1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/ADT/FoldingSet.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/CodeGen/MachineConstantPool.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineMemOperand.h" 21 #include "llvm/CodeGen/MachineModuleInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/PseudoSourceValue.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DebugInfo.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/InlineAsm.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/Metadata.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/ModuleSlotTracker.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/IR/Value.h" 34 #include "llvm/MC/MCInstrDesc.h" 35 #include "llvm/MC/MCSymbol.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Target/TargetInstrInfo.h" 41 #include "llvm/Target/TargetMachine.h" 42 #include "llvm/Target/TargetRegisterInfo.h" 43 #include "llvm/Target/TargetSubtargetInfo.h" 44 using namespace llvm; 45 46 //===----------------------------------------------------------------------===// 47 // MachineOperand Implementation 48 //===----------------------------------------------------------------------===// 49 50 void MachineOperand::setReg(unsigned Reg) { 51 if (getReg() == Reg) return; // No change. 52 53 // Otherwise, we have to change the register. If this operand is embedded 54 // into a machine function, we need to update the old and new register's 55 // use/def lists. 56 if (MachineInstr *MI = getParent()) 57 if (MachineBasicBlock *MBB = MI->getParent()) 58 if (MachineFunction *MF = MBB->getParent()) { 59 MachineRegisterInfo &MRI = MF->getRegInfo(); 60 MRI.removeRegOperandFromUseList(this); 61 SmallContents.RegNo = Reg; 62 MRI.addRegOperandToUseList(this); 63 return; 64 } 65 66 // Otherwise, just change the register, no problem. :) 67 SmallContents.RegNo = Reg; 68 } 69 70 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 71 const TargetRegisterInfo &TRI) { 72 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 73 if (SubIdx && getSubReg()) 74 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 75 setReg(Reg); 76 if (SubIdx) 77 setSubReg(SubIdx); 78 } 79 80 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 81 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 82 if (getSubReg()) { 83 Reg = TRI.getSubReg(Reg, getSubReg()); 84 // Note that getSubReg() may return 0 if the sub-register doesn't exist. 85 // That won't happen in legal code. 86 setSubReg(0); 87 } 88 setReg(Reg); 89 } 90 91 /// Change a def to a use, or a use to a def. 92 void MachineOperand::setIsDef(bool Val) { 93 assert(isReg() && "Wrong MachineOperand accessor"); 94 assert((!Val || !isDebug()) && "Marking a debug operation as def"); 95 if (IsDef == Val) 96 return; 97 // MRI may keep uses and defs in different list positions. 98 if (MachineInstr *MI = getParent()) 99 if (MachineBasicBlock *MBB = MI->getParent()) 100 if (MachineFunction *MF = MBB->getParent()) { 101 MachineRegisterInfo &MRI = MF->getRegInfo(); 102 MRI.removeRegOperandFromUseList(this); 103 IsDef = Val; 104 MRI.addRegOperandToUseList(this); 105 return; 106 } 107 IsDef = Val; 108 } 109 110 // If this operand is currently a register operand, and if this is in a 111 // function, deregister the operand from the register's use/def list. 112 void MachineOperand::removeRegFromUses() { 113 if (!isReg() || !isOnRegUseList()) 114 return; 115 116 if (MachineInstr *MI = getParent()) { 117 if (MachineBasicBlock *MBB = MI->getParent()) { 118 if (MachineFunction *MF = MBB->getParent()) 119 MF->getRegInfo().removeRegOperandFromUseList(this); 120 } 121 } 122 } 123 124 /// ChangeToImmediate - Replace this operand with a new immediate operand of 125 /// the specified value. If an operand is known to be an immediate already, 126 /// the setImm method should be used. 127 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 128 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 129 130 removeRegFromUses(); 131 132 OpKind = MO_Immediate; 133 Contents.ImmVal = ImmVal; 134 } 135 136 void MachineOperand::ChangeToFPImmediate(const ConstantFP *FPImm) { 137 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 138 139 removeRegFromUses(); 140 141 OpKind = MO_FPImmediate; 142 Contents.CFP = FPImm; 143 } 144 145 void MachineOperand::ChangeToES(const char *SymName, unsigned char TargetFlags) { 146 assert((!isReg() || !isTied()) && 147 "Cannot change a tied operand into an external symbol"); 148 149 removeRegFromUses(); 150 151 OpKind = MO_ExternalSymbol; 152 Contents.OffsetedInfo.Val.SymbolName = SymName; 153 setOffset(0); // Offset is always 0. 154 setTargetFlags(TargetFlags); 155 } 156 157 void MachineOperand::ChangeToMCSymbol(MCSymbol *Sym) { 158 assert((!isReg() || !isTied()) && 159 "Cannot change a tied operand into an MCSymbol"); 160 161 removeRegFromUses(); 162 163 OpKind = MO_MCSymbol; 164 Contents.Sym = Sym; 165 } 166 167 /// ChangeToRegister - Replace this operand with a new register operand of 168 /// the specified value. If an operand is known to be an register already, 169 /// the setReg method should be used. 170 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 171 bool isKill, bool isDead, bool isUndef, 172 bool isDebug) { 173 MachineRegisterInfo *RegInfo = nullptr; 174 if (MachineInstr *MI = getParent()) 175 if (MachineBasicBlock *MBB = MI->getParent()) 176 if (MachineFunction *MF = MBB->getParent()) 177 RegInfo = &MF->getRegInfo(); 178 // If this operand is already a register operand, remove it from the 179 // register's use/def lists. 180 bool WasReg = isReg(); 181 if (RegInfo && WasReg) 182 RegInfo->removeRegOperandFromUseList(this); 183 184 // Change this to a register and set the reg#. 185 OpKind = MO_Register; 186 SmallContents.RegNo = Reg; 187 SubReg_TargetFlags = 0; 188 IsDef = isDef; 189 IsImp = isImp; 190 IsKill = isKill; 191 IsDead = isDead; 192 IsUndef = isUndef; 193 IsInternalRead = false; 194 IsEarlyClobber = false; 195 IsDebug = isDebug; 196 // Ensure isOnRegUseList() returns false. 197 Contents.Reg.Prev = nullptr; 198 // Preserve the tie when the operand was already a register. 199 if (!WasReg) 200 TiedTo = 0; 201 202 // If this operand is embedded in a function, add the operand to the 203 // register's use/def list. 204 if (RegInfo) 205 RegInfo->addRegOperandToUseList(this); 206 } 207 208 /// isIdenticalTo - Return true if this operand is identical to the specified 209 /// operand. Note that this should stay in sync with the hash_value overload 210 /// below. 211 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 212 if (getType() != Other.getType() || 213 getTargetFlags() != Other.getTargetFlags()) 214 return false; 215 216 switch (getType()) { 217 case MachineOperand::MO_Register: 218 return getReg() == Other.getReg() && isDef() == Other.isDef() && 219 getSubReg() == Other.getSubReg(); 220 case MachineOperand::MO_Immediate: 221 return getImm() == Other.getImm(); 222 case MachineOperand::MO_CImmediate: 223 return getCImm() == Other.getCImm(); 224 case MachineOperand::MO_FPImmediate: 225 return getFPImm() == Other.getFPImm(); 226 case MachineOperand::MO_MachineBasicBlock: 227 return getMBB() == Other.getMBB(); 228 case MachineOperand::MO_FrameIndex: 229 return getIndex() == Other.getIndex(); 230 case MachineOperand::MO_ConstantPoolIndex: 231 case MachineOperand::MO_TargetIndex: 232 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 233 case MachineOperand::MO_JumpTableIndex: 234 return getIndex() == Other.getIndex(); 235 case MachineOperand::MO_GlobalAddress: 236 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 237 case MachineOperand::MO_ExternalSymbol: 238 return !strcmp(getSymbolName(), Other.getSymbolName()) && 239 getOffset() == Other.getOffset(); 240 case MachineOperand::MO_BlockAddress: 241 return getBlockAddress() == Other.getBlockAddress() && 242 getOffset() == Other.getOffset(); 243 case MachineOperand::MO_RegisterMask: 244 case MachineOperand::MO_RegisterLiveOut: 245 return getRegMask() == Other.getRegMask(); 246 case MachineOperand::MO_MCSymbol: 247 return getMCSymbol() == Other.getMCSymbol(); 248 case MachineOperand::MO_CFIIndex: 249 return getCFIIndex() == Other.getCFIIndex(); 250 case MachineOperand::MO_Metadata: 251 return getMetadata() == Other.getMetadata(); 252 } 253 llvm_unreachable("Invalid machine operand type"); 254 } 255 256 // Note: this must stay exactly in sync with isIdenticalTo above. 257 hash_code llvm::hash_value(const MachineOperand &MO) { 258 switch (MO.getType()) { 259 case MachineOperand::MO_Register: 260 // Register operands don't have target flags. 