1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/Constants.h" 16 #include "llvm/Function.h" 17 #include "llvm/InlineAsm.h" 18 #include "llvm/LLVMContext.h" 19 #include "llvm/Metadata.h" 20 #include "llvm/Module.h" 21 #include "llvm/Type.h" 22 #include "llvm/Value.h" 23 #include "llvm/Assembly/Writer.h" 24 #include "llvm/CodeGen/MachineConstantPool.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineModuleInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/PseudoSourceValue.h" 30 #include "llvm/MC/MCInstrDesc.h" 31 #include "llvm/MC/MCSymbol.h" 32 #include "llvm/Target/TargetMachine.h" 33 #include "llvm/Target/TargetInstrInfo.h" 34 #include "llvm/Target/TargetRegisterInfo.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/DebugInfo.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/LeakDetector.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/ADT/FoldingSet.h" 43 using namespace llvm; 44 45 //===----------------------------------------------------------------------===// 46 // MachineOperand Implementation 47 //===----------------------------------------------------------------------===// 48 49 /// AddRegOperandToRegInfo - Add this register operand to the specified 50 /// MachineRegisterInfo. If it is null, then the next/prev fields should be 51 /// explicitly nulled out. 52 void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) { 53 assert(isReg() && "Can only add reg operand to use lists"); 54 55 // If the reginfo pointer is null, just explicitly null out or next/prev 56 // pointers, to ensure they are not garbage. 57 if (RegInfo == 0) { 58 Contents.Reg.Prev = 0; 59 Contents.Reg.Next = 0; 60 return; 61 } 62 63 // Otherwise, add this operand to the head of the registers use/def list. 64 MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg()); 65 66 // For SSA values, we prefer to keep the definition at the start of the list. 67 // we do this by skipping over the definition if it is at the head of the 68 // list. 69 if (*Head && (*Head)->isDef()) 70 Head = &(*Head)->Contents.Reg.Next; 71 72 Contents.Reg.Next = *Head; 73 if (Contents.Reg.Next) { 74 assert(getReg() == Contents.Reg.Next->getReg() && 75 "Different regs on the same list!"); 76 Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next; 77 } 78 79 Contents.Reg.Prev = Head; 80 *Head = this; 81 } 82 83 /// RemoveRegOperandFromRegInfo - Remove this register operand from the 84 /// MachineRegisterInfo it is linked with. 85 void MachineOperand::RemoveRegOperandFromRegInfo() { 86 assert(isOnRegUseList() && "Reg operand is not on a use list"); 87 // Unlink this from the doubly linked list of operands. 88 MachineOperand *NextOp = Contents.Reg.Next; 89 *Contents.Reg.Prev = NextOp; 90 if (NextOp) { 91 assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!"); 92 NextOp->Contents.Reg.Prev = Contents.Reg.Prev; 93 } 94 Contents.Reg.Prev = 0; 95 Contents.Reg.Next = 0; 96 } 97 98 void MachineOperand::setReg(unsigned Reg) { 99 if (getReg() == Reg) return; // No change. 100 101 // Otherwise, we have to change the register. If this operand is embedded 102 // into a machine function, we need to update the old and new register's 103 // use/def lists. 104 if (MachineInstr *MI = getParent()) 105 if (MachineBasicBlock *MBB = MI->getParent()) 106 if (MachineFunction *MF = MBB->getParent()) { 107 RemoveRegOperandFromRegInfo(); 108 SmallContents.RegNo = Reg; 109 AddRegOperandToRegInfo(&MF->getRegInfo()); 110 return; 111 } 112 113 // Otherwise, just change the register, no problem. :) 114 SmallContents.RegNo = Reg; 115 } 116 117 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 118 const TargetRegisterInfo &TRI) { 119 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 120 if (SubIdx && getSubReg()) 121 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 122 setReg(Reg); 123 if (SubIdx) 124 setSubReg(SubIdx); 125 } 126 127 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 128 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 129 if (getSubReg()) { 130 Reg = TRI.getSubReg(Reg, getSubReg()); 131 // Note that getSubReg() may return 0 if the sub-register doesn't exist. 132 // That won't happen in legal code. 133 setSubReg(0); 134 } 135 setReg(Reg); 136 } 137 138 /// ChangeToImmediate - Replace this operand with a new immediate operand of 139 /// the specified value. If an operand is known to be an immediate already, 140 /// the setImm method should be used. 141 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 142 // If this operand is currently a register operand, and if this is in a 143 // function, deregister the operand from the register's use/def list. 144 if (isReg() && getParent() && getParent()->getParent() && 145 getParent()->getParent()->getParent()) 146 RemoveRegOperandFromRegInfo(); 147 148 OpKind = MO_Immediate; 149 Contents.ImmVal = ImmVal; 150 } 151 152 /// ChangeToRegister - Replace this operand with a new register operand of 153 /// the specified value. If an operand is known to be an register already, 154 /// the setReg method should be used. 155 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 156 bool isKill, bool isDead, bool isUndef, 157 bool isDebug) { 158 // If this operand is already a register operand, use setReg to update the 159 // register's use/def lists. 160 if (isReg()) { 161 assert(!isEarlyClobber()); 162 setReg(Reg); 163 } else { 164 // Otherwise, change this to a register and set the reg#. 165 OpKind = MO_Register; 166 SmallContents.RegNo = Reg; 167 168 // If this operand is embedded in a function, add the operand to the 169 // register's use/def list. 170 if (MachineInstr *MI = getParent()) 171 if (MachineBasicBlock *MBB = MI->getParent()) 172 if (MachineFunction *MF = MBB->getParent()) 173 AddRegOperandToRegInfo(&MF->getRegInfo()); 174 } 175 176 IsDef = isDef; 177 IsImp = isImp; 178 IsKill = isKill; 179 IsDead = isDead; 180 IsUndef = isUndef; 181 IsEarlyClobber = false; 182 IsDebug = isDebug; 183 SubReg = 0; 184 } 185 186 /// isIdenticalTo - Return true if this operand is identical to the specified 187 /// operand. 188 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 189 if (getType() != Other.getType() || 190 getTargetFlags() != Other.getTargetFlags()) 191 return false; 192 193 switch (getType()) { 194 default: llvm_unreachable("Unrecognized operand type"); 195 case MachineOperand::MO_Register: 196 return getReg() == Other.getReg() && isDef() == Other.isDef() && 197 getSubReg() == Other.getSubReg(); 198 case MachineOperand::MO_Immediate: 199 return getImm() == Other.getImm(); 200 case MachineOperand::MO_CImmediate: 201 return getCImm() == Other.getCImm(); 202 case MachineOperand::MO_FPImmediate: 203 return getFPImm() == Other.getFPImm(); 204 case MachineOperand::MO_MachineBasicBlock: 205 return getMBB() == Other.getMBB(); 206 case MachineOperand::MO_FrameIndex: 207 return getIndex() == Other.getIndex(); 208 case MachineOperand::MO_ConstantPoolIndex: 209 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 210 case MachineOperand::MO_JumpTableIndex: 211 return getIndex() == Other.getIndex(); 212 case MachineOperand::MO_GlobalAddress: 213 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 214 case MachineOperand::MO_ExternalSymbol: 215 return !strcmp(getSymbolName(), Other.getSymbolName()) && 216 getOffset() == Other.getOffset(); 217 case MachineOperand::MO_BlockAddress: 218 return getBlockAddress() == Other.getBlockAddress(); 219 case MachineOperand::MO_MCSymbol: 220 return getMCSymbol() == Other.getMCSymbol(); 221 case MachineOperand::MO_Metadata: 222 return getMetadata() == Other.getMetadata(); 223 } 224 } 225 226 /// print - Print the specified machine operand. 