xref: /llvm-project/llvm/lib/CodeGen/MachineInstr.cpp (revision eb3f76fc83146f85b424a8f923f65263069876dd)
1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Methods common to all machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/FoldingSet.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallBitVector.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/Loads.h"
26 #include "llvm/Analysis/MemoryLocation.h"
27 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DebugInfoMetadata.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/InlineAsm.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/Metadata.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/IR/ModuleSlotTracker.h"
52 #include "llvm/IR/Type.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/MC/MCInstrDesc.h"
55 #include "llvm/MC/MCRegisterInfo.h"
56 #include "llvm/MC/MCSymbol.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Compiler.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/LowLevelTypeImpl.h"
63 #include "llvm/Support/MathExtras.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Target/TargetIntrinsicInfo.h"
66 #include "llvm/Target/TargetMachine.h"
67 #include <algorithm>
68 #include <cassert>
69 #include <cstddef>
70 #include <cstdint>
71 #include <cstring>
72 #include <iterator>
73 #include <utility>
74 
75 using namespace llvm;
76 
77 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
78   if (const MachineBasicBlock *MBB = MI.getParent())
79     if (const MachineFunction *MF = MBB->getParent())
80       return MF;
81   return nullptr;
82 }
83 
84 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
85 // it.
86 static void tryToGetTargetInfo(const MachineInstr &MI,
87                                const TargetRegisterInfo *&TRI,
88                                const MachineRegisterInfo *&MRI,
89                                const TargetIntrinsicInfo *&IntrinsicInfo,
90                                const TargetInstrInfo *&TII) {
91 
92   if (const MachineFunction *MF = getMFIfAvailable(MI)) {
93     TRI = MF->getSubtarget().getRegisterInfo();
94     MRI = &MF->getRegInfo();
95     IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
96     TII = MF->getSubtarget().getInstrInfo();
97   }
98 }
99 
100 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
101   if (MCID->ImplicitDefs)
102     for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
103            ++ImpDefs)
104       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
105   if (MCID->ImplicitUses)
106     for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
107            ++ImpUses)
108       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
109 }
110 
111 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
112 /// implicit operands. It reserves space for the number of operands specified by
113 /// the MCInstrDesc.
114 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
115                            DebugLoc dl, bool NoImp)
116     : MCID(&tid), debugLoc(std::move(dl)) {
117   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
118 
119   // Reserve space for the expected number of operands.
120   if (unsigned NumOps = MCID->getNumOperands() +
121     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
122     CapOperands = OperandCapacity::get(NumOps);
123     Operands = MF.allocateOperandArray(CapOperands);
124   }
125 
126   if (!NoImp)
127     addImplicitDefUseOperands(MF);
128 }
129 
130 /// MachineInstr ctor - Copies MachineInstr arg exactly
131 ///
132 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
133     : MCID(&MI.getDesc()), NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs),
134       debugLoc(MI.getDebugLoc()) {
135   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
136 
137   CapOperands = OperandCapacity::get(MI.getNumOperands());
138   Operands = MF.allocateOperandArray(CapOperands);
139 
140   // Copy operands.
141   for (const MachineOperand &MO : MI.operands())
142     addOperand(MF, MO);
143 
144   // Copy all the sensible flags.
145   setFlags(MI.Flags);
146 }
147 
148 /// getRegInfo - If this instruction is embedded into a MachineFunction,
149 /// return the MachineRegisterInfo object for the current function, otherwise
150 /// return null.
151 MachineRegisterInfo *MachineInstr::getRegInfo() {
152   if (MachineBasicBlock *MBB = getParent())
153     return &MBB->getParent()->getRegInfo();
154   return nullptr;
155 }
156 
157 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
158 /// this instruction from their respective use lists.  This requires that the
159 /// operands already be on their use lists.
160 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
161   for (MachineOperand &MO : operands())
162     if (MO.isReg())
163       MRI.removeRegOperandFromUseList(&MO);
164 }
165 
166 /// AddRegOperandsToUseLists - Add all of the register operands in
167 /// this instruction from their respective use lists.  This requires that the
168 /// operands not be on their use lists yet.
169 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
170   for (MachineOperand &MO : operands())
171     if (MO.isReg())
172       MRI.addRegOperandToUseList(&MO);
173 }
174 
175 void MachineInstr::addOperand(const MachineOperand &Op) {
176   MachineBasicBlock *MBB = getParent();
177   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
178   MachineFunction *MF = MBB->getParent();
179   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
180   addOperand(*MF, Op);
181 }
182 
183 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
184 /// ranges. If MRI is non-null also update use-def chains.
185 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
186                          unsigned NumOps, MachineRegisterInfo *MRI) {
187   if (MRI)
188     return MRI->moveOperands(Dst, Src, NumOps);
189 
190   // MachineOperand is a trivially copyable type so we can just use memmove.
191   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
192 }
193 
194 /// addOperand - Add the specified operand to the instruction.  If it is an
195 /// implicit operand, it is added to the end of the operand list.  If it is
196 /// an explicit operand it is added at the end of the explicit operand list
197 /// (before the first implicit operand).
198 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
199   assert(MCID && "Cannot add operands before providing an instr descriptor");
200 
201   // Check if we're adding one of our existing operands.
202   if (&Op >= Operands && &Op < Operands + NumOperands) {
203     // This is unusual: MI->addOperand(MI->getOperand(i)).
204     // If adding Op requires reallocating or moving existing operands around,
205     // the Op reference could go stale. Support it by copying Op.
206     MachineOperand CopyOp(Op);
207     return addOperand(MF, CopyOp);
208   }
209 
210   // Find the insert location for the new operand.  Implicit registers go at
211   // the end, everything else goes before the implicit regs.
212   //
213   // FIXME: Allow mixed explicit and implicit operands on inline asm.
214   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
215   // implicit-defs, but they must not be moved around.  See the FIXME in
216   // InstrEmitter.cpp.
217   unsigned OpNo = getNumOperands();
218   bool isImpReg = Op.isReg() && Op.isImplicit();
219   if (!isImpReg && !isInlineAsm()) {
220     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
221       --OpNo;
222       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
223     }
224   }
225 
226 #ifndef NDEBUG
227   bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata;
228   // OpNo now points as the desired insertion point.  Unless this is a variadic
229   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
230   // RegMask operands go between the explicit and implicit operands.
231   assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
232           OpNo < MCID->getNumOperands() || isMetaDataOp) &&
233          "Trying to add an operand to a machine instr that is already done!");
234 #endif
235 
236   MachineRegisterInfo *MRI = getRegInfo();
237 
238   // Determine if the Operands array needs to be reallocated.
239   // Save the old capacity and operand array.
240   OperandCapacity OldCap = CapOperands;
241   MachineOperand *OldOperands = Operands;
242   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
243     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
244     Operands = MF.allocateOperandArray(CapOperands);
245     // Move the operands before the insertion point.
246     if (OpNo)
247       moveOperands(Operands, OldOperands, OpNo, MRI);
248   }
249 
250   // Move the operands following the insertion point.
251   if (OpNo != NumOperands)
252     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
253                  MRI);
254   ++NumOperands;
255 
256   // Deallocate the old operand array.
257   if (OldOperands != Operands && OldOperands)
258     MF.deallocateOperandArray(OldCap, OldOperands);
259 
260   // Copy Op into place. It still needs to be inserted into the MRI use lists.
