1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/Constants.h" 16 #include "llvm/Function.h" 17 #include "llvm/InlineAsm.h" 18 #include "llvm/Metadata.h" 19 #include "llvm/Type.h" 20 #include "llvm/Value.h" 21 #include "llvm/Assembly/Writer.h" 22 #include "llvm/CodeGen/MachineConstantPool.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/PseudoSourceValue.h" 27 #include "llvm/MC/MCSymbol.h" 28 #include "llvm/Target/TargetMachine.h" 29 #include "llvm/Target/TargetInstrInfo.h" 30 #include "llvm/Target/TargetInstrDesc.h" 31 #include "llvm/Target/TargetRegisterInfo.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/DebugInfo.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/LeakDetector.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/ADT/FoldingSet.h" 40 using namespace llvm; 41 42 //===----------------------------------------------------------------------===// 43 // MachineOperand Implementation 44 //===----------------------------------------------------------------------===// 45 46 /// AddRegOperandToRegInfo - Add this register operand to the specified 47 /// MachineRegisterInfo. If it is null, then the next/prev fields should be 48 /// explicitly nulled out. 49 void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) { 50 assert(isReg() && "Can only add reg operand to use lists"); 51 52 // If the reginfo pointer is null, just explicitly null out or next/prev 53 // pointers, to ensure they are not garbage. 54 if (RegInfo == 0) { 55 Contents.Reg.Prev = 0; 56 Contents.Reg.Next = 0; 57 return; 58 } 59 60 // Otherwise, add this operand to the head of the registers use/def list. 61 MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg()); 62 63 // For SSA values, we prefer to keep the definition at the start of the list. 64 // we do this by skipping over the definition if it is at the head of the 65 // list. 66 if (*Head && (*Head)->isDef()) 67 Head = &(*Head)->Contents.Reg.Next; 68 69 Contents.Reg.Next = *Head; 70 if (Contents.Reg.Next) { 71 assert(getReg() == Contents.Reg.Next->getReg() && 72 "Different regs on the same list!"); 73 Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next; 74 } 75 76 Contents.Reg.Prev = Head; 77 *Head = this; 78 } 79 80 /// RemoveRegOperandFromRegInfo - Remove this register operand from the 81 /// MachineRegisterInfo it is linked with. 82 void MachineOperand::RemoveRegOperandFromRegInfo() { 83 assert(isOnRegUseList() && "Reg operand is not on a use list"); 84 // Unlink this from the doubly linked list of operands. 85 MachineOperand *NextOp = Contents.Reg.Next; 86 *Contents.Reg.Prev = NextOp; 87 if (NextOp) { 88 assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!"); 89 NextOp->Contents.Reg.Prev = Contents.Reg.Prev; 90 } 91 Contents.Reg.Prev = 0; 92 Contents.Reg.Next = 0; 93 } 94 95 void MachineOperand::setReg(unsigned Reg) { 96 if (getReg() == Reg) return; // No change. 97 98 // Otherwise, we have to change the register. If this operand is embedded 99 // into a machine function, we need to update the old and new register's 100 // use/def lists. 101 if (MachineInstr *MI = getParent()) 102 if (MachineBasicBlock *MBB = MI->getParent()) 103 if (MachineFunction *MF = MBB->getParent()) { 104 RemoveRegOperandFromRegInfo(); 105 SmallContents.RegNo = Reg; 106 AddRegOperandToRegInfo(&MF->getRegInfo()); 107 return; 108 } 109 110 // Otherwise, just change the register, no problem. :) 111 SmallContents.RegNo = Reg; 112 } 113 114 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 115 const TargetRegisterInfo &TRI) { 116 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 117 if (SubIdx && getSubReg()) 118 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 119 setReg(Reg); 120 if (SubIdx) 121 setSubReg(SubIdx); 122 } 123 124 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 125 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 126 if (getSubReg()) { 127 Reg = TRI.getSubReg(Reg, getSubReg()); 128 // Note that getSubReg() may return 0 if the sub-register doesn't exist. 129 // That won't happen in legal code. 130 setSubReg(0); 131 } 132 setReg(Reg); 133 } 134 135 /// ChangeToImmediate - Replace this operand with a new immediate operand of 136 /// the specified value. If an operand is known to be an immediate already, 137 /// the setImm method should be used. 138 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 139 // If this operand is currently a register operand, and if this is in a 140 // function, deregister the operand from the register's use/def list. 141 if (isReg() && getParent() && getParent()->getParent() && 142 getParent()->getParent()->getParent()) 143 RemoveRegOperandFromRegInfo(); 144 145 OpKind = MO_Immediate; 146 Contents.ImmVal = ImmVal; 147 } 148 149 /// ChangeToRegister - Replace this operand with a new register operand of 150 /// the specified value. If an operand is known to be an register already, 151 /// the setReg method should be used. 152 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 153 bool isKill, bool isDead, bool isUndef, 154 bool isDebug) { 155 // If this operand is already a register operand, use setReg to update the 156 // register's use/def lists. 157 if (isReg()) { 158 assert(!isEarlyClobber()); 159 setReg(Reg); 160 } else { 161 // Otherwise, change this to a register and set the reg#. 162 OpKind = MO_Register; 163 SmallContents.RegNo = Reg; 164 165 // If this operand is embedded in a function, add the operand to the 166 // register's use/def list. 167 if (MachineInstr *MI = getParent()) 168 if (MachineBasicBlock *MBB = MI->getParent()) 169 if (MachineFunction *MF = MBB->getParent()) 170 AddRegOperandToRegInfo(&MF->getRegInfo()); 171 } 172 173 IsDef = isDef; 174 IsImp = isImp; 175 IsKill = isKill; 176 IsDead = isDead; 177 IsUndef = isUndef; 178 IsEarlyClobber = false; 179 IsDebug = isDebug; 180 SubReg = 0; 181 } 182 183 /// isIdenticalTo - Return true if this operand is identical to the specified 184 /// operand. 185 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 186 if (getType() != Other.getType() || 187 getTargetFlags() != Other.getTargetFlags()) 188 return false; 189 190 switch (getType()) { 191 default: llvm_unreachable("Unrecognized operand type"); 192 case MachineOperand::MO_Register: 193 return getReg() == Other.getReg() && isDef() == Other.isDef() && 194 getSubReg() == Other.getSubReg(); 195 case MachineOperand::MO_Immediate: 196 return getImm() == Other.getImm(); 197 case MachineOperand::MO_FPImmediate: 198 return getFPImm() == Other.getFPImm(); 199 case MachineOperand::MO_MachineBasicBlock: 200 return getMBB() == Other.getMBB(); 201 case MachineOperand::MO_FrameIndex: 202 return getIndex() == Other.getIndex(); 203 case MachineOperand::MO_ConstantPoolIndex: 204 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 205 case MachineOperand::MO_JumpTableIndex: 206 return getIndex() == Other.getIndex(); 207 case MachineOperand::MO_GlobalAddress: 208 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 209 case MachineOperand::MO_ExternalSymbol: 210 return !strcmp(getSymbolName(), Other.getSymbolName()) && 211 getOffset() == Other.getOffset(); 212 case MachineOperand::MO_BlockAddress: 213 return getBlockAddress() == Other.getBlockAddress(); 214 case MachineOperand::MO_MCSymbol: 215 return getMCSymbol() == Other.getMCSymbol(); 216 case MachineOperand::MO_Metadata: 217 return getMetadata() == Other.getMetadata(); 218 } 219 } 220 221 /// print - Print the specified machine operand. 