1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/ADT/FoldingSet.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/Assembly/Writer.h" 19 #include "llvm/CodeGen/MachineConstantPool.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineMemOperand.h" 22 #include "llvm/CodeGen/MachineModuleInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/PseudoSourceValue.h" 25 #include "llvm/Constants.h" 26 #include "llvm/DebugInfo.h" 27 #include "llvm/Function.h" 28 #include "llvm/InlineAsm.h" 29 #include "llvm/LLVMContext.h" 30 #include "llvm/MC/MCInstrDesc.h" 31 #include "llvm/MC/MCSymbol.h" 32 #include "llvm/Metadata.h" 33 #include "llvm/Module.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/LeakDetector.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Target/TargetInstrInfo.h" 40 #include "llvm/Target/TargetMachine.h" 41 #include "llvm/Target/TargetRegisterInfo.h" 42 #include "llvm/Type.h" 43 #include "llvm/Value.h" 44 using namespace llvm; 45 46 //===----------------------------------------------------------------------===// 47 // MachineOperand Implementation 48 //===----------------------------------------------------------------------===// 49 50 void MachineOperand::setReg(unsigned Reg) { 51 if (getReg() == Reg) return; // No change. 52 53 // Otherwise, we have to change the register. If this operand is embedded 54 // into a machine function, we need to update the old and new register's 55 // use/def lists. 56 if (MachineInstr *MI = getParent()) 57 if (MachineBasicBlock *MBB = MI->getParent()) 58 if (MachineFunction *MF = MBB->getParent()) { 59 MachineRegisterInfo &MRI = MF->getRegInfo(); 60 MRI.removeRegOperandFromUseList(this); 61 SmallContents.RegNo = Reg; 62 MRI.addRegOperandToUseList(this); 63 return; 64 } 65 66 // Otherwise, just change the register, no problem. :) 67 SmallContents.RegNo = Reg; 68 } 69 70 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 71 const TargetRegisterInfo &TRI) { 72 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 73 if (SubIdx && getSubReg()) 74 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 75 setReg(Reg); 76 if (SubIdx) 77 setSubReg(SubIdx); 78 } 79 80 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 81 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 82 if (getSubReg()) { 83 Reg = TRI.getSubReg(Reg, getSubReg()); 84 // Note that getSubReg() may return 0 if the sub-register doesn't exist. 85 // That won't happen in legal code. 86 setSubReg(0); 87 } 88 setReg(Reg); 89 } 90 91 /// Change a def to a use, or a use to a def. 92 void MachineOperand::setIsDef(bool Val) { 93 assert(isReg() && "Wrong MachineOperand accessor"); 94 assert((!Val || !isDebug()) && "Marking a debug operation as def"); 95 if (IsDef == Val) 96 return; 97 // MRI may keep uses and defs in different list positions. 98 if (MachineInstr *MI = getParent()) 99 if (MachineBasicBlock *MBB = MI->getParent()) 100 if (MachineFunction *MF = MBB->getParent()) { 101 MachineRegisterInfo &MRI = MF->getRegInfo(); 102 MRI.removeRegOperandFromUseList(this); 103 IsDef = Val; 104 MRI.addRegOperandToUseList(this); 105 return; 106 } 107 IsDef = Val; 108 } 109 110 /// ChangeToImmediate - Replace this operand with a new immediate operand of 111 /// the specified value. If an operand is known to be an immediate already, 112 /// the setImm method should be used. 113 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 114 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 115 // If this operand is currently a register operand, and if this is in a 116 // function, deregister the operand from the register's use/def list. 117 if (isReg() && isOnRegUseList()) 118 if (MachineInstr *MI = getParent()) 119 if (MachineBasicBlock *MBB = MI->getParent()) 120 if (MachineFunction *MF = MBB->getParent()) 121 MF->getRegInfo().removeRegOperandFromUseList(this); 122 123 OpKind = MO_Immediate; 124 Contents.ImmVal = ImmVal; 125 } 126 127 /// ChangeToRegister - Replace this operand with a new register operand of 128 /// the specified value. If an operand is known to be an register already, 129 /// the setReg method should be used. 130 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 131 bool isKill, bool isDead, bool isUndef, 132 bool isDebug) { 133 MachineRegisterInfo *RegInfo = 0; 134 if (MachineInstr *MI = getParent()) 135 if (MachineBasicBlock *MBB = MI->getParent()) 136 if (MachineFunction *MF = MBB->getParent()) 137 RegInfo = &MF->getRegInfo(); 138 // If this operand is already a register operand, remove it from the 139 // register's use/def lists. 140 bool WasReg = isReg(); 141 if (RegInfo && WasReg) 142 RegInfo->removeRegOperandFromUseList(this); 143 144 // Change this to a register and set the reg#. 145 OpKind = MO_Register; 146 SmallContents.RegNo = Reg; 147 SubReg = 0; 148 IsDef = isDef; 149 IsImp = isImp; 150 IsKill = isKill; 151 IsDead = isDead; 152 IsUndef = isUndef; 153 IsInternalRead = false; 154 IsEarlyClobber = false; 155 IsDebug = isDebug; 156 // Ensure isOnRegUseList() returns false. 157 Contents.Reg.Prev = 0; 158 // Preserve the tie when the operand was already a register. 159 if (!WasReg) 160 TiedTo = 0; 161 162 // If this operand is embedded in a function, add the operand to the 163 // register's use/def list. 164 if (RegInfo) 165 RegInfo->addRegOperandToUseList(this); 166 } 167 168 /// isIdenticalTo - Return true if this operand is identical to the specified 169 /// operand. Note that this should stay in sync with the hash_value overload 170 /// below. 171 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 172 if (getType() != Other.getType() || 173 getTargetFlags() != Other.getTargetFlags()) 174 return false; 175 176 switch (getType()) { 177 case MachineOperand::MO_Register: 178 return getReg() == Other.getReg() && isDef() == Other.isDef() && 179 getSubReg() == Other.getSubReg(); 180 case MachineOperand::MO_Immediate: 181 return getImm() == Other.getImm(); 182 case MachineOperand::MO_CImmediate: 183 return getCImm() == Other.getCImm(); 184 case MachineOperand::MO_FPImmediate: 185 return getFPImm() == Other.getFPImm(); 186 case MachineOperand::MO_MachineBasicBlock: 187 return getMBB() == Other.getMBB(); 188 case MachineOperand::MO_FrameIndex: 189 return getIndex() == Other.getIndex(); 190 case MachineOperand::MO_ConstantPoolIndex: 191 case MachineOperand::MO_TargetIndex: 192 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 193 case MachineOperand::MO_JumpTableIndex: 194 return getIndex() == Other.getIndex(); 195 case MachineOperand::MO_GlobalAddress: 196 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 197 case MachineOperand::MO_ExternalSymbol: 198 return !strcmp(getSymbolName(), Other.getSymbolName()) && 199 getOffset() == Other.getOffset(); 200 case MachineOperand::MO_BlockAddress: 201 return getBlockAddress() == Other.getBlockAddress() && 202 getOffset() == Other.getOffset(); 203 case MO_RegisterMask: 204 return getRegMask() == Other.getRegMask(); 205 case MachineOperand::MO_MCSymbol: 206 return getMCSymbol() == Other.getMCSymbol(); 207 case MachineOperand::MO_Metadata: 208 return getMetadata() == Other.getMetadata(); 209 } 210 llvm_unreachable("Invalid machine operand type"); 211 } 212 213 // Note: this must stay exactly in sync with isIdenticalTo above. 214 hash_code llvm::hash_value(const MachineOperand &MO) { 215 switch (MO.getType()) { 216 case MachineOperand::MO_Register: 217 // Register operands don't have target flags. 218 return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef()); 219 case MachineOperand::MO_Immediate: 220 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm()); 221 case MachineOperand::MO_CImmediate: 222 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm()); 223 case MachineOperand::MO_FPImmediate: 224 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm()); 225 case MachineOperand::MO_MachineBasicBlock: 226 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB()); 227 case MachineOperand::MO_FrameIndex: 228 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 229 case MachineOperand::MO_ConstantPoolIndex: 230 case MachineOperand::MO_TargetIndex: 231 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(), 232 MO.getOffset()); 233 case MachineOperand::MO_JumpTableIndex: 234 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 235 case MachineOperand::MO_ExternalSymbol: 236 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(), 237 MO.getSymbolName()); 238 case MachineOperand::MO_GlobalAddress: 239 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(), 240 MO.getOffset()); 241 case MachineOperand::MO_BlockAddress: 242 return hash_combine(MO.getType(), MO.getTargetFlags(), 243 MO.getBlockAddress(), MO.getOffset()); 244 case MachineOperand::MO_RegisterMask: 245 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask()); 246 case MachineOperand::MO_Metadata: 247 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata()); 248 case MachineOperand::MO_MCSymbol: 249 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol()); 250 } 251 llvm_unreachable("Invalid machine operand type"); 252 } 253 254 /// print - Print the specified machine operand. 