xref: /llvm-project/llvm/lib/CodeGen/MachineInstr.cpp (revision e85b06d65f695c576df1e529ee37cb15e6902401)
1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Methods common to all machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/FoldingSet.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallBitVector.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/Loads.h"
26 #include "llvm/Analysis/MemoryLocation.h"
27 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DebugInfoMetadata.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/InlineAsm.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/Metadata.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/IR/ModuleSlotTracker.h"
52 #include "llvm/IR/Type.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/MC/MCInstrDesc.h"
55 #include "llvm/MC/MCRegisterInfo.h"
56 #include "llvm/MC/MCSymbol.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Compiler.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/LowLevelTypeImpl.h"
63 #include "llvm/Support/MathExtras.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Target/TargetIntrinsicInfo.h"
66 #include "llvm/Target/TargetMachine.h"
67 #include <algorithm>
68 #include <cassert>
69 #include <cstddef>
70 #include <cstdint>
71 #include <cstring>
72 #include <iterator>
73 #include <utility>
74 
75 using namespace llvm;
76 
77 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
78   if (const MachineBasicBlock *MBB = MI.getParent())
79     if (const MachineFunction *MF = MBB->getParent())
80       return MF;
81   return nullptr;
82 }
83 
84 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
85 // it.
86 static void tryToGetTargetInfo(const MachineInstr &MI,
87                                const TargetRegisterInfo *&TRI,
88                                const MachineRegisterInfo *&MRI,
89                                const TargetIntrinsicInfo *&IntrinsicInfo,
90                                const TargetInstrInfo *&TII) {
91 
92   if (const MachineFunction *MF = getMFIfAvailable(MI)) {
93     TRI = MF->getSubtarget().getRegisterInfo();
94     MRI = &MF->getRegInfo();
95     IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
96     TII = MF->getSubtarget().getInstrInfo();
97   }
98 }
99 
100 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
101   if (MCID->ImplicitDefs)
102     for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
103            ++ImpDefs)
104       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
105   if (MCID->ImplicitUses)
106     for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
107            ++ImpUses)
108       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
109 }
110 
111 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
112 /// implicit operands. It reserves space for the number of operands specified by
113 /// the MCInstrDesc.
114 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
115                            DebugLoc dl, bool NoImp)
116     : MCID(&tid), debugLoc(std::move(dl)) {
117   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
118 
119   // Reserve space for the expected number of operands.
120   if (unsigned NumOps = MCID->getNumOperands() +
121     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
122     CapOperands = OperandCapacity::get(NumOps);
123     Operands = MF.allocateOperandArray(CapOperands);
124   }
125 
126   if (!NoImp)
127     addImplicitDefUseOperands(MF);
128 }
129 
130 /// MachineInstr ctor - Copies MachineInstr arg exactly
131 ///
132 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
133     : MCID(&MI.getDesc()), NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs),
134       debugLoc(MI.getDebugLoc()) {
135   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
136 
137   CapOperands = OperandCapacity::get(MI.getNumOperands());
138   Operands = MF.allocateOperandArray(CapOperands);
139 
140   // Copy operands.
141   for (const MachineOperand &MO : MI.operands())
142     addOperand(MF, MO);
143 
144   // Copy all the sensible flags.
145   setFlags(MI.Flags);
146 }
147 
148 /// getRegInfo - If this instruction is embedded into a MachineFunction,
149 /// return the MachineRegisterInfo object for the current function, otherwise
150 /// return null.
151 MachineRegisterInfo *MachineInstr::getRegInfo() {
152   if (MachineBasicBlock *MBB = getParent())
153     return &MBB->getParent()->getRegInfo();
154   return nullptr;
155 }
156 
157 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
158 /// this instruction from their respective use lists.  This requires that the
159 /// operands already be on their use lists.
160 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
161   for (MachineOperand &MO : operands())
162     if (MO.isReg())
163       MRI.removeRegOperandFromUseList(&MO);
164 }
165 
166 /// AddRegOperandsToUseLists - Add all of the register operands in
167 /// this instruction from their respective use lists.  This requires that the
168 /// operands not be on their use lists yet.
169 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
170   for (MachineOperand &MO : operands())
171     if (MO.isReg())
172       MRI.addRegOperandToUseList(&MO);
173 }
174 
175 void MachineInstr::addOperand(const MachineOperand &Op) {
176   MachineBasicBlock *MBB = getParent();
177   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
178   MachineFunction *MF = MBB->getParent();
179   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
180   addOperand(*MF, Op);
181 }
182 
183 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
184 /// ranges. If MRI is non-null also update use-def chains.
185 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
186                          unsigned NumOps, MachineRegisterInfo *MRI) {
187   if (MRI)
188     return MRI->moveOperands(Dst, Src, NumOps);
189 
190   // MachineOperand is a trivially copyable type so we can just use memmove.
191   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
192 }
193 
194 /// addOperand - Add the specified operand to the instruction.  If it is an
195 /// implicit operand, it is added to the end of the operand list.  If it is
196 /// an explicit operand it is added at the end of the explicit operand list
197 /// (before the first implicit operand).
198 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
199   assert(MCID && "Cannot add operands before providing an instr descriptor");
200 
201   // Check if we're adding one of our existing operands.
202   if (&Op >= Operands && &Op < Operands + NumOperands) {
203     // This is unusual: MI->addOperand(MI->getOperand(i)).
204     // If adding Op requires reallocating or moving existing operands around,
205     // the Op reference could go stale. Support it by copying Op.
206     MachineOperand CopyOp(Op);
207     return addOperand(MF, CopyOp);
208   }
209 
210   // Find the insert location for the new operand.  Implicit registers go at
211   // the end, everything else goes before the implicit regs.
212   //
213   // FIXME: Allow mixed explicit and implicit operands on inline asm.
214   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
215   // implicit-defs, but they must not be moved around.  See the FIXME in
216   // InstrEmitter.cpp.
217   unsigned OpNo = getNumOperands();
218   bool isImpReg = Op.isReg() && Op.isImplicit();
219   if (!isImpReg && !isInlineAsm()) {
220     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
221       --OpNo;
222       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
223     }
224   }
225 
226 #ifndef NDEBUG
227   bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata;
228   // OpNo now points as the desired insertion point.  Unless this is a variadic
229   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
230   // RegMask operands go between the explicit and implicit operands.
231   assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
232           OpNo < MCID->getNumOperands() || isMetaDataOp) &&
233          "Trying to add an operand to a machine instr that is already done!");
234 #endif
235 
236   MachineRegisterInfo *MRI = getRegInfo();
237 
238   // Determine if the Operands array needs to be reallocated.
239   // Save the old capacity and operand array.
240   OperandCapacity OldCap = CapOperands;
241   MachineOperand *OldOperands = Operands;
242   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
243     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
244     Operands = MF.allocateOperandArray(CapOperands);
245     // Move the operands before the insertion point.
246     if (OpNo)
247       moveOperands(Operands, OldOperands, OpNo, MRI);
248   }
249 
250   // Move the operands following the insertion point.
251   if (OpNo != NumOperands)
252     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
253                  MRI);
254   ++NumOperands;
255 
256   // Deallocate the old operand array.
257   if (OldOperands != Operands && OldOperands)
258     MF.deallocateOperandArray(OldCap, OldOperands);
259 
260   // Copy Op into place. It still needs to be inserted into the MRI use lists.
261   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
262   NewMO->ParentMI = this;
263 
264   // When adding a register operand, tell MRI about it.