227 /// 228 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const { 229 // If the instruction is embedded into a basic block, we can find the 230 // target info for the instruction. 231 if (!TM) 232 if (const MachineInstr *MI = getParent()) 233 if (const MachineBasicBlock *MBB = MI->getParent()) 234 if (const MachineFunction *MF = MBB->getParent()) 235 TM = &MF->getTarget(); 236 const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0; 237 238 switch (getType()) { 239 case MachineOperand::MO_Register: 240 OS << PrintReg(getReg(), TRI, getSubReg()); 241 242 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 243 isEarlyClobber()) { 244 OS << '<'; 245 bool NeedComma = false; 246 if (isDef()) { 247 if (NeedComma) OS << ','; 248 if (isEarlyClobber()) 249 OS << "earlyclobber,"; 250 if (isImplicit()) 251 OS << "imp-"; 252 OS << "def"; 253 NeedComma = true; 254 } else if (isImplicit()) { 255 OS << "imp-use"; 256 NeedComma = true; 257 } 258 259 if (isKill() || isDead() || isUndef()) { 260 if (NeedComma) OS << ','; 261 if (isKill()) OS << "kill"; 262 if (isDead()) OS << "dead"; 263 if (isUndef()) { 264 if (isKill() || isDead()) 265 OS << ','; 266 OS << "undef"; 267 } 268 } 269 OS << '>'; 270 } 271 break; 272 case MachineOperand::MO_Immediate: 273 OS << getImm(); 274 break; 275 case MachineOperand::MO_CImmediate: 276 getCImm()->getValue().print(OS, false); 277 break; 278 case MachineOperand::MO_FPImmediate: 279 if (getFPImm()->getType()->isFloatTy()) 280 OS << getFPImm()->getValueAPF().convertToFloat(); 281 else 282 OS << getFPImm()->getValueAPF().convertToDouble(); 283 break; 284 case MachineOperand::MO_MachineBasicBlock: 285 OS << "<BB#" << getMBB()->getNumber() << ">"; 286 break; 287 case MachineOperand::MO_FrameIndex: 288 OS << "<fi#" << getIndex() << '>'; 289 break; 290 case MachineOperand::MO_ConstantPoolIndex: 291 OS << "<cp#" << getIndex(); 292 if (getOffset()) OS << "+" << getOffset(); 293 OS << '>'; 294 break; 295 case MachineOperand::MO_JumpTableIndex: 296 OS << "<jt#" << getIndex() << '>'; 297 break; 298 case MachineOperand::MO_GlobalAddress: 299 OS << "<ga:"; 300 WriteAsOperand(OS, getGlobal(), /*PrintType=*/false); 301 if (getOffset()) OS << "+" << getOffset(); 302 OS << '>'; 303 break; 304 case MachineOperand::MO_ExternalSymbol: 305 OS << "<es:" << getSymbolName(); 306 if (getOffset()) OS << "+" << getOffset(); 307 OS << '>'; 308 break; 309 case MachineOperand::MO_BlockAddress: 310 OS << '<'; 311 WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false); 312 OS << '>'; 313 break; 314 case MachineOperand::MO_Metadata: 315 OS << '<'; 316 WriteAsOperand(OS, getMetadata(), /*PrintType=*/false); 317 OS << '>'; 318 break; 319 case MachineOperand::MO_MCSymbol: 320 OS << "<MCSym=" << *getMCSymbol() << '>'; 321 break; 322 default: 323 llvm_unreachable("Unrecognized operand type"); 324 } 325 326 if (unsigned TF = getTargetFlags()) 327 OS << "[TF=" << TF << ']'; 328 } 329 330 //===----------------------------------------------------------------------===// 331 // MachineMemOperand Implementation 332 //===----------------------------------------------------------------------===// 333 334 /// getAddrSpace - Return the LLVM IR address space number that this pointer 335 /// points into. 336 unsigned MachinePointerInfo::getAddrSpace() const { 337 if (V == 0) return 0; 338 return cast<PointerType>(V->getType())->getAddressSpace(); 339 } 340 341 /// getConstantPool - Return a MachinePointerInfo record that refers to the 342 /// constant pool. 343 MachinePointerInfo MachinePointerInfo::getConstantPool() { 344 return MachinePointerInfo(PseudoSourceValue::getConstantPool()); 345 } 346 347 /// getFixedStack - Return a MachinePointerInfo record that refers to the 348 /// the specified FrameIndex. 349 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) { 350 return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset); 351 } 352 353 MachinePointerInfo MachinePointerInfo::getJumpTable() { 354 return MachinePointerInfo(PseudoSourceValue::getJumpTable()); 355 } 356 357 MachinePointerInfo MachinePointerInfo::getGOT() { 358 return MachinePointerInfo(PseudoSourceValue::getGOT()); 359 } 360 361 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) { 362 return MachinePointerInfo(PseudoSourceValue::getStack(), Offset); 363 } 364 365 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f, 366 uint64_t s, unsigned int a, 367 const MDNode *TBAAInfo) 368 : PtrInfo(ptrinfo), Size(s), 369 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)), 370 TBAAInfo(TBAAInfo) { 371 assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) && 372 "invalid pointer value"); 373 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 374 assert((isLoad() || isStore()) && "Not a load/store!"); 375 } 376 377 /// Profile - Gather unique data for the object. 378 /// 379 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 380 ID.AddInteger(getOffset()); 381 ID.AddInteger(Size); 382 ID.AddPointer(getValue()); 383 ID.AddInteger(Flags); 384 } 385 386 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 387 // The Value and Offset may differ due to CSE. But the flags and size 388 // should be the same. 389 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 390 assert(MMO->getSize() == getSize() && "Size mismatch!"); 391 392 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 393 // Update the alignment value. 394 Flags = (Flags & ((1 << MOMaxBits) - 1)) | 395 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits); 396 // Also update the base and offset, because the new alignment may 397 // not be applicable with the old ones. 398 PtrInfo = MMO->PtrInfo; 399 } 400 } 401 402 /// getAlignment - Return the minimum known alignment in bytes of the 403 /// actual memory reference. 404 uint64_t MachineMemOperand::getAlignment() const { 405 return MinAlign(getBaseAlignment(), getOffset()); 406 } 407 408 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) { 409 assert((MMO.isLoad() || MMO.isStore()) && 410 "SV has to be a load, store or both."); 411 412 if (MMO.isVolatile()) 413 OS << "Volatile "; 414 415 if (MMO.isLoad()) 416 OS << "LD"; 417 if (MMO.isStore()) 418 OS << "ST"; 419 OS << MMO.getSize(); 420 421 // Print the address information. 422 OS << "["; 423 if (!MMO.getValue()) 424 OS << "<unknown>"; 425 else 426 WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false); 427 428 // If the alignment of the memory reference itself differs from the alignment 429 // of the base pointer, print the base alignment explicitly, next to the base 430 // pointer. 431 if (MMO.getBaseAlignment() != MMO.getAlignment()) 432 OS << "(align=" << MMO.getBaseAlignment() << ")"; 433 434 if (MMO.getOffset() != 0) 435 OS << "+" << MMO.getOffset(); 436 OS << "]"; 437 438 // Print the alignment of the reference. 439 if (MMO.getBaseAlignment() != MMO.getAlignment() || 440 MMO.getBaseAlignment() != MMO.getSize()) 441 OS << "(align=" << MMO.getAlignment() << ")"; 442 443 // Print TBAA info. 444 if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) { 445 OS << "(tbaa="; 446 if (TBAAInfo->getNumOperands() > 0) 447 WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false); 448 else 449 OS << "<unknown>"; 450 OS << ")"; 451 } 452 453 // Print nontemporal info. 454 if (MMO.isNonTemporal()) 455 OS << "(nontemporal)"; 456 457 return OS; 458 } 459 460 //===----------------------------------------------------------------------===// 461 // MachineInstr Implementation 462 //===----------------------------------------------------------------------===// 463 464 /// MachineInstr ctor - This constructor creates a dummy MachineInstr with 465 /// MCID NULL and no operands. 