }
3228   // Set the bottom-up policy based on the state of the current bottom zone and
3229   // the instructions outside the zone, including the top zone.
3230   CandPolicy BotPolicy;
3231   setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
3232   // Set the top-down policy based on the state of the current top zone and
3233   // the instructions outside the zone, including the bottom zone.
3234   CandPolicy TopPolicy;
3235   setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
3236 
3237   // See if BotCand is still valid (because we previously scheduled from Top).
3238   LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
3239   if (!BotCand.isValid() || BotCand.SU->isScheduled ||
3240       BotCand.Policy != BotPolicy) {
3241     BotCand.reset(CandPolicy());
3242     pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
3243     assert(BotCand.Reason != NoCand && "failed to find the first candidate");
3244   } else {
3245     LLVM_DEBUG(traceCandidate(BotCand));
3246 #ifndef NDEBUG
3247     if (VerifyScheduling) {
3248       SchedCandidate TCand;
3249       TCand.reset(CandPolicy());
3250       pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
3251       assert(TCand.SU == BotCand.SU &&
3252              "Last pick result should correspond to re-picking right now");
3253     }
3254 #endif
3255   }
3256 
3257   // Check if the top Q has a better candidate.
3258   LLVM_DEBUG(dbgs() << "Picking from Top:\n");
3259   if (!TopCand.isValid() || TopCand.SU->isScheduled ||
3260       TopCand.Policy != TopPolicy) {
3261     TopCand.reset(CandPolicy());
3262     pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
3263     assert(TopCand.Reason != NoCand && "failed to find the first candidate");
3264   } else {
3265     LLVM_DEBUG(traceCandidate(TopCand));
3266 #ifndef NDEBUG
3267     if (VerifyScheduling) {
3268       SchedCandidate TCand;
3269       TCand.reset(CandPolicy());
3270       pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
3271       assert(TCand.SU == TopCand.SU &&
3272            "Last pick result should correspond to re-picking right now");
3273     }
3274 #endif
3275   }
3276 
3277   // Pick best from BotCand and TopCand.
3278   assert(BotCand.isValid());
3279   assert(TopCand.isValid());
3280   SchedCandidate Cand = BotCand;
3281   TopCand.Reason = NoCand;
3282   tryCandidate(Cand, TopCand, nullptr);
3283   if (TopCand.Reason != NoCand) {
3284     Cand.setBest(TopCand);
3285     LLVM_DEBUG(traceCandidate(Cand));
3286   }
3287 
3288   IsTopNode = Cand.AtTop;
3289   tracePick(Cand);
3290   return Cand.SU;
3291 }
3292 
3293 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
3294 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
3295   if (DAG->top() == DAG->bottom()) {
3296     assert(Top.Available.empty() && Top.Pending.empty() &&
3297            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
3298     return nullptr;
3299   }
3300   SUnit *SU;
3301   do {
3302     if (RegionPolicy.OnlyTopDown) {
3303       SU = Top.pickOnlyChoice();
3304       if (!SU) {
3305         CandPolicy NoPolicy;
3306         TopCand.reset(NoPolicy);
3307         pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
3308         assert(TopCand.Reason != NoCand && "failed to find a candidate");
3309         tracePick(TopCand);
3310         SU = TopCand.SU;
3311       }
3312       IsTopNode = true;
3313     } else if (RegionPolicy.OnlyBottomUp) {
3314       SU = Bot.pickOnlyChoice();
3315       if (!SU) {
3316         CandPolicy NoPolicy;
3317         BotCand.reset(NoPolicy);
3318         pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
3319         assert(BotCand.Reason != NoCand && "failed to find a candidate");
3320         tracePick(BotCand);
3321         SU = BotCand.SU;
3322       }
3323       IsTopNode = false;
3324     } else {
3325       SU = pickNodeBidirectional(IsTopNode);
3326     }
3327   } while (SU->isScheduled);
3328 
3329   if (SU->isTopReady())
3330     Top.removeReady(SU);
3331   if (SU->isBottomReady())
3332     Bot.removeReady(SU);
3333 
3334   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3335                     << *SU->getInstr());
3336   return SU;
3337 }
3338 
3339 void GenericScheduler::reschedulePhysReg(SUnit *SU, bool isTop) {
3340   MachineBasicBlock::iterator InsertPos = SU->getInstr();
3341   if (!isTop)
3342     ++InsertPos;
3343   SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
3344 
3345   // Find already scheduled copies with a single physreg dependence and move
3346   // them just above the scheduled instruction.
