1 //===- MachineSSAUpdater.cpp - Unstructured SSA Update Tool ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the MachineSSAUpdater class. It's based on SSAUpdater 11 // class in lib/Transforms/Utils. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineSSAUpdater.h" 16 #include "llvm/CodeGen/MachineInstr.h" 17 #include "llvm/CodeGen/MachineInstrBuilder.h" 18 #include "llvm/CodeGen/MachineRegisterInfo.h" 19 #include "llvm/Target/TargetInstrInfo.h" 20 #include "llvm/Target/TargetMachine.h" 21 #include "llvm/Target/TargetRegisterInfo.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include "llvm/Support/raw_ostream.h" 26 using namespace llvm; 27 28 typedef DenseMap<MachineBasicBlock*, unsigned> AvailableValsTy; 29 typedef std::vector<std::pair<MachineBasicBlock*, unsigned> > 30 IncomingPredInfoTy; 31 32 static AvailableValsTy &getAvailableVals(void *AV) { 33 return *static_cast<AvailableValsTy*>(AV); 34 } 35 36 static IncomingPredInfoTy &getIncomingPredInfo(void *IPI) { 37 return *static_cast<IncomingPredInfoTy*>(IPI); 38 } 39 40 41 MachineSSAUpdater::MachineSSAUpdater(MachineFunction &MF, 42 SmallVectorImpl<MachineInstr*> *NewPHI) 43 : AV(0), IPI(0), InsertedPHIs(NewPHI) { 44 TII = MF.getTarget().getInstrInfo(); 45 MRI = &MF.getRegInfo(); 46 } 47 48 MachineSSAUpdater::~MachineSSAUpdater() { 49 delete &getAvailableVals(AV); 50 delete &getIncomingPredInfo(IPI); 51 } 52 53 /// Initialize - Reset this object to get ready for a new set of SSA 54 /// updates. ProtoValue is the value used to name PHI nodes. 55 void MachineSSAUpdater::Initialize(unsigned V) { 56 if (AV == 0) 57 AV = new AvailableValsTy(); 58 else 59 getAvailableVals(AV).clear(); 60 61 if (IPI == 0) 62 IPI = new IncomingPredInfoTy(); 63 else 64 getIncomingPredInfo(IPI).clear(); 65 66 VR = V; 67 VRC = MRI->getRegClass(VR); 68 } 69 70 /// HasValueForBlock - Return true if the MachineSSAUpdater already has a value for 71 /// the specified block. 72 bool MachineSSAUpdater::HasValueForBlock(MachineBasicBlock *BB) const { 73 return getAvailableVals(AV).count(BB); 74 } 75 76 /// AddAvailableValue - Indicate that a rewritten value is available in the 77 /// specified block with the specified value. 78 void MachineSSAUpdater::AddAvailableValue(MachineBasicBlock *BB, unsigned V) { 79 getAvailableVals(AV)[BB] = V; 80 } 81 82 /// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is 83 /// live at the end of the specified block. 84 unsigned MachineSSAUpdater::GetValueAtEndOfBlock(MachineBasicBlock *BB) { 85 return GetValueAtEndOfBlockInternal(BB); 86 } 87 88 /// InsertNewPHI - Insert an empty PHI instruction which define a value of the 89 /// given register class at the start of the specified basic block. It returns 90 /// the virtual register defined by the PHI instruction. 91 static 92 MachineInstr *InsertNewPHI(MachineBasicBlock *BB, const TargetRegisterClass *RC, 93 MachineRegisterInfo *MRI, const TargetInstrInfo *TII) { 94 unsigned NewVR = MRI->createVirtualRegister(RC); 95 return BuildMI(*BB, BB->front(), BB->front().getDebugLoc(), 96 TII->get(TargetInstrInfo::PHI), NewVR); 97 } 98 99 100 /// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that 101 /// is live in the middle of the specified block. 102 /// 103 /// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one 104 /// important case: if there is a definition of the rewritten value after the 105 /// 'use' in BB. Consider code like this: 106 /// 107 /// X1 = ... 108 /// SomeBB: 109 /// use(X) 110 /// X2 = ... 111 /// br Cond, SomeBB, OutBB 112 /// 113 /// In this case, there are two values (X1 and X2) added to the AvailableVals 114 /// set by the client of the rewriter, and those values are both live out of 115 /// their respective blocks. However, the use of X happens in the *middle* of 116 /// a block. Because of this, we need to insert a new PHI node in SomeBB to 117 /// merge the appropriate values, and this value isn't live out of the block. 