1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/Constants.h" 16 #include "llvm/Function.h" 17 #include "llvm/InlineAsm.h" 18 #include "llvm/Type.h" 19 #include "llvm/Value.h" 20 #include "llvm/Assembly/Writer.h" 21 #include "llvm/CodeGen/MachineConstantPool.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineMemOperand.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/PseudoSourceValue.h" 26 #include "llvm/Target/TargetMachine.h" 27 #include "llvm/Target/TargetInstrInfo.h" 28 #include "llvm/Target/TargetInstrDesc.h" 29 #include "llvm/Target/TargetRegisterInfo.h" 30 #include "llvm/Analysis/AliasAnalysis.h" 31 #include "llvm/Analysis/DebugInfo.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/LeakDetector.h" 35 #include "llvm/Support/MathExtras.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/ADT/FoldingSet.h" 38 #include "llvm/Metadata.h" 39 using namespace llvm; 40 41 //===----------------------------------------------------------------------===// 42 // MachineOperand Implementation 43 //===----------------------------------------------------------------------===// 44 45 /// AddRegOperandToRegInfo - Add this register operand to the specified 46 /// MachineRegisterInfo. If it is null, then the next/prev fields should be 47 /// explicitly nulled out. 48 void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) { 49 assert(isReg() && "Can only add reg operand to use lists"); 50 51 // If the reginfo pointer is null, just explicitly null out or next/prev 52 // pointers, to ensure they are not garbage. 53 if (RegInfo == 0) { 54 Contents.Reg.Prev = 0; 55 Contents.Reg.Next = 0; 56 return; 57 } 58 59 // Otherwise, add this operand to the head of the registers use/def list. 60 MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg()); 61 62 // For SSA values, we prefer to keep the definition at the start of the list. 63 // we do this by skipping over the definition if it is at the head of the 64 // list. 65 if (*Head && (*Head)->isDef()) 66 Head = &(*Head)->Contents.Reg.Next; 67 68 Contents.Reg.Next = *Head; 69 if (Contents.Reg.Next) { 70 assert(getReg() == Contents.Reg.Next->getReg() && 71 "Different regs on the same list!"); 72 Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next; 73 } 74 75 Contents.Reg.Prev = Head; 76 *Head = this; 77 } 78 79 /// RemoveRegOperandFromRegInfo - Remove this register operand from the 80 /// MachineRegisterInfo it is linked with. 81 void MachineOperand::RemoveRegOperandFromRegInfo() { 82 assert(isOnRegUseList() && "Reg operand is not on a use list"); 83 // Unlink this from the doubly linked list of operands. 84 MachineOperand *NextOp = Contents.Reg.Next; 85 *Contents.Reg.Prev = NextOp; 86 if (NextOp) { 87 assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!"); 88 NextOp->Contents.Reg.Prev = Contents.Reg.Prev; 89 } 90 Contents.Reg.Prev = 0; 91 Contents.Reg.Next = 0; 92 } 93 94 void MachineOperand::setReg(unsigned Reg) { 95 if (getReg() == Reg) return; // No change. 96 97 // Otherwise, we have to change the register. If this operand is embedded 98 // into a machine function, we need to update the old and new register's 99 // use/def lists. 100 if (MachineInstr *MI = getParent()) 101 if (MachineBasicBlock *MBB = MI->getParent()) 102 if (MachineFunction *MF = MBB->getParent()) { 103 RemoveRegOperandFromRegInfo(); 104 Contents.Reg.RegNo = Reg; 105 AddRegOperandToRegInfo(&MF->getRegInfo()); 106 return; 107 } 108 109 // Otherwise, just change the register, no problem. :) 110 Contents.Reg.RegNo = Reg; 111 } 112 113 /// ChangeToImmediate - Replace this operand with a new immediate operand of 114 /// the specified value. If an operand is known to be an immediate already, 115 /// the setImm method should be used. 116 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 117 // If this operand is currently a register operand, and if this is in a 118 // function, deregister the operand from the register's use/def list. 119 if (isReg() && getParent() && getParent()->getParent() && 120 getParent()->getParent()->getParent()) 121 RemoveRegOperandFromRegInfo(); 122 123 OpKind = MO_Immediate; 124 Contents.ImmVal = ImmVal; 125 } 126 127 /// ChangeToRegister - Replace this operand with a new register operand of 128 /// the specified value. If an operand is known to be an register already, 129 /// the setReg method should be used. 130 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 131 bool isKill, bool isDead, bool isUndef, 132 bool isDebug) { 133 // If this operand is already a register operand, use setReg to update the 134 // register's use/def lists. 135 if (isReg()) { 136 assert(!isEarlyClobber()); 137 setReg(Reg); 138 } else { 139 // Otherwise, change this to a register and set the reg#. 140 OpKind = MO_Register; 141 Contents.Reg.RegNo = Reg; 142 143 // If this operand is embedded in a function, add the operand to the 144 // register's use/def list. 145 if (MachineInstr *MI = getParent()) 146 if (MachineBasicBlock *MBB = MI->getParent()) 147 if (MachineFunction *MF = MBB->getParent()) 148 AddRegOperandToRegInfo(&MF->getRegInfo()); 149 } 150 151 IsDef = isDef; 152 IsImp = isImp; 153 IsKill = isKill; 154 IsDead = isDead; 155 IsUndef = isUndef; 156 IsEarlyClobber = false; 157 IsDebug = isDebug; 158 SubReg = 0; 159 } 160 161 /// isIdenticalTo - Return true if this operand is identical to the specified 162 /// operand. 