261   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
262   NewMO->ParentMI = this;
263 
264   // When adding a register operand, tell MRI about it.
265   if (NewMO->isReg()) {
266     // Ensure isOnRegUseList() returns false, regardless of Op's status.
267     NewMO->Contents.Reg.Prev = nullptr;
268     // Ignore existing ties. This is not a property that can be copied.
269     NewMO->TiedTo = 0;
270     // Add the new operand to MRI, but only for instructions in an MBB.
271     if (MRI)
272       MRI->addRegOperandToUseList(NewMO);
273     // The MCID operand information isn't accurate until we start adding
274     // explicit operands. The implicit operands are added first, then the
275     // explicits are inserted before them.
276     if (!isImpReg) {
277       // Tie uses to defs as indicated in MCInstrDesc.
278       if (NewMO->isUse()) {
279         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
280         if (DefIdx != -1)
281           tieOperands(DefIdx, OpNo);
282       }
283       // If the register operand is flagged as early, mark the operand as such.
284       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
285         NewMO->setIsEarlyClobber(true);
286     }
287   }
288 }
289 
290 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
291 /// fewer operand than it started with.
292 ///
293 void MachineInstr::RemoveOperand(unsigned OpNo) {
294   assert(OpNo < getNumOperands() && "Invalid operand number");
295   untieRegOperand(OpNo);
296 
297 #ifndef NDEBUG
298   // Moving tied operands would break the ties.
299   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
300     if (Operands[i].isReg())
301       assert(!Operands[i].isTied() && "Cannot move tied operands");
302 #endif
303 
304   MachineRegisterInfo *MRI = getRegInfo();
305   if (MRI && Operands[OpNo].isReg())
306     MRI->removeRegOperandFromUseList(Operands + OpNo);
307 
308   // Don't call the MachineOperand destructor. A lot of this code depends on
309   // MachineOperand having a trivial destructor anyway, and adding a call here
310   // wouldn't make it 'destructor-correct'.
311 
312   if (unsigned N = NumOperands - 1 - OpNo)
313     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
314   --NumOperands;
315 }
316 
317 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
318 /// This function should be used only occasionally. The setMemRefs function
319 /// is the primary method for setting up a MachineInstr's MemRefs list.
320 void MachineInstr::addMemOperand(MachineFunction &MF,
321                                  MachineMemOperand *MO) {
322   mmo_iterator OldMemRefs = MemRefs;
323   unsigned OldNumMemRefs = NumMemRefs;
324 
325   unsigned NewNum = NumMemRefs + 1;
326   mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
327 
328   std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs);
329   NewMemRefs[NewNum - 1] = MO;
330   setMemRefs(NewMemRefs, NewMemRefs + NewNum);
331 }
332 
333 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
334 /// identical.
335 static bool hasIdenticalMMOs(const MachineInstr &MI1, const MachineInstr &MI2) {
336   auto I1 = MI1.memoperands_begin(), E1 = MI1.memoperands_end();
337   auto I2 = MI2.memoperands_begin(), E2 = MI2.memoperands_end();
338   if ((E1 - I1) != (E2 - I2))
339     return false;
340   for (; I1 != E1; ++I1, ++I2) {
341     if (**I1 != **I2)
342       return false;
343   }
344   return true;
345 }
346 
347 std::pair<MachineInstr::mmo_iterator, unsigned>
348 MachineInstr::mergeMemRefsWith(const MachineInstr& Other) {
349 
350   // If either of the incoming memrefs are empty, we must be conservative and
351   // treat this as if we've exhausted our space for memrefs and dropped them.
352   if (memoperands_empty() || Other.memoperands_empty())
353     return std::make_pair(nullptr, 0);
354 
355   // If both instructions have identical memrefs, we don't need to merge them.
356   // Since many instructions have a single memref, and we tend to merge things
357   // like pairs of loads from the same location, this catches a large number of
358   // cases in practice.
359   if (hasIdenticalMMOs(*this, Other))
360     return std::make_pair(MemRefs, NumMemRefs);
361 
362   // TODO: consider uniquing elements within the operand lists to reduce
363   // space usage and fall back to conservative information less often.
364   size_t CombinedNumMemRefs = NumMemRefs + Other.NumMemRefs;
365 
366   // If we don't have enough room to store this many memrefs, be conservative
367   // and drop them.  Otherwise, we'd fail asserts when trying to add them to
368   // the new instruction.
369   if (CombinedNumMemRefs != uint8_t(CombinedNumMemRefs))
370     return std::make_pair(nullptr, 0);
371 
372   MachineFunction *MF = getMF();
373   mmo_iterator MemBegin = MF->allocateMemRefsArray(CombinedNumMemRefs);
374   mmo_iterator MemEnd = std::copy(memoperands_begin(), memoperands_end(),
375                                   MemBegin);
376   MemEnd = std::copy(Other.memoperands_begin(), Other.memoperands_end(),
377                      MemEnd);
378   assert(MemEnd - MemBegin == (ptrdiff_t)CombinedNumMemRefs &&
379          "missing memrefs");
380 
381   return std::make_pair(MemBegin, CombinedNumMemRefs);
382 }
383 
384 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const {
385   assert(!isBundledWithPred() && "Must be called on bundle header");
386   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
387     if (MII->getDesc().getFlags() & Mask) {
388       if (Type == AnyInBundle)
389         return true;
390     } else {
391       if (Type == AllInBundle && !MII->isBundle())
392         return false;
393     }
394     // This was the last instruction in the bundle.
395     if (!MII->isBundledWithSucc())
396       return Type == AllInBundle;
397   }
398 }
399 
400 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
401                                  MICheckType Check) const {
402   // If opcodes or number of operands are not the same then the two
403   // instructions are obviously not identical.
404   if (Other.getOpcode() != getOpcode() ||
405       Other.getNumOperands() != getNumOperands())
406     return false;
407 
408   if (isBundle()) {
409     // We have passed the test above that both instructions have the same
410     // opcode, so we know that both instructions are bundles here. Let's compare
411     // MIs inside the bundle.
412     assert(Other.isBundle() && "Expected that both instructions are bundles.");
413     MachineBasicBlock::const_instr_iterator I1 = getIterator();
414     MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
415     // Loop until we analysed the last intruction inside at least one of the
416     // bundles.
417     while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
418       ++I1;
419       ++I2;
420       if (!I1->isIdenticalTo(*I2, Check))
421         return false;
422     }
423     // If we've reached the end of just one of the two bundles, but not both,
424     // the instructions are not identical.
425     if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
426       return false;
427   }
428 
429   // Check operands to make sure they match.
430   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
431     const MachineOperand &MO = getOperand(i);
432     const MachineOperand &OMO = Other.getOperand(i);
433     if (!MO.isReg()) {
434       if (!MO.isIdenticalTo(OMO))
435         return false;
436       continue;
437     }
438 
439     // Clients may or may not want to ignore defs when testing for equality.
440     // For example, machine CSE pass only cares about finding common
441     // subexpressions, so it's safe to ignore virtual register defs.
442     if (MO.isDef()) {
443       if (Check == IgnoreDefs)
444         continue;
445       else if (Check == IgnoreVRegDefs) {
446         if (!TargetRegisterInfo::isVirtualRegister(MO.getReg()) ||
447             !TargetRegisterInfo::isVirtualRegister(OMO.getReg()))
448           if (!MO.isIdenticalTo(OMO))
449             return false;
450       } else {
451         if (!MO.isIdenticalTo(OMO))
452           return false;
453         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
454           return false;
455       }
456     } else {
457       if (!MO.isIdenticalTo(OMO))
458         return false;
459       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
460         return false;
461     }
462   }
463   // If DebugLoc does not match then two dbg.values are not identical.