265   if (NewMO->isReg()) {
266     // Ensure isOnRegUseList() returns false, regardless of Op's status.
267     NewMO->Contents.Reg.Prev = nullptr;
268     // Ignore existing ties. This is not a property that can be copied.
269     NewMO->TiedTo = 0;
270     // Add the new operand to MRI, but only for instructions in an MBB.
271     if (MRI)
272       MRI->addRegOperandToUseList(NewMO);
273     // The MCID operand information isn't accurate until we start adding
274     // explicit operands. The implicit operands are added first, then the
275     // explicits are inserted before them.
276     if (!isImpReg) {
277       // Tie uses to defs as indicated in MCInstrDesc.
278       if (NewMO->isUse()) {
279         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
280         if (DefIdx != -1)
281           tieOperands(DefIdx, OpNo);
282       }
283       // If the register operand is flagged as early, mark the operand as such.
284       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
285         NewMO->setIsEarlyClobber(true);
286     }
287   }
288 }
289 
290 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
291 /// fewer operand than it started with.
292 ///
293 void MachineInstr::RemoveOperand(unsigned OpNo) {
294   assert(OpNo < getNumOperands() && "Invalid operand number");
295   untieRegOperand(OpNo);
296 
297 #ifndef NDEBUG
298   // Moving tied operands would break the ties.
299   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
300     if (Operands[i].isReg())
301       assert(!Operands[i].isTied() && "Cannot move tied operands");
302 #endif
303 
304   MachineRegisterInfo *MRI = getRegInfo();
305   if (MRI && Operands[OpNo].isReg())
306     MRI->removeRegOperandFromUseList(Operands + OpNo);
307 
308   // Don't call the MachineOperand destructor. A lot of this code depends on
309   // MachineOperand having a trivial destructor anyway, and adding a call here
310   // wouldn't make it 'destructor-correct'.
311 
312   if (unsigned N = NumOperands - 1 - OpNo)
313     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
314   --NumOperands;
315 }
316 
317 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
318 /// This function should be used only occasionally. The setMemRefs function
319 /// is the primary method for setting up a MachineInstr's MemRefs list.
320 void MachineInstr::addMemOperand(MachineFunction &MF,
321                                  MachineMemOperand *MO) {
322   mmo_iterator OldMemRefs = MemRefs;
323   unsigned OldNumMemRefs = NumMemRefs;
324 
325   unsigned NewNum = NumMemRefs + 1;
326   mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
327 
328   std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs);
329   NewMemRefs[NewNum - 1] = MO;
330   setMemRefs(NewMemRefs, NewMemRefs + NewNum);
331 }
332 
333 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
334 /// identical.
335 static bool hasIdenticalMMOs(const MachineInstr &MI1, const MachineInstr &MI2) {
336   auto I1 = MI1.memoperands_begin(), E1 = MI1.memoperands_end();
337   auto I2 = MI2.memoperands_begin(), E2 = MI2.memoperands_end();
338   if ((E1 - I1) != (E2 - I2))
339     return false;
340   for (; I1 != E1; ++I1, ++I2) {
341     if (**I1 != **I2)
342       return false;
343   }
344   return true;
345 }
346 
347 std::pair<MachineInstr::mmo_iterator, unsigned>
348 MachineInstr::mergeMemRefsWith(const MachineInstr& Other) {
349 
350   // If either of the incoming memrefs are empty, we must be conservative and
351   // treat this as if we've exhausted our space for memrefs and dropped them.
352   if (memoperands_empty() || Other.memoperands_empty())
353     return std::make_pair(nullptr, 0);
354 
355   // If both instructions have identical memrefs, we don't need to merge them.
356   // Since many instructions have a single memref, and we tend to merge things
357   // like pairs of loads from the same location, this catches a large number of
358   // cases in practice.
359   if (hasIdenticalMMOs(*this, Other))
360     return std::make_pair(MemRefs, NumMemRefs);
361 
362   // TODO: consider uniquing elements within the operand lists to reduce
363   // space usage and fall back to conservative information less often.
364   size_t CombinedNumMemRefs = NumMemRefs + Other.NumMemRefs;
365 
366   // If we don't have enough room to store this many memrefs, be conservative
367   // and drop them.  Otherwise, we'd fail asserts when trying to add them to
368   // the new instruction.
369   if (CombinedNumMemRefs != uint8_t(CombinedNumMemRefs))
370     return std::make_pair(nullptr, 0);
371 
372   MachineFunction *MF = getMF();
373   mmo_iterator MemBegin = MF->allocateMemRefsArray(CombinedNumMemRefs);
374   mmo_iterator MemEnd = std::copy(memoperands_begin(), memoperands_end(),
375                                   MemBegin);
376   MemEnd = std::copy(Other.memoperands_begin(), Other.memoperands_end(),
377                      MemEnd);
378   assert(MemEnd - MemBegin == (ptrdiff_t)CombinedNumMemRefs &&
379          "missing memrefs");
380 
381   return std::make_pair(MemBegin, CombinedNumMemRefs);
382 }
383 
384 uint8_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
385   // For now, the just return the union of the flags. If the flags get more
386   // complicated over time, we might need more logic here.
387   return getFlags() | Other.getFlags();
388 }
389 
390 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const {
391   assert(!isBundledWithPred() && "Must be called on bundle header");
392   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
393     if (MII->getDesc().getFlags() & Mask) {
394       if (Type == AnyInBundle)
395         return true;
396     } else {
397       if (Type == AllInBundle && !MII->isBundle())
398         return false;
399     }
400     // This was the last instruction in the bundle.
401     if (!MII->isBundledWithSucc())
402       return Type == AllInBundle;
403   }
404 }
405 
406 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
407                                  MICheckType Check) const {
408   // If opcodes or number of operands are not the same then the two
409   // instructions are obviously not identical.
410   if (Other.getOpcode() != getOpcode() ||
411       Other.getNumOperands() != getNumOperands())
412     return false;
413 
414   if (isBundle()) {
415     // We have passed the test above that both instructions have the same
416     // opcode, so we know that both instructions are bundles here. Let's compare
417     // MIs inside the bundle.
418     assert(Other.isBundle() && "Expected that both instructions are bundles.");
419     MachineBasicBlock::const_instr_iterator I1 = getIterator();
420     MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
421     // Loop until we analysed the last intruction inside at least one of the
422     // bundles.
423     while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
424       ++I1;
425       ++I2;
426       if (!I1->isIdenticalTo(*I2, Check))
427         return false;
428     }
429     // If we've reached the end of just one of the two bundles, but not both,
430     // the instructions are not identical.
431     if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
432       return false;
433   }
434 
435   // Check operands to make sure they match.
436   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
437     const MachineOperand &MO = getOperand(i);
438     const MachineOperand &OMO = Other.getOperand(i);
439     if (!MO.isReg()) {
440       if (!MO.isIdenticalTo(OMO))
441         return false;
442       continue;
443     }
444 
445     // Clients may or may not want to ignore defs when testing for equality.
446     // For example, machine CSE pass only cares about finding common
447     // subexpressions, so it's safe to ignore virtual register defs.
448     if (MO.isDef()) {
449       if (Check == IgnoreDefs)
450         continue;
451       else if (Check == IgnoreVRegDefs) {
452         if (!TargetRegisterInfo::isVirtualRegister(MO.getReg()) ||
453             !TargetRegisterInfo::isVirtualRegister(OMO.getReg()))
454           if (!MO.isIdenticalTo(OMO))
455             return false;
456       } else {
457         if (!MO.isIdenticalTo(OMO))
458           return false;
459         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
460           return false;
461       }
462     } else {
463       if (!MO.isIdenticalTo(OMO))
464         return false;
465       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
466         return false;
467     }
468   }
469   // If DebugLoc does not match then two dbg.values are not identical.