222 /// 223 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const { 224 // If the instruction is embedded into a basic block, we can find the 225 // target info for the instruction. 226 if (!TM) 227 if (const MachineInstr *MI = getParent()) 228 if (const MachineBasicBlock *MBB = MI->getParent()) 229 if (const MachineFunction *MF = MBB->getParent()) 230 TM = &MF->getTarget(); 231 const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0; 232 233 switch (getType()) { 234 case MachineOperand::MO_Register: 235 OS << PrintReg(getReg(), TRI, getSubReg()); 236 237 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 238 isEarlyClobber()) { 239 OS << '<'; 240 bool NeedComma = false; 241 if (isDef()) { 242 if (NeedComma) OS << ','; 243 if (isEarlyClobber()) 244 OS << "earlyclobber,"; 245 if (isImplicit()) 246 OS << "imp-"; 247 OS << "def"; 248 NeedComma = true; 249 } else if (isImplicit()) { 250 OS << "imp-use"; 251 NeedComma = true; 252 } 253 254 if (isKill() || isDead() || isUndef()) { 255 if (NeedComma) OS << ','; 256 if (isKill()) OS << "kill"; 257 if (isDead()) OS << "dead"; 258 if (isUndef()) { 259 if (isKill() || isDead()) 260 OS << ','; 261 OS << "undef"; 262 } 263 } 264 OS << '>'; 265 } 266 break; 267 case MachineOperand::MO_Immediate: 268 OS << getImm(); 269 break; 270 case MachineOperand::MO_CImmediate: 271 getCImm()->getValue().print(OS, false); 272 break; 273 case MachineOperand::MO_FPImmediate: 274 if (getFPImm()->getType()->isFloatTy()) 275 OS << getFPImm()->getValueAPF().convertToFloat(); 276 else 277 OS << getFPImm()->getValueAPF().convertToDouble(); 278 break; 279 case MachineOperand::MO_MachineBasicBlock: 280 OS << "<BB#" << getMBB()->getNumber() << ">"; 281 break; 282 case MachineOperand::MO_FrameIndex: 283 OS << "<fi#" << getIndex() << '>'; 284 break; 285 case MachineOperand::MO_ConstantPoolIndex: 286 OS << "<cp#" << getIndex(); 287 if (getOffset()) OS << "+" << getOffset(); 288 OS << '>'; 289 break; 290 case MachineOperand::MO_JumpTableIndex: 291 OS << "<jt#" << getIndex() << '>'; 292 break; 293 case MachineOperand::MO_GlobalAddress: 294 OS << "<ga:"; 295 WriteAsOperand(OS, getGlobal(), /*PrintType=*/false); 296 if (getOffset()) OS << "+" << getOffset(); 297 OS << '>'; 298 break; 299 case MachineOperand::MO_ExternalSymbol: 300 OS << "<es:" << getSymbolName(); 301 if (getOffset()) OS << "+" << getOffset(); 302 OS << '>'; 303 break; 304 case MachineOperand::MO_BlockAddress: 305 OS << '<'; 306 WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false); 307 OS << '>'; 308 break; 309 case MachineOperand::MO_Metadata: 310 OS << '<'; 311 WriteAsOperand(OS, getMetadata(), /*PrintType=*/false); 312 OS << '>'; 313 break; 314 case MachineOperand::MO_MCSymbol: 315 OS << "<MCSym=" << *getMCSymbol() << '>'; 316 break; 317 default: 318 llvm_unreachable("Unrecognized operand type"); 319 } 320 321 if (unsigned TF = getTargetFlags()) 322 OS << "[TF=" << TF << ']'; 323 } 324 325 //===----------------------------------------------------------------------===// 326 // MachineMemOperand Implementation 327 //===----------------------------------------------------------------------===// 328 329 /// getAddrSpace - Return the LLVM IR address space number that this pointer 330 /// points into. 331 unsigned MachinePointerInfo::getAddrSpace() const { 332 if (V == 0) return 0; 333 return cast<PointerType>(V->getType())->getAddressSpace(); 334 } 335 336 /// getConstantPool - Return a MachinePointerInfo record that refers to the 337 /// constant pool. 338 MachinePointerInfo MachinePointerInfo::getConstantPool() { 339 return MachinePointerInfo(PseudoSourceValue::getConstantPool()); 340 } 341 342 /// getFixedStack - Return a MachinePointerInfo record that refers to the 343 /// the specified FrameIndex. 344 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) { 345 return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset); 346 } 347 348 MachinePointerInfo MachinePointerInfo::getJumpTable() { 349 return MachinePointerInfo(PseudoSourceValue::getJumpTable()); 350 } 351 352 MachinePointerInfo MachinePointerInfo::getGOT() { 353 return MachinePointerInfo(PseudoSourceValue::getGOT()); 354 } 355 356 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) { 357 return MachinePointerInfo(PseudoSourceValue::getStack(), Offset); 358 } 359 360 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f, 361 uint64_t s, unsigned int a, 362 const MDNode *TBAAInfo) 363 : PtrInfo(ptrinfo), Size(s), 364 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)), 365 TBAAInfo(TBAAInfo) { 366 assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) && 367 "invalid pointer value"); 368 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 369 assert((isLoad() || isStore()) && "Not a load/store!"); 370 } 371 372 /// Profile - Gather unique data for the object. 373 /// 374 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 375 ID.AddInteger(getOffset()); 376 ID.AddInteger(Size); 377 ID.AddPointer(getValue()); 378 ID.AddInteger(Flags); 379 } 380 381 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 382 // The Value and Offset may differ due to CSE. But the flags and size 383 // should be the same. 384 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 385 assert(MMO->getSize() == getSize() && "Size mismatch!"); 386 387 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 388 // Update the alignment value. 389 Flags = (Flags & ((1 << MOMaxBits) - 1)) | 390 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits); 391 // Also update the base and offset, because the new alignment may 392 // not be applicable with the old ones. 393 PtrInfo = MMO->PtrInfo; 394 } 395 } 396 397 /// getAlignment - Return the minimum known alignment in bytes of the 398 /// actual memory reference. 399 uint64_t MachineMemOperand::getAlignment() const { 400 return MinAlign(getBaseAlignment(), getOffset()); 401 } 402 403 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) { 404 assert((MMO.isLoad() || MMO.isStore()) && 405 "SV has to be a load, store or both."); 406 407 if (MMO.isVolatile()) 408 OS << "Volatile "; 409 410 if (MMO.isLoad()) 411 OS << "LD"; 412 if (MMO.isStore()) 413 OS << "ST"; 414 OS << MMO.getSize(); 415 416 // Print the address information. 417 OS << "["; 418 if (!MMO.getValue()) 419 OS << "<unknown>"; 420 else 421 WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false); 422 423 // If the alignment of the memory reference itself differs from the alignment 424 // of the base pointer, print the base alignment explicitly, next to the base 425 // pointer. 426 if (MMO.getBaseAlignment() != MMO.getAlignment()) 427 OS << "(align=" << MMO.getBaseAlignment() << ")"; 428 429 if (MMO.getOffset() != 0) 430 OS << "+" << MMO.getOffset(); 431 OS << "]"; 432 433 // Print the alignment of the reference. 