261 return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef()); 262 case MachineOperand::MO_Immediate: 263 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm()); 264 case MachineOperand::MO_CImmediate: 265 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm()); 266 case MachineOperand::MO_FPImmediate: 267 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm()); 268 case MachineOperand::MO_MachineBasicBlock: 269 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB()); 270 case MachineOperand::MO_FrameIndex: 271 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 272 case MachineOperand::MO_ConstantPoolIndex: 273 case MachineOperand::MO_TargetIndex: 274 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(), 275 MO.getOffset()); 276 case MachineOperand::MO_JumpTableIndex: 277 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 278 case MachineOperand::MO_ExternalSymbol: 279 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(), 280 MO.getSymbolName()); 281 case MachineOperand::MO_GlobalAddress: 282 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(), 283 MO.getOffset()); 284 case MachineOperand::MO_BlockAddress: 285 return hash_combine(MO.getType(), MO.getTargetFlags(), 286 MO.getBlockAddress(), MO.getOffset()); 287 case MachineOperand::MO_RegisterMask: 288 case MachineOperand::MO_RegisterLiveOut: 289 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask()); 290 case MachineOperand::MO_Metadata: 291 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata()); 292 case MachineOperand::MO_MCSymbol: 293 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol()); 294 case MachineOperand::MO_CFIIndex: 295 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex()); 296 } 297 llvm_unreachable("Invalid machine operand type"); 298 } 299 300 void MachineOperand::print(raw_ostream &OS, 301 const TargetRegisterInfo *TRI) const { 302 ModuleSlotTracker DummyMST(nullptr); 303 print(OS, DummyMST, TRI); 304 } 305 306 void MachineOperand::print(raw_ostream &OS, ModuleSlotTracker &MST, 307 const TargetRegisterInfo *TRI) const { 308 switch (getType()) { 309 case MachineOperand::MO_Register: 310 OS << PrintReg(getReg(), TRI, getSubReg()); 311 312 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 313 isInternalRead() || isEarlyClobber() || isTied()) { 314 OS << '<'; 315 bool NeedComma = false; 316 if (isDef()) { 317 if (NeedComma) OS << ','; 318 if (isEarlyClobber()) 319 OS << "earlyclobber,"; 320 if (isImplicit()) 321 OS << "imp-"; 322 OS << "def"; 323 NeedComma = true; 324 // <def,read-undef> only makes sense when getSubReg() is set. 325 // Don't clutter the output otherwise. 326 if (isUndef() && getSubReg()) 327 OS << ",read-undef"; 328 } else if (isImplicit()) { 329 OS << "imp-use"; 330 NeedComma = true; 331 } 332 333 if (isKill()) { 334 if (NeedComma) OS << ','; 335 OS << "kill"; 336 NeedComma = true; 337 } 338 if (isDead()) { 339 if (NeedComma) OS << ','; 340 OS << "dead"; 341 NeedComma = true; 342 } 343 if (isUndef() && isUse()) { 344 if (NeedComma) OS << ','; 345 OS << "undef"; 346 NeedComma = true; 347 } 348 if (isInternalRead()) { 349 if (NeedComma) OS << ','; 350 OS << "internal"; 351 NeedComma = true; 352 } 353 if (isTied()) { 354 if (NeedComma) OS << ','; 355 OS << "tied"; 356 if (TiedTo != 15) 357 OS << unsigned(TiedTo - 1); 358 } 359 OS << '>'; 360 } 361 break; 362 case MachineOperand::MO_Immediate: 363 OS << getImm(); 364 break; 365 case MachineOperand::MO_CImmediate: 366 getCImm()->getValue().print(OS, false); 367 break; 368 case MachineOperand::MO_FPImmediate: 369 if (getFPImm()->getType()->isFloatTy()) 370 OS << getFPImm()->getValueAPF().convertToFloat(); 371 else 372 OS << getFPImm()->getValueAPF().convertToDouble(); 373 break; 374 case MachineOperand::MO_MachineBasicBlock: 375 OS << "<BB#" << getMBB()->getNumber() << ">"; 376 break; 377 case MachineOperand::MO_FrameIndex: 378 OS << "<fi#" << getIndex() << '>'; 379 break; 380 case MachineOperand::MO_ConstantPoolIndex: 381 OS << "<cp#" << getIndex(); 382 if (getOffset()) OS << "+" << getOffset(); 383 OS << '>'; 384 break; 385 case MachineOperand::MO_TargetIndex: 386 OS << "<ti#" << getIndex(); 387 if (getOffset()) OS << "+" << getOffset(); 388 OS << '>'; 389 break; 390 case MachineOperand::MO_JumpTableIndex: 391 OS << "<jt#" << getIndex() << '>'; 392 break; 393 case MachineOperand::MO_GlobalAddress: 394 OS << "<ga:"; 395 getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST); 396 if (getOffset()) OS << "+" << getOffset(); 397 OS << '>'; 398 break; 399 case MachineOperand::MO_ExternalSymbol: 400 OS << "<es:" << getSymbolName(); 401 if (getOffset()) OS << "+" << getOffset(); 402 OS << '>'; 403 break; 404 case MachineOperand::MO_BlockAddress: 405 OS << '<'; 406 getBlockAddress()->printAsOperand(OS, /*PrintType=*/false, MST); 407 if (getOffset()) OS << "+" << getOffset(); 408 OS << '>'; 409 break; 410 case MachineOperand::MO_RegisterMask: 411 OS << "<regmask>"; 412 break; 413 case MachineOperand::MO_RegisterLiveOut: 414 OS << "<regliveout>"; 415 break; 416 case MachineOperand::MO_Metadata: 417 OS << '<'; 418 getMetadata()->printAsOperand(OS); 419 OS << '>'; 420 break; 421 case MachineOperand::MO_MCSymbol: 422 OS << "<MCSym=" << *getMCSymbol() << '>'; 423 break; 424 case MachineOperand::MO_CFIIndex: 425 OS << "<call frame instruction>"; 426 break; 427 } 428 429 if (unsigned TF = getTargetFlags()) 430 OS << "[TF=" << TF << ']'; 431 } 432 433 //===----------------------------------------------------------------------===// 434 // MachineMemOperand Implementation 435 //===----------------------------------------------------------------------===// 436 437 /// getAddrSpace - Return the LLVM IR address space number that this pointer 438 /// points into. 439 unsigned MachinePointerInfo::getAddrSpace() const { 440 if (V.isNull() || V.is<const PseudoSourceValue*>()) return 0; 441 return cast<PointerType>(V.get<const Value*>()->getType())->getAddressSpace(); 442 } 443 444 /// getConstantPool - Return a MachinePointerInfo record that refers to the 445 /// constant pool. 446 MachinePointerInfo MachinePointerInfo::getConstantPool() { 447 return MachinePointerInfo(PseudoSourceValue::getConstantPool()); 448 } 449 450 /// getFixedStack - Return a MachinePointerInfo record that refers to the 451 /// the specified FrameIndex. 452 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) { 453 return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset); 454 } 455 456 MachinePointerInfo MachinePointerInfo::getJumpTable() { 457 return MachinePointerInfo(PseudoSourceValue::getJumpTable()); 458 } 459 460 MachinePointerInfo MachinePointerInfo::getGOT() { 461 return MachinePointerInfo(PseudoSourceValue::getGOT()); 462 } 463 464 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) { 465 return MachinePointerInfo(PseudoSourceValue::getStack(), Offset); 466 } 467 468 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f, 469 uint64_t s, unsigned int a, 470 const AAMDNodes &AAInfo, 471 const MDNode *Ranges) 472 : PtrInfo(ptrinfo), Size(s), 473 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)), 474 AAInfo(AAInfo), Ranges(Ranges) { 475 assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() || 476 isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) && 477 "invalid pointer value"); 478 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 479 assert((isLoad() || isStore()) && "Not a load/store!"); 480 } 481 482 /// Profile - Gather unique data for the object. 483 /// 484 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 485 ID.AddInteger(getOffset()); 486 ID.AddInteger(Size); 487 ID.AddPointer(getOpaqueValue()); 488 ID.AddInteger(Flags); 489 } 490 491 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 492 // The Value and Offset may differ due to CSE. But the flags and size 493 // should be the same. 494 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 495 assert(MMO->getSize() == getSize() && "Size mismatch!"); 496 497 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 498 // Update the alignment value. 499 Flags = (Flags & ((1 << MOMaxBits) - 1)) | 500 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits); 501 // Also update the base and offset, because the new alignment may 502 // not be applicable with the old ones. 503 PtrInfo = MMO->PtrInfo; 504 } 505 } 506 507 /// getAlignment - Return the minimum known alignment in bytes of the 508 /// actual memory reference. 