1 //===- MachineSSAUpdater.cpp - Unstructured SSA Update Tool ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the MachineSSAUpdater class. It's based on SSAUpdater 11 // class in lib/Transforms/Utils. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineSSAUpdater.h" 16 #include "llvm/CodeGen/MachineInstr.h" 17 #include "llvm/CodeGen/MachineInstrBuilder.h" 18 #include "llvm/CodeGen/MachineRegisterInfo.h" 19 #include "llvm/Target/TargetInstrInfo.h" 20 #include "llvm/Target/TargetMachine.h" 21 #include "llvm/Target/TargetRegisterInfo.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include "llvm/Support/raw_ostream.h" 26 using namespace llvm; 27 28 typedef DenseMap<MachineBasicBlock*, unsigned> AvailableValsTy; 29 typedef std::vector<std::pair<MachineBasicBlock*, unsigned> > 30 IncomingPredInfoTy; 31 32 static AvailableValsTy &getAvailableVals(void *AV) { 33 return *static_cast<AvailableValsTy*>(AV); 34 } 35 36 static IncomingPredInfoTy &getIncomingPredInfo(void *IPI) { 37 return *static_cast<IncomingPredInfoTy*>(IPI); 38 } 39 40 41 MachineSSAUpdater::MachineSSAUpdater(MachineFunction &MF, 42 SmallVectorImpl<MachineInstr*> *NewPHI) 43 : AV(0), IPI(0), InsertedPHIs(NewPHI) { 44 TII = MF.getTarget().getInstrInfo(); 45 MRI = &MF.getRegInfo(); 46 } 47 48 MachineSSAUpdater::~MachineSSAUpdater() { 49 delete &getAvailableVals(AV); 50 delete &getIncomingPredInfo(IPI); 51 } 52 53 /// Initialize - Reset this object to get ready for a new set of SSA 54 /// updates. ProtoValue is the value used to name PHI nodes. 55 void MachineSSAUpdater::Initialize(unsigned V) { 56 if (AV == 0) 57 AV = new AvailableValsTy(); 58 else 59 getAvailableVals(AV).clear(); 60 61 if (IPI == 0) 62 IPI = new IncomingPredInfoTy(); 63 else 64 getIncomingPredInfo(IPI).clear(); 65 66 VR = V; 67 VRC = MRI->getRegClass(VR); 68 } 69 70 /// HasValueForBlock - Return true if the MachineSSAUpdater already has a value for 71 /// the specified block. 72 bool MachineSSAUpdater::HasValueForBlock(MachineBasicBlock *BB) const { 73 return getAvailableVals(AV).count(BB); 74 } 75 76 /// AddAvailableValue - Indicate that a rewritten value is available in the 77 /// specified block with the specified value. 78 void MachineSSAUpdater::AddAvailableValue(MachineBasicBlock *BB, unsigned V) { 79 getAvailableVals(AV)[BB] = V; 80 } 81 82 /// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is 83 /// live at the end of the specified block. 84 unsigned MachineSSAUpdater::GetValueAtEndOfBlock(MachineBasicBlock *BB) { 85 return GetValueAtEndOfBlockInternal(BB); 86 } 87 88 /// InsertNewDef - Insert an empty PHI or IMPLICIT_DEF instruction which define 89 /// a value of the given register class at the start of the specified basic 90 /// block. It returns the virtual register defined by the instruction. 91 static 92 MachineInstr *InsertNewDef(unsigned Opcode, 93 MachineBasicBlock *BB, MachineBasicBlock::iterator I, 94 const TargetRegisterClass *RC, 95 MachineRegisterInfo *MRI, const TargetInstrInfo *TII) { 96 unsigned NewVR = MRI->createVirtualRegister(RC); 97 return BuildMI(*BB, I, DebugLoc::getUnknownLoc(), TII->get(Opcode), NewVR); 98 } 99 100 101 /// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that 102 /// is live in the middle of the specified block. 103 /// 104 /// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one 105 /// important case: if there is a definition of the rewritten value after the 106 /// 'use' in BB. Consider code like this: 107 /// 108 /// X1 = ... 109 /// SomeBB: 110 /// use(X) 111 /// X2 = ... 112 /// br Cond, SomeBB, OutBB 113 /// 114 /// In this case, there are two values (X1 and X2) added to the AvailableVals 115 /// set by the client of the rewriter, and those values are both live out of 116 /// their respective blocks. However, the use of X happens in the *middle* of 117 /// a block. Because of this, we need to insert a new PHI node in SomeBB to 118 /// merge the appropriate values, and this value isn't live out of the block. 119 /// 120 unsigned MachineSSAUpdater::GetValueInMiddleOfBlock(MachineBasicBlock *BB) { 121 // If there is no definition of the renamed variable in this block, just use 122 // GetValueAtEndOfBlock to do our work. 123 if (!getAvailableVals(AV).count(BB)) 124 return GetValueAtEndOfBlock(BB); 125 126 // If there are no predecessors, just return undef. 127 if (BB->pred_empty()) { 128 // Insert an implicit_def to represent an undef value. 