434 if (MMO.getBaseAlignment() != MMO.getAlignment() || 435 MMO.getBaseAlignment() != MMO.getSize()) 436 OS << "(align=" << MMO.getAlignment() << ")"; 437 438 // Print TBAA info. 439 if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) { 440 OS << "(tbaa="; 441 if (TBAAInfo->getNumOperands() > 0) 442 WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false); 443 else 444 OS << "<unknown>"; 445 OS << ")"; 446 } 447 448 // Print nontemporal info. 449 if (MMO.isNonTemporal()) 450 OS << "(nontemporal)"; 451 452 return OS; 453 } 454 455 //===----------------------------------------------------------------------===// 456 // MachineInstr Implementation 457 //===----------------------------------------------------------------------===// 458 459 /// MachineInstr ctor - This constructor creates a dummy MachineInstr with 460 /// TID NULL and no operands. 461 MachineInstr::MachineInstr() 462 : TID(0), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0), 463 MemRefs(0), MemRefsEnd(0), 464 Parent(0) { 465 // Make sure that we get added to a machine basicblock 466 LeakDetector::addGarbageObject(this); 467 } 468 469 void MachineInstr::addImplicitDefUseOperands() { 470 if (TID->ImplicitDefs) 471 for (const unsigned *ImpDefs = TID->ImplicitDefs; *ImpDefs; ++ImpDefs) 472 addOperand(MachineOperand::CreateReg(*ImpDefs, true, true)); 473 if (TID->ImplicitUses) 474 for (const unsigned *ImpUses = TID->ImplicitUses; *ImpUses; ++ImpUses) 475 addOperand(MachineOperand::CreateReg(*ImpUses, false, true)); 476 } 477 478 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 479 /// implicit operands. It reserves space for the number of operands specified by 480 /// the TargetInstrDesc. 481 MachineInstr::MachineInstr(const TargetInstrDesc &tid, bool NoImp) 482 : TID(&tid), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0), 483 MemRefs(0), MemRefsEnd(0), Parent(0) { 484 if (!NoImp) 485 NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses(); 486 Operands.reserve(NumImplicitOps + TID->getNumOperands()); 487 if (!NoImp) 488 addImplicitDefUseOperands(); 489 // Make sure that we get added to a machine basicblock 490 LeakDetector::addGarbageObject(this); 491 } 492 493 /// MachineInstr ctor - As above, but with a DebugLoc. 494 MachineInstr::MachineInstr(const TargetInstrDesc &tid, const DebugLoc dl, 495 bool NoImp) 496 : TID(&tid), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0), 497 MemRefs(0), MemRefsEnd(0), Parent(0), debugLoc(dl) { 498 if (!NoImp) 499 NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses(); 500 Operands.reserve(NumImplicitOps + TID->getNumOperands()); 501 if (!NoImp) 502 addImplicitDefUseOperands(); 503 // Make sure that we get added to a machine basicblock 504 LeakDetector::addGarbageObject(this); 505 } 506 507 /// MachineInstr ctor - Work exactly the same as the ctor two above, except 508 /// that the MachineInstr is created and added to the end of the specified 509 /// basic block. 510 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const TargetInstrDesc &tid) 511 : TID(&tid), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0), 512 MemRefs(0), MemRefsEnd(0), Parent(0) { 513 assert(MBB && "Cannot use inserting ctor with null basic block!"); 514 NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses(); 515 Operands.reserve(NumImplicitOps + TID->getNumOperands()); 516 addImplicitDefUseOperands(); 517 // Make sure that we get added to a machine basicblock 518 LeakDetector::addGarbageObject(this); 519 MBB->push_back(this); // Add instruction to end of basic block! 520 } 521 522 /// MachineInstr ctor - As above, but with a DebugLoc. 523 /// 524 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl, 525 const TargetInstrDesc &tid) 526 : TID(&tid), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0), 527 MemRefs(0), MemRefsEnd(0), Parent(0), debugLoc(dl) { 528 assert(MBB && "Cannot use inserting ctor with null basic block!"); 529 NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses(); 530 Operands.reserve(NumImplicitOps + TID->getNumOperands()); 531 addImplicitDefUseOperands(); 532 // Make sure that we get added to a machine basicblock 533 LeakDetector::addGarbageObject(this); 534 MBB->push_back(this); // Add instruction to end of basic block! 535 } 536 537 /// MachineInstr ctor - Copies MachineInstr arg exactly 538 /// 539 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 540 : TID(&MI.getDesc()), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0), 541 MemRefs(MI.MemRefs), MemRefsEnd(MI.MemRefsEnd), 542 Parent(0), debugLoc(MI.getDebugLoc()) { 543 Operands.reserve(MI.getNumOperands()); 544 545 // Add operands 546 for (unsigned i = 0; i != MI.getNumOperands(); ++i) 547 addOperand(MI.getOperand(i)); 548 NumImplicitOps = MI.NumImplicitOps; 549 550 // Copy all the flags. 551 Flags = MI.Flags; 552 553 // Set parent to null. 554 Parent = 0; 555 556 LeakDetector::addGarbageObject(this); 557 } 558 559 MachineInstr::~MachineInstr() { 560 LeakDetector::removeGarbageObject(this); 561 #ifndef NDEBUG 562 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 563 assert(Operands[i].ParentMI == this && "ParentMI mismatch!"); 564 assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) && 565 "Reg operand def/use list corrupted"); 566 } 567 #endif 568 } 569 570 /// getRegInfo - If this instruction is embedded into a MachineFunction, 571 /// return the MachineRegisterInfo object for the current function, otherwise 572 /// return null. 573 MachineRegisterInfo *MachineInstr::getRegInfo() { 574 if (MachineBasicBlock *MBB = getParent()) 575 return &MBB->getParent()->getRegInfo(); 576 return 0; 577 } 578 579 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 580 /// this instruction from their respective use lists. This requires that the 581 /// operands already be on their use lists. 582 void MachineInstr::RemoveRegOperandsFromUseLists() { 583 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 584 if (Operands[i].isReg()) 585 Operands[i].RemoveRegOperandFromRegInfo(); 586 } 587 } 588 589 /// AddRegOperandsToUseLists - Add all of the register operands in 590 /// this instruction from their respective use lists. This requires that the 591 /// operands not be on their use lists yet. 592 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) { 593 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 594 if (Operands[i].isReg()) 595 Operands[i].AddRegOperandToRegInfo(&RegInfo); 596 } 597 } 598 599 600 /// addOperand - Add the specified operand to the instruction. If it is an 601 /// implicit operand, it is added to the end of the operand list. If it is 602 /// an explicit operand it is added at the end of the explicit operand list 603 /// (before the first implicit operand). 604 void MachineInstr::addOperand(const MachineOperand &Op) { 605 bool isImpReg = Op.isReg() && Op.isImplicit(); 606 assert((isImpReg || !OperandsComplete()) && 607 "Trying to add an operand to a machine instr that is already done!"); 608 609 MachineRegisterInfo *RegInfo = getRegInfo(); 610 611 // If we are adding the operand to the end of the list, our job is simpler. 612 // This is true most of the time, so this is a reasonable optimization. 613 if (isImpReg || NumImplicitOps == 0) { 614 // We can only do this optimization if we know that the operand list won't 615 // reallocate. 616 if (Operands.empty() || Operands.size()+1 <= Operands.capacity()) { 617 Operands.push_back(Op); 618 619 // Set the parent of the operand. 