509 uint64_t MachineMemOperand::getAlignment() const { 510 return MinAlign(getBaseAlignment(), getOffset()); 511 } 512 513 void MachineMemOperand::print(raw_ostream &OS) const { 514 ModuleSlotTracker DummyMST(nullptr); 515 print(OS, DummyMST); 516 } 517 void MachineMemOperand::print(raw_ostream &OS, ModuleSlotTracker &MST) const { 518 assert((isLoad() || isStore()) && 519 "SV has to be a load, store or both."); 520 521 if (isVolatile()) 522 OS << "Volatile "; 523 524 if (isLoad()) 525 OS << "LD"; 526 if (isStore()) 527 OS << "ST"; 528 OS << getSize(); 529 530 // Print the address information. 531 OS << "["; 532 if (const Value *V = getValue()) 533 V->printAsOperand(OS, /*PrintType=*/false, MST); 534 else if (const PseudoSourceValue *PSV = getPseudoValue()) 535 PSV->printCustom(OS); 536 else 537 OS << "<unknown>"; 538 539 unsigned AS = getAddrSpace(); 540 if (AS != 0) 541 OS << "(addrspace=" << AS << ')'; 542 543 // If the alignment of the memory reference itself differs from the alignment 544 // of the base pointer, print the base alignment explicitly, next to the base 545 // pointer. 546 if (getBaseAlignment() != getAlignment()) 547 OS << "(align=" << getBaseAlignment() << ")"; 548 549 if (getOffset() != 0) 550 OS << "+" << getOffset(); 551 OS << "]"; 552 553 // Print the alignment of the reference. 554 if (getBaseAlignment() != getAlignment() || getBaseAlignment() != getSize()) 555 OS << "(align=" << getAlignment() << ")"; 556 557 // Print TBAA info. 558 if (const MDNode *TBAAInfo = getAAInfo().TBAA) { 559 OS << "(tbaa="; 560 if (TBAAInfo->getNumOperands() > 0) 561 TBAAInfo->getOperand(0)->printAsOperand(OS); 562 else 563 OS << "<unknown>"; 564 OS << ")"; 565 } 566 567 // Print AA scope info. 568 if (const MDNode *ScopeInfo = getAAInfo().Scope) { 569 OS << "(alias.scope="; 570 if (ScopeInfo->getNumOperands() > 0) 571 for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) { 572 ScopeInfo->getOperand(i)->printAsOperand(OS); 573 if (i != ie-1) 574 OS << ","; 575 } 576 else 577 OS << "<unknown>"; 578 OS << ")"; 579 } 580 581 // Print AA noalias scope info. 582 if (const MDNode *NoAliasInfo = getAAInfo().NoAlias) { 583 OS << "(noalias="; 584 if (NoAliasInfo->getNumOperands() > 0) 585 for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) { 586 NoAliasInfo->getOperand(i)->printAsOperand(OS); 587 if (i != ie-1) 588 OS << ","; 589 } 590 else 591 OS << "<unknown>"; 592 OS << ")"; 593 } 594 595 // Print nontemporal info. 596 if (isNonTemporal()) 597 OS << "(nontemporal)"; 598 599 if (isInvariant()) 600 OS << "(invariant)"; 601 } 602 603 //===----------------------------------------------------------------------===// 604 // MachineInstr Implementation 605 //===----------------------------------------------------------------------===// 606 607 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 608 if (MCID->ImplicitDefs) 609 for (const uint16_t *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; ++ImpDefs) 610 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 611 if (MCID->ImplicitUses) 612 for (const uint16_t *ImpUses = MCID->getImplicitUses(); *ImpUses; ++ImpUses) 613 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 614 } 615 616 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 617 /// implicit operands. It reserves space for the number of operands specified by 618 /// the MCInstrDesc. 619 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, 620 DebugLoc dl, bool NoImp) 621 : MCID(&tid), Parent(nullptr), Operands(nullptr), NumOperands(0), Flags(0), 622 AsmPrinterFlags(0), NumMemRefs(0), MemRefs(nullptr), 623 debugLoc(std::move(dl)) { 624 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 625 626 // Reserve space for the expected number of operands. 627 if (unsigned NumOps = MCID->getNumOperands() + 628 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 629 CapOperands = OperandCapacity::get(NumOps); 630 Operands = MF.allocateOperandArray(CapOperands); 631 } 632 633 if (!NoImp) 634 addImplicitDefUseOperands(MF); 635 } 636 637 /// MachineInstr ctor - Copies MachineInstr arg exactly 638 /// 639 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 640 : MCID(&MI.getDesc()), Parent(nullptr), Operands(nullptr), NumOperands(0), 641 Flags(0), AsmPrinterFlags(0), 642 NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs), 643 debugLoc(MI.getDebugLoc()) { 644 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 645 646 CapOperands = OperandCapacity::get(MI.getNumOperands()); 647 Operands = MF.allocateOperandArray(CapOperands); 648 649 // Copy operands. 650 for (const MachineOperand &MO : MI.operands()) 651 addOperand(MF, MO); 652 653 // Copy all the sensible flags. 654 setFlags(MI.Flags); 655 } 656 657 /// getRegInfo - If this instruction is embedded into a MachineFunction, 658 /// return the MachineRegisterInfo object for the current function, otherwise 659 /// return null. 660 MachineRegisterInfo *MachineInstr::getRegInfo() { 661 if (MachineBasicBlock *MBB = getParent()) 662 return &MBB->getParent()->getRegInfo(); 663 return nullptr; 664 } 665 666 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 667 /// this instruction from their respective use lists. This requires that the 668 /// operands already be on their use lists. 669 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 670 for (MachineOperand &MO : operands()) 671 if (MO.isReg()) 672 MRI.removeRegOperandFromUseList(&MO); 673 } 674 675 /// AddRegOperandsToUseLists - Add all of the register operands in 676 /// this instruction from their respective use lists. This requires that the 677 /// operands not be on their use lists yet. 678 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 679 for (MachineOperand &MO : operands()) 680 if (MO.isReg()) 681 MRI.addRegOperandToUseList(&MO); 682 } 683 684 void MachineInstr::addOperand(const MachineOperand &Op) { 685 MachineBasicBlock *MBB = getParent(); 686 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 687 MachineFunction *MF = MBB->getParent(); 688 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 689 addOperand(*MF, Op); 690 } 691 692 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 693 /// ranges. If MRI is non-null also update use-def chains. 694 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 695 unsigned NumOps, MachineRegisterInfo *MRI) { 696 if (MRI) 697 return MRI->moveOperands(Dst, Src, NumOps); 698 699 // MachineOperand is a trivially copyable type so we can just use memmove. 700 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 701 } 702 703 /// addOperand - Add the specified operand to the instruction. If it is an 704 /// implicit operand, it is added to the end of the operand list. If it is 705 /// an explicit operand it is added at the end of the explicit operand list 706 /// (before the first implicit operand). 707 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 708 assert(MCID && "Cannot add operands before providing an instr descriptor"); 709 710 // Check if we're adding one of our existing operands. 711 if (&Op >= Operands && &Op < Operands + NumOperands) { 712 // This is unusual: MI->addOperand(MI->getOperand(i)). 713 // If adding Op requires reallocating or moving existing operands around, 714 // the Op reference could go stale. Support it by copying Op. 715 MachineOperand CopyOp(Op); 716 return addOperand(MF, CopyOp); 717 } 718 719 // Find the insert location for the new operand. Implicit registers go at 720 // the end, everything else goes before the implicit regs. 721 // 722 // FIXME: Allow mixed explicit and implicit operands on inline asm. 723 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 724 // implicit-defs, but they must not be moved around. See the FIXME in 725 // InstrEmitter.cpp. 726 unsigned OpNo = getNumOperands(); 727 bool isImpReg = Op.isReg() && Op.isImplicit(); 728 if (!isImpReg && !isInlineAsm()) { 729 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 730 --OpNo; 731 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 732 } 733 } 734 735 #ifndef NDEBUG 736 bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata; 737 // OpNo now points as the desired insertion point. Unless this is a variadic 738 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 739 // RegMask operands go between the explicit and implicit operands. 740 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 741 OpNo < MCID->getNumOperands() || isMetaDataOp) && 742 "Trying to add an operand to a machine instr that is already done!"); 743 #endif 744 745 MachineRegisterInfo *MRI = getRegInfo(); 746 747 // Determine if the Operands array needs to be reallocated. 