255 /// 256 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const { 257 // If the instruction is embedded into a basic block, we can find the 258 // target info for the instruction. 259 if (!TM) 260 if (const MachineInstr *MI = getParent()) 261 if (const MachineBasicBlock *MBB = MI->getParent()) 262 if (const MachineFunction *MF = MBB->getParent()) 263 TM = &MF->getTarget(); 264 const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0; 265 266 switch (getType()) { 267 case MachineOperand::MO_Register: 268 OS << PrintReg(getReg(), TRI, getSubReg()); 269 270 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 271 isInternalRead() || isEarlyClobber() || isTied()) { 272 OS << '<'; 273 bool NeedComma = false; 274 if (isDef()) { 275 if (NeedComma) OS << ','; 276 if (isEarlyClobber()) 277 OS << "earlyclobber,"; 278 if (isImplicit()) 279 OS << "imp-"; 280 OS << "def"; 281 NeedComma = true; 282 // <def,read-undef> only makes sense when getSubReg() is set. 283 // Don't clutter the output otherwise. 284 if (isUndef() && getSubReg()) 285 OS << ",read-undef"; 286 } else if (isImplicit()) { 287 OS << "imp-use"; 288 NeedComma = true; 289 } 290 291 if (isKill()) { 292 if (NeedComma) OS << ','; 293 OS << "kill"; 294 NeedComma = true; 295 } 296 if (isDead()) { 297 if (NeedComma) OS << ','; 298 OS << "dead"; 299 NeedComma = true; 300 } 301 if (isUndef() && isUse()) { 302 if (NeedComma) OS << ','; 303 OS << "undef"; 304 NeedComma = true; 305 } 306 if (isInternalRead()) { 307 if (NeedComma) OS << ','; 308 OS << "internal"; 309 NeedComma = true; 310 } 311 if (isTied()) { 312 if (NeedComma) OS << ','; 313 OS << "tied"; 314 if (TiedTo != 15) 315 OS << unsigned(TiedTo - 1); 316 NeedComma = true; 317 } 318 OS << '>'; 319 } 320 break; 321 case MachineOperand::MO_Immediate: 322 OS << getImm(); 323 break; 324 case MachineOperand::MO_CImmediate: 325 getCImm()->getValue().print(OS, false); 326 break; 327 case MachineOperand::MO_FPImmediate: 328 if (getFPImm()->getType()->isFloatTy()) 329 OS << getFPImm()->getValueAPF().convertToFloat(); 330 else 331 OS << getFPImm()->getValueAPF().convertToDouble(); 332 break; 333 case MachineOperand::MO_MachineBasicBlock: 334 OS << "<BB#" << getMBB()->getNumber() << ">"; 335 break; 336 case MachineOperand::MO_FrameIndex: 337 OS << "<fi#" << getIndex() << '>'; 338 break; 339 case MachineOperand::MO_ConstantPoolIndex: 340 OS << "<cp#" << getIndex(); 341 if (getOffset()) OS << "+" << getOffset(); 342 OS << '>'; 343 break; 344 case MachineOperand::MO_TargetIndex: 345 OS << "<ti#" << getIndex(); 346 if (getOffset()) OS << "+" << getOffset(); 347 OS << '>'; 348 break; 349 case MachineOperand::MO_JumpTableIndex: 350 OS << "<jt#" << getIndex() << '>'; 351 break; 352 case MachineOperand::MO_GlobalAddress: 353 OS << "<ga:"; 354 WriteAsOperand(OS, getGlobal(), /*PrintType=*/false); 355 if (getOffset()) OS << "+" << getOffset(); 356 OS << '>'; 357 break; 358 case MachineOperand::MO_ExternalSymbol: 359 OS << "<es:" << getSymbolName(); 360 if (getOffset()) OS << "+" << getOffset(); 361 OS << '>'; 362 break; 363 case MachineOperand::MO_BlockAddress: 364 OS << '<'; 365 WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false); 366 if (getOffset()) OS << "+" << getOffset(); 367 OS << '>'; 368 break; 369 case MachineOperand::MO_RegisterMask: 370 OS << "<regmask>"; 371 break; 372 case MachineOperand::MO_Metadata: 373 OS << '<'; 374 WriteAsOperand(OS, getMetadata(), /*PrintType=*/false); 375 OS << '>'; 376 break; 377 case MachineOperand::MO_MCSymbol: 378 OS << "<MCSym=" << *getMCSymbol() << '>'; 379 break; 380 } 381 382 if (unsigned TF = getTargetFlags()) 383 OS << "[TF=" << TF << ']'; 384 } 385 386 //===----------------------------------------------------------------------===// 387 // MachineMemOperand Implementation 388 //===----------------------------------------------------------------------===// 389 390 /// getAddrSpace - Return the LLVM IR address space number that this pointer 391 /// points into. 392 unsigned MachinePointerInfo::getAddrSpace() const { 393 if (V == 0) return 0; 394 return cast<PointerType>(V->getType())->getAddressSpace(); 395 } 396 397 /// getConstantPool - Return a MachinePointerInfo record that refers to the 398 /// constant pool. 399 MachinePointerInfo MachinePointerInfo::getConstantPool() { 400 return MachinePointerInfo(PseudoSourceValue::getConstantPool()); 401 } 402 403 /// getFixedStack - Return a MachinePointerInfo record that refers to the 404 /// the specified FrameIndex. 405 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) { 406 return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset); 407 } 408 409 MachinePointerInfo MachinePointerInfo::getJumpTable() { 410 return MachinePointerInfo(PseudoSourceValue::getJumpTable()); 411 } 412 413 MachinePointerInfo MachinePointerInfo::getGOT() { 414 return MachinePointerInfo(PseudoSourceValue::getGOT()); 415 } 416 417 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) { 418 return MachinePointerInfo(PseudoSourceValue::getStack(), Offset); 419 } 420 421 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f, 422 uint64_t s, unsigned int a, 423 const MDNode *TBAAInfo, 424 const MDNode *Ranges) 425 : PtrInfo(ptrinfo), Size(s), 426 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)), 427 TBAAInfo(TBAAInfo), Ranges(Ranges) { 428 assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) && 429 "invalid pointer value"); 430 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 431 assert((isLoad() || isStore()) && "Not a load/store!"); 432 } 433 434 /// Profile - Gather unique data for the object. 435 /// 436 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 437 ID.AddInteger(getOffset()); 438 ID.AddInteger(Size); 439 ID.AddPointer(getValue()); 440 ID.AddInteger(Flags); 441 } 442 443 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 444 // The Value and Offset may differ due to CSE. But the flags and size 445 // should be the same. 446 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 447 assert(MMO->getSize() == getSize() && "Size mismatch!"); 448 449 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 450 // Update the alignment value. 451 Flags = (Flags & ((1 << MOMaxBits) - 1)) | 452 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits); 453 // Also update the base and offset, because the new alignment may 454 // not be applicable with the old ones. 455 PtrInfo = MMO->PtrInfo; 456 } 457 } 458 459 /// getAlignment - Return the minimum known alignment in bytes of the 460 /// actual memory reference. 461 uint64_t MachineMemOperand::getAlignment() const { 462 return MinAlign(getBaseAlignment(), getOffset()); 463 } 464 465 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) { 466 assert((MMO.isLoad() || MMO.isStore()) && 467 "SV has to be a load, store or both."); 468 469 if (MMO.isVolatile()) 470 OS << "Volatile "; 471 472 if (MMO.isLoad()) 473 OS << "LD"; 474 if (MMO.isStore()) 475 OS << "ST"; 476 OS << MMO.getSize(); 477 478 // Print the address information. 479 OS << "["; 480 if (!MMO.getValue()) 481 OS << "<unknown>"; 482 else 483 WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false); 484 485 // If the alignment of the memory reference itself differs from the alignment 486 // of the base pointer, print the base alignment explicitly, next to the base 487 // pointer. 488 if (MMO.getBaseAlignment() != MMO.getAlignment()) 489 OS << "(align=" << MMO.getBaseAlignment() << ")"; 490 491 if (MMO.getOffset() != 0) 492 OS << "+" << MMO.getOffset(); 493 OS << "]"; 494 495 // Print the alignment of the reference. 