1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/Constants.h" 16 #include "llvm/Function.h" 17 #include "llvm/InlineAsm.h" 18 #include "llvm/LLVMContext.h" 19 #include "llvm/Metadata.h" 20 #include "llvm/Module.h" 21 #include "llvm/Type.h" 22 #include "llvm/Value.h" 23 #include "llvm/Assembly/Writer.h" 24 #include "llvm/CodeGen/MachineConstantPool.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineModuleInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/PseudoSourceValue.h" 30 #include "llvm/MC/MCInstrDesc.h" 31 #include "llvm/MC/MCSymbol.h" 32 #include "llvm/Target/TargetMachine.h" 33 #include "llvm/Target/TargetInstrInfo.h" 34 #include "llvm/Target/TargetRegisterInfo.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/DebugInfo.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/LeakDetector.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/ADT/FoldingSet.h" 43 using namespace llvm; 44 45 //===----------------------------------------------------------------------===// 46 // MachineOperand Implementation 47 //===----------------------------------------------------------------------===// 48 49 /// AddRegOperandToRegInfo - Add this register operand to the specified 50 /// MachineRegisterInfo. If it is null, then the next/prev fields should be 51 /// explicitly nulled out. 52 void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) { 53 assert(isReg() && "Can only add reg operand to use lists"); 54 55 // If the reginfo pointer is null, just explicitly null out or next/prev 56 // pointers, to ensure they are not garbage. 57 if (RegInfo == 0) { 58 Contents.Reg.Prev = 0; 59 Contents.Reg.Next = 0; 60 return; 61 } 62 63 // Otherwise, add this operand to the head of the registers use/def list. 64 MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg()); 65 66 // For SSA values, we prefer to keep the definition at the start of the list. 67 // we do this by skipping over the definition if it is at the head of the 68 // list. 69 if (*Head && (*Head)->isDef()) 70 Head = &(*Head)->Contents.Reg.Next; 71 72 Contents.Reg.Next = *Head; 73 if (Contents.Reg.Next) { 74 assert(getReg() == Contents.Reg.Next->getReg() && 75 "Different regs on the same list!"); 76 Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next; 77 } 78 79 Contents.Reg.Prev = Head; 80 *Head = this; 81 } 82 83 /// RemoveRegOperandFromRegInfo - Remove this register operand from the 84 /// MachineRegisterInfo it is linked with. 85 void MachineOperand::RemoveRegOperandFromRegInfo() { 86 assert(isOnRegUseList() && "Reg operand is not on a use list"); 87 // Unlink this from the doubly linked list of operands. 88 MachineOperand *NextOp = Contents.Reg.Next; 89 *Contents.Reg.Prev = NextOp; 90 if (NextOp) { 91 assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!"); 92 NextOp->Contents.Reg.Prev = Contents.Reg.Prev; 93 } 94 Contents.Reg.Prev = 0; 95 Contents.Reg.Next = 0; 96 } 97 98 void MachineOperand::setReg(unsigned Reg) { 99 if (getReg() == Reg) return; // No change. 100 101 // Otherwise, we have to change the register. If this operand is embedded 102 // into a machine function, we need to update the old and new register's 103 // use/def lists. 104 if (MachineInstr *MI = getParent()) 105 if (MachineBasicBlock *MBB = MI->getParent()) 106 if (MachineFunction *MF = MBB->getParent()) { 107 RemoveRegOperandFromRegInfo(); 108 SmallContents.RegNo = Reg; 109 AddRegOperandToRegInfo(&MF->getRegInfo()); 110 return; 111 } 112 113 // Otherwise, just change the register, no problem. :) 114 SmallContents.RegNo = Reg; 115 } 116 117 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 118 const TargetRegisterInfo &TRI) { 119 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 120 if (SubIdx && getSubReg()) 121 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 122 setReg(Reg); 123 if (SubIdx) 124 setSubReg(SubIdx); 125 } 126 127 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 128 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 129 if (getSubReg()) { 130 Reg = TRI.getSubReg(Reg, getSubReg()); 131 // Note that getSubReg() may return 0 if the sub-register doesn't exist. 132 // That won't happen in legal code. 133 setSubReg(0); 134 } 135 setReg(Reg); 136 } 137 138 /// ChangeToImmediate - Replace this operand with a new immediate operand of 139 /// the specified value. If an operand is known to be an immediate already, 140 /// the setImm method should be used. 141 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 142 // If this operand is currently a register operand, and if this is in a 143 // function, deregister the operand from the register's use/def list. 144 if (isReg() && getParent() && getParent()->getParent() && 145 getParent()->getParent()->getParent()) 146 RemoveRegOperandFromRegInfo(); 147 148 OpKind = MO_Immediate; 149 Contents.ImmVal = ImmVal; 150 } 151 152 /// ChangeToRegister - Replace this operand with a new register operand of 153 /// the specified value. If an operand is known to be an register already, 154 /// the setReg method should be used. 155 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 156 bool isKill, bool isDead, bool isUndef, 157 bool isDebug) { 158 // If this operand is already a register operand, use setReg to update the 159 // register's use/def lists. 160 if (isReg()) { 161 assert(!isEarlyClobber()); 162 setReg(Reg); 163 } else { 164 // Otherwise, change this to a register and set the reg#. 165 OpKind = MO_Register; 166 SmallContents.RegNo = Reg; 167 168 // If this operand is embedded in a function, add the operand to the 169 // register's use/def list. 170 if (MachineInstr *MI = getParent()) 171 if (MachineBasicBlock *MBB = MI->getParent()) 172 if (MachineFunction *MF = MBB->getParent()) 173 AddRegOperandToRegInfo(&MF->getRegInfo()); 174 } 175 176 IsDef = isDef; 177 IsImp = isImp; 178 IsKill = isKill; 179 IsDead = isDead; 180 IsUndef = isUndef; 181 IsInternalRead = false; 182 IsEarlyClobber = false; 183 IsDebug = isDebug; 184 SubReg = 0; 185 } 186 187 /// isIdenticalTo - Return true if this operand is identical to the specified 188 /// operand. 189 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 190 if (getType() != Other.getType() || 191 getTargetFlags() != Other.getTargetFlags()) 192 return false; 193 194 switch (getType()) { 195 case MachineOperand::MO_Register: 196 return getReg() == Other.getReg() && isDef() == Other.isDef() && 197 getSubReg() == Other.getSubReg(); 198 case MachineOperand::MO_Immediate: 199 return getImm() == Other.getImm(); 200 case MachineOperand::MO_CImmediate: 201 return getCImm() == Other.getCImm(); 202 case MachineOperand::MO_FPImmediate: 203 return getFPImm() == Other.getFPImm(); 204 case MachineOperand::MO_MachineBasicBlock: 205 return getMBB() == Other.getMBB(); 206 case MachineOperand::MO_FrameIndex: 207 return getIndex() == Other.getIndex(); 208 case MachineOperand::MO_ConstantPoolIndex: 209 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 210 case MachineOperand::MO_JumpTableIndex: 211 return getIndex() == Other.getIndex(); 212 case MachineOperand::MO_GlobalAddress: 213 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 214 case MachineOperand::MO_ExternalSymbol: 215 return !strcmp(getSymbolName(), Other.getSymbolName()) && 216 getOffset() == Other.getOffset(); 217 case MachineOperand::MO_BlockAddress: 218 return getBlockAddress() == Other.getBlockAddress(); 219 case MachineOperand::MO_MCSymbol: 220 return getMCSymbol() == Other.getMCSymbol(); 221 case MachineOperand::MO_Metadata: 222 return getMetadata() == Other.getMetadata(); 223 } 224 llvm_unreachable("Invalid machine operand type"); 225 } 226 227 /// print - Print the specified machine operand. 228 /// 229 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const { 230 // If the instruction is embedded into a basic block, we can find the 231 // target info for the instruction. 