470   if (isDebugValue())
471     if (getDebugLoc() && Other.getDebugLoc() &&
472         getDebugLoc() != Other.getDebugLoc())
473       return false;
474   return true;
475 }
476 
477 const MachineFunction *MachineInstr::getMF() const {
478   return getParent()->getParent();
479 }
480 
481 MachineInstr *MachineInstr::removeFromParent() {
482   assert(getParent() && "Not embedded in a basic block!");
483   return getParent()->remove(this);
484 }
485 
486 MachineInstr *MachineInstr::removeFromBundle() {
487   assert(getParent() && "Not embedded in a basic block!");
488   return getParent()->remove_instr(this);
489 }
490 
491 void MachineInstr::eraseFromParent() {
492   assert(getParent() && "Not embedded in a basic block!");
493   getParent()->erase(this);
494 }
495 
496 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
497   assert(getParent() && "Not embedded in a basic block!");
498   MachineBasicBlock *MBB = getParent();
499   MachineFunction *MF = MBB->getParent();
500   assert(MF && "Not embedded in a function!");
501 
502   MachineInstr *MI = (MachineInstr *)this;
503   MachineRegisterInfo &MRI = MF->getRegInfo();
504 
505   for (const MachineOperand &MO : MI->operands()) {
506     if (!MO.isReg() || !MO.isDef())
507       continue;
508     unsigned Reg = MO.getReg();
509     if (!TargetRegisterInfo::isVirtualRegister(Reg))
510       continue;
511     MRI.markUsesInDebugValueAsUndef(Reg);
512   }
513   MI->eraseFromParent();
514 }
515 
516 void MachineInstr::eraseFromBundle() {
517   assert(getParent() && "Not embedded in a basic block!");
518   getParent()->erase_instr(this);
519 }
520 
521 /// getNumExplicitOperands - Returns the number of non-implicit operands.
522 ///
523 unsigned MachineInstr::getNumExplicitOperands() const {
524   unsigned NumOperands = MCID->getNumOperands();
525   if (!MCID->isVariadic())
526     return NumOperands;
527 
528   for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
529     const MachineOperand &MO = getOperand(i);
530     if (!MO.isReg() || !MO.isImplicit())
531       NumOperands++;
532   }
533   return NumOperands;
534 }
535 
536 void MachineInstr::bundleWithPred() {
537   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
538   setFlag(BundledPred);
539   MachineBasicBlock::instr_iterator Pred = getIterator();
540   --Pred;
541   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
542   Pred->setFlag(BundledSucc);
543 }
544 
545 void MachineInstr::bundleWithSucc() {
546   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
547   setFlag(BundledSucc);
548   MachineBasicBlock::instr_iterator Succ = getIterator();
549   ++Succ;
550   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
551   Succ->setFlag(BundledPred);
552 }
553 
554 void MachineInstr::unbundleFromPred() {
555   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
556   clearFlag(BundledPred);
557   MachineBasicBlock::instr_iterator Pred = getIterator();
558   --Pred;
559   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
560   Pred->clearFlag(BundledSucc);
561 }
562 
563 void MachineInstr::unbundleFromSucc() {
564   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
565   clearFlag(BundledSucc);
566   MachineBasicBlock::instr_iterator Succ = getIterator();
567   ++Succ;
568   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
569   Succ->clearFlag(BundledPred);
570 }
571 
572 bool MachineInstr::isStackAligningInlineAsm() const {
573   if (isInlineAsm()) {
574     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
575     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
576       return true;
577   }
578   return false;
579 }
580 
581 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
582   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
583   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
584   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
585 }
586 
587 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
588                                        unsigned *GroupNo) const {
589   assert(isInlineAsm() && "Expected an inline asm instruction");
590   assert(OpIdx < getNumOperands() && "OpIdx out of range");
591 
592   // Ignore queries about the initial operands.
593   if (OpIdx < InlineAsm::MIOp_FirstOperand)
594     return -1;
595 
596   unsigned Group = 0;
597   unsigned NumOps;
598   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
599        i += NumOps) {
600     const MachineOperand &FlagMO = getOperand(i);
601     // If we reach the implicit register operands, stop looking.
602     if (!FlagMO.isImm())
603       return -1;
604     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
605     if (i + NumOps > OpIdx) {
606       if (GroupNo)
607         *GroupNo = Group;
608       return i;
609     }
610     ++Group;
611   }
612   return -1;
613 }
614 
615 const DILocalVariable *MachineInstr::getDebugVariable() const {
616   assert(isDebugValue() && "not a DBG_VALUE");
617   return cast<DILocalVariable>(getOperand(2).getMetadata());
618 }
619 
620 const DIExpression *MachineInstr::getDebugExpression() const {
621   assert(isDebugValue() && "not a DBG_VALUE");
622   return cast<DIExpression>(getOperand(3).getMetadata());
623 }
624 
625 const TargetRegisterClass*
626 MachineInstr::getRegClassConstraint(unsigned OpIdx,
627                                     const TargetInstrInfo *TII,
628                                     const TargetRegisterInfo *TRI) const {
629   assert(getParent() && "Can't have an MBB reference here!");
630   assert(getMF() && "Can't have an MF reference here!");
631   const MachineFunction &MF = *getMF();
632 
633   // Most opcodes have fixed constraints in their MCInstrDesc.
634   if (!isInlineAsm())
635     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
636 
637   if (!getOperand(OpIdx).isReg())
638     return nullptr;
639 
640   // For tied uses on inline asm, get the constraint from the def.
641   unsigned DefIdx;
642   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
643     OpIdx = DefIdx;
644 
645   // Inline asm stores register class constraints in the flag word.
646   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
647   if (FlagIdx < 0)
648     return nullptr;
649 
650   unsigned Flag = getOperand(FlagIdx).getImm();
651   unsigned RCID;
652   if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
653        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
654        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
655       InlineAsm::hasRegClassConstraint(Flag, RCID))
656     return TRI->getRegClass(RCID);
657 
658   // Assume that all registers in a memory operand are pointers.
659   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
660     return TRI->getPointerRegClass(MF);
661 
662   return nullptr;
663 }
664 
665 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
666     unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
667     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
668   // Check every operands inside the bundle if we have
669   // been asked to.
670   if (ExploreBundle)
671     for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
672          ++OpndIt)
673       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
674           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
675   else
676     // Otherwise, just check the current operands.
677     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
678       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
679   return CurRC;
680 }
681 
682 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
683     unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
684     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
685   assert(CurRC && "Invalid initial register class");
686   // Check if Reg is constrained by some of its use/def from MI.
687   const MachineOperand &MO = getOperand(OpIdx);
688   if (!MO.isReg() || MO.getReg() != Reg)
689     return CurRC;
690   // If yes, accumulate the constraints through the operand.
691   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
692 }
693 
694 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
695     unsigned OpIdx, const TargetRegisterClass *CurRC,
696     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
697   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
698   const MachineOperand &MO = getOperand(OpIdx);
699   assert(MO.isReg() &&
700          "Cannot get register constraints for non-register operand");
701   assert(CurRC && "Invalid initial register class");
702   if (unsigned SubIdx = MO.getSubReg()) {
703     if (OpRC)
704       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
705     else
706       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
707   } else if (OpRC)
708     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
709   return CurRC;
710 }
711 
712 /// Return the number of instructions inside the MI bundle, not counting the
713 /// header instruction.