748 // Save the old capacity and operand array. 749 OperandCapacity OldCap = CapOperands; 750 MachineOperand *OldOperands = Operands; 751 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 752 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 753 Operands = MF.allocateOperandArray(CapOperands); 754 // Move the operands before the insertion point. 755 if (OpNo) 756 moveOperands(Operands, OldOperands, OpNo, MRI); 757 } 758 759 // Move the operands following the insertion point. 760 if (OpNo != NumOperands) 761 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 762 MRI); 763 ++NumOperands; 764 765 // Deallocate the old operand array. 766 if (OldOperands != Operands && OldOperands) 767 MF.deallocateOperandArray(OldCap, OldOperands); 768 769 // Copy Op into place. It still needs to be inserted into the MRI use lists. 770 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 771 NewMO->ParentMI = this; 772 773 // When adding a register operand, tell MRI about it. 774 if (NewMO->isReg()) { 775 // Ensure isOnRegUseList() returns false, regardless of Op's status. 776 NewMO->Contents.Reg.Prev = nullptr; 777 // Ignore existing ties. This is not a property that can be copied. 778 NewMO->TiedTo = 0; 779 // Add the new operand to MRI, but only for instructions in an MBB. 780 if (MRI) 781 MRI->addRegOperandToUseList(NewMO); 782 // The MCID operand information isn't accurate until we start adding 783 // explicit operands. The implicit operands are added first, then the 784 // explicits are inserted before them. 785 if (!isImpReg) { 786 // Tie uses to defs as indicated in MCInstrDesc. 787 if (NewMO->isUse()) { 788 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 789 if (DefIdx != -1) 790 tieOperands(DefIdx, OpNo); 791 } 792 // If the register operand is flagged as early, mark the operand as such. 793 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 794 NewMO->setIsEarlyClobber(true); 795 } 796 } 797 } 798 799 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 800 /// fewer operand than it started with. 801 /// 802 void MachineInstr::RemoveOperand(unsigned OpNo) { 803 assert(OpNo < getNumOperands() && "Invalid operand number"); 804 untieRegOperand(OpNo); 805 806 #ifndef NDEBUG 807 // Moving tied operands would break the ties. 808 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 809 if (Operands[i].isReg()) 810 assert(!Operands[i].isTied() && "Cannot move tied operands"); 811 #endif 812 813 MachineRegisterInfo *MRI = getRegInfo(); 814 if (MRI && Operands[OpNo].isReg()) 815 MRI->removeRegOperandFromUseList(Operands + OpNo); 816 817 // Don't call the MachineOperand destructor. A lot of this code depends on 818 // MachineOperand having a trivial destructor anyway, and adding a call here 819 // wouldn't make it 'destructor-correct'. 820 821 if (unsigned N = NumOperands - 1 - OpNo) 822 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 823 --NumOperands; 824 } 825 826 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 827 /// This function should be used only occasionally. The setMemRefs function 828 /// is the primary method for setting up a MachineInstr's MemRefs list. 829 void MachineInstr::addMemOperand(MachineFunction &MF, 830 MachineMemOperand *MO) { 831 mmo_iterator OldMemRefs = MemRefs; 832 unsigned OldNumMemRefs = NumMemRefs; 833 834 unsigned NewNum = NumMemRefs + 1; 835 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 836 837 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs); 838 NewMemRefs[NewNum - 1] = MO; 839 setMemRefs(NewMemRefs, NewMemRefs + NewNum); 840 } 841 842 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { 843 assert(!isBundledWithPred() && "Must be called on bundle header"); 844 for (MachineBasicBlock::const_instr_iterator MII = this;; ++MII) { 845 if (MII->getDesc().getFlags() & Mask) { 846 if (Type == AnyInBundle) 847 return true; 848 } else { 849 if (Type == AllInBundle && !MII->isBundle()) 850 return false; 851 } 852 // This was the last instruction in the bundle. 853 if (!MII->isBundledWithSucc()) 854 return Type == AllInBundle; 855 } 856 } 857 858 bool MachineInstr::isIdenticalTo(const MachineInstr *Other, 859 MICheckType Check) const { 860 // If opcodes or number of operands are not the same then the two 861 // instructions are obviously not identical. 862 if (Other->getOpcode() != getOpcode() || 863 Other->getNumOperands() != getNumOperands()) 864 return false; 865 866 if (isBundle()) { 867 // Both instructions are bundles, compare MIs inside the bundle. 868 MachineBasicBlock::const_instr_iterator I1 = *this; 869 MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end(); 870 MachineBasicBlock::const_instr_iterator I2 = *Other; 871 MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end(); 872 while (++I1 != E1 && I1->isInsideBundle()) { 873 ++I2; 874 if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check)) 875 return false; 876 } 877 } 878 879 // Check operands to make sure they match. 880 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 881 const MachineOperand &MO = getOperand(i); 882 const MachineOperand &OMO = Other->getOperand(i); 883 if (!MO.isReg()) { 884 if (!MO.isIdenticalTo(OMO)) 885 return false; 886 continue; 887 } 888 889 // Clients may or may not want to ignore defs when testing for equality. 890 // For example, machine CSE pass only cares about finding common 891 // subexpressions, so it's safe to ignore virtual register defs. 892 if (MO.isDef()) { 893 if (Check == IgnoreDefs) 894 continue; 895 else if (Check == IgnoreVRegDefs) { 896 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 897 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 898 if (MO.getReg() != OMO.getReg()) 899 return false; 900 } else { 901 if (!MO.isIdenticalTo(OMO)) 902 return false; 903 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 904 return false; 905 } 906 } else { 907 if (!MO.isIdenticalTo(OMO)) 908 return false; 909 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 910 return false; 911 } 912 } 913 // If DebugLoc does not match then two dbg.values are not identical. 914 if (isDebugValue()) 915 if (getDebugLoc() && Other->getDebugLoc() && 916 getDebugLoc() != Other->getDebugLoc()) 917 return false; 918 return true; 919 } 920 921 MachineInstr *MachineInstr::removeFromParent() { 922 assert(getParent() && "Not embedded in a basic block!"); 923 return getParent()->remove(this); 924 } 925 926 MachineInstr *MachineInstr::removeFromBundle() { 927 assert(getParent() && "Not embedded in a basic block!"); 928 return getParent()->remove_instr(this); 929 } 930 931 void MachineInstr::eraseFromParent() { 932 assert(getParent() && "Not embedded in a basic block!"); 933 getParent()->erase(this); 934 } 935 936 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() { 937 assert(getParent() && "Not embedded in a basic block!"); 938 MachineBasicBlock *MBB = getParent(); 939 MachineFunction *MF = MBB->getParent(); 940 assert(MF && "Not embedded in a function!"); 941 942 MachineInstr *MI = (MachineInstr *)this; 943 MachineRegisterInfo &MRI = MF->getRegInfo(); 944 945 for (const MachineOperand &MO : MI->operands()) { 946 if (!MO.isReg() || !MO.isDef()) 947 continue; 948 unsigned Reg = MO.getReg(); 949 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 950 continue; 951 MRI.markUsesInDebugValueAsUndef(Reg); 952 } 953 MI->eraseFromParent(); 954 } 955 956 void MachineInstr::eraseFromBundle() { 957 assert(getParent() && "Not embedded in a basic block!"); 958 getParent()->erase_instr(this); 959 } 960 961 /// getNumExplicitOperands - Returns the number of non-implicit operands. 