163 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 164 if (getType() != Other.getType() || 165 getTargetFlags() != Other.getTargetFlags()) 166 return false; 167 168 switch (getType()) { 169 default: llvm_unreachable("Unrecognized operand type"); 170 case MachineOperand::MO_Register: 171 return getReg() == Other.getReg() && isDef() == Other.isDef() && 172 getSubReg() == Other.getSubReg(); 173 case MachineOperand::MO_Immediate: 174 return getImm() == Other.getImm(); 175 case MachineOperand::MO_FPImmediate: 176 return getFPImm() == Other.getFPImm(); 177 case MachineOperand::MO_MachineBasicBlock: 178 return getMBB() == Other.getMBB(); 179 case MachineOperand::MO_FrameIndex: 180 return getIndex() == Other.getIndex(); 181 case MachineOperand::MO_ConstantPoolIndex: 182 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 183 case MachineOperand::MO_JumpTableIndex: 184 return getIndex() == Other.getIndex(); 185 case MachineOperand::MO_GlobalAddress: 186 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 187 case MachineOperand::MO_ExternalSymbol: 188 return !strcmp(getSymbolName(), Other.getSymbolName()) && 189 getOffset() == Other.getOffset(); 190 case MachineOperand::MO_BlockAddress: 191 return getBlockAddress() == Other.getBlockAddress(); 192 } 193 } 194 195 /// print - Print the specified machine operand. 196 /// 197 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const { 198 // If the instruction is embedded into a basic block, we can find the 199 // target info for the instruction. 200 if (!TM) 201 if (const MachineInstr *MI = getParent()) 202 if (const MachineBasicBlock *MBB = MI->getParent()) 203 if (const MachineFunction *MF = MBB->getParent()) 204 TM = &MF->getTarget(); 205 206 switch (getType()) { 207 case MachineOperand::MO_Register: 208 if (getReg() == 0 || TargetRegisterInfo::isVirtualRegister(getReg())) { 209 OS << "%reg" << getReg(); 210 } else { 211 if (TM) 212 OS << "%" << TM->getRegisterInfo()->get(getReg()).Name; 213 else 214 OS << "%physreg" << getReg(); 215 } 216 217 if (getSubReg() != 0) 218 OS << ':' << getSubReg(); 219 220 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 221 isEarlyClobber()) { 222 OS << '<'; 223 bool NeedComma = false; 224 if (isDef()) { 225 if (NeedComma) OS << ','; 226 if (isEarlyClobber()) 227 OS << "earlyclobber,"; 228 if (isImplicit()) 229 OS << "imp-"; 230 OS << "def"; 231 NeedComma = true; 232 } else if (isImplicit()) { 233 OS << "imp-use"; 234 NeedComma = true; 235 } 236 237 if (isKill() || isDead() || isUndef()) { 238 if (NeedComma) OS << ','; 239 if (isKill()) OS << "kill"; 240 if (isDead()) OS << "dead"; 241 if (isUndef()) { 242 if (isKill() || isDead()) 243 OS << ','; 244 OS << "undef"; 245 } 246 } 247 OS << '>'; 248 } 249 break; 250 case MachineOperand::MO_Immediate: 251 OS << getImm(); 252 break; 253 case MachineOperand::MO_FPImmediate: 254 if (getFPImm()->getType()->isFloatTy()) 255 OS << getFPImm()->getValueAPF().convertToFloat(); 256 else 257 OS << getFPImm()->getValueAPF().convertToDouble(); 258 break; 259 case MachineOperand::MO_MachineBasicBlock: 260 OS << "<BB#" << getMBB()->getNumber() << ">"; 261 break; 262 case MachineOperand::MO_FrameIndex: 263 OS << "<fi#" << getIndex() << '>'; 264 break; 265 case MachineOperand::MO_ConstantPoolIndex: 266 OS << "<cp#" << getIndex(); 267 if (getOffset()) OS << "+" << getOffset(); 268 OS << '>'; 269 break; 270 case MachineOperand::MO_JumpTableIndex: 271 OS << "<jt#" << getIndex() << '>'; 272 break; 273 case MachineOperand::MO_GlobalAddress: 274 OS << "<ga:"; 275 WriteAsOperand(OS, getGlobal(), /*PrintType=*/false); 276 if (getOffset()) OS << "+" << getOffset(); 277 OS << '>'; 278 break; 279 case MachineOperand::MO_ExternalSymbol: 280 OS << "<es:" << getSymbolName(); 281 if (getOffset()) OS << "+" << getOffset(); 282 OS << '>'; 283 break; 284 case MachineOperand::MO_BlockAddress: 285 OS << '<'; 286 WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false); 287 OS << '>'; 288 break; 289 case MachineOperand::MO_Metadata: 290 OS << '<'; 291 WriteAsOperand(OS, getMetadata(), /*PrintType=*/false); 292 OS << '>'; 293 break; 294 default: 295 llvm_unreachable("Unrecognized operand type"); 296 } 297 298 if (unsigned TF = getTargetFlags()) 299 OS << "[TF=" << TF << ']'; 300 } 301 302 //===----------------------------------------------------------------------===// 303 // MachineMemOperand Implementation 304 //===----------------------------------------------------------------------===// 305 306 MachineMemOperand::MachineMemOperand(const Value *v, unsigned int f, 307 int64_t o, uint64_t s, unsigned int a) 308 : Offset(o), Size(s), V(v), 309 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)) { 310 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 311 assert((isLoad() || isStore()) && "Not a load/store!"); 312 } 313 314 /// Profile - Gather unique data for the object. 315 /// 316 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 317 ID.AddInteger(Offset); 318 ID.AddInteger(Size); 319 ID.AddPointer(V); 320 ID.AddInteger(Flags); 321 } 322 323 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 324 // The Value and Offset may differ due to CSE. But the flags and size 325 // should be the same. 326 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 327 assert(MMO->getSize() == getSize() && "Size mismatch!"); 328 329 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 330 // Update the alignment value. 331 Flags = (Flags & ((1 << MOMaxBits) - 1)) | 332 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits); 333 // Also update the base and offset, because the new alignment may 334 // not be applicable with the old ones. 335 V = MMO->getValue(); 336 Offset = MMO->getOffset(); 337 } 338 } 339 340 /// getAlignment - Return the minimum known alignment in bytes of the 341 /// actual memory reference. 342 uint64_t MachineMemOperand::getAlignment() const { 343 return MinAlign(getBaseAlignment(), getOffset()); 344 } 345 346 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) { 347 assert((MMO.isLoad() || MMO.isStore()) && 348 "SV has to be a load, store or both."); 349 350 if (MMO.isVolatile()) 351 OS << "Volatile "; 352 353 if (MMO.isLoad()) 354 OS << "LD"; 355 if (MMO.isStore()) 356 OS << "ST"; 357 OS << MMO.getSize(); 358 359 // Print the address information. 