1 //===-- llvm/CodeGen/MachineModuleInfo.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/CodeGen/MachineModuleInfo.h" 11 12 #include "llvm/Constants.h" 13 #include "llvm/Analysis/ValueTracking.h" 14 #include "llvm/CodeGen/MachineFunctionPass.h" 15 #include "llvm/CodeGen/MachineFunction.h" 16 #include "llvm/CodeGen/MachineLocation.h" 17 #include "llvm/CodeGen/MachineDebugInfoDesc.h" 18 #include "llvm/Target/TargetInstrInfo.h" 19 #include "llvm/Target/TargetMachine.h" 20 #include "llvm/Target/TargetOptions.h" 21 #include "llvm/DerivedTypes.h" 22 #include "llvm/GlobalVariable.h" 23 #include "llvm/Intrinsics.h" 24 #include "llvm/Instructions.h" 25 #include "llvm/Module.h" 26 #include "llvm/Support/Dwarf.h" 27 #include "llvm/Support/Streams.h" 28 using namespace llvm; 29 using namespace llvm::dwarf; 30 31 // Handle the Pass registration stuff necessary to use TargetData's. 32 static RegisterPass<MachineModuleInfo> 33 X("machinemoduleinfo", "Module Information"); 34 char MachineModuleInfo::ID = 0; 35 36 //===----------------------------------------------------------------------===// 37 38 /// getGlobalVariablesUsing - Return all of the GlobalVariables which have the 39 /// specified value in their initializer somewhere. 40 static void 41 getGlobalVariablesUsing(Value *V, std::vector<GlobalVariable*> &Result) { 42 // Scan though value users. 43 for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I) { 44 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(*I)) { 45 // If the user is a GlobalVariable then add to result. 46 Result.push_back(GV); 47 } else if (Constant *C = dyn_cast<Constant>(*I)) { 48 // If the user is a constant variable then scan its users 49 getGlobalVariablesUsing(C, Result); 50 } 51 } 52 } 53 54 /// getGlobalVariablesUsing - Return all of the GlobalVariables that use the 55 /// named GlobalVariable. 56 static void 57 getGlobalVariablesUsing(Module &M, const std::string &RootName, 58 std::vector<GlobalVariable*> &Result) { 59 std::vector<const Type*> FieldTypes; 60 FieldTypes.push_back(Type::Int32Ty); 61 FieldTypes.push_back(Type::Int32Ty); 62 63 // Get the GlobalVariable root. 64 GlobalVariable *UseRoot = M.getGlobalVariable(RootName, 65 StructType::get(FieldTypes)); 66 67 // If present and linkonce then scan for users. 68 if (UseRoot && UseRoot->hasLinkOnceLinkage()) 69 getGlobalVariablesUsing(UseRoot, Result); 70 } 71 72 /// isStringValue - Return true if the given value can be coerced to a string. 73 /// 74 static bool isStringValue(Value *V) { 75 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 76 if (GV->hasInitializer() && isa<ConstantArray>(GV->getInitializer())) { 77 ConstantArray *Init = cast<ConstantArray>(GV->getInitializer()); 78 return Init->isString(); 79 } 80 } else if (Constant *C = dyn_cast<Constant>(V)) { 81 if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) 82 return isStringValue(GV); 83 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 84 if (CE->getOpcode() == Instruction::GetElementPtr) { 85 if (CE->getNumOperands() == 3 && 86 cast<Constant>(CE->getOperand(1))->isNullValue() && 87 isa<ConstantInt>(CE->getOperand(2))) { 88 return isStringValue(CE->getOperand(0)); 89 } 90 } 91 } 92 } 93 return false; 94 } 95 96 /// getGlobalVariable - Return either a direct or cast Global value. 97 /// 98 static GlobalVariable *getGlobalVariable(Value *V) { 99 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 100 return GV; 101 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 102 if (CE->getOpcode() == Instruction::BitCast) { 103 return dyn_cast<GlobalVariable>(CE->getOperand(0)); 104 } else if (CE->getOpcode() == Instruction::GetElementPtr) { 105 for (unsigned int i=1; i<CE->getNumOperands(); i++) { 106 if (!CE->getOperand(i)->isNullValue()) 107 return NULL; 108 } 109 return dyn_cast<GlobalVariable>(CE->getOperand(0)); 110 } 111 } 112 return NULL; 113 } 114 115 /// isGlobalVariable - Return true if the given value can be coerced to a 116 /// GlobalVariable. 117 static bool isGlobalVariable(Value *V) { 118 if (isa<GlobalVariable>(V) || isa<ConstantPointerNull>(V)) { 119 return true; 120 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 121 if (CE->getOpcode() == Instruction::BitCast) { 122 return isa<GlobalVariable>(CE->getOperand(0)); 123 } else if (CE->getOpcode() == Instruction::GetElementPtr) { 124 for (unsigned int i=1; i<CE->getNumOperands(); i++) { 125 if (!CE->getOperand(i)->isNullValue()) 126 return false; 127 } 128 return isa<GlobalVariable>(CE->getOperand(0)); 129 } 130 } 131 return false; 132 } 133 134 //===----------------------------------------------------------------------===// 135 136 /// ApplyToFields - Target the visitor to each field of the debug information 137 /// descriptor. 138 void DIVisitor::ApplyToFields(DebugInfoDesc *DD) { 139 DD->ApplyToFields(this); 140 } 141 142 namespace { 143 144 //===----------------------------------------------------------------------===// 145 /// DICountVisitor - This DIVisitor counts all the fields in the supplied debug 146 /// the supplied DebugInfoDesc. 