232 if (!TM) 233 if (const MachineInstr *MI = getParent()) 234 if (const MachineBasicBlock *MBB = MI->getParent()) 235 if (const MachineFunction *MF = MBB->getParent()) 236 TM = &MF->getTarget(); 237 const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0; 238 239 switch (getType()) { 240 case MachineOperand::MO_Register: 241 OS << PrintReg(getReg(), TRI, getSubReg()); 242 243 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 244 isInternalRead() || isEarlyClobber()) { 245 OS << '<'; 246 bool NeedComma = false; 247 if (isDef()) { 248 if (NeedComma) OS << ','; 249 if (isEarlyClobber()) 250 OS << "earlyclobber,"; 251 if (isImplicit()) 252 OS << "imp-"; 253 OS << "def"; 254 NeedComma = true; 255 } else if (isImplicit()) { 256 OS << "imp-use"; 257 NeedComma = true; 258 } 259 260 if (isKill() || isDead() || isUndef() || isInternalRead()) { 261 if (NeedComma) OS << ','; 262 NeedComma = false; 263 if (isKill()) { 264 OS << "kill"; 265 NeedComma = true; 266 } 267 if (isDead()) { 268 OS << "dead"; 269 NeedComma = true; 270 } 271 if (isUndef()) { 272 if (NeedComma) OS << ','; 273 OS << "undef"; 274 NeedComma = true; 275 } 276 if (isInternalRead()) { 277 if (NeedComma) OS << ','; 278 OS << "internal"; 279 NeedComma = true; 280 } 281 } 282 OS << '>'; 283 } 284 break; 285 case MachineOperand::MO_Immediate: 286 OS << getImm(); 287 break; 288 case MachineOperand::MO_CImmediate: 289 getCImm()->getValue().print(OS, false); 290 break; 291 case MachineOperand::MO_FPImmediate: 292 if (getFPImm()->getType()->isFloatTy()) 293 OS << getFPImm()->getValueAPF().convertToFloat(); 294 else 295 OS << getFPImm()->getValueAPF().convertToDouble(); 296 break; 297 case MachineOperand::MO_MachineBasicBlock: 298 OS << "<BB#" << getMBB()->getNumber() << ">"; 299 break; 300 case MachineOperand::MO_FrameIndex: 301 OS << "<fi#" << getIndex() << '>'; 302 break; 303 case MachineOperand::MO_ConstantPoolIndex: 304 OS << "<cp#" << getIndex(); 305 if (getOffset()) OS << "+" << getOffset(); 306 OS << '>'; 307 break; 308 case MachineOperand::MO_JumpTableIndex: 309 OS << "<jt#" << getIndex() << '>'; 310 break; 311 case MachineOperand::MO_GlobalAddress: 312 OS << "<ga:"; 313 WriteAsOperand(OS, getGlobal(), /*PrintType=*/false); 314 if (getOffset()) OS << "+" << getOffset(); 315 OS << '>'; 316 break; 317 case MachineOperand::MO_ExternalSymbol: 318 OS << "<es:" << getSymbolName(); 319 if (getOffset()) OS << "+" << getOffset(); 320 OS << '>'; 321 break; 322 case MachineOperand::MO_BlockAddress: 323 OS << '<'; 324 WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false); 325 OS << '>'; 326 break; 327 case MachineOperand::MO_Metadata: 328 OS << '<'; 329 WriteAsOperand(OS, getMetadata(), /*PrintType=*/false); 330 OS << '>'; 331 break; 332 case MachineOperand::MO_MCSymbol: 333 OS << "<MCSym=" << *getMCSymbol() << '>'; 334 break; 335 } 336 337 if (unsigned TF = getTargetFlags()) 338 OS << "[TF=" << TF << ']'; 339 } 340 341 //===----------------------------------------------------------------------===// 342 // MachineMemOperand Implementation 343 //===----------------------------------------------------------------------===// 344 345 /// getAddrSpace - Return the LLVM IR address space number that this pointer 346 /// points into. 347 unsigned MachinePointerInfo::getAddrSpace() const { 348 if (V == 0) return 0; 349 return cast<PointerType>(V->getType())->getAddressSpace(); 350 } 351 352 /// getConstantPool - Return a MachinePointerInfo record that refers to the 353 /// constant pool. 354 MachinePointerInfo MachinePointerInfo::getConstantPool() { 355 return MachinePointerInfo(PseudoSourceValue::getConstantPool()); 356 } 357 358 /// getFixedStack - Return a MachinePointerInfo record that refers to the 359 /// the specified FrameIndex. 360 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) { 361 return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset); 362 } 363 364 MachinePointerInfo MachinePointerInfo::getJumpTable() { 365 return MachinePointerInfo(PseudoSourceValue::getJumpTable()); 366 } 367 368 MachinePointerInfo MachinePointerInfo::getGOT() { 369 return MachinePointerInfo(PseudoSourceValue::getGOT()); 370 } 371 372 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) { 373 return MachinePointerInfo(PseudoSourceValue::getStack(), Offset); 374 } 375 376 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f, 377 uint64_t s, unsigned int a, 378 const MDNode *TBAAInfo) 379 : PtrInfo(ptrinfo), Size(s), 380 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)), 381 TBAAInfo(TBAAInfo) { 382 assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) && 383 "invalid pointer value"); 384 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 385 assert((isLoad() || isStore()) && "Not a load/store!"); 386 } 387 388 /// Profile - Gather unique data for the object. 389 /// 390 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 391 ID.AddInteger(getOffset()); 392 ID.AddInteger(Size); 393 ID.AddPointer(getValue()); 394 ID.AddInteger(Flags); 395 } 396 397 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 398 // The Value and Offset may differ due to CSE. But the flags and size 399 // should be the same. 400 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 401 assert(MMO->getSize() == getSize() && "Size mismatch!"); 402 403 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 404 // Update the alignment value. 405 Flags = (Flags & ((1 << MOMaxBits) - 1)) | 406 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits); 407 // Also update the base and offset, because the new alignment may 408 // not be applicable with the old ones. 409 PtrInfo = MMO->PtrInfo; 410 } 411 } 412 413 /// getAlignment - Return the minimum known alignment in bytes of the 414 /// actual memory reference. 415 uint64_t MachineMemOperand::getAlignment() const { 416 return MinAlign(getBaseAlignment(), getOffset()); 417 } 418 419 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) { 420 assert((MMO.isLoad() || MMO.isStore()) && 421 "SV has to be a load, store or both."); 422 423 if (MMO.isVolatile()) 424 OS << "Volatile "; 425 426 if (MMO.isLoad()) 427 OS << "LD"; 428 if (MMO.isStore()) 429 OS << "ST"; 430 OS << MMO.getSize(); 431 432 // Print the address information. 433 OS << "["; 434 if (!MMO.getValue()) 435 OS << "<unknown>"; 436 else 437 WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false); 438 439 // If the alignment of the memory reference itself differs from the alignment 440 // of the base pointer, print the base alignment explicitly, next to the base 441 // pointer. 442 if (MMO.getBaseAlignment() != MMO.getAlignment()) 443 OS << "(align=" << MMO.getBaseAlignment() << ")"; 444 445 if (MMO.getOffset() != 0) 446 OS << "+" << MMO.getOffset(); 447 OS << "]"; 448 449 // Print the alignment of the reference. 450 if (MMO.getBaseAlignment() != MMO.getAlignment() || 451 MMO.getBaseAlignment() != MMO.getSize()) 452 OS << "(align=" << MMO.getAlignment() << ")"; 453 454 // Print TBAA info. 455 if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) { 456 OS << "(tbaa="; 457 if (TBAAInfo->getNumOperands() > 0) 458 WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false); 459 else 460 OS << "<unknown>"; 461 OS << ")"; 462 } 463 464 // Print nontemporal info. 465 if (MMO.isNonTemporal()) 466 OS << "(nontemporal)"; 467 468 return OS; 469 } 470 471 //===----------------------------------------------------------------------===// 472 // MachineInstr Implementation 473 //===----------------------------------------------------------------------===// 474 475 /// MachineInstr ctor - This constructor creates a dummy MachineInstr with 476 /// MCID NULL and no operands. 