962 /// 963 unsigned MachineInstr::getNumExplicitOperands() const { 964 unsigned NumOperands = MCID->getNumOperands(); 965 if (!MCID->isVariadic()) 966 return NumOperands; 967 968 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 969 const MachineOperand &MO = getOperand(i); 970 if (!MO.isReg() || !MO.isImplicit()) 971 NumOperands++; 972 } 973 return NumOperands; 974 } 975 976 void MachineInstr::bundleWithPred() { 977 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 978 setFlag(BundledPred); 979 MachineBasicBlock::instr_iterator Pred = this; 980 --Pred; 981 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 982 Pred->setFlag(BundledSucc); 983 } 984 985 void MachineInstr::bundleWithSucc() { 986 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 987 setFlag(BundledSucc); 988 MachineBasicBlock::instr_iterator Succ = this; 989 ++Succ; 990 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 991 Succ->setFlag(BundledPred); 992 } 993 994 void MachineInstr::unbundleFromPred() { 995 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 996 clearFlag(BundledPred); 997 MachineBasicBlock::instr_iterator Pred = this; 998 --Pred; 999 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 1000 Pred->clearFlag(BundledSucc); 1001 } 1002 1003 void MachineInstr::unbundleFromSucc() { 1004 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 1005 clearFlag(BundledSucc); 1006 MachineBasicBlock::instr_iterator Succ = this; 1007 ++Succ; 1008 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 1009 Succ->clearFlag(BundledPred); 1010 } 1011 1012 bool MachineInstr::isStackAligningInlineAsm() const { 1013 if (isInlineAsm()) { 1014 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1015 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1016 return true; 1017 } 1018 return false; 1019 } 1020 1021 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 1022 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 1023 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1024 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 1025 } 1026 1027 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 1028 unsigned *GroupNo) const { 1029 assert(isInlineAsm() && "Expected an inline asm instruction"); 1030 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 1031 1032 // Ignore queries about the initial operands. 1033 if (OpIdx < InlineAsm::MIOp_FirstOperand) 1034 return -1; 1035 1036 unsigned Group = 0; 1037 unsigned NumOps; 1038 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1039 i += NumOps) { 1040 const MachineOperand &FlagMO = getOperand(i); 1041 // If we reach the implicit register operands, stop looking. 1042 if (!FlagMO.isImm()) 1043 return -1; 1044 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1045 if (i + NumOps > OpIdx) { 1046 if (GroupNo) 1047 *GroupNo = Group; 1048 return i; 1049 } 1050 ++Group; 1051 } 1052 return -1; 1053 } 1054 1055 const TargetRegisterClass* 1056 MachineInstr::getRegClassConstraint(unsigned OpIdx, 1057 const TargetInstrInfo *TII, 1058 const TargetRegisterInfo *TRI) const { 1059 assert(getParent() && "Can't have an MBB reference here!"); 1060 assert(getParent()->getParent() && "Can't have an MF reference here!"); 1061 const MachineFunction &MF = *getParent()->getParent(); 1062 1063 // Most opcodes have fixed constraints in their MCInstrDesc. 1064 if (!isInlineAsm()) 1065 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 1066 1067 if (!getOperand(OpIdx).isReg()) 1068 return nullptr; 1069 1070 // For tied uses on inline asm, get the constraint from the def. 1071 unsigned DefIdx; 1072 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 1073 OpIdx = DefIdx; 1074 1075 // Inline asm stores register class constraints in the flag word. 1076 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 1077 if (FlagIdx < 0) 1078 return nullptr; 1079 1080 unsigned Flag = getOperand(FlagIdx).getImm(); 1081 unsigned RCID; 1082 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) 1083 return TRI->getRegClass(RCID); 1084 1085 // Assume that all registers in a memory operand are pointers. 1086 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 1087 return TRI->getPointerRegClass(MF); 1088 1089 return nullptr; 1090 } 1091 1092 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 1093 unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 1094 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 1095 // Check every operands inside the bundle if we have 1096 // been asked to. 1097 if (ExploreBundle) 1098 for (ConstMIBundleOperands OpndIt(this); OpndIt.isValid() && CurRC; 1099 ++OpndIt) 1100 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 1101 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 1102 else 1103 // Otherwise, just check the current operands. 1104 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 1105 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 1106 return CurRC; 1107 } 1108 1109 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 1110 unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC, 1111 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1112 assert(CurRC && "Invalid initial register class"); 1113 // Check if Reg is constrained by some of its use/def from MI. 1114 const MachineOperand &MO = getOperand(OpIdx); 1115 if (!MO.isReg() || MO.getReg() != Reg) 1116 return CurRC; 1117 // If yes, accumulate the constraints through the operand. 1118 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 1119 } 1120 1121 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 1122 unsigned OpIdx, const TargetRegisterClass *CurRC, 1123 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1124 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 1125 const MachineOperand &MO = getOperand(OpIdx); 1126 assert(MO.isReg() && 1127 "Cannot get register constraints for non-register operand"); 1128 assert(CurRC && "Invalid initial register class"); 1129 if (unsigned SubIdx = MO.getSubReg()) { 1130 if (OpRC) 1131 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 1132 else 1133 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 1134 } else if (OpRC) 1135 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 1136 return CurRC; 1137 } 1138 1139 /// Return the number of instructions inside the MI bundle, not counting the 1140 /// header instruction. 1141 unsigned MachineInstr::getBundleSize() const { 1142 MachineBasicBlock::const_instr_iterator I = this; 1143 unsigned Size = 0; 1144 while (I->isBundledWithSucc()) 1145 ++Size, ++I; 1146 return Size; 1147 } 1148 1149 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 1150 /// the specific register or -1 if it is not found. It further tightens 1151 /// the search criteria to a use that kills the register if isKill is true. 1152 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, 1153 const TargetRegisterInfo *TRI) const { 1154 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1155 const MachineOperand &MO = getOperand(i); 1156 if (!MO.isReg() || !MO.isUse()) 1157 continue; 1158 unsigned MOReg = MO.getReg(); 1159 if (!MOReg) 1160 continue; 1161 if (MOReg == Reg || 1162 (TRI && 1163 TargetRegisterInfo::isPhysicalRegister(MOReg) && 1164 TargetRegisterInfo::isPhysicalRegister(Reg) && 1165 TRI->isSubRegister(MOReg, Reg))) 1166 if (!isKill || MO.isKill()) 1167 return i; 1168 } 1169 return -1; 1170 } 1171 1172 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1173 /// indicating if this instruction reads or writes Reg. This also considers 1174 /// partial defines. 1175 std::pair<bool,bool> 1176 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 1177 SmallVectorImpl<unsigned> *Ops) const { 1178 bool PartDef = false; // Partial redefine. 1179 bool FullDef = false; // Full define. 1180 bool Use = false; 1181 1182 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1183 const MachineOperand &MO = getOperand(i); 1184 if (!MO.isReg() || MO.getReg() != Reg) 1185 continue; 1186 if (Ops) 1187 Ops->push_back(i); 1188 if (MO.isUse()) 1189 Use |= !MO.isUndef(); 1190 else if (MO.getSubReg() && !MO.isUndef()) 1191 // A partial <def,undef> doesn't count as reading the register. 1192 PartDef = true; 1193 else 1194 FullDef = true; 1195 } 1196 // A partial redefine uses Reg unless there is also a full define. 1197 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1198 } 1199 1200 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1201 /// the specified register or -1 if it is not found. If isDead is true, defs 1202 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1203 /// also checks if there is a def of a super-register. 1204 int 1205 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 1206 const TargetRegisterInfo *TRI) const { 1207 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 1208 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1209 const MachineOperand &MO = getOperand(i); 1210 // Accept regmask operands when Overlap is set. 1211 // Ignore them when looking for a specific def operand (Overlap == false). 1212 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1213 return i; 1214 if (!MO.isReg() || !MO.isDef()) 1215 continue; 1216 unsigned MOReg = MO.getReg(); 1217 bool Found = (MOReg == Reg); 1218 if (!Found && TRI && isPhys && 1219 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1220 if (Overlap) 1221 Found = TRI->regsOverlap(MOReg, Reg); 1222 else 1223 Found = TRI->isSubRegister(MOReg, Reg); 1224 } 1225 if (Found && (!isDead || MO.isDead())) 1226 return i; 1227 } 1228 return -1; 1229 } 1230 1231 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1232 /// operand list that is used to represent the predicate. It returns -1 if 1233 /// none is found. 