714 unsigned MachineInstr::getBundleSize() const {
715   MachineBasicBlock::const_instr_iterator I = getIterator();
716   unsigned Size = 0;
717   while (I->isBundledWithSucc()) {
718     ++Size;
719     ++I;
720   }
721   return Size;
722 }
723 
724 /// Returns true if the MachineInstr has an implicit-use operand of exactly
725 /// the given register (not considering sub/super-registers).
726 bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const {
727   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
728     const MachineOperand &MO = getOperand(i);
729     if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
730       return true;
731   }
732   return false;
733 }
734 
735 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
736 /// the specific register or -1 if it is not found. It further tightens
737 /// the search criteria to a use that kills the register if isKill is true.
738 int MachineInstr::findRegisterUseOperandIdx(
739     unsigned Reg, bool isKill, const TargetRegisterInfo *TRI) const {
740   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
741     const MachineOperand &MO = getOperand(i);
742     if (!MO.isReg() || !MO.isUse())
743       continue;
744     unsigned MOReg = MO.getReg();
745     if (!MOReg)
746       continue;
747     if (MOReg == Reg || (TRI && TargetRegisterInfo::isPhysicalRegister(MOReg) &&
748                          TargetRegisterInfo::isPhysicalRegister(Reg) &&
749                          TRI->isSubRegister(MOReg, Reg)))
750       if (!isKill || MO.isKill())
751         return i;
752   }
753   return -1;
754 }
755 
756 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
757 /// indicating if this instruction reads or writes Reg. This also considers
758 /// partial defines.
759 std::pair<bool,bool>
760 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
761                                          SmallVectorImpl<unsigned> *Ops) const {
762   bool PartDef = false; // Partial redefine.
763   bool FullDef = false; // Full define.
764   bool Use = false;
765 
766   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
767     const MachineOperand &MO = getOperand(i);
768     if (!MO.isReg() || MO.getReg() != Reg)
769       continue;
770     if (Ops)
771       Ops->push_back(i);
772     if (MO.isUse())
773       Use |= !MO.isUndef();
774     else if (MO.getSubReg() && !MO.isUndef())
775       // A partial def undef doesn't count as reading the register.
776       PartDef = true;
777     else
778       FullDef = true;
779   }
780   // A partial redefine uses Reg unless there is also a full define.
781   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
782 }
783 
784 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
785 /// the specified register or -1 if it is not found. If isDead is true, defs
786 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
787 /// also checks if there is a def of a super-register.
788 int
789 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
790                                         const TargetRegisterInfo *TRI) const {
791   bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
792   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
793     const MachineOperand &MO = getOperand(i);
794     // Accept regmask operands when Overlap is set.
795     // Ignore them when looking for a specific def operand (Overlap == false).
796     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
797       return i;
798     if (!MO.isReg() || !MO.isDef())
799       continue;
800     unsigned MOReg = MO.getReg();
801     bool Found = (MOReg == Reg);
802     if (!Found && TRI && isPhys &&
803         TargetRegisterInfo::isPhysicalRegister(MOReg)) {
804       if (Overlap)
805         Found = TRI->regsOverlap(MOReg, Reg);
806       else
807         Found = TRI->isSubRegister(MOReg, Reg);
808     }
809     if (Found && (!isDead || MO.isDead()))
810       return i;
811   }
812   return -1;
813 }
814 
815 /// findFirstPredOperandIdx() - Find the index of the first operand in the
816 /// operand list that is used to represent the predicate. It returns -1 if
817 /// none is found.
818 int MachineInstr::findFirstPredOperandIdx() const {
819   // Don't call MCID.findFirstPredOperandIdx() because this variant
820   // is sometimes called on an instruction that's not yet complete, and
821   // so the number of operands is less than the MCID indicates. In
822   // particular, the PTX target does this.
823   const MCInstrDesc &MCID = getDesc();
824   if (MCID.isPredicable()) {
825     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
826       if (MCID.OpInfo[i].isPredicate())
827         return i;
828   }
829 
830   return -1;
831 }
832 
833 // MachineOperand::TiedTo is 4 bits wide.
834 const unsigned TiedMax = 15;
835 
836 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
837 ///
838 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
839 /// field. TiedTo can have these values:
840 ///
841 /// 0:              Operand is not tied to anything.
842 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
843 /// TiedMax:        Tied to an operand >= TiedMax-1.
844 ///
845 /// The tied def must be one of the first TiedMax operands on a normal
846 /// instruction. INLINEASM instructions allow more tied defs.
847 ///
848 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
849   MachineOperand &DefMO = getOperand(DefIdx);
850   MachineOperand &UseMO = getOperand(UseIdx);
851   assert(DefMO.isDef() && "DefIdx must be a def operand");
852   assert(UseMO.isUse() && "UseIdx must be a use operand");
853   assert(!DefMO.isTied() && "Def is already tied to another use");
854   assert(!UseMO.isTied() && "Use is already tied to another def");
855 
856   if (DefIdx < TiedMax)
857     UseMO.TiedTo = DefIdx + 1;
858   else {
859     // Inline asm can use the group descriptors to find tied operands, but on
860     // normal instruction, the tied def must be within the first TiedMax
861     // operands.
862     assert(isInlineAsm() && "DefIdx out of range");
863     UseMO.TiedTo = TiedMax;
864   }
865 
866   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
867   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
868 }
869 
870 /// Given the index of a tied register operand, find the operand it is tied to.
871 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
872 /// which must exist.
873 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
874   const MachineOperand &MO = getOperand(OpIdx);
875   assert(MO.isTied() && "Operand isn't tied");
876 
877   // Normally TiedTo is in range.
878   if (MO.TiedTo < TiedMax)
879     return MO.TiedTo - 1;
880 
881   // Uses on normal instructions can be out of range.
882   if (!isInlineAsm()) {
883     // Normal tied defs must be in the 0..TiedMax-1 range.
884     if (MO.isUse())
885       return TiedMax - 1;
886     // MO is a def. Search for the tied use.
887     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
888       const MachineOperand &UseMO = getOperand(i);
889       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
890         return i;
891     }
892     llvm_unreachable("Can't find tied use");
893   }
894 
895   // Now deal with inline asm by parsing the operand group descriptor flags.
896   // Find the beginning of each operand group.
897   SmallVector<unsigned, 8> GroupIdx;
898   unsigned OpIdxGroup = ~0u;
899   unsigned NumOps;
900   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
901        i += NumOps) {
902     const MachineOperand &FlagMO = getOperand(i);
903     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
904     unsigned CurGroup = GroupIdx.size();
905     GroupIdx.push_back(i);
906     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
907     // OpIdx belongs to this operand group.
908     if (OpIdx > i && OpIdx < i + NumOps)
909       OpIdxGroup = CurGroup;
910     unsigned TiedGroup;
911     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
912       continue;
913     // Operands in this group are tied to operands in TiedGroup which must be
914     // earlier. Find the number of operands between the two groups.
915     unsigned Delta = i - GroupIdx[TiedGroup];
916 
917     // OpIdx is a use tied to TiedGroup.
918     if (OpIdxGroup == CurGroup)
919       return OpIdx - Delta;
920 
921     // OpIdx is a def tied to this use group.
922     if (OpIdxGroup == TiedGroup)
923       return OpIdx + Delta;
924   }
925   llvm_unreachable("Invalid tied operand on inline asm");
926 }
927 
928 /// clearKillInfo - Clears kill flags on all operands.