477 MachineInstr::MachineInstr() 478 : MCID(0), Flags(0), AsmPrinterFlags(0), 479 MemRefs(0), MemRefsEnd(0), 480 Parent(0) { 481 // Make sure that we get added to a machine basicblock 482 LeakDetector::addGarbageObject(this); 483 } 484 485 void MachineInstr::addImplicitDefUseOperands() { 486 if (MCID->ImplicitDefs) 487 for (const unsigned *ImpDefs = MCID->ImplicitDefs; *ImpDefs; ++ImpDefs) 488 addOperand(MachineOperand::CreateReg(*ImpDefs, true, true)); 489 if (MCID->ImplicitUses) 490 for (const unsigned *ImpUses = MCID->ImplicitUses; *ImpUses; ++ImpUses) 491 addOperand(MachineOperand::CreateReg(*ImpUses, false, true)); 492 } 493 494 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 495 /// implicit operands. It reserves space for the number of operands specified by 496 /// the MCInstrDesc. 497 MachineInstr::MachineInstr(const MCInstrDesc &tid, bool NoImp) 498 : MCID(&tid), Flags(0), AsmPrinterFlags(0), 499 MemRefs(0), MemRefsEnd(0), Parent(0) { 500 unsigned NumImplicitOps = 0; 501 if (!NoImp) 502 NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 503 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 504 if (!NoImp) 505 addImplicitDefUseOperands(); 506 // Make sure that we get added to a machine basicblock 507 LeakDetector::addGarbageObject(this); 508 } 509 510 /// MachineInstr ctor - As above, but with a DebugLoc. 511 MachineInstr::MachineInstr(const MCInstrDesc &tid, const DebugLoc dl, 512 bool NoImp) 513 : MCID(&tid), Flags(0), AsmPrinterFlags(0), 514 MemRefs(0), MemRefsEnd(0), Parent(0), debugLoc(dl) { 515 unsigned NumImplicitOps = 0; 516 if (!NoImp) 517 NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 518 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 519 if (!NoImp) 520 addImplicitDefUseOperands(); 521 // Make sure that we get added to a machine basicblock 522 LeakDetector::addGarbageObject(this); 523 } 524 525 /// MachineInstr ctor - Work exactly the same as the ctor two above, except 526 /// that the MachineInstr is created and added to the end of the specified 527 /// basic block. 528 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const MCInstrDesc &tid) 529 : MCID(&tid), Flags(0), AsmPrinterFlags(0), 530 MemRefs(0), MemRefsEnd(0), Parent(0) { 531 assert(MBB && "Cannot use inserting ctor with null basic block!"); 532 unsigned NumImplicitOps = 533 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 534 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 535 addImplicitDefUseOperands(); 536 // Make sure that we get added to a machine basicblock 537 LeakDetector::addGarbageObject(this); 538 MBB->push_back(this); // Add instruction to end of basic block! 539 } 540 541 /// MachineInstr ctor - As above, but with a DebugLoc. 542 /// 543 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl, 544 const MCInstrDesc &tid) 545 : MCID(&tid), Flags(0), AsmPrinterFlags(0), 546 MemRefs(0), MemRefsEnd(0), Parent(0), debugLoc(dl) { 547 assert(MBB && "Cannot use inserting ctor with null basic block!"); 548 unsigned NumImplicitOps = 549 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 550 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 551 addImplicitDefUseOperands(); 552 // Make sure that we get added to a machine basicblock 553 LeakDetector::addGarbageObject(this); 554 MBB->push_back(this); // Add instruction to end of basic block! 555 } 556 557 /// MachineInstr ctor - Copies MachineInstr arg exactly 558 /// 559 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 560 : MCID(&MI.getDesc()), Flags(0), AsmPrinterFlags(0), 561 MemRefs(MI.MemRefs), MemRefsEnd(MI.MemRefsEnd), 562 Parent(0), debugLoc(MI.getDebugLoc()) { 563 Operands.reserve(MI.getNumOperands()); 564 565 // Add operands 566 for (unsigned i = 0; i != MI.getNumOperands(); ++i) 567 addOperand(MI.getOperand(i)); 568 569 // Copy all the flags. 570 Flags = MI.Flags; 571 572 // Set parent to null. 573 Parent = 0; 574 575 LeakDetector::addGarbageObject(this); 576 } 577 578 MachineInstr::~MachineInstr() { 579 LeakDetector::removeGarbageObject(this); 580 #ifndef NDEBUG 581 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 582 assert(Operands[i].ParentMI == this && "ParentMI mismatch!"); 583 assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) && 584 "Reg operand def/use list corrupted"); 585 } 586 #endif 587 } 588 589 /// getRegInfo - If this instruction is embedded into a MachineFunction, 590 /// return the MachineRegisterInfo object for the current function, otherwise 591 /// return null. 592 MachineRegisterInfo *MachineInstr::getRegInfo() { 593 if (MachineBasicBlock *MBB = getParent()) 594 return &MBB->getParent()->getRegInfo(); 595 return 0; 596 } 597 598 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 599 /// this instruction from their respective use lists. This requires that the 600 /// operands already be on their use lists. 601 void MachineInstr::RemoveRegOperandsFromUseLists() { 602 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 603 if (Operands[i].isReg()) 604 Operands[i].RemoveRegOperandFromRegInfo(); 605 } 606 } 607 608 /// AddRegOperandsToUseLists - Add all of the register operands in 609 /// this instruction from their respective use lists. This requires that the 610 /// operands not be on their use lists yet. 611 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) { 612 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 613 if (Operands[i].isReg()) 614 Operands[i].AddRegOperandToRegInfo(&RegInfo); 615 } 616 } 617 618 619 /// addOperand - Add the specified operand to the instruction. If it is an 620 /// implicit operand, it is added to the end of the operand list. If it is 621 /// an explicit operand it is added at the end of the explicit operand list 622 /// (before the first implicit operand). 623 void MachineInstr::addOperand(const MachineOperand &Op) { 624 assert(MCID && "Cannot add operands before providing an instr descriptor"); 625 bool isImpReg = Op.isReg() && Op.isImplicit(); 626 MachineRegisterInfo *RegInfo = getRegInfo(); 627 628 // If the Operands backing store is reallocated, all register operands must 629 // be removed and re-added to RegInfo. It is storing pointers to operands. 630 bool Reallocate = RegInfo && 631 !Operands.empty() && Operands.size() == Operands.capacity(); 632 633 // Find the insert location for the new operand. Implicit registers go at 634 // the end, everything goes before the implicit regs. 635 unsigned OpNo = Operands.size(); 636 637 // Remove all the implicit operands from RegInfo if they need to be shifted. 638 // FIXME: Allow mixed explicit and implicit operands on inline asm. 639 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 640 // implicit-defs, but they must not be moved around. See the FIXME in 641 // InstrEmitter.cpp. 642 if (!isImpReg && !isInlineAsm()) { 643 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 644 --OpNo; 645 if (RegInfo) 646 Operands[OpNo].RemoveRegOperandFromRegInfo(); 647 } 648 } 649 650 // OpNo now points as the desired insertion point. Unless this is a variadic 651 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 652 assert((isImpReg || MCID->isVariadic() || OpNo < MCID->getNumOperands()) && 653 "Trying to add an operand to a machine instr that is already done!"); 654 655 // All operands from OpNo have been removed from RegInfo. If the Operands 656 // backing store needs to be reallocated, we also need to remove any other 657 // register operands. 658 if (Reallocate) 659 for (unsigned i = 0; i != OpNo; ++i) 660 if (Operands[i].isReg()) 661 Operands[i].RemoveRegOperandFromRegInfo(); 662 663 // Insert the new operand at OpNo. 664 Operands.insert(Operands.begin() + OpNo, Op); 665 Operands[OpNo].ParentMI = this; 666 667 // The Operands backing store has now been reallocated, so we can re-add the 668 // operands before OpNo. 669 if (Reallocate) 670 for (unsigned i = 0; i != OpNo; ++i) 671 if (Operands[i].isReg()) 672 Operands[i].AddRegOperandToRegInfo(RegInfo); 673 674 // When adding a register operand, tell RegInfo about it. 675 if (Operands[OpNo].isReg()) { 676 // Add the new operand to RegInfo, even when RegInfo is NULL. 677 // This will initialize the linked list pointers. 