1234 int MachineInstr::findFirstPredOperandIdx() const { 1235 // Don't call MCID.findFirstPredOperandIdx() because this variant 1236 // is sometimes called on an instruction that's not yet complete, and 1237 // so the number of operands is less than the MCID indicates. In 1238 // particular, the PTX target does this. 1239 const MCInstrDesc &MCID = getDesc(); 1240 if (MCID.isPredicable()) { 1241 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1242 if (MCID.OpInfo[i].isPredicate()) 1243 return i; 1244 } 1245 1246 return -1; 1247 } 1248 1249 // MachineOperand::TiedTo is 4 bits wide. 1250 const unsigned TiedMax = 15; 1251 1252 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1253 /// 1254 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1255 /// field. TiedTo can have these values: 1256 /// 1257 /// 0: Operand is not tied to anything. 1258 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1259 /// TiedMax: Tied to an operand >= TiedMax-1. 1260 /// 1261 /// The tied def must be one of the first TiedMax operands on a normal 1262 /// instruction. INLINEASM instructions allow more tied defs. 1263 /// 1264 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1265 MachineOperand &DefMO = getOperand(DefIdx); 1266 MachineOperand &UseMO = getOperand(UseIdx); 1267 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1268 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1269 assert(!DefMO.isTied() && "Def is already tied to another use"); 1270 assert(!UseMO.isTied() && "Use is already tied to another def"); 1271 1272 if (DefIdx < TiedMax) 1273 UseMO.TiedTo = DefIdx + 1; 1274 else { 1275 // Inline asm can use the group descriptors to find tied operands, but on 1276 // normal instruction, the tied def must be within the first TiedMax 1277 // operands. 1278 assert(isInlineAsm() && "DefIdx out of range"); 1279 UseMO.TiedTo = TiedMax; 1280 } 1281 1282 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1283 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1284 } 1285 1286 /// Given the index of a tied register operand, find the operand it is tied to. 1287 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1288 /// which must exist. 1289 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1290 const MachineOperand &MO = getOperand(OpIdx); 1291 assert(MO.isTied() && "Operand isn't tied"); 1292 1293 // Normally TiedTo is in range. 1294 if (MO.TiedTo < TiedMax) 1295 return MO.TiedTo - 1; 1296 1297 // Uses on normal instructions can be out of range. 1298 if (!isInlineAsm()) { 1299 // Normal tied defs must be in the 0..TiedMax-1 range. 1300 if (MO.isUse()) 1301 return TiedMax - 1; 1302 // MO is a def. Search for the tied use. 1303 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1304 const MachineOperand &UseMO = getOperand(i); 1305 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1306 return i; 1307 } 1308 llvm_unreachable("Can't find tied use"); 1309 } 1310 1311 // Now deal with inline asm by parsing the operand group descriptor flags. 1312 // Find the beginning of each operand group. 1313 SmallVector<unsigned, 8> GroupIdx; 1314 unsigned OpIdxGroup = ~0u; 1315 unsigned NumOps; 1316 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1317 i += NumOps) { 1318 const MachineOperand &FlagMO = getOperand(i); 1319 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1320 unsigned CurGroup = GroupIdx.size(); 1321 GroupIdx.push_back(i); 1322 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1323 // OpIdx belongs to this operand group. 1324 if (OpIdx > i && OpIdx < i + NumOps) 1325 OpIdxGroup = CurGroup; 1326 unsigned TiedGroup; 1327 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1328 continue; 1329 // Operands in this group are tied to operands in TiedGroup which must be 1330 // earlier. Find the number of operands between the two groups. 1331 unsigned Delta = i - GroupIdx[TiedGroup]; 1332 1333 // OpIdx is a use tied to TiedGroup. 1334 if (OpIdxGroup == CurGroup) 1335 return OpIdx - Delta; 1336 1337 // OpIdx is a def tied to this use group. 1338 if (OpIdxGroup == TiedGroup) 1339 return OpIdx + Delta; 1340 } 1341 llvm_unreachable("Invalid tied operand on inline asm"); 1342 } 1343 1344 /// clearKillInfo - Clears kill flags on all operands. 1345 /// 1346 void MachineInstr::clearKillInfo() { 1347 for (MachineOperand &MO : operands()) { 1348 if (MO.isReg() && MO.isUse()) 1349 MO.setIsKill(false); 1350 } 1351 } 1352 1353 void MachineInstr::substituteRegister(unsigned FromReg, 1354 unsigned ToReg, 1355 unsigned SubIdx, 1356 const TargetRegisterInfo &RegInfo) { 1357 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1358 if (SubIdx) 1359 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1360 for (MachineOperand &MO : operands()) { 1361 if (!MO.isReg() || MO.getReg() != FromReg) 1362 continue; 1363 MO.substPhysReg(ToReg, RegInfo); 1364 } 1365 } else { 1366 for (MachineOperand &MO : operands()) { 1367 if (!MO.isReg() || MO.getReg() != FromReg) 1368 continue; 1369 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1370 } 1371 } 1372 } 1373 1374 /// isSafeToMove - Return true if it is safe to move this instruction. If 1375 /// SawStore is set to true, it means that there is a store (or call) between 1376 /// the instruction's location and its intended destination. 1377 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const { 1378 // Ignore stuff that we obviously can't move. 1379 // 1380 // Treat volatile loads as stores. This is not strictly necessary for 1381 // volatiles, but it is required for atomic loads. It is not allowed to move 1382 // a load across an atomic load with Ordering > Monotonic. 1383 if (mayStore() || isCall() || 1384 (mayLoad() && hasOrderedMemoryRef())) { 1385 SawStore = true; 1386 return false; 1387 } 1388 1389 if (isPosition() || isDebugValue() || isTerminator() || 1390 hasUnmodeledSideEffects()) 1391 return false; 1392 1393 // See if this instruction does a load. If so, we have to guarantee that the 1394 // loaded value doesn't change between the load and the its intended 1395 // destination. The check for isInvariantLoad gives the targe the chance to 1396 // classify the load as always returning a constant, e.g. a constant pool 1397 // load. 1398 if (mayLoad() && !isInvariantLoad(AA)) 1399 // Otherwise, this is a real load. If there is a store between the load and 1400 // end of block, we can't move it. 1401 return !SawStore; 1402 1403 return true; 1404 } 1405 1406 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1407 /// or volatile memory reference, or if the information describing the memory 1408 /// reference is not available. Return false if it is known to have no ordered 1409 /// memory references. 1410 bool MachineInstr::hasOrderedMemoryRef() const { 1411 // An instruction known never to access memory won't have a volatile access. 1412 if (!mayStore() && 1413 !mayLoad() && 1414 !isCall() && 1415 !hasUnmodeledSideEffects()) 1416 return false; 1417 1418 // Otherwise, if the instruction has no memory reference information, 1419 // conservatively assume it wasn't preserved. 1420 if (memoperands_empty()) 1421 return true; 1422 1423 // Check the memory reference information for ordered references. 1424 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I) 1425 if (!(*I)->isUnordered()) 1426 return true; 1427 1428 return false; 1429 } 1430 1431 /// isInvariantLoad - Return true if this instruction is loading from a 1432 /// location whose value is invariant across the function. For example, 1433 /// loading a value from the constant pool or from the argument area 1434 /// of a function if it does not change. This should only return true of 1435 /// *all* loads the instruction does are invariant (if it does multiple loads). 1436 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const { 1437 // If the instruction doesn't load at all, it isn't an invariant load. 1438 if (!mayLoad()) 1439 return false; 1440 1441 // If the instruction has lost its memoperands, conservatively assume that 1442 // it may not be an invariant load. 1443 if (memoperands_empty()) 1444 return false; 1445 1446 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo(); 1447 1448 for (mmo_iterator I = memoperands_begin(), 1449 E = memoperands_end(); I != E; ++I) { 1450 if ((*I)->isVolatile()) return false; 1451 if ((*I)->isStore()) return false; 1452 if ((*I)->isInvariant()) return true; 1453 1454 1455 // A load from a constant PseudoSourceValue is invariant. 