xref: /llvm-project/llvm/lib/CodeGen/MachineSSAUpdater.cpp (revision e156f611abc45a71e25c301378a1d01c9f98103c)
1 //===- MachineSSAUpdater.cpp - Unstructured SSA Update Tool ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the MachineSSAUpdater class. It's based on SSAUpdater
11 // class in lib/Transforms/Utils.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/MachineSSAUpdater.h"
16 #include "llvm/CodeGen/MachineInstr.h"
17 #include "llvm/CodeGen/MachineInstrBuilder.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 #include "llvm/Target/TargetInstrInfo.h"
20 #include "llvm/Target/TargetMachine.h"
21 #include "llvm/Target/TargetRegisterInfo.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/raw_ostream.h"
26 using namespace llvm;
27 
28 typedef DenseMap<MachineBasicBlock*, unsigned> AvailableValsTy;
29 typedef std::vector<std::pair<MachineBasicBlock*, unsigned> >
30                 IncomingPredInfoTy;
31 
32 static AvailableValsTy &getAvailableVals(void *AV) {
33   return *static_cast<AvailableValsTy*>(AV);
34 }
35 
36 static IncomingPredInfoTy &getIncomingPredInfo(void *IPI) {
37   return *static_cast<IncomingPredInfoTy*>(IPI);
38 }
39 
40 
41 MachineSSAUpdater::MachineSSAUpdater(MachineFunction &MF,
42                                      SmallVectorImpl<MachineInstr*> *NewPHI)
43   : AV(0), IPI(0), InsertedPHIs(NewPHI) {
44   TII = MF.getTarget().getInstrInfo();
45   MRI = &MF.getRegInfo();
46 }
47 
48 MachineSSAUpdater::~MachineSSAUpdater() {
49   delete &getAvailableVals(AV);
50   delete &getIncomingPredInfo(IPI);
51 }
52 
53 /// Initialize - Reset this object to get ready for a new set of SSA
54 /// updates.  ProtoValue is the value used to name PHI nodes.
55 void MachineSSAUpdater::Initialize(unsigned V) {
56   if (AV == 0)
57     AV = new AvailableValsTy();
58   else
59     getAvailableVals(AV).clear();
60 
61   if (IPI == 0)
62     IPI = new IncomingPredInfoTy();
63   else
64     getIncomingPredInfo(IPI).clear();
65 
66   VR = V;
67   VRC = MRI->getRegClass(VR);
68 }
69 
70 /// HasValueForBlock - Return true if the MachineSSAUpdater already has a value for
71 /// the specified block.
72 bool MachineSSAUpdater::HasValueForBlock(MachineBasicBlock *BB) const {
73   return getAvailableVals(AV).count(BB);
74 }
75 
76 /// AddAvailableValue - Indicate that a rewritten value is available in the
77 /// specified block with the specified value.
78 void MachineSSAUpdater::AddAvailableValue(MachineBasicBlock *BB, unsigned V) {
79   getAvailableVals(AV)[BB] = V;
80 }
81 
82 /// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is
83 /// live at the end of the specified block.
84 unsigned MachineSSAUpdater::GetValueAtEndOfBlock(MachineBasicBlock *BB) {
85   return GetValueAtEndOfBlockInternal(BB);
86 }
87 
88 /// InsertNewDef - Insert an empty PHI or IMPLICIT_DEF instruction which define
89 /// a value of the given register class at the start of the specified basic
90 /// block. It returns the virtual register defined by the instruction.
91 static
92 MachineInstr *InsertNewDef(unsigned Opcode,
93                            MachineBasicBlock *BB, MachineBasicBlock::iterator I,
94                            const TargetRegisterClass *RC,
95                            MachineRegisterInfo *MRI, const TargetInstrInfo *TII) {
96   unsigned NewVR = MRI->createVirtualRegister(RC);
97   return BuildMI(*BB, I, I->getDebugLoc(), TII->get(Opcode), NewVR);
98 }
99 
100 
101 /// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that
102 /// is live in the middle of the specified block.
103 ///
104 /// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one
105 /// important case: if there is a definition of the rewritten value after the
106 /// 'use' in BB.  Consider code like this:
107 ///
108 ///      X1 = ...
109 ///   SomeBB:
110 ///      use(X)
111 ///      X2 = ...
112 ///      br Cond, SomeBB, OutBB
113 ///
114 /// In this case, there are two values (X1 and X2) added to the AvailableVals
115 /// set by the client of the rewriter, and those values are both live out of
116 /// their respective blocks.  However, the use of X happens in the *middle* of
117 /// a block.  Because of this, we need to insert a new PHI node in SomeBB to
118 /// merge the appropriate values, and this value isn't live out of the block.
119 ///
120 unsigned MachineSSAUpdater::GetValueInMiddleOfBlock(MachineBasicBlock *BB) {
121   // If there is no definition of the renamed variable in this block, just use
122   // GetValueAtEndOfBlock to do our work.
123   if (!getAvailableVals(AV).count(BB))
124     return GetValueAtEndOfBlock(BB);
125 
126   // If there are no predecessors, just return undef.