678 Operands[OpNo].AddRegOperandToRegInfo(RegInfo); 679 // If the register operand is flagged as early, mark the operand as such. 680 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 681 Operands[OpNo].setIsEarlyClobber(true); 682 } 683 684 // Re-add all the implicit ops. 685 if (RegInfo) { 686 for (unsigned i = OpNo + 1, e = Operands.size(); i != e; ++i) { 687 assert(Operands[i].isReg() && "Should only be an implicit reg!"); 688 Operands[i].AddRegOperandToRegInfo(RegInfo); 689 } 690 } 691 } 692 693 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 694 /// fewer operand than it started with. 695 /// 696 void MachineInstr::RemoveOperand(unsigned OpNo) { 697 assert(OpNo < Operands.size() && "Invalid operand number"); 698 699 // Special case removing the last one. 700 if (OpNo == Operands.size()-1) { 701 // If needed, remove from the reg def/use list. 702 if (Operands.back().isReg() && Operands.back().isOnRegUseList()) 703 Operands.back().RemoveRegOperandFromRegInfo(); 704 705 Operands.pop_back(); 706 return; 707 } 708 709 // Otherwise, we are removing an interior operand. If we have reginfo to 710 // update, remove all operands that will be shifted down from their reg lists, 711 // move everything down, then re-add them. 712 MachineRegisterInfo *RegInfo = getRegInfo(); 713 if (RegInfo) { 714 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 715 if (Operands[i].isReg()) 716 Operands[i].RemoveRegOperandFromRegInfo(); 717 } 718 } 719 720 Operands.erase(Operands.begin()+OpNo); 721 722 if (RegInfo) { 723 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 724 if (Operands[i].isReg()) 725 Operands[i].AddRegOperandToRegInfo(RegInfo); 726 } 727 } 728 } 729 730 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 731 /// This function should be used only occasionally. The setMemRefs function 732 /// is the primary method for setting up a MachineInstr's MemRefs list. 733 void MachineInstr::addMemOperand(MachineFunction &MF, 734 MachineMemOperand *MO) { 735 mmo_iterator OldMemRefs = MemRefs; 736 mmo_iterator OldMemRefsEnd = MemRefsEnd; 737 738 size_t NewNum = (MemRefsEnd - MemRefs) + 1; 739 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 740 mmo_iterator NewMemRefsEnd = NewMemRefs + NewNum; 741 742 std::copy(OldMemRefs, OldMemRefsEnd, NewMemRefs); 743 NewMemRefs[NewNum - 1] = MO; 744 745 MemRefs = NewMemRefs; 746 MemRefsEnd = NewMemRefsEnd; 747 } 748 749 bool 750 MachineInstr::hasProperty(unsigned MCFlag, QueryType Type) const { 751 if (Type == IgnoreBundle || !isBundle()) 752 return getDesc().getFlags() & (1 << MCFlag); 753 754 const MachineBasicBlock *MBB = getParent(); 755 MachineBasicBlock::const_instr_iterator MII = *this; ++MII; 756 while (MII != MBB->end() && MII->isInsideBundle()) { 757 if (MII->getDesc().getFlags() & (1 << MCFlag)) { 758 if (Type == AnyInBundle) 759 return true; 760 } else { 761 if (Type == AllInBundle) 762 return false; 763 } 764 ++MII; 765 } 766 767 return Type == AllInBundle; 768 } 769 770 bool MachineInstr::isIdenticalTo(const MachineInstr *Other, 771 MICheckType Check) const { 772 // If opcodes or number of operands are not the same then the two 773 // instructions are obviously not identical. 774 if (Other->getOpcode() != getOpcode() || 775 Other->getNumOperands() != getNumOperands()) 776 return false; 777 778 if (isBundle()) { 779 // Both instructions are bundles, compare MIs inside the bundle. 780 MachineBasicBlock::const_instr_iterator I1 = *this; 781 MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end(); 782 MachineBasicBlock::const_instr_iterator I2 = *Other; 783 MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end(); 784 while (++I1 != E1 && I1->isInsideBundle()) { 785 ++I2; 786 if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check)) 787 return false; 788 } 789 } 790 791 // Check operands to make sure they match. 792 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 793 const MachineOperand &MO = getOperand(i); 794 const MachineOperand &OMO = Other->getOperand(i); 795 if (!MO.isReg()) { 796 if (!MO.isIdenticalTo(OMO)) 797 return false; 798 continue; 799 } 800 801 // Clients may or may not want to ignore defs when testing for equality. 802 // For example, machine CSE pass only cares about finding common 803 // subexpressions, so it's safe to ignore virtual register defs. 804 if (MO.isDef()) { 805 if (Check == IgnoreDefs) 806 continue; 807 else if (Check == IgnoreVRegDefs) { 808 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 809 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 810 if (MO.getReg() != OMO.getReg()) 811 return false; 812 } else { 813 if (!MO.isIdenticalTo(OMO)) 814 return false; 815 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 816 return false; 817 } 818 } else { 819 if (!MO.isIdenticalTo(OMO)) 820 return false; 821 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 822 return false; 823 } 824 } 825 // If DebugLoc does not match then two dbg.values are not identical. 826 if (isDebugValue()) 827 if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown() 828 && getDebugLoc() != Other->getDebugLoc()) 829 return false; 830 return true; 831 } 832 833 /// removeFromParent - This method unlinks 'this' from the containing basic 834 /// block, and returns it, but does not delete it. 835 MachineInstr *MachineInstr::removeFromParent() { 836 assert(getParent() && "Not embedded in a basic block!"); 837 838 // If it's a bundle then remove the MIs inside the bundle as well. 839 if (isBundle()) { 840 MachineBasicBlock *MBB = getParent(); 841 MachineBasicBlock::instr_iterator MII = *this; ++MII; 842 MachineBasicBlock::instr_iterator E = MBB->instr_end(); 843 while (MII != E && MII->isInsideBundle()) { 844 MachineInstr *MI = &*MII; 845 ++MII; 846 MBB->remove(MI); 847 } 848 } 849 getParent()->remove(this); 850 return this; 851 } 852 853 854 /// eraseFromParent - This method unlinks 'this' from the containing basic 855 /// block, and deletes it. 856 void MachineInstr::eraseFromParent() { 857 assert(getParent() && "Not embedded in a basic block!"); 858 // If it's a bundle then remove the MIs inside the bundle as well. 859 if (isBundle()) { 860 MachineBasicBlock *MBB = getParent(); 861 MachineBasicBlock::instr_iterator MII = *this; ++MII; 862 MachineBasicBlock::instr_iterator E = MBB->instr_end(); 863 while (MII != E && MII->isInsideBundle()) { 864 MachineInstr *MI = &*MII; 865 ++MII; 866 MBB->erase(MI); 867 } 868 } 869 getParent()->erase(this); 870 } 871 872 873 /// getNumExplicitOperands - Returns the number of non-implicit operands. 874 /// 875 unsigned MachineInstr::getNumExplicitOperands() const { 876 unsigned NumOperands = MCID->getNumOperands(); 877 if (!MCID->isVariadic()) 878 return NumOperands; 879 880 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 881 const MachineOperand &MO = getOperand(i); 882 if (!MO.isReg() || !MO.isImplicit()) 883 NumOperands++; 884 } 885 return NumOperands; 886 } 887 888 bool MachineInstr::isStackAligningInlineAsm() const { 889 if (isInlineAsm()) { 890 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 891 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 892 return true; 893 } 894 return false; 895 } 896 897 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 898 unsigned *GroupNo) const { 899 assert(isInlineAsm() && "Expected an inline asm instruction"); 900 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 901 902 // Ignore queries about the initial operands. 903 if (OpIdx < InlineAsm::MIOp_FirstOperand) 904 return -1; 905 906 unsigned Group = 0; 907 unsigned NumOps; 908 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 909 i += NumOps) { 910 const MachineOperand &FlagMO = getOperand(i); 911 // If we reach the implicit register operands, stop looking. 