496 if (MMO.getBaseAlignment() != MMO.getAlignment() || 497 MMO.getBaseAlignment() != MMO.getSize()) 498 OS << "(align=" << MMO.getAlignment() << ")"; 499 500 // Print TBAA info. 501 if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) { 502 OS << "(tbaa="; 503 if (TBAAInfo->getNumOperands() > 0) 504 WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false); 505 else 506 OS << "<unknown>"; 507 OS << ")"; 508 } 509 510 // Print nontemporal info. 511 if (MMO.isNonTemporal()) 512 OS << "(nontemporal)"; 513 514 return OS; 515 } 516 517 //===----------------------------------------------------------------------===// 518 // MachineInstr Implementation 519 //===----------------------------------------------------------------------===// 520 521 void MachineInstr::addImplicitDefUseOperands() { 522 if (MCID->ImplicitDefs) 523 for (const uint16_t *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; ++ImpDefs) 524 addOperand(MachineOperand::CreateReg(*ImpDefs, true, true)); 525 if (MCID->ImplicitUses) 526 for (const uint16_t *ImpUses = MCID->getImplicitUses(); *ImpUses; ++ImpUses) 527 addOperand(MachineOperand::CreateReg(*ImpUses, false, true)); 528 } 529 530 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 531 /// implicit operands. It reserves space for the number of operands specified by 532 /// the MCInstrDesc. 533 MachineInstr::MachineInstr(const MCInstrDesc &tid, const DebugLoc dl, 534 bool NoImp) 535 : MCID(&tid), Flags(0), AsmPrinterFlags(0), 536 NumMemRefs(0), MemRefs(0), Parent(0), debugLoc(dl) { 537 unsigned NumImplicitOps = 0; 538 if (!NoImp) 539 NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 540 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 541 if (!NoImp) 542 addImplicitDefUseOperands(); 543 // Make sure that we get added to a machine basicblock 544 LeakDetector::addGarbageObject(this); 545 } 546 547 /// MachineInstr ctor - Copies MachineInstr arg exactly 548 /// 549 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 550 : MCID(&MI.getDesc()), Flags(0), AsmPrinterFlags(0), 551 NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs), 552 Parent(0), debugLoc(MI.getDebugLoc()) { 553 Operands.reserve(MI.getNumOperands()); 554 555 // Add operands 556 for (unsigned i = 0; i != MI.getNumOperands(); ++i) 557 addOperand(MI.getOperand(i)); 558 559 // Copy all the flags. 560 Flags = MI.Flags; 561 562 // Set parent to null. 563 Parent = 0; 564 565 LeakDetector::addGarbageObject(this); 566 } 567 568 MachineInstr::~MachineInstr() { 569 LeakDetector::removeGarbageObject(this); 570 #ifndef NDEBUG 571 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 572 assert(Operands[i].ParentMI == this && "ParentMI mismatch!"); 573 assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) && 574 "Reg operand def/use list corrupted"); 575 } 576 #endif 577 } 578 579 /// getRegInfo - If this instruction is embedded into a MachineFunction, 580 /// return the MachineRegisterInfo object for the current function, otherwise 581 /// return null. 582 MachineRegisterInfo *MachineInstr::getRegInfo() { 583 if (MachineBasicBlock *MBB = getParent()) 584 return &MBB->getParent()->getRegInfo(); 585 return 0; 586 } 587 588 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 589 /// this instruction from their respective use lists. This requires that the 590 /// operands already be on their use lists. 591 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 592 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 593 if (Operands[i].isReg()) 594 MRI.removeRegOperandFromUseList(&Operands[i]); 595 } 596 597 /// AddRegOperandsToUseLists - Add all of the register operands in 598 /// this instruction from their respective use lists. This requires that the 599 /// operands not be on their use lists yet. 600 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 601 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 602 if (Operands[i].isReg()) 603 MRI.addRegOperandToUseList(&Operands[i]); 604 } 605 606 /// addOperand - Add the specified operand to the instruction. If it is an 607 /// implicit operand, it is added to the end of the operand list. If it is 608 /// an explicit operand it is added at the end of the explicit operand list 609 /// (before the first implicit operand). 610 void MachineInstr::addOperand(const MachineOperand &Op) { 611 assert(MCID && "Cannot add operands before providing an instr descriptor"); 612 bool isImpReg = Op.isReg() && Op.isImplicit(); 613 MachineRegisterInfo *RegInfo = getRegInfo(); 614 615 // If the Operands backing store is reallocated, all register operands must 616 // be removed and re-added to RegInfo. It is storing pointers to operands. 617 bool Reallocate = RegInfo && 618 !Operands.empty() && Operands.size() == Operands.capacity(); 619 620 // Find the insert location for the new operand. Implicit registers go at 621 // the end, everything goes before the implicit regs. 622 unsigned OpNo = Operands.size(); 623 624 // Remove all the implicit operands from RegInfo if they need to be shifted. 625 // FIXME: Allow mixed explicit and implicit operands on inline asm. 626 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 627 // implicit-defs, but they must not be moved around. See the FIXME in 628 // InstrEmitter.cpp. 629 if (!isImpReg && !isInlineAsm()) { 630 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 631 --OpNo; 632 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 633 if (RegInfo) 634 RegInfo->removeRegOperandFromUseList(&Operands[OpNo]); 635 } 636 } 637 638 // OpNo now points as the desired insertion point. Unless this is a variadic 639 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 640 // RegMask operands go between the explicit and implicit operands. 641 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 642 OpNo < MCID->getNumOperands()) && 643 "Trying to add an operand to a machine instr that is already done!"); 644 645 // All operands from OpNo have been removed from RegInfo. If the Operands 646 // backing store needs to be reallocated, we also need to remove any other 647 // register operands. 648 if (Reallocate) 649 for (unsigned i = 0; i != OpNo; ++i) 650 if (Operands[i].isReg()) 651 RegInfo->removeRegOperandFromUseList(&Operands[i]); 652 653 // Insert the new operand at OpNo. 654 Operands.insert(Operands.begin() + OpNo, Op); 655 Operands[OpNo].ParentMI = this; 656 657 // The Operands backing store has now been reallocated, so we can re-add the 658 // operands before OpNo. 659 if (Reallocate) 660 for (unsigned i = 0; i != OpNo; ++i) 661 if (Operands[i].isReg()) 662 RegInfo->addRegOperandToUseList(&Operands[i]); 663 664 // When adding a register operand, tell RegInfo about it. 665 if (Operands[OpNo].isReg()) { 666 // Ensure isOnRegUseList() returns false, regardless of Op's status. 667 Operands[OpNo].Contents.Reg.Prev = 0; 668 // Ignore existing ties. This is not a property that can be copied. 669 Operands[OpNo].TiedTo = 0; 670 // Add the new operand to RegInfo. 671 if (RegInfo) 672 RegInfo->addRegOperandToUseList(&Operands[OpNo]); 673 // The MCID operand information isn't accurate until we start adding 674 // explicit operands. The implicit operands are added first, then the 675 // explicits are inserted before them. 676 if (!isImpReg) { 677 // Tie uses to defs as indicated in MCInstrDesc. 