147 class DICountVisitor : public DIVisitor { 148 private: 149 unsigned Count; // Running count of fields. 150 151 public: 152 DICountVisitor() : DIVisitor(), Count(0) {} 153 154 // Accessors. 155 unsigned getCount() const { return Count; } 156 157 /// Apply - Count each of the fields. 158 /// 159 virtual void Apply(int &Field) { ++Count; } 160 virtual void Apply(unsigned &Field) { ++Count; } 161 virtual void Apply(int64_t &Field) { ++Count; } 162 virtual void Apply(uint64_t &Field) { ++Count; } 163 virtual void Apply(bool &Field) { ++Count; } 164 virtual void Apply(std::string &Field) { ++Count; } 165 virtual void Apply(DebugInfoDesc *&Field) { ++Count; } 166 virtual void Apply(GlobalVariable *&Field) { ++Count; } 167 virtual void Apply(std::vector<DebugInfoDesc *> &Field) { 168 ++Count; 169 } 170 }; 171 172 //===----------------------------------------------------------------------===// 173 /// DIDeserializeVisitor - This DIVisitor deserializes all the fields in the 174 /// supplied DebugInfoDesc. 175 class DIDeserializeVisitor : public DIVisitor { 176 private: 177 DIDeserializer &DR; // Active deserializer. 178 unsigned I; // Current operand index. 179 ConstantStruct *CI; // GlobalVariable constant initializer. 180 181 public: 182 DIDeserializeVisitor(DIDeserializer &D, GlobalVariable *GV) 183 : DIVisitor(), DR(D), I(0), CI(cast<ConstantStruct>(GV->getInitializer())) 184 {} 185 186 /// Apply - Set the value of each of the fields. 187 /// 188 virtual void Apply(int &Field) { 189 Constant *C = CI->getOperand(I++); 190 Field = cast<ConstantInt>(C)->getSExtValue(); 191 } 192 virtual void Apply(unsigned &Field) { 193 Constant *C = CI->getOperand(I++); 194 Field = cast<ConstantInt>(C)->getZExtValue(); 195 } 196 virtual void Apply(int64_t &Field) { 197 Constant *C = CI->getOperand(I++); 198 Field = cast<ConstantInt>(C)->getSExtValue(); 199 } 200 virtual void Apply(uint64_t &Field) { 201 Constant *C = CI->getOperand(I++); 202 Field = cast<ConstantInt>(C)->getZExtValue(); 203 } 204 virtual void Apply(bool &Field) { 205 Constant *C = CI->getOperand(I++); 206 Field = cast<ConstantInt>(C)->getZExtValue(); 207 } 208 virtual void Apply(std::string &Field) { 209 Constant *C = CI->getOperand(I++); 210 // Fills in the string if it succeeds 211 if (!GetConstantStringInfo(C, Field)) 212 Field.clear(); 213 } 214 virtual void Apply(DebugInfoDesc *&Field) { 215 Constant *C = CI->getOperand(I++); 216 Field = DR.Deserialize(C); 217 } 218 virtual void Apply(GlobalVariable *&Field) { 219 Constant *C = CI->getOperand(I++); 220 Field = getGlobalVariable(C); 221 } 222 virtual void Apply(std::vector<DebugInfoDesc *> &Field) { 223 Field.resize(0); 224 Constant *C = CI->getOperand(I++); 225 GlobalVariable *GV = getGlobalVariable(C); 226 if (GV->hasInitializer()) { 227 if (ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer())) { 228 for (unsigned i = 0, N = CA->getNumOperands(); i < N; ++i) { 229 GlobalVariable *GVE = getGlobalVariable(CA->getOperand(i)); 230 DebugInfoDesc *DE = DR.Deserialize(GVE); 231 Field.push_back(DE); 232 } 233 } else if (GV->getInitializer()->isNullValue()) { 234 if (const ArrayType *T = 235 dyn_cast<ArrayType>(GV->getType()->getElementType())) { 236 Field.resize(T->getNumElements()); 237 } 238 } 239 } 240 } 241 }; 242 243 //===----------------------------------------------------------------------===// 244 /// DISerializeVisitor - This DIVisitor serializes all the fields in 245 /// the supplied DebugInfoDesc. 246 class DISerializeVisitor : public DIVisitor { 247 private: 248 DISerializer &SR; // Active serializer. 249 std::vector<Constant*> &Elements; // Element accumulator. 250 251 public: 252 DISerializeVisitor(DISerializer &S, std::vector<Constant*> &E) 253 : DIVisitor() 254 , SR(S) 255 , Elements(E) 256 {} 257 258 /// Apply - Set the value of each of the fields. 259 /// 260 virtual void Apply(int &Field) { 261 Elements.push_back(ConstantInt::get(Type::Int32Ty, int32_t(Field))); 262 } 263 virtual void Apply(unsigned &Field) { 264 Elements.push_back(ConstantInt::get(Type::Int32Ty, uint32_t(Field))); 265 } 266 virtual void Apply(int64_t &Field) { 267 Elements.push_back(ConstantInt::get(Type::Int64Ty, int64_t(Field))); 268 } 269 virtual void Apply(uint64_t &Field) { 270 Elements.push_back(ConstantInt::get(Type::Int64Ty, uint64_t(Field))); 271 } 272 virtual void Apply(bool &Field) { 273 Elements.push_back(ConstantInt::get(Type::Int1Ty, Field)); 274 } 275 virtual void Apply(std::string &Field) { 276 Elements.push_back(SR.getString(Field)); 277 } 278 virtual void Apply(DebugInfoDesc *&Field) { 279 GlobalVariable *GV = NULL; 280 281 // If non-NULL then convert to global. 282 if (Field) GV = SR.Serialize(Field); 283 284 // FIXME - At some point should use specific type. 285 const PointerType *EmptyTy = SR.getEmptyStructPtrType(); 286 287 if (GV) { 288 // Set to pointer to global. 