466 MachineInstr::MachineInstr() 467 : MCID(0), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0), 468 MemRefs(0), MemRefsEnd(0), 469 Parent(0) { 470 // Make sure that we get added to a machine basicblock 471 LeakDetector::addGarbageObject(this); 472 } 473 474 void MachineInstr::addImplicitDefUseOperands() { 475 if (MCID->ImplicitDefs) 476 for (const unsigned *ImpDefs = MCID->ImplicitDefs; *ImpDefs; ++ImpDefs) 477 addOperand(MachineOperand::CreateReg(*ImpDefs, true, true)); 478 if (MCID->ImplicitUses) 479 for (const unsigned *ImpUses = MCID->ImplicitUses; *ImpUses; ++ImpUses) 480 addOperand(MachineOperand::CreateReg(*ImpUses, false, true)); 481 } 482 483 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 484 /// implicit operands. It reserves space for the number of operands specified by 485 /// the MCInstrDesc. 486 MachineInstr::MachineInstr(const MCInstrDesc &tid, bool NoImp) 487 : MCID(&tid), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0), 488 MemRefs(0), MemRefsEnd(0), Parent(0) { 489 if (!NoImp) 490 NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 491 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 492 if (!NoImp) 493 addImplicitDefUseOperands(); 494 // Make sure that we get added to a machine basicblock 495 LeakDetector::addGarbageObject(this); 496 } 497 498 /// MachineInstr ctor - As above, but with a DebugLoc. 499 MachineInstr::MachineInstr(const MCInstrDesc &tid, const DebugLoc dl, 500 bool NoImp) 501 : MCID(&tid), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0), 502 MemRefs(0), MemRefsEnd(0), Parent(0), debugLoc(dl) { 503 if (!NoImp) 504 NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 505 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 506 if (!NoImp) 507 addImplicitDefUseOperands(); 508 // Make sure that we get added to a machine basicblock 509 LeakDetector::addGarbageObject(this); 510 } 511 512 /// MachineInstr ctor - Work exactly the same as the ctor two above, except 513 /// that the MachineInstr is created and added to the end of the specified 514 /// basic block. 515 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const MCInstrDesc &tid) 516 : MCID(&tid), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0), 517 MemRefs(0), MemRefsEnd(0), Parent(0) { 518 assert(MBB && "Cannot use inserting ctor with null basic block!"); 519 NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 520 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 521 addImplicitDefUseOperands(); 522 // Make sure that we get added to a machine basicblock 523 LeakDetector::addGarbageObject(this); 524 MBB->push_back(this); // Add instruction to end of basic block! 525 } 526 527 /// MachineInstr ctor - As above, but with a DebugLoc. 528 /// 529 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl, 530 const MCInstrDesc &tid) 531 : MCID(&tid), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0), 532 MemRefs(0), MemRefsEnd(0), Parent(0), debugLoc(dl) { 533 assert(MBB && "Cannot use inserting ctor with null basic block!"); 534 NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 535 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 536 addImplicitDefUseOperands(); 537 // Make sure that we get added to a machine basicblock 538 LeakDetector::addGarbageObject(this); 539 MBB->push_back(this); // Add instruction to end of basic block! 540 } 541 542 /// MachineInstr ctor - Copies MachineInstr arg exactly 543 /// 544 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 545 : MCID(&MI.getDesc()), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0), 546 MemRefs(MI.MemRefs), MemRefsEnd(MI.MemRefsEnd), 547 Parent(0), debugLoc(MI.getDebugLoc()) { 548 Operands.reserve(MI.getNumOperands()); 549 550 // Add operands 551 for (unsigned i = 0; i != MI.getNumOperands(); ++i) 552 addOperand(MI.getOperand(i)); 553 NumImplicitOps = MI.NumImplicitOps; 554 555 // Copy all the flags. 556 Flags = MI.Flags; 557 558 // Set parent to null. 559 Parent = 0; 560 561 LeakDetector::addGarbageObject(this); 562 } 563 564 MachineInstr::~MachineInstr() { 565 LeakDetector::removeGarbageObject(this); 566 #ifndef NDEBUG 567 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 568 assert(Operands[i].ParentMI == this && "ParentMI mismatch!"); 569 assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) && 570 "Reg operand def/use list corrupted"); 571 } 572 #endif 573 } 574 575 /// getRegInfo - If this instruction is embedded into a MachineFunction, 576 /// return the MachineRegisterInfo object for the current function, otherwise 577 /// return null. 578 MachineRegisterInfo *MachineInstr::getRegInfo() { 579 if (MachineBasicBlock *MBB = getParent()) 580 return &MBB->getParent()->getRegInfo(); 581 return 0; 582 } 583 584 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 585 /// this instruction from their respective use lists. This requires that the 586 /// operands already be on their use lists. 587 void MachineInstr::RemoveRegOperandsFromUseLists() { 588 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 589 if (Operands[i].isReg()) 590 Operands[i].RemoveRegOperandFromRegInfo(); 591 } 592 } 593 594 /// AddRegOperandsToUseLists - Add all of the register operands in 595 /// this instruction from their respective use lists. This requires that the 596 /// operands not be on their use lists yet. 597 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) { 598 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 599 if (Operands[i].isReg()) 600 Operands[i].AddRegOperandToRegInfo(&RegInfo); 601 } 602 } 603 604 605 /// addOperand - Add the specified operand to the instruction. If it is an 606 /// implicit operand, it is added to the end of the operand list. If it is 607 /// an explicit operand it is added at the end of the explicit operand list 608 /// (before the first implicit operand). 609 void MachineInstr::addOperand(const MachineOperand &Op) { 610 bool isImpReg = Op.isReg() && Op.isImplicit(); 611 assert((isImpReg || !OperandsComplete()) && 612 "Trying to add an operand to a machine instr that is already done!"); 613 614 MachineRegisterInfo *RegInfo = getRegInfo(); 615 616 // If we are adding the operand to the end of the list, our job is simpler. 617 // This is true most of the time, so this is a reasonable optimization. 618 if (isImpReg || NumImplicitOps == 0) { 619 // We can only do this optimization if we know that the operand list won't 620 // reallocate. 621 if (Operands.empty() || Operands.size()+1 <= Operands.capacity()) { 622 Operands.push_back(Op); 623 624 // Set the parent of the operand. 625 Operands.back().ParentMI = this; 626 627 // If the operand is a register, update the operand's use list. 628 if (Op.isReg()) { 629 Operands.back().AddRegOperandToRegInfo(RegInfo); 630 // If the register operand is flagged as early, mark the operand as such 631 unsigned OpNo = Operands.size() - 1; 632 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 633 Operands[OpNo].setIsEarlyClobber(true); 634 } 635 return; 636 } 637 } 638 639 // Otherwise, we have to insert a real operand before any implicit ones. 640 unsigned OpNo = Operands.size()-NumImplicitOps; 641 642 // If this instruction isn't embedded into a function, then we don't need to 643 // update any operand lists. 644 if (RegInfo == 0) { 645 // Simple insertion, no reginfo update needed for other register operands. 