1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/ADT/FoldingSet.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/Assembly/Writer.h" 19 #include "llvm/CodeGen/MachineConstantPool.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineMemOperand.h" 22 #include "llvm/CodeGen/MachineModuleInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/PseudoSourceValue.h" 25 #include "llvm/DebugInfo.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/InlineAsm.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/IR/Value.h" 34 #include "llvm/MC/MCInstrDesc.h" 35 #include "llvm/MC/MCSymbol.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Target/TargetInstrInfo.h" 41 #include "llvm/Target/TargetMachine.h" 42 #include "llvm/Target/TargetRegisterInfo.h" 43 using namespace llvm; 44 45 //===----------------------------------------------------------------------===// 46 // MachineOperand Implementation 47 //===----------------------------------------------------------------------===// 48 49 void MachineOperand::setReg(unsigned Reg) { 50 if (getReg() == Reg) return; // No change. 51 52 // Otherwise, we have to change the register. If this operand is embedded 53 // into a machine function, we need to update the old and new register's 54 // use/def lists. 55 if (MachineInstr *MI = getParent()) 56 if (MachineBasicBlock *MBB = MI->getParent()) 57 if (MachineFunction *MF = MBB->getParent()) { 58 MachineRegisterInfo &MRI = MF->getRegInfo(); 59 MRI.removeRegOperandFromUseList(this); 60 SmallContents.RegNo = Reg; 61 MRI.addRegOperandToUseList(this); 62 return; 63 } 64 65 // Otherwise, just change the register, no problem. :) 66 SmallContents.RegNo = Reg; 67 } 68 69 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 70 const TargetRegisterInfo &TRI) { 71 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 72 if (SubIdx && getSubReg()) 73 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 74 setReg(Reg); 75 if (SubIdx) 76 setSubReg(SubIdx); 77 } 78 79 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 80 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 81 if (getSubReg()) { 82 Reg = TRI.getSubReg(Reg, getSubReg()); 83 // Note that getSubReg() may return 0 if the sub-register doesn't exist. 84 // That won't happen in legal code. 85 setSubReg(0); 86 } 87 setReg(Reg); 88 } 89 90 /// Change a def to a use, or a use to a def. 91 void MachineOperand::setIsDef(bool Val) { 92 assert(isReg() && "Wrong MachineOperand accessor"); 93 assert((!Val || !isDebug()) && "Marking a debug operation as def"); 94 if (IsDef == Val) 95 return; 96 // MRI may keep uses and defs in different list positions. 97 if (MachineInstr *MI = getParent()) 98 if (MachineBasicBlock *MBB = MI->getParent()) 99 if (MachineFunction *MF = MBB->getParent()) { 100 MachineRegisterInfo &MRI = MF->getRegInfo(); 101 MRI.removeRegOperandFromUseList(this); 102 IsDef = Val; 103 MRI.addRegOperandToUseList(this); 104 return; 105 } 106 IsDef = Val; 107 } 108 109 /// ChangeToImmediate - Replace this operand with a new immediate operand of 110 /// the specified value. If an operand is known to be an immediate already, 111 /// the setImm method should be used. 112 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 113 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 114 // If this operand is currently a register operand, and if this is in a 115 // function, deregister the operand from the register's use/def list. 116 if (isReg() && isOnRegUseList()) 117 if (MachineInstr *MI = getParent()) 118 if (MachineBasicBlock *MBB = MI->getParent()) 119 if (MachineFunction *MF = MBB->getParent()) 120 MF->getRegInfo().removeRegOperandFromUseList(this); 121 122 OpKind = MO_Immediate; 123 Contents.ImmVal = ImmVal; 124 } 125 126 /// ChangeToRegister - Replace this operand with a new register operand of 127 /// the specified value. If an operand is known to be an register already, 128 /// the setReg method should be used. 129 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 130 bool isKill, bool isDead, bool isUndef, 131 bool isDebug) { 132 MachineRegisterInfo *RegInfo = 0; 133 if (MachineInstr *MI = getParent()) 134 if (MachineBasicBlock *MBB = MI->getParent()) 135 if (MachineFunction *MF = MBB->getParent()) 136 RegInfo = &MF->getRegInfo(); 137 // If this operand is already a register operand, remove it from the 138 // register's use/def lists. 139 bool WasReg = isReg(); 140 if (RegInfo && WasReg) 141 RegInfo->removeRegOperandFromUseList(this); 142 143 // Change this to a register and set the reg#. 144 OpKind = MO_Register; 145 SmallContents.RegNo = Reg; 146 SubReg_TargetFlags = 0; 147 IsDef = isDef; 148 IsImp = isImp; 149 IsKill = isKill; 150 IsDead = isDead; 151 IsUndef = isUndef; 152 IsInternalRead = false; 153 IsEarlyClobber = false; 154 IsDebug = isDebug; 155 // Ensure isOnRegUseList() returns false. 156 Contents.Reg.Prev = 0; 157 // Preserve the tie when the operand was already a register. 158 if (!WasReg) 159 TiedTo = 0; 160 161 // If this operand is embedded in a function, add the operand to the 162 // register's use/def list. 163 if (RegInfo) 164 RegInfo->addRegOperandToUseList(this); 165 } 166 167 /// isIdenticalTo - Return true if this operand is identical to the specified 168 /// operand. Note that this should stay in sync with the hash_value overload 169 /// below. 170 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 171 if (getType() != Other.getType() || 172 getTargetFlags() != Other.getTargetFlags()) 173 return false; 174 175 switch (getType()) { 176 case MachineOperand::MO_Register: 177 return getReg() == Other.getReg() && isDef() == Other.isDef() && 178 getSubReg() == Other.getSubReg(); 179 case MachineOperand::MO_Immediate: 180 return getImm() == Other.getImm(); 181 case MachineOperand::MO_CImmediate: 182 return getCImm() == Other.getCImm(); 183 case MachineOperand::MO_FPImmediate: 184 return getFPImm() == Other.getFPImm(); 185 case MachineOperand::MO_MachineBasicBlock: 186 return getMBB() == Other.getMBB(); 187 case MachineOperand::MO_FrameIndex: 188 return getIndex() == Other.getIndex(); 189 case MachineOperand::MO_ConstantPoolIndex: 190 case MachineOperand::MO_TargetIndex: 191 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 192 case MachineOperand::MO_JumpTableIndex: 193 return getIndex() == Other.getIndex(); 194 case MachineOperand::MO_GlobalAddress: 195 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 196 case MachineOperand::MO_ExternalSymbol: 197 return !strcmp(getSymbolName(), Other.getSymbolName()) && 198 getOffset() == Other.getOffset(); 199 case MachineOperand::MO_BlockAddress: 200 return getBlockAddress() == Other.getBlockAddress() && 201 getOffset() == Other.getOffset(); 202 case MachineOperand::MO_RegisterMask: 203 case MachineOperand::MO_RegisterLiveOut: 204 return getRegMask() == Other.getRegMask(); 205 case MachineOperand::MO_MCSymbol: 206 return getMCSymbol() == Other.getMCSymbol(); 207 case MachineOperand::MO_Metadata: 208 return getMetadata() == Other.getMetadata(); 209 } 210 llvm_unreachable("Invalid machine operand type"); 211 } 212 213 // Note: this must stay exactly in sync with isIdenticalTo above. 