360 OS << "["; 361 if (!MMO.getValue()) 362 OS << "<unknown>"; 363 else 364 WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false); 365 366 // If the alignment of the memory reference itself differs from the alignment 367 // of the base pointer, print the base alignment explicitly, next to the base 368 // pointer. 369 if (MMO.getBaseAlignment() != MMO.getAlignment()) 370 OS << "(align=" << MMO.getBaseAlignment() << ")"; 371 372 if (MMO.getOffset() != 0) 373 OS << "+" << MMO.getOffset(); 374 OS << "]"; 375 376 // Print the alignment of the reference. 377 if (MMO.getBaseAlignment() != MMO.getAlignment() || 378 MMO.getBaseAlignment() != MMO.getSize()) 379 OS << "(align=" << MMO.getAlignment() << ")"; 380 381 return OS; 382 } 383 384 //===----------------------------------------------------------------------===// 385 // MachineInstr Implementation 386 //===----------------------------------------------------------------------===// 387 388 /// MachineInstr ctor - This constructor creates a dummy MachineInstr with 389 /// TID NULL and no operands. 390 MachineInstr::MachineInstr() 391 : TID(0), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0), 392 Parent(0), debugLoc(DebugLoc::getUnknownLoc()) { 393 // Make sure that we get added to a machine basicblock 394 LeakDetector::addGarbageObject(this); 395 } 396 397 void MachineInstr::addImplicitDefUseOperands() { 398 if (TID->ImplicitDefs) 399 for (const unsigned *ImpDefs = TID->ImplicitDefs; *ImpDefs; ++ImpDefs) 400 addOperand(MachineOperand::CreateReg(*ImpDefs, true, true)); 401 if (TID->ImplicitUses) 402 for (const unsigned *ImpUses = TID->ImplicitUses; *ImpUses; ++ImpUses) 403 addOperand(MachineOperand::CreateReg(*ImpUses, false, true)); 404 } 405 406 /// MachineInstr ctor - This constructor create a MachineInstr and add the 407 /// implicit operands. It reserves space for number of operands specified by 408 /// TargetInstrDesc or the numOperands if it is not zero. (for 409 /// instructions with variable number of operands). 410 MachineInstr::MachineInstr(const TargetInstrDesc &tid, bool NoImp) 411 : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0), 412 MemRefs(0), MemRefsEnd(0), Parent(0), 413 debugLoc(DebugLoc::getUnknownLoc()) { 414 if (!NoImp && TID->getImplicitDefs()) 415 for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs) 416 NumImplicitOps++; 417 if (!NoImp && TID->getImplicitUses()) 418 for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses) 419 NumImplicitOps++; 420 Operands.reserve(NumImplicitOps + TID->getNumOperands()); 421 if (!NoImp) 422 addImplicitDefUseOperands(); 423 // Make sure that we get added to a machine basicblock 424 LeakDetector::addGarbageObject(this); 425 } 426 427 /// MachineInstr ctor - As above, but with a DebugLoc. 428 MachineInstr::MachineInstr(const TargetInstrDesc &tid, const DebugLoc dl, 429 bool NoImp) 430 : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0), 431 Parent(0), debugLoc(dl) { 432 if (!NoImp && TID->getImplicitDefs()) 433 for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs) 434 NumImplicitOps++; 435 if (!NoImp && TID->getImplicitUses()) 436 for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses) 437 NumImplicitOps++; 438 Operands.reserve(NumImplicitOps + TID->getNumOperands()); 439 if (!NoImp) 440 addImplicitDefUseOperands(); 441 // Make sure that we get added to a machine basicblock 442 LeakDetector::addGarbageObject(this); 443 } 444 445 /// MachineInstr ctor - Work exactly the same as the ctor two above, except 446 /// that the MachineInstr is created and added to the end of the specified 447 /// basic block. 448 /// 449 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const TargetInstrDesc &tid) 450 : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0), 451 MemRefs(0), MemRefsEnd(0), Parent(0), 452 debugLoc(DebugLoc::getUnknownLoc()) { 453 assert(MBB && "Cannot use inserting ctor with null basic block!"); 454 if (TID->ImplicitDefs) 455 for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs) 456 NumImplicitOps++; 457 if (TID->ImplicitUses) 458 for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses) 459 NumImplicitOps++; 460 Operands.reserve(NumImplicitOps + TID->getNumOperands()); 461 addImplicitDefUseOperands(); 462 // Make sure that we get added to a machine basicblock 463 LeakDetector::addGarbageObject(this); 464 MBB->push_back(this); // Add instruction to end of basic block! 465 } 466 467 /// MachineInstr ctor - As above, but with a DebugLoc. 468 /// 469 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl, 470 const TargetInstrDesc &tid) 471 : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0), 472 Parent(0), debugLoc(dl) { 473 assert(MBB && "Cannot use inserting ctor with null basic block!"); 474 if (TID->ImplicitDefs) 475 for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs) 476 NumImplicitOps++; 477 if (TID->ImplicitUses) 478 for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses) 479 NumImplicitOps++; 480 Operands.reserve(NumImplicitOps + TID->getNumOperands()); 481 addImplicitDefUseOperands(); 482 // Make sure that we get added to a machine basicblock 483 LeakDetector::addGarbageObject(this); 484 MBB->push_back(this); // Add instruction to end of basic block! 