929 ///
930 void MachineInstr::clearKillInfo() {
931   for (MachineOperand &MO : operands()) {
932     if (MO.isReg() && MO.isUse())
933       MO.setIsKill(false);
934   }
935 }
936 
937 void MachineInstr::substituteRegister(unsigned FromReg, unsigned ToReg,
938                                       unsigned SubIdx,
939                                       const TargetRegisterInfo &RegInfo) {
940   if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
941     if (SubIdx)
942       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
943     for (MachineOperand &MO : operands()) {
944       if (!MO.isReg() || MO.getReg() != FromReg)
945         continue;
946       MO.substPhysReg(ToReg, RegInfo);
947     }
948   } else {
949     for (MachineOperand &MO : operands()) {
950       if (!MO.isReg() || MO.getReg() != FromReg)
951         continue;
952       MO.substVirtReg(ToReg, SubIdx, RegInfo);
953     }
954   }
955 }
956 
957 /// isSafeToMove - Return true if it is safe to move this instruction. If
958 /// SawStore is set to true, it means that there is a store (or call) between
959 /// the instruction's location and its intended destination.
960 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const {
961   // Ignore stuff that we obviously can't move.
962   //
963   // Treat volatile loads as stores. This is not strictly necessary for
964   // volatiles, but it is required for atomic loads. It is not allowed to move
965   // a load across an atomic load with Ordering > Monotonic.
966   if (mayStore() || isCall() || isPHI() ||
967       (mayLoad() && hasOrderedMemoryRef())) {
968     SawStore = true;
969     return false;
970   }
971 
972   if (isPosition() || isDebugValue() || isTerminator() ||
973       hasUnmodeledSideEffects())
974     return false;
975 
976   // See if this instruction does a load.  If so, we have to guarantee that the
977   // loaded value doesn't change between the load and the its intended
978   // destination. The check for isInvariantLoad gives the targe the chance to
979   // classify the load as always returning a constant, e.g. a constant pool
980   // load.
981   if (mayLoad() && !isDereferenceableInvariantLoad(AA))
982     // Otherwise, this is a real load.  If there is a store between the load and
983     // end of block, we can't move it.
984     return !SawStore;
985 
986   return true;
987 }
988 
989 bool MachineInstr::mayAlias(AliasAnalysis *AA, MachineInstr &Other,
990                             bool UseTBAA) {
991   const MachineFunction *MF = getMF();
992   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
993   const MachineFrameInfo &MFI = MF->getFrameInfo();
994 
995   // If neither instruction stores to memory, they can't alias in any
996   // meaningful way, even if they read from the same address.
997   if (!mayStore() && !Other.mayStore())
998     return false;
999 
1000   // Let the target decide if memory accesses cannot possibly overlap.
1001   if (TII->areMemAccessesTriviallyDisjoint(*this, Other, AA))
1002     return false;
1003 
1004   // FIXME: Need to handle multiple memory operands to support all targets.
1005   if (!hasOneMemOperand() || !Other.hasOneMemOperand())
1006     return true;
1007 
1008   MachineMemOperand *MMOa = *memoperands_begin();
1009   MachineMemOperand *MMOb = *Other.memoperands_begin();
1010 
1011   // The following interface to AA is fashioned after DAGCombiner::isAlias
1012   // and operates with MachineMemOperand offset with some important
1013   // assumptions:
1014   //   - LLVM fundamentally assumes flat address spaces.
1015   //   - MachineOperand offset can *only* result from legalization and
1016   //     cannot affect queries other than the trivial case of overlap
1017   //     checking.
1018   //   - These offsets never wrap and never step outside
1019   //     of allocated objects.
1020   //   - There should never be any negative offsets here.
1021   //
1022   // FIXME: Modify API to hide this math from "user"
1023   // Even before we go to AA we can reason locally about some
1024   // memory objects. It can save compile time, and possibly catch some
1025   // corner cases not currently covered.
1026 
1027   int64_t OffsetA = MMOa->getOffset();
1028   int64_t OffsetB = MMOb->getOffset();
1029 
1030   int64_t MinOffset = std::min(OffsetA, OffsetB);
1031   int64_t WidthA = MMOa->getSize();
1032   int64_t WidthB = MMOb->getSize();
1033   const Value *ValA = MMOa->getValue();
1034   const Value *ValB = MMOb->getValue();
1035   bool SameVal = (ValA && ValB && (ValA == ValB));
1036   if (!SameVal) {
1037     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1038     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1039     if (PSVa && ValB && !PSVa->mayAlias(&MFI))
1040       return false;
1041     if (PSVb && ValA && !PSVb->mayAlias(&MFI))
1042       return false;
1043     if (PSVa && PSVb && (PSVa == PSVb))
1044       SameVal = true;
1045   }
1046 
1047   if (SameVal) {
1048     int64_t MaxOffset = std::max(OffsetA, OffsetB);
1049     int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
1050     return (MinOffset + LowWidth > MaxOffset);
1051   }
1052 
1053   if (!AA)
1054     return true;
1055 
1056   if (!ValA || !ValB)
1057     return true;
1058 
1059   assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
1060   assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
1061 
1062   int64_t Overlapa = WidthA + OffsetA - MinOffset;
1063   int64_t Overlapb = WidthB + OffsetB - MinOffset;
1064 
1065   AliasResult AAResult = AA->alias(
1066       MemoryLocation(ValA, Overlapa,
1067                      UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1068       MemoryLocation(ValB, Overlapb,
1069                      UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1070 
1071   return (AAResult != NoAlias);
1072 }
1073 
1074 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1075 /// or volatile memory reference, or if the information describing the memory
1076 /// reference is not available. Return false if it is known to have no ordered
1077 /// memory references.
1078 bool MachineInstr::hasOrderedMemoryRef() const {
1079   // An instruction known never to access memory won't have a volatile access.
1080   if (!mayStore() &&
1081       !mayLoad() &&
1082       !isCall() &&
1083       !hasUnmodeledSideEffects())
1084     return false;
1085 
1086   // Otherwise, if the instruction has no memory reference information,
1087   // conservatively assume it wasn't preserved.
1088   if (memoperands_empty())
1089     return true;
1090 
1091   // Check if any of our memory operands are ordered.
1092   return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1093     return !MMO->isUnordered();
1094   });
1095 }
1096 
1097 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1098 /// trap and is loading from a location whose value is invariant across a run of
1099 /// this function.
1100 bool MachineInstr::isDereferenceableInvariantLoad(AliasAnalysis *AA) const {
1101   // If the instruction doesn't load at all, it isn't an invariant load.
1102   if (!mayLoad())
1103     return false;
1104 
1105   // If the instruction has lost its memoperands, conservatively assume that
1106   // it may not be an invariant load.
1107   if (memoperands_empty())
1108     return false;
1109 
1110   const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1111 
1112   for (MachineMemOperand *MMO : memoperands()) {
1113     if (MMO->isVolatile()) return false;
1114     if (MMO->isStore()) return false;
1115     if (MMO->isInvariant() && MMO->isDereferenceable())
1116       continue;
1117 
1118     // A load from a constant PseudoSourceValue is invariant.
1119     if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1120       if (PSV->isConstant(&MFI))
1121         continue;
1122 
1123     if (const Value *V = MMO->getValue()) {
1124       // If we have an AliasAnalysis, ask it whether the memory is constant.
1125       if (AA &&
1126           AA->pointsToConstantMemory(
1127               MemoryLocation(V, MMO->getSize(), MMO->getAAInfo())))
1128         continue;
1129     }
1130 
1131     // Otherwise assume conservatively.