3347   for (SDep &Dep : Deps) {
3348     if (Dep.getKind() != SDep::Data ||
3349         !Register::isPhysicalRegister(Dep.getReg()))
3350       continue;
3351     SUnit *DepSU = Dep.getSUnit();
3352     if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
3353       continue;
3354     MachineInstr *Copy = DepSU->getInstr();
3355     if (!Copy->isCopy() && !Copy->isMoveImmediate())
3356       continue;
3357     LLVM_DEBUG(dbgs() << "  Rescheduling physreg copy ";
3358                DAG->dumpNode(*Dep.getSUnit()));
3359     DAG->moveInstruction(Copy, InsertPos);
3360   }
3361 }
3362 
3363 /// Update the scheduler's state after scheduling a node. This is the same node
3364 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
3365 /// update it's state based on the current cycle before MachineSchedStrategy
3366 /// does.
3367 ///
3368 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
3369 /// them here. See comments in biasPhysReg.
3370 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3371   if (IsTopNode) {
3372     SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3373     Top.bumpNode(SU);
3374     if (SU->hasPhysRegUses)
3375       reschedulePhysReg(SU, true);
3376   } else {
3377     SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
3378     Bot.bumpNode(SU);
3379     if (SU->hasPhysRegDefs)
3380       reschedulePhysReg(SU, false);
3381   }
3382 }
3383 
3384 /// Create the standard converging machine scheduler. This will be used as the
3385 /// default scheduler if the target does not set a default.
3386 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) {
3387   ScheduleDAGMILive *DAG =
3388       new ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C));
3389   // Register DAG post-processors.
3390   //
3391   // FIXME: extend the mutation API to allow earlier mutations to instantiate
3392   // data and pass it to later mutations. Have a single mutation that gathers
3393   // the interesting nodes in one pass.
3394   DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI));
3395   return DAG;
3396 }
3397 
3398 static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) {
3399   return createGenericSchedLive(C);
3400 }
3401 
3402 static MachineSchedRegistry
3403 GenericSchedRegistry("converge", "Standard converging scheduler.",
3404                      createConveringSched);
3405 
3406 //===----------------------------------------------------------------------===//
3407 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
3408 //===----------------------------------------------------------------------===//
3409 
3410 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
3411   DAG = Dag;
3412   SchedModel = DAG->getSchedModel();
3413   TRI = DAG->TRI;
3414 
3415   Rem.init(DAG, SchedModel);
3416   Top.init(DAG, SchedModel, &Rem);
3417   BotRoots.clear();
3418 
3419   // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
3420   // or are disabled, then these HazardRecs will be disabled.
3421   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3422   if (!Top.HazardRec) {
3423     Top.HazardRec =
3424         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3425             Itin, DAG);
3426   }
3427 }
3428 
3429 void PostGenericScheduler::registerRoots() {
3430   Rem.CriticalPath = DAG->ExitSU.getDepth();
3431 
3432   // Some roots may not feed into ExitSU. Check all of them in case.
3433   for (const SUnit *SU : BotRoots) {
3434     if (SU->getDepth() > Rem.CriticalPath)
3435       Rem.CriticalPath = SU->getDepth();
3436   }
3437   LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
3438   if (DumpCriticalPathLength) {
3439     errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
3440   }
3441 }
3442 
3443 /// Apply a set of heuristics to a new candidate for PostRA scheduling.
3444 ///
3445 /// \param Cand provides the policy and current best candidate.
3446 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3447 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
3448                                         SchedCandidate &TryCand) {
3449   // Initialize the candidate if needed.
3450   if (!Cand.isValid()) {
3451     TryCand.Reason = NodeOrder;
3452     return;
3453   }
3454 
3455   // Prioritize instructions that read unbuffered resources by stall cycles.
3456   if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
3457               Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3458     return;
3459 
3460   // Keep clustered nodes together.
3461   if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(),
3462                  Cand.SU == DAG->getNextClusterSucc(),
3463                  TryCand, Cand, Cluster))
3464     return;
3465 
3466   // Avoid critical resource consumption and balance the schedule.