1456 if (const PseudoSourceValue *PSV = (*I)->getPseudoValue()) 1457 if (PSV->isConstant(MFI)) 1458 continue; 1459 1460 if (const Value *V = (*I)->getValue()) { 1461 // If we have an AliasAnalysis, ask it whether the memory is constant. 1462 if (AA && 1463 AA->pointsToConstantMemory( 1464 MemoryLocation(V, (*I)->getSize(), (*I)->getAAInfo()))) 1465 continue; 1466 } 1467 1468 // Otherwise assume conservatively. 1469 return false; 1470 } 1471 1472 // Everything checks out. 1473 return true; 1474 } 1475 1476 /// isConstantValuePHI - If the specified instruction is a PHI that always 1477 /// merges together the same virtual register, return the register, otherwise 1478 /// return 0. 1479 unsigned MachineInstr::isConstantValuePHI() const { 1480 if (!isPHI()) 1481 return 0; 1482 assert(getNumOperands() >= 3 && 1483 "It's illegal to have a PHI without source operands"); 1484 1485 unsigned Reg = getOperand(1).getReg(); 1486 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1487 if (getOperand(i).getReg() != Reg) 1488 return 0; 1489 return Reg; 1490 } 1491 1492 bool MachineInstr::hasUnmodeledSideEffects() const { 1493 if (hasProperty(MCID::UnmodeledSideEffects)) 1494 return true; 1495 if (isInlineAsm()) { 1496 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1497 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1498 return true; 1499 } 1500 1501 return false; 1502 } 1503 1504 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1505 /// 1506 bool MachineInstr::allDefsAreDead() const { 1507 for (const MachineOperand &MO : operands()) { 1508 if (!MO.isReg() || MO.isUse()) 1509 continue; 1510 if (!MO.isDead()) 1511 return false; 1512 } 1513 return true; 1514 } 1515 1516 /// copyImplicitOps - Copy implicit register operands from specified 1517 /// instruction to this instruction. 1518 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1519 const MachineInstr *MI) { 1520 for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands(); 1521 i != e; ++i) { 1522 const MachineOperand &MO = MI->getOperand(i); 1523 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1524 addOperand(MF, MO); 1525 } 1526 } 1527 1528 void MachineInstr::dump() const { 1529 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1530 dbgs() << " " << *this; 1531 #endif 1532 } 1533 1534 void MachineInstr::print(raw_ostream &OS, bool SkipOpers) const { 1535 ModuleSlotTracker DummyMST(nullptr); 1536 print(OS, DummyMST, SkipOpers); 1537 } 1538 1539 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1540 bool SkipOpers) const { 1541 // We can be a bit tidier if we know the MachineFunction. 1542 const MachineFunction *MF = nullptr; 1543 const TargetRegisterInfo *TRI = nullptr; 1544 const MachineRegisterInfo *MRI = nullptr; 1545 const TargetInstrInfo *TII = nullptr; 1546 if (const MachineBasicBlock *MBB = getParent()) { 1547 MF = MBB->getParent(); 1548 if (MF) { 1549 MRI = &MF->getRegInfo(); 1550 TRI = MF->getSubtarget().getRegisterInfo(); 1551 TII = MF->getSubtarget().getInstrInfo(); 1552 } 1553 } 1554 1555 // Save a list of virtual registers. 1556 SmallVector<unsigned, 8> VirtRegs; 1557 1558 // Print explicitly defined operands on the left of an assignment syntax. 1559 unsigned StartOp = 0, e = getNumOperands(); 1560 for (; StartOp < e && getOperand(StartOp).isReg() && 1561 getOperand(StartOp).isDef() && 1562 !getOperand(StartOp).isImplicit(); 1563 ++StartOp) { 1564 if (StartOp != 0) OS << ", "; 1565 getOperand(StartOp).print(OS, MST, TRI); 1566 unsigned Reg = getOperand(StartOp).getReg(); 1567 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1568 VirtRegs.push_back(Reg); 1569 } 1570 1571 if (StartOp != 0) 1572 OS << " = "; 1573 1574 // Print the opcode name. 1575 if (TII) 1576 OS << TII->getName(getOpcode()); 1577 else 1578 OS << "UNKNOWN"; 1579 1580 if (SkipOpers) 1581 return; 1582 1583 // Print the rest of the operands. 1584 bool OmittedAnyCallClobbers = false; 1585 bool FirstOp = true; 1586 unsigned AsmDescOp = ~0u; 1587 unsigned AsmOpCount = 0; 1588 1589 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1590 // Print asm string. 1591 OS << " "; 1592 getOperand(InlineAsm::MIOp_AsmString).print(OS, MST, TRI); 1593 1594 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1595 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1596 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1597 OS << " [sideeffect]"; 1598 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1599 OS << " [mayload]"; 1600 if (ExtraInfo & InlineAsm::Extra_MayStore) 1601 OS << " [maystore]"; 1602 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1603 OS << " [alignstack]"; 1604 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1605 OS << " [attdialect]"; 1606 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1607 OS << " [inteldialect]"; 1608 1609 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1610 FirstOp = false; 1611 } 1612 1613 1614 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1615 const MachineOperand &MO = getOperand(i); 1616 1617 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1618 VirtRegs.push_back(MO.getReg()); 1619 1620 // Omit call-clobbered registers which aren't used anywhere. This makes 1621 // call instructions much less noisy on targets where calls clobber lots 1622 // of registers. Don't rely on MO.isDead() because we may be called before 1623 // LiveVariables is run, or we may be looking at a non-allocatable reg. 1624 if (MRI && isCall() && 1625 MO.isReg() && MO.isImplicit() && MO.isDef()) { 1626 unsigned Reg = MO.getReg(); 1627 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1628 if (MRI->use_empty(Reg)) { 1629 bool HasAliasLive = false; 1630 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 1631 unsigned AliasReg = *AI; 1632 if (!MRI->use_empty(AliasReg)) { 1633 HasAliasLive = true; 1634 break; 1635 } 1636 } 1637 if (!HasAliasLive) { 1638 OmittedAnyCallClobbers = true; 1639 continue; 1640 } 1641 } 1642 } 1643 } 1644 1645 if (FirstOp) FirstOp = false; else OS << ","; 1646 OS << " "; 1647 if (i < getDesc().NumOperands) { 1648 const MCOperandInfo &MCOI = getDesc().OpInfo[i]; 1649 if (MCOI.isPredicate()) 1650 OS << "pred:"; 1651 if (MCOI.isOptionalDef()) 1652 OS << "opt:"; 1653 } 1654 if (isDebugValue() && MO.isMetadata()) { 1655 // Pretty print DBG_VALUE instructions. 1656 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1657 if (DIV && !DIV->getName().empty()) 1658 OS << "!\"" << DIV->getName() << '\"'; 1659 else 1660 MO.print(OS, MST, TRI); 1661 } else if (TRI && (isInsertSubreg() || isRegSequence()) && MO.isImm()) { 1662 OS << TRI->getSubRegIndexName(MO.getImm()); 1663 } else if (i == AsmDescOp && MO.isImm()) { 1664 // Pretty print the inline asm operand descriptor. 1665 OS << '$' << AsmOpCount++; 1666 unsigned Flag = MO.getImm(); 1667 switch (InlineAsm::getKind(Flag)) { 1668 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1669 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1670 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1671 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1672 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1673 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1674 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1675 } 1676 1677 unsigned RCID = 0; 1678 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1679 if (TRI) { 1680 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1681 } else 1682 OS << ":RC" << RCID; 1683 } 1684 1685 unsigned TiedTo = 0; 1686 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1687 OS << " tiedto:$" << TiedTo; 1688 1689 OS << ']'; 1690 1691 // Compute the index of the next operand descriptor. 1692 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1693 } else 1694 MO.print(OS, MST, TRI); 1695 } 1696 1697 // Briefly indicate whether any call clobbers were omitted. 1698 if (OmittedAnyCallClobbers) { 1699 if (!FirstOp) OS << ","; 1700 OS << " ..."; 1701 } 1702 1703 bool HaveSemi = false; 1704 const unsigned PrintableFlags = FrameSetup; 1705 if (Flags & PrintableFlags) { 1706 if (!HaveSemi) OS << ";"; HaveSemi = true; 1707 OS << " flags: "; 1708 1709 if (Flags & FrameSetup) 1710 OS << "FrameSetup"; 1711 } 1712 1713 if (!memoperands_empty()) { 1714 if (!HaveSemi) OS << ";"; HaveSemi = true; 1715 1716 OS << " mem:"; 1717 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 1718 i != e; ++i) { 1719 (*i)->print(OS, MST); 1720 if (std::next(i) != e) 1721 OS << " "; 1722 } 1723 } 1724 1725 // Print the regclass of any virtual registers encountered. 