289 Elements.push_back(ConstantExpr::getBitCast(GV, EmptyTy)); 290 } else { 291 // Use NULL. 292 Elements.push_back(ConstantPointerNull::get(EmptyTy)); 293 } 294 } 295 virtual void Apply(GlobalVariable *&Field) { 296 const PointerType *EmptyTy = SR.getEmptyStructPtrType(); 297 if (Field) { 298 Elements.push_back(ConstantExpr::getBitCast(Field, EmptyTy)); 299 } else { 300 Elements.push_back(ConstantPointerNull::get(EmptyTy)); 301 } 302 } 303 virtual void Apply(std::vector<DebugInfoDesc *> &Field) { 304 const PointerType *EmptyTy = SR.getEmptyStructPtrType(); 305 unsigned N = Field.size(); 306 ArrayType *AT = ArrayType::get(EmptyTy, N); 307 std::vector<Constant *> ArrayElements; 308 309 for (unsigned i = 0; i < N; ++i) { 310 if (DebugInfoDesc *Element = Field[i]) { 311 GlobalVariable *GVE = SR.Serialize(Element); 312 Constant *CE = ConstantExpr::getBitCast(GVE, EmptyTy); 313 ArrayElements.push_back(cast<Constant>(CE)); 314 } else { 315 ArrayElements.push_back(ConstantPointerNull::get(EmptyTy)); 316 } 317 } 318 319 Constant *CA = ConstantArray::get(AT, ArrayElements); 320 GlobalVariable *CAGV = new GlobalVariable(AT, true, 321 GlobalValue::InternalLinkage, 322 CA, "llvm.dbg.array", 323 SR.getModule()); 324 CAGV->setSection("llvm.metadata"); 325 Constant *CAE = ConstantExpr::getBitCast(CAGV, EmptyTy); 326 Elements.push_back(CAE); 327 } 328 }; 329 330 //===----------------------------------------------------------------------===// 331 /// DIGetTypesVisitor - This DIVisitor gathers all the field types in 332 /// the supplied DebugInfoDesc. 333 class DIGetTypesVisitor : public DIVisitor { 334 private: 335 DISerializer &SR; // Active serializer. 336 std::vector<const Type*> &Fields; // Type accumulator. 337 338 public: 339 DIGetTypesVisitor(DISerializer &S, std::vector<const Type*> &F) 340 : DIVisitor() 341 , SR(S) 342 , Fields(F) 343 {} 344 345 /// Apply - Set the value of each of the fields. 346 /// 347 virtual void Apply(int &Field) { 348 Fields.push_back(Type::Int32Ty); 349 } 350 virtual void Apply(unsigned &Field) { 351 Fields.push_back(Type::Int32Ty); 352 } 353 virtual void Apply(int64_t &Field) { 354 Fields.push_back(Type::Int64Ty); 355 } 356 virtual void Apply(uint64_t &Field) { 357 Fields.push_back(Type::Int64Ty); 358 } 359 virtual void Apply(bool &Field) { 360 Fields.push_back(Type::Int1Ty); 361 } 362 virtual void Apply(std::string &Field) { 363 Fields.push_back(SR.getStrPtrType()); 364 } 365 virtual void Apply(DebugInfoDesc *&Field) { 366 // FIXME - At some point should use specific type. 367 const PointerType *EmptyTy = SR.getEmptyStructPtrType(); 368 Fields.push_back(EmptyTy); 369 } 370 virtual void Apply(GlobalVariable *&Field) { 371 const PointerType *EmptyTy = SR.getEmptyStructPtrType(); 372 Fields.push_back(EmptyTy); 373 } 374 virtual void Apply(std::vector<DebugInfoDesc *> &Field) { 375 const PointerType *EmptyTy = SR.getEmptyStructPtrType(); 376 Fields.push_back(EmptyTy); 377 } 378 }; 379 380 //===----------------------------------------------------------------------===// 381 /// DIVerifyVisitor - This DIVisitor verifies all the field types against 382 /// a constant initializer. 383 class DIVerifyVisitor : public DIVisitor { 384 private: 385 DIVerifier &VR; // Active verifier. 386 bool IsValid; // Validity status. 387 unsigned I; // Current operand index. 388 ConstantStruct *CI; // GlobalVariable constant initializer. 389 390 public: 391 DIVerifyVisitor(DIVerifier &V, GlobalVariable *GV) 392 : DIVisitor() 393 , VR(V) 394 , IsValid(true) 395 , I(0) 396 , CI(cast<ConstantStruct>(GV->getInitializer())) 397 { 398 } 399 400 // Accessors. 401 bool isValid() const { return IsValid; } 402 403 /// Apply - Set the value of each of the fields. 404 /// 405 virtual void Apply(int &Field) { 406 Constant *C = CI->getOperand(I++); 407 IsValid = IsValid && isa<ConstantInt>(C); 408 } 409 virtual void Apply(unsigned &Field) { 410 Constant *C = CI->getOperand(I++); 411 IsValid = IsValid && isa<ConstantInt>(C); 412 } 413 virtual void Apply(int64_t &Field) { 414 Constant *C = CI->getOperand(I++); 415 IsValid = IsValid && isa<ConstantInt>(C); 416 } 417 virtual void Apply(uint64_t &Field) { 418 Constant *C = CI->getOperand(I++); 419 IsValid = IsValid && isa<ConstantInt>(C); 420 } 421 virtual void Apply(bool &Field) { 422 Constant *C = CI->getOperand(I++); 423 IsValid = IsValid && isa<ConstantInt>(C) && C->getType() == Type::Int1Ty; 424 } 425 virtual void Apply(std::string &Field) { 426 Constant *C = CI->getOperand(I++); 427 IsValid = IsValid && 428 (!C || isStringValue(C) || C->isNullValue()); 429 } 430 virtual void Apply(DebugInfoDesc *&Field) { 431 // FIXME - Prepare the correct descriptor. 