620 Operands.back().ParentMI = this; 621 622 // If the operand is a register, update the operand's use list. 623 if (Op.isReg()) { 624 Operands.back().AddRegOperandToRegInfo(RegInfo); 625 // If the register operand is flagged as early, mark the operand as such 626 unsigned OpNo = Operands.size() - 1; 627 if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1) 628 Operands[OpNo].setIsEarlyClobber(true); 629 } 630 return; 631 } 632 } 633 634 // Otherwise, we have to insert a real operand before any implicit ones. 635 unsigned OpNo = Operands.size()-NumImplicitOps; 636 637 // If this instruction isn't embedded into a function, then we don't need to 638 // update any operand lists. 639 if (RegInfo == 0) { 640 // Simple insertion, no reginfo update needed for other register operands. 641 Operands.insert(Operands.begin()+OpNo, Op); 642 Operands[OpNo].ParentMI = this; 643 644 // Do explicitly set the reginfo for this operand though, to ensure the 645 // next/prev fields are properly nulled out. 646 if (Operands[OpNo].isReg()) { 647 Operands[OpNo].AddRegOperandToRegInfo(0); 648 // If the register operand is flagged as early, mark the operand as such 649 if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1) 650 Operands[OpNo].setIsEarlyClobber(true); 651 } 652 653 } else if (Operands.size()+1 <= Operands.capacity()) { 654 // Otherwise, we have to remove register operands from their register use 655 // list, add the operand, then add the register operands back to their use 656 // list. This also must handle the case when the operand list reallocates 657 // to somewhere else. 658 659 // If insertion of this operand won't cause reallocation of the operand 660 // list, just remove the implicit operands, add the operand, then re-add all 661 // the rest of the operands. 662 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 663 assert(Operands[i].isReg() && "Should only be an implicit reg!"); 664 Operands[i].RemoveRegOperandFromRegInfo(); 665 } 666 667 // Add the operand. If it is a register, add it to the reg list. 668 Operands.insert(Operands.begin()+OpNo, Op); 669 Operands[OpNo].ParentMI = this; 670 671 if (Operands[OpNo].isReg()) { 672 Operands[OpNo].AddRegOperandToRegInfo(RegInfo); 673 // If the register operand is flagged as early, mark the operand as such 674 if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1) 675 Operands[OpNo].setIsEarlyClobber(true); 676 } 677 678 // Re-add all the implicit ops. 679 for (unsigned i = OpNo+1, e = Operands.size(); i != e; ++i) { 680 assert(Operands[i].isReg() && "Should only be an implicit reg!"); 681 Operands[i].AddRegOperandToRegInfo(RegInfo); 682 } 683 } else { 684 // Otherwise, we will be reallocating the operand list. Remove all reg 685 // operands from their list, then readd them after the operand list is 686 // reallocated. 687 RemoveRegOperandsFromUseLists(); 688 689 Operands.insert(Operands.begin()+OpNo, Op); 690 Operands[OpNo].ParentMI = this; 691 692 // Re-add all the operands. 693 AddRegOperandsToUseLists(*RegInfo); 694 695 // If the register operand is flagged as early, mark the operand as such 696 if (Operands[OpNo].isReg() 697 && TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1) 698 Operands[OpNo].setIsEarlyClobber(true); 699 } 700 } 701 702 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 703 /// fewer operand than it started with. 704 /// 705 void MachineInstr::RemoveOperand(unsigned OpNo) { 706 assert(OpNo < Operands.size() && "Invalid operand number"); 707 708 // Special case removing the last one. 709 if (OpNo == Operands.size()-1) { 710 // If needed, remove from the reg def/use list. 711 if (Operands.back().isReg() && Operands.back().isOnRegUseList()) 712 Operands.back().RemoveRegOperandFromRegInfo(); 713 714 Operands.pop_back(); 715 return; 716 } 717 718 // Otherwise, we are removing an interior operand. If we have reginfo to 719 // update, remove all operands that will be shifted down from their reg lists, 720 // move everything down, then re-add them. 721 MachineRegisterInfo *RegInfo = getRegInfo(); 722 if (RegInfo) { 723 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 724 if (Operands[i].isReg()) 725 Operands[i].RemoveRegOperandFromRegInfo(); 726 } 727 } 728 729 Operands.erase(Operands.begin()+OpNo); 730 731 if (RegInfo) { 732 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 733 if (Operands[i].isReg()) 734 Operands[i].AddRegOperandToRegInfo(RegInfo); 735 } 736 } 737 } 738 739 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 740 /// This function should be used only occasionally. The setMemRefs function 741 /// is the primary method for setting up a MachineInstr's MemRefs list. 742 void MachineInstr::addMemOperand(MachineFunction &MF, 743 MachineMemOperand *MO) { 744 mmo_iterator OldMemRefs = MemRefs; 745 mmo_iterator OldMemRefsEnd = MemRefsEnd; 746 747 size_t NewNum = (MemRefsEnd - MemRefs) + 1; 748 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 749 mmo_iterator NewMemRefsEnd = NewMemRefs + NewNum; 750 751 std::copy(OldMemRefs, OldMemRefsEnd, NewMemRefs); 752 NewMemRefs[NewNum - 1] = MO; 753 754 MemRefs = NewMemRefs; 755 MemRefsEnd = NewMemRefsEnd; 756 } 757 758 bool MachineInstr::isIdenticalTo(const MachineInstr *Other, 759 MICheckType Check) const { 760 // If opcodes or number of operands are not the same then the two 761 // instructions are obviously not identical. 762 if (Other->getOpcode() != getOpcode() || 763 Other->getNumOperands() != getNumOperands()) 764 return false; 765 766 // Check operands to make sure they match. 767 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 768 const MachineOperand &MO = getOperand(i); 769 const MachineOperand &OMO = Other->getOperand(i); 770 if (!MO.isReg()) { 771 if (!MO.isIdenticalTo(OMO)) 772 return false; 773 continue; 774 } 775 776 // Clients may or may not want to ignore defs when testing for equality. 777 // For example, machine CSE pass only cares about finding common 778 // subexpressions, so it's safe to ignore virtual register defs. 779 if (MO.isDef()) { 780 if (Check == IgnoreDefs) 781 continue; 782 else if (Check == IgnoreVRegDefs) { 783 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 784 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 785 if (MO.getReg() != OMO.getReg()) 786 return false; 787 } else { 788 if (!MO.isIdenticalTo(OMO)) 789 return false; 790 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 791 return false; 792 } 793 } else { 794 if (!MO.isIdenticalTo(OMO)) 795 return false; 796 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 797 return false; 798 } 799 } 800 return true; 801 } 802 803 /// removeFromParent - This method unlinks 'this' from the containing basic 804 /// block, and returns it, but does not delete it. 805 MachineInstr *MachineInstr::removeFromParent() { 806 assert(getParent() && "Not embedded in a basic block!"); 807 getParent()->remove(this); 808 return this; 809 } 810 811 812 /// eraseFromParent - This method unlinks 'this' from the containing basic 813 /// block, and deletes it. 814 void MachineInstr::eraseFromParent() { 815 assert(getParent() && "Not embedded in a basic block!"); 816 getParent()->erase(this); 817 } 818 819 820 /// OperandComplete - Return true if it's illegal to add a new operand 821 /// 822 bool MachineInstr::OperandsComplete() const { 823 unsigned short NumOperands = TID->getNumOperands(); 824 if (!TID->isVariadic() && getNumOperands()-NumImplicitOps >= NumOperands) 825 return true; // Broken: we have all the operands of this instruction! 