3467   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3468               TryCand, Cand, ResourceReduce))
3469     return;
3470   if (tryGreater(TryCand.ResDelta.DemandedResources,
3471                  Cand.ResDelta.DemandedResources,
3472                  TryCand, Cand, ResourceDemand))
3473     return;
3474 
3475   // Avoid serializing long latency dependence chains.
3476   if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
3477     return;
3478   }
3479 
3480   // Fall through to original instruction order.
3481   if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
3482     TryCand.Reason = NodeOrder;
3483 }
3484 
3485 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
3486   ReadyQueue &Q = Top.Available;
3487   for (SUnit *SU : Q) {
3488     SchedCandidate TryCand(Cand.Policy);
3489     TryCand.SU = SU;
3490     TryCand.AtTop = true;
3491     TryCand.initResourceDelta(DAG, SchedModel);
3492     tryCandidate(Cand, TryCand);
3493     if (TryCand.Reason != NoCand) {
3494       Cand.setBest(TryCand);
3495       LLVM_DEBUG(traceCandidate(Cand));
3496     }
3497   }
3498 }
3499 
3500 /// Pick the next node to schedule.
3501 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
3502   if (DAG->top() == DAG->bottom()) {
3503     assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
3504     return nullptr;
3505   }
3506   SUnit *SU;
3507   do {
3508     SU = Top.pickOnlyChoice();
3509     if (SU) {
3510       tracePick(Only1, true);
3511     } else {
3512       CandPolicy NoPolicy;
3513       SchedCandidate TopCand(NoPolicy);
3514       // Set the top-down policy based on the state of the current top zone and
3515       // the instructions outside the zone, including the bottom zone.
3516       setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
3517       pickNodeFromQueue(TopCand);
3518       assert(TopCand.Reason != NoCand && "failed to find a candidate");
3519       tracePick(TopCand);
3520       SU = TopCand.SU;
3521     }
3522   } while (SU->isScheduled);
3523 
3524   IsTopNode = true;
3525   Top.removeReady(SU);
3526 
3527   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3528                     << *SU->getInstr());
3529   return SU;
3530 }
3531 
3532 /// Called after ScheduleDAGMI has scheduled an instruction and updated
3533 /// scheduled/remaining flags in the DAG nodes.
3534 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3535   SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3536   Top.bumpNode(SU);
3537 }
3538 
3539 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) {
3540   return new ScheduleDAGMI(C, std::make_unique<PostGenericScheduler>(C),
3541                            /*RemoveKillFlags=*/true);
3542 }
3543 
3544 //===----------------------------------------------------------------------===//
3545 // ILP Scheduler. Currently for experimental analysis of heuristics.
3546 //===----------------------------------------------------------------------===//
3547 
3548 namespace {
3549 
3550 /// Order nodes by the ILP metric.
3551 struct ILPOrder {
3552   const SchedDFSResult *DFSResult = nullptr;
3553   const BitVector *ScheduledTrees = nullptr;
3554   bool MaximizeILP;
3555 
3556   ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {}
3557 
3558   /// Apply a less-than relation on node priority.
3559   ///
3560   /// (Return true if A comes after B in the Q.)
3561   bool operator()(const SUnit *A, const SUnit *B) const {
3562     unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3563     unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3564     if (SchedTreeA != SchedTreeB) {
3565       // Unscheduled trees have lower priority.
3566       if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3567         return ScheduledTrees->test(SchedTreeB);
3568 
3569       // Trees with shallower connections have have lower priority.
3570       if (DFSResult->getSubtreeLevel(SchedTreeA)
3571           != DFSResult->getSubtreeLevel(SchedTreeB)) {
3572         return DFSResult->getSubtreeLevel(SchedTreeA)
3573           < DFSResult->getSubtreeLevel(SchedTreeB);
3574       }
3575     }
3576     if (MaximizeILP)
3577       return DFSResult->getILP(A) < DFSResult->getILP(B);
3578     else
3579       return DFSResult->getILP(A) > DFSResult->getILP(B);
3580   }
3581 };
3582 
3583 /// Schedule based on the ILP metric.