485 } 486 487 /// MachineInstr ctor - Copies MachineInstr arg exactly 488 /// 489 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 490 : TID(&MI.getDesc()), NumImplicitOps(0), AsmPrinterFlags(0), 491 MemRefs(MI.MemRefs), MemRefsEnd(MI.MemRefsEnd), 492 Parent(0), debugLoc(MI.getDebugLoc()) { 493 Operands.reserve(MI.getNumOperands()); 494 495 // Add operands 496 for (unsigned i = 0; i != MI.getNumOperands(); ++i) 497 addOperand(MI.getOperand(i)); 498 NumImplicitOps = MI.NumImplicitOps; 499 500 // Set parent to null. 501 Parent = 0; 502 503 LeakDetector::addGarbageObject(this); 504 } 505 506 MachineInstr::~MachineInstr() { 507 LeakDetector::removeGarbageObject(this); 508 #ifndef NDEBUG 509 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 510 assert(Operands[i].ParentMI == this && "ParentMI mismatch!"); 511 assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) && 512 "Reg operand def/use list corrupted"); 513 } 514 #endif 515 } 516 517 /// getRegInfo - If this instruction is embedded into a MachineFunction, 518 /// return the MachineRegisterInfo object for the current function, otherwise 519 /// return null. 520 MachineRegisterInfo *MachineInstr::getRegInfo() { 521 if (MachineBasicBlock *MBB = getParent()) 522 return &MBB->getParent()->getRegInfo(); 523 return 0; 524 } 525 526 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 527 /// this instruction from their respective use lists. This requires that the 528 /// operands already be on their use lists. 529 void MachineInstr::RemoveRegOperandsFromUseLists() { 530 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 531 if (Operands[i].isReg()) 532 Operands[i].RemoveRegOperandFromRegInfo(); 533 } 534 } 535 536 /// AddRegOperandsToUseLists - Add all of the register operands in 537 /// this instruction from their respective use lists. This requires that the 538 /// operands not be on their use lists yet. 539 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) { 540 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 541 if (Operands[i].isReg()) 542 Operands[i].AddRegOperandToRegInfo(&RegInfo); 543 } 544 } 545 546 547 /// addOperand - Add the specified operand to the instruction. If it is an 548 /// implicit operand, it is added to the end of the operand list. If it is 549 /// an explicit operand it is added at the end of the explicit operand list 550 /// (before the first implicit operand). 551 void MachineInstr::addOperand(const MachineOperand &Op) { 552 bool isImpReg = Op.isReg() && Op.isImplicit(); 553 assert((isImpReg || !OperandsComplete()) && 554 "Trying to add an operand to a machine instr that is already done!"); 555 556 MachineRegisterInfo *RegInfo = getRegInfo(); 557 558 // If we are adding the operand to the end of the list, our job is simpler. 559 // This is true most of the time, so this is a reasonable optimization. 560 if (isImpReg || NumImplicitOps == 0) { 561 // We can only do this optimization if we know that the operand list won't 562 // reallocate. 563 if (Operands.empty() || Operands.size()+1 <= Operands.capacity()) { 564 Operands.push_back(Op); 565 566 // Set the parent of the operand. 567 Operands.back().ParentMI = this; 568 569 // If the operand is a register, update the operand's use list. 570 if (Op.isReg()) { 571 Operands.back().AddRegOperandToRegInfo(RegInfo); 572 // If the register operand is flagged as early, mark the operand as such 573 unsigned OpNo = Operands.size() - 1; 574 if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1) 575 Operands[OpNo].setIsEarlyClobber(true); 576 } 577 return; 578 } 579 } 580 581 // Otherwise, we have to insert a real operand before any implicit ones. 582 unsigned OpNo = Operands.size()-NumImplicitOps; 583 584 // If this instruction isn't embedded into a function, then we don't need to 585 // update any operand lists. 586 if (RegInfo == 0) { 587 // Simple insertion, no reginfo update needed for other register operands. 588 Operands.insert(Operands.begin()+OpNo, Op); 589 Operands[OpNo].ParentMI = this; 590 591 // Do explicitly set the reginfo for this operand though, to ensure the 592 // next/prev fields are properly nulled out. 593 if (Operands[OpNo].isReg()) { 594 Operands[OpNo].AddRegOperandToRegInfo(0); 595 // If the register operand is flagged as early, mark the operand as such 596 if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1) 597 Operands[OpNo].setIsEarlyClobber(true); 598 } 599 600 } else if (Operands.size()+1 <= Operands.capacity()) { 601 // Otherwise, we have to remove register operands from their register use 602 // list, add the operand, then add the register operands back to their use 603 // list. This also must handle the case when the operand list reallocates 604 // to somewhere else. 605 606 // If insertion of this operand won't cause reallocation of the operand 607 // list, just remove the implicit operands, add the operand, then re-add all 608 // the rest of the operands. 609 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 610 assert(Operands[i].isReg() && "Should only be an implicit reg!"); 611 Operands[i].RemoveRegOperandFromRegInfo(); 612 } 613 614 // Add the operand. If it is a register, add it to the reg list. 615 Operands.insert(Operands.begin()+OpNo, Op); 616 Operands[OpNo].ParentMI = this; 617 618 if (Operands[OpNo].isReg()) { 619 Operands[OpNo].AddRegOperandToRegInfo(RegInfo); 620 // If the register operand is flagged as early, mark the operand as such 621 if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1) 622 Operands[OpNo].setIsEarlyClobber(true); 623 } 624 625 // Re-add all the implicit ops. 626 for (unsigned i = OpNo+1, e = Operands.size(); i != e; ++i) { 627 assert(Operands[i].isReg() && "Should only be an implicit reg!"); 628 Operands[i].AddRegOperandToRegInfo(RegInfo); 629 } 630 } else { 631 // Otherwise, we will be reallocating the operand list. Remove all reg 632 // operands from their list, then readd them after the operand list is 633 // reallocated. 634 RemoveRegOperandsFromUseLists(); 635 636 Operands.insert(Operands.begin()+OpNo, Op); 637 Operands[OpNo].ParentMI = this; 638 639 // Re-add all the operands. 