646 Operands.insert(Operands.begin()+OpNo, Op); 647 Operands[OpNo].ParentMI = this; 648 649 // Do explicitly set the reginfo for this operand though, to ensure the 650 // next/prev fields are properly nulled out. 651 if (Operands[OpNo].isReg()) { 652 Operands[OpNo].AddRegOperandToRegInfo(0); 653 // If the register operand is flagged as early, mark the operand as such 654 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 655 Operands[OpNo].setIsEarlyClobber(true); 656 } 657 658 } else if (Operands.size()+1 <= Operands.capacity()) { 659 // Otherwise, we have to remove register operands from their register use 660 // list, add the operand, then add the register operands back to their use 661 // list. This also must handle the case when the operand list reallocates 662 // to somewhere else. 663 664 // If insertion of this operand won't cause reallocation of the operand 665 // list, just remove the implicit operands, add the operand, then re-add all 666 // the rest of the operands. 667 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 668 assert(Operands[i].isReg() && "Should only be an implicit reg!"); 669 Operands[i].RemoveRegOperandFromRegInfo(); 670 } 671 672 // Add the operand. If it is a register, add it to the reg list. 673 Operands.insert(Operands.begin()+OpNo, Op); 674 Operands[OpNo].ParentMI = this; 675 676 if (Operands[OpNo].isReg()) { 677 Operands[OpNo].AddRegOperandToRegInfo(RegInfo); 678 // If the register operand is flagged as early, mark the operand as such 679 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 680 Operands[OpNo].setIsEarlyClobber(true); 681 } 682 683 // Re-add all the implicit ops. 684 for (unsigned i = OpNo+1, e = Operands.size(); i != e; ++i) { 685 assert(Operands[i].isReg() && "Should only be an implicit reg!"); 686 Operands[i].AddRegOperandToRegInfo(RegInfo); 687 } 688 } else { 689 // Otherwise, we will be reallocating the operand list. Remove all reg 690 // operands from their list, then readd them after the operand list is 691 // reallocated. 692 RemoveRegOperandsFromUseLists(); 693 694 Operands.insert(Operands.begin()+OpNo, Op); 695 Operands[OpNo].ParentMI = this; 696 697 // Re-add all the operands. 698 AddRegOperandsToUseLists(*RegInfo); 699 700 // If the register operand is flagged as early, mark the operand as such 701 if (Operands[OpNo].isReg() 702 && MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 703 Operands[OpNo].setIsEarlyClobber(true); 704 } 705 } 706 707 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 708 /// fewer operand than it started with. 709 /// 710 void MachineInstr::RemoveOperand(unsigned OpNo) { 711 assert(OpNo < Operands.size() && "Invalid operand number"); 712 713 // Special case removing the last one. 714 if (OpNo == Operands.size()-1) { 715 // If needed, remove from the reg def/use list. 716 if (Operands.back().isReg() && Operands.back().isOnRegUseList()) 717 Operands.back().RemoveRegOperandFromRegInfo(); 718 719 Operands.pop_back(); 720 return; 721 } 722 723 // Otherwise, we are removing an interior operand. If we have reginfo to 724 // update, remove all operands that will be shifted down from their reg lists, 725 // move everything down, then re-add them. 726 MachineRegisterInfo *RegInfo = getRegInfo(); 727 if (RegInfo) { 728 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 729 if (Operands[i].isReg()) 730 Operands[i].RemoveRegOperandFromRegInfo(); 731 } 732 } 733 734 Operands.erase(Operands.begin()+OpNo); 735 736 if (RegInfo) { 737 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 738 if (Operands[i].isReg()) 739 Operands[i].AddRegOperandToRegInfo(RegInfo); 740 } 741 } 742 } 743 744 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 745 /// This function should be used only occasionally. The setMemRefs function 746 /// is the primary method for setting up a MachineInstr's MemRefs list. 747 void MachineInstr::addMemOperand(MachineFunction &MF, 748 MachineMemOperand *MO) { 749 mmo_iterator OldMemRefs = MemRefs; 750 mmo_iterator OldMemRefsEnd = MemRefsEnd; 751 752 size_t NewNum = (MemRefsEnd - MemRefs) + 1; 753 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 754 mmo_iterator NewMemRefsEnd = NewMemRefs + NewNum; 755 756 std::copy(OldMemRefs, OldMemRefsEnd, NewMemRefs); 757 NewMemRefs[NewNum - 1] = MO; 758 759 MemRefs = NewMemRefs; 760 MemRefsEnd = NewMemRefsEnd; 761 } 762 763 bool MachineInstr::isIdenticalTo(const MachineInstr *Other, 764 MICheckType Check) const { 765 // If opcodes or number of operands are not the same then the two 766 // instructions are obviously not identical. 767 if (Other->getOpcode() != getOpcode() || 768 Other->getNumOperands() != getNumOperands()) 769 return false; 770 771 // Check operands to make sure they match. 772 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 773 const MachineOperand &MO = getOperand(i); 774 const MachineOperand &OMO = Other->getOperand(i); 775 if (!MO.isReg()) { 776 if (!MO.isIdenticalTo(OMO)) 777 return false; 778 continue; 779 } 780 781 // Clients may or may not want to ignore defs when testing for equality. 782 // For example, machine CSE pass only cares about finding common 783 // subexpressions, so it's safe to ignore virtual register defs. 784 if (MO.isDef()) { 785 if (Check == IgnoreDefs) 786 continue; 787 else if (Check == IgnoreVRegDefs) { 788 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 789 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 790 if (MO.getReg() != OMO.getReg()) 791 return false; 792 } else { 793 if (!MO.isIdenticalTo(OMO)) 794 return false; 795 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 796 return false; 797 } 798 } else { 799 if (!MO.isIdenticalTo(OMO)) 800 return false; 801 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 802 return false; 803 } 804 } 805 // If DebugLoc does not match then two dbg.values are not identical. 806 if (isDebugValue()) 807 if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown() 808 && getDebugLoc() != Other->getDebugLoc()) 809 return false; 810 return true; 811 } 812 813 /// removeFromParent - This method unlinks 'this' from the containing basic 814 /// block, and returns it, but does not delete it. 815 MachineInstr *MachineInstr::removeFromParent() { 816 assert(getParent() && "Not embedded in a basic block!"); 817 getParent()->remove(this); 818 return this; 819 } 820 821 822 /// eraseFromParent - This method unlinks 'this' from the containing basic 823 /// block, and deletes it. 824 void MachineInstr::eraseFromParent() { 825 assert(getParent() && "Not embedded in a basic block!"); 826 getParent()->erase(this); 827 } 828 829 830 /// OperandComplete - Return true if it's illegal to add a new operand 831 /// 832 bool MachineInstr::OperandsComplete() const { 833 unsigned short NumOperands = MCID->getNumOperands(); 834 if (!MCID->isVariadic() && getNumOperands()-NumImplicitOps >= NumOperands) 835 return true; // Broken: we have all the operands of this instruction! 836 return false; 837 } 838 839 /// getNumExplicitOperands - Returns the number of non-implicit operands. 