912 if (!FlagMO.isImm()) 913 return -1; 914 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 915 if (i + NumOps > OpIdx) { 916 if (GroupNo) 917 *GroupNo = Group; 918 return i; 919 } 920 ++Group; 921 } 922 return -1; 923 } 924 925 const TargetRegisterClass* 926 MachineInstr::getRegClassConstraint(unsigned OpIdx, 927 const TargetInstrInfo *TII, 928 const TargetRegisterInfo *TRI) const { 929 // Most opcodes have fixed constraints in their MCInstrDesc. 930 if (!isInlineAsm()) 931 return TII->getRegClass(getDesc(), OpIdx, TRI); 932 933 if (!getOperand(OpIdx).isReg()) 934 return NULL; 935 936 // For tied uses on inline asm, get the constraint from the def. 937 unsigned DefIdx; 938 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 939 OpIdx = DefIdx; 940 941 // Inline asm stores register class constraints in the flag word. 942 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 943 if (FlagIdx < 0) 944 return NULL; 945 946 unsigned Flag = getOperand(FlagIdx).getImm(); 947 unsigned RCID; 948 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) 949 return TRI->getRegClass(RCID); 950 951 // Assume that all registers in a memory operand are pointers. 952 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 953 return TRI->getPointerRegClass(); 954 955 return NULL; 956 } 957 958 /// getBundleSize - Return the number of instructions inside the MI bundle. 959 unsigned MachineInstr::getBundleSize() const { 960 assert(isBundle() && "Expecting a bundle"); 961 962 MachineBasicBlock::const_instr_iterator I = *this; 963 unsigned Size = 0; 964 while ((++I)->isInsideBundle()) { 965 ++Size; 966 } 967 assert(Size > 1 && "Malformed bundle"); 968 969 return Size; 970 } 971 972 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 973 /// the specific register or -1 if it is not found. It further tightens 974 /// the search criteria to a use that kills the register if isKill is true. 975 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, 976 const TargetRegisterInfo *TRI) const { 977 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 978 const MachineOperand &MO = getOperand(i); 979 if (!MO.isReg() || !MO.isUse()) 980 continue; 981 unsigned MOReg = MO.getReg(); 982 if (!MOReg) 983 continue; 984 if (MOReg == Reg || 985 (TRI && 986 TargetRegisterInfo::isPhysicalRegister(MOReg) && 987 TargetRegisterInfo::isPhysicalRegister(Reg) && 988 TRI->isSubRegister(MOReg, Reg))) 989 if (!isKill || MO.isKill()) 990 return i; 991 } 992 return -1; 993 } 994 995 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 996 /// indicating if this instruction reads or writes Reg. This also considers 997 /// partial defines. 998 std::pair<bool,bool> 999 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 1000 SmallVectorImpl<unsigned> *Ops) const { 1001 bool PartDef = false; // Partial redefine. 1002 bool FullDef = false; // Full define. 1003 bool Use = false; 1004 1005 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1006 const MachineOperand &MO = getOperand(i); 1007 if (!MO.isReg() || MO.getReg() != Reg) 1008 continue; 1009 if (Ops) 1010 Ops->push_back(i); 1011 if (MO.isUse()) 1012 Use |= !MO.isUndef(); 1013 else if (MO.getSubReg() && !MO.isUndef()) 1014 // A partial <def,undef> doesn't count as reading the register. 1015 PartDef = true; 1016 else 1017 FullDef = true; 1018 } 1019 // A partial redefine uses Reg unless there is also a full define. 1020 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1021 } 1022 1023 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1024 /// the specified register or -1 if it is not found. If isDead is true, defs 1025 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1026 /// also checks if there is a def of a super-register. 1027 int 1028 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 1029 const TargetRegisterInfo *TRI) const { 1030 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 1031 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1032 const MachineOperand &MO = getOperand(i); 1033 if (!MO.isReg() || !MO.isDef()) 1034 continue; 1035 unsigned MOReg = MO.getReg(); 1036 bool Found = (MOReg == Reg); 1037 if (!Found && TRI && isPhys && 1038 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1039 if (Overlap) 1040 Found = TRI->regsOverlap(MOReg, Reg); 1041 else 1042 Found = TRI->isSubRegister(MOReg, Reg); 1043 } 1044 if (Found && (!isDead || MO.isDead())) 1045 return i; 1046 } 1047 return -1; 1048 } 1049 1050 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1051 /// operand list that is used to represent the predicate. It returns -1 if 1052 /// none is found. 1053 int MachineInstr::findFirstPredOperandIdx() const { 1054 // Don't call MCID.findFirstPredOperandIdx() because this variant 1055 // is sometimes called on an instruction that's not yet complete, and 1056 // so the number of operands is less than the MCID indicates. In 1057 // particular, the PTX target does this. 1058 const MCInstrDesc &MCID = getDesc(); 1059 if (MCID.isPredicable()) { 1060 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1061 if (MCID.OpInfo[i].isPredicate()) 1062 return i; 1063 } 1064 1065 return -1; 1066 } 1067 1068 /// isRegTiedToUseOperand - Given the index of a register def operand, 1069 /// check if the register def is tied to a source operand, due to either 1070 /// two-address elimination or inline assembly constraints. Returns the 1071 /// first tied use operand index by reference is UseOpIdx is not null. 1072 bool MachineInstr:: 1073 isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const { 1074 if (isInlineAsm()) { 1075 assert(DefOpIdx > InlineAsm::MIOp_FirstOperand); 1076 const MachineOperand &MO = getOperand(DefOpIdx); 1077 if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0) 1078 return false; 1079 // Determine the actual operand index that corresponds to this index. 1080 unsigned DefNo = 0; 1081 int FlagIdx = findInlineAsmFlagIdx(DefOpIdx, &DefNo); 1082 if (FlagIdx < 0) 1083 return false; 1084 1085 // Which part of the group is DefOpIdx? 1086 unsigned DefPart = DefOpIdx - (FlagIdx + 1); 1087 1088 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); 1089 i != e; ++i) { 1090 const MachineOperand &FMO = getOperand(i); 1091 if (!FMO.isImm()) 1092 continue; 1093 if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse()) 1094 continue; 1095 unsigned Idx; 1096 if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) && 1097 Idx == DefNo) { 1098 if (UseOpIdx) 1099 *UseOpIdx = (unsigned)i + 1 + DefPart; 1100 return true; 1101 } 1102 } 1103 return false; 1104 } 1105 1106 assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!"); 1107 const MCInstrDesc &MCID = getDesc(); 1108 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) { 1109 const MachineOperand &MO = getOperand(i); 1110 if (MO.isReg() && MO.isUse() && 1111 MCID.getOperandConstraint(i, MCOI::TIED_TO) == (int)DefOpIdx) { 1112 if (UseOpIdx) 1113 *UseOpIdx = (unsigned)i; 1114 return true; 1115 } 1116 } 1117 return false; 1118 } 1119 1120 /// isRegTiedToDefOperand - Return true if the operand of the specified index 1121 /// is a register use and it is tied to an def operand. It also returns the def 1122 /// operand index by reference. 1123 bool MachineInstr:: 1124 isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const { 1125 if (isInlineAsm()) { 1126 const MachineOperand &MO = getOperand(UseOpIdx); 1127 if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0) 1128 return false; 1129 1130 // Find the flag operand corresponding to UseOpIdx 1131 int FlagIdx = findInlineAsmFlagIdx(UseOpIdx); 1132 if (FlagIdx < 0) 1133 return false; 1134 1135 const MachineOperand &UFMO = getOperand(FlagIdx); 1136 unsigned DefNo; 1137 if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) { 1138 if (!DefOpIdx) 1139 return true; 1140 1141 unsigned DefIdx = InlineAsm::MIOp_FirstOperand; 1142 // Remember to adjust the index. First operand is asm string, second is 1143 // the HasSideEffects and AlignStack bits, then there is a flag for each. 1144 while (DefNo) { 1145 const MachineOperand &FMO = getOperand(DefIdx); 1146 assert(FMO.isImm()); 1147 // Skip over this def. 1148 DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1; 1149 --DefNo; 1150 } 1151 *DefOpIdx = DefIdx + UseOpIdx - FlagIdx; 1152 return true; 1153 } 1154 return false; 1155 } 1156 1157 const MCInstrDesc &MCID = getDesc(); 1158 if (UseOpIdx >= MCID.getNumOperands()) 1159 return false; 1160 const MachineOperand &MO = getOperand(UseOpIdx); 1161 if (!MO.isReg() || !MO.isUse()) 1162 return false; 1163 int DefIdx = MCID.getOperandConstraint(UseOpIdx, MCOI::TIED_TO); 1164 if (DefIdx == -1) 1165 return false; 1166 if (DefOpIdx) 1167 *DefOpIdx = (unsigned)DefIdx; 1168 return true; 1169 } 1170 1171 /// clearKillInfo - Clears kill flags on all operands. 