3584 class ILPScheduler : public MachineSchedStrategy {
3585   ScheduleDAGMILive *DAG = nullptr;
3586   ILPOrder Cmp;
3587 
3588   std::vector<SUnit*> ReadyQ;
3589 
3590 public:
3591   ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {}
3592 
3593   void initialize(ScheduleDAGMI *dag) override {
3594     assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
3595     DAG = static_cast<ScheduleDAGMILive*>(dag);
3596     DAG->computeDFSResult();
3597     Cmp.DFSResult = DAG->getDFSResult();
3598     Cmp.ScheduledTrees = &DAG->getScheduledTrees();
3599     ReadyQ.clear();
3600   }
3601 
3602   void registerRoots() override {
3603     // Restore the heap in ReadyQ with the updated DFS results.
3604     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3605   }
3606 
3607   /// Implement MachineSchedStrategy interface.
3608   /// -----------------------------------------
3609 
3610   /// Callback to select the highest priority node from the ready Q.
3611   SUnit *pickNode(bool &IsTopNode) override {
3612     if (ReadyQ.empty()) return nullptr;
3613     std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3614     SUnit *SU = ReadyQ.back();
3615     ReadyQ.pop_back();
3616     IsTopNode = false;
3617     LLVM_DEBUG(dbgs() << "Pick node "
3618                       << "SU(" << SU->NodeNum << ") "
3619                       << " ILP: " << DAG->getDFSResult()->getILP(SU)
3620                       << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU)
3621                       << " @"
3622                       << DAG->getDFSResult()->getSubtreeLevel(
3623                              DAG->getDFSResult()->getSubtreeID(SU))
3624                       << '\n'
3625                       << "Scheduling " << *SU->getInstr());
3626     return SU;
3627   }
3628 
3629   /// Scheduler callback to notify that a new subtree is scheduled.
3630   void scheduleTree(unsigned SubtreeID) override {
3631     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3632   }
3633 
3634   /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
3635   /// DFSResults, and resort the priority Q.
3636   void schedNode(SUnit *SU, bool IsTopNode) override {
3637     assert(!IsTopNode && "SchedDFSResult needs bottom-up");
3638   }
3639 
3640   void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
3641 
3642   void releaseBottomNode(SUnit *SU) override {
3643     ReadyQ.push_back(SU);
3644     std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3645   }
3646 };
3647 
3648 } // end anonymous namespace
3649 
3650 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
3651   return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(true));
3652 }
3653 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
3654   return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(false));
3655 }
3656 
3657 static MachineSchedRegistry ILPMaxRegistry(
3658   "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
3659 static MachineSchedRegistry ILPMinRegistry(
3660   "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
3661 
3662 //===----------------------------------------------------------------------===//
3663 // Machine Instruction Shuffler for Correctness Testing
3664 //===----------------------------------------------------------------------===//
3665 
3666 #ifndef NDEBUG
3667 namespace {
3668 
3669 /// Apply a less-than relation on the node order, which corresponds to the
3670 /// instruction order prior to scheduling. IsReverse implements greater-than.
3671 template<bool IsReverse>
3672 struct SUnitOrder {
3673   bool operator()(SUnit *A, SUnit *B) const {
3674     if (IsReverse)
3675       return A->NodeNum > B->NodeNum;
3676     else
3677       return A->NodeNum < B->NodeNum;
3678   }
3679 };
3680 
3681 /// Reorder instructions as much as possible.
3682 class InstructionShuffler : public MachineSchedStrategy {
3683   bool IsAlternating;
3684   bool IsTopDown;
3685 
3686   // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
3687   // gives nodes with a higher number higher priority causing the latest
3688   // instructions to be scheduled first.
3689   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>>
3690     TopQ;
3691 
3692   // When scheduling bottom-up, use greater-than as the queue priority.
3693   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>>
3694     BottomQ;
3695 
3696 public:
3697   InstructionShuffler(bool alternate, bool topdown)
3698     : IsAlternating(alternate), IsTopDown(topdown) {}
3699 
3700   void initialize(ScheduleDAGMI*) override {
3701     TopQ.clear();
3702     BottomQ.clear();
3703   }
3704 
3705   /// Implement MachineSchedStrategy interface.