840 /// 841 unsigned MachineInstr::getNumExplicitOperands() const { 842 unsigned NumOperands = MCID->getNumOperands(); 843 if (!MCID->isVariadic()) 844 return NumOperands; 845 846 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 847 const MachineOperand &MO = getOperand(i); 848 if (!MO.isReg() || !MO.isImplicit()) 849 NumOperands++; 850 } 851 return NumOperands; 852 } 853 854 bool MachineInstr::isStackAligningInlineAsm() const { 855 if (isInlineAsm()) { 856 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 857 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 858 return true; 859 } 860 return false; 861 } 862 863 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 864 /// the specific register or -1 if it is not found. It further tightens 865 /// the search criteria to a use that kills the register if isKill is true. 866 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, 867 const TargetRegisterInfo *TRI) const { 868 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 869 const MachineOperand &MO = getOperand(i); 870 if (!MO.isReg() || !MO.isUse()) 871 continue; 872 unsigned MOReg = MO.getReg(); 873 if (!MOReg) 874 continue; 875 if (MOReg == Reg || 876 (TRI && 877 TargetRegisterInfo::isPhysicalRegister(MOReg) && 878 TargetRegisterInfo::isPhysicalRegister(Reg) && 879 TRI->isSubRegister(MOReg, Reg))) 880 if (!isKill || MO.isKill()) 881 return i; 882 } 883 return -1; 884 } 885 886 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 887 /// indicating if this instruction reads or writes Reg. This also considers 888 /// partial defines. 889 std::pair<bool,bool> 890 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 891 SmallVectorImpl<unsigned> *Ops) const { 892 bool PartDef = false; // Partial redefine. 893 bool FullDef = false; // Full define. 894 bool Use = false; 895 896 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 897 const MachineOperand &MO = getOperand(i); 898 if (!MO.isReg() || MO.getReg() != Reg) 899 continue; 900 if (Ops) 901 Ops->push_back(i); 902 if (MO.isUse()) 903 Use |= !MO.isUndef(); 904 else if (MO.getSubReg() && !MO.isUndef()) 905 // A partial <def,undef> doesn't count as reading the register. 906 PartDef = true; 907 else 908 FullDef = true; 909 } 910 // A partial redefine uses Reg unless there is also a full define. 911 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 912 } 913 914 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 915 /// the specified register or -1 if it is not found. If isDead is true, defs 916 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 917 /// also checks if there is a def of a super-register. 918 int 919 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 920 const TargetRegisterInfo *TRI) const { 921 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 922 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 923 const MachineOperand &MO = getOperand(i); 924 if (!MO.isReg() || !MO.isDef()) 925 continue; 926 unsigned MOReg = MO.getReg(); 927 bool Found = (MOReg == Reg); 928 if (!Found && TRI && isPhys && 929 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 930 if (Overlap) 931 Found = TRI->regsOverlap(MOReg, Reg); 932 else 933 Found = TRI->isSubRegister(MOReg, Reg); 934 } 935 if (Found && (!isDead || MO.isDead())) 936 return i; 937 } 938 return -1; 939 } 940 941 /// findFirstPredOperandIdx() - Find the index of the first operand in the 942 /// operand list that is used to represent the predicate. It returns -1 if 943 /// none is found. 944 int MachineInstr::findFirstPredOperandIdx() const { 945 // Don't call MCID.findFirstPredOperandIdx() because this variant 946 // is sometimes called on an instruction that's not yet complete, and 947 // so the number of operands is less than the MCID indicates. In 948 // particular, the PTX target does this. 949 const MCInstrDesc &MCID = getDesc(); 950 if (MCID.isPredicable()) { 951 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 952 if (MCID.OpInfo[i].isPredicate()) 953 return i; 954 } 955 956 return -1; 957 } 958 959 /// isRegTiedToUseOperand - Given the index of a register def operand, 960 /// check if the register def is tied to a source operand, due to either 961 /// two-address elimination or inline assembly constraints. Returns the 962 /// first tied use operand index by reference is UseOpIdx is not null. 963 bool MachineInstr:: 964 isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const { 965 if (isInlineAsm()) { 966 assert(DefOpIdx > InlineAsm::MIOp_FirstOperand); 967 const MachineOperand &MO = getOperand(DefOpIdx); 968 if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0) 969 return false; 970 // Determine the actual operand index that corresponds to this index. 971 unsigned DefNo = 0; 972 unsigned DefPart = 0; 973 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); 974 i < e; ) { 975 const MachineOperand &FMO = getOperand(i); 976 // After the normal asm operands there may be additional imp-def regs. 977 if (!FMO.isImm()) 978 return false; 979 // Skip over this def. 980 unsigned NumOps = InlineAsm::getNumOperandRegisters(FMO.getImm()); 981 unsigned PrevDef = i + 1; 982 i = PrevDef + NumOps; 983 if (i > DefOpIdx) { 984 DefPart = DefOpIdx - PrevDef; 985 break; 986 } 987 ++DefNo; 988 } 989 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); 990 i != e; ++i) { 991 const MachineOperand &FMO = getOperand(i); 992 if (!FMO.isImm()) 993 continue; 994 if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse()) 995 continue; 996 unsigned Idx; 997 if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) && 998 Idx == DefNo) { 999 if (UseOpIdx) 1000 *UseOpIdx = (unsigned)i + 1 + DefPart; 1001 return true; 1002 } 1003 } 1004 return false; 1005 } 1006 1007 assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!"); 1008 const MCInstrDesc &MCID = getDesc(); 1009 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) { 1010 const MachineOperand &MO = getOperand(i); 1011 if (MO.isReg() && MO.isUse() && 1012 MCID.getOperandConstraint(i, MCOI::TIED_TO) == (int)DefOpIdx) { 1013 if (UseOpIdx) 1014 *UseOpIdx = (unsigned)i; 1015 return true; 1016 } 1017 } 1018 return false; 1019 } 1020 1021 /// isRegTiedToDefOperand - Return true if the operand of the specified index 1022 /// is a register use and it is tied to an def operand. It also returns the def 1023 /// operand index by reference. 1024 bool MachineInstr:: 1025 isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const { 1026 if (isInlineAsm()) { 1027 const MachineOperand &MO = getOperand(UseOpIdx); 1028 if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0) 1029 return false; 1030 1031 // Find the flag operand corresponding to UseOpIdx 1032 unsigned FlagIdx, NumOps=0; 1033 for (FlagIdx = InlineAsm::MIOp_FirstOperand; 1034 FlagIdx < UseOpIdx; FlagIdx += NumOps+1) { 1035 const MachineOperand &UFMO = getOperand(FlagIdx); 1036 // After the normal asm operands there may be additional imp-def regs. 1037 if (!UFMO.isImm()) 1038 return false; 1039 NumOps = InlineAsm::getNumOperandRegisters(UFMO.getImm()); 1040 assert(NumOps < getNumOperands() && "Invalid inline asm flag"); 1041 if (UseOpIdx < FlagIdx+NumOps+1) 1042 break; 1043 } 1044 if (FlagIdx >= UseOpIdx) 1045 return false; 1046 const MachineOperand &UFMO = getOperand(FlagIdx); 1047 unsigned DefNo; 1048 if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) { 1049 if (!DefOpIdx) 1050 return true; 1051 1052 unsigned DefIdx = InlineAsm::MIOp_FirstOperand; 1053 // Remember to adjust the index. First operand is asm string, second is 1054 // the HasSideEffects and AlignStack bits, then there is a flag for each. 1055 while (DefNo) { 1056 const MachineOperand &FMO = getOperand(DefIdx); 1057 assert(FMO.isImm()); 1058 // Skip over this def. 1059 DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1; 1060 --DefNo; 1061 } 1062 *DefOpIdx = DefIdx + UseOpIdx - FlagIdx; 1063 return true; 1064 } 1065 return false; 1066 } 1067 1068 const MCInstrDesc &MCID = getDesc(); 1069 if (UseOpIdx >= MCID.getNumOperands()) 1070 return false; 1071 const MachineOperand &MO = getOperand(UseOpIdx); 1072 if (!MO.isReg() || !MO.isUse()) 1073 return false; 1074 int DefIdx = MCID.getOperandConstraint(UseOpIdx, MCOI::TIED_TO); 1075 if (DefIdx == -1) 1076 return false; 1077 if (DefOpIdx) 1078 *DefOpIdx = (unsigned)DefIdx; 1079 return true; 1080 } 1081 1082 /// clearKillInfo - Clears kill flags on all operands. 