640 AddRegOperandsToUseLists(*RegInfo); 641 642 // If the register operand is flagged as early, mark the operand as such 643 if (Operands[OpNo].isReg() 644 && TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1) 645 Operands[OpNo].setIsEarlyClobber(true); 646 } 647 } 648 649 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 650 /// fewer operand than it started with. 651 /// 652 void MachineInstr::RemoveOperand(unsigned OpNo) { 653 assert(OpNo < Operands.size() && "Invalid operand number"); 654 655 // Special case removing the last one. 656 if (OpNo == Operands.size()-1) { 657 // If needed, remove from the reg def/use list. 658 if (Operands.back().isReg() && Operands.back().isOnRegUseList()) 659 Operands.back().RemoveRegOperandFromRegInfo(); 660 661 Operands.pop_back(); 662 return; 663 } 664 665 // Otherwise, we are removing an interior operand. If we have reginfo to 666 // update, remove all operands that will be shifted down from their reg lists, 667 // move everything down, then re-add them. 668 MachineRegisterInfo *RegInfo = getRegInfo(); 669 if (RegInfo) { 670 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 671 if (Operands[i].isReg()) 672 Operands[i].RemoveRegOperandFromRegInfo(); 673 } 674 } 675 676 Operands.erase(Operands.begin()+OpNo); 677 678 if (RegInfo) { 679 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 680 if (Operands[i].isReg()) 681 Operands[i].AddRegOperandToRegInfo(RegInfo); 682 } 683 } 684 } 685 686 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 687 /// This function should be used only occasionally. The setMemRefs function 688 /// is the primary method for setting up a MachineInstr's MemRefs list. 689 void MachineInstr::addMemOperand(MachineFunction &MF, 690 MachineMemOperand *MO) { 691 mmo_iterator OldMemRefs = MemRefs; 692 mmo_iterator OldMemRefsEnd = MemRefsEnd; 693 694 size_t NewNum = (MemRefsEnd - MemRefs) + 1; 695 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 696 mmo_iterator NewMemRefsEnd = NewMemRefs + NewNum; 697 698 std::copy(OldMemRefs, OldMemRefsEnd, NewMemRefs); 699 NewMemRefs[NewNum - 1] = MO; 700 701 MemRefs = NewMemRefs; 702 MemRefsEnd = NewMemRefsEnd; 703 } 704 705 bool MachineInstr::isIdenticalTo(const MachineInstr *Other, 706 MICheckType Check) const { 707 if (Other->getOpcode() != getOpcode() || 708 Other->getNumOperands() != getNumOperands()) 709 return false; 710 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 711 const MachineOperand &MO = getOperand(i); 712 const MachineOperand &OMO = Other->getOperand(i); 713 if (Check != CheckDefs && MO.isReg() && MO.isDef()) { 714 if (Check == IgnoreDefs) 715 continue; 716 // Check == IgnoreVRegDefs 717 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 718 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 719 if (MO.getReg() != OMO.getReg()) 720 return false; 721 } else if (!MO.isIdenticalTo(OMO)) 722 return false; 723 } 724 return true; 725 } 726 727 /// removeFromParent - This method unlinks 'this' from the containing basic 728 /// block, and returns it, but does not delete it. 729 MachineInstr *MachineInstr::removeFromParent() { 730 assert(getParent() && "Not embedded in a basic block!"); 731 getParent()->remove(this); 732 return this; 733 } 734 735 736 /// eraseFromParent - This method unlinks 'this' from the containing basic 737 /// block, and deletes it. 738 void MachineInstr::eraseFromParent() { 739 assert(getParent() && "Not embedded in a basic block!"); 740 getParent()->erase(this); 741 } 742 743 744 /// OperandComplete - Return true if it's illegal to add a new operand 745 /// 746 bool MachineInstr::OperandsComplete() const { 747 unsigned short NumOperands = TID->getNumOperands(); 748 if (!TID->isVariadic() && getNumOperands()-NumImplicitOps >= NumOperands) 749 return true; // Broken: we have all the operands of this instruction! 750 return false; 751 } 752 753 /// getNumExplicitOperands - Returns the number of non-implicit operands. 754 /// 755 unsigned MachineInstr::getNumExplicitOperands() const { 756 unsigned NumOperands = TID->getNumOperands(); 757 if (!TID->isVariadic()) 758 return NumOperands; 759 760 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 761 const MachineOperand &MO = getOperand(i); 762 if (!MO.isReg() || !MO.isImplicit()) 763 NumOperands++; 764 } 765 return NumOperands; 766 } 767 768 769 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 770 /// the specific register or -1 if it is not found. It further tightens 771 /// the search criteria to a use that kills the register if isKill is true. 772 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, 773 const TargetRegisterInfo *TRI) const { 774 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 775 const MachineOperand &MO = getOperand(i); 776 if (!MO.isReg() || !MO.isUse()) 777 continue; 778 unsigned MOReg = MO.getReg(); 779 if (!MOReg) 780 continue; 781 if (MOReg == Reg || 782 (TRI && 783 TargetRegisterInfo::isPhysicalRegister(MOReg) && 784 TargetRegisterInfo::isPhysicalRegister(Reg) && 785 TRI->isSubRegister(MOReg, Reg))) 786 if (!isKill || MO.isKill()) 787 return i; 788 } 789 return -1; 790 } 791 792 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 793 /// the specified register or -1 if it is not found. If isDead is true, defs 794 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 795 /// also checks if there is a def of a super-register. 796 int MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, 797 const TargetRegisterInfo *TRI) const { 798 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 799 const MachineOperand &MO = getOperand(i); 800 if (!MO.isReg() || !MO.isDef()) 801 continue; 802 unsigned MOReg = MO.getReg(); 803 if (MOReg == Reg || 804 (TRI && 805 TargetRegisterInfo::isPhysicalRegister(MOReg) && 806 TargetRegisterInfo::isPhysicalRegister(Reg) && 807 TRI->isSubRegister(MOReg, Reg))) 808 if (!isDead || MO.isDead()) 809 return i; 810 } 811 return -1; 812 } 813 814 /// findFirstPredOperandIdx() - Find the index of the first operand in the 815 /// operand list that is used to represent the predicate. It returns -1 if 816 /// none is found. 