464   if (isDebugValue())
465     if (getDebugLoc() && Other.getDebugLoc() &&
466         getDebugLoc() != Other.getDebugLoc())
467       return false;
468   return true;
469 }
470 
471 const MachineFunction *MachineInstr::getMF() const {
472   return getParent()->getParent();
473 }
474 
475 MachineInstr *MachineInstr::removeFromParent() {
476   assert(getParent() && "Not embedded in a basic block!");
477   return getParent()->remove(this);
478 }
479 
480 MachineInstr *MachineInstr::removeFromBundle() {
481   assert(getParent() && "Not embedded in a basic block!");
482   return getParent()->remove_instr(this);
483 }
484 
485 void MachineInstr::eraseFromParent() {
486   assert(getParent() && "Not embedded in a basic block!");
487   getParent()->erase(this);
488 }
489 
490 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
491   assert(getParent() && "Not embedded in a basic block!");
492   MachineBasicBlock *MBB = getParent();
493   MachineFunction *MF = MBB->getParent();
494   assert(MF && "Not embedded in a function!");
495 
496   MachineInstr *MI = (MachineInstr *)this;
497   MachineRegisterInfo &MRI = MF->getRegInfo();
498 
499   for (const MachineOperand &MO : MI->operands()) {
500     if (!MO.isReg() || !MO.isDef())
501       continue;
502     unsigned Reg = MO.getReg();
503     if (!TargetRegisterInfo::isVirtualRegister(Reg))
504       continue;
505     MRI.markUsesInDebugValueAsUndef(Reg);
506   }
507   MI->eraseFromParent();
508 }
509 
510 void MachineInstr::eraseFromBundle() {
511   assert(getParent() && "Not embedded in a basic block!");
512   getParent()->erase_instr(this);
513 }
514 
515 /// getNumExplicitOperands - Returns the number of non-implicit operands.
516 ///
517 unsigned MachineInstr::getNumExplicitOperands() const {
518   unsigned NumOperands = MCID->getNumOperands();
519   if (!MCID->isVariadic())
520     return NumOperands;
521 
522   for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
523     const MachineOperand &MO = getOperand(i);
524     if (!MO.isReg() || !MO.isImplicit())
525       NumOperands++;
526   }
527   return NumOperands;
528 }
529 
530 void MachineInstr::bundleWithPred() {
531   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
532   setFlag(BundledPred);
533   MachineBasicBlock::instr_iterator Pred = getIterator();
534   --Pred;
535   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
536   Pred->setFlag(BundledSucc);
537 }
538 
539 void MachineInstr::bundleWithSucc() {
540   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
541   setFlag(BundledSucc);
542   MachineBasicBlock::instr_iterator Succ = getIterator();
543   ++Succ;
544   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
545   Succ->setFlag(BundledPred);
546 }
547 
548 void MachineInstr::unbundleFromPred() {
549   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
550   clearFlag(BundledPred);
551   MachineBasicBlock::instr_iterator Pred = getIterator();
552   --Pred;
553   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
554   Pred->clearFlag(BundledSucc);
555 }
556 
557 void MachineInstr::unbundleFromSucc() {
558   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
559   clearFlag(BundledSucc);
560   MachineBasicBlock::instr_iterator Succ = getIterator();
561   ++Succ;
562   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
563   Succ->clearFlag(BundledPred);
564 }
565 
566 bool MachineInstr::isStackAligningInlineAsm() const {
567   if (isInlineAsm()) {
568     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
569     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
570       return true;
571   }
572   return false;
573 }
574 
575 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
576   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
577   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
578   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
579 }
580 
581 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
582                                        unsigned *GroupNo) const {
583   assert(isInlineAsm() && "Expected an inline asm instruction");
584   assert(OpIdx < getNumOperands() && "OpIdx out of range");
585 
586   // Ignore queries about the initial operands.
587   if (OpIdx < InlineAsm::MIOp_FirstOperand)
588     return -1;
589 
590   unsigned Group = 0;
591   unsigned NumOps;
592   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
593        i += NumOps) {
594     const MachineOperand &FlagMO = getOperand(i);
595     // If we reach the implicit register operands, stop looking.
596     if (!FlagMO.isImm())
597       return -1;
598     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
599     if (i + NumOps > OpIdx) {
600       if (GroupNo)
601         *GroupNo = Group;
602       return i;
603     }
604     ++Group;
605   }
606   return -1;
607 }
608 
609 const DILocalVariable *MachineInstr::getDebugVariable() const {
610   assert(isDebugValue() && "not a DBG_VALUE");
611   return cast<DILocalVariable>(getOperand(2).getMetadata());
612 }
613 
614 const DIExpression *MachineInstr::getDebugExpression() const {
615   assert(isDebugValue() && "not a DBG_VALUE");
616   return cast<DIExpression>(getOperand(3).getMetadata());
617 }
618 
619 const TargetRegisterClass*
620 MachineInstr::getRegClassConstraint(unsigned OpIdx,
621                                     const TargetInstrInfo *TII,
622                                     const TargetRegisterInfo *TRI) const {
623   assert(getParent() && "Can't have an MBB reference here!");
624   assert(getMF() && "Can't have an MF reference here!");
625   const MachineFunction &MF = *getMF();
626 
627   // Most opcodes have fixed constraints in their MCInstrDesc.
628   if (!isInlineAsm())
629     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
630 
631   if (!getOperand(OpIdx).isReg())
632     return nullptr;
633 
634   // For tied uses on inline asm, get the constraint from the def.
635   unsigned DefIdx;
636   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
637     OpIdx = DefIdx;
638 
639   // Inline asm stores register class constraints in the flag word.
640   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
641   if (FlagIdx < 0)
642     return nullptr;
643 
644   unsigned Flag = getOperand(FlagIdx).getImm();
645   unsigned RCID;
646   if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
647        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
648        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
649       InlineAsm::hasRegClassConstraint(Flag, RCID))
650     return TRI->getRegClass(RCID);
651 
652   // Assume that all registers in a memory operand are pointers.
653   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
654     return TRI->getPointerRegClass(MF);
655 
656   return nullptr;
657 }
658 
659 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
660     unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
661     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
662   // Check every operands inside the bundle if we have
663   // been asked to.
664   if (ExploreBundle)
665     for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
666          ++OpndIt)
667       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
668           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
669   else
670     // Otherwise, just check the current operands.
671     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
672       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
673   return CurRC;
674 }
675 
676 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
677     unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
678     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
679   assert(CurRC && "Invalid initial register class");
680   // Check if Reg is constrained by some of its use/def from MI.
681   const MachineOperand &MO = getOperand(OpIdx);
682   if (!MO.isReg() || MO.getReg() != Reg)
683     return CurRC;
684   // If yes, accumulate the constraints through the operand.
685   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
686 }
687 
688 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
689     unsigned OpIdx, const TargetRegisterClass *CurRC,
690     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
691   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
692   const MachineOperand &MO = getOperand(OpIdx);
693   assert(MO.isReg() &&
694          "Cannot get register constraints for non-register operand");
695   assert(CurRC && "Invalid initial register class");
696   if (unsigned SubIdx = MO.getSubReg()) {
697     if (OpRC)
698       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
699     else
700       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
701   } else if (OpRC)
702     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
703   return CurRC;
704 }
705 
706 /// Return the number of instructions inside the MI bundle, not counting the
707 /// header instruction.