129 MachineInstr *NewDef = InsertNewDef(TargetInstrInfo::IMPLICIT_DEF, 130 BB, BB->getFirstTerminator(), 131 VRC, MRI, TII); 132 return NewDef->getOperand(0).getReg(); 133 } 134 135 // Otherwise, we have the hard case. Get the live-in values for each 136 // predecessor. 137 SmallVector<std::pair<MachineBasicBlock*, unsigned>, 8> PredValues; 138 unsigned SingularValue = 0; 139 140 bool isFirstPred = true; 141 for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(), 142 E = BB->pred_end(); PI != E; ++PI) { 143 MachineBasicBlock *PredBB = *PI; 144 unsigned PredVal = GetValueAtEndOfBlockInternal(PredBB); 145 PredValues.push_back(std::make_pair(PredBB, PredVal)); 146 147 // Compute SingularValue. 148 if (isFirstPred) { 149 SingularValue = PredVal; 150 isFirstPred = false; 151 } else if (PredVal != SingularValue) 152 SingularValue = 0; 153 } 154 155 // Otherwise, if all the merged values are the same, just use it. 156 if (SingularValue != 0) 157 return SingularValue; 158 159 // Otherwise, we do need a PHI: insert one now. 160 MachineInstr *InsertedPHI = InsertNewDef(TargetInstrInfo::PHI, BB, 161 BB->front(), VRC, MRI, TII); 162 163 // Fill in all the predecessors of the PHI. 164 MachineInstrBuilder MIB(InsertedPHI); 165 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) 166 MIB.addReg(PredValues[i].second).addMBB(PredValues[i].first); 167 168 // See if the PHI node can be merged to a single value. This can happen in 169 // loop cases when we get a PHI of itself and one other value. 170 if (unsigned ConstVal = InsertedPHI->isConstantValuePHI()) { 171 InsertedPHI->eraseFromParent(); 172 return ConstVal; 173 } 174 175 // If the client wants to know about all new instructions, tell it. 176 if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI); 177 178 DEBUG(errs() << " Inserted PHI: " << *InsertedPHI << "\n"); 179 return InsertedPHI->getOperand(0).getReg(); 180 } 181 182 static 183 MachineBasicBlock *findCorrespondingPred(const MachineInstr *MI, 184 MachineOperand *U) { 185 for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) { 186 if (&MI->getOperand(i) == U) 187 return MI->getOperand(i+1).getMBB(); 188 } 189 190 llvm_unreachable("MachineOperand::getParent() failure?"); 191 return 0; 192 } 193 194 /// RewriteUse - Rewrite a use of the symbolic value. This handles PHI nodes, 195 /// which use their value in the corresponding predecessor. 196 void MachineSSAUpdater::RewriteUse(MachineOperand &U) { 197 MachineInstr *UseMI = U.getParent(); 198 unsigned NewVR = 0; 199 if (UseMI->getOpcode() == TargetInstrInfo::PHI) { 200 MachineBasicBlock *SourceBB = findCorrespondingPred(UseMI, &U); 201 NewVR = GetValueAtEndOfBlock(SourceBB); 202 } else { 203 NewVR = GetValueInMiddleOfBlock(UseMI->getParent()); 204 } 205 206 U.setReg(NewVR); 207 } 208 209 /// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry 210 /// for the specified BB and if so, return it. If not, construct SSA form by 211 /// walking predecessors inserting PHI nodes as needed until we get to a block 212 /// where the value is available. 213 /// 214 unsigned MachineSSAUpdater::GetValueAtEndOfBlockInternal(MachineBasicBlock *BB){ 215 AvailableValsTy &AvailableVals = getAvailableVals(AV); 216 217 // Query AvailableVals by doing an insertion of null. 218 std::pair<AvailableValsTy::iterator, bool> InsertRes = 219 AvailableVals.insert(std::make_pair(BB, 0)); 220 221 // Handle the case when the insertion fails because we have already seen BB. 222 if (!InsertRes.second) { 223 // If the insertion failed, there are two cases. The first case is that the 224 // value is already available for the specified block. If we get this, just 225 // return the value. 226 if (InsertRes.first->second != 0) 227 return InsertRes.first->second; 228 229 // Otherwise, if the value we find is null, then this is the value is not 230 // known but it is being computed elsewhere in our recursion. This means 231 // that we have a cycle. Handle this by inserting a PHI node and returning 232 // it. When we get back to the first instance of the recursion we will fill 233 // in the PHI node. 234 MachineInstr *NewPHI = InsertNewDef(TargetInstrInfo::PHI, BB, BB->front(), 235 VRC, MRI,TII); 236 unsigned NewVR = NewPHI->getOperand(0).getReg(); 237 InsertRes.first->second = NewVR; 238 return NewVR; 239 } 240 241 // If there are no predecessors, then we must have found an unreachable block 242 // just return 'undef'. Since there are no predecessors, InsertRes must not 243 // be invalidated. 