678 if (Operands[OpNo].isUse()) { 679 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 680 if (DefIdx != -1) 681 tieOperands(DefIdx, OpNo); 682 } 683 // If the register operand is flagged as early, mark the operand as such. 684 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 685 Operands[OpNo].setIsEarlyClobber(true); 686 } 687 } 688 689 // Re-add all the implicit ops. 690 if (RegInfo) { 691 for (unsigned i = OpNo + 1, e = Operands.size(); i != e; ++i) { 692 assert(Operands[i].isReg() && "Should only be an implicit reg!"); 693 RegInfo->addRegOperandToUseList(&Operands[i]); 694 } 695 } 696 } 697 698 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 699 /// fewer operand than it started with. 700 /// 701 void MachineInstr::RemoveOperand(unsigned OpNo) { 702 assert(OpNo < Operands.size() && "Invalid operand number"); 703 untieRegOperand(OpNo); 704 MachineRegisterInfo *RegInfo = getRegInfo(); 705 706 // Special case removing the last one. 707 if (OpNo == Operands.size()-1) { 708 // If needed, remove from the reg def/use list. 709 if (RegInfo && Operands.back().isReg() && Operands.back().isOnRegUseList()) 710 RegInfo->removeRegOperandFromUseList(&Operands.back()); 711 712 Operands.pop_back(); 713 return; 714 } 715 716 // Otherwise, we are removing an interior operand. If we have reginfo to 717 // update, remove all operands that will be shifted down from their reg lists, 718 // move everything down, then re-add them. 719 if (RegInfo) { 720 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 721 if (Operands[i].isReg()) 722 RegInfo->removeRegOperandFromUseList(&Operands[i]); 723 } 724 } 725 726 #ifndef NDEBUG 727 // Moving tied operands would break the ties. 728 for (unsigned i = OpNo + 1, e = Operands.size(); i != e; ++i) 729 if (Operands[i].isReg()) 730 assert(!Operands[i].isTied() && "Cannot move tied operands"); 731 #endif 732 733 Operands.erase(Operands.begin()+OpNo); 734 735 if (RegInfo) { 736 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 737 if (Operands[i].isReg()) 738 RegInfo->addRegOperandToUseList(&Operands[i]); 739 } 740 } 741 } 742 743 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 744 /// This function should be used only occasionally. The setMemRefs function 745 /// is the primary method for setting up a MachineInstr's MemRefs list. 746 void MachineInstr::addMemOperand(MachineFunction &MF, 747 MachineMemOperand *MO) { 748 mmo_iterator OldMemRefs = MemRefs; 749 uint16_t OldNumMemRefs = NumMemRefs; 750 751 uint16_t NewNum = NumMemRefs + 1; 752 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 753 754 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs); 755 NewMemRefs[NewNum - 1] = MO; 756 757 MemRefs = NewMemRefs; 758 NumMemRefs = NewNum; 759 } 760 761 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { 762 const MachineBasicBlock *MBB = getParent(); 763 MachineBasicBlock::const_instr_iterator MII = *this; ++MII; 764 while (MII != MBB->end() && MII->isInsideBundle()) { 765 if (MII->getDesc().getFlags() & Mask) { 766 if (Type == AnyInBundle) 767 return true; 768 } else { 769 if (Type == AllInBundle) 770 return false; 771 } 772 ++MII; 773 } 774 775 return Type == AllInBundle; 776 } 777 778 bool MachineInstr::isIdenticalTo(const MachineInstr *Other, 779 MICheckType Check) const { 780 // If opcodes or number of operands are not the same then the two 781 // instructions are obviously not identical. 782 if (Other->getOpcode() != getOpcode() || 783 Other->getNumOperands() != getNumOperands()) 784 return false; 785 786 if (isBundle()) { 787 // Both instructions are bundles, compare MIs inside the bundle. 788 MachineBasicBlock::const_instr_iterator I1 = *this; 789 MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end(); 790 MachineBasicBlock::const_instr_iterator I2 = *Other; 791 MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end(); 792 while (++I1 != E1 && I1->isInsideBundle()) { 793 ++I2; 794 if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check)) 795 return false; 796 } 797 } 798 799 // Check operands to make sure they match. 800 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 801 const MachineOperand &MO = getOperand(i); 802 const MachineOperand &OMO = Other->getOperand(i); 803 if (!MO.isReg()) { 804 if (!MO.isIdenticalTo(OMO)) 805 return false; 806 continue; 807 } 808 809 // Clients may or may not want to ignore defs when testing for equality. 810 // For example, machine CSE pass only cares about finding common 811 // subexpressions, so it's safe to ignore virtual register defs. 812 if (MO.isDef()) { 813 if (Check == IgnoreDefs) 814 continue; 815 else if (Check == IgnoreVRegDefs) { 816 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 817 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 818 if (MO.getReg() != OMO.getReg()) 819 return false; 820 } else { 821 if (!MO.isIdenticalTo(OMO)) 822 return false; 823 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 824 return false; 825 } 826 } else { 827 if (!MO.isIdenticalTo(OMO)) 828 return false; 829 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 830 return false; 831 } 832 } 833 // If DebugLoc does not match then two dbg.values are not identical. 834 if (isDebugValue()) 835 if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown() 836 && getDebugLoc() != Other->getDebugLoc()) 837 return false; 838 return true; 839 } 840 841 /// removeFromParent - This method unlinks 'this' from the containing basic 842 /// block, and returns it, but does not delete it. 843 MachineInstr *MachineInstr::removeFromParent() { 844 assert(getParent() && "Not embedded in a basic block!"); 845 846 // If it's a bundle then remove the MIs inside the bundle as well. 847 if (isBundle()) { 848 MachineBasicBlock *MBB = getParent(); 849 MachineBasicBlock::instr_iterator MII = *this; ++MII; 850 MachineBasicBlock::instr_iterator E = MBB->instr_end(); 851 while (MII != E && MII->isInsideBundle()) { 852 MachineInstr *MI = &*MII; 853 ++MII; 854 MBB->remove(MI); 855 } 856 } 857 getParent()->remove(this); 858 return this; 859 } 860 861 862 /// eraseFromParent - This method unlinks 'this' from the containing basic 863 /// block, and deletes it. 864 void MachineInstr::eraseFromParent() { 865 assert(getParent() && "Not embedded in a basic block!"); 866 // If it's a bundle then remove the MIs inside the bundle as well. 867 if (isBundle()) { 868 MachineBasicBlock *MBB = getParent(); 869 MachineBasicBlock::instr_iterator MII = *this; ++MII; 870 MachineBasicBlock::instr_iterator E = MBB->instr_end(); 871 while (MII != E && MII->isInsideBundle()) { 872 MachineInstr *MI = &*MII; 873 ++MII; 874 MBB->erase(MI); 875 } 876 } 877 // Erase the individual instruction, which may itself be inside a bundle. 878 getParent()->erase_instr(this); 879 } 880 881 882 /// getNumExplicitOperands - Returns the number of non-implicit operands. 883 /// 884 unsigned MachineInstr::getNumExplicitOperands() const { 885 unsigned NumOperands = MCID->getNumOperands(); 886 if (!MCID->isVariadic()) 887 return NumOperands; 888 889 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 890 const MachineOperand &MO = getOperand(i); 891 if (!MO.isReg() || !MO.isImplicit()) 892 NumOperands++; 893 } 894 return NumOperands; 895 } 896 897 void MachineInstr::bundleWithPred() { 898 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 899 setFlag(BundledPred); 900 MachineBasicBlock::instr_iterator Pred = this; 901 --Pred; 902 Pred->setFlag(BundledSucc); 903 } 904 905 void MachineInstr::bundleWithSucc() { 906 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 907 setFlag(BundledSucc); 908 MachineBasicBlock::instr_iterator Succ = this; 909 ++Succ; 910 Succ->setFlag(BundledPred); 911 } 912 913 void MachineInstr::unbundleFromPred() { 914 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 915 clearFlag(BundledPred); 916 MachineBasicBlock::instr_iterator Pred = this; 917 --Pred; 918 Pred->clearFlag(BundledSucc); 919 } 920 921 void MachineInstr::unbundleFromSucc() { 922 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 923 clearFlag(BundledSucc); 924 MachineBasicBlock::instr_iterator Succ = this; 925 --Succ; 926 Succ->clearFlag(BundledPred); 927 } 928 929 /// isBundled - Return true if this instruction part of a bundle. This is true 930 /// if either itself or its following instruction is marked "InsideBundle". 931 bool MachineInstr::isBundled() const { 932 if (isInsideBundle()) 933 return true; 934 MachineBasicBlock::const_instr_iterator nextMI = this; 935 ++nextMI; 936 return nextMI != Parent->instr_end() && nextMI->isInsideBundle(); 937 } 938 939 bool MachineInstr::isStackAligningInlineAsm() const { 940 if (isInlineAsm()) { 941 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 942 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 943 return true; 944 } 945 return false; 946 } 947 948 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 949 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 950 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 951 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 952 } 953 954 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 955 unsigned *GroupNo) const { 956 assert(isInlineAsm() && "Expected an inline asm instruction"); 957 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 958 959 // Ignore queries about the initial operands. 