214 hash_code llvm::hash_value(const MachineOperand &MO) { 215 switch (MO.getType()) { 216 case MachineOperand::MO_Register: 217 // Register operands don't have target flags. 218 return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef()); 219 case MachineOperand::MO_Immediate: 220 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm()); 221 case MachineOperand::MO_CImmediate: 222 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm()); 223 case MachineOperand::MO_FPImmediate: 224 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm()); 225 case MachineOperand::MO_MachineBasicBlock: 226 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB()); 227 case MachineOperand::MO_FrameIndex: 228 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 229 case MachineOperand::MO_ConstantPoolIndex: 230 case MachineOperand::MO_TargetIndex: 231 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(), 232 MO.getOffset()); 233 case MachineOperand::MO_JumpTableIndex: 234 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 235 case MachineOperand::MO_ExternalSymbol: 236 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(), 237 MO.getSymbolName()); 238 case MachineOperand::MO_GlobalAddress: 239 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(), 240 MO.getOffset()); 241 case MachineOperand::MO_BlockAddress: 242 return hash_combine(MO.getType(), MO.getTargetFlags(), 243 MO.getBlockAddress(), MO.getOffset()); 244 case MachineOperand::MO_RegisterMask: 245 case MachineOperand::MO_RegisterLiveOut: 246 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask()); 247 case MachineOperand::MO_Metadata: 248 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata()); 249 case MachineOperand::MO_MCSymbol: 250 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol()); 251 } 252 llvm_unreachable("Invalid machine operand type"); 253 } 254 255 /// print - Print the specified machine operand. 256 /// 257 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const { 258 // If the instruction is embedded into a basic block, we can find the 259 // target info for the instruction. 260 if (!TM) 261 if (const MachineInstr *MI = getParent()) 262 if (const MachineBasicBlock *MBB = MI->getParent()) 263 if (const MachineFunction *MF = MBB->getParent()) 264 TM = &MF->getTarget(); 265 const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0; 266 267 switch (getType()) { 268 case MachineOperand::MO_Register: 269 OS << PrintReg(getReg(), TRI, getSubReg()); 270 271 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 272 isInternalRead() || isEarlyClobber() || isTied()) { 273 OS << '<'; 274 bool NeedComma = false; 275 if (isDef()) { 276 if (NeedComma) OS << ','; 277 if (isEarlyClobber()) 278 OS << "earlyclobber,"; 279 if (isImplicit()) 280 OS << "imp-"; 281 OS << "def"; 282 NeedComma = true; 283 // <def,read-undef> only makes sense when getSubReg() is set. 284 // Don't clutter the output otherwise. 285 if (isUndef() && getSubReg()) 286 OS << ",read-undef"; 287 } else if (isImplicit()) { 288 OS << "imp-use"; 289 NeedComma = true; 290 } 291 292 if (isKill()) { 293 if (NeedComma) OS << ','; 294 OS << "kill"; 295 NeedComma = true; 296 } 297 if (isDead()) { 298 if (NeedComma) OS << ','; 299 OS << "dead"; 300 NeedComma = true; 301 } 302 if (isUndef() && isUse()) { 303 if (NeedComma) OS << ','; 304 OS << "undef"; 305 NeedComma = true; 306 } 307 if (isInternalRead()) { 308 if (NeedComma) OS << ','; 309 OS << "internal"; 310 NeedComma = true; 311 } 312 if (isTied()) { 313 if (NeedComma) OS << ','; 314 OS << "tied"; 315 if (TiedTo != 15) 316 OS << unsigned(TiedTo - 1); 317 NeedComma = true; 318 } 319 OS << '>'; 320 } 321 break; 322 case MachineOperand::MO_Immediate: 323 OS << getImm(); 324 break; 325 case MachineOperand::MO_CImmediate: 326 getCImm()->getValue().print(OS, false); 327 break; 328 case MachineOperand::MO_FPImmediate: 329 if (getFPImm()->getType()->isFloatTy()) 330 OS << getFPImm()->getValueAPF().convertToFloat(); 331 else 332 OS << getFPImm()->getValueAPF().convertToDouble(); 333 break; 334 case MachineOperand::MO_MachineBasicBlock: 335 OS << "<BB#" << getMBB()->getNumber() << ">"; 336 break; 337 case MachineOperand::MO_FrameIndex: 338 OS << "<fi#" << getIndex() << '>'; 339 break; 340 case MachineOperand::MO_ConstantPoolIndex: 341 OS << "<cp#" << getIndex(); 342 if (getOffset()) OS << "+" << getOffset(); 343 OS << '>'; 344 break; 345 case MachineOperand::MO_TargetIndex: 346 OS << "<ti#" << getIndex(); 347 if (getOffset()) OS << "+" << getOffset(); 348 OS << '>'; 349 break; 350 case MachineOperand::MO_JumpTableIndex: 351 OS << "<jt#" << getIndex() << '>'; 352 break; 353 case MachineOperand::MO_GlobalAddress: 354 OS << "<ga:"; 355 WriteAsOperand(OS, getGlobal(), /*PrintType=*/false); 356 if (getOffset()) OS << "+" << getOffset(); 357 OS << '>'; 358 break; 359 case MachineOperand::MO_ExternalSymbol: 360 OS << "<es:" << getSymbolName(); 361 if (getOffset()) OS << "+" << getOffset(); 362 OS << '>'; 363 break; 364 case MachineOperand::MO_BlockAddress: 365 OS << '<'; 366 WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false); 367 if (getOffset()) OS << "+" << getOffset(); 368 OS << '>'; 369 break; 370 case MachineOperand::MO_RegisterMask: 371 OS << "<regmask>"; 372 break; 373 case MachineOperand::MO_RegisterLiveOut: 374 OS << "<regliveout>"; 375 break; 376 case MachineOperand::MO_Metadata: 377 OS << '<'; 378 WriteAsOperand(OS, getMetadata(), /*PrintType=*/false); 379 OS << '>'; 380 break; 381 case MachineOperand::MO_MCSymbol: 382 OS << "<MCSym=" << *getMCSymbol() << '>'; 383 break; 384 } 385 386 if (unsigned TF = getTargetFlags()) 387 OS << "[TF=" << TF << ']'; 388 } 389 390 //===----------------------------------------------------------------------===// 391 // MachineMemOperand Implementation 392 //===----------------------------------------------------------------------===// 393 394 /// getAddrSpace - Return the LLVM IR address space number that this pointer 395 /// points into. 396 unsigned MachinePointerInfo::getAddrSpace() const { 397 if (V == 0) return 0; 398 return cast<PointerType>(V->getType())->getAddressSpace(); 399 } 400 401 /// getConstantPool - Return a MachinePointerInfo record that refers to the 402 /// constant pool. 403 MachinePointerInfo MachinePointerInfo::getConstantPool() { 404 return MachinePointerInfo(PseudoSourceValue::getConstantPool()); 405 } 406 407 /// getFixedStack - Return a MachinePointerInfo record that refers to the 408 /// the specified FrameIndex. 