432 Constant *C = CI->getOperand(I++); 433 IsValid = IsValid && isGlobalVariable(C); 434 } 435 virtual void Apply(GlobalVariable *&Field) { 436 Constant *C = CI->getOperand(I++); 437 IsValid = IsValid && isGlobalVariable(C); 438 } 439 virtual void Apply(std::vector<DebugInfoDesc *> &Field) { 440 Constant *C = CI->getOperand(I++); 441 IsValid = IsValid && isGlobalVariable(C); 442 if (!IsValid) return; 443 444 GlobalVariable *GV = getGlobalVariable(C); 445 IsValid = IsValid && GV && GV->hasInitializer(); 446 if (!IsValid) return; 447 448 ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer()); 449 IsValid = IsValid && CA; 450 if (!IsValid) return; 451 452 for (unsigned i = 0, N = CA->getNumOperands(); IsValid && i < N; ++i) { 453 IsValid = IsValid && isGlobalVariable(CA->getOperand(i)); 454 if (!IsValid) return; 455 456 GlobalVariable *GVE = getGlobalVariable(CA->getOperand(i)); 457 VR.Verify(GVE); 458 } 459 } 460 }; 461 462 } 463 464 //===----------------------------------------------------------------------===// 465 466 DebugInfoDesc *DIDeserializer::Deserialize(Value *V) { 467 return Deserialize(getGlobalVariable(V)); 468 } 469 DebugInfoDesc *DIDeserializer::Deserialize(GlobalVariable *GV) { 470 // Handle NULL. 471 if (!GV) return NULL; 472 473 // Check to see if it has been already deserialized. 474 DebugInfoDesc *&Slot = GlobalDescs[GV]; 475 if (Slot) return Slot; 476 477 // Get the Tag from the global. 478 unsigned Tag = DebugInfoDesc::TagFromGlobal(GV); 479 480 // Create an empty instance of the correct sort. 481 Slot = DebugInfoDesc::DescFactory(Tag); 482 483 // If not a user defined descriptor. 484 if (Slot) { 485 // Deserialize the fields. 486 DIDeserializeVisitor DRAM(*this, GV); 487 DRAM.ApplyToFields(Slot); 488 } 489 490 return Slot; 491 } 492 493 //===----------------------------------------------------------------------===// 494 495 /// getStrPtrType - Return a "sbyte *" type. 496 /// 497 const PointerType *DISerializer::getStrPtrType() { 498 // If not already defined. 499 if (!StrPtrTy) { 500 // Construct the pointer to signed bytes. 501 StrPtrTy = PointerType::getUnqual(Type::Int8Ty); 502 } 503 504 return StrPtrTy; 505 } 506 507 /// getEmptyStructPtrType - Return a "{ }*" type. 508 /// 509 const PointerType *DISerializer::getEmptyStructPtrType() { 510 // If not already defined. 511 if (EmptyStructPtrTy) return EmptyStructPtrTy; 512 513 // Construct the pointer to empty structure type. 514 const StructType *EmptyStructTy = 515 StructType::get(std::vector<const Type*>()); 516 517 // Construct the pointer to empty structure type. 518 EmptyStructPtrTy = PointerType::getUnqual(EmptyStructTy); 519 return EmptyStructPtrTy; 520 } 521 522 /// getTagType - Return the type describing the specified descriptor (via tag.) 523 /// 524 const StructType *DISerializer::getTagType(DebugInfoDesc *DD) { 525 // Attempt to get the previously defined type. 526 StructType *&Ty = TagTypes[DD->getTag()]; 527 528 // If not already defined. 529 if (!Ty) { 530 // Set up fields vector. 531 std::vector<const Type*> Fields; 532 // Get types of fields. 533 DIGetTypesVisitor GTAM(*this, Fields); 534 GTAM.ApplyToFields(DD); 535 536 // Construct structured type. 537 Ty = StructType::get(Fields); 538 539 // Register type name with module. 540 M->addTypeName(DD->getTypeString(), Ty); 541 } 542 543 return Ty; 544 } 545 546 /// getString - Construct the string as constant string global. 547 /// 548 Constant *DISerializer::getString(const std::string &String) { 549 // Check string cache for previous edition. 550 Constant *&Slot = StringCache[String.c_str()]; 551 552 // Return Constant if previously defined. 553 if (Slot) return Slot; 554 555 // If empty string then use a sbyte* null instead. 556 if (String.empty()) { 557 Slot = ConstantPointerNull::get(getStrPtrType()); 558 } else { 559 // Construct string as an llvm constant. 560 Constant *ConstStr = ConstantArray::get(String); 561 562 // Otherwise create and return a new string global. 563 GlobalVariable *StrGV = new GlobalVariable(ConstStr->getType(), true, 564 GlobalVariable::InternalLinkage, 565 ConstStr, ".str", M); 566 StrGV->setSection("llvm.metadata"); 567 568 // Convert to generic string pointer. 569 Slot = ConstantExpr::getBitCast(StrGV, getStrPtrType()); 570 } 571 572 return Slot; 573 574 } 575 576 /// Serialize - Recursively cast the specified descriptor into a GlobalVariable 577 /// so that it can be serialized to a .bc or .ll file. 578 GlobalVariable *DISerializer::Serialize(DebugInfoDesc *DD) { 579 // Check if the DebugInfoDesc is already in the map. 580 GlobalVariable *&Slot = DescGlobals[DD]; 581 582 // See if DebugInfoDesc exists, if so return prior GlobalVariable. 583 if (Slot) return Slot; 584 585 // Get the type associated with the Tag. 586 const StructType *Ty = getTagType(DD); 587 588 // Create the GlobalVariable early to prevent infinite recursion. 589 GlobalVariable *GV = 590 new GlobalVariable(Ty, true, DD->getLinkage(), 591 NULL, DD->getDescString(), M); 592 GV->setSection("llvm.metadata"); 593 594 // Insert new GlobalVariable in DescGlobals map. 595 Slot = GV; 596 597 // Set up elements vector 598 std::vector<Constant*> Elements; 599 // Add fields. 