817 int MachineInstr::findFirstPredOperandIdx() const { 818 const TargetInstrDesc &TID = getDesc(); 819 if (TID.isPredicable()) { 820 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 821 if (TID.OpInfo[i].isPredicate()) 822 return i; 823 } 824 825 return -1; 826 } 827 828 /// isRegTiedToUseOperand - Given the index of a register def operand, 829 /// check if the register def is tied to a source operand, due to either 830 /// two-address elimination or inline assembly constraints. Returns the 831 /// first tied use operand index by reference is UseOpIdx is not null. 832 bool MachineInstr:: 833 isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const { 834 if (isInlineAsm()) { 835 assert(DefOpIdx >= 2); 836 const MachineOperand &MO = getOperand(DefOpIdx); 837 if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0) 838 return false; 839 // Determine the actual operand index that corresponds to this index. 840 unsigned DefNo = 0; 841 unsigned DefPart = 0; 842 for (unsigned i = 1, e = getNumOperands(); i < e; ) { 843 const MachineOperand &FMO = getOperand(i); 844 // After the normal asm operands there may be additional imp-def regs. 845 if (!FMO.isImm()) 846 return false; 847 // Skip over this def. 848 unsigned NumOps = InlineAsm::getNumOperandRegisters(FMO.getImm()); 849 unsigned PrevDef = i + 1; 850 i = PrevDef + NumOps; 851 if (i > DefOpIdx) { 852 DefPart = DefOpIdx - PrevDef; 853 break; 854 } 855 ++DefNo; 856 } 857 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 858 const MachineOperand &FMO = getOperand(i); 859 if (!FMO.isImm()) 860 continue; 861 if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse()) 862 continue; 863 unsigned Idx; 864 if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) && 865 Idx == DefNo) { 866 if (UseOpIdx) 867 *UseOpIdx = (unsigned)i + 1 + DefPart; 868 return true; 869 } 870 } 871 return false; 872 } 873 874 assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!"); 875 const TargetInstrDesc &TID = getDesc(); 876 for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) { 877 const MachineOperand &MO = getOperand(i); 878 if (MO.isReg() && MO.isUse() && 879 TID.getOperandConstraint(i, TOI::TIED_TO) == (int)DefOpIdx) { 880 if (UseOpIdx) 881 *UseOpIdx = (unsigned)i; 882 return true; 883 } 884 } 885 return false; 886 } 887 888 /// isRegTiedToDefOperand - Return true if the operand of the specified index 889 /// is a register use and it is tied to an def operand. It also returns the def 890 /// operand index by reference. 891 bool MachineInstr:: 892 isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const { 893 if (isInlineAsm()) { 894 const MachineOperand &MO = getOperand(UseOpIdx); 895 if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0) 896 return false; 897 898 // Find the flag operand corresponding to UseOpIdx 899 unsigned FlagIdx, NumOps=0; 900 for (FlagIdx = 1; FlagIdx < UseOpIdx; FlagIdx += NumOps+1) { 901 const MachineOperand &UFMO = getOperand(FlagIdx); 902 // After the normal asm operands there may be additional imp-def regs. 903 if (!UFMO.isImm()) 904 return false; 905 NumOps = InlineAsm::getNumOperandRegisters(UFMO.getImm()); 906 assert(NumOps < getNumOperands() && "Invalid inline asm flag"); 907 if (UseOpIdx < FlagIdx+NumOps+1) 908 break; 909 } 910 if (FlagIdx >= UseOpIdx) 911 return false; 912 const MachineOperand &UFMO = getOperand(FlagIdx); 913 unsigned DefNo; 914 if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) { 915 if (!DefOpIdx) 916 return true; 917 918 unsigned DefIdx = 1; 919 // Remember to adjust the index. First operand is asm string, then there 920 // is a flag for each. 921 while (DefNo) { 922 const MachineOperand &FMO = getOperand(DefIdx); 923 assert(FMO.isImm()); 924 // Skip over this def. 925 DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1; 926 --DefNo; 927 } 928 *DefOpIdx = DefIdx + UseOpIdx - FlagIdx; 929 return true; 930 } 931 return false; 932 } 933 934 const TargetInstrDesc &TID = getDesc(); 935 if (UseOpIdx >= TID.getNumOperands()) 936 return false; 937 const MachineOperand &MO = getOperand(UseOpIdx); 938 if (!MO.isReg() || !MO.isUse()) 939 return false; 940 int DefIdx = TID.getOperandConstraint(UseOpIdx, TOI::TIED_TO); 941 if (DefIdx == -1) 942 return false; 943 if (DefOpIdx) 944 *DefOpIdx = (unsigned)DefIdx; 945 return true; 946 } 947 948 /// copyKillDeadInfo - Copies kill / dead operand properties from MI. 949 /// 950 void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) { 951 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 952 const MachineOperand &MO = MI->getOperand(i); 953 if (!MO.isReg() || (!MO.isKill() && !MO.isDead())) 954 continue; 955 for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) { 956 MachineOperand &MOp = getOperand(j); 957 if (!MOp.isIdenticalTo(MO)) 958 continue; 959 if (MO.isKill()) 960 MOp.setIsKill(); 961 else 962 MOp.setIsDead(); 963 break; 964 } 965 } 966 } 967 968 /// copyPredicates - Copies predicate operand(s) from MI. 969 void MachineInstr::copyPredicates(const MachineInstr *MI) { 970 const TargetInstrDesc &TID = MI->getDesc(); 971 if (!TID.isPredicable()) 972 return; 973 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 974 if (TID.OpInfo[i].isPredicate()) { 975 // Predicated operands must be last operands. 976 addOperand(MI->getOperand(i)); 977 } 978 } 979 } 980 981 /// isSafeToMove - Return true if it is safe to move this instruction. If 982 /// SawStore is set to true, it means that there is a store (or call) between 983 /// the instruction's location and its intended destination. 