409 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) { 410 return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset); 411 } 412 413 MachinePointerInfo MachinePointerInfo::getJumpTable() { 414 return MachinePointerInfo(PseudoSourceValue::getJumpTable()); 415 } 416 417 MachinePointerInfo MachinePointerInfo::getGOT() { 418 return MachinePointerInfo(PseudoSourceValue::getGOT()); 419 } 420 421 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) { 422 return MachinePointerInfo(PseudoSourceValue::getStack(), Offset); 423 } 424 425 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f, 426 uint64_t s, unsigned int a, 427 const MDNode *TBAAInfo, 428 const MDNode *Ranges) 429 : PtrInfo(ptrinfo), Size(s), 430 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)), 431 TBAAInfo(TBAAInfo), Ranges(Ranges) { 432 assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) && 433 "invalid pointer value"); 434 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 435 assert((isLoad() || isStore()) && "Not a load/store!"); 436 } 437 438 /// Profile - Gather unique data for the object. 439 /// 440 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 441 ID.AddInteger(getOffset()); 442 ID.AddInteger(Size); 443 ID.AddPointer(getValue()); 444 ID.AddInteger(Flags); 445 } 446 447 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 448 // The Value and Offset may differ due to CSE. But the flags and size 449 // should be the same. 450 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 451 assert(MMO->getSize() == getSize() && "Size mismatch!"); 452 453 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 454 // Update the alignment value. 455 Flags = (Flags & ((1 << MOMaxBits) - 1)) | 456 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits); 457 // Also update the base and offset, because the new alignment may 458 // not be applicable with the old ones. 459 PtrInfo = MMO->PtrInfo; 460 } 461 } 462 463 /// getAlignment - Return the minimum known alignment in bytes of the 464 /// actual memory reference. 465 uint64_t MachineMemOperand::getAlignment() const { 466 return MinAlign(getBaseAlignment(), getOffset()); 467 } 468 469 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) { 470 assert((MMO.isLoad() || MMO.isStore()) && 471 "SV has to be a load, store or both."); 472 473 if (MMO.isVolatile()) 474 OS << "Volatile "; 475 476 if (MMO.isLoad()) 477 OS << "LD"; 478 if (MMO.isStore()) 479 OS << "ST"; 480 OS << MMO.getSize(); 481 482 // Print the address information. 483 OS << "["; 484 if (!MMO.getValue()) 485 OS << "<unknown>"; 486 else 487 WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false); 488 489 unsigned AS = MMO.getAddrSpace(); 490 if (AS != 0) 491 OS << "(addrspace=" << AS << ')'; 492 493 // If the alignment of the memory reference itself differs from the alignment 494 // of the base pointer, print the base alignment explicitly, next to the base 495 // pointer. 496 if (MMO.getBaseAlignment() != MMO.getAlignment()) 497 OS << "(align=" << MMO.getBaseAlignment() << ")"; 498 499 if (MMO.getOffset() != 0) 500 OS << "+" << MMO.getOffset(); 501 OS << "]"; 502 503 // Print the alignment of the reference. 504 if (MMO.getBaseAlignment() != MMO.getAlignment() || 505 MMO.getBaseAlignment() != MMO.getSize()) 506 OS << "(align=" << MMO.getAlignment() << ")"; 507 508 // Print TBAA info. 509 if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) { 510 OS << "(tbaa="; 511 if (TBAAInfo->getNumOperands() > 0) 512 WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false); 513 else 514 OS << "<unknown>"; 515 OS << ")"; 516 } 517 518 // Print nontemporal info. 519 if (MMO.isNonTemporal()) 520 OS << "(nontemporal)"; 521 522 return OS; 523 } 524 525 //===----------------------------------------------------------------------===// 526 // MachineInstr Implementation 527 //===----------------------------------------------------------------------===// 528 529 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 530 if (MCID->ImplicitDefs) 531 for (const uint16_t *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; ++ImpDefs) 532 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 533 if (MCID->ImplicitUses) 534 for (const uint16_t *ImpUses = MCID->getImplicitUses(); *ImpUses; ++ImpUses) 535 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 536 } 537 538 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 539 /// implicit operands. It reserves space for the number of operands specified by 540 /// the MCInstrDesc. 541 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, 542 const DebugLoc dl, bool NoImp) 543 : MCID(&tid), Parent(0), Operands(0), NumOperands(0), 544 Flags(0), AsmPrinterFlags(0), 545 NumMemRefs(0), MemRefs(0), debugLoc(dl) { 546 // Reserve space for the expected number of operands. 547 if (unsigned NumOps = MCID->getNumOperands() + 548 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 549 CapOperands = OperandCapacity::get(NumOps); 550 Operands = MF.allocateOperandArray(CapOperands); 551 } 552 553 if (!NoImp) 554 addImplicitDefUseOperands(MF); 555 } 556 557 /// MachineInstr ctor - Copies MachineInstr arg exactly 558 /// 559 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 560 : MCID(&MI.getDesc()), Parent(0), Operands(0), NumOperands(0), 561 Flags(0), AsmPrinterFlags(0), 562 NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs), 563 debugLoc(MI.getDebugLoc()) { 564 CapOperands = OperandCapacity::get(MI.getNumOperands()); 565 Operands = MF.allocateOperandArray(CapOperands); 566 567 // Copy operands. 568 for (unsigned i = 0; i != MI.getNumOperands(); ++i) 569 addOperand(MF, MI.getOperand(i)); 570 571 // Copy all the sensible flags. 572 setFlags(MI.Flags); 573 } 574 575 /// getRegInfo - If this instruction is embedded into a MachineFunction, 576 /// return the MachineRegisterInfo object for the current function, otherwise 577 /// return null. 578 MachineRegisterInfo *MachineInstr::getRegInfo() { 579 if (MachineBasicBlock *MBB = getParent()) 580 return &MBB->getParent()->getRegInfo(); 581 return 0; 582 } 583 584 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 585 /// this instruction from their respective use lists. This requires that the 586 /// operands already be on their use lists. 