708 unsigned MachineInstr::getBundleSize() const {
709   MachineBasicBlock::const_instr_iterator I = getIterator();
710   unsigned Size = 0;
711   while (I->isBundledWithSucc()) {
712     ++Size;
713     ++I;
714   }
715   return Size;
716 }
717 
718 /// Returns true if the MachineInstr has an implicit-use operand of exactly
719 /// the given register (not considering sub/super-registers).
720 bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const {
721   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
722     const MachineOperand &MO = getOperand(i);
723     if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
724       return true;
725   }
726   return false;
727 }
728 
729 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
730 /// the specific register or -1 if it is not found. It further tightens
731 /// the search criteria to a use that kills the register if isKill is true.
732 int MachineInstr::findRegisterUseOperandIdx(
733     unsigned Reg, bool isKill, const TargetRegisterInfo *TRI) const {
734   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
735     const MachineOperand &MO = getOperand(i);
736     if (!MO.isReg() || !MO.isUse())
737       continue;
738     unsigned MOReg = MO.getReg();
739     if (!MOReg)
740       continue;
741     if (MOReg == Reg || (TRI && TargetRegisterInfo::isPhysicalRegister(MOReg) &&
742                          TargetRegisterInfo::isPhysicalRegister(Reg) &&
743                          TRI->isSubRegister(MOReg, Reg)))
744       if (!isKill || MO.isKill())
745         return i;
746   }
747   return -1;
748 }
749 
750 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
751 /// indicating if this instruction reads or writes Reg. This also considers
752 /// partial defines.
753 std::pair<bool,bool>
754 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
755                                          SmallVectorImpl<unsigned> *Ops) const {
756   bool PartDef = false; // Partial redefine.
757   bool FullDef = false; // Full define.
758   bool Use = false;
759 
760   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
761     const MachineOperand &MO = getOperand(i);
762     if (!MO.isReg() || MO.getReg() != Reg)
763       continue;
764     if (Ops)
765       Ops->push_back(i);
766     if (MO.isUse())
767       Use |= !MO.isUndef();
768     else if (MO.getSubReg() && !MO.isUndef())
769       // A partial def undef doesn't count as reading the register.
770       PartDef = true;
771     else
772       FullDef = true;
773   }
774   // A partial redefine uses Reg unless there is also a full define.
775   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
776 }
777 
778 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
779 /// the specified register or -1 if it is not found. If isDead is true, defs
780 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
781 /// also checks if there is a def of a super-register.
782 int
783 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
784                                         const TargetRegisterInfo *TRI) const {
785   bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
786   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
787     const MachineOperand &MO = getOperand(i);
788     // Accept regmask operands when Overlap is set.
789     // Ignore them when looking for a specific def operand (Overlap == false).
790     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
791       return i;
792     if (!MO.isReg() || !MO.isDef())
793       continue;
794     unsigned MOReg = MO.getReg();
795     bool Found = (MOReg == Reg);
796     if (!Found && TRI && isPhys &&
797         TargetRegisterInfo::isPhysicalRegister(MOReg)) {
798       if (Overlap)
799         Found = TRI->regsOverlap(MOReg, Reg);
800       else
801         Found = TRI->isSubRegister(MOReg, Reg);
802     }
803     if (Found && (!isDead || MO.isDead()))
804       return i;
805   }
806   return -1;
807 }
808 
809 /// findFirstPredOperandIdx() - Find the index of the first operand in the
810 /// operand list that is used to represent the predicate. It returns -1 if
811 /// none is found.
812 int MachineInstr::findFirstPredOperandIdx() const {
813   // Don't call MCID.findFirstPredOperandIdx() because this variant
814   // is sometimes called on an instruction that's not yet complete, and
815   // so the number of operands is less than the MCID indicates. In
816   // particular, the PTX target does this.
817   const MCInstrDesc &MCID = getDesc();
818   if (MCID.isPredicable()) {
819     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
820       if (MCID.OpInfo[i].isPredicate())
821         return i;
822   }
823 
824   return -1;
825 }
826 
827 // MachineOperand::TiedTo is 4 bits wide.
828 const unsigned TiedMax = 15;
829 
830 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
831 ///
832 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
833 /// field. TiedTo can have these values:
834 ///
835 /// 0:              Operand is not tied to anything.
836 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
837 /// TiedMax:        Tied to an operand >= TiedMax-1.
838 ///
839 /// The tied def must be one of the first TiedMax operands on a normal
840 /// instruction. INLINEASM instructions allow more tied defs.
841 ///
842 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
843   MachineOperand &DefMO = getOperand(DefIdx);
844   MachineOperand &UseMO = getOperand(UseIdx);
845   assert(DefMO.isDef() && "DefIdx must be a def operand");
846   assert(UseMO.isUse() && "UseIdx must be a use operand");
847   assert(!DefMO.isTied() && "Def is already tied to another use");
848   assert(!UseMO.isTied() && "Use is already tied to another def");
849 
850   if (DefIdx < TiedMax)
851     UseMO.TiedTo = DefIdx + 1;
852   else {
853     // Inline asm can use the group descriptors to find tied operands, but on
854     // normal instruction, the tied def must be within the first TiedMax
855     // operands.
856     assert(isInlineAsm() && "DefIdx out of range");
857     UseMO.TiedTo = TiedMax;
858   }
859 
860   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
861   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
862 }
863 
864 /// Given the index of a tied register operand, find the operand it is tied to.
865 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
866 /// which must exist.
867 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
868   const MachineOperand &MO = getOperand(OpIdx);
869   assert(MO.isTied() && "Operand isn't tied");
870 
871   // Normally TiedTo is in range.
872   if (MO.TiedTo < TiedMax)
873     return MO.TiedTo - 1;
874 
875   // Uses on normal instructions can be out of range.
876   if (!isInlineAsm()) {
877     // Normal tied defs must be in the 0..TiedMax-1 range.
878     if (MO.isUse())
879       return TiedMax - 1;
880     // MO is a def. Search for the tied use.
881     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
882       const MachineOperand &UseMO = getOperand(i);
883       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
884         return i;
885     }
886     llvm_unreachable("Can't find tied use");
887   }
888 
889   // Now deal with inline asm by parsing the operand group descriptor flags.
890   // Find the beginning of each operand group.
891   SmallVector<unsigned, 8> GroupIdx;
892   unsigned OpIdxGroup = ~0u;
893   unsigned NumOps;
894   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
895        i += NumOps) {
896     const MachineOperand &FlagMO = getOperand(i);
897     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
898     unsigned CurGroup = GroupIdx.size();
899     GroupIdx.push_back(i);
900     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
901     // OpIdx belongs to this operand group.
902     if (OpIdx > i && OpIdx < i + NumOps)
903       OpIdxGroup = CurGroup;
904     unsigned TiedGroup;
905     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
906       continue;
907     // Operands in this group are tied to operands in TiedGroup which must be
908     // earlier. Find the number of operands between the two groups.
909     unsigned Delta = i - GroupIdx[TiedGroup];
910 
911     // OpIdx is a use tied to TiedGroup.
912     if (OpIdxGroup == CurGroup)
913       return OpIdx - Delta;
914 
915     // OpIdx is a def tied to this use group.