600 DISerializeVisitor SRAM(*this, Elements); 601 SRAM.ApplyToFields(DD); 602 603 // Set the globals initializer. 604 GV->setInitializer(ConstantStruct::get(Ty, Elements)); 605 606 return GV; 607 } 608 609 /// addDescriptor - Directly connect DD with existing GV. 610 void DISerializer::addDescriptor(DebugInfoDesc *DD, 611 GlobalVariable *GV) { 612 DescGlobals[DD] = GV; 613 } 614 615 //===----------------------------------------------------------------------===// 616 617 /// Verify - Return true if the GlobalVariable appears to be a valid 618 /// serialization of a DebugInfoDesc. 619 bool DIVerifier::Verify(Value *V) { 620 return !V || Verify(getGlobalVariable(V)); 621 } 622 bool DIVerifier::Verify(GlobalVariable *GV) { 623 // NULLs are valid. 624 if (!GV) return true; 625 626 // Check prior validity. 627 unsigned &ValiditySlot = Validity[GV]; 628 629 // If visited before then use old state. 630 if (ValiditySlot) return ValiditySlot == Valid; 631 632 // Assume validity for the time being (recursion.) 633 ValiditySlot = Valid; 634 635 // Make sure the global is internal or link once (anchor.) 636 if (GV->getLinkage() != GlobalValue::InternalLinkage && 637 GV->getLinkage() != GlobalValue::LinkOnceLinkage) { 638 ValiditySlot = Invalid; 639 return false; 640 } 641 642 // Get the Tag. 643 unsigned Tag = DebugInfoDesc::TagFromGlobal(GV); 644 645 // Check for user defined descriptors. 646 if (Tag == DW_TAG_invalid) { 647 ValiditySlot = Valid; 648 return true; 649 } 650 651 // Get the Version. 652 unsigned Version = DebugInfoDesc::VersionFromGlobal(GV); 653 654 // Check for version mismatch. 655 if (Version != LLVMDebugVersion) { 656 ValiditySlot = Invalid; 657 return false; 658 } 659 660 // Construct an empty DebugInfoDesc. 661 DebugInfoDesc *DD = DebugInfoDesc::DescFactory(Tag); 662 663 // Allow for user defined descriptors. 664 if (!DD) return true; 665 666 // Get the initializer constant. 667 ConstantStruct *CI = cast<ConstantStruct>(GV->getInitializer()); 668 669 // Get the operand count. 670 unsigned N = CI->getNumOperands(); 671 672 // Get the field count. 673 unsigned &CountSlot = Counts[Tag]; 674 if (!CountSlot) { 675 // Check the operand count to the field count 676 DICountVisitor CTAM; 677 CTAM.ApplyToFields(DD); 678 CountSlot = CTAM.getCount(); 679 } 680 681 // Field count must be at most equal operand count. 682 if (CountSlot > N) { 683 delete DD; 684 ValiditySlot = Invalid; 685 return false; 686 } 687 688 // Check each field for valid type. 689 DIVerifyVisitor VRAM(*this, GV); 690 VRAM.ApplyToFields(DD); 691 692 // Release empty DebugInfoDesc. 693 delete DD; 694 695 // If fields are not valid. 696 if (!VRAM.isValid()) { 697 ValiditySlot = Invalid; 698 return false; 699 } 700 701 return true; 702 } 703 704 /// isVerified - Return true if the specified GV has already been 705 /// verified as a debug information descriptor. 706 bool DIVerifier::isVerified(GlobalVariable *GV) { 707 unsigned &ValiditySlot = Validity[GV]; 708 if (ValiditySlot) return ValiditySlot == Valid; 709 return false; 710 } 711 712 //===----------------------------------------------------------------------===// 713 714 DebugScope::~DebugScope() { 715 for (unsigned i = 0, e = Scopes.size(); i < e; ++i) delete Scopes[i]; 716 for (unsigned i = 0, e = Variables.size(); i < e; ++i) delete Variables[i]; 717 } 718 719 //===----------------------------------------------------------------------===// 720 721 MachineModuleInfo::MachineModuleInfo() 722 : ImmutablePass((intptr_t)&ID) 723 , DR() 724 , VR() 725 , CompileUnits() 726 , Directories() 727 , SourceFiles() 728 , Lines() 729 , LabelIDList() 730 , ScopeMap() 731 , RootScope(NULL) 732 , FrameMoves() 733 , LandingPads() 734 , Personalities() 735 , CallsEHReturn(0) 736 , CallsUnwindInit(0) 737 { 738 // Always emit "no personality" info 739 Personalities.push_back(NULL); 740 } 741 MachineModuleInfo::~MachineModuleInfo() { 742 743 } 744 745 /// doInitialization - Initialize the state for a new module. 746 /// 747 bool MachineModuleInfo::doInitialization() { 748 return false; 749 } 750 751 /// doFinalization - Tear down the state after completion of a module. 752 /// 753 bool MachineModuleInfo::doFinalization() { 754 return false; 755 } 756 757 /// BeginFunction - Begin gathering function meta information. 758 /// 759 void MachineModuleInfo::BeginFunction(MachineFunction *MF) { 760 // Coming soon. 761 } 762 763 /// EndFunction - Discard function meta information. 764 /// 765 void MachineModuleInfo::EndFunction() { 766 // Clean up scope information. 767 if (RootScope) { 768 delete RootScope; 769 ScopeMap.clear(); 770 RootScope = NULL; 771 } 772 773 // Clean up line info. 774 Lines.clear(); 775 776 // Clean up frame info. 777 FrameMoves.clear(); 778 779 // Clean up exception info. 780 LandingPads.clear(); 781 TypeInfos.clear(); 782 FilterIds.clear(); 783 FilterEnds.clear(); 784 CallsEHReturn = 0; 785 CallsUnwindInit = 0; 786 } 787 788 /// getDescFor - Convert a Value to a debug information descriptor. 