587 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 588 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 589 if (Operands[i].isReg()) 590 MRI.removeRegOperandFromUseList(&Operands[i]); 591 } 592 593 /// AddRegOperandsToUseLists - Add all of the register operands in 594 /// this instruction from their respective use lists. This requires that the 595 /// operands not be on their use lists yet. 596 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 597 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 598 if (Operands[i].isReg()) 599 MRI.addRegOperandToUseList(&Operands[i]); 600 } 601 602 void MachineInstr::addOperand(const MachineOperand &Op) { 603 MachineBasicBlock *MBB = getParent(); 604 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 605 MachineFunction *MF = MBB->getParent(); 606 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 607 addOperand(*MF, Op); 608 } 609 610 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 611 /// ranges. If MRI is non-null also update use-def chains. 612 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 613 unsigned NumOps, MachineRegisterInfo *MRI) { 614 if (MRI) 615 return MRI->moveOperands(Dst, Src, NumOps); 616 617 // Here it would be convenient to call memmove, so that isn't allowed because 618 // MachineOperand has a constructor and so isn't a POD type. 619 if (Dst < Src) 620 for (unsigned i = 0; i != NumOps; ++i) 621 new (Dst + i) MachineOperand(Src[i]); 622 else 623 for (unsigned i = NumOps; i ; --i) 624 new (Dst + i - 1) MachineOperand(Src[i - 1]); 625 } 626 627 /// addOperand - Add the specified operand to the instruction. If it is an 628 /// implicit operand, it is added to the end of the operand list. If it is 629 /// an explicit operand it is added at the end of the explicit operand list 630 /// (before the first implicit operand). 631 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 632 assert(MCID && "Cannot add operands before providing an instr descriptor"); 633 634 // Check if we're adding one of our existing operands. 635 if (&Op >= Operands && &Op < Operands + NumOperands) { 636 // This is unusual: MI->addOperand(MI->getOperand(i)). 637 // If adding Op requires reallocating or moving existing operands around, 638 // the Op reference could go stale. Support it by copying Op. 639 MachineOperand CopyOp(Op); 640 return addOperand(MF, CopyOp); 641 } 642 643 // Find the insert location for the new operand. Implicit registers go at 644 // the end, everything else goes before the implicit regs. 645 // 646 // FIXME: Allow mixed explicit and implicit operands on inline asm. 647 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 648 // implicit-defs, but they must not be moved around. See the FIXME in 649 // InstrEmitter.cpp. 650 unsigned OpNo = getNumOperands(); 651 bool isImpReg = Op.isReg() && Op.isImplicit(); 652 if (!isImpReg && !isInlineAsm()) { 653 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 654 --OpNo; 655 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 656 } 657 } 658 659 #ifndef NDEBUG 660 bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata; 661 // OpNo now points as the desired insertion point. Unless this is a variadic 662 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 663 // RegMask operands go between the explicit and implicit operands. 664 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 665 OpNo < MCID->getNumOperands() || isMetaDataOp) && 666 "Trying to add an operand to a machine instr that is already done!"); 667 #endif 668 669 MachineRegisterInfo *MRI = getRegInfo(); 670 671 // Determine if the Operands array needs to be reallocated. 672 // Save the old capacity and operand array. 673 OperandCapacity OldCap = CapOperands; 674 MachineOperand *OldOperands = Operands; 675 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 676 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 677 Operands = MF.allocateOperandArray(CapOperands); 678 // Move the operands before the insertion point. 679 if (OpNo) 680 moveOperands(Operands, OldOperands, OpNo, MRI); 681 } 682 683 // Move the operands following the insertion point. 684 if (OpNo != NumOperands) 685 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 686 MRI); 687 ++NumOperands; 688 689 // Deallocate the old operand array. 690 if (OldOperands != Operands && OldOperands) 691 MF.deallocateOperandArray(OldCap, OldOperands); 692 693 // Copy Op into place. It still needs to be inserted into the MRI use lists. 694 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 695 NewMO->ParentMI = this; 696 697 // When adding a register operand, tell MRI about it. 698 if (NewMO->isReg()) { 699 // Ensure isOnRegUseList() returns false, regardless of Op's status. 700 NewMO->Contents.Reg.Prev = 0; 701 // Ignore existing ties. This is not a property that can be copied. 702 NewMO->TiedTo = 0; 703 // Add the new operand to MRI, but only for instructions in an MBB. 704 if (MRI) 705 MRI->addRegOperandToUseList(NewMO); 706 // The MCID operand information isn't accurate until we start adding 707 // explicit operands. The implicit operands are added first, then the 708 // explicits are inserted before them. 709 if (!isImpReg) { 710 // Tie uses to defs as indicated in MCInstrDesc. 711 if (NewMO->isUse()) { 712 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 713 if (DefIdx != -1) 714 tieOperands(DefIdx, OpNo); 715 } 716 // If the register operand is flagged as early, mark the operand as such. 717 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 718 NewMO->setIsEarlyClobber(true); 719 } 720 } 721 } 722 723 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 724 /// fewer operand than it started with. 725 /// 726 void MachineInstr::RemoveOperand(unsigned OpNo) { 727 assert(OpNo < getNumOperands() && "Invalid operand number"); 728 untieRegOperand(OpNo); 729 730 #ifndef NDEBUG 731 // Moving tied operands would break the ties. 732 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 733 if (Operands[i].isReg()) 734 assert(!Operands[i].isTied() && "Cannot move tied operands"); 735 #endif 736 737 MachineRegisterInfo *MRI = getRegInfo(); 738 if (MRI && Operands[OpNo].isReg()) 739 MRI->removeRegOperandFromUseList(Operands + OpNo); 740 741 // Don't call the MachineOperand destructor. A lot of this code depends on 742 // MachineOperand having a trivial destructor anyway, and adding a call here 743 // wouldn't make it 'destructor-correct'. 