3706   /// -----------------------------------------
3707 
3708   SUnit *pickNode(bool &IsTopNode) override {
3709     SUnit *SU;
3710     if (IsTopDown) {
3711       do {
3712         if (TopQ.empty()) return nullptr;
3713         SU = TopQ.top();
3714         TopQ.pop();
3715       } while (SU->isScheduled);
3716       IsTopNode = true;
3717     } else {
3718       do {
3719         if (BottomQ.empty()) return nullptr;
3720         SU = BottomQ.top();
3721         BottomQ.pop();
3722       } while (SU->isScheduled);
3723       IsTopNode = false;
3724     }
3725     if (IsAlternating)
3726       IsTopDown = !IsTopDown;
3727     return SU;
3728   }
3729 
3730   void schedNode(SUnit *SU, bool IsTopNode) override {}
3731 
3732   void releaseTopNode(SUnit *SU) override {
3733     TopQ.push(SU);
3734   }
3735   void releaseBottomNode(SUnit *SU) override {
3736     BottomQ.push(SU);
3737   }
3738 };
3739 
3740 } // end anonymous namespace
3741 
3742 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
3743   bool Alternate = !ForceTopDown && !ForceBottomUp;
3744   bool TopDown = !ForceBottomUp;
3745   assert((TopDown || !ForceTopDown) &&
3746          "-misched-topdown incompatible with -misched-bottomup");
3747   return new ScheduleDAGMILive(
3748       C, std::make_unique<InstructionShuffler>(Alternate, TopDown));
3749 }
3750 
3751 static MachineSchedRegistry ShufflerRegistry(
3752   "shuffle", "Shuffle machine instructions alternating directions",
3753   createInstructionShuffler);
3754 #endif // !NDEBUG
3755 
3756 //===----------------------------------------------------------------------===//
3757 // GraphWriter support for ScheduleDAGMILive.
3758 //===----------------------------------------------------------------------===//
3759 
3760 #ifndef NDEBUG
3761 namespace llvm {
3762 
3763 template<> struct GraphTraits<
3764   ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
3765 
3766 template<>
3767 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
3768   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
3769 
3770   static std::string getGraphName(const ScheduleDAG *G) {
3771     return std::string(G->MF.getName());
3772   }
3773 
3774   static bool renderGraphFromBottomUp() {
3775     return true;
3776   }
3777 
3778   static bool isNodeHidden(const SUnit *Node) {
3779     if (ViewMISchedCutoff == 0)
3780       return false;
3781     return (Node->Preds.size() > ViewMISchedCutoff
3782          || Node->Succs.size() > ViewMISchedCutoff);
3783   }
3784 
3785   /// If you want to override the dot attributes printed for a particular
3786   /// edge, override this method.
3787   static std::string getEdgeAttributes(const SUnit *Node,
3788                                        SUnitIterator EI,
3789                                        const ScheduleDAG *Graph) {
3790     if (EI.isArtificialDep())
3791       return "color=cyan,style=dashed";
3792     if (EI.isCtrlDep())
3793       return "color=blue,style=dashed";
3794     return "";
3795   }
3796 
3797   static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
3798     std::string Str;
3799     raw_string_ostream SS(Str);
3800     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3801     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3802       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3803     SS << "SU:" << SU->NodeNum;
3804     if (DFS)
3805       SS << " I:" << DFS->getNumInstrs(SU);
3806     return SS.str();
3807   }
3808 
3809   static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
3810     return G->getGraphNodeLabel(SU);
3811   }
3812 
3813   static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
3814     std::string Str("shape=Mrecord");
3815     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3816     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3817       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3818     if (DFS) {
3819       Str += ",style=filled,fillcolor=\"#";
3820       Str += DOT::getColorString(DFS->getSubtreeID(N));
3821       Str += '"';
3822     }
3823     return Str;
3824   }
3825 };
3826 
3827 } // end namespace llvm
3828 #endif // NDEBUG
3829 
3830 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
3831 /// rendered using 'dot'.
3832 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
3833 #ifndef NDEBUG
3834   ViewGraph(this, Name, false, Title);
3835 #else
3836   errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
3837          << "systems with Graphviz or gv!\n";
3838 #endif  // NDEBUG
3839 }
3840 
3841 /// Out-of-line implementation with no arguments is handy for gdb.
3842 void ScheduleDAGMI::viewGraph() {
3843   viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
3844 }
3845