1726 if (MRI && !VirtRegs.empty()) { 1727 if (!HaveSemi) OS << ";"; HaveSemi = true; 1728 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 1729 const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]); 1730 OS << " " << TRI->getRegClassName(RC) 1731 << ':' << PrintReg(VirtRegs[i]); 1732 for (unsigned j = i+1; j != VirtRegs.size();) { 1733 if (MRI->getRegClass(VirtRegs[j]) != RC) { 1734 ++j; 1735 continue; 1736 } 1737 if (VirtRegs[i] != VirtRegs[j]) 1738 OS << "," << PrintReg(VirtRegs[j]); 1739 VirtRegs.erase(VirtRegs.begin()+j); 1740 } 1741 } 1742 } 1743 1744 // Print debug location information. 1745 if (isDebugValue() && getOperand(e - 2).isMetadata()) { 1746 if (!HaveSemi) OS << ";"; 1747 auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata()); 1748 OS << " line no:" << DV->getLine(); 1749 if (auto *InlinedAt = debugLoc->getInlinedAt()) { 1750 DebugLoc InlinedAtDL(InlinedAt); 1751 if (InlinedAtDL && MF) { 1752 OS << " inlined @[ "; 1753 InlinedAtDL.print(OS); 1754 OS << " ]"; 1755 } 1756 } 1757 if (isIndirectDebugValue()) 1758 OS << " indirect"; 1759 } else if (debugLoc && MF) { 1760 if (!HaveSemi) OS << ";"; 1761 OS << " dbg:"; 1762 debugLoc.print(OS); 1763 } 1764 1765 OS << '\n'; 1766 } 1767 1768 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 1769 const TargetRegisterInfo *RegInfo, 1770 bool AddIfNotFound) { 1771 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1772 bool hasAliases = isPhysReg && 1773 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1774 bool Found = false; 1775 SmallVector<unsigned,4> DeadOps; 1776 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1777 MachineOperand &MO = getOperand(i); 1778 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1779 continue; 1780 unsigned Reg = MO.getReg(); 1781 if (!Reg) 1782 continue; 1783 1784 if (Reg == IncomingReg) { 1785 if (!Found) { 1786 if (MO.isKill()) 1787 // The register is already marked kill. 1788 return true; 1789 if (isPhysReg && isRegTiedToDefOperand(i)) 1790 // Two-address uses of physregs must not be marked kill. 1791 return true; 1792 MO.setIsKill(); 1793 Found = true; 1794 } 1795 } else if (hasAliases && MO.isKill() && 1796 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1797 // A super-register kill already exists. 1798 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1799 return true; 1800 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1801 DeadOps.push_back(i); 1802 } 1803 } 1804 1805 // Trim unneeded kill operands. 1806 while (!DeadOps.empty()) { 1807 unsigned OpIdx = DeadOps.back(); 1808 if (getOperand(OpIdx).isImplicit()) 1809 RemoveOperand(OpIdx); 1810 else 1811 getOperand(OpIdx).setIsKill(false); 1812 DeadOps.pop_back(); 1813 } 1814 1815 // If not found, this means an alias of one of the operands is killed. Add a 1816 // new implicit operand if required. 1817 if (!Found && AddIfNotFound) { 1818 addOperand(MachineOperand::CreateReg(IncomingReg, 1819 false /*IsDef*/, 1820 true /*IsImp*/, 1821 true /*IsKill*/)); 1822 return true; 1823 } 1824 return Found; 1825 } 1826 1827 void MachineInstr::clearRegisterKills(unsigned Reg, 1828 const TargetRegisterInfo *RegInfo) { 1829 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 1830 RegInfo = nullptr; 1831 for (MachineOperand &MO : operands()) { 1832 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1833 continue; 1834 unsigned OpReg = MO.getReg(); 1835 if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg))) 1836 MO.setIsKill(false); 1837 } 1838 } 1839 1840 bool MachineInstr::addRegisterDead(unsigned Reg, 1841 const TargetRegisterInfo *RegInfo, 1842 bool AddIfNotFound) { 1843 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg); 1844 bool hasAliases = isPhysReg && 1845 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 1846 bool Found = false; 1847 SmallVector<unsigned,4> DeadOps; 1848 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1849 MachineOperand &MO = getOperand(i); 1850 if (!MO.isReg() || !MO.isDef()) 1851 continue; 1852 unsigned MOReg = MO.getReg(); 1853 if (!MOReg) 1854 continue; 1855 1856 if (MOReg == Reg) { 1857 MO.setIsDead(); 1858 Found = true; 1859 } else if (hasAliases && MO.isDead() && 1860 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1861 // There exists a super-register that's marked dead. 1862 if (RegInfo->isSuperRegister(Reg, MOReg)) 1863 return true; 1864 if (RegInfo->isSubRegister(Reg, MOReg)) 1865 DeadOps.push_back(i); 1866 } 1867 } 1868 1869 // Trim unneeded dead operands. 1870 while (!DeadOps.empty()) { 1871 unsigned OpIdx = DeadOps.back(); 1872 if (getOperand(OpIdx).isImplicit()) 1873 RemoveOperand(OpIdx); 1874 else 1875 getOperand(OpIdx).setIsDead(false); 1876 DeadOps.pop_back(); 1877 } 1878 1879 // If not found, this means an alias of one of the operands is dead. Add a 1880 // new implicit operand if required. 1881 if (Found || !AddIfNotFound) 1882 return Found; 1883 1884 addOperand(MachineOperand::CreateReg(Reg, 1885 true /*IsDef*/, 1886 true /*IsImp*/, 1887 false /*IsKill*/, 1888 true /*IsDead*/)); 1889 return true; 1890 } 1891 1892 void MachineInstr::clearRegisterDeads(unsigned Reg) { 1893 for (MachineOperand &MO : operands()) { 1894 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) 1895 continue; 1896 MO.setIsDead(false); 1897 } 1898 } 1899 1900 void MachineInstr::addRegisterDefReadUndef(unsigned Reg) { 1901 for (MachineOperand &MO : operands()) { 1902 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) 1903 continue; 1904 MO.setIsUndef(); 1905 } 1906 } 1907 1908 void MachineInstr::addRegisterDefined(unsigned Reg, 1909 const TargetRegisterInfo *RegInfo) { 1910 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1911 MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo); 1912 if (MO) 1913 return; 1914 } else { 1915 for (const MachineOperand &MO : operands()) { 1916 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 1917 MO.getSubReg() == 0) 1918 return; 1919 } 1920 } 1921 addOperand(MachineOperand::CreateReg(Reg, 1922 true /*IsDef*/, 1923 true /*IsImp*/)); 1924 } 1925 1926 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 1927 const TargetRegisterInfo &TRI) { 1928 bool HasRegMask = false; 1929 for (MachineOperand &MO : operands()) { 1930 if (MO.isRegMask()) { 1931 HasRegMask = true; 1932 continue; 1933 } 1934 if (!MO.isReg() || !MO.isDef()) continue; 1935 unsigned Reg = MO.getReg(); 1936 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 1937 // If there are no uses, including partial uses, the def is dead. 1938 if (std::none_of(UsedRegs.begin(), UsedRegs.end(), 1939 [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); })) 1940 MO.setIsDead(); 1941 } 1942 1943 // This is a call with a register mask operand. 1944 // Mask clobbers are always dead, so add defs for the non-dead defines. 1945 if (HasRegMask) 1946 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1947 I != E; ++I) 1948 addRegisterDefined(*I, &TRI); 1949 } 1950 1951 unsigned 1952 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 1953 // Build up a buffer of hash code components. 1954 SmallVector<size_t, 8> HashComponents; 1955 HashComponents.reserve(MI->getNumOperands() + 1); 1956 HashComponents.push_back(MI->getOpcode()); 1957 for (const MachineOperand &MO : MI->operands()) { 1958 if (MO.isReg() && MO.isDef() && 1959 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1960 continue; // Skip virtual register defs. 1961 1962 HashComponents.push_back(hash_value(MO)); 1963 } 1964 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 1965 } 1966 1967 void MachineInstr::emitError(StringRef Msg) const { 1968 // Find the source location cookie. 1969 unsigned LocCookie = 0; 1970 const MDNode *LocMD = nullptr; 1971 for (unsigned i = getNumOperands(); i != 0; --i) { 1972 if (getOperand(i-1).isMetadata() && 1973 (LocMD = getOperand(i-1).getMetadata()) && 1974 LocMD->getNumOperands() != 0) { 1975 if (const ConstantInt *CI = 1976 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 1977 LocCookie = CI->getZExtValue(); 1978 break; 1979 } 1980 } 1981 } 1982 1983 if (const MachineBasicBlock *MBB = getParent()) 1984 if (const MachineFunction *MF = MBB->getParent()) 1985 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 1986 report_fatal_error(Msg); 1987 } 1988