1132     return false;
1133   }
1134 
1135   // Everything checks out.
1136   return true;
1137 }
1138 
1139 /// isConstantValuePHI - If the specified instruction is a PHI that always
1140 /// merges together the same virtual register, return the register, otherwise
1141 /// return 0.
1142 unsigned MachineInstr::isConstantValuePHI() const {
1143   if (!isPHI())
1144     return 0;
1145   assert(getNumOperands() >= 3 &&
1146          "It's illegal to have a PHI without source operands");
1147 
1148   unsigned Reg = getOperand(1).getReg();
1149   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1150     if (getOperand(i).getReg() != Reg)
1151       return 0;
1152   return Reg;
1153 }
1154 
1155 bool MachineInstr::hasUnmodeledSideEffects() const {
1156   if (hasProperty(MCID::UnmodeledSideEffects))
1157     return true;
1158   if (isInlineAsm()) {
1159     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1160     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1161       return true;
1162   }
1163 
1164   return false;
1165 }
1166 
1167 bool MachineInstr::isLoadFoldBarrier() const {
1168   return mayStore() || isCall() || hasUnmodeledSideEffects();
1169 }
1170 
1171 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1172 ///
1173 bool MachineInstr::allDefsAreDead() const {
1174   for (const MachineOperand &MO : operands()) {
1175     if (!MO.isReg() || MO.isUse())
1176       continue;
1177     if (!MO.isDead())
1178       return false;
1179   }
1180   return true;
1181 }
1182 
1183 /// copyImplicitOps - Copy implicit register operands from specified
1184 /// instruction to this instruction.
1185 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1186                                    const MachineInstr &MI) {
1187   for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands();
1188        i != e; ++i) {
1189     const MachineOperand &MO = MI.getOperand(i);
1190     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1191       addOperand(MF, MO);
1192   }
1193 }
1194 
1195 bool MachineInstr::hasComplexRegisterTies() const {
1196   const MCInstrDesc &MCID = getDesc();
1197   for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
1198     const auto &Operand = getOperand(I);
1199     if (!Operand.isReg() || Operand.isDef())
1200       // Ignore the defined registers as MCID marks only the uses as tied.
1201       continue;
1202     int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
1203     int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
1204     if (ExpectedTiedIdx != TiedIdx)
1205       return true;
1206   }
1207   return false;
1208 }
1209 
1210 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1211                                  const MachineRegisterInfo &MRI) const {
1212   const MachineOperand &Op = getOperand(OpIdx);
1213   if (!Op.isReg())
1214     return LLT{};
1215 
1216   if (isVariadic() || OpIdx >= getNumExplicitOperands())
1217     return MRI.getType(Op.getReg());
1218 
1219   auto &OpInfo = getDesc().OpInfo[OpIdx];
1220   if (!OpInfo.isGenericType())
1221     return MRI.getType(Op.getReg());
1222 
1223   if (PrintedTypes[OpInfo.getGenericTypeIndex()])
1224     return LLT{};
1225 
1226   PrintedTypes.set(OpInfo.getGenericTypeIndex());
1227   return MRI.getType(Op.getReg());
1228 }
1229 
1230 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1231 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1232   dbgs() << "  ";
1233   print(dbgs());
1234 }
1235 #endif
1236 
1237 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
1238                          bool SkipDebugLoc, const TargetInstrInfo *TII) const {
1239   const Module *M = nullptr;
1240   const Function *F = nullptr;
1241   if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1242     F = &MF->getFunction();
1243     M = F->getParent();
1244     if (!TII)
1245       TII = MF->getSubtarget().getInstrInfo();
1246   }
1247 
1248   ModuleSlotTracker MST(M);
1249   if (F)
1250     MST.incorporateFunction(*F);
1251   print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, TII);
1252 }
1253 
1254 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1255                          bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
1256                          const TargetInstrInfo *TII) const {
1257   // We can be a bit tidier if we know the MachineFunction.
1258   const MachineFunction *MF = nullptr;
1259   const TargetRegisterInfo *TRI = nullptr;
1260   const MachineRegisterInfo *MRI = nullptr;
1261   const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1262   tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
1263 
1264   if (isCFIInstruction())
1265     assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1266 
1267   SmallBitVector PrintedTypes(8);
1268   bool ShouldPrintRegisterTies = hasComplexRegisterTies();
1269   auto getTiedOperandIdx = [&](unsigned OpIdx) {
1270     if (!ShouldPrintRegisterTies)
1271       return 0U;
1272     const MachineOperand &MO = getOperand(OpIdx);
1273     if (MO.isReg() && MO.isTied() && !MO.isDef())
1274       return findTiedOperandIdx(OpIdx);
1275     return 0U;
1276   };
1277   unsigned StartOp = 0;
1278   unsigned e = getNumOperands();
1279 
1280   // Print explicitly defined operands on the left of an assignment syntax.
1281   while (StartOp < e) {
1282     const MachineOperand &MO = getOperand(StartOp);
1283     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
1284       break;
1285 
1286     if (StartOp != 0)
1287       OS << ", ";
1288 
1289     LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
1290     unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
1291     MO.print(OS, MST, TypeToPrint, /*PrintDef=*/false, IsStandalone,
1292              ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1293     ++StartOp;
1294   }
1295 
1296   if (StartOp != 0)
1297     OS << " = ";
1298 
1299   if (getFlag(MachineInstr::FrameSetup))
1300     OS << "frame-setup ";
1301   if (getFlag(MachineInstr::FrameDestroy))
1302     OS << "frame-destroy ";
1303 
1304   // Print the opcode name.
1305   if (TII)
1306     OS << TII->getName(getOpcode());
1307   else
1308     OS << "UNKNOWN";
1309 
1310   if (SkipOpers)
1311     return;
1312 
1313   // Print the rest of the operands.
1314   bool FirstOp = true;
1315   unsigned AsmDescOp = ~0u;
1316   unsigned AsmOpCount = 0;
1317 
1318   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1319     // Print asm string.
1320     OS << " ";
1321     const unsigned OpIdx = InlineAsm::MIOp_AsmString;
1322     LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
1323     unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
1324     getOperand(OpIdx).print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
1325                             ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1326                             IntrinsicInfo);
1327 
1328     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1329     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1330     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1331       OS << " [sideeffect]";
1332     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1333       OS << " [mayload]";
1334     if (ExtraInfo & InlineAsm::Extra_MayStore)
1335       OS << " [maystore]";
1336     if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1337       OS << " [isconvergent]";
1338     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1339       OS << " [alignstack]";
1340     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1341       OS << " [attdialect]";
1342     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1343       OS << " [inteldialect]";
1344 
1345     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1346     FirstOp = false;
1347   }
1348 
1349   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1350     const MachineOperand &MO = getOperand(i);
1351 
1352     if (FirstOp) FirstOp = false; else OS << ",";
1353     OS << " ";
1354 
1355     if (isDebugValue() && MO.isMetadata()) {
1356       // Pretty print DBG_VALUE instructions.
1357       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1358       if (DIV && !DIV->getName().empty())
1359         OS << "!\"" << DIV->getName() << '\"';
1360       else {
1361         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1362         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1363         MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
1364                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1365       }
1366     } else if (i == AsmDescOp && MO.isImm()) {
1367       // Pretty print the inline asm operand descriptor.