960 if (OpIdx < InlineAsm::MIOp_FirstOperand) 961 return -1; 962 963 unsigned Group = 0; 964 unsigned NumOps; 965 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 966 i += NumOps) { 967 const MachineOperand &FlagMO = getOperand(i); 968 // If we reach the implicit register operands, stop looking. 969 if (!FlagMO.isImm()) 970 return -1; 971 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 972 if (i + NumOps > OpIdx) { 973 if (GroupNo) 974 *GroupNo = Group; 975 return i; 976 } 977 ++Group; 978 } 979 return -1; 980 } 981 982 const TargetRegisterClass* 983 MachineInstr::getRegClassConstraint(unsigned OpIdx, 984 const TargetInstrInfo *TII, 985 const TargetRegisterInfo *TRI) const { 986 assert(getParent() && "Can't have an MBB reference here!"); 987 assert(getParent()->getParent() && "Can't have an MF reference here!"); 988 const MachineFunction &MF = *getParent()->getParent(); 989 990 // Most opcodes have fixed constraints in their MCInstrDesc. 991 if (!isInlineAsm()) 992 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 993 994 if (!getOperand(OpIdx).isReg()) 995 return NULL; 996 997 // For tied uses on inline asm, get the constraint from the def. 998 unsigned DefIdx; 999 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 1000 OpIdx = DefIdx; 1001 1002 // Inline asm stores register class constraints in the flag word. 1003 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 1004 if (FlagIdx < 0) 1005 return NULL; 1006 1007 unsigned Flag = getOperand(FlagIdx).getImm(); 1008 unsigned RCID; 1009 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) 1010 return TRI->getRegClass(RCID); 1011 1012 // Assume that all registers in a memory operand are pointers. 1013 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 1014 return TRI->getPointerRegClass(MF); 1015 1016 return NULL; 1017 } 1018 1019 /// getBundleSize - Return the number of instructions inside the MI bundle. 1020 unsigned MachineInstr::getBundleSize() const { 1021 assert(isBundle() && "Expecting a bundle"); 1022 1023 const MachineBasicBlock *MBB = getParent(); 1024 MachineBasicBlock::const_instr_iterator I = *this, E = MBB->instr_end(); 1025 unsigned Size = 0; 1026 while ((++I != E) && I->isInsideBundle()) { 1027 ++Size; 1028 } 1029 assert(Size > 1 && "Malformed bundle"); 1030 1031 return Size; 1032 } 1033 1034 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 1035 /// the specific register or -1 if it is not found. It further tightens 1036 /// the search criteria to a use that kills the register if isKill is true. 1037 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, 1038 const TargetRegisterInfo *TRI) const { 1039 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1040 const MachineOperand &MO = getOperand(i); 1041 if (!MO.isReg() || !MO.isUse()) 1042 continue; 1043 unsigned MOReg = MO.getReg(); 1044 if (!MOReg) 1045 continue; 1046 if (MOReg == Reg || 1047 (TRI && 1048 TargetRegisterInfo::isPhysicalRegister(MOReg) && 1049 TargetRegisterInfo::isPhysicalRegister(Reg) && 1050 TRI->isSubRegister(MOReg, Reg))) 1051 if (!isKill || MO.isKill()) 1052 return i; 1053 } 1054 return -1; 1055 } 1056 1057 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1058 /// indicating if this instruction reads or writes Reg. This also considers 1059 /// partial defines. 1060 std::pair<bool,bool> 1061 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 1062 SmallVectorImpl<unsigned> *Ops) const { 1063 bool PartDef = false; // Partial redefine. 1064 bool FullDef = false; // Full define. 1065 bool Use = false; 1066 1067 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1068 const MachineOperand &MO = getOperand(i); 1069 if (!MO.isReg() || MO.getReg() != Reg) 1070 continue; 1071 if (Ops) 1072 Ops->push_back(i); 1073 if (MO.isUse()) 1074 Use |= !MO.isUndef(); 1075 else if (MO.getSubReg() && !MO.isUndef()) 1076 // A partial <def,undef> doesn't count as reading the register. 1077 PartDef = true; 1078 else 1079 FullDef = true; 1080 } 1081 // A partial redefine uses Reg unless there is also a full define. 1082 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1083 } 1084 1085 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1086 /// the specified register or -1 if it is not found. If isDead is true, defs 1087 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1088 /// also checks if there is a def of a super-register. 1089 int 1090 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 1091 const TargetRegisterInfo *TRI) const { 1092 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 1093 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1094 const MachineOperand &MO = getOperand(i); 1095 // Accept regmask operands when Overlap is set. 1096 // Ignore them when looking for a specific def operand (Overlap == false). 1097 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1098 return i; 1099 if (!MO.isReg() || !MO.isDef()) 1100 continue; 1101 unsigned MOReg = MO.getReg(); 1102 bool Found = (MOReg == Reg); 1103 if (!Found && TRI && isPhys && 1104 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1105 if (Overlap) 1106 Found = TRI->regsOverlap(MOReg, Reg); 1107 else 1108 Found = TRI->isSubRegister(MOReg, Reg); 1109 } 1110 if (Found && (!isDead || MO.isDead())) 1111 return i; 1112 } 1113 return -1; 1114 } 1115 1116 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1117 /// operand list that is used to represent the predicate. It returns -1 if 1118 /// none is found. 1119 int MachineInstr::findFirstPredOperandIdx() const { 1120 // Don't call MCID.findFirstPredOperandIdx() because this variant 1121 // is sometimes called on an instruction that's not yet complete, and 1122 // so the number of operands is less than the MCID indicates. In 1123 // particular, the PTX target does this. 1124 const MCInstrDesc &MCID = getDesc(); 1125 if (MCID.isPredicable()) { 1126 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1127 if (MCID.OpInfo[i].isPredicate()) 1128 return i; 1129 } 1130 1131 return -1; 1132 } 1133 1134 // MachineOperand::TiedTo is 4 bits wide. 1135 const unsigned TiedMax = 15; 1136 1137 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1138 /// 1139 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1140 /// field. TiedTo can have these values: 1141 /// 1142 /// 0: Operand is not tied to anything. 1143 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1144 /// TiedMax: Tied to an operand >= TiedMax-1. 1145 /// 1146 /// The tied def must be one of the first TiedMax operands on a normal 1147 /// instruction. INLINEASM instructions allow more tied defs. 1148 /// 1149 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1150 MachineOperand &DefMO = getOperand(DefIdx); 1151 MachineOperand &UseMO = getOperand(UseIdx); 1152 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1153 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1154 assert(!DefMO.isTied() && "Def is already tied to another use"); 1155 assert(!UseMO.isTied() && "Use is already tied to another def"); 1156 1157 if (DefIdx < TiedMax) 1158 UseMO.TiedTo = DefIdx + 1; 1159 else { 1160 // Inline asm can use the group descriptors to find tied operands, but on 1161 // normal instruction, the tied def must be within the first TiedMax 1162 // operands. 1163 assert(isInlineAsm() && "DefIdx out of range"); 1164 UseMO.TiedTo = TiedMax; 1165 } 1166 1167 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1168 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1169 } 1170 1171 /// Given the index of a tied register operand, find the operand it is tied to. 1172 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1173 /// which must exist. 1174 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1175 const MachineOperand &MO = getOperand(OpIdx); 1176 assert(MO.isTied() && "Operand isn't tied"); 1177 1178 // Normally TiedTo is in range. 1179 if (MO.TiedTo < TiedMax) 1180 return MO.TiedTo - 1; 1181 1182 // Uses on normal instructions can be out of range. 1183 if (!isInlineAsm()) { 1184 // Normal tied defs must be in the 0..TiedMax-1 range. 1185 if (MO.isUse()) 1186 return TiedMax - 1; 1187 // MO is a def. Search for the tied use. 1188 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1189 const MachineOperand &UseMO = getOperand(i); 1190 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1191 return i; 1192 } 1193 llvm_unreachable("Can't find tied use"); 1194 } 1195 1196 // Now deal with inline asm by parsing the operand group descriptor flags. 