826 return false; 827 } 828 829 /// getNumExplicitOperands - Returns the number of non-implicit operands. 830 /// 831 unsigned MachineInstr::getNumExplicitOperands() const { 832 unsigned NumOperands = TID->getNumOperands(); 833 if (!TID->isVariadic()) 834 return NumOperands; 835 836 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 837 const MachineOperand &MO = getOperand(i); 838 if (!MO.isReg() || !MO.isImplicit()) 839 NumOperands++; 840 } 841 return NumOperands; 842 } 843 844 bool MachineInstr::isStackAligningInlineAsm() const { 845 if (isInlineAsm()) { 846 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 847 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 848 return true; 849 } 850 return false; 851 } 852 853 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 854 /// the specific register or -1 if it is not found. It further tightens 855 /// the search criteria to a use that kills the register if isKill is true. 856 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, 857 const TargetRegisterInfo *TRI) const { 858 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 859 const MachineOperand &MO = getOperand(i); 860 if (!MO.isReg() || !MO.isUse()) 861 continue; 862 unsigned MOReg = MO.getReg(); 863 if (!MOReg) 864 continue; 865 if (MOReg == Reg || 866 (TRI && 867 TargetRegisterInfo::isPhysicalRegister(MOReg) && 868 TargetRegisterInfo::isPhysicalRegister(Reg) && 869 TRI->isSubRegister(MOReg, Reg))) 870 if (!isKill || MO.isKill()) 871 return i; 872 } 873 return -1; 874 } 875 876 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 877 /// indicating if this instruction reads or writes Reg. This also considers 878 /// partial defines. 879 std::pair<bool,bool> 880 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 881 SmallVectorImpl<unsigned> *Ops) const { 882 bool PartDef = false; // Partial redefine. 883 bool FullDef = false; // Full define. 884 bool Use = false; 885 886 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 887 const MachineOperand &MO = getOperand(i); 888 if (!MO.isReg() || MO.getReg() != Reg) 889 continue; 890 if (Ops) 891 Ops->push_back(i); 892 if (MO.isUse()) 893 Use |= !MO.isUndef(); 894 else if (MO.getSubReg()) 895 PartDef = true; 896 else 897 FullDef = true; 898 } 899 // A partial redefine uses Reg unless there is also a full define. 900 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 901 } 902 903 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 904 /// the specified register or -1 if it is not found. If isDead is true, defs 905 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 906 /// also checks if there is a def of a super-register. 907 int 908 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 909 const TargetRegisterInfo *TRI) const { 910 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 911 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 912 const MachineOperand &MO = getOperand(i); 913 if (!MO.isReg() || !MO.isDef()) 914 continue; 915 unsigned MOReg = MO.getReg(); 916 bool Found = (MOReg == Reg); 917 if (!Found && TRI && isPhys && 918 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 919 if (Overlap) 920 Found = TRI->regsOverlap(MOReg, Reg); 921 else 922 Found = TRI->isSubRegister(MOReg, Reg); 923 } 924 if (Found && (!isDead || MO.isDead())) 925 return i; 926 } 927 return -1; 928 } 929 930 /// findFirstPredOperandIdx() - Find the index of the first operand in the 931 /// operand list that is used to represent the predicate. It returns -1 if 932 /// none is found. 933 int MachineInstr::findFirstPredOperandIdx() const { 934 const TargetInstrDesc &TID = getDesc(); 935 if (TID.isPredicable()) { 936 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 937 if (TID.OpInfo[i].isPredicate()) 938 return i; 939 } 940 941 return -1; 942 } 943 944 /// isRegTiedToUseOperand - Given the index of a register def operand, 945 /// check if the register def is tied to a source operand, due to either 946 /// two-address elimination or inline assembly constraints. Returns the 947 /// first tied use operand index by reference is UseOpIdx is not null. 948 bool MachineInstr:: 949 isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const { 950 if (isInlineAsm()) { 951 assert(DefOpIdx > InlineAsm::MIOp_FirstOperand); 952 const MachineOperand &MO = getOperand(DefOpIdx); 953 if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0) 954 return false; 955 // Determine the actual operand index that corresponds to this index. 956 unsigned DefNo = 0; 957 unsigned DefPart = 0; 958 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); 959 i < e; ) { 960 const MachineOperand &FMO = getOperand(i); 961 // After the normal asm operands there may be additional imp-def regs. 962 if (!FMO.isImm()) 963 return false; 964 // Skip over this def. 965 unsigned NumOps = InlineAsm::getNumOperandRegisters(FMO.getImm()); 966 unsigned PrevDef = i + 1; 967 i = PrevDef + NumOps; 968 if (i > DefOpIdx) { 969 DefPart = DefOpIdx - PrevDef; 970 break; 971 } 972 ++DefNo; 973 } 974 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); 975 i != e; ++i) { 976 const MachineOperand &FMO = getOperand(i); 977 if (!FMO.isImm()) 978 continue; 979 if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse()) 980 continue; 981 unsigned Idx; 982 if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) && 983 Idx == DefNo) { 984 if (UseOpIdx) 985 *UseOpIdx = (unsigned)i + 1 + DefPart; 986 return true; 987 } 988 } 989 return false; 990 } 991 992 assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!"); 993 const TargetInstrDesc &TID = getDesc(); 994 for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) { 995 const MachineOperand &MO = getOperand(i); 996 if (MO.isReg() && MO.isUse() && 997 TID.getOperandConstraint(i, TOI::TIED_TO) == (int)DefOpIdx) { 998 if (UseOpIdx) 999 *UseOpIdx = (unsigned)i; 1000 return true; 1001 } 1002 } 1003 return false; 1004 } 1005 1006 /// isRegTiedToDefOperand - Return true if the operand of the specified index 1007 /// is a register use and it is tied to an def operand. It also returns the def 1008 /// operand index by reference. 