1368       OS << '$' << AsmOpCount++;
1369       unsigned Flag = MO.getImm();
1370       switch (InlineAsm::getKind(Flag)) {
1371       case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break;
1372       case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break;
1373       case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1374       case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break;
1375       case InlineAsm::Kind_Imm:                OS << ":[imm"; break;
1376       case InlineAsm::Kind_Mem:                OS << ":[mem"; break;
1377       default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1378       }
1379 
1380       unsigned RCID = 0;
1381       if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1382           InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1383         if (TRI) {
1384           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1385         } else
1386           OS << ":RC" << RCID;
1387       }
1388 
1389       if (InlineAsm::isMemKind(Flag)) {
1390         unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1391         switch (MCID) {
1392         case InlineAsm::Constraint_es: OS << ":es"; break;
1393         case InlineAsm::Constraint_i:  OS << ":i"; break;
1394         case InlineAsm::Constraint_m:  OS << ":m"; break;
1395         case InlineAsm::Constraint_o:  OS << ":o"; break;
1396         case InlineAsm::Constraint_v:  OS << ":v"; break;
1397         case InlineAsm::Constraint_Q:  OS << ":Q"; break;
1398         case InlineAsm::Constraint_R:  OS << ":R"; break;
1399         case InlineAsm::Constraint_S:  OS << ":S"; break;
1400         case InlineAsm::Constraint_T:  OS << ":T"; break;
1401         case InlineAsm::Constraint_Um: OS << ":Um"; break;
1402         case InlineAsm::Constraint_Un: OS << ":Un"; break;
1403         case InlineAsm::Constraint_Uq: OS << ":Uq"; break;
1404         case InlineAsm::Constraint_Us: OS << ":Us"; break;
1405         case InlineAsm::Constraint_Ut: OS << ":Ut"; break;
1406         case InlineAsm::Constraint_Uv: OS << ":Uv"; break;
1407         case InlineAsm::Constraint_Uy: OS << ":Uy"; break;
1408         case InlineAsm::Constraint_X:  OS << ":X"; break;
1409         case InlineAsm::Constraint_Z:  OS << ":Z"; break;
1410         case InlineAsm::Constraint_ZC: OS << ":ZC"; break;
1411         case InlineAsm::Constraint_Zy: OS << ":Zy"; break;
1412         default: OS << ":?"; break;
1413         }
1414       }
1415 
1416       unsigned TiedTo = 0;
1417       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1418         OS << " tiedto:$" << TiedTo;
1419 
1420       OS << ']';
1421 
1422       // Compute the index of the next operand descriptor.
1423       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1424     } else {
1425       LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1426       unsigned TiedOperandIdx = getTiedOperandIdx(i);
1427       if (MO.isImm() && isOperandSubregIdx(i))
1428         MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
1429       else
1430         MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
1431                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1432     }
1433   }
1434 
1435   if (!SkipDebugLoc) {
1436     if (const DebugLoc &DL = getDebugLoc()) {
1437       if (!FirstOp)
1438         OS << ',';
1439       OS << " debug-location ";
1440       DL->printAsOperand(OS, MST);
1441     }
1442   }
1443 
1444   if (!memoperands_empty()) {
1445     SmallVector<StringRef, 0> SSNs;
1446     const LLVMContext *Context = nullptr;
1447     std::unique_ptr<LLVMContext> CtxPtr;
1448     const MachineFrameInfo *MFI = nullptr;
1449     if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1450       MFI = &MF->getFrameInfo();
1451       Context = &MF->getFunction().getContext();
1452     } else {
1453       CtxPtr = llvm::make_unique<LLVMContext>();
1454       Context = CtxPtr.get();
1455     }
1456 
1457     OS << " :: ";
1458     bool NeedComma = false;
1459     for (const MachineMemOperand *Op : memoperands()) {
1460       if (NeedComma)
1461         OS << ", ";
1462       Op->print(OS, MST, SSNs, *Context, MFI, TII);
1463       NeedComma = true;
1464     }
1465   }
1466 
1467   if (SkipDebugLoc)
1468     return;
1469 
1470   bool HaveSemi = false;
1471   // Print debug location information.
1472   if (isDebugValue() && getOperand(e - 2).isMetadata()) {
1473     if (!HaveSemi)
1474       OS << ";";
1475     auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata());
1476     OS << " line no:" <<  DV->getLine();
1477     if (auto *InlinedAt = debugLoc->getInlinedAt()) {
1478       DebugLoc InlinedAtDL(InlinedAt);
1479       if (InlinedAtDL && MF) {
1480         OS << " inlined @[ ";
1481         InlinedAtDL.print(OS);
1482         OS << " ]";
1483       }
1484     }
1485     if (isIndirectDebugValue())
1486       OS << " indirect";
1487   }
1488 
1489   OS << '\n';
1490 }
1491 
1492 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1493                                      const TargetRegisterInfo *RegInfo,
1494                                      bool AddIfNotFound) {
1495   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1496   bool hasAliases = isPhysReg &&
1497     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1498   bool Found = false;
1499   SmallVector<unsigned,4> DeadOps;
1500   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1501     MachineOperand &MO = getOperand(i);
1502     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1503       continue;
1504 
1505     // DEBUG_VALUE nodes do not contribute to code generation and should
1506     // always be ignored. Failure to do so may result in trying to modify
1507     // KILL flags on DEBUG_VALUE nodes.
1508     if (MO.isDebug())
1509       continue;
1510 
1511     unsigned Reg = MO.getReg();
1512     if (!Reg)
1513       continue;
1514 
1515     if (Reg == IncomingReg) {
1516       if (!Found) {
1517         if (MO.isKill())
1518           // The register is already marked kill.
1519           return true;
1520         if (isPhysReg && isRegTiedToDefOperand(i))
1521           // Two-address uses of physregs must not be marked kill.
1522           return true;
1523         MO.setIsKill();
1524         Found = true;
1525       }
1526     } else if (hasAliases && MO.isKill() &&
1527                TargetRegisterInfo::isPhysicalRegister(Reg)) {
1528       // A super-register kill already exists.
1529       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1530         return true;
1531       if (RegInfo->isSubRegister(IncomingReg, Reg))
1532         DeadOps.push_back(i);
1533     }
1534   }
1535 
1536   // Trim unneeded kill operands.
1537   while (!DeadOps.empty()) {
1538     unsigned OpIdx = DeadOps.back();
1539     if (getOperand(OpIdx).isImplicit())
1540       RemoveOperand(OpIdx);
1541     else
1542       getOperand(OpIdx).setIsKill(false);
1543     DeadOps.pop_back();
1544   }
1545 
1546   // If not found, this means an alias of one of the operands is killed. Add a
1547   // new implicit operand if required.
1548   if (!Found && AddIfNotFound) {
1549     addOperand(MachineOperand::CreateReg(IncomingReg,
1550                                          false /*IsDef*/,
1551                                          true  /*IsImp*/,
1552                                          true  /*IsKill*/));
1553     return true;
1554   }
1555   return Found;
1556 }
1557 
1558 void MachineInstr::clearRegisterKills(unsigned Reg,
1559                                       const TargetRegisterInfo *RegInfo) {
1560   if (!TargetRegisterInfo::isPhysicalRegister(Reg))
1561     RegInfo = nullptr;
1562   for (MachineOperand &MO : operands()) {
1563     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1564       continue;
1565     unsigned OpReg = MO.getReg();
1566     if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
1567       MO.setIsKill(false);
1568   }
1569 }
1570 
1571 bool MachineInstr::addRegisterDead(unsigned Reg,
1572                                    const TargetRegisterInfo *RegInfo,
1573                                    bool AddIfNotFound) {
1574   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg);
1575   bool hasAliases = isPhysReg &&
1576     MCRegAliasIterator(Reg, RegInfo, false).isValid();
1577   bool Found = false;
1578   SmallVector<unsigned,4> DeadOps;
1579   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1580     MachineOperand &MO = getOperand(i);
1581     if (!MO.isReg() || !MO.isDef())
1582       continue;
1583     unsigned MOReg = MO.getReg();
1584     if (!MOReg)
1585       continue;
1586 
1587     if (MOReg == Reg) {
1588       MO.setIsDead();
1589       Found = true;
1590     } else if (hasAliases && MO.isDead() &&
1591                TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1592       // There exists a super-register that's marked dead.