118 /// 119 unsigned MachineSSAUpdater::GetValueInMiddleOfBlock(MachineBasicBlock *BB) { 120 // If there is no definition of the renamed variable in this block, just use 121 // GetValueAtEndOfBlock to do our work. 122 if (!getAvailableVals(AV).count(BB)) 123 return GetValueAtEndOfBlock(BB); 124 125 if (BB->pred_empty()) 126 llvm_unreachable("Unreachable block!"); 127 128 // Otherwise, we have the hard case. Get the live-in values for each 129 // predecessor. 130 SmallVector<std::pair<MachineBasicBlock*, unsigned>, 8> PredValues; 131 unsigned SingularValue = 0; 132 133 bool isFirstPred = true; 134 for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(), 135 E = BB->pred_end(); PI != E; ++PI) { 136 MachineBasicBlock *PredBB = *PI; 137 unsigned PredVal = GetValueAtEndOfBlockInternal(PredBB); 138 PredValues.push_back(std::make_pair(PredBB, PredVal)); 139 140 // Compute SingularValue. 141 if (isFirstPred) { 142 SingularValue = PredVal; 143 isFirstPred = false; 144 } else if (PredVal != SingularValue) 145 SingularValue = 0; 146 } 147 148 // Otherwise, if all the merged values are the same, just use it. 149 if (SingularValue != 0) 150 return SingularValue; 151 152 // Otherwise, we do need a PHI: insert one now. 153 MachineInstr *InsertedPHI = InsertNewPHI(BB, VRC, MRI, TII); 154 155 // Fill in all the predecessors of the PHI. 156 MachineInstrBuilder MIB(InsertedPHI); 157 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) 158 MIB.addReg(PredValues[i].second).addMBB(PredValues[i].first); 159 160 // See if the PHI node can be merged to a single value. This can happen in 161 // loop cases when we get a PHI of itself and one other value. 162 if (unsigned ConstVal = InsertedPHI->isConstantValuePHI()) { 163 InsertedPHI->eraseFromParent(); 164 return ConstVal; 165 } 166 167 // If the client wants to know about all new instructions, tell it. 168 if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI); 169 170 DEBUG(errs() << " Inserted PHI: " << *InsertedPHI << "\n"); 171 return InsertedPHI->getOperand(0).getReg(); 172 } 173 174 static 175 MachineBasicBlock *findCorrespondingPred(const MachineInstr *MI, 176 MachineOperand *U) { 177 for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) { 178 if (&MI->getOperand(i) == U) 179 return MI->getOperand(i+1).getMBB(); 180 } 181 182 llvm_unreachable("MachineOperand::getParent() failure?"); 183 return 0; 184 } 185 186 /// RewriteUse - Rewrite a use of the symbolic value. This handles PHI nodes, 187 /// which use their value in the corresponding predecessor. 188 void MachineSSAUpdater::RewriteUse(MachineOperand &U) { 189 MachineInstr *UseMI = U.getParent(); 190 unsigned NewVR = 0; 191 if (UseMI->getOpcode() == TargetInstrInfo::PHI) { 192 MachineBasicBlock *SourceBB = findCorrespondingPred(UseMI, &U); 193 NewVR = GetValueAtEndOfBlock(SourceBB); 194 } else { 195 NewVR = GetValueInMiddleOfBlock(UseMI->getParent()); 196 } 197 198 U.setReg(NewVR); 199 } 200 201 /// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry 202 /// for the specified BB and if so, return it. If not, construct SSA form by 203 /// walking predecessors inserting PHI nodes as needed until we get to a block 204 /// where the value is available. 205 /// 206 unsigned MachineSSAUpdater::GetValueAtEndOfBlockInternal(MachineBasicBlock *BB){ 207 AvailableValsTy &AvailableVals = getAvailableVals(AV); 208 209 // Query AvailableVals by doing an insertion of null. 210 std::pair<AvailableValsTy::iterator, bool> InsertRes = 211 AvailableVals.insert(std::make_pair(BB, 0)); 212 213 // Handle the case when the insertion fails because we have already seen BB. 214 if (!InsertRes.second) { 215 // If the insertion failed, there are two cases. The first case is that the 216 // value is already available for the specified block. If we get this, just 217 // return the value. 218 if (InsertRes.first->second != 0) 219 return InsertRes.first->second; 220 221 // Otherwise, if the value we find is null, then this is the value is not 222 // known but it is being computed elsewhere in our recursion. This means 223 // that we have a cycle. Handle this by inserting a PHI node and returning 224 // it. When we get back to the first instance of the recursion we will fill 225 // in the PHI node. 226 MachineInstr *NewPHI = InsertNewPHI(BB, VRC, MRI, TII); 227 unsigned NewVR = NewPHI->getOperand(0).getReg(); 228 InsertRes.first->second = NewVR; 229 return NewVR; 230 } 231 232 if (BB->pred_empty()) 233 llvm_unreachable("Unreachable block!"); 234 235 // Okay, the value isn't in the map and we just inserted a null in the entry 236 // to indicate that we're processing the block. Since we have no idea what 237 // value is in this block, we have to recurse through our predecessors. 