127   if (BB->pred_empty())
128     return ~0U;  // Sentinel value representing undef.
129 
130   // Otherwise, we have the hard case.  Get the live-in values for each
131   // predecessor.
132   SmallVector<std::pair<MachineBasicBlock*, unsigned>, 8> PredValues;
133   unsigned SingularValue = 0;
134 
135   bool isFirstPred = true;
136   for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(),
137          E = BB->pred_end(); PI != E; ++PI) {
138     MachineBasicBlock *PredBB = *PI;
139     unsigned PredVal = GetValueAtEndOfBlockInternal(PredBB);
140     PredValues.push_back(std::make_pair(PredBB, PredVal));
141 
142     // Compute SingularValue.
143     if (isFirstPred) {
144       SingularValue = PredVal;
145       isFirstPred = false;
146     } else if (PredVal != SingularValue)
147       SingularValue = 0;
148   }
149 
150   // Otherwise, if all the merged values are the same, just use it.
151   if (SingularValue != 0)
152     return SingularValue;
153 
154   // Otherwise, we do need a PHI: insert one now.
155   MachineInstr *InsertedPHI = InsertNewDef(TargetInstrInfo::PHI, BB,
156                                            BB->front(), VRC, MRI, TII);
157 
158   // Fill in all the predecessors of the PHI.
159   MachineInstrBuilder MIB(InsertedPHI);
160   for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
161     MIB.addReg(PredValues[i].second).addMBB(PredValues[i].first);
162 
163   // See if the PHI node can be merged to a single value.  This can happen in
164   // loop cases when we get a PHI of itself and one other value.
165   if (unsigned ConstVal = InsertedPHI->isConstantValuePHI()) {
166     InsertedPHI->eraseFromParent();
167     return ConstVal;
168   }
169 
170   // If the client wants to know about all new instructions, tell it.
171   if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
172 
173   DEBUG(errs() << "  Inserted PHI: " << *InsertedPHI << "\n");
174   return InsertedPHI->getOperand(0).getReg();
175 }
176 
177 static
178 MachineBasicBlock *findCorrespondingPred(const MachineInstr *MI,
179                                          MachineOperand *U) {
180   for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) {
181     if (&MI->getOperand(i) == U)
182       return MI->getOperand(i+1).getMBB();
183   }
184 
185   llvm_unreachable("MachineOperand::getParent() failure?");
186   return 0;
187 }
188 
189 /// RewriteUse - Rewrite a use of the symbolic value.  This handles PHI nodes,
190 /// which use their value in the corresponding predecessor.
191 void MachineSSAUpdater::RewriteUse(MachineOperand &U) {
192   MachineInstr *UseMI = U.getParent();
193   unsigned NewVR = 0;
194   if (UseMI->getOpcode() == TargetInstrInfo::PHI) {
195     MachineBasicBlock *SourceBB = findCorrespondingPred(UseMI, &U);
196     NewVR = GetValueAtEndOfBlock(SourceBB);
197     // Insert an implicit_def to represent an undef value.
198     MachineInstr *NewDef = InsertNewDef(TargetInstrInfo::IMPLICIT_DEF,
199                                         SourceBB,SourceBB->getFirstTerminator(),
200                                         VRC, MRI, TII);
201     NewVR = NewDef->getOperand(0).getReg();
202   } else {
203     NewVR = GetValueInMiddleOfBlock(UseMI->getParent());
204     if (NewVR == ~0U) {
205       // Insert an implicit_def to represent an undef value.
206       MachineInstr *NewDef = InsertNewDef(TargetInstrInfo::IMPLICIT_DEF,
207                                           UseMI->getParent(), UseMI,
208                                           VRC, MRI, TII);
209       NewVR = NewDef->getOperand(0).getReg();
210     }
211   }
212 
213   U.setReg(NewVR);
214 }
215 
216 /// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry
217 /// for the specified BB and if so, return it.  If not, construct SSA form by
218 /// walking predecessors inserting PHI nodes as needed until we get to a block
219 /// where the value is available.
220 ///
221 unsigned MachineSSAUpdater::GetValueAtEndOfBlockInternal(MachineBasicBlock *BB){
222   AvailableValsTy &AvailableVals = getAvailableVals(AV);
223 
224   // Query AvailableVals by doing an insertion of null.
225   std::pair<AvailableValsTy::iterator, bool> InsertRes =
226     AvailableVals.insert(std::make_pair(BB, 0));
227 
228   // Handle the case when the insertion fails because we have already seen BB.
229   if (!InsertRes.second) {
230     // If the insertion failed, there are two cases.  The first case is that the
231     // value is already available for the specified block.  If we get this, just
232     // return the value.
233     if (InsertRes.first->second != 0)
234       return InsertRes.first->second;
235 
236     // Otherwise, if the value we find is null, then this is the value is not
237     // known but it is being computed elsewhere in our recursion.  This means
238     // that we have a cycle.  Handle this by inserting a PHI node and returning
239     // it.  When we get back to the first instance of the recursion we will fill
240     // in the PHI node.