1593       if (RegInfo->isSuperRegister(Reg, MOReg))
1594         return true;
1595       if (RegInfo->isSubRegister(Reg, MOReg))
1596         DeadOps.push_back(i);
1597     }
1598   }
1599 
1600   // Trim unneeded dead operands.
1601   while (!DeadOps.empty()) {
1602     unsigned OpIdx = DeadOps.back();
1603     if (getOperand(OpIdx).isImplicit())
1604       RemoveOperand(OpIdx);
1605     else
1606       getOperand(OpIdx).setIsDead(false);
1607     DeadOps.pop_back();
1608   }
1609 
1610   // If not found, this means an alias of one of the operands is dead. Add a
1611   // new implicit operand if required.
1612   if (Found || !AddIfNotFound)
1613     return Found;
1614 
1615   addOperand(MachineOperand::CreateReg(Reg,
1616                                        true  /*IsDef*/,
1617                                        true  /*IsImp*/,
1618                                        false /*IsKill*/,
1619                                        true  /*IsDead*/));
1620   return true;
1621 }
1622 
1623 void MachineInstr::clearRegisterDeads(unsigned Reg) {
1624   for (MachineOperand &MO : operands()) {
1625     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
1626       continue;
1627     MO.setIsDead(false);
1628   }
1629 }
1630 
1631 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) {
1632   for (MachineOperand &MO : operands()) {
1633     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
1634       continue;
1635     MO.setIsUndef(IsUndef);
1636   }
1637 }
1638 
1639 void MachineInstr::addRegisterDefined(unsigned Reg,
1640                                       const TargetRegisterInfo *RegInfo) {
1641   if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1642     MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo);
1643     if (MO)
1644       return;
1645   } else {
1646     for (const MachineOperand &MO : operands()) {
1647       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
1648           MO.getSubReg() == 0)
1649         return;
1650     }
1651   }
1652   addOperand(MachineOperand::CreateReg(Reg,
1653                                        true  /*IsDef*/,
1654                                        true  /*IsImp*/));
1655 }
1656 
1657 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
1658                                          const TargetRegisterInfo &TRI) {
1659   bool HasRegMask = false;
1660   for (MachineOperand &MO : operands()) {
1661     if (MO.isRegMask()) {
1662       HasRegMask = true;
1663       continue;
1664     }
1665     if (!MO.isReg() || !MO.isDef()) continue;
1666     unsigned Reg = MO.getReg();
1667     if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
1668     // If there are no uses, including partial uses, the def is dead.
1669     if (llvm::none_of(UsedRegs,
1670                       [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); }))
1671       MO.setIsDead();
1672   }
1673 
1674   // This is a call with a register mask operand.
1675   // Mask clobbers are always dead, so add defs for the non-dead defines.
1676   if (HasRegMask)
1677     for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
1678          I != E; ++I)
1679       addRegisterDefined(*I, &TRI);
1680 }
1681 
1682 unsigned
1683 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1684   // Build up a buffer of hash code components.
1685   SmallVector<size_t, 8> HashComponents;
1686   HashComponents.reserve(MI->getNumOperands() + 1);
1687   HashComponents.push_back(MI->getOpcode());
1688   for (const MachineOperand &MO : MI->operands()) {
1689     if (MO.isReg() && MO.isDef() &&
1690         TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1691       continue;  // Skip virtual register defs.
1692 
1693     HashComponents.push_back(hash_value(MO));
1694   }
1695   return hash_combine_range(HashComponents.begin(), HashComponents.end());
1696 }
1697 
1698 void MachineInstr::emitError(StringRef Msg) const {
1699   // Find the source location cookie.
1700   unsigned LocCookie = 0;
1701   const MDNode *LocMD = nullptr;
1702   for (unsigned i = getNumOperands(); i != 0; --i) {
1703     if (getOperand(i-1).isMetadata() &&
1704         (LocMD = getOperand(i-1).getMetadata()) &&
1705         LocMD->getNumOperands() != 0) {
1706       if (const ConstantInt *CI =
1707               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
1708         LocCookie = CI->getZExtValue();
1709         break;
1710       }
1711     }
1712   }
1713 
1714   if (const MachineBasicBlock *MBB = getParent())
1715     if (const MachineFunction *MF = MBB->getParent())
1716       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
1717   report_fatal_error(Msg);
1718 }
1719 
1720 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
1721                                   const MCInstrDesc &MCID, bool IsIndirect,
1722                                   unsigned Reg, const MDNode *Variable,
1723                                   const MDNode *Expr) {
1724   assert(isa<DILocalVariable>(Variable) && "not a variable");
1725   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
1726   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
1727          "Expected inlined-at fields to agree");
1728   if (IsIndirect)
1729     return BuildMI(MF, DL, MCID)
1730         .addReg(Reg, RegState::Debug)
1731         .addImm(0U)
1732         .addMetadata(Variable)
1733         .addMetadata(Expr);
1734   else
1735     return BuildMI(MF, DL, MCID)
1736         .addReg(Reg, RegState::Debug)
1737         .addReg(0U, RegState::Debug)
1738         .addMetadata(Variable)
1739         .addMetadata(Expr);
1740 }
1741 
1742 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
1743                                   MachineBasicBlock::iterator I,
1744                                   const DebugLoc &DL, const MCInstrDesc &MCID,
1745                                   bool IsIndirect, unsigned Reg,
1746                                   const MDNode *Variable, const MDNode *Expr) {
1747   assert(isa<DILocalVariable>(Variable) && "not a variable");
1748   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
1749   MachineFunction &MF = *BB.getParent();
1750   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
1751   BB.insert(I, MI);
1752   return MachineInstrBuilder(MF, MI);
1753 }
1754 
1755 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
1756 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
1757 static const DIExpression *computeExprForSpill(const MachineInstr &MI) {
1758   assert(MI.getOperand(0).isReg() && "can't spill non-register");
1759   assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
1760          "Expected inlined-at fields to agree");
1761 
1762   const DIExpression *Expr = MI.getDebugExpression();
1763   if (MI.isIndirectDebugValue()) {
1764     assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
1765     Expr = DIExpression::prepend(Expr, DIExpression::WithDeref);
1766   }
1767   return Expr;
1768 }
1769 
1770 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
1771                                           MachineBasicBlock::iterator I,
1772                                           const MachineInstr &Orig,
1773                                           int FrameIndex) {
1774   const DIExpression *Expr = computeExprForSpill(Orig);
1775   return BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc())
1776       .addFrameIndex(FrameIndex)
1777       .addImm(0U)
1778       .addMetadata(Orig.getDebugVariable())
1779       .addMetadata(Expr);
1780 }
1781 
1782 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex) {
1783   const DIExpression *Expr = computeExprForSpill(Orig);
1784   Orig.getOperand(0).ChangeToFrameIndex(FrameIndex);
1785   Orig.getOperand(1).ChangeToImmediate(0U);
1786   Orig.getOperand(3).setMetadata(Expr);
1787 }
1788