916     if (OpIdxGroup == TiedGroup)
917       return OpIdx + Delta;
918   }
919   llvm_unreachable("Invalid tied operand on inline asm");
920 }
921 
922 /// clearKillInfo - Clears kill flags on all operands.
923 ///
924 void MachineInstr::clearKillInfo() {
925   for (MachineOperand &MO : operands()) {
926     if (MO.isReg() && MO.isUse())
927       MO.setIsKill(false);
928   }
929 }
930 
931 void MachineInstr::substituteRegister(unsigned FromReg,
932                                       unsigned ToReg,
933                                       unsigned SubIdx,
934                                       const TargetRegisterInfo &RegInfo) {
935   if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
936     if (SubIdx)
937       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
938     for (MachineOperand &MO : operands()) {
939       if (!MO.isReg() || MO.getReg() != FromReg)
940         continue;
941       MO.substPhysReg(ToReg, RegInfo);
942     }
943   } else {
944     for (MachineOperand &MO : operands()) {
945       if (!MO.isReg() || MO.getReg() != FromReg)
946         continue;
947       MO.substVirtReg(ToReg, SubIdx, RegInfo);
948     }
949   }
950 }
951 
952 /// isSafeToMove - Return true if it is safe to move this instruction. If
953 /// SawStore is set to true, it means that there is a store (or call) between
954 /// the instruction's location and its intended destination.
955 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const {
956   // Ignore stuff that we obviously can't move.
957   //
958   // Treat volatile loads as stores. This is not strictly necessary for
959   // volatiles, but it is required for atomic loads. It is not allowed to move
960   // a load across an atomic load with Ordering > Monotonic.
961   if (mayStore() || isCall() || isPHI() ||
962       (mayLoad() && hasOrderedMemoryRef())) {
963     SawStore = true;
964     return false;
965   }
966 
967   if (isPosition() || isDebugValue() || isTerminator() ||
968       hasUnmodeledSideEffects())
969     return false;
970 
971   // See if this instruction does a load.  If so, we have to guarantee that the
972   // loaded value doesn't change between the load and the its intended
973   // destination. The check for isInvariantLoad gives the targe the chance to
974   // classify the load as always returning a constant, e.g. a constant pool
975   // load.
976   if (mayLoad() && !isDereferenceableInvariantLoad(AA))
977     // Otherwise, this is a real load.  If there is a store between the load and
978     // end of block, we can't move it.
979     return !SawStore;
980 
981   return true;
982 }
983 
984 bool MachineInstr::mayAlias(AliasAnalysis *AA, MachineInstr &Other,
985                             bool UseTBAA) {
986   const MachineFunction *MF = getMF();
987   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
988   const MachineFrameInfo &MFI = MF->getFrameInfo();
989 
990   // If neither instruction stores to memory, they can't alias in any
991   // meaningful way, even if they read from the same address.
992   if (!mayStore() && !Other.mayStore())
993     return false;
994 
995   // Let the target decide if memory accesses cannot possibly overlap.
996   if (TII->areMemAccessesTriviallyDisjoint(*this, Other, AA))
997     return false;
998 
999   // FIXME: Need to handle multiple memory operands to support all targets.
1000   if (!hasOneMemOperand() || !Other.hasOneMemOperand())
1001     return true;
1002 
1003   MachineMemOperand *MMOa = *memoperands_begin();
1004   MachineMemOperand *MMOb = *Other.memoperands_begin();
1005 
1006   // The following interface to AA is fashioned after DAGCombiner::isAlias
1007   // and operates with MachineMemOperand offset with some important
1008   // assumptions:
1009   //   - LLVM fundamentally assumes flat address spaces.
1010   //   - MachineOperand offset can *only* result from legalization and
1011   //     cannot affect queries other than the trivial case of overlap
1012   //     checking.
1013   //   - These offsets never wrap and never step outside
1014   //     of allocated objects.
1015   //   - There should never be any negative offsets here.
1016   //
1017   // FIXME: Modify API to hide this math from "user"
1018   // Even before we go to AA we can reason locally about some
1019   // memory objects. It can save compile time, and possibly catch some
1020   // corner cases not currently covered.
1021 
1022   int64_t OffsetA = MMOa->getOffset();
1023   int64_t OffsetB = MMOb->getOffset();
1024 
1025   int64_t MinOffset = std::min(OffsetA, OffsetB);
1026   int64_t WidthA = MMOa->getSize();
1027   int64_t WidthB = MMOb->getSize();
1028   const Value *ValA = MMOa->getValue();
1029   const Value *ValB = MMOb->getValue();
1030   bool SameVal = (ValA && ValB && (ValA == ValB));
1031   if (!SameVal) {
1032     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1033     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1034     if (PSVa && ValB && !PSVa->mayAlias(&MFI))
1035       return false;
1036     if (PSVb && ValA && !PSVb->mayAlias(&MFI))
1037       return false;
1038     if (PSVa && PSVb && (PSVa == PSVb))
1039       SameVal = true;
1040   }
1041 
1042   if (SameVal) {
1043     int64_t MaxOffset = std::max(OffsetA, OffsetB);
1044     int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
1045     return (MinOffset + LowWidth > MaxOffset);
1046   }
1047 
1048   if (!AA)
1049     return true;
1050 
1051   if (!ValA || !ValB)
1052     return true;
1053 
1054   assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
1055   assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
1056 
1057   int64_t Overlapa = WidthA + OffsetA - MinOffset;
1058   int64_t Overlapb = WidthB + OffsetB - MinOffset;
1059 
1060   AliasResult AAResult = AA->alias(
1061       MemoryLocation(ValA, Overlapa,
1062                      UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1063       MemoryLocation(ValB, Overlapb,
1064                      UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1065 
1066   return (AAResult != NoAlias);
1067 }
1068 
1069 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1070 /// or volatile memory reference, or if the information describing the memory
1071 /// reference is not available. Return false if it is known to have no ordered
1072 /// memory references.
1073 bool MachineInstr::hasOrderedMemoryRef() const {
1074   // An instruction known never to access memory won't have a volatile access.
1075   if (!mayStore() &&
1076       !mayLoad() &&
1077       !isCall() &&
1078       !hasUnmodeledSideEffects())
1079     return false;
1080 
1081   // Otherwise, if the instruction has no memory reference information,
1082   // conservatively assume it wasn't preserved.
1083   if (memoperands_empty())
1084     return true;
1085 
1086   // Check if any of our memory operands are ordered.
1087   return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1088     return !MMO->isUnordered();
1089   });
1090 }
1091 
1092 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1093 /// trap and is loading from a location whose value is invariant across a run of
1094 /// this function.
1095 bool MachineInstr::isDereferenceableInvariantLoad(AliasAnalysis *AA) const {
1096   // If the instruction doesn't load at all, it isn't an invariant load.
1097   if (!mayLoad())
1098     return false;
1099 
1100   // If the instruction has lost its memoperands, conservatively assume that
1101   // it may not be an invariant load.
1102   if (memoperands_empty())
1103     return false;
1104 
1105   const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1106 
1107   for (MachineMemOperand *MMO : memoperands()) {
1108     if (MMO->isVolatile()) return false;
1109     if (MMO->isStore()) return false;
1110     if (MMO->isInvariant() && MMO->isDereferenceable())
1111       continue;
1112 
1113     // A load from a constant PseudoSourceValue is invariant.