744 745 if (unsigned N = NumOperands - 1 - OpNo) 746 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 747 --NumOperands; 748 } 749 750 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 751 /// This function should be used only occasionally. The setMemRefs function 752 /// is the primary method for setting up a MachineInstr's MemRefs list. 753 void MachineInstr::addMemOperand(MachineFunction &MF, 754 MachineMemOperand *MO) { 755 mmo_iterator OldMemRefs = MemRefs; 756 unsigned OldNumMemRefs = NumMemRefs; 757 758 unsigned NewNum = NumMemRefs + 1; 759 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 760 761 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs); 762 NewMemRefs[NewNum - 1] = MO; 763 setMemRefs(NewMemRefs, NewMemRefs + NewNum); 764 } 765 766 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { 767 assert(!isBundledWithPred() && "Must be called on bundle header"); 768 for (MachineBasicBlock::const_instr_iterator MII = this;; ++MII) { 769 if (MII->getDesc().getFlags() & Mask) { 770 if (Type == AnyInBundle) 771 return true; 772 } else { 773 if (Type == AllInBundle && !MII->isBundle()) 774 return false; 775 } 776 // This was the last instruction in the bundle. 777 if (!MII->isBundledWithSucc()) 778 return Type == AllInBundle; 779 } 780 } 781 782 bool MachineInstr::isIdenticalTo(const MachineInstr *Other, 783 MICheckType Check) const { 784 // If opcodes or number of operands are not the same then the two 785 // instructions are obviously not identical. 786 if (Other->getOpcode() != getOpcode() || 787 Other->getNumOperands() != getNumOperands()) 788 return false; 789 790 if (isBundle()) { 791 // Both instructions are bundles, compare MIs inside the bundle. 792 MachineBasicBlock::const_instr_iterator I1 = *this; 793 MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end(); 794 MachineBasicBlock::const_instr_iterator I2 = *Other; 795 MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end(); 796 while (++I1 != E1 && I1->isInsideBundle()) { 797 ++I2; 798 if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check)) 799 return false; 800 } 801 } 802 803 // Check operands to make sure they match. 804 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 805 const MachineOperand &MO = getOperand(i); 806 const MachineOperand &OMO = Other->getOperand(i); 807 if (!MO.isReg()) { 808 if (!MO.isIdenticalTo(OMO)) 809 return false; 810 continue; 811 } 812 813 // Clients may or may not want to ignore defs when testing for equality. 814 // For example, machine CSE pass only cares about finding common 815 // subexpressions, so it's safe to ignore virtual register defs. 816 if (MO.isDef()) { 817 if (Check == IgnoreDefs) 818 continue; 819 else if (Check == IgnoreVRegDefs) { 820 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 821 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 822 if (MO.getReg() != OMO.getReg()) 823 return false; 824 } else { 825 if (!MO.isIdenticalTo(OMO)) 826 return false; 827 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 828 return false; 829 } 830 } else { 831 if (!MO.isIdenticalTo(OMO)) 832 return false; 833 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 834 return false; 835 } 836 } 837 // If DebugLoc does not match then two dbg.values are not identical. 838 if (isDebugValue()) 839 if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown() 840 && getDebugLoc() != Other->getDebugLoc()) 841 return false; 842 return true; 843 } 844 845 MachineInstr *MachineInstr::removeFromParent() { 846 assert(getParent() && "Not embedded in a basic block!"); 847 return getParent()->remove(this); 848 } 849 850 MachineInstr *MachineInstr::removeFromBundle() { 851 assert(getParent() && "Not embedded in a basic block!"); 852 return getParent()->remove_instr(this); 853 } 854 855 void MachineInstr::eraseFromParent() { 856 assert(getParent() && "Not embedded in a basic block!"); 857 getParent()->erase(this); 858 } 859 860 void MachineInstr::eraseFromBundle() { 861 assert(getParent() && "Not embedded in a basic block!"); 862 getParent()->erase_instr(this); 863 } 864 865 /// getNumExplicitOperands - Returns the number of non-implicit operands. 866 /// 867 unsigned MachineInstr::getNumExplicitOperands() const { 868 unsigned NumOperands = MCID->getNumOperands(); 869 if (!MCID->isVariadic()) 870 return NumOperands; 871 872 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 873 const MachineOperand &MO = getOperand(i); 874 if (!MO.isReg() || !MO.isImplicit()) 875 NumOperands++; 876 } 877 return NumOperands; 878 } 879 880 void MachineInstr::bundleWithPred() { 881 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 882 setFlag(BundledPred); 883 MachineBasicBlock::instr_iterator Pred = this; 884 --Pred; 885 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 886 Pred->setFlag(BundledSucc); 887 } 888 889 void MachineInstr::bundleWithSucc() { 890 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 891 setFlag(BundledSucc); 892 MachineBasicBlock::instr_iterator Succ = this; 893 ++Succ; 894 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 895 Succ->setFlag(BundledPred); 896 } 897 898 void MachineInstr::unbundleFromPred() { 899 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 900 clearFlag(BundledPred); 901 MachineBasicBlock::instr_iterator Pred = this; 902 --Pred; 903 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 904 Pred->clearFlag(BundledSucc); 905 } 906 907 void MachineInstr::unbundleFromSucc() { 908 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 909 clearFlag(BundledSucc); 910 MachineBasicBlock::instr_iterator Succ = this; 911 ++Succ; 912 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 913 Succ->clearFlag(BundledPred); 914 } 915 916 bool MachineInstr::isStackAligningInlineAsm() const { 917 if (isInlineAsm()) { 918 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 919 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 920 return true; 921 } 922 return false; 923 } 924 925 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 926 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 927 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 928 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 929 } 930 931 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 932 unsigned *GroupNo) const { 933 assert(isInlineAsm() && "Expected an inline asm instruction"); 934 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 935 936 // Ignore queries about the initial operands. 