789 /// 790 // FIXME - use new Value type when available. 791 DebugInfoDesc *MachineModuleInfo::getDescFor(Value *V) { 792 return DR.Deserialize(V); 793 } 794 795 /// AnalyzeModule - Scan the module for global debug information. 796 /// 797 void MachineModuleInfo::AnalyzeModule(Module &M) { 798 SetupCompileUnits(M); 799 800 // Insert functions in the llvm.used array into UsedFunctions. 801 GlobalVariable *GV = M.getGlobalVariable("llvm.used"); 802 if (!GV || !GV->hasInitializer()) return; 803 804 // Should be an array of 'i8*'. 805 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 806 if (InitList == 0) return; 807 808 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 809 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InitList->getOperand(i))) 810 if (CE->getOpcode() == Instruction::BitCast) 811 if (Function *F = dyn_cast<Function>(CE->getOperand(0))) 812 UsedFunctions.insert(F); 813 } 814 } 815 816 /// SetupCompileUnits - Set up the unique vector of compile units. 817 /// 818 void MachineModuleInfo::SetupCompileUnits(Module &M) { 819 std::vector<void*> CUList; 820 CompileUnitDesc CUD; 821 getAnchoredDescriptors(M, &CUD, CUList); 822 823 for (unsigned i = 0, e = CUList.size(); i < e; i++) 824 CompileUnits.insert((CompileUnitDesc*)CUList[i]); 825 } 826 827 /// getCompileUnits - Return a vector of debug compile units. 828 /// 829 const UniqueVector<CompileUnitDesc *> MachineModuleInfo::getCompileUnits()const{ 830 return CompileUnits; 831 } 832 833 /// getAnchoredDescriptors - Return a vector of anchored debug descriptors. 834 /// 835 void 836 MachineModuleInfo::getAnchoredDescriptors(Module &M, const AnchoredDesc *Desc, 837 std::vector<void*> &AnchoredDescs) { 838 std::vector<GlobalVariable*> Globals; 839 getGlobalVariablesUsing(M, Desc->getAnchorString(), Globals); 840 841 for (unsigned i = 0, e = Globals.size(); i < e; ++i) { 842 GlobalVariable *GV = Globals[i]; 843 844 // FIXME - In the short term, changes are too drastic to continue. 845 if (DebugInfoDesc::TagFromGlobal(GV) == Desc->getTag() && 846 DebugInfoDesc::VersionFromGlobal(GV) == LLVMDebugVersion) 847 AnchoredDescs.push_back(DR.Deserialize(GV)); 848 } 849 } 850 851 /// getGlobalVariablesUsing - Return all of the GlobalVariables that use the 852 /// named GlobalVariable. 853 void 854 MachineModuleInfo::getGlobalVariablesUsing(Module &M, 855 const std::string &RootName, 856 std::vector<GlobalVariable*> &Globals) { 857 return ::getGlobalVariablesUsing(M, RootName, Globals); 858 } 859 860 /// RecordSourceLine - Records location information and associates it with a 861 /// debug label. Returns a unique label ID used to generate a label and 862 /// provide correspondence to the source line list. 863 unsigned MachineModuleInfo::RecordSourceLine(unsigned Line, unsigned Column, 864 unsigned Source) { 865 unsigned ID = NextLabelID(); 866 Lines.push_back(SourceLineInfo(Line, Column, Source, ID)); 867 return ID; 868 } 869 870 /// RecordSource - Register a source file with debug info. Returns an source 871 /// ID. 872 unsigned MachineModuleInfo::RecordSource(const std::string &Directory, 873 const std::string &Source) { 874 unsigned DirectoryID = Directories.insert(Directory); 875 return SourceFiles.insert(SourceFileInfo(DirectoryID, Source)); 876 } 877 unsigned MachineModuleInfo::RecordSource(const CompileUnitDesc *CompileUnit) { 878 return RecordSource(CompileUnit->getDirectory(), 879 CompileUnit->getFileName()); 880 } 881 882 /// RecordRegionStart - Indicate the start of a region. 883 /// 884 unsigned MachineModuleInfo::RecordRegionStart(Value *V) { 885 // FIXME - need to be able to handle split scopes because of bb cloning. 886 DebugInfoDesc *ScopeDesc = DR.Deserialize(V); 887 DebugScope *Scope = getOrCreateScope(ScopeDesc); 888 unsigned ID = NextLabelID(); 889 if (!Scope->getStartLabelID()) Scope->setStartLabelID(ID); 890 return ID; 891 } 892 893 /// RecordRegionEnd - Indicate the end of a region. 894 /// 895 unsigned MachineModuleInfo::RecordRegionEnd(Value *V) { 896 // FIXME - need to be able to handle split scopes because of bb cloning. 897 DebugInfoDesc *ScopeDesc = DR.Deserialize(V); 898 DebugScope *Scope = getOrCreateScope(ScopeDesc); 899 unsigned ID = NextLabelID(); 900 Scope->setEndLabelID(ID); 901 return ID; 902 } 903 904 /// RecordVariable - Indicate the declaration of a local variable. 905 /// 906 void MachineModuleInfo::RecordVariable(GlobalValue *GV, unsigned FrameIndex) { 907 VariableDesc *VD = cast<VariableDesc>(DR.Deserialize(GV)); 908 DebugScope *Scope = getOrCreateScope(VD->getContext()); 909 DebugVariable *DV = new DebugVariable(VD, FrameIndex); 910 Scope->AddVariable(DV); 911 } 912 913 /// getOrCreateScope - Returns the scope associated with the given descriptor. 