1114     if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1115       if (PSV->isConstant(&MFI))
1116         continue;
1117 
1118     if (const Value *V = MMO->getValue()) {
1119       // If we have an AliasAnalysis, ask it whether the memory is constant.
1120       if (AA &&
1121           AA->pointsToConstantMemory(
1122               MemoryLocation(V, MMO->getSize(), MMO->getAAInfo())))
1123         continue;
1124     }
1125 
1126     // Otherwise assume conservatively.
1127     return false;
1128   }
1129 
1130   // Everything checks out.
1131   return true;
1132 }
1133 
1134 /// isConstantValuePHI - If the specified instruction is a PHI that always
1135 /// merges together the same virtual register, return the register, otherwise
1136 /// return 0.
1137 unsigned MachineInstr::isConstantValuePHI() const {
1138   if (!isPHI())
1139     return 0;
1140   assert(getNumOperands() >= 3 &&
1141          "It's illegal to have a PHI without source operands");
1142 
1143   unsigned Reg = getOperand(1).getReg();
1144   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1145     if (getOperand(i).getReg() != Reg)
1146       return 0;
1147   return Reg;
1148 }
1149 
1150 bool MachineInstr::hasUnmodeledSideEffects() const {
1151   if (hasProperty(MCID::UnmodeledSideEffects))
1152     return true;
1153   if (isInlineAsm()) {
1154     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1155     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1156       return true;
1157   }
1158 
1159   return false;
1160 }
1161 
1162 bool MachineInstr::isLoadFoldBarrier() const {
1163   return mayStore() || isCall() || hasUnmodeledSideEffects();
1164 }
1165 
1166 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1167 ///
1168 bool MachineInstr::allDefsAreDead() const {
1169   for (const MachineOperand &MO : operands()) {
1170     if (!MO.isReg() || MO.isUse())
1171       continue;
1172     if (!MO.isDead())
1173       return false;
1174   }
1175   return true;
1176 }
1177 
1178 /// copyImplicitOps - Copy implicit register operands from specified
1179 /// instruction to this instruction.
1180 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1181                                    const MachineInstr &MI) {
1182   for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands();
1183        i != e; ++i) {
1184     const MachineOperand &MO = MI.getOperand(i);
1185     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1186       addOperand(MF, MO);
1187   }
1188 }
1189 
1190 bool MachineInstr::hasComplexRegisterTies() const {
1191   const MCInstrDesc &MCID = getDesc();
1192   for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
1193     const auto &Operand = getOperand(I);
1194     if (!Operand.isReg() || Operand.isDef())
1195       // Ignore the defined registers as MCID marks only the uses as tied.
1196       continue;
1197     int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
1198     int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
1199     if (ExpectedTiedIdx != TiedIdx)
1200       return true;
1201   }
1202   return false;
1203 }
1204 
1205 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1206                                  const MachineRegisterInfo &MRI) const {
1207   const MachineOperand &Op = getOperand(OpIdx);
1208   if (!Op.isReg())
1209     return LLT{};
1210 
1211   if (isVariadic() || OpIdx >= getNumExplicitOperands())
1212     return MRI.getType(Op.getReg());
1213 
1214   auto &OpInfo = getDesc().OpInfo[OpIdx];
1215   if (!OpInfo.isGenericType())
1216     return MRI.getType(Op.getReg());
1217 
1218   if (PrintedTypes[OpInfo.getGenericTypeIndex()])
1219     return LLT{};
1220 
1221   PrintedTypes.set(OpInfo.getGenericTypeIndex());
1222   return MRI.getType(Op.getReg());
1223 }
1224 
1225 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1226 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1227   dbgs() << "  ";
1228   print(dbgs());
1229 }
1230 #endif
1231 
1232 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
1233                          bool SkipDebugLoc, const TargetInstrInfo *TII) const {
1234   const Module *M = nullptr;
1235   const Function *F = nullptr;
1236   if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1237     F = &MF->getFunction();
1238     M = F->getParent();
1239   }
1240 
1241   ModuleSlotTracker MST(M);
1242   if (F)
1243     MST.incorporateFunction(*F);
1244   print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, TII);
1245 }
1246 
1247 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1248                          bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
1249                          const TargetInstrInfo *TII) const {
1250   // We can be a bit tidier if we know the MachineFunction.
1251   const MachineFunction *MF = nullptr;
1252   const TargetRegisterInfo *TRI = nullptr;
1253   const MachineRegisterInfo *MRI = nullptr;
1254   const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1255   tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
1256 
1257   if (isCFIInstruction())
1258     assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1259 
1260   SmallBitVector PrintedTypes(8);
1261   bool ShouldPrintRegisterTies = hasComplexRegisterTies();
1262   auto getTiedOperandIdx = [&](unsigned OpIdx) {
1263     if (!ShouldPrintRegisterTies)
1264       return 0U;
1265     const MachineOperand &MO = getOperand(OpIdx);
1266     if (MO.isReg() && MO.isTied() && !MO.isDef())
1267       return findTiedOperandIdx(OpIdx);
1268     return 0U;
1269   };
1270   unsigned StartOp = 0;
1271   unsigned e = getNumOperands();
1272 
1273   // Print explicitly defined operands on the left of an assignment syntax.
1274   while (StartOp < e) {
1275     const MachineOperand &MO = getOperand(StartOp);
1276     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
1277       break;
1278 
1279     if (StartOp != 0)
1280       OS << ", ";
1281 
1282     LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
1283     unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
1284     MO.print(OS, MST, TypeToPrint, /*PrintDef=*/false, IsStandalone,
1285              ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1286     ++StartOp;
1287   }
1288 
1289   if (StartOp != 0)
1290     OS << " = ";
1291 
1292   if (getFlag(MachineInstr::FrameSetup))
1293     OS << "frame-setup ";
1294   else if (getFlag(MachineInstr::FrameDestroy))
1295     OS << "frame-destroy ";
1296 
1297   // Print the opcode name.
1298   if (TII)
1299     OS << TII->getName(getOpcode());
1300   else
1301     OS << "UNKNOWN";
1302 
1303   if (SkipOpers)
1304     return;
1305 
1306   // Print the rest of the operands.
1307   bool FirstOp = true;
1308   unsigned AsmDescOp = ~0u;
1309   unsigned AsmOpCount = 0;
1310 
1311   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1312     // Print asm string.
1313     OS << " ";
1314     const unsigned OpIdx = InlineAsm::MIOp_AsmString;
1315     LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
1316     unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
1317     getOperand(OpIdx).print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
1318                             ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1319                             IntrinsicInfo);
1320 
1321     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1322     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1323     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1324       OS << " [sideeffect]";
1325     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1326       OS << " [mayload]";
1327     if (ExtraInfo & InlineAsm::Extra_MayStore)
1328       OS << " [maystore]";
1329     if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1330       OS << " [isconvergent]";
1331     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1332       OS << " [alignstack]";
1333     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1334       OS << " [attdialect]";
1335     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1336       OS << " [inteldialect]";
1337 
1338     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1339     FirstOp = false;
1340   }
1341 
1342   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1343     const MachineOperand &MO = getOperand(i);
1344 
1345     if (FirstOp) FirstOp = false; else OS << ",";
1346     OS << " ";
1347 
1348     if (isDebugValue() && MO.isMetadata()) {
1349       // Pretty print DBG_VALUE instructions.
1350       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1351       if (DIV && !DIV->getName().empty())
1352         OS << "!\"" << DIV->getName() << '\"';
1353       else {
1354         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1355         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1356         MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
1357                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1358       }
1359     } else if (i == AsmDescOp && MO.isImm()) {
1360       // Pretty print the inline asm operand descriptor.