1083 /// 1084 void MachineInstr::clearKillInfo() { 1085 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1086 MachineOperand &MO = getOperand(i); 1087 if (MO.isReg() && MO.isUse()) 1088 MO.setIsKill(false); 1089 } 1090 } 1091 1092 /// copyKillDeadInfo - Copies kill / dead operand properties from MI. 1093 /// 1094 void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) { 1095 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1096 const MachineOperand &MO = MI->getOperand(i); 1097 if (!MO.isReg() || (!MO.isKill() && !MO.isDead())) 1098 continue; 1099 for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) { 1100 MachineOperand &MOp = getOperand(j); 1101 if (!MOp.isIdenticalTo(MO)) 1102 continue; 1103 if (MO.isKill()) 1104 MOp.setIsKill(); 1105 else 1106 MOp.setIsDead(); 1107 break; 1108 } 1109 } 1110 } 1111 1112 /// copyPredicates - Copies predicate operand(s) from MI. 1113 void MachineInstr::copyPredicates(const MachineInstr *MI) { 1114 const MCInstrDesc &MCID = MI->getDesc(); 1115 if (!MCID.isPredicable()) 1116 return; 1117 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1118 if (MCID.OpInfo[i].isPredicate()) { 1119 // Predicated operands must be last operands. 1120 addOperand(MI->getOperand(i)); 1121 } 1122 } 1123 } 1124 1125 void MachineInstr::substituteRegister(unsigned FromReg, 1126 unsigned ToReg, 1127 unsigned SubIdx, 1128 const TargetRegisterInfo &RegInfo) { 1129 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1130 if (SubIdx) 1131 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1132 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1133 MachineOperand &MO = getOperand(i); 1134 if (!MO.isReg() || MO.getReg() != FromReg) 1135 continue; 1136 MO.substPhysReg(ToReg, RegInfo); 1137 } 1138 } else { 1139 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1140 MachineOperand &MO = getOperand(i); 1141 if (!MO.isReg() || MO.getReg() != FromReg) 1142 continue; 1143 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1144 } 1145 } 1146 } 1147 1148 /// isSafeToMove - Return true if it is safe to move this instruction. If 1149 /// SawStore is set to true, it means that there is a store (or call) between 1150 /// the instruction's location and its intended destination. 1151 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII, 1152 AliasAnalysis *AA, 1153 bool &SawStore) const { 1154 // Ignore stuff that we obviously can't move. 1155 if (MCID->mayStore() || MCID->isCall()) { 1156 SawStore = true; 1157 return false; 1158 } 1159 1160 if (isLabel() || isDebugValue() || 1161 MCID->isTerminator() || hasUnmodeledSideEffects()) 1162 return false; 1163 1164 // See if this instruction does a load. If so, we have to guarantee that the 1165 // loaded value doesn't change between the load and the its intended 1166 // destination. The check for isInvariantLoad gives the targe the chance to 1167 // classify the load as always returning a constant, e.g. a constant pool 1168 // load. 1169 if (MCID->mayLoad() && !isInvariantLoad(AA)) 1170 // Otherwise, this is a real load. If there is a store between the load and 1171 // end of block, or if the load is volatile, we can't move it. 1172 return !SawStore && !hasVolatileMemoryRef(); 1173 1174 return true; 1175 } 1176 1177 /// isSafeToReMat - Return true if it's safe to rematerialize the specified 1178 /// instruction which defined the specified register instead of copying it. 1179 bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII, 1180 AliasAnalysis *AA, 1181 unsigned DstReg) const { 1182 bool SawStore = false; 1183 if (!TII->isTriviallyReMaterializable(this, AA) || 1184 !isSafeToMove(TII, AA, SawStore)) 1185 return false; 1186 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1187 const MachineOperand &MO = getOperand(i); 1188 if (!MO.isReg()) 1189 continue; 1190 // FIXME: For now, do not remat any instruction with register operands. 1191 // Later on, we can loosen the restriction is the register operands have 1192 // not been modified between the def and use. Note, this is different from 1193 // MachineSink because the code is no longer in two-address form (at least 1194 // partially). 1195 if (MO.isUse()) 1196 return false; 1197 else if (!MO.isDead() && MO.getReg() != DstReg) 1198 return false; 1199 } 1200 return true; 1201 } 1202 1203 /// hasVolatileMemoryRef - Return true if this instruction may have a 1204 /// volatile memory reference, or if the information describing the 1205 /// memory reference is not available. Return false if it is known to 1206 /// have no volatile memory references. 1207 bool MachineInstr::hasVolatileMemoryRef() const { 1208 // An instruction known never to access memory won't have a volatile access. 1209 if (!MCID->mayStore() && 1210 !MCID->mayLoad() && 1211 !MCID->isCall() && 1212 !hasUnmodeledSideEffects()) 1213 return false; 1214 1215 // Otherwise, if the instruction has no memory reference information, 1216 // conservatively assume it wasn't preserved. 1217 if (memoperands_empty()) 1218 return true; 1219 1220 // Check the memory reference information for volatile references. 1221 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I) 1222 if ((*I)->isVolatile()) 1223 return true; 1224 1225 return false; 1226 } 1227 1228 /// isInvariantLoad - Return true if this instruction is loading from a 1229 /// location whose value is invariant across the function. For example, 1230 /// loading a value from the constant pool or from the argument area 1231 /// of a function if it does not change. This should only return true of 1232 /// *all* loads the instruction does are invariant (if it does multiple loads). 1233 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const { 1234 // If the instruction doesn't load at all, it isn't an invariant load. 1235 if (!MCID->mayLoad()) 1236 return false; 1237 1238 // If the instruction has lost its memoperands, conservatively assume that 1239 // it may not be an invariant load. 1240 if (memoperands_empty()) 1241 return false; 1242 1243 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo(); 1244 1245 for (mmo_iterator I = memoperands_begin(), 1246 E = memoperands_end(); I != E; ++I) { 1247 if ((*I)->isVolatile()) return false; 1248 if ((*I)->isStore()) return false; 1249 1250 if (const Value *V = (*I)->getValue()) { 1251 // A load from a constant PseudoSourceValue is invariant. 1252 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) 1253 if (PSV->isConstant(MFI)) 1254 continue; 1255 // If we have an AliasAnalysis, ask it whether the memory is constant. 1256 if (AA && AA->pointsToConstantMemory( 1257 AliasAnalysis::Location(V, (*I)->getSize(), 1258 (*I)->getTBAAInfo()))) 1259 continue; 1260 } 1261 1262 // Otherwise assume conservatively. 1263 return false; 1264 } 1265 1266 // Everything checks out. 1267 return true; 1268 } 1269 1270 /// isConstantValuePHI - If the specified instruction is a PHI that always 1271 /// merges together the same virtual register, return the register, otherwise 1272 /// return 0. 