238 // 239 // While we're walking our predecessors, we keep track of them in a vector, 240 // then insert a PHI node in the end if we actually need one. We could use a 241 // smallvector here, but that would take a lot of stack space for every level 242 // of the recursion, just use IncomingPredInfo as an explicit stack. 243 IncomingPredInfoTy &IncomingPredInfo = getIncomingPredInfo(IPI); 244 unsigned FirstPredInfoEntry = IncomingPredInfo.size(); 245 246 // As we're walking the predecessors, keep track of whether they are all 247 // producing the same value. If so, this value will capture it, if not, it 248 // will get reset to null. We distinguish the no-predecessor case explicitly 249 // below. 250 unsigned SingularValue = 0; 251 bool isFirstPred = true; 252 for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(), 253 E = BB->pred_end(); PI != E; ++PI) { 254 MachineBasicBlock *PredBB = *PI; 255 unsigned PredVal = GetValueAtEndOfBlockInternal(PredBB); 256 IncomingPredInfo.push_back(std::make_pair(PredBB, PredVal)); 257 258 // Compute SingularValue. 259 if (isFirstPred) { 260 SingularValue = PredVal; 261 isFirstPred = false; 262 } else if (PredVal != SingularValue) 263 SingularValue = 0; 264 } 265 266 /// Look up BB's entry in AvailableVals. 'InsertRes' may be invalidated. If 267 /// this block is involved in a loop, a no-entry PHI node will have been 268 /// inserted as InsertedVal. Otherwise, we'll still have the null we inserted 269 /// above. 270 unsigned InsertedVal = AvailableVals[BB]; 271 272 // If all the predecessor values are the same then we don't need to insert a 273 // PHI. This is the simple and common case. 274 if (SingularValue) { 275 // If a PHI node got inserted, replace it with the singlar value and delete 276 // it. 277 if (InsertedVal) { 278 MachineInstr *OldVal = MRI->getVRegDef(InsertedVal); 279 // Be careful about dead loops. These RAUW's also update InsertedVal. 280 assert(InsertedVal != SingularValue && "Dead loop?"); 281 MRI->replaceRegWith(InsertedVal, SingularValue); 282 OldVal->eraseFromParent(); 283 } else { 284 InsertedVal = SingularValue; 285 } 286 287 // Drop the entries we added in IncomingPredInfo to restore the stack. 288 IncomingPredInfo.erase(IncomingPredInfo.begin()+FirstPredInfoEntry, 289 IncomingPredInfo.end()); 290 return InsertedVal; 291 } 292 293 294 // Otherwise, we do need a PHI: insert one now if we don't already have one. 295 MachineInstr *InsertedPHI; 296 if (InsertedVal == 0) { 297 InsertedPHI = InsertNewPHI(BB, VRC, MRI, TII); 298 InsertedVal = InsertedPHI->getOperand(0).getReg(); 299 } else { 300 InsertedPHI = MRI->getVRegDef(InsertedVal); 301 } 302 303 // Fill in all the predecessors of the PHI. 304 MachineInstrBuilder MIB(InsertedPHI); 305 for (IncomingPredInfoTy::iterator I = 306 IncomingPredInfo.begin()+FirstPredInfoEntry, 307 E = IncomingPredInfo.end(); I != E; ++I) 308 MIB.addReg(I->second).addMBB(I->first); 309 310 // Drop the entries we added in IncomingPredInfo to restore the stack. 311 IncomingPredInfo.erase(IncomingPredInfo.begin()+FirstPredInfoEntry, 312 IncomingPredInfo.end()); 313 314 // See if the PHI node can be merged to a single value. This can happen in 315 // loop cases when we get a PHI of itself and one other value. 316 if (unsigned ConstVal = InsertedPHI->isConstantValuePHI()) { 317 MRI->replaceRegWith(InsertedVal, ConstVal); 318 InsertedPHI->eraseFromParent(); 319 InsertedVal = ConstVal; 320 } else { 321 DEBUG(errs() << " Inserted PHI: " << *InsertedPHI << "\n"); 322 323 // If the client wants to know about all new instructions, tell it. 324 if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI); 325 } 326 327 return InsertedVal; 328 329 } 330