937 if (OpIdx < InlineAsm::MIOp_FirstOperand) 938 return -1; 939 940 unsigned Group = 0; 941 unsigned NumOps; 942 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 943 i += NumOps) { 944 const MachineOperand &FlagMO = getOperand(i); 945 // If we reach the implicit register operands, stop looking. 946 if (!FlagMO.isImm()) 947 return -1; 948 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 949 if (i + NumOps > OpIdx) { 950 if (GroupNo) 951 *GroupNo = Group; 952 return i; 953 } 954 ++Group; 955 } 956 return -1; 957 } 958 959 const TargetRegisterClass* 960 MachineInstr::getRegClassConstraint(unsigned OpIdx, 961 const TargetInstrInfo *TII, 962 const TargetRegisterInfo *TRI) const { 963 assert(getParent() && "Can't have an MBB reference here!"); 964 assert(getParent()->getParent() && "Can't have an MF reference here!"); 965 const MachineFunction &MF = *getParent()->getParent(); 966 967 // Most opcodes have fixed constraints in their MCInstrDesc. 968 if (!isInlineAsm()) 969 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 970 971 if (!getOperand(OpIdx).isReg()) 972 return NULL; 973 974 // For tied uses on inline asm, get the constraint from the def. 975 unsigned DefIdx; 976 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 977 OpIdx = DefIdx; 978 979 // Inline asm stores register class constraints in the flag word. 980 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 981 if (FlagIdx < 0) 982 return NULL; 983 984 unsigned Flag = getOperand(FlagIdx).getImm(); 985 unsigned RCID; 986 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) 987 return TRI->getRegClass(RCID); 988 989 // Assume that all registers in a memory operand are pointers. 990 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 991 return TRI->getPointerRegClass(MF); 992 993 return NULL; 994 } 995 996 /// Return the number of instructions inside the MI bundle, not counting the 997 /// header instruction. 998 unsigned MachineInstr::getBundleSize() const { 999 MachineBasicBlock::const_instr_iterator I = this; 1000 unsigned Size = 0; 1001 while (I->isBundledWithSucc()) 1002 ++Size, ++I; 1003 return Size; 1004 } 1005 1006 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 1007 /// the specific register or -1 if it is not found. It further tightens 1008 /// the search criteria to a use that kills the register if isKill is true. 1009 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, 1010 const TargetRegisterInfo *TRI) const { 1011 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1012 const MachineOperand &MO = getOperand(i); 1013 if (!MO.isReg() || !MO.isUse()) 1014 continue; 1015 unsigned MOReg = MO.getReg(); 1016 if (!MOReg) 1017 continue; 1018 if (MOReg == Reg || 1019 (TRI && 1020 TargetRegisterInfo::isPhysicalRegister(MOReg) && 1021 TargetRegisterInfo::isPhysicalRegister(Reg) && 1022 TRI->isSubRegister(MOReg, Reg))) 1023 if (!isKill || MO.isKill()) 1024 return i; 1025 } 1026 return -1; 1027 } 1028 1029 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1030 /// indicating if this instruction reads or writes Reg. This also considers 1031 /// partial defines. 1032 std::pair<bool,bool> 1033 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 1034 SmallVectorImpl<unsigned> *Ops) const { 1035 bool PartDef = false; // Partial redefine. 1036 bool FullDef = false; // Full define. 1037 bool Use = false; 1038 1039 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1040 const MachineOperand &MO = getOperand(i); 1041 if (!MO.isReg() || MO.getReg() != Reg) 1042 continue; 1043 if (Ops) 1044 Ops->push_back(i); 1045 if (MO.isUse()) 1046 Use |= !MO.isUndef(); 1047 else if (MO.getSubReg() && !MO.isUndef()) 1048 // A partial <def,undef> doesn't count as reading the register. 1049 PartDef = true; 1050 else 1051 FullDef = true; 1052 } 1053 // A partial redefine uses Reg unless there is also a full define. 1054 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1055 } 1056 1057 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1058 /// the specified register or -1 if it is not found. If isDead is true, defs 1059 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1060 /// also checks if there is a def of a super-register. 1061 int 1062 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 1063 const TargetRegisterInfo *TRI) const { 1064 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 1065 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1066 const MachineOperand &MO = getOperand(i); 1067 // Accept regmask operands when Overlap is set. 1068 // Ignore them when looking for a specific def operand (Overlap == false). 1069 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1070 return i; 1071 if (!MO.isReg() || !MO.isDef()) 1072 continue; 1073 unsigned MOReg = MO.getReg(); 1074 bool Found = (MOReg == Reg); 1075 if (!Found && TRI && isPhys && 1076 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1077 if (Overlap) 1078 Found = TRI->regsOverlap(MOReg, Reg); 1079 else 1080 Found = TRI->isSubRegister(MOReg, Reg); 1081 } 1082 if (Found && (!isDead || MO.isDead())) 1083 return i; 1084 } 1085 return -1; 1086 } 1087 1088 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1089 /// operand list that is used to represent the predicate. It returns -1 if 1090 /// none is found. 1091 int MachineInstr::findFirstPredOperandIdx() const { 1092 // Don't call MCID.findFirstPredOperandIdx() because this variant 1093 // is sometimes called on an instruction that's not yet complete, and 1094 // so the number of operands is less than the MCID indicates. In 1095 // particular, the PTX target does this. 1096 const MCInstrDesc &MCID = getDesc(); 1097 if (MCID.isPredicable()) { 1098 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1099 if (MCID.OpInfo[i].isPredicate()) 1100 return i; 1101 } 1102 1103 return -1; 1104 } 1105 1106 // MachineOperand::TiedTo is 4 bits wide. 1107 const unsigned TiedMax = 15; 1108 1109 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1110 /// 1111 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1112 /// field. TiedTo can have these values: 1113 /// 1114 /// 0: Operand is not tied to anything. 1115 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1116 /// TiedMax: Tied to an operand >= TiedMax-1. 