1273 unsigned MachineInstr::isConstantValuePHI() const { 1274 if (!isPHI()) 1275 return 0; 1276 assert(getNumOperands() >= 3 && 1277 "It's illegal to have a PHI without source operands"); 1278 1279 unsigned Reg = getOperand(1).getReg(); 1280 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1281 if (getOperand(i).getReg() != Reg) 1282 return 0; 1283 return Reg; 1284 } 1285 1286 bool MachineInstr::hasUnmodeledSideEffects() const { 1287 if (getDesc().hasUnmodeledSideEffects()) 1288 return true; 1289 if (isInlineAsm()) { 1290 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1291 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1292 return true; 1293 } 1294 1295 return false; 1296 } 1297 1298 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1299 /// 1300 bool MachineInstr::allDefsAreDead() const { 1301 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { 1302 const MachineOperand &MO = getOperand(i); 1303 if (!MO.isReg() || MO.isUse()) 1304 continue; 1305 if (!MO.isDead()) 1306 return false; 1307 } 1308 return true; 1309 } 1310 1311 /// copyImplicitOps - Copy implicit register operands from specified 1312 /// instruction to this instruction. 1313 void MachineInstr::copyImplicitOps(const MachineInstr *MI) { 1314 for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands(); 1315 i != e; ++i) { 1316 const MachineOperand &MO = MI->getOperand(i); 1317 if (MO.isReg() && MO.isImplicit()) 1318 addOperand(MO); 1319 } 1320 } 1321 1322 void MachineInstr::dump() const { 1323 dbgs() << " " << *this; 1324 } 1325 1326 static void printDebugLoc(DebugLoc DL, const MachineFunction *MF, 1327 raw_ostream &CommentOS) { 1328 const LLVMContext &Ctx = MF->getFunction()->getContext(); 1329 if (!DL.isUnknown()) { // Print source line info. 1330 DIScope Scope(DL.getScope(Ctx)); 1331 // Omit the directory, because it's likely to be long and uninteresting. 1332 if (Scope.Verify()) 1333 CommentOS << Scope.getFilename(); 1334 else 1335 CommentOS << "<unknown>"; 1336 CommentOS << ':' << DL.getLine(); 1337 if (DL.getCol() != 0) 1338 CommentOS << ':' << DL.getCol(); 1339 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx)); 1340 if (!InlinedAtDL.isUnknown()) { 1341 CommentOS << " @[ "; 1342 printDebugLoc(InlinedAtDL, MF, CommentOS); 1343 CommentOS << " ]"; 1344 } 1345 } 1346 } 1347 1348 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const { 1349 // We can be a bit tidier if we know the TargetMachine and/or MachineFunction. 1350 const MachineFunction *MF = 0; 1351 const MachineRegisterInfo *MRI = 0; 1352 if (const MachineBasicBlock *MBB = getParent()) { 1353 MF = MBB->getParent(); 1354 if (!TM && MF) 1355 TM = &MF->getTarget(); 1356 if (MF) 1357 MRI = &MF->getRegInfo(); 1358 } 1359 1360 // Save a list of virtual registers. 1361 SmallVector<unsigned, 8> VirtRegs; 1362 1363 // Print explicitly defined operands on the left of an assignment syntax. 1364 unsigned StartOp = 0, e = getNumOperands(); 1365 for (; StartOp < e && getOperand(StartOp).isReg() && 1366 getOperand(StartOp).isDef() && 1367 !getOperand(StartOp).isImplicit(); 1368 ++StartOp) { 1369 if (StartOp != 0) OS << ", "; 1370 getOperand(StartOp).print(OS, TM); 1371 unsigned Reg = getOperand(StartOp).getReg(); 1372 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1373 VirtRegs.push_back(Reg); 1374 } 1375 1376 if (StartOp != 0) 1377 OS << " = "; 1378 1379 // Print the opcode name. 1380 OS << getDesc().getName(); 1381 1382 // Print the rest of the operands. 1383 bool OmittedAnyCallClobbers = false; 1384 bool FirstOp = true; 1385 unsigned AsmDescOp = ~0u; 1386 unsigned AsmOpCount = 0; 1387 1388 if (isInlineAsm()) { 1389 // Print asm string. 1390 OS << " "; 1391 getOperand(InlineAsm::MIOp_AsmString).print(OS, TM); 1392 1393 // Print HasSideEffects, IsAlignStack 1394 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1395 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1396 OS << " [sideeffect]"; 1397 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1398 OS << " [alignstack]"; 1399 1400 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1401 FirstOp = false; 1402 } 1403 1404 1405 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1406 const MachineOperand &MO = getOperand(i); 1407 1408 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1409 VirtRegs.push_back(MO.getReg()); 1410 1411 // Omit call-clobbered registers which aren't used anywhere. This makes 1412 // call instructions much less noisy on targets where calls clobber lots 1413 // of registers. Don't rely on MO.isDead() because we may be called before 1414 // LiveVariables is run, or we may be looking at a non-allocatable reg. 1415 if (MF && getDesc().isCall() && 1416 MO.isReg() && MO.isImplicit() && MO.isDef()) { 1417 unsigned Reg = MO.getReg(); 1418 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1419 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1420 if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) { 1421 bool HasAliasLive = false; 1422 for (const unsigned *Alias = TM->getRegisterInfo()->getAliasSet(Reg); 1423 unsigned AliasReg = *Alias; ++Alias) 1424 if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) { 1425 HasAliasLive = true; 1426 break; 1427 } 1428 if (!HasAliasLive) { 1429 OmittedAnyCallClobbers = true; 1430 continue; 1431 } 1432 } 1433 } 1434 } 1435 1436 if (FirstOp) FirstOp = false; else OS << ","; 1437 OS << " "; 1438 if (i < getDesc().NumOperands) { 1439 const MCOperandInfo &MCOI = getDesc().OpInfo[i]; 1440 if (MCOI.isPredicate()) 1441 OS << "pred:"; 1442 if (MCOI.isOptionalDef()) 1443 OS << "opt:"; 1444 } 1445 if (isDebugValue() && MO.isMetadata()) { 1446 // Pretty print DBG_VALUE instructions. 1447 const MDNode *MD = MO.getMetadata(); 1448 if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2))) 1449 OS << "!\"" << MDS->getString() << '\"'; 1450 else 1451 MO.print(OS, TM); 1452 } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) { 1453 OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm()); 1454 } else if (i == AsmDescOp && MO.isImm()) { 1455 // Pretty print the inline asm operand descriptor. 1456 OS << '$' << AsmOpCount++; 1457 unsigned Flag = MO.getImm(); 1458 switch (InlineAsm::getKind(Flag)) { 1459 case InlineAsm::Kind_RegUse: OS << ":[reguse]"; break; 1460 case InlineAsm::Kind_RegDef: OS << ":[regdef]"; break; 1461 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec]"; break; 1462 case InlineAsm::Kind_Clobber: OS << ":[clobber]"; break; 1463 case InlineAsm::Kind_Imm: OS << ":[imm]"; break; 1464 case InlineAsm::Kind_Mem: OS << ":[mem]"; break; 1465 default: OS << ":[??" << InlineAsm::getKind(Flag) << ']'; break; 1466 } 1467 1468 unsigned TiedTo = 0; 1469 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1470 OS << " [tiedto:$" << TiedTo << ']'; 1471 1472 // Compute the index of the next operand descriptor. 1473 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1474 } else 1475 MO.print(OS, TM); 1476 } 1477 1478 // Briefly indicate whether any call clobbers were omitted. 1479 if (OmittedAnyCallClobbers) { 1480 if (!FirstOp) OS << ","; 1481 OS << " ..."; 1482 } 1483 1484 bool HaveSemi = false; 1485 if (Flags) { 1486 if (!HaveSemi) OS << ";"; HaveSemi = true; 1487 OS << " flags: "; 1488 1489 if (Flags & FrameSetup) 1490 OS << "FrameSetup"; 1491 } 1492 1493 if (!memoperands_empty()) { 1494 if (!HaveSemi) OS << ";"; HaveSemi = true; 1495 1496 OS << " mem:"; 1497 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 1498 i != e; ++i) { 1499 OS << **i; 1500 if (llvm::next(i) != e) 1501 OS << " "; 1502 } 1503 } 1504 1505 // Print the regclass of any virtual registers encountered. 1506 if (MRI && !VirtRegs.empty()) { 1507 if (!HaveSemi) OS << ";"; HaveSemi = true; 1508 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 1509 const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]); 1510 OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]); 1511 for (unsigned j = i+1; j != VirtRegs.size();) { 1512 if (MRI->getRegClass(VirtRegs[j]) != RC) { 1513 ++j; 1514 continue; 1515 } 1516 if (VirtRegs[i] != VirtRegs[j]) 1517 OS << "," << PrintReg(VirtRegs[j]); 1518 VirtRegs.erase(VirtRegs.begin()+j); 1519 } 1520 } 1521 } 1522 1523 // Print debug location information. 