914 /// 915 DebugScope *MachineModuleInfo::getOrCreateScope(DebugInfoDesc *ScopeDesc) { 916 DebugScope *&Slot = ScopeMap[ScopeDesc]; 917 if (!Slot) { 918 // FIXME - breaks down when the context is an inlined function. 919 DebugInfoDesc *ParentDesc = NULL; 920 if (BlockDesc *Block = dyn_cast<BlockDesc>(ScopeDesc)) { 921 ParentDesc = Block->getContext(); 922 } 923 DebugScope *Parent = ParentDesc ? getOrCreateScope(ParentDesc) : NULL; 924 Slot = new DebugScope(Parent, ScopeDesc); 925 if (Parent) { 926 Parent->AddScope(Slot); 927 } else if (RootScope) { 928 // FIXME - Add inlined function scopes to the root so we can delete 929 // them later. Long term, handle inlined functions properly. 930 RootScope->AddScope(Slot); 931 } else { 932 // First function is top level function. 933 RootScope = Slot; 934 } 935 } 936 return Slot; 937 } 938 939 //===-EH-------------------------------------------------------------------===// 940 941 /// getOrCreateLandingPadInfo - Find or create an LandingPadInfo for the 942 /// specified MachineBasicBlock. 943 LandingPadInfo & 944 MachineModuleInfo::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) { 945 unsigned N = LandingPads.size(); 946 947 for (unsigned i = 0; i < N; ++i) { 948 LandingPadInfo &LP = LandingPads[i]; 949 if (LP.LandingPadBlock == LandingPad) 950 return LP; 951 } 952 953 LandingPads.push_back(LandingPadInfo(LandingPad)); 954 return LandingPads[N]; 955 } 956 957 /// addInvoke - Provide the begin and end labels of an invoke style call and 958 /// associate it with a try landing pad block. 959 void MachineModuleInfo::addInvoke(MachineBasicBlock *LandingPad, 960 unsigned BeginLabel, unsigned EndLabel) { 961 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 962 LP.BeginLabels.push_back(BeginLabel); 963 LP.EndLabels.push_back(EndLabel); 964 } 965 966 /// addLandingPad - Provide the label of a try LandingPad block. 967 /// 968 unsigned MachineModuleInfo::addLandingPad(MachineBasicBlock *LandingPad) { 969 unsigned LandingPadLabel = NextLabelID(); 970 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 971 LP.LandingPadLabel = LandingPadLabel; 972 return LandingPadLabel; 973 } 974 975 /// addPersonality - Provide the personality function for the exception 976 /// information. 977 void MachineModuleInfo::addPersonality(MachineBasicBlock *LandingPad, 978 Function *Personality) { 979 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 980 LP.Personality = Personality; 981 982 for (unsigned i = 0, e = Personalities.size(); i < e; ++i) 983 if (Personalities[i] == Personality) 984 return; 985 986 Personalities.push_back(Personality); 987 } 988 989 /// addCatchTypeInfo - Provide the catch typeinfo for a landing pad. 990 /// 991 void MachineModuleInfo::addCatchTypeInfo(MachineBasicBlock *LandingPad, 992 std::vector<GlobalVariable *> &TyInfo) { 993 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 994 for (unsigned N = TyInfo.size(); N; --N) 995 LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1])); 996 } 997 998 /// addFilterTypeInfo - Provide the filter typeinfo for a landing pad. 999 /// 1000 void MachineModuleInfo::addFilterTypeInfo(MachineBasicBlock *LandingPad, 1001 std::vector<GlobalVariable *> &TyInfo) { 1002 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 1003 unsigned TyInfoSize = TyInfo.size(); 1004 std::vector<unsigned> IdsInFilter(TyInfoSize); 1005 1006 for (unsigned I = 0; I != TyInfoSize; ++I) 1007 IdsInFilter[I] = getTypeIDFor(TyInfo[I]); 1008 1009 LP.TypeIds.push_back(getFilterIDFor(IdsInFilter)); 1010 } 1011 1012 /// addCleanup - Add a cleanup action for a landing pad. 1013 /// 1014 void MachineModuleInfo::addCleanup(MachineBasicBlock *LandingPad) { 1015 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 1016 LP.TypeIds.push_back(0); 1017 } 1018 1019 /// TidyLandingPads - Remap landing pad labels and remove any deleted landing 1020 /// pads. 1021 void MachineModuleInfo::TidyLandingPads() { 1022 for (unsigned i = 0; i != LandingPads.size(); ) { 1023 LandingPadInfo &LandingPad = LandingPads[i]; 1024 LandingPad.LandingPadLabel = MappedLabel(LandingPad.LandingPadLabel); 1025 1026 // Special case: we *should* emit LPs with null LP MBB. This indicates 1027 // "nounwind" case. 1028 if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) { 1029 LandingPads.erase(LandingPads.begin() + i); 1030 continue; 1031 } 1032 1033 for (unsigned j = 0; j != LandingPads[i].BeginLabels.size(); ) { 1034 unsigned BeginLabel = MappedLabel(LandingPad.BeginLabels[j]); 1035 unsigned EndLabel = MappedLabel(LandingPad.EndLabels[j]); 1036 1037 if (!BeginLabel || !EndLabel) { 1038 LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j); 1039 LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j); 1040 continue; 1041 } 1042 1043 LandingPad.BeginLabels[j] = BeginLabel; 1044 LandingPad.EndLabels[j] = EndLabel; 1045 ++j; 1046 } 1047 1048 // Remove landing pads with no try-ranges. 1049 if (LandingPads[i].BeginLabels.empty()) { 1050 LandingPads.erase(LandingPads.begin() + i); 1051 continue; 1052 } 1053 1054 // If there is no landing pad, ensure that the list of typeids is empty. 