1117 /// 1118 /// The tied def must be one of the first TiedMax operands on a normal 1119 /// instruction. INLINEASM instructions allow more tied defs. 1120 /// 1121 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1122 MachineOperand &DefMO = getOperand(DefIdx); 1123 MachineOperand &UseMO = getOperand(UseIdx); 1124 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1125 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1126 assert(!DefMO.isTied() && "Def is already tied to another use"); 1127 assert(!UseMO.isTied() && "Use is already tied to another def"); 1128 1129 if (DefIdx < TiedMax) 1130 UseMO.TiedTo = DefIdx + 1; 1131 else { 1132 // Inline asm can use the group descriptors to find tied operands, but on 1133 // normal instruction, the tied def must be within the first TiedMax 1134 // operands. 1135 assert(isInlineAsm() && "DefIdx out of range"); 1136 UseMO.TiedTo = TiedMax; 1137 } 1138 1139 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1140 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1141 } 1142 1143 /// Given the index of a tied register operand, find the operand it is tied to. 1144 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1145 /// which must exist. 1146 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1147 const MachineOperand &MO = getOperand(OpIdx); 1148 assert(MO.isTied() && "Operand isn't tied"); 1149 1150 // Normally TiedTo is in range. 1151 if (MO.TiedTo < TiedMax) 1152 return MO.TiedTo - 1; 1153 1154 // Uses on normal instructions can be out of range. 1155 if (!isInlineAsm()) { 1156 // Normal tied defs must be in the 0..TiedMax-1 range. 1157 if (MO.isUse()) 1158 return TiedMax - 1; 1159 // MO is a def. Search for the tied use. 1160 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1161 const MachineOperand &UseMO = getOperand(i); 1162 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1163 return i; 1164 } 1165 llvm_unreachable("Can't find tied use"); 1166 } 1167 1168 // Now deal with inline asm by parsing the operand group descriptor flags. 1169 // Find the beginning of each operand group. 1170 SmallVector<unsigned, 8> GroupIdx; 1171 unsigned OpIdxGroup = ~0u; 1172 unsigned NumOps; 1173 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1174 i += NumOps) { 1175 const MachineOperand &FlagMO = getOperand(i); 1176 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1177 unsigned CurGroup = GroupIdx.size(); 1178 GroupIdx.push_back(i); 1179 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1180 // OpIdx belongs to this operand group. 1181 if (OpIdx > i && OpIdx < i + NumOps) 1182 OpIdxGroup = CurGroup; 1183 unsigned TiedGroup; 1184 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1185 continue; 1186 // Operands in this group are tied to operands in TiedGroup which must be 1187 // earlier. Find the number of operands between the two groups. 1188 unsigned Delta = i - GroupIdx[TiedGroup]; 1189 1190 // OpIdx is a use tied to TiedGroup. 1191 if (OpIdxGroup == CurGroup) 1192 return OpIdx - Delta; 1193 1194 // OpIdx is a def tied to this use group. 1195 if (OpIdxGroup == TiedGroup) 1196 return OpIdx + Delta; 1197 } 1198 llvm_unreachable("Invalid tied operand on inline asm"); 1199 } 1200 1201 /// clearKillInfo - Clears kill flags on all operands. 1202 /// 1203 void MachineInstr::clearKillInfo() { 1204 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1205 MachineOperand &MO = getOperand(i); 1206 if (MO.isReg() && MO.isUse()) 1207 MO.setIsKill(false); 1208 } 1209 } 1210 1211 void MachineInstr::substituteRegister(unsigned FromReg, 1212 unsigned ToReg, 1213 unsigned SubIdx, 1214 const TargetRegisterInfo &RegInfo) { 1215 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1216 if (SubIdx) 1217 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1218 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1219 MachineOperand &MO = getOperand(i); 1220 if (!MO.isReg() || MO.getReg() != FromReg) 1221 continue; 1222 MO.substPhysReg(ToReg, RegInfo); 1223 } 1224 } else { 1225 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1226 MachineOperand &MO = getOperand(i); 1227 if (!MO.isReg() || MO.getReg() != FromReg) 1228 continue; 1229 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1230 } 1231 } 1232 } 1233 1234 /// isSafeToMove - Return true if it is safe to move this instruction. If 1235 /// SawStore is set to true, it means that there is a store (or call) between 1236 /// the instruction's location and its intended destination. 1237 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII, 1238 AliasAnalysis *AA, 1239 bool &SawStore) const { 1240 // Ignore stuff that we obviously can't move. 1241 // 1242 // Treat volatile loads as stores. This is not strictly necessary for 1243 // volatiles, but it is required for atomic loads. It is not allowed to move 1244 // a load across an atomic load with Ordering > Monotonic. 1245 if (mayStore() || isCall() || 1246 (mayLoad() && hasOrderedMemoryRef())) { 1247 SawStore = true; 1248 return false; 1249 } 1250 1251 if (isLabel() || isDebugValue() || 1252 isTerminator() || hasUnmodeledSideEffects()) 1253 return false; 1254 1255 // See if this instruction does a load. If so, we have to guarantee that the 1256 // loaded value doesn't change between the load and the its intended 1257 // destination. The check for isInvariantLoad gives the targe the chance to 1258 // classify the load as always returning a constant, e.g. a constant pool 1259 // load. 1260 if (mayLoad() && !isInvariantLoad(AA)) 1261 // Otherwise, this is a real load. If there is a store between the load and 1262 // end of block, we can't move it. 1263 return !SawStore; 1264 1265 return true; 1266 } 1267 1268 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1269 /// or volatile memory reference, or if the information describing the memory 1270 /// reference is not available. Return false if it is known to have no ordered 1271 /// memory references. 1272 bool MachineInstr::hasOrderedMemoryRef() const { 1273 // An instruction known never to access memory won't have a volatile access. 1274 if (!mayStore() && 1275 !mayLoad() && 1276 !isCall() && 1277 !hasUnmodeledSideEffects()) 1278 return false; 1279 1280 // Otherwise, if the instruction has no memory reference information, 1281 // conservatively assume it wasn't preserved. 1282 if (memoperands_empty()) 1283 return true; 1284 1285 // Check the memory reference information for ordered references. 1286 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I) 1287 if (!(*I)->isUnordered()) 1288 return true; 1289 1290 return false; 1291 } 1292 1293 /// isInvariantLoad - Return true if this instruction is loading from a 1294 /// location whose value is invariant across the function. For example, 1295 /// loading a value from the constant pool or from the argument area 1296 /// of a function if it does not change. This should only return true of 1297 /// *all* loads the instruction does are invariant (if it does multiple loads). 