1197 // Find the beginning of each operand group. 1198 SmallVector<unsigned, 8> GroupIdx; 1199 unsigned OpIdxGroup = ~0u; 1200 unsigned NumOps; 1201 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1202 i += NumOps) { 1203 const MachineOperand &FlagMO = getOperand(i); 1204 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1205 unsigned CurGroup = GroupIdx.size(); 1206 GroupIdx.push_back(i); 1207 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1208 // OpIdx belongs to this operand group. 1209 if (OpIdx > i && OpIdx < i + NumOps) 1210 OpIdxGroup = CurGroup; 1211 unsigned TiedGroup; 1212 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1213 continue; 1214 // Operands in this group are tied to operands in TiedGroup which must be 1215 // earlier. Find the number of operands between the two groups. 1216 unsigned Delta = i - GroupIdx[TiedGroup]; 1217 1218 // OpIdx is a use tied to TiedGroup. 1219 if (OpIdxGroup == CurGroup) 1220 return OpIdx - Delta; 1221 1222 // OpIdx is a def tied to this use group. 1223 if (OpIdxGroup == TiedGroup) 1224 return OpIdx + Delta; 1225 } 1226 llvm_unreachable("Invalid tied operand on inline asm"); 1227 } 1228 1229 /// clearKillInfo - Clears kill flags on all operands. 1230 /// 1231 void MachineInstr::clearKillInfo() { 1232 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1233 MachineOperand &MO = getOperand(i); 1234 if (MO.isReg() && MO.isUse()) 1235 MO.setIsKill(false); 1236 } 1237 } 1238 1239 /// copyKillDeadInfo - Copies kill / dead operand properties from MI. 1240 /// 1241 void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) { 1242 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1243 const MachineOperand &MO = MI->getOperand(i); 1244 if (!MO.isReg() || (!MO.isKill() && !MO.isDead())) 1245 continue; 1246 for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) { 1247 MachineOperand &MOp = getOperand(j); 1248 if (!MOp.isIdenticalTo(MO)) 1249 continue; 1250 if (MO.isKill()) 1251 MOp.setIsKill(); 1252 else 1253 MOp.setIsDead(); 1254 break; 1255 } 1256 } 1257 } 1258 1259 /// copyPredicates - Copies predicate operand(s) from MI. 1260 void MachineInstr::copyPredicates(const MachineInstr *MI) { 1261 assert(!isBundle() && "MachineInstr::copyPredicates() can't handle bundles"); 1262 1263 const MCInstrDesc &MCID = MI->getDesc(); 1264 if (!MCID.isPredicable()) 1265 return; 1266 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1267 if (MCID.OpInfo[i].isPredicate()) { 1268 // Predicated operands must be last operands. 1269 addOperand(MI->getOperand(i)); 1270 } 1271 } 1272 } 1273 1274 void MachineInstr::substituteRegister(unsigned FromReg, 1275 unsigned ToReg, 1276 unsigned SubIdx, 1277 const TargetRegisterInfo &RegInfo) { 1278 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1279 if (SubIdx) 1280 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1281 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1282 MachineOperand &MO = getOperand(i); 1283 if (!MO.isReg() || MO.getReg() != FromReg) 1284 continue; 1285 MO.substPhysReg(ToReg, RegInfo); 1286 } 1287 } else { 1288 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1289 MachineOperand &MO = getOperand(i); 1290 if (!MO.isReg() || MO.getReg() != FromReg) 1291 continue; 1292 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1293 } 1294 } 1295 } 1296 1297 /// isSafeToMove - Return true if it is safe to move this instruction. If 1298 /// SawStore is set to true, it means that there is a store (or call) between 1299 /// the instruction's location and its intended destination. 1300 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII, 1301 AliasAnalysis *AA, 1302 bool &SawStore) const { 1303 // Ignore stuff that we obviously can't move. 1304 // 1305 // Treat volatile loads as stores. This is not strictly necessary for 1306 // volatiles, but it is required for atomic loads. It is not allowed to move 1307 // a load across an atomic load with Ordering > Monotonic. 1308 if (mayStore() || isCall() || 1309 (mayLoad() && hasOrderedMemoryRef())) { 1310 SawStore = true; 1311 return false; 1312 } 1313 1314 if (isLabel() || isDebugValue() || 1315 isTerminator() || hasUnmodeledSideEffects()) 1316 return false; 1317 1318 // See if this instruction does a load. If so, we have to guarantee that the 1319 // loaded value doesn't change between the load and the its intended 1320 // destination. The check for isInvariantLoad gives the targe the chance to 1321 // classify the load as always returning a constant, e.g. a constant pool 1322 // load. 1323 if (mayLoad() && !isInvariantLoad(AA)) 1324 // Otherwise, this is a real load. If there is a store between the load and 1325 // end of block, we can't move it. 1326 return !SawStore; 1327 1328 return true; 1329 } 1330 1331 /// isSafeToReMat - Return true if it's safe to rematerialize the specified 1332 /// instruction which defined the specified register instead of copying it. 1333 bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII, 1334 AliasAnalysis *AA, 1335 unsigned DstReg) const { 1336 bool SawStore = false; 1337 if (!TII->isTriviallyReMaterializable(this, AA) || 1338 !isSafeToMove(TII, AA, SawStore)) 1339 return false; 1340 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1341 const MachineOperand &MO = getOperand(i); 1342 if (!MO.isReg()) 1343 continue; 1344 // FIXME: For now, do not remat any instruction with register operands. 1345 // Later on, we can loosen the restriction is the register operands have 1346 // not been modified between the def and use. Note, this is different from 1347 // MachineSink because the code is no longer in two-address form (at least 1348 // partially). 1349 if (MO.isUse()) 1350 return false; 1351 else if (!MO.isDead() && MO.getReg() != DstReg) 1352 return false; 1353 } 1354 return true; 1355 } 1356 1357 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1358 /// or volatile memory reference, or if the information describing the memory 1359 /// reference is not available. Return false if it is known to have no ordered 1360 /// memory references. 1361 bool MachineInstr::hasOrderedMemoryRef() const { 1362 // An instruction known never to access memory won't have a volatile access. 1363 if (!mayStore() && 1364 !mayLoad() && 1365 !isCall() && 1366 !hasUnmodeledSideEffects()) 1367 return false; 1368 1369 // Otherwise, if the instruction has no memory reference information, 1370 // conservatively assume it wasn't preserved. 1371 if (memoperands_empty()) 1372 return true; 1373 1374 // Check the memory reference information for ordered references. 1375 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I) 1376 if (!(*I)->isUnordered()) 1377 return true; 1378 1379 return false; 1380 } 1381 1382 /// isInvariantLoad - Return true if this instruction is loading from a 1383 /// location whose value is invariant across the function. For example, 1384 /// loading a value from the constant pool or from the argument area 1385 /// of a function if it does not change. This should only return true of 1386 /// *all* loads the instruction does are invariant (if it does multiple loads). 1387 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const { 1388 // If the instruction doesn't load at all, it isn't an invariant load. 1389 if (!mayLoad()) 1390 return false; 1391 1392 // If the instruction has lost its memoperands, conservatively assume that 1393 // it may not be an invariant load. 1394 if (memoperands_empty()) 1395 return false; 1396 1397 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo(); 1398 1399 for (mmo_iterator I = memoperands_begin(), 1400 E = memoperands_end(); I != E; ++I) { 1401 if ((*I)->isVolatile()) return false; 1402 if ((*I)->isStore()) return false; 1403 if ((*I)->isInvariant()) return true; 1404 1405 if (const Value *V = (*I)->getValue()) { 1406 // A load from a constant PseudoSourceValue is invariant. 1407 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) 1408 if (PSV->isConstant(MFI)) 1409 continue; 1410 // If we have an AliasAnalysis, ask it whether the memory is constant. 1411 if (AA && AA->pointsToConstantMemory( 1412 AliasAnalysis::Location(V, (*I)->getSize(), 1413 (*I)->getTBAAInfo()))) 1414 continue; 1415 } 1416 1417 // Otherwise assume conservatively. 