1172 /// 1173 void MachineInstr::clearKillInfo() { 1174 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1175 MachineOperand &MO = getOperand(i); 1176 if (MO.isReg() && MO.isUse()) 1177 MO.setIsKill(false); 1178 } 1179 } 1180 1181 /// copyKillDeadInfo - Copies kill / dead operand properties from MI. 1182 /// 1183 void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) { 1184 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1185 const MachineOperand &MO = MI->getOperand(i); 1186 if (!MO.isReg() || (!MO.isKill() && !MO.isDead())) 1187 continue; 1188 for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) { 1189 MachineOperand &MOp = getOperand(j); 1190 if (!MOp.isIdenticalTo(MO)) 1191 continue; 1192 if (MO.isKill()) 1193 MOp.setIsKill(); 1194 else 1195 MOp.setIsDead(); 1196 break; 1197 } 1198 } 1199 } 1200 1201 /// copyPredicates - Copies predicate operand(s) from MI. 1202 void MachineInstr::copyPredicates(const MachineInstr *MI) { 1203 assert(!isBundle() && "MachineInstr::copyPredicates() can't handle bundles"); 1204 1205 const MCInstrDesc &MCID = MI->getDesc(); 1206 if (!MCID.isPredicable()) 1207 return; 1208 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1209 if (MCID.OpInfo[i].isPredicate()) { 1210 // Predicated operands must be last operands. 1211 addOperand(MI->getOperand(i)); 1212 } 1213 } 1214 } 1215 1216 void MachineInstr::substituteRegister(unsigned FromReg, 1217 unsigned ToReg, 1218 unsigned SubIdx, 1219 const TargetRegisterInfo &RegInfo) { 1220 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1221 if (SubIdx) 1222 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1223 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1224 MachineOperand &MO = getOperand(i); 1225 if (!MO.isReg() || MO.getReg() != FromReg) 1226 continue; 1227 MO.substPhysReg(ToReg, RegInfo); 1228 } 1229 } else { 1230 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1231 MachineOperand &MO = getOperand(i); 1232 if (!MO.isReg() || MO.getReg() != FromReg) 1233 continue; 1234 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1235 } 1236 } 1237 } 1238 1239 /// isSafeToMove - Return true if it is safe to move this instruction. If 1240 /// SawStore is set to true, it means that there is a store (or call) between 1241 /// the instruction's location and its intended destination. 1242 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII, 1243 AliasAnalysis *AA, 1244 bool &SawStore) const { 1245 // Ignore stuff that we obviously can't move. 1246 if (mayStore() || isCall()) { 1247 SawStore = true; 1248 return false; 1249 } 1250 1251 if (isLabel() || isDebugValue() || 1252 isTerminator() || hasUnmodeledSideEffects()) 1253 return false; 1254 1255 // See if this instruction does a load. If so, we have to guarantee that the 1256 // loaded value doesn't change between the load and the its intended 1257 // destination. The check for isInvariantLoad gives the targe the chance to 1258 // classify the load as always returning a constant, e.g. a constant pool 1259 // load. 1260 if (mayLoad() && !isInvariantLoad(AA)) 1261 // Otherwise, this is a real load. If there is a store between the load and 1262 // end of block, or if the load is volatile, we can't move it. 1263 return !SawStore && !hasVolatileMemoryRef(); 1264 1265 return true; 1266 } 1267 1268 /// isSafeToReMat - Return true if it's safe to rematerialize the specified 1269 /// instruction which defined the specified register instead of copying it. 1270 bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII, 1271 AliasAnalysis *AA, 1272 unsigned DstReg) const { 1273 bool SawStore = false; 1274 if (!TII->isTriviallyReMaterializable(this, AA) || 1275 !isSafeToMove(TII, AA, SawStore)) 1276 return false; 1277 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1278 const MachineOperand &MO = getOperand(i); 1279 if (!MO.isReg()) 1280 continue; 1281 // FIXME: For now, do not remat any instruction with register operands. 1282 // Later on, we can loosen the restriction is the register operands have 1283 // not been modified between the def and use. Note, this is different from 1284 // MachineSink because the code is no longer in two-address form (at least 1285 // partially). 1286 if (MO.isUse()) 1287 return false; 1288 else if (!MO.isDead() && MO.getReg() != DstReg) 1289 return false; 1290 } 1291 return true; 1292 } 1293 1294 /// hasVolatileMemoryRef - Return true if this instruction may have a 1295 /// volatile memory reference, or if the information describing the 1296 /// memory reference is not available. Return false if it is known to 1297 /// have no volatile memory references. 1298 bool MachineInstr::hasVolatileMemoryRef() const { 1299 // An instruction known never to access memory won't have a volatile access. 1300 if (!mayStore() && 1301 !mayLoad() && 1302 !isCall() && 1303 !hasUnmodeledSideEffects()) 1304 return false; 1305 1306 // Otherwise, if the instruction has no memory reference information, 1307 // conservatively assume it wasn't preserved. 1308 if (memoperands_empty()) 1309 return true; 1310 1311 // Check the memory reference information for volatile references. 1312 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I) 1313 if ((*I)->isVolatile()) 1314 return true; 1315 1316 return false; 1317 } 1318 1319 /// isInvariantLoad - Return true if this instruction is loading from a 1320 /// location whose value is invariant across the function. For example, 1321 /// loading a value from the constant pool or from the argument area 1322 /// of a function if it does not change. This should only return true of 1323 /// *all* loads the instruction does are invariant (if it does multiple loads). 1324 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const { 1325 // If the instruction doesn't load at all, it isn't an invariant load. 1326 if (!mayLoad()) 1327 return false; 1328 1329 // If the instruction has lost its memoperands, conservatively assume that 1330 // it may not be an invariant load. 1331 if (memoperands_empty()) 1332 return false; 1333 1334 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo(); 1335 1336 for (mmo_iterator I = memoperands_begin(), 1337 E = memoperands_end(); I != E; ++I) { 1338 if ((*I)->isVolatile()) return false; 1339 if ((*I)->isStore()) return false; 1340 if ((*I)->isInvariant()) return true; 1341 1342 if (const Value *V = (*I)->getValue()) { 1343 // A load from a constant PseudoSourceValue is invariant. 1344 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) 1345 if (PSV->isConstant(MFI)) 1346 continue; 1347 // If we have an AliasAnalysis, ask it whether the memory is constant. 1348 if (AA && AA->pointsToConstantMemory( 1349 AliasAnalysis::Location(V, (*I)->getSize(), 1350 (*I)->getTBAAInfo()))) 1351 continue; 1352 } 1353 1354 // Otherwise assume conservatively. 1355 return false; 1356 } 1357 1358 // Everything checks out. 1359 return true; 1360 } 1361 1362 /// isConstantValuePHI - If the specified instruction is a PHI that always 1363 /// merges together the same virtual register, return the register, otherwise 1364 /// return 0. 