1524 if (isDebugValue() && getOperand(e - 1).isMetadata()) { 1525 if (!HaveSemi) OS << ";"; HaveSemi = true; 1526 DIVariable DV(getOperand(e - 1).getMetadata()); 1527 OS << " line no:" << DV.getLineNumber(); 1528 if (MDNode *InlinedAt = DV.getInlinedAt()) { 1529 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt); 1530 if (!InlinedAtDL.isUnknown()) { 1531 OS << " inlined @[ "; 1532 printDebugLoc(InlinedAtDL, MF, OS); 1533 OS << " ]"; 1534 } 1535 } 1536 } else if (!debugLoc.isUnknown() && MF) { 1537 if (!HaveSemi) OS << ";"; HaveSemi = true; 1538 OS << " dbg:"; 1539 printDebugLoc(debugLoc, MF, OS); 1540 } 1541 1542 OS << '\n'; 1543 } 1544 1545 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 1546 const TargetRegisterInfo *RegInfo, 1547 bool AddIfNotFound) { 1548 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1549 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg); 1550 bool Found = false; 1551 SmallVector<unsigned,4> DeadOps; 1552 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1553 MachineOperand &MO = getOperand(i); 1554 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1555 continue; 1556 unsigned Reg = MO.getReg(); 1557 if (!Reg) 1558 continue; 1559 1560 if (Reg == IncomingReg) { 1561 if (!Found) { 1562 if (MO.isKill()) 1563 // The register is already marked kill. 1564 return true; 1565 if (isPhysReg && isRegTiedToDefOperand(i)) 1566 // Two-address uses of physregs must not be marked kill. 1567 return true; 1568 MO.setIsKill(); 1569 Found = true; 1570 } 1571 } else if (hasAliases && MO.isKill() && 1572 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1573 // A super-register kill already exists. 1574 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1575 return true; 1576 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1577 DeadOps.push_back(i); 1578 } 1579 } 1580 1581 // Trim unneeded kill operands. 1582 while (!DeadOps.empty()) { 1583 unsigned OpIdx = DeadOps.back(); 1584 if (getOperand(OpIdx).isImplicit()) 1585 RemoveOperand(OpIdx); 1586 else 1587 getOperand(OpIdx).setIsKill(false); 1588 DeadOps.pop_back(); 1589 } 1590 1591 // If not found, this means an alias of one of the operands is killed. Add a 1592 // new implicit operand if required. 1593 if (!Found && AddIfNotFound) { 1594 addOperand(MachineOperand::CreateReg(IncomingReg, 1595 false /*IsDef*/, 1596 true /*IsImp*/, 1597 true /*IsKill*/)); 1598 return true; 1599 } 1600 return Found; 1601 } 1602 1603 bool MachineInstr::addRegisterDead(unsigned IncomingReg, 1604 const TargetRegisterInfo *RegInfo, 1605 bool AddIfNotFound) { 1606 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1607 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg); 1608 bool Found = false; 1609 SmallVector<unsigned,4> DeadOps; 1610 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1611 MachineOperand &MO = getOperand(i); 1612 if (!MO.isReg() || !MO.isDef()) 1613 continue; 1614 unsigned Reg = MO.getReg(); 1615 if (!Reg) 1616 continue; 1617 1618 if (Reg == IncomingReg) { 1619 MO.setIsDead(); 1620 Found = true; 1621 } else if (hasAliases && MO.isDead() && 1622 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1623 // There exists a super-register that's marked dead. 1624 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1625 return true; 1626 if (RegInfo->getSubRegisters(IncomingReg) && 1627 RegInfo->getSuperRegisters(Reg) && 1628 RegInfo->isSubRegister(IncomingReg, Reg)) 1629 DeadOps.push_back(i); 1630 } 1631 } 1632 1633 // Trim unneeded dead operands. 1634 while (!DeadOps.empty()) { 1635 unsigned OpIdx = DeadOps.back(); 1636 if (getOperand(OpIdx).isImplicit()) 1637 RemoveOperand(OpIdx); 1638 else 1639 getOperand(OpIdx).setIsDead(false); 1640 DeadOps.pop_back(); 1641 } 1642 1643 // If not found, this means an alias of one of the operands is dead. Add a 1644 // new implicit operand if required. 1645 if (Found || !AddIfNotFound) 1646 return Found; 1647 1648 addOperand(MachineOperand::CreateReg(IncomingReg, 1649 true /*IsDef*/, 1650 true /*IsImp*/, 1651 false /*IsKill*/, 1652 true /*IsDead*/)); 1653 return true; 1654 } 1655 1656 void MachineInstr::addRegisterDefined(unsigned IncomingReg, 1657 const TargetRegisterInfo *RegInfo) { 1658 if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) { 1659 MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo); 1660 if (MO) 1661 return; 1662 } else { 1663 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1664 const MachineOperand &MO = getOperand(i); 1665 if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() && 1666 MO.getSubReg() == 0) 1667 return; 1668 } 1669 } 1670 addOperand(MachineOperand::CreateReg(IncomingReg, 1671 true /*IsDef*/, 1672 true /*IsImp*/)); 1673 } 1674 1675 void MachineInstr::setPhysRegsDeadExcept(const SmallVectorImpl<unsigned> &UsedRegs, 1676 const TargetRegisterInfo &TRI) { 1677 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1678 MachineOperand &MO = getOperand(i); 1679 if (!MO.isReg() || !MO.isDef()) continue; 1680 unsigned Reg = MO.getReg(); 1681 if (Reg == 0) continue; 1682 bool Dead = true; 1683 for (SmallVectorImpl<unsigned>::const_iterator I = UsedRegs.begin(), 1684 E = UsedRegs.end(); I != E; ++I) 1685 if (TRI.regsOverlap(*I, Reg)) { 1686 Dead = false; 1687 break; 1688 } 1689 // If there are no uses, including partial uses, the def is dead. 1690 if (Dead) MO.setIsDead(); 1691 } 1692 } 1693 1694 unsigned 1695 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 1696 unsigned Hash = MI->getOpcode() * 37; 1697 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1698 const MachineOperand &MO = MI->getOperand(i); 1699 uint64_t Key = (uint64_t)MO.getType() << 32; 1700 switch (MO.getType()) { 1701 default: break; 1702 case MachineOperand::MO_Register: 1703 if (MO.isDef() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1704 continue; // Skip virtual register defs. 1705 Key |= MO.getReg(); 1706 break; 1707 case MachineOperand::MO_Immediate: 1708 Key |= MO.getImm(); 1709 break; 1710 case MachineOperand::MO_FrameIndex: 1711 case MachineOperand::MO_ConstantPoolIndex: 1712 case MachineOperand::MO_JumpTableIndex: 1713 Key |= MO.getIndex(); 1714 break; 1715 case MachineOperand::MO_MachineBasicBlock: 1716 Key |= DenseMapInfo<void*>::getHashValue(MO.getMBB()); 1717 break; 1718 case MachineOperand::MO_GlobalAddress: 1719 Key |= DenseMapInfo<void*>::getHashValue(MO.getGlobal()); 1720 break; 1721 case MachineOperand::MO_BlockAddress: 1722 Key |= DenseMapInfo<void*>::getHashValue(MO.getBlockAddress()); 1723 break; 1724 case MachineOperand::MO_MCSymbol: 1725 Key |= DenseMapInfo<void*>::getHashValue(MO.getMCSymbol()); 1726 break; 1727 } 1728 Key += ~(Key << 32); 1729 Key ^= (Key >> 22); 1730 Key += ~(Key << 13); 1731 Key ^= (Key >> 8); 1732 Key += (Key << 3); 1733 Key ^= (Key >> 15); 1734 Key += ~(Key << 27); 1735 Key ^= (Key >> 31); 1736 Hash = (unsigned)Key + Hash * 37; 1737 } 1738 return Hash; 1739 } 1740 1741 void MachineInstr::emitError(StringRef Msg) const { 1742 // Find the source location cookie. 1743 unsigned LocCookie = 0; 1744 const MDNode *LocMD = 0; 1745 for (unsigned i = getNumOperands(); i != 0; --i) { 1746 if (getOperand(i-1).isMetadata() && 1747 (LocMD = getOperand(i-1).getMetadata()) && 1748 LocMD->getNumOperands() != 0) { 1749 if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) { 1750 LocCookie = CI->getZExtValue(); 1751 break; 1752 } 1753 } 1754 } 1755 1756 if (const MachineBasicBlock *MBB = getParent()) 1757 if (const MachineFunction *MF = MBB->getParent()) 1758 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 1759 report_fatal_error(Msg); 1760 } 1761