984 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII, 985 AliasAnalysis *AA, 986 bool &SawStore) const { 987 // Ignore stuff that we obviously can't move. 988 if (TID->mayStore() || TID->isCall()) { 989 SawStore = true; 990 return false; 991 } 992 if (TID->isTerminator() || TID->hasUnmodeledSideEffects()) 993 return false; 994 995 // See if this instruction does a load. If so, we have to guarantee that the 996 // loaded value doesn't change between the load and the its intended 997 // destination. The check for isInvariantLoad gives the targe the chance to 998 // classify the load as always returning a constant, e.g. a constant pool 999 // load. 1000 if (TID->mayLoad() && !isInvariantLoad(AA)) 1001 // Otherwise, this is a real load. If there is a store between the load and 1002 // end of block, or if the load is volatile, we can't move it. 1003 return !SawStore && !hasVolatileMemoryRef(); 1004 1005 return true; 1006 } 1007 1008 /// isSafeToReMat - Return true if it's safe to rematerialize the specified 1009 /// instruction which defined the specified register instead of copying it. 1010 bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII, 1011 AliasAnalysis *AA, 1012 unsigned DstReg) const { 1013 bool SawStore = false; 1014 if (!TII->isTriviallyReMaterializable(this, AA) || 1015 !isSafeToMove(TII, AA, SawStore)) 1016 return false; 1017 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1018 const MachineOperand &MO = getOperand(i); 1019 if (!MO.isReg()) 1020 continue; 1021 // FIXME: For now, do not remat any instruction with register operands. 1022 // Later on, we can loosen the restriction is the register operands have 1023 // not been modified between the def and use. Note, this is different from 1024 // MachineSink because the code is no longer in two-address form (at least 1025 // partially). 1026 if (MO.isUse()) 1027 return false; 1028 else if (!MO.isDead() && MO.getReg() != DstReg) 1029 return false; 1030 } 1031 return true; 1032 } 1033 1034 /// hasVolatileMemoryRef - Return true if this instruction may have a 1035 /// volatile memory reference, or if the information describing the 1036 /// memory reference is not available. Return false if it is known to 1037 /// have no volatile memory references. 1038 bool MachineInstr::hasVolatileMemoryRef() const { 1039 // An instruction known never to access memory won't have a volatile access. 1040 if (!TID->mayStore() && 1041 !TID->mayLoad() && 1042 !TID->isCall() && 1043 !TID->hasUnmodeledSideEffects()) 1044 return false; 1045 1046 // Otherwise, if the instruction has no memory reference information, 1047 // conservatively assume it wasn't preserved. 1048 if (memoperands_empty()) 1049 return true; 1050 1051 // Check the memory reference information for volatile references. 1052 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I) 1053 if ((*I)->isVolatile()) 1054 return true; 1055 1056 return false; 1057 } 1058 1059 /// isInvariantLoad - Return true if this instruction is loading from a 1060 /// location whose value is invariant across the function. For example, 1061 /// loading a value from the constant pool or from the argument area 1062 /// of a function if it does not change. This should only return true of 1063 /// *all* loads the instruction does are invariant (if it does multiple loads). 1064 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const { 1065 // If the instruction doesn't load at all, it isn't an invariant load. 1066 if (!TID->mayLoad()) 1067 return false; 1068 1069 // If the instruction has lost its memoperands, conservatively assume that 1070 // it may not be an invariant load. 1071 if (memoperands_empty()) 1072 return false; 1073 1074 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo(); 1075 1076 for (mmo_iterator I = memoperands_begin(), 1077 E = memoperands_end(); I != E; ++I) { 1078 if ((*I)->isVolatile()) return false; 1079 if ((*I)->isStore()) return false; 1080 1081 if (const Value *V = (*I)->getValue()) { 1082 // A load from a constant PseudoSourceValue is invariant. 1083 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) 1084 if (PSV->isConstant(MFI)) 1085 continue; 1086 // If we have an AliasAnalysis, ask it whether the memory is constant. 1087 if (AA && AA->pointsToConstantMemory(V)) 1088 continue; 1089 } 1090 1091 // Otherwise assume conservatively. 1092 return false; 1093 } 1094 1095 // Everything checks out. 1096 return true; 1097 } 1098 1099 /// isConstantValuePHI - If the specified instruction is a PHI that always 1100 /// merges together the same virtual register, return the register, otherwise 1101 /// return 0. 1102 unsigned MachineInstr::isConstantValuePHI() const { 1103 if (!isPHI()) 1104 return 0; 1105 assert(getNumOperands() >= 3 && 1106 "It's illegal to have a PHI without source operands"); 1107 1108 unsigned Reg = getOperand(1).getReg(); 1109 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1110 if (getOperand(i).getReg() != Reg) 1111 return 0; 1112 return Reg; 1113 } 1114 1115 void MachineInstr::dump() const { 1116 dbgs() << " " << *this; 1117 } 1118 1119 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const { 1120 // We can be a bit tidier if we know the TargetMachine and/or MachineFunction. 1121 const MachineFunction *MF = 0; 1122 if (const MachineBasicBlock *MBB = getParent()) { 1123 MF = MBB->getParent(); 1124 if (!TM && MF) 1125 TM = &MF->getTarget(); 1126 } 1127 1128 // Print explicitly defined operands on the left of an assignment syntax. 1129 unsigned StartOp = 0, e = getNumOperands(); 1130 for (; StartOp < e && getOperand(StartOp).isReg() && 1131 getOperand(StartOp).isDef() && 1132 !getOperand(StartOp).isImplicit(); 1133 ++StartOp) { 1134 if (StartOp != 0) OS << ", "; 1135 getOperand(StartOp).print(OS, TM); 1136 } 1137 1138 if (StartOp != 0) 1139 OS << " = "; 1140 1141 // Print the opcode name. 1142 OS << getDesc().getName(); 1143 1144 // Print the rest of the operands. 