1055 // If the only typeid is a cleanup, this is the same as having no typeids. 1056 if (!LandingPad.LandingPadBlock || 1057 (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0])) 1058 LandingPad.TypeIds.clear(); 1059 1060 ++i; 1061 } 1062 } 1063 1064 /// getTypeIDFor - Return the type id for the specified typeinfo. This is 1065 /// function wide. 1066 unsigned MachineModuleInfo::getTypeIDFor(GlobalVariable *TI) { 1067 for (unsigned i = 0, e = TypeInfos.size(); i != e; ++i) 1068 if (TypeInfos[i] == TI) 1069 return i + 1; 1070 1071 TypeInfos.push_back(TI); 1072 return TypeInfos.size(); 1073 } 1074 1075 /// getFilterIDFor - Return the filter id for the specified typeinfos. This is 1076 /// function wide. 1077 int MachineModuleInfo::getFilterIDFor(std::vector<unsigned> &TyIds) { 1078 // If the new filter coincides with the tail of an existing filter, then 1079 // re-use the existing filter. Folding filters more than this requires 1080 // re-ordering filters and/or their elements - probably not worth it. 1081 for (std::vector<unsigned>::iterator I = FilterEnds.begin(), 1082 E = FilterEnds.end(); I != E; ++I) { 1083 unsigned i = *I, j = TyIds.size(); 1084 1085 while (i && j) 1086 if (FilterIds[--i] != TyIds[--j]) 1087 goto try_next; 1088 1089 if (!j) 1090 // The new filter coincides with range [i, end) of the existing filter. 1091 return -(1 + i); 1092 1093 try_next:; 1094 } 1095 1096 // Add the new filter. 1097 int FilterID = -(1 + FilterIds.size()); 1098 FilterIds.reserve(FilterIds.size() + TyIds.size() + 1); 1099 1100 for (unsigned I = 0, N = TyIds.size(); I != N; ++I) 1101 FilterIds.push_back(TyIds[I]); 1102 1103 FilterEnds.push_back(FilterIds.size()); 1104 FilterIds.push_back(0); // terminator 1105 return FilterID; 1106 } 1107 1108 /// getPersonality - Return the personality function for the current function. 1109 Function *MachineModuleInfo::getPersonality() const { 1110 // FIXME: Until PR1414 will be fixed, we're using 1 personality function per 1111 // function 1112 return !LandingPads.empty() ? LandingPads[0].Personality : NULL; 1113 } 1114 1115 /// getPersonalityIndex - Return unique index for current personality 1116 /// function. NULL personality function should always get zero index. 1117 unsigned MachineModuleInfo::getPersonalityIndex() const { 1118 const Function* Personality = NULL; 1119 1120 // Scan landing pads. If there is at least one non-NULL personality - use it. 1121 for (unsigned i = 0, e = LandingPads.size(); i != e; ++i) 1122 if (LandingPads[i].Personality) { 1123 Personality = LandingPads[i].Personality; 1124 break; 1125 } 1126 1127 for (unsigned i = 0, e = Personalities.size(); i < e; ++i) 1128 if (Personalities[i] == Personality) 1129 return i; 1130 1131 // This should never happen 1132 assert(0 && "Personality function should be set!"); 1133 return 0; 1134 } 1135 1136 //===----------------------------------------------------------------------===// 1137 /// DebugLabelFolding pass - This pass prunes out redundant labels. This allows 1138 /// a info consumer to determine if the range of two labels is empty, by seeing 1139 /// if the labels map to the same reduced label. 1140 1141 namespace llvm { 1142 1143 struct DebugLabelFolder : public MachineFunctionPass { 1144 static char ID; 1145 DebugLabelFolder() : MachineFunctionPass((intptr_t)&ID) {} 1146 1147 virtual bool runOnMachineFunction(MachineFunction &MF); 1148 virtual const char *getPassName() const { return "Label Folder"; } 1149 }; 1150 1151 char DebugLabelFolder::ID = 0; 1152 1153 bool DebugLabelFolder::runOnMachineFunction(MachineFunction &MF) { 1154 // Get machine module info. 1155 MachineModuleInfo *MMI = getAnalysisToUpdate<MachineModuleInfo>(); 1156 if (!MMI) return false; 1157 1158 // Track if change is made. 1159 bool MadeChange = false; 1160 // No prior label to begin. 1161 unsigned PriorLabel = 0; 1162 1163 // Iterate through basic blocks. 1164 for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); 1165 BB != E; ++BB) { 1166 // Iterate through instructions. 1167 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) { 1168 // Is it a label. 1169 if (I->isDebugLabel()) { 1170 // The label ID # is always operand #0, an immediate. 1171 unsigned NextLabel = I->getOperand(0).getImm(); 1172 1173 // If there was an immediate prior label. 1174 if (PriorLabel) { 1175 // Remap the current label to prior label. 1176 MMI->RemapLabel(NextLabel, PriorLabel); 1177 // Delete the current label. 1178 I = BB->erase(I); 1179 // Indicate a change has been made. 1180 MadeChange = true; 1181 continue; 1182 } else { 1183 // Start a new round. 1184 PriorLabel = NextLabel; 1185 } 1186 } else { 1187 // No consecutive labels. 1188 PriorLabel = 0; 1189 } 1190 1191 ++I; 1192 } 1193 } 1194 1195 return MadeChange; 1196 } 1197 1198 FunctionPass *createDebugLabelFoldingPass() { return new DebugLabelFolder(); } 1199 1200 } 1201