1009 bool MachineInstr:: 1010 isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const { 1011 if (isInlineAsm()) { 1012 const MachineOperand &MO = getOperand(UseOpIdx); 1013 if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0) 1014 return false; 1015 1016 // Find the flag operand corresponding to UseOpIdx 1017 unsigned FlagIdx, NumOps=0; 1018 for (FlagIdx = InlineAsm::MIOp_FirstOperand; 1019 FlagIdx < UseOpIdx; FlagIdx += NumOps+1) { 1020 const MachineOperand &UFMO = getOperand(FlagIdx); 1021 // After the normal asm operands there may be additional imp-def regs. 1022 if (!UFMO.isImm()) 1023 return false; 1024 NumOps = InlineAsm::getNumOperandRegisters(UFMO.getImm()); 1025 assert(NumOps < getNumOperands() && "Invalid inline asm flag"); 1026 if (UseOpIdx < FlagIdx+NumOps+1) 1027 break; 1028 } 1029 if (FlagIdx >= UseOpIdx) 1030 return false; 1031 const MachineOperand &UFMO = getOperand(FlagIdx); 1032 unsigned DefNo; 1033 if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) { 1034 if (!DefOpIdx) 1035 return true; 1036 1037 unsigned DefIdx = InlineAsm::MIOp_FirstOperand; 1038 // Remember to adjust the index. First operand is asm string, second is 1039 // the HasSideEffects and AlignStack bits, then there is a flag for each. 1040 while (DefNo) { 1041 const MachineOperand &FMO = getOperand(DefIdx); 1042 assert(FMO.isImm()); 1043 // Skip over this def. 1044 DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1; 1045 --DefNo; 1046 } 1047 *DefOpIdx = DefIdx + UseOpIdx - FlagIdx; 1048 return true; 1049 } 1050 return false; 1051 } 1052 1053 const TargetInstrDesc &TID = getDesc(); 1054 if (UseOpIdx >= TID.getNumOperands()) 1055 return false; 1056 const MachineOperand &MO = getOperand(UseOpIdx); 1057 if (!MO.isReg() || !MO.isUse()) 1058 return false; 1059 int DefIdx = TID.getOperandConstraint(UseOpIdx, TOI::TIED_TO); 1060 if (DefIdx == -1) 1061 return false; 1062 if (DefOpIdx) 1063 *DefOpIdx = (unsigned)DefIdx; 1064 return true; 1065 } 1066 1067 /// clearKillInfo - Clears kill flags on all operands. 1068 /// 1069 void MachineInstr::clearKillInfo() { 1070 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1071 MachineOperand &MO = getOperand(i); 1072 if (MO.isReg() && MO.isUse()) 1073 MO.setIsKill(false); 1074 } 1075 } 1076 1077 /// copyKillDeadInfo - Copies kill / dead operand properties from MI. 1078 /// 1079 void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) { 1080 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1081 const MachineOperand &MO = MI->getOperand(i); 1082 if (!MO.isReg() || (!MO.isKill() && !MO.isDead())) 1083 continue; 1084 for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) { 1085 MachineOperand &MOp = getOperand(j); 1086 if (!MOp.isIdenticalTo(MO)) 1087 continue; 1088 if (MO.isKill()) 1089 MOp.setIsKill(); 1090 else 1091 MOp.setIsDead(); 1092 break; 1093 } 1094 } 1095 } 1096 1097 /// copyPredicates - Copies predicate operand(s) from MI. 1098 void MachineInstr::copyPredicates(const MachineInstr *MI) { 1099 const TargetInstrDesc &TID = MI->getDesc(); 1100 if (!TID.isPredicable()) 1101 return; 1102 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1103 if (TID.OpInfo[i].isPredicate()) { 1104 // Predicated operands must be last operands. 1105 addOperand(MI->getOperand(i)); 1106 } 1107 } 1108 } 1109 1110 void MachineInstr::substituteRegister(unsigned FromReg, 1111 unsigned ToReg, 1112 unsigned SubIdx, 1113 const TargetRegisterInfo &RegInfo) { 1114 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1115 if (SubIdx) 1116 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1117 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1118 MachineOperand &MO = getOperand(i); 1119 if (!MO.isReg() || MO.getReg() != FromReg) 1120 continue; 1121 MO.substPhysReg(ToReg, RegInfo); 1122 } 1123 } else { 1124 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1125 MachineOperand &MO = getOperand(i); 1126 if (!MO.isReg() || MO.getReg() != FromReg) 1127 continue; 1128 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1129 } 1130 } 1131 } 1132 1133 /// isSafeToMove - Return true if it is safe to move this instruction. If 1134 /// SawStore is set to true, it means that there is a store (or call) between 1135 /// the instruction's location and its intended destination. 1136 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII, 1137 AliasAnalysis *AA, 1138 bool &SawStore) const { 1139 // Ignore stuff that we obviously can't move. 1140 if (TID->mayStore() || TID->isCall()) { 1141 SawStore = true; 1142 return false; 1143 } 1144 1145 if (isLabel() || isDebugValue() || 1146 TID->isTerminator() || hasUnmodeledSideEffects()) 1147 return false; 1148 1149 // See if this instruction does a load. If so, we have to guarantee that the 1150 // loaded value doesn't change between the load and the its intended 1151 // destination. The check for isInvariantLoad gives the targe the chance to 1152 // classify the load as always returning a constant, e.g. a constant pool 1153 // load. 1154 if (TID->mayLoad() && !isInvariantLoad(AA)) 1155 // Otherwise, this is a real load. If there is a store between the load and 1156 // end of block, or if the load is volatile, we can't move it. 1157 return !SawStore && !hasVolatileMemoryRef(); 1158 1159 return true; 1160 } 1161 1162 /// isSafeToReMat - Return true if it's safe to rematerialize the specified 1163 /// instruction which defined the specified register instead of copying it. 1164 bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII, 1165 AliasAnalysis *AA, 1166 unsigned DstReg) const { 1167 bool SawStore = false; 1168 if (!TII->isTriviallyReMaterializable(this, AA) || 1169 !isSafeToMove(TII, AA, SawStore)) 1170 return false; 1171 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1172 const MachineOperand &MO = getOperand(i); 1173 if (!MO.isReg()) 1174 continue; 1175 // FIXME: For now, do not remat any instruction with register operands. 1176 // Later on, we can loosen the restriction is the register operands have 1177 // not been modified between the def and use. Note, this is different from 1178 // MachineSink because the code is no longer in two-address form (at least 1179 // partially). 1180 if (MO.isUse()) 1181 return false; 1182 else if (!MO.isDead() && MO.getReg() != DstReg) 1183 return false; 1184 } 1185 return true; 1186 } 1187 1188 /// hasVolatileMemoryRef - Return true if this instruction may have a 1189 /// volatile memory reference, or if the information describing the 1190 /// memory reference is not available. Return false if it is known to 1191 /// have no volatile memory references. 1192 bool MachineInstr::hasVolatileMemoryRef() const { 1193 // An instruction known never to access memory won't have a volatile access. 1194 if (!TID->mayStore() && 1195 !TID->mayLoad() && 1196 !TID->isCall() && 1197 !hasUnmodeledSideEffects()) 1198 return false; 1199 1200 // Otherwise, if the instruction has no memory reference information, 1201 // conservatively assume it wasn't preserved. 1202 if (memoperands_empty()) 1203 return true; 1204 1205 // Check the memory reference information for volatile references. 1206 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I) 1207 if ((*I)->isVolatile()) 1208 return true; 1209 1210 return false; 1211 } 1212 1213 /// isInvariantLoad - Return true if this instruction is loading from a 1214 /// location whose value is invariant across the function. For example, 1215 /// loading a value from the constant pool or from the argument area 1216 /// of a function if it does not change. This should only return true of 1217 /// *all* loads the instruction does are invariant (if it does multiple loads). 1218 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const { 1219 // If the instruction doesn't load at all, it isn't an invariant load. 1220 if (!TID->mayLoad()) 1221 return false; 1222 1223 // If the instruction has lost its memoperands, conservatively assume that 1224 // it may not be an invariant load. 1225 if (memoperands_empty()) 1226 return false; 1227 1228 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo(); 1229 1230 for (mmo_iterator I = memoperands_begin(), 1231 E = memoperands_end(); I != E; ++I) { 1232 if ((*I)->isVolatile()) return false; 1233 if ((*I)->isStore()) return false; 1234 1235 if (const Value *V = (*I)->getValue()) { 1236 // A load from a constant PseudoSourceValue is invariant. 