244 if (BB->pred_empty()) { 245 // Insert an implicit_def to represent an undef value. 246 MachineInstr *NewDef = InsertNewDef(TargetInstrInfo::IMPLICIT_DEF, 247 BB, BB->getFirstTerminator(), 248 VRC, MRI, TII); 249 return InsertRes.first->second = NewDef->getOperand(0).getReg(); 250 } 251 252 // Okay, the value isn't in the map and we just inserted a null in the entry 253 // to indicate that we're processing the block. Since we have no idea what 254 // value is in this block, we have to recurse through our predecessors. 255 // 256 // While we're walking our predecessors, we keep track of them in a vector, 257 // then insert a PHI node in the end if we actually need one. We could use a 258 // smallvector here, but that would take a lot of stack space for every level 259 // of the recursion, just use IncomingPredInfo as an explicit stack. 260 IncomingPredInfoTy &IncomingPredInfo = getIncomingPredInfo(IPI); 261 unsigned FirstPredInfoEntry = IncomingPredInfo.size(); 262 263 // As we're walking the predecessors, keep track of whether they are all 264 // producing the same value. If so, this value will capture it, if not, it 265 // will get reset to null. We distinguish the no-predecessor case explicitly 266 // below. 267 unsigned SingularValue = 0; 268 bool isFirstPred = true; 269 for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(), 270 E = BB->pred_end(); PI != E; ++PI) { 271 MachineBasicBlock *PredBB = *PI; 272 unsigned PredVal = GetValueAtEndOfBlockInternal(PredBB); 273 IncomingPredInfo.push_back(std::make_pair(PredBB, PredVal)); 274 275 // Compute SingularValue. 276 if (isFirstPred) { 277 SingularValue = PredVal; 278 isFirstPred = false; 279 } else if (PredVal != SingularValue) 280 SingularValue = 0; 281 } 282 283 /// Look up BB's entry in AvailableVals. 'InsertRes' may be invalidated. If 284 /// this block is involved in a loop, a no-entry PHI node will have been 285 /// inserted as InsertedVal. Otherwise, we'll still have the null we inserted 286 /// above. 287 unsigned &InsertedVal = AvailableVals[BB]; 288 289 // If all the predecessor values are the same then we don't need to insert a 290 // PHI. This is the simple and common case. 291 if (SingularValue) { 292 // If a PHI node got inserted, replace it with the singlar value and delete 293 // it. 294 if (InsertedVal) { 295 MachineInstr *OldVal = MRI->getVRegDef(InsertedVal); 296 // Be careful about dead loops. These RAUW's also update InsertedVal. 297 assert(InsertedVal != SingularValue && "Dead loop?"); 298 MRI->replaceRegWith(InsertedVal, SingularValue); 299 OldVal->eraseFromParent(); 300 } 301 302 InsertedVal = SingularValue; 303 304 // Drop the entries we added in IncomingPredInfo to restore the stack. 305 IncomingPredInfo.erase(IncomingPredInfo.begin()+FirstPredInfoEntry, 306 IncomingPredInfo.end()); 307 return InsertedVal; 308 } 309 310 311 // Otherwise, we do need a PHI: insert one now if we don't already have one. 312 MachineInstr *InsertedPHI; 313 if (InsertedVal == 0) { 314 InsertedPHI = InsertNewDef(TargetInstrInfo::PHI, BB, BB->front(), 315 VRC, MRI, TII); 316 InsertedVal = InsertedPHI->getOperand(0).getReg(); 317 } else { 318 InsertedPHI = MRI->getVRegDef(InsertedVal); 319 } 320 321 // Fill in all the predecessors of the PHI. 322 MachineInstrBuilder MIB(InsertedPHI); 323 for (IncomingPredInfoTy::iterator I = 324 IncomingPredInfo.begin()+FirstPredInfoEntry, 325 E = IncomingPredInfo.end(); I != E; ++I) 326 MIB.addReg(I->second).addMBB(I->first); 327 328 // Drop the entries we added in IncomingPredInfo to restore the stack. 329 IncomingPredInfo.erase(IncomingPredInfo.begin()+FirstPredInfoEntry, 330 IncomingPredInfo.end()); 331 332 // See if the PHI node can be merged to a single value. This can happen in 333 // loop cases when we get a PHI of itself and one other value. 334 if (unsigned ConstVal = InsertedPHI->isConstantValuePHI()) { 335 MRI->replaceRegWith(InsertedVal, ConstVal); 336 InsertedPHI->eraseFromParent(); 337 InsertedVal = ConstVal; 338 } else { 339 DEBUG(errs() << " Inserted PHI: " << *InsertedPHI << "\n"); 340 341 // If the client wants to know about all new instructions, tell it. 342 if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI); 343 } 344 345 return InsertedVal; 346 } 347