1418 return false; 1419 } 1420 1421 // Everything checks out. 1422 return true; 1423 } 1424 1425 /// isConstantValuePHI - If the specified instruction is a PHI that always 1426 /// merges together the same virtual register, return the register, otherwise 1427 /// return 0. 1428 unsigned MachineInstr::isConstantValuePHI() const { 1429 if (!isPHI()) 1430 return 0; 1431 assert(getNumOperands() >= 3 && 1432 "It's illegal to have a PHI without source operands"); 1433 1434 unsigned Reg = getOperand(1).getReg(); 1435 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1436 if (getOperand(i).getReg() != Reg) 1437 return 0; 1438 return Reg; 1439 } 1440 1441 bool MachineInstr::hasUnmodeledSideEffects() const { 1442 if (hasProperty(MCID::UnmodeledSideEffects)) 1443 return true; 1444 if (isInlineAsm()) { 1445 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1446 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1447 return true; 1448 } 1449 1450 return false; 1451 } 1452 1453 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1454 /// 1455 bool MachineInstr::allDefsAreDead() const { 1456 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { 1457 const MachineOperand &MO = getOperand(i); 1458 if (!MO.isReg() || MO.isUse()) 1459 continue; 1460 if (!MO.isDead()) 1461 return false; 1462 } 1463 return true; 1464 } 1465 1466 /// copyImplicitOps - Copy implicit register operands from specified 1467 /// instruction to this instruction. 1468 void MachineInstr::copyImplicitOps(const MachineInstr *MI) { 1469 for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands(); 1470 i != e; ++i) { 1471 const MachineOperand &MO = MI->getOperand(i); 1472 if (MO.isReg() && MO.isImplicit()) 1473 addOperand(MO); 1474 } 1475 } 1476 1477 void MachineInstr::dump() const { 1478 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1479 dbgs() << " " << *this; 1480 #endif 1481 } 1482 1483 static void printDebugLoc(DebugLoc DL, const MachineFunction *MF, 1484 raw_ostream &CommentOS) { 1485 const LLVMContext &Ctx = MF->getFunction()->getContext(); 1486 if (!DL.isUnknown()) { // Print source line info. 1487 DIScope Scope(DL.getScope(Ctx)); 1488 // Omit the directory, because it's likely to be long and uninteresting. 1489 if (Scope.Verify()) 1490 CommentOS << Scope.getFilename(); 1491 else 1492 CommentOS << "<unknown>"; 1493 CommentOS << ':' << DL.getLine(); 1494 if (DL.getCol() != 0) 1495 CommentOS << ':' << DL.getCol(); 1496 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx)); 1497 if (!InlinedAtDL.isUnknown()) { 1498 CommentOS << " @[ "; 1499 printDebugLoc(InlinedAtDL, MF, CommentOS); 1500 CommentOS << " ]"; 1501 } 1502 } 1503 } 1504 1505 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const { 1506 // We can be a bit tidier if we know the TargetMachine and/or MachineFunction. 1507 const MachineFunction *MF = 0; 1508 const MachineRegisterInfo *MRI = 0; 1509 if (const MachineBasicBlock *MBB = getParent()) { 1510 MF = MBB->getParent(); 1511 if (!TM && MF) 1512 TM = &MF->getTarget(); 1513 if (MF) 1514 MRI = &MF->getRegInfo(); 1515 } 1516 1517 // Save a list of virtual registers. 1518 SmallVector<unsigned, 8> VirtRegs; 1519 1520 // Print explicitly defined operands on the left of an assignment syntax. 1521 unsigned StartOp = 0, e = getNumOperands(); 1522 for (; StartOp < e && getOperand(StartOp).isReg() && 1523 getOperand(StartOp).isDef() && 1524 !getOperand(StartOp).isImplicit(); 1525 ++StartOp) { 1526 if (StartOp != 0) OS << ", "; 1527 getOperand(StartOp).print(OS, TM); 1528 unsigned Reg = getOperand(StartOp).getReg(); 1529 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1530 VirtRegs.push_back(Reg); 1531 } 1532 1533 if (StartOp != 0) 1534 OS << " = "; 1535 1536 // Print the opcode name. 1537 if (TM && TM->getInstrInfo()) 1538 OS << TM->getInstrInfo()->getName(getOpcode()); 1539 else 1540 OS << "UNKNOWN"; 1541 1542 // Print the rest of the operands. 1543 bool OmittedAnyCallClobbers = false; 1544 bool FirstOp = true; 1545 unsigned AsmDescOp = ~0u; 1546 unsigned AsmOpCount = 0; 1547 1548 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1549 // Print asm string. 1550 OS << " "; 1551 getOperand(InlineAsm::MIOp_AsmString).print(OS, TM); 1552 1553 // Print HasSideEffects, IsAlignStack 1554 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1555 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1556 OS << " [sideeffect]"; 1557 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1558 OS << " [alignstack]"; 1559 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1560 OS << " [attdialect]"; 1561 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1562 OS << " [inteldialect]"; 1563 1564 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1565 FirstOp = false; 1566 } 1567 1568 1569 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1570 const MachineOperand &MO = getOperand(i); 1571 1572 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1573 VirtRegs.push_back(MO.getReg()); 1574 1575 // Omit call-clobbered registers which aren't used anywhere. This makes 1576 // call instructions much less noisy on targets where calls clobber lots 1577 // of registers. Don't rely on MO.isDead() because we may be called before 1578 // LiveVariables is run, or we may be looking at a non-allocatable reg. 1579 if (MF && isCall() && 1580 MO.isReg() && MO.isImplicit() && MO.isDef()) { 1581 unsigned Reg = MO.getReg(); 1582 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1583 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1584 if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) { 1585 bool HasAliasLive = false; 1586 for (MCRegAliasIterator AI(Reg, TM->getRegisterInfo(), true); 1587 AI.isValid(); ++AI) { 1588 unsigned AliasReg = *AI; 1589 if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) { 1590 HasAliasLive = true; 1591 break; 1592 } 1593 } 1594 if (!HasAliasLive) { 1595 OmittedAnyCallClobbers = true; 1596 continue; 1597 } 1598 } 1599 } 1600 } 1601 1602 if (FirstOp) FirstOp = false; else OS << ","; 1603 OS << " "; 1604 if (i < getDesc().NumOperands) { 1605 const MCOperandInfo &MCOI = getDesc().OpInfo[i]; 1606 if (MCOI.isPredicate()) 1607 OS << "pred:"; 1608 if (MCOI.isOptionalDef()) 1609 OS << "opt:"; 1610 } 1611 if (isDebugValue() && MO.isMetadata()) { 1612 // Pretty print DBG_VALUE instructions. 1613 const MDNode *MD = MO.getMetadata(); 1614 if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2))) 1615 OS << "!\"" << MDS->getString() << '\"'; 1616 else 1617 MO.print(OS, TM); 1618 } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) { 1619 OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm()); 1620 } else if (i == AsmDescOp && MO.isImm()) { 1621 // Pretty print the inline asm operand descriptor. 1622 OS << '$' << AsmOpCount++; 1623 unsigned Flag = MO.getImm(); 1624 switch (InlineAsm::getKind(Flag)) { 1625 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1626 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1627 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1628 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1629 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1630 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1631 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1632 } 1633 1634 unsigned RCID = 0; 1635 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1636 if (TM) 1637 OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName(); 1638 else 1639 OS << ":RC" << RCID; 1640 } 1641 1642 unsigned TiedTo = 0; 1643 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1644 OS << " tiedto:$" << TiedTo; 1645 1646 OS << ']'; 1647 1648 // Compute the index of the next operand descriptor. 1649 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1650 } else 1651 MO.print(OS, TM); 1652 } 1653 1654 // Briefly indicate whether any call clobbers were omitted. 1655 if (OmittedAnyCallClobbers) { 1656 if (!FirstOp) OS << ","; 1657 OS << " ..."; 1658 } 1659 1660 bool HaveSemi = false; 1661 if (Flags) { 1662 if (!HaveSemi) OS << ";"; HaveSemi = true; 1663 OS << " flags: "; 1664 1665 if (Flags & FrameSetup) 1666 OS << "FrameSetup"; 1667 } 1668 1669 if (!memoperands_empty()) { 1670 if (!HaveSemi) OS << ";"; HaveSemi = true; 1671 1672 OS << " mem:"; 1673 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 1674 i != e; ++i) { 1675 OS << **i; 1676 if (llvm::next(i) != e) 1677 OS << " "; 1678 } 1679 } 1680 1681 // Print the regclass of any virtual registers encountered. 