1145 bool OmittedAnyCallClobbers = false; 1146 bool FirstOp = true; 1147 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1148 const MachineOperand &MO = getOperand(i); 1149 1150 // Omit call-clobbered registers which aren't used anywhere. This makes 1151 // call instructions much less noisy on targets where calls clobber lots 1152 // of registers. Don't rely on MO.isDead() because we may be called before 1153 // LiveVariables is run, or we may be looking at a non-allocatable reg. 1154 if (MF && getDesc().isCall() && 1155 MO.isReg() && MO.isImplicit() && MO.isDef()) { 1156 unsigned Reg = MO.getReg(); 1157 if (Reg != 0 && TargetRegisterInfo::isPhysicalRegister(Reg)) { 1158 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1159 if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) { 1160 bool HasAliasLive = false; 1161 for (const unsigned *Alias = TM->getRegisterInfo()->getAliasSet(Reg); 1162 unsigned AliasReg = *Alias; ++Alias) 1163 if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) { 1164 HasAliasLive = true; 1165 break; 1166 } 1167 if (!HasAliasLive) { 1168 OmittedAnyCallClobbers = true; 1169 continue; 1170 } 1171 } 1172 } 1173 } 1174 1175 if (FirstOp) FirstOp = false; else OS << ","; 1176 OS << " "; 1177 if (i < getDesc().NumOperands) { 1178 const TargetOperandInfo &TOI = getDesc().OpInfo[i]; 1179 if (TOI.isPredicate()) 1180 OS << "pred:"; 1181 if (TOI.isOptionalDef()) 1182 OS << "opt:"; 1183 } 1184 MO.print(OS, TM); 1185 } 1186 1187 // Briefly indicate whether any call clobbers were omitted. 1188 if (OmittedAnyCallClobbers) { 1189 if (!FirstOp) OS << ","; 1190 OS << " ..."; 1191 } 1192 1193 bool HaveSemi = false; 1194 if (!memoperands_empty()) { 1195 if (!HaveSemi) OS << ";"; HaveSemi = true; 1196 1197 OS << " mem:"; 1198 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 1199 i != e; ++i) { 1200 OS << **i; 1201 if (next(i) != e) 1202 OS << " "; 1203 } 1204 } 1205 1206 if (!debugLoc.isUnknown() && MF) { 1207 if (!HaveSemi) OS << ";"; 1208 1209 // TODO: print InlinedAtLoc information 1210 1211 DILocation DLT = MF->getDILocation(debugLoc); 1212 DIScope Scope = DLT.getScope(); 1213 OS << " dbg:"; 1214 // Omit the directory, since it's usually long and uninteresting. 1215 if (!Scope.isNull()) 1216 OS << Scope.getFilename(); 1217 else 1218 OS << "<unknown>"; 1219 OS << ':' << DLT.getLineNumber(); 1220 if (DLT.getColumnNumber() != 0) 1221 OS << ':' << DLT.getColumnNumber(); 1222 } 1223 1224 OS << "\n"; 1225 } 1226 1227 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 1228 const TargetRegisterInfo *RegInfo, 1229 bool AddIfNotFound) { 1230 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1231 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg); 1232 bool Found = false; 1233 SmallVector<unsigned,4> DeadOps; 1234 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1235 MachineOperand &MO = getOperand(i); 1236 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1237 continue; 1238 unsigned Reg = MO.getReg(); 1239 if (!Reg) 1240 continue; 1241 1242 if (Reg == IncomingReg) { 1243 if (!Found) { 1244 if (MO.isKill()) 1245 // The register is already marked kill. 1246 return true; 1247 if (isPhysReg && isRegTiedToDefOperand(i)) 1248 // Two-address uses of physregs must not be marked kill. 1249 return true; 1250 MO.setIsKill(); 1251 Found = true; 1252 } 1253 } else if (hasAliases && MO.isKill() && 1254 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1255 // A super-register kill already exists. 1256 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1257 return true; 1258 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1259 DeadOps.push_back(i); 1260 } 1261 } 1262 1263 // Trim unneeded kill operands. 1264 while (!DeadOps.empty()) { 1265 unsigned OpIdx = DeadOps.back(); 1266 if (getOperand(OpIdx).isImplicit()) 1267 RemoveOperand(OpIdx); 1268 else 1269 getOperand(OpIdx).setIsKill(false); 1270 DeadOps.pop_back(); 1271 } 1272 1273 // If not found, this means an alias of one of the operands is killed. Add a 1274 // new implicit operand if required. 1275 if (!Found && AddIfNotFound) { 1276 addOperand(MachineOperand::CreateReg(IncomingReg, 1277 false /*IsDef*/, 1278 true /*IsImp*/, 1279 true /*IsKill*/)); 1280 return true; 1281 } 1282 return Found; 1283 } 1284 1285 bool MachineInstr::addRegisterDead(unsigned IncomingReg, 1286 const TargetRegisterInfo *RegInfo, 1287 bool AddIfNotFound) { 1288 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1289 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg); 1290 bool Found = false; 1291 SmallVector<unsigned,4> DeadOps; 1292 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1293 MachineOperand &MO = getOperand(i); 1294 if (!MO.isReg() || !MO.isDef()) 1295 continue; 1296 unsigned Reg = MO.getReg(); 1297 if (!Reg) 1298 continue; 1299 1300 if (Reg == IncomingReg) { 1301 if (!Found) { 1302 if (MO.isDead()) 1303 // The register is already marked dead. 1304 return true; 1305 MO.setIsDead(); 1306 Found = true; 1307 } 1308 } else if (hasAliases && MO.isDead() && 1309 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1310 // There exists a super-register that's marked dead. 1311 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1312 return true; 1313 if (RegInfo->getSubRegisters(IncomingReg) && 1314 RegInfo->getSuperRegisters(Reg) && 1315 RegInfo->isSubRegister(IncomingReg, Reg)) 1316 DeadOps.push_back(i); 1317 } 1318 } 1319 1320 // Trim unneeded dead operands. 1321 while (!DeadOps.empty()) { 1322 unsigned OpIdx = DeadOps.back(); 1323 if (getOperand(OpIdx).isImplicit()) 1324 RemoveOperand(OpIdx); 1325 else 1326 getOperand(OpIdx).setIsDead(false); 1327 DeadOps.pop_back(); 1328 } 1329 1330 // If not found, this means an alias of one of the operands is dead. Add a 1331 // new implicit operand if required. 1332 if (Found || !AddIfNotFound) 1333 return Found; 1334 1335 addOperand(MachineOperand::CreateReg(IncomingReg, 1336 true /*IsDef*/, 1337 true /*IsImp*/, 1338 false /*IsKill*/, 1339 true /*IsDead*/)); 1340 return true; 1341 } 1342 1343 void MachineInstr::addRegisterDefined(unsigned IncomingReg, 1344 const TargetRegisterInfo *RegInfo) { 1345 MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo); 1346 if (!MO || MO->getSubReg()) 1347 addOperand(MachineOperand::CreateReg(IncomingReg, 1348 true /*IsDef*/, 1349 true /*IsImp*/)); 1350 } 1351