1237 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) 1238 if (PSV->isConstant(MFI)) 1239 continue; 1240 // If we have an AliasAnalysis, ask it whether the memory is constant. 1241 if (AA && AA->pointsToConstantMemory( 1242 AliasAnalysis::Location(V, (*I)->getSize(), 1243 (*I)->getTBAAInfo()))) 1244 continue; 1245 } 1246 1247 // Otherwise assume conservatively. 1248 return false; 1249 } 1250 1251 // Everything checks out. 1252 return true; 1253 } 1254 1255 /// isConstantValuePHI - If the specified instruction is a PHI that always 1256 /// merges together the same virtual register, return the register, otherwise 1257 /// return 0. 1258 unsigned MachineInstr::isConstantValuePHI() const { 1259 if (!isPHI()) 1260 return 0; 1261 assert(getNumOperands() >= 3 && 1262 "It's illegal to have a PHI without source operands"); 1263 1264 unsigned Reg = getOperand(1).getReg(); 1265 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1266 if (getOperand(i).getReg() != Reg) 1267 return 0; 1268 return Reg; 1269 } 1270 1271 bool MachineInstr::hasUnmodeledSideEffects() const { 1272 if (getDesc().hasUnmodeledSideEffects()) 1273 return true; 1274 if (isInlineAsm()) { 1275 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1276 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1277 return true; 1278 } 1279 1280 return false; 1281 } 1282 1283 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1284 /// 1285 bool MachineInstr::allDefsAreDead() const { 1286 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { 1287 const MachineOperand &MO = getOperand(i); 1288 if (!MO.isReg() || MO.isUse()) 1289 continue; 1290 if (!MO.isDead()) 1291 return false; 1292 } 1293 return true; 1294 } 1295 1296 /// copyImplicitOps - Copy implicit register operands from specified 1297 /// instruction to this instruction. 1298 void MachineInstr::copyImplicitOps(const MachineInstr *MI) { 1299 for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands(); 1300 i != e; ++i) { 1301 const MachineOperand &MO = MI->getOperand(i); 1302 if (MO.isReg() && MO.isImplicit()) 1303 addOperand(MO); 1304 } 1305 } 1306 1307 void MachineInstr::dump() const { 1308 dbgs() << " " << *this; 1309 } 1310 1311 static void printDebugLoc(DebugLoc DL, const MachineFunction *MF, 1312 raw_ostream &CommentOS) { 1313 const LLVMContext &Ctx = MF->getFunction()->getContext(); 1314 if (!DL.isUnknown()) { // Print source line info. 1315 DIScope Scope(DL.getScope(Ctx)); 1316 // Omit the directory, because it's likely to be long and uninteresting. 1317 if (Scope.Verify()) 1318 CommentOS << Scope.getFilename(); 1319 else 1320 CommentOS << "<unknown>"; 1321 CommentOS << ':' << DL.getLine(); 1322 if (DL.getCol() != 0) 1323 CommentOS << ':' << DL.getCol(); 1324 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx)); 1325 if (!InlinedAtDL.isUnknown()) { 1326 CommentOS << " @[ "; 1327 printDebugLoc(InlinedAtDL, MF, CommentOS); 1328 CommentOS << " ]"; 1329 } 1330 } 1331 } 1332 1333 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const { 1334 // We can be a bit tidier if we know the TargetMachine and/or MachineFunction. 1335 const MachineFunction *MF = 0; 1336 const MachineRegisterInfo *MRI = 0; 1337 if (const MachineBasicBlock *MBB = getParent()) { 1338 MF = MBB->getParent(); 1339 if (!TM && MF) 1340 TM = &MF->getTarget(); 1341 if (MF) 1342 MRI = &MF->getRegInfo(); 1343 } 1344 1345 // Save a list of virtual registers. 1346 SmallVector<unsigned, 8> VirtRegs; 1347 1348 // Print explicitly defined operands on the left of an assignment syntax. 1349 unsigned StartOp = 0, e = getNumOperands(); 1350 for (; StartOp < e && getOperand(StartOp).isReg() && 1351 getOperand(StartOp).isDef() && 1352 !getOperand(StartOp).isImplicit(); 1353 ++StartOp) { 1354 if (StartOp != 0) OS << ", "; 1355 getOperand(StartOp).print(OS, TM); 1356 unsigned Reg = getOperand(StartOp).getReg(); 1357 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1358 VirtRegs.push_back(Reg); 1359 } 1360 1361 if (StartOp != 0) 1362 OS << " = "; 1363 1364 // Print the opcode name. 1365 OS << getDesc().getName(); 1366 1367 // Print the rest of the operands. 1368 bool OmittedAnyCallClobbers = false; 1369 bool FirstOp = true; 1370 1371 if (isInlineAsm()) { 1372 // Print asm string. 1373 OS << " "; 1374 getOperand(InlineAsm::MIOp_AsmString).print(OS, TM); 1375 1376 // Print HasSideEffects, IsAlignStack 1377 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1378 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1379 OS << " [sideeffect]"; 1380 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1381 OS << " [alignstack]"; 1382 1383 StartOp = InlineAsm::MIOp_FirstOperand; 1384 FirstOp = false; 1385 } 1386 1387 1388 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1389 const MachineOperand &MO = getOperand(i); 1390 1391 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1392 VirtRegs.push_back(MO.getReg()); 1393 1394 // Omit call-clobbered registers which aren't used anywhere. This makes 1395 // call instructions much less noisy on targets where calls clobber lots 1396 // of registers. Don't rely on MO.isDead() because we may be called before 1397 // LiveVariables is run, or we may be looking at a non-allocatable reg. 1398 if (MF && getDesc().isCall() && 1399 MO.isReg() && MO.isImplicit() && MO.isDef()) { 1400 unsigned Reg = MO.getReg(); 1401 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1402 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1403 if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) { 1404 bool HasAliasLive = false; 1405 for (const unsigned *Alias = TM->getRegisterInfo()->getAliasSet(Reg); 1406 unsigned AliasReg = *Alias; ++Alias) 1407 if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) { 1408 HasAliasLive = true; 1409 break; 1410 } 1411 if (!HasAliasLive) { 1412 OmittedAnyCallClobbers = true; 1413 continue; 1414 } 1415 } 1416 } 1417 } 1418 1419 if (FirstOp) FirstOp = false; else OS << ","; 1420 OS << " "; 1421 if (i < getDesc().NumOperands) { 1422 const TargetOperandInfo &TOI = getDesc().OpInfo[i]; 1423 if (TOI.isPredicate()) 1424 OS << "pred:"; 1425 if (TOI.isOptionalDef()) 1426 OS << "opt:"; 1427 } 1428 if (isDebugValue() && MO.isMetadata()) { 1429 // Pretty print DBG_VALUE instructions. 1430 const MDNode *MD = MO.getMetadata(); 1431 if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2))) 1432 OS << "!\"" << MDS->getString() << '\"'; 1433 else 1434 MO.print(OS, TM); 1435 } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) { 1436 OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm()); 1437 } else 1438 MO.print(OS, TM); 1439 } 1440 1441 // Briefly indicate whether any call clobbers were omitted. 1442 if (OmittedAnyCallClobbers) { 1443 if (!FirstOp) OS << ","; 1444 OS << " ..."; 1445 } 1446 1447 bool HaveSemi = false; 1448 if (Flags) { 1449 if (!HaveSemi) OS << ";"; HaveSemi = true; 1450 OS << " flags: "; 1451 1452 if (Flags & FrameSetup) 1453 OS << "FrameSetup"; 1454 } 1455 1456 if (!memoperands_empty()) { 1457 if (!HaveSemi) OS << ";"; HaveSemi = true; 1458 1459 OS << " mem:"; 1460 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 1461 i != e; ++i) { 1462 OS << **i; 1463 if (llvm::next(i) != e) 1464 OS << " "; 1465 } 1466 } 1467 1468 // Print the regclass of any virtual registers encountered. 