1682 if (MRI && !VirtRegs.empty()) { 1683 if (!HaveSemi) OS << ";"; HaveSemi = true; 1684 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 1685 const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]); 1686 OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]); 1687 for (unsigned j = i+1; j != VirtRegs.size();) { 1688 if (MRI->getRegClass(VirtRegs[j]) != RC) { 1689 ++j; 1690 continue; 1691 } 1692 if (VirtRegs[i] != VirtRegs[j]) 1693 OS << "," << PrintReg(VirtRegs[j]); 1694 VirtRegs.erase(VirtRegs.begin()+j); 1695 } 1696 } 1697 } 1698 1699 // Print debug location information. 1700 if (isDebugValue() && getOperand(e - 1).isMetadata()) { 1701 if (!HaveSemi) OS << ";"; HaveSemi = true; 1702 DIVariable DV(getOperand(e - 1).getMetadata()); 1703 OS << " line no:" << DV.getLineNumber(); 1704 if (MDNode *InlinedAt = DV.getInlinedAt()) { 1705 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt); 1706 if (!InlinedAtDL.isUnknown()) { 1707 OS << " inlined @[ "; 1708 printDebugLoc(InlinedAtDL, MF, OS); 1709 OS << " ]"; 1710 } 1711 } 1712 } else if (!debugLoc.isUnknown() && MF) { 1713 if (!HaveSemi) OS << ";"; HaveSemi = true; 1714 OS << " dbg:"; 1715 printDebugLoc(debugLoc, MF, OS); 1716 } 1717 1718 OS << '\n'; 1719 } 1720 1721 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 1722 const TargetRegisterInfo *RegInfo, 1723 bool AddIfNotFound) { 1724 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1725 bool hasAliases = isPhysReg && 1726 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1727 bool Found = false; 1728 SmallVector<unsigned,4> DeadOps; 1729 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1730 MachineOperand &MO = getOperand(i); 1731 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1732 continue; 1733 unsigned Reg = MO.getReg(); 1734 if (!Reg) 1735 continue; 1736 1737 if (Reg == IncomingReg) { 1738 if (!Found) { 1739 if (MO.isKill()) 1740 // The register is already marked kill. 1741 return true; 1742 if (isPhysReg && isRegTiedToDefOperand(i)) 1743 // Two-address uses of physregs must not be marked kill. 1744 return true; 1745 MO.setIsKill(); 1746 Found = true; 1747 } 1748 } else if (hasAliases && MO.isKill() && 1749 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1750 // A super-register kill already exists. 1751 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1752 return true; 1753 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1754 DeadOps.push_back(i); 1755 } 1756 } 1757 1758 // Trim unneeded kill operands. 1759 while (!DeadOps.empty()) { 1760 unsigned OpIdx = DeadOps.back(); 1761 if (getOperand(OpIdx).isImplicit()) 1762 RemoveOperand(OpIdx); 1763 else 1764 getOperand(OpIdx).setIsKill(false); 1765 DeadOps.pop_back(); 1766 } 1767 1768 // If not found, this means an alias of one of the operands is killed. Add a 1769 // new implicit operand if required. 1770 if (!Found && AddIfNotFound) { 1771 addOperand(MachineOperand::CreateReg(IncomingReg, 1772 false /*IsDef*/, 1773 true /*IsImp*/, 1774 true /*IsKill*/)); 1775 return true; 1776 } 1777 return Found; 1778 } 1779 1780 void MachineInstr::clearRegisterKills(unsigned Reg, 1781 const TargetRegisterInfo *RegInfo) { 1782 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 1783 RegInfo = 0; 1784 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1785 MachineOperand &MO = getOperand(i); 1786 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1787 continue; 1788 unsigned OpReg = MO.getReg(); 1789 if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg))) 1790 MO.setIsKill(false); 1791 } 1792 } 1793 1794 bool MachineInstr::addRegisterDead(unsigned IncomingReg, 1795 const TargetRegisterInfo *RegInfo, 1796 bool AddIfNotFound) { 1797 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1798 bool hasAliases = isPhysReg && 1799 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1800 bool Found = false; 1801 SmallVector<unsigned,4> DeadOps; 1802 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1803 MachineOperand &MO = getOperand(i); 1804 if (!MO.isReg() || !MO.isDef()) 1805 continue; 1806 unsigned Reg = MO.getReg(); 1807 if (!Reg) 1808 continue; 1809 1810 if (Reg == IncomingReg) { 1811 MO.setIsDead(); 1812 Found = true; 1813 } else if (hasAliases && MO.isDead() && 1814 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1815 // There exists a super-register that's marked dead. 1816 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1817 return true; 1818 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1819 DeadOps.push_back(i); 1820 } 1821 } 1822 1823 // Trim unneeded dead operands. 1824 while (!DeadOps.empty()) { 1825 unsigned OpIdx = DeadOps.back(); 1826 if (getOperand(OpIdx).isImplicit()) 1827 RemoveOperand(OpIdx); 1828 else 1829 getOperand(OpIdx).setIsDead(false); 1830 DeadOps.pop_back(); 1831 } 1832 1833 // If not found, this means an alias of one of the operands is dead. Add a 1834 // new implicit operand if required. 1835 if (Found || !AddIfNotFound) 1836 return Found; 1837 1838 addOperand(MachineOperand::CreateReg(IncomingReg, 1839 true /*IsDef*/, 1840 true /*IsImp*/, 1841 false /*IsKill*/, 1842 true /*IsDead*/)); 1843 return true; 1844 } 1845 1846 void MachineInstr::addRegisterDefined(unsigned IncomingReg, 1847 const TargetRegisterInfo *RegInfo) { 1848 if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) { 1849 MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo); 1850 if (MO) 1851 return; 1852 } else { 1853 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1854 const MachineOperand &MO = getOperand(i); 1855 if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() && 1856 MO.getSubReg() == 0) 1857 return; 1858 } 1859 } 1860 addOperand(MachineOperand::CreateReg(IncomingReg, 1861 true /*IsDef*/, 1862 true /*IsImp*/)); 1863 } 1864 1865 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 1866 const TargetRegisterInfo &TRI) { 1867 bool HasRegMask = false; 1868 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1869 MachineOperand &MO = getOperand(i); 1870 if (MO.isRegMask()) { 1871 HasRegMask = true; 1872 continue; 1873 } 1874 if (!MO.isReg() || !MO.isDef()) continue; 1875 unsigned Reg = MO.getReg(); 1876 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 1877 bool Dead = true; 1878 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1879 I != E; ++I) 1880 if (TRI.regsOverlap(*I, Reg)) { 1881 Dead = false; 1882 break; 1883 } 1884 // If there are no uses, including partial uses, the def is dead. 1885 if (Dead) MO.setIsDead(); 1886 } 1887 1888 // This is a call with a register mask operand. 1889 // Mask clobbers are always dead, so add defs for the non-dead defines. 1890 if (HasRegMask) 1891 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1892 I != E; ++I) 1893 addRegisterDefined(*I, &TRI); 1894 } 1895 1896 unsigned 1897 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 1898 // Build up a buffer of hash code components. 1899 SmallVector<size_t, 8> HashComponents; 1900 HashComponents.reserve(MI->getNumOperands() + 1); 1901 HashComponents.push_back(MI->getOpcode()); 1902 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1903 const MachineOperand &MO = MI->getOperand(i); 1904 if (MO.isReg() && MO.isDef() && 1905 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1906 continue; // Skip virtual register defs. 1907 1908 HashComponents.push_back(hash_value(MO)); 1909 } 1910 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 1911 } 1912 1913 void MachineInstr::emitError(StringRef Msg) const { 1914 // Find the source location cookie. 1915 unsigned LocCookie = 0; 1916 const MDNode *LocMD = 0; 1917 for (unsigned i = getNumOperands(); i != 0; --i) { 1918 if (getOperand(i-1).isMetadata() && 1919 (LocMD = getOperand(i-1).getMetadata()) && 1920 LocMD->getNumOperands() != 0) { 1921 if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) { 1922 LocCookie = CI->getZExtValue(); 1923 break; 1924 } 1925 } 1926 } 1927 1928 if (const MachineBasicBlock *MBB = getParent()) 1929 if (const MachineFunction *MF = MBB->getParent()) 1930 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 1931 report_fatal_error(Msg); 1932 } 1933