1361       OS << '$' << AsmOpCount++;
1362       unsigned Flag = MO.getImm();
1363       switch (InlineAsm::getKind(Flag)) {
1364       case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break;
1365       case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break;
1366       case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1367       case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break;
1368       case InlineAsm::Kind_Imm:                OS << ":[imm"; break;
1369       case InlineAsm::Kind_Mem:                OS << ":[mem"; break;
1370       default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1371       }
1372 
1373       unsigned RCID = 0;
1374       if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1375           InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1376         if (TRI) {
1377           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1378         } else
1379           OS << ":RC" << RCID;
1380       }
1381 
1382       if (InlineAsm::isMemKind(Flag)) {
1383         unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1384         switch (MCID) {
1385         case InlineAsm::Constraint_es: OS << ":es"; break;
1386         case InlineAsm::Constraint_i:  OS << ":i"; break;
1387         case InlineAsm::Constraint_m:  OS << ":m"; break;
1388         case InlineAsm::Constraint_o:  OS << ":o"; break;
1389         case InlineAsm::Constraint_v:  OS << ":v"; break;
1390         case InlineAsm::Constraint_Q:  OS << ":Q"; break;
1391         case InlineAsm::Constraint_R:  OS << ":R"; break;
1392         case InlineAsm::Constraint_S:  OS << ":S"; break;
1393         case InlineAsm::Constraint_T:  OS << ":T"; break;
1394         case InlineAsm::Constraint_Um: OS << ":Um"; break;
1395         case InlineAsm::Constraint_Un: OS << ":Un"; break;
1396         case InlineAsm::Constraint_Uq: OS << ":Uq"; break;
1397         case InlineAsm::Constraint_Us: OS << ":Us"; break;
1398         case InlineAsm::Constraint_Ut: OS << ":Ut"; break;
1399         case InlineAsm::Constraint_Uv: OS << ":Uv"; break;
1400         case InlineAsm::Constraint_Uy: OS << ":Uy"; break;
1401         case InlineAsm::Constraint_X:  OS << ":X"; break;
1402         case InlineAsm::Constraint_Z:  OS << ":Z"; break;
1403         case InlineAsm::Constraint_ZC: OS << ":ZC"; break;
1404         case InlineAsm::Constraint_Zy: OS << ":Zy"; break;
1405         default: OS << ":?"; break;
1406         }
1407       }
1408 
1409       unsigned TiedTo = 0;
1410       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1411         OS << " tiedto:$" << TiedTo;
1412 
1413       OS << ']';
1414 
1415       // Compute the index of the next operand descriptor.
1416       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1417     } else {
1418       LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1419       unsigned TiedOperandIdx = getTiedOperandIdx(i);
1420       if (MO.isImm() && isOperandSubregIdx(i))
1421         MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
1422       else
1423         MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
1424                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1425     }
1426   }
1427 
1428   bool HaveSemi = false;
1429   if (!memoperands_empty()) {
1430     if (!HaveSemi) {
1431       OS << ";";
1432       HaveSemi = true;
1433     }
1434 
1435     OS << " mem:";
1436     for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
1437          i != e; ++i) {
1438       (*i)->print(OS, MST);
1439       if (std::next(i) != e)
1440         OS << " ";
1441     }
1442   }
1443 
1444   // Print debug location information.
1445   if (isDebugValue() && getOperand(e - 2).isMetadata()) {
1446     if (!HaveSemi)
1447       OS << ";";
1448     auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata());
1449     OS << " line no:" <<  DV->getLine();
1450     if (auto *InlinedAt = debugLoc->getInlinedAt()) {
1451       DebugLoc InlinedAtDL(InlinedAt);
1452       if (InlinedAtDL && MF) {
1453         OS << " inlined @[ ";
1454         InlinedAtDL.print(OS);
1455         OS << " ]";
1456       }
1457     }
1458     if (isIndirectDebugValue())
1459       OS << " indirect";
1460   } else if (SkipDebugLoc) {
1461     return;
1462   } else if (debugLoc && MF) {
1463     if (!HaveSemi)
1464       OS << ";";
1465     OS << " dbg:";
1466     debugLoc.print(OS);
1467   }
1468 
1469   OS << '\n';
1470 }
1471 
1472 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1473                                      const TargetRegisterInfo *RegInfo,
1474                                      bool AddIfNotFound) {
1475   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1476   bool hasAliases = isPhysReg &&
1477     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1478   bool Found = false;
1479   SmallVector<unsigned,4> DeadOps;
1480   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1481     MachineOperand &MO = getOperand(i);
1482     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1483       continue;
1484 
1485     // DEBUG_VALUE nodes do not contribute to code generation and should
1486     // always be ignored. Failure to do so may result in trying to modify
1487     // KILL flags on DEBUG_VALUE nodes.
1488     if (MO.isDebug())
1489       continue;
1490 
1491     unsigned Reg = MO.getReg();
1492     if (!Reg)
1493       continue;
1494 
1495     if (Reg == IncomingReg) {
1496       if (!Found) {
1497         if (MO.isKill())
1498           // The register is already marked kill.
1499           return true;
1500         if (isPhysReg && isRegTiedToDefOperand(i))
1501           // Two-address uses of physregs must not be marked kill.
1502           return true;
1503         MO.setIsKill();
1504         Found = true;
1505       }
1506     } else if (hasAliases && MO.isKill() &&
1507                TargetRegisterInfo::isPhysicalRegister(Reg)) {
1508       // A super-register kill already exists.
1509       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1510         return true;
1511       if (RegInfo->isSubRegister(IncomingReg, Reg))
1512         DeadOps.push_back(i);
1513     }
1514   }
1515 
1516   // Trim unneeded kill operands.
1517   while (!DeadOps.empty()) {
1518     unsigned OpIdx = DeadOps.back();
1519     if (getOperand(OpIdx).isImplicit())
1520       RemoveOperand(OpIdx);
1521     else
1522       getOperand(OpIdx).setIsKill(false);
1523     DeadOps.pop_back();
1524   }
1525 
1526   // If not found, this means an alias of one of the operands is killed. Add a
1527   // new implicit operand if required.
1528   if (!Found && AddIfNotFound) {
1529     addOperand(MachineOperand::CreateReg(IncomingReg,
1530                                          false /*IsDef*/,
1531                                          true  /*IsImp*/,
1532                                          true  /*IsKill*/));
1533     return true;
1534   }
1535   return Found;
1536 }
1537 
1538 void MachineInstr::clearRegisterKills(unsigned Reg,
1539                                       const TargetRegisterInfo *RegInfo) {
1540   if (!TargetRegisterInfo::isPhysicalRegister(Reg))
1541     RegInfo = nullptr;
1542   for (MachineOperand &MO : operands()) {
1543     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1544       continue;
1545     unsigned OpReg = MO.getReg();
1546     if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
1547       MO.setIsKill(false);
1548   }
1549 }
1550 
1551 bool MachineInstr::addRegisterDead(unsigned Reg,
1552                                    const TargetRegisterInfo *RegInfo,
1553                                    bool AddIfNotFound) {
1554   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg);
1555   bool hasAliases = isPhysReg &&
1556     MCRegAliasIterator(Reg, RegInfo, false).isValid();
1557   bool Found = false;
1558   SmallVector<unsigned,4> DeadOps;
1559   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1560     MachineOperand &MO = getOperand(i);
1561     if (!MO.isReg() || !MO.isDef())
1562       continue;
1563     unsigned MOReg = MO.getReg();
1564     if (!MOReg)
1565       continue;
1566 
1567     if (MOReg == Reg) {
1568       MO.setIsDead();
1569       Found = true;
1570     } else if (hasAliases && MO.isDead() &&
1571                TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1572       // There exists a super-register that's marked dead.