1469 if (MRI && !VirtRegs.empty()) { 1470 if (!HaveSemi) OS << ";"; HaveSemi = true; 1471 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 1472 const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]); 1473 OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]); 1474 for (unsigned j = i+1; j != VirtRegs.size();) { 1475 if (MRI->getRegClass(VirtRegs[j]) != RC) { 1476 ++j; 1477 continue; 1478 } 1479 if (VirtRegs[i] != VirtRegs[j]) 1480 OS << "," << PrintReg(VirtRegs[j]); 1481 VirtRegs.erase(VirtRegs.begin()+j); 1482 } 1483 } 1484 } 1485 1486 // Print debug location information. 1487 if (!debugLoc.isUnknown() && MF) { 1488 if (!HaveSemi) OS << ";"; HaveSemi = true; 1489 OS << " dbg:"; 1490 printDebugLoc(debugLoc, MF, OS); 1491 } 1492 1493 OS << '\n'; 1494 } 1495 1496 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 1497 const TargetRegisterInfo *RegInfo, 1498 bool AddIfNotFound) { 1499 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1500 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg); 1501 bool Found = false; 1502 SmallVector<unsigned,4> DeadOps; 1503 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1504 MachineOperand &MO = getOperand(i); 1505 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1506 continue; 1507 unsigned Reg = MO.getReg(); 1508 if (!Reg) 1509 continue; 1510 1511 if (Reg == IncomingReg) { 1512 if (!Found) { 1513 if (MO.isKill()) 1514 // The register is already marked kill. 1515 return true; 1516 if (isPhysReg && isRegTiedToDefOperand(i)) 1517 // Two-address uses of physregs must not be marked kill. 1518 return true; 1519 MO.setIsKill(); 1520 Found = true; 1521 } 1522 } else if (hasAliases && MO.isKill() && 1523 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1524 // A super-register kill already exists. 1525 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1526 return true; 1527 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1528 DeadOps.push_back(i); 1529 } 1530 } 1531 1532 // Trim unneeded kill operands. 1533 while (!DeadOps.empty()) { 1534 unsigned OpIdx = DeadOps.back(); 1535 if (getOperand(OpIdx).isImplicit()) 1536 RemoveOperand(OpIdx); 1537 else 1538 getOperand(OpIdx).setIsKill(false); 1539 DeadOps.pop_back(); 1540 } 1541 1542 // If not found, this means an alias of one of the operands is killed. Add a 1543 // new implicit operand if required. 1544 if (!Found && AddIfNotFound) { 1545 addOperand(MachineOperand::CreateReg(IncomingReg, 1546 false /*IsDef*/, 1547 true /*IsImp*/, 1548 true /*IsKill*/)); 1549 return true; 1550 } 1551 return Found; 1552 } 1553 1554 bool MachineInstr::addRegisterDead(unsigned IncomingReg, 1555 const TargetRegisterInfo *RegInfo, 1556 bool AddIfNotFound) { 1557 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1558 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg); 1559 bool Found = false; 1560 SmallVector<unsigned,4> DeadOps; 1561 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1562 MachineOperand &MO = getOperand(i); 1563 if (!MO.isReg() || !MO.isDef()) 1564 continue; 1565 unsigned Reg = MO.getReg(); 1566 if (!Reg) 1567 continue; 1568 1569 if (Reg == IncomingReg) { 1570 MO.setIsDead(); 1571 Found = true; 1572 } else if (hasAliases && MO.isDead() && 1573 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1574 // There exists a super-register that's marked dead. 1575 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1576 return true; 1577 if (RegInfo->getSubRegisters(IncomingReg) && 1578 RegInfo->getSuperRegisters(Reg) && 1579 RegInfo->isSubRegister(IncomingReg, Reg)) 1580 DeadOps.push_back(i); 1581 } 1582 } 1583 1584 // Trim unneeded dead operands. 1585 while (!DeadOps.empty()) { 1586 unsigned OpIdx = DeadOps.back(); 1587 if (getOperand(OpIdx).isImplicit()) 1588 RemoveOperand(OpIdx); 1589 else 1590 getOperand(OpIdx).setIsDead(false); 1591 DeadOps.pop_back(); 1592 } 1593 1594 // If not found, this means an alias of one of the operands is dead. Add a 1595 // new implicit operand if required. 1596 if (Found || !AddIfNotFound) 1597 return Found; 1598 1599 addOperand(MachineOperand::CreateReg(IncomingReg, 1600 true /*IsDef*/, 1601 true /*IsImp*/, 1602 false /*IsKill*/, 1603 true /*IsDead*/)); 1604 return true; 1605 } 1606 1607 void MachineInstr::addRegisterDefined(unsigned IncomingReg, 1608 const TargetRegisterInfo *RegInfo) { 1609 if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) { 1610 MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo); 1611 if (MO) 1612 return; 1613 } else { 1614 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1615 const MachineOperand &MO = getOperand(i); 1616 if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() && 1617 MO.getSubReg() == 0) 1618 return; 1619 } 1620 } 1621 addOperand(MachineOperand::CreateReg(IncomingReg, 1622 true /*IsDef*/, 1623 true /*IsImp*/)); 1624 } 1625 1626 void MachineInstr::setPhysRegsDeadExcept(const SmallVectorImpl<unsigned> &UsedRegs, 1627 const TargetRegisterInfo &TRI) { 1628 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1629 MachineOperand &MO = getOperand(i); 1630 if (!MO.isReg() || !MO.isDef()) continue; 1631 unsigned Reg = MO.getReg(); 1632 if (Reg == 0) continue; 1633 bool Dead = true; 1634 for (SmallVectorImpl<unsigned>::const_iterator I = UsedRegs.begin(), 1635 E = UsedRegs.end(); I != E; ++I) 1636 if (TRI.regsOverlap(*I, Reg)) { 1637 Dead = false; 1638 break; 1639 } 1640 // If there are no uses, including partial uses, the def is dead. 1641 if (Dead) MO.setIsDead(); 1642 } 1643 } 1644 1645 unsigned 1646 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 1647 unsigned Hash = MI->getOpcode() * 37; 1648 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1649 const MachineOperand &MO = MI->getOperand(i); 1650 uint64_t Key = (uint64_t)MO.getType() << 32; 1651 switch (MO.getType()) { 1652 default: break; 1653 case MachineOperand::MO_Register: 1654 if (MO.isDef() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1655 continue; // Skip virtual register defs. 1656 Key |= MO.getReg(); 1657 break; 1658 case MachineOperand::MO_Immediate: 1659 Key |= MO.getImm(); 1660 break; 1661 case MachineOperand::MO_FrameIndex: 1662 case MachineOperand::MO_ConstantPoolIndex: 1663 case MachineOperand::MO_JumpTableIndex: 1664 Key |= MO.getIndex(); 1665 break; 1666 case MachineOperand::MO_MachineBasicBlock: 1667 Key |= DenseMapInfo<void*>::getHashValue(MO.getMBB()); 1668 break; 1669 case MachineOperand::MO_GlobalAddress: 1670 Key |= DenseMapInfo<void*>::getHashValue(MO.getGlobal()); 1671 break; 1672 case MachineOperand::MO_BlockAddress: 1673 Key |= DenseMapInfo<void*>::getHashValue(MO.getBlockAddress()); 1674 break; 1675 case MachineOperand::MO_MCSymbol: 1676 Key |= DenseMapInfo<void*>::getHashValue(MO.getMCSymbol()); 1677 break; 1678 } 1679 Key += ~(Key << 32); 1680 Key ^= (Key >> 22); 1681 Key += ~(Key << 13); 1682 Key ^= (Key >> 8); 1683 Key += (Key << 3); 1684 Key ^= (Key >> 15); 1685 Key += ~(Key << 27); 1686 Key ^= (Key >> 31); 1687 Hash = (unsigned)Key + Hash * 37; 1688 } 1689 return Hash; 1690 } 1691