241     MachineInstr *NewPHI = InsertNewDef(TargetInstrInfo::PHI, BB, BB->front(),
242                                         VRC, MRI,TII);
243     unsigned NewVR = NewPHI->getOperand(0).getReg();
244     InsertRes.first->second = NewVR;
245     return NewVR;
246   }
247 
248   // If there are no predecessors, then we must have found an unreachable block
249   // just return 'undef'.  Since there are no predecessors, InsertRes must not
250   // be invalidated.
251   if (BB->pred_empty())
252     return InsertRes.first->second = ~0U;  // Sentinel value representing undef.
253 
254   // Okay, the value isn't in the map and we just inserted a null in the entry
255   // to indicate that we're processing the block.  Since we have no idea what
256   // value is in this block, we have to recurse through our predecessors.
257   //
258   // While we're walking our predecessors, we keep track of them in a vector,
259   // then insert a PHI node in the end if we actually need one.  We could use a
260   // smallvector here, but that would take a lot of stack space for every level
261   // of the recursion, just use IncomingPredInfo as an explicit stack.
262   IncomingPredInfoTy &IncomingPredInfo = getIncomingPredInfo(IPI);
263   unsigned FirstPredInfoEntry = IncomingPredInfo.size();
264 
265   // As we're walking the predecessors, keep track of whether they are all
266   // producing the same value.  If so, this value will capture it, if not, it
267   // will get reset to null.  We distinguish the no-predecessor case explicitly
268   // below.
269   unsigned SingularValue = 0;
270   bool isFirstPred = true;
271   for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(),
272          E = BB->pred_end(); PI != E; ++PI) {
273     MachineBasicBlock *PredBB = *PI;
274     unsigned PredVal = GetValueAtEndOfBlockInternal(PredBB);
275     IncomingPredInfo.push_back(std::make_pair(PredBB, PredVal));
276 
277     // Compute SingularValue.
278     if (isFirstPred) {
279       SingularValue = PredVal;
280       isFirstPred = false;
281     } else if (PredVal != SingularValue)
282       SingularValue = 0;
283   }
284 
285   /// Look up BB's entry in AvailableVals.  'InsertRes' may be invalidated.  If
286   /// this block is involved in a loop, a no-entry PHI node will have been
287   /// inserted as InsertedVal.  Otherwise, we'll still have the null we inserted
288   /// above.
289   unsigned &InsertedVal = AvailableVals[BB];
290 
291   // If all the predecessor values are the same then we don't need to insert a
292   // PHI.  This is the simple and common case.
293   if (SingularValue) {
294     // If a PHI node got inserted, replace it with the singlar value and delete
295     // it.
296     if (InsertedVal) {
297       MachineInstr *OldVal = MRI->getVRegDef(InsertedVal);
298       // Be careful about dead loops.  These RAUW's also update InsertedVal.
299       assert(InsertedVal != SingularValue && "Dead loop?");
300       MRI->replaceRegWith(InsertedVal, SingularValue);
301       OldVal->eraseFromParent();
302     }
303 
304     InsertedVal = SingularValue;
305 
306     // Drop the entries we added in IncomingPredInfo to restore the stack.
307     IncomingPredInfo.erase(IncomingPredInfo.begin()+FirstPredInfoEntry,
308                            IncomingPredInfo.end());
309     return InsertedVal;
310   }
311 
312 
313   // Otherwise, we do need a PHI: insert one now if we don't already have one.
314   MachineInstr *InsertedPHI;
315   if (InsertedVal == 0) {
316     InsertedPHI = InsertNewDef(TargetInstrInfo::PHI, BB, BB->front(),
317                                VRC, MRI, TII);
318     InsertedVal = InsertedPHI->getOperand(0).getReg();
319   } else {
320     InsertedPHI = MRI->getVRegDef(InsertedVal);
321   }
322 
323   // Fill in all the predecessors of the PHI.
324   bool IsUndef = true;
325   MachineInstrBuilder MIB(InsertedPHI);
326   for (IncomingPredInfoTy::iterator I =
327          IncomingPredInfo.begin()+FirstPredInfoEntry,
328          E = IncomingPredInfo.end(); I != E; ++I) {
329     if (I->second == ~0U)
330       continue;
331     IsUndef = false;
332     MIB.addReg(I->second).addMBB(I->first);
333   }
334 
335   // Drop the entries we added in IncomingPredInfo to restore the stack.
336   IncomingPredInfo.erase(IncomingPredInfo.begin()+FirstPredInfoEntry,
337                          IncomingPredInfo.end());
338 
339   // See if the PHI node can be merged to a single value.  This can happen in
340   // loop cases when we get a PHI of itself and one other value.
341   if (IsUndef) {
342     InsertedPHI->eraseFromParent();
343     InsertedVal = ~0U;
344   } else if (unsigned ConstVal = InsertedPHI->isConstantValuePHI()) {
345     MRI->replaceRegWith(InsertedVal, ConstVal);
346     InsertedPHI->eraseFromParent();
347     InsertedVal = ConstVal;
348   } else {
349     DEBUG(errs() << "  Inserted PHI: " << *InsertedPHI << "\n");
350 
351     // If the client wants to know about all new instructions, tell it.
352     if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
353   }
354 
355   return InsertedVal;
356 }
357