1573       if (RegInfo->isSuperRegister(Reg, MOReg))
1574         return true;
1575       if (RegInfo->isSubRegister(Reg, MOReg))
1576         DeadOps.push_back(i);
1577     }
1578   }
1579 
1580   // Trim unneeded dead operands.
1581   while (!DeadOps.empty()) {
1582     unsigned OpIdx = DeadOps.back();
1583     if (getOperand(OpIdx).isImplicit())
1584       RemoveOperand(OpIdx);
1585     else
1586       getOperand(OpIdx).setIsDead(false);
1587     DeadOps.pop_back();
1588   }
1589 
1590   // If not found, this means an alias of one of the operands is dead. Add a
1591   // new implicit operand if required.
1592   if (Found || !AddIfNotFound)
1593     return Found;
1594 
1595   addOperand(MachineOperand::CreateReg(Reg,
1596                                        true  /*IsDef*/,
1597                                        true  /*IsImp*/,
1598                                        false /*IsKill*/,
1599                                        true  /*IsDead*/));
1600   return true;
1601 }
1602 
1603 void MachineInstr::clearRegisterDeads(unsigned Reg) {
1604   for (MachineOperand &MO : operands()) {
1605     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
1606       continue;
1607     MO.setIsDead(false);
1608   }
1609 }
1610 
1611 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) {
1612   for (MachineOperand &MO : operands()) {
1613     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
1614       continue;
1615     MO.setIsUndef(IsUndef);
1616   }
1617 }
1618 
1619 void MachineInstr::addRegisterDefined(unsigned Reg,
1620                                       const TargetRegisterInfo *RegInfo) {
1621   if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1622     MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo);
1623     if (MO)
1624       return;
1625   } else {
1626     for (const MachineOperand &MO : operands()) {
1627       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
1628           MO.getSubReg() == 0)
1629         return;
1630     }
1631   }
1632   addOperand(MachineOperand::CreateReg(Reg,
1633                                        true  /*IsDef*/,
1634                                        true  /*IsImp*/));
1635 }
1636 
1637 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
1638                                          const TargetRegisterInfo &TRI) {
1639   bool HasRegMask = false;
1640   for (MachineOperand &MO : operands()) {
1641     if (MO.isRegMask()) {
1642       HasRegMask = true;
1643       continue;
1644     }
1645     if (!MO.isReg() || !MO.isDef()) continue;
1646     unsigned Reg = MO.getReg();
1647     if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
1648     // If there are no uses, including partial uses, the def is dead.
1649     if (llvm::none_of(UsedRegs,
1650                       [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); }))
1651       MO.setIsDead();
1652   }
1653 
1654   // This is a call with a register mask operand.
1655   // Mask clobbers are always dead, so add defs for the non-dead defines.
1656   if (HasRegMask)
1657     for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
1658          I != E; ++I)
1659       addRegisterDefined(*I, &TRI);
1660 }
1661 
1662 unsigned
1663 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1664   // Build up a buffer of hash code components.
1665   SmallVector<size_t, 8> HashComponents;
1666   HashComponents.reserve(MI->getNumOperands() + 1);
1667   HashComponents.push_back(MI->getOpcode());
1668   for (const MachineOperand &MO : MI->operands()) {
1669     if (MO.isReg() && MO.isDef() &&
1670         TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1671       continue;  // Skip virtual register defs.
1672 
1673     HashComponents.push_back(hash_value(MO));
1674   }
1675   return hash_combine_range(HashComponents.begin(), HashComponents.end());
1676 }
1677 
1678 void MachineInstr::emitError(StringRef Msg) const {
1679   // Find the source location cookie.
1680   unsigned LocCookie = 0;
1681   const MDNode *LocMD = nullptr;
1682   for (unsigned i = getNumOperands(); i != 0; --i) {
1683     if (getOperand(i-1).isMetadata() &&
1684         (LocMD = getOperand(i-1).getMetadata()) &&
1685         LocMD->getNumOperands() != 0) {
1686       if (const ConstantInt *CI =
1687               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
1688         LocCookie = CI->getZExtValue();
1689         break;
1690       }
1691     }
1692   }
1693 
1694   if (const MachineBasicBlock *MBB = getParent())
1695     if (const MachineFunction *MF = MBB->getParent())
1696       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
1697   report_fatal_error(Msg);
1698 }
1699 
1700 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
1701                                   const MCInstrDesc &MCID, bool IsIndirect,
1702                                   unsigned Reg, const MDNode *Variable,
1703                                   const MDNode *Expr) {
1704   assert(isa<DILocalVariable>(Variable) && "not a variable");
1705   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
1706   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
1707          "Expected inlined-at fields to agree");
1708   if (IsIndirect)
1709     return BuildMI(MF, DL, MCID)
1710         .addReg(Reg, RegState::Debug)
1711         .addImm(0U)
1712         .addMetadata(Variable)
1713         .addMetadata(Expr);
1714   else
1715     return BuildMI(MF, DL, MCID)
1716         .addReg(Reg, RegState::Debug)
1717         .addReg(0U, RegState::Debug)
1718         .addMetadata(Variable)
1719         .addMetadata(Expr);
1720 }
1721 
1722 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
1723                                   MachineBasicBlock::iterator I,
1724                                   const DebugLoc &DL, const MCInstrDesc &MCID,
1725                                   bool IsIndirect, unsigned Reg,
1726                                   const MDNode *Variable, const MDNode *Expr) {
1727   assert(isa<DILocalVariable>(Variable) && "not a variable");
1728   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
1729   MachineFunction &MF = *BB.getParent();
1730   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
1731   BB.insert(I, MI);
1732   return MachineInstrBuilder(MF, MI);
1733 }
1734 
1735 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
1736 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
1737 static const DIExpression *computeExprForSpill(const MachineInstr &MI) {
1738   assert(MI.getOperand(0).isReg() && "can't spill non-register");
1739   assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
1740          "Expected inlined-at fields to agree");
1741 
1742   const DIExpression *Expr = MI.getDebugExpression();
1743   if (MI.isIndirectDebugValue()) {
1744     assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
1745     Expr = DIExpression::prepend(Expr, DIExpression::WithDeref);
1746   }
1747   return Expr;
1748 }
1749 
1750 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
1751                                           MachineBasicBlock::iterator I,
1752                                           const MachineInstr &Orig,
1753                                           int FrameIndex) {
1754   const DIExpression *Expr = computeExprForSpill(Orig);
1755   return BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc())
1756       .addFrameIndex(FrameIndex)
1757       .addImm(0U)
1758       .addMetadata(Orig.getDebugVariable())
1759       .addMetadata(Expr);
1760 }
1761 
1762 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex) {
1763   const DIExpression *Expr = computeExprForSpill(Orig);
1764   Orig.getOperand(0).ChangeToFrameIndex(FrameIndex);
1765   Orig.getOperand(1).ChangeToImmediate(0U);
1766   Orig.getOperand(3).setMetadata(Expr);
1767 }
1768