1365 unsigned MachineInstr::isConstantValuePHI() const { 1366 if (!isPHI()) 1367 return 0; 1368 assert(getNumOperands() >= 3 && 1369 "It's illegal to have a PHI without source operands"); 1370 1371 unsigned Reg = getOperand(1).getReg(); 1372 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1373 if (getOperand(i).getReg() != Reg) 1374 return 0; 1375 return Reg; 1376 } 1377 1378 bool MachineInstr::hasUnmodeledSideEffects() const { 1379 if (hasProperty(MCID::UnmodeledSideEffects)) 1380 return true; 1381 if (isInlineAsm()) { 1382 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1383 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1384 return true; 1385 } 1386 1387 return false; 1388 } 1389 1390 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1391 /// 1392 bool MachineInstr::allDefsAreDead() const { 1393 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { 1394 const MachineOperand &MO = getOperand(i); 1395 if (!MO.isReg() || MO.isUse()) 1396 continue; 1397 if (!MO.isDead()) 1398 return false; 1399 } 1400 return true; 1401 } 1402 1403 /// copyImplicitOps - Copy implicit register operands from specified 1404 /// instruction to this instruction. 1405 void MachineInstr::copyImplicitOps(const MachineInstr *MI) { 1406 for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands(); 1407 i != e; ++i) { 1408 const MachineOperand &MO = MI->getOperand(i); 1409 if (MO.isReg() && MO.isImplicit()) 1410 addOperand(MO); 1411 } 1412 } 1413 1414 void MachineInstr::dump() const { 1415 dbgs() << " " << *this; 1416 } 1417 1418 static void printDebugLoc(DebugLoc DL, const MachineFunction *MF, 1419 raw_ostream &CommentOS) { 1420 const LLVMContext &Ctx = MF->getFunction()->getContext(); 1421 if (!DL.isUnknown()) { // Print source line info. 1422 DIScope Scope(DL.getScope(Ctx)); 1423 // Omit the directory, because it's likely to be long and uninteresting. 1424 if (Scope.Verify()) 1425 CommentOS << Scope.getFilename(); 1426 else 1427 CommentOS << "<unknown>"; 1428 CommentOS << ':' << DL.getLine(); 1429 if (DL.getCol() != 0) 1430 CommentOS << ':' << DL.getCol(); 1431 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx)); 1432 if (!InlinedAtDL.isUnknown()) { 1433 CommentOS << " @[ "; 1434 printDebugLoc(InlinedAtDL, MF, CommentOS); 1435 CommentOS << " ]"; 1436 } 1437 } 1438 } 1439 1440 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const { 1441 // We can be a bit tidier if we know the TargetMachine and/or MachineFunction. 1442 const MachineFunction *MF = 0; 1443 const MachineRegisterInfo *MRI = 0; 1444 if (const MachineBasicBlock *MBB = getParent()) { 1445 MF = MBB->getParent(); 1446 if (!TM && MF) 1447 TM = &MF->getTarget(); 1448 if (MF) 1449 MRI = &MF->getRegInfo(); 1450 } 1451 1452 // Save a list of virtual registers. 1453 SmallVector<unsigned, 8> VirtRegs; 1454 1455 // Print explicitly defined operands on the left of an assignment syntax. 1456 unsigned StartOp = 0, e = getNumOperands(); 1457 for (; StartOp < e && getOperand(StartOp).isReg() && 1458 getOperand(StartOp).isDef() && 1459 !getOperand(StartOp).isImplicit(); 1460 ++StartOp) { 1461 if (StartOp != 0) OS << ", "; 1462 getOperand(StartOp).print(OS, TM); 1463 unsigned Reg = getOperand(StartOp).getReg(); 1464 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1465 VirtRegs.push_back(Reg); 1466 } 1467 1468 if (StartOp != 0) 1469 OS << " = "; 1470 1471 // Print the opcode name. 1472 OS << getDesc().getName(); 1473 1474 // Print the rest of the operands. 1475 bool OmittedAnyCallClobbers = false; 1476 bool FirstOp = true; 1477 unsigned AsmDescOp = ~0u; 1478 unsigned AsmOpCount = 0; 1479 1480 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1481 // Print asm string. 1482 OS << " "; 1483 getOperand(InlineAsm::MIOp_AsmString).print(OS, TM); 1484 1485 // Print HasSideEffects, IsAlignStack 1486 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1487 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1488 OS << " [sideeffect]"; 1489 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1490 OS << " [alignstack]"; 1491 1492 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1493 FirstOp = false; 1494 } 1495 1496 1497 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1498 const MachineOperand &MO = getOperand(i); 1499 1500 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1501 VirtRegs.push_back(MO.getReg()); 1502 1503 // Omit call-clobbered registers which aren't used anywhere. This makes 1504 // call instructions much less noisy on targets where calls clobber lots 1505 // of registers. Don't rely on MO.isDead() because we may be called before 1506 // LiveVariables is run, or we may be looking at a non-allocatable reg. 1507 if (MF && isCall() && 1508 MO.isReg() && MO.isImplicit() && MO.isDef()) { 1509 unsigned Reg = MO.getReg(); 1510 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1511 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1512 if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) { 1513 bool HasAliasLive = false; 1514 for (const unsigned *Alias = TM->getRegisterInfo()->getAliasSet(Reg); 1515 unsigned AliasReg = *Alias; ++Alias) 1516 if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) { 1517 HasAliasLive = true; 1518 break; 1519 } 1520 if (!HasAliasLive) { 1521 OmittedAnyCallClobbers = true; 1522 continue; 1523 } 1524 } 1525 } 1526 } 1527 1528 if (FirstOp) FirstOp = false; else OS << ","; 1529 OS << " "; 1530 if (i < getDesc().NumOperands) { 1531 const MCOperandInfo &MCOI = getDesc().OpInfo[i]; 1532 if (MCOI.isPredicate()) 1533 OS << "pred:"; 1534 if (MCOI.isOptionalDef()) 1535 OS << "opt:"; 1536 } 1537 if (isDebugValue() && MO.isMetadata()) { 1538 // Pretty print DBG_VALUE instructions. 1539 const MDNode *MD = MO.getMetadata(); 1540 if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2))) 1541 OS << "!\"" << MDS->getString() << '\"'; 1542 else 1543 MO.print(OS, TM); 1544 } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) { 1545 OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm()); 1546 } else if (i == AsmDescOp && MO.isImm()) { 1547 // Pretty print the inline asm operand descriptor. 1548 OS << '$' << AsmOpCount++; 1549 unsigned Flag = MO.getImm(); 1550 switch (InlineAsm::getKind(Flag)) { 1551 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1552 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1553 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1554 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1555 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1556 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1557 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1558 } 1559 1560 unsigned RCID = 0; 1561 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1562 if (TM) 1563 OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName(); 1564 else 1565 OS << ":RC" << RCID; 1566 } 1567 1568 unsigned TiedTo = 0; 1569 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1570 OS << " tiedto:$" << TiedTo; 1571 1572 OS << ']'; 1573 1574 // Compute the index of the next operand descriptor. 1575 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1576 } else 1577 MO.print(OS, TM); 1578 } 1579 1580 // Briefly indicate whether any call clobbers were omitted. 1581 if (OmittedAnyCallClobbers) { 1582 if (!FirstOp) OS << ","; 1583 OS << " ..."; 1584 } 1585 1586 bool HaveSemi = false; 1587 if (Flags) { 1588 if (!HaveSemi) OS << ";"; HaveSemi = true; 1589 OS << " flags: "; 1590 1591 if (Flags & FrameSetup) 1592 OS << "FrameSetup"; 1593 } 1594 1595 if (!memoperands_empty()) { 1596 if (!HaveSemi) OS << ";"; HaveSemi = true; 1597 1598 OS << " mem:"; 1599 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 1600 i != e; ++i) { 1601 OS << **i; 1602 if (llvm::next(i) != e) 1603 OS << " "; 1604 } 1605 } 1606 1607 // Print the regclass of any virtual registers encountered. 1608 if (MRI && !VirtRegs.empty()) { 1609 if (!HaveSemi) OS << ";"; HaveSemi = true; 1610 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 1611 const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]); 1612 OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]); 1613 for (unsigned j = i+1; j != VirtRegs.size();) { 1614 if (MRI->getRegClass(VirtRegs[j]) != RC) { 1615 ++j; 1616 continue; 1617 } 1618 if (VirtRegs[i] != VirtRegs[j]) 1619 OS << "," << PrintReg(VirtRegs[j]); 1620 VirtRegs.erase(VirtRegs.begin()+j); 1621 } 1622 } 1623 } 1624 1625 // Print debug location information. 1626 if (isDebugValue() && getOperand(e - 1).isMetadata()) { 1627 if (!HaveSemi) OS << ";"; HaveSemi = true; 1628 DIVariable DV(getOperand(e - 1).getMetadata()); 1629 OS << " line no:" << DV.getLineNumber(); 1630 if (MDNode *InlinedAt = DV.getInlinedAt()) { 1631 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt); 1632 if (!InlinedAtDL.isUnknown()) { 1633 OS << " inlined @[ "; 1634 printDebugLoc(InlinedAtDL, MF, OS); 1635 OS << " ]"; 1636 } 1637 } 1638 } else if (!debugLoc.isUnknown() && MF) { 1639 if (!HaveSemi) OS << ";"; HaveSemi = true; 1640 OS << " dbg:"; 1641 printDebugLoc(debugLoc, MF, OS); 1642 } 1643 1644 OS << '\n'; 1645 } 1646 1647 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 1648 const TargetRegisterInfo *RegInfo, 1649 bool AddIfNotFound) { 1650 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1651 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg); 1652 bool Found = false; 1653 SmallVector<unsigned,4> DeadOps; 1654 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1655 MachineOperand &MO = getOperand(i); 1656 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1657 continue; 1658 unsigned Reg = MO.getReg(); 1659 if (!Reg) 1660 continue; 1661 1662 if (Reg == IncomingReg) { 1663 if (!Found) { 1664 if (MO.isKill()) 1665 // The register is already marked kill. 1666 return true; 1667 if (isPhysReg && isRegTiedToDefOperand(i)) 1668 // Two-address uses of physregs must not be marked kill. 1669 return true; 1670 MO.setIsKill(); 1671 Found = true; 1672 } 1673 } else if (hasAliases && MO.isKill() && 1674 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1675 // A super-register kill already exists. 1676 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1677 return true; 1678 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1679 DeadOps.push_back(i); 1680 } 1681 } 1682 1683 // Trim unneeded kill operands. 1684 while (!DeadOps.empty()) { 1685 unsigned OpIdx = DeadOps.back(); 1686 if (getOperand(OpIdx).isImplicit()) 1687 RemoveOperand(OpIdx); 1688 else 1689 getOperand(OpIdx).setIsKill(false); 1690 DeadOps.pop_back(); 1691 } 1692 1693 // If not found, this means an alias of one of the operands is killed. Add a 1694 // new implicit operand if required. 1695 if (!Found && AddIfNotFound) { 1696 addOperand(MachineOperand::CreateReg(IncomingReg, 1697 false /*IsDef*/, 1698 true /*IsImp*/, 1699 true /*IsKill*/)); 1700 return true; 1701 } 1702 return Found; 1703 } 1704 1705 bool MachineInstr::addRegisterDead(unsigned IncomingReg, 1706 const TargetRegisterInfo *RegInfo, 1707 bool AddIfNotFound) { 1708 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1709 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg); 1710 bool Found = false; 1711 SmallVector<unsigned,4> DeadOps; 1712 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1713 MachineOperand &MO = getOperand(i); 1714 if (!MO.isReg() || !MO.isDef()) 1715 continue; 1716 unsigned Reg = MO.getReg(); 1717 if (!Reg) 1718 continue; 1719 1720 if (Reg == IncomingReg) { 1721 MO.setIsDead(); 1722 Found = true; 1723 } else if (hasAliases && MO.isDead() && 1724 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1725 // There exists a super-register that's marked dead. 1726 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1727 return true; 1728 if (RegInfo->getSubRegisters(IncomingReg) && 1729 RegInfo->getSuperRegisters(Reg) && 1730 RegInfo->isSubRegister(IncomingReg, Reg)) 1731 DeadOps.push_back(i); 1732 } 1733 } 1734 1735 // Trim unneeded dead operands. 1736 while (!DeadOps.empty()) { 1737 unsigned OpIdx = DeadOps.back(); 1738 if (getOperand(OpIdx).isImplicit()) 1739 RemoveOperand(OpIdx); 1740 else 1741 getOperand(OpIdx).setIsDead(false); 1742 DeadOps.pop_back(); 1743 } 1744 1745 // If not found, this means an alias of one of the operands is dead. Add a 1746 // new implicit operand if required. 1747 if (Found || !AddIfNotFound) 1748 return Found; 1749 1750 addOperand(MachineOperand::CreateReg(IncomingReg, 1751 true /*IsDef*/, 1752 true /*IsImp*/, 1753 false /*IsKill*/, 1754 true /*IsDead*/)); 1755 return true; 1756 } 1757 1758 void MachineInstr::addRegisterDefined(unsigned IncomingReg, 1759 const TargetRegisterInfo *RegInfo) { 1760 if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) { 1761 MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo); 1762 if (MO) 1763 return; 1764 } else { 1765 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1766 const MachineOperand &MO = getOperand(i); 1767 if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() && 1768 MO.getSubReg() == 0) 1769 return; 1770 } 1771 } 1772 addOperand(MachineOperand::CreateReg(IncomingReg, 1773 true /*IsDef*/, 1774 true /*IsImp*/)); 1775 } 1776 1777 void MachineInstr::setPhysRegsDeadExcept(const SmallVectorImpl<unsigned> &UsedRegs, 1778 const TargetRegisterInfo &TRI) { 1779 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1780 MachineOperand &MO = getOperand(i); 1781 if (!MO.isReg() || !MO.isDef()) continue; 1782 unsigned Reg = MO.getReg(); 1783 if (Reg == 0) continue; 1784 bool Dead = true; 1785 for (SmallVectorImpl<unsigned>::const_iterator I = UsedRegs.begin(), 1786 E = UsedRegs.end(); I != E; ++I) 1787 if (TRI.regsOverlap(*I, Reg)) { 1788 Dead = false; 1789 break; 1790 } 1791 // If there are no uses, including partial uses, the def is dead. 1792 if (Dead) MO.setIsDead(); 1793 } 1794 } 1795 1796 unsigned 1797 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 1798 unsigned Hash = MI->getOpcode() * 37; 1799 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1800 const MachineOperand &MO = MI->getOperand(i); 1801 uint64_t Key = (uint64_t)MO.getType() << 32; 1802 switch (MO.getType()) { 1803 default: break; 1804 case MachineOperand::MO_Register: 1805 if (MO.isDef() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1806 continue; // Skip virtual register defs. 1807 Key |= MO.getReg(); 1808 break; 1809 case MachineOperand::MO_Immediate: 1810 Key |= MO.getImm(); 1811 break; 1812 case MachineOperand::MO_FrameIndex: 1813 case MachineOperand::MO_ConstantPoolIndex: 1814 case MachineOperand::MO_JumpTableIndex: 1815 Key |= MO.getIndex(); 1816 break; 1817 case MachineOperand::MO_MachineBasicBlock: 1818 Key |= DenseMapInfo<void*>::getHashValue(MO.getMBB()); 1819 break; 1820 case MachineOperand::MO_GlobalAddress: 1821 Key |= DenseMapInfo<void*>::getHashValue(MO.getGlobal()); 1822 break; 1823 case MachineOperand::MO_BlockAddress: 1824 Key |= DenseMapInfo<void*>::getHashValue(MO.getBlockAddress()); 1825 break; 1826 case MachineOperand::MO_MCSymbol: 1827 Key |= DenseMapInfo<void*>::getHashValue(MO.getMCSymbol()); 1828 break; 1829 } 1830 Key += ~(Key << 32); 1831 Key ^= (Key >> 22); 1832 Key += ~(Key << 13); 1833 Key ^= (Key >> 8); 1834 Key += (Key << 3); 1835 Key ^= (Key >> 15); 1836 Key += ~(Key << 27); 1837 Key ^= (Key >> 31); 1838 Hash = (unsigned)Key + Hash * 37; 1839 } 1840 return Hash; 1841 } 1842 1843 void MachineInstr::emitError(StringRef Msg) const { 1844 // Find the source location cookie. 1845 unsigned LocCookie = 0; 1846 const MDNode *LocMD = 0; 1847 for (unsigned i = getNumOperands(); i != 0; --i) { 1848 if (getOperand(i-1).isMetadata() && 1849 (LocMD = getOperand(i-1).getMetadata()) && 1850 LocMD->getNumOperands() != 0) { 1851 if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) { 1852 LocCookie = CI->getZExtValue(); 1853 break; 1854 } 1855 } 1856 } 1857 1858 if (const MachineBasicBlock *MBB = getParent()) 1859 if (const MachineFunction *MF = MBB->getParent()) 1860 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 1861 report_fatal_error(Msg); 1862 } 1863