1298 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const { 1299 // If the instruction doesn't load at all, it isn't an invariant load. 1300 if (!mayLoad()) 1301 return false; 1302 1303 // If the instruction has lost its memoperands, conservatively assume that 1304 // it may not be an invariant load. 1305 if (memoperands_empty()) 1306 return false; 1307 1308 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo(); 1309 1310 for (mmo_iterator I = memoperands_begin(), 1311 E = memoperands_end(); I != E; ++I) { 1312 if ((*I)->isVolatile()) return false; 1313 if ((*I)->isStore()) return false; 1314 if ((*I)->isInvariant()) return true; 1315 1316 if (const Value *V = (*I)->getValue()) { 1317 // A load from a constant PseudoSourceValue is invariant. 1318 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) 1319 if (PSV->isConstant(MFI)) 1320 continue; 1321 // If we have an AliasAnalysis, ask it whether the memory is constant. 1322 if (AA && AA->pointsToConstantMemory( 1323 AliasAnalysis::Location(V, (*I)->getSize(), 1324 (*I)->getTBAAInfo()))) 1325 continue; 1326 } 1327 1328 // Otherwise assume conservatively. 1329 return false; 1330 } 1331 1332 // Everything checks out. 1333 return true; 1334 } 1335 1336 /// isConstantValuePHI - If the specified instruction is a PHI that always 1337 /// merges together the same virtual register, return the register, otherwise 1338 /// return 0. 1339 unsigned MachineInstr::isConstantValuePHI() const { 1340 if (!isPHI()) 1341 return 0; 1342 assert(getNumOperands() >= 3 && 1343 "It's illegal to have a PHI without source operands"); 1344 1345 unsigned Reg = getOperand(1).getReg(); 1346 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1347 if (getOperand(i).getReg() != Reg) 1348 return 0; 1349 return Reg; 1350 } 1351 1352 bool MachineInstr::hasUnmodeledSideEffects() const { 1353 if (hasProperty(MCID::UnmodeledSideEffects)) 1354 return true; 1355 if (isInlineAsm()) { 1356 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1357 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1358 return true; 1359 } 1360 1361 return false; 1362 } 1363 1364 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1365 /// 1366 bool MachineInstr::allDefsAreDead() const { 1367 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { 1368 const MachineOperand &MO = getOperand(i); 1369 if (!MO.isReg() || MO.isUse()) 1370 continue; 1371 if (!MO.isDead()) 1372 return false; 1373 } 1374 return true; 1375 } 1376 1377 /// copyImplicitOps - Copy implicit register operands from specified 1378 /// instruction to this instruction. 1379 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1380 const MachineInstr *MI) { 1381 for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands(); 1382 i != e; ++i) { 1383 const MachineOperand &MO = MI->getOperand(i); 1384 if (MO.isReg() && MO.isImplicit()) 1385 addOperand(MF, MO); 1386 } 1387 } 1388 1389 void MachineInstr::dump() const { 1390 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1391 dbgs() << " " << *this; 1392 #endif 1393 } 1394 1395 static void printDebugLoc(DebugLoc DL, const MachineFunction *MF, 1396 raw_ostream &CommentOS) { 1397 const LLVMContext &Ctx = MF->getFunction()->getContext(); 1398 if (!DL.isUnknown()) { // Print source line info. 1399 DIScope Scope(DL.getScope(Ctx)); 1400 assert((!Scope || Scope.isScope()) && 1401 "Scope of a DebugLoc should be null or a DIScope."); 1402 // Omit the directory, because it's likely to be long and uninteresting. 1403 if (Scope) 1404 CommentOS << Scope.getFilename(); 1405 else 1406 CommentOS << "<unknown>"; 1407 CommentOS << ':' << DL.getLine(); 1408 if (DL.getCol() != 0) 1409 CommentOS << ':' << DL.getCol(); 1410 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx)); 1411 if (!InlinedAtDL.isUnknown()) { 1412 CommentOS << " @[ "; 1413 printDebugLoc(InlinedAtDL, MF, CommentOS); 1414 CommentOS << " ]"; 1415 } 1416 } 1417 } 1418 1419 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM, 1420 bool SkipOpers) const { 1421 // We can be a bit tidier if we know the TargetMachine and/or MachineFunction. 1422 const MachineFunction *MF = 0; 1423 const MachineRegisterInfo *MRI = 0; 1424 if (const MachineBasicBlock *MBB = getParent()) { 1425 MF = MBB->getParent(); 1426 if (!TM && MF) 1427 TM = &MF->getTarget(); 1428 if (MF) 1429 MRI = &MF->getRegInfo(); 1430 } 1431 1432 // Save a list of virtual registers. 1433 SmallVector<unsigned, 8> VirtRegs; 1434 1435 // Print explicitly defined operands on the left of an assignment syntax. 1436 unsigned StartOp = 0, e = getNumOperands(); 1437 for (; StartOp < e && getOperand(StartOp).isReg() && 1438 getOperand(StartOp).isDef() && 1439 !getOperand(StartOp).isImplicit(); 1440 ++StartOp) { 1441 if (StartOp != 0) OS << ", "; 1442 getOperand(StartOp).print(OS, TM); 1443 unsigned Reg = getOperand(StartOp).getReg(); 1444 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1445 VirtRegs.push_back(Reg); 1446 } 1447 1448 if (StartOp != 0) 1449 OS << " = "; 1450 1451 // Print the opcode name. 1452 if (TM && TM->getInstrInfo()) 1453 OS << TM->getInstrInfo()->getName(getOpcode()); 1454 else 1455 OS << "UNKNOWN"; 1456 1457 if (SkipOpers) 1458 return; 1459 1460 // Print the rest of the operands. 1461 bool OmittedAnyCallClobbers = false; 1462 bool FirstOp = true; 1463 unsigned AsmDescOp = ~0u; 1464 unsigned AsmOpCount = 0; 1465 1466 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1467 // Print asm string. 1468 OS << " "; 1469 getOperand(InlineAsm::MIOp_AsmString).print(OS, TM); 1470 1471 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1472 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1473 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1474 OS << " [sideeffect]"; 1475 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1476 OS << " [mayload]"; 1477 if (ExtraInfo & InlineAsm::Extra_MayStore) 1478 OS << " [maystore]"; 1479 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1480 OS << " [alignstack]"; 1481 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1482 OS << " [attdialect]"; 1483 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1484 OS << " [inteldialect]"; 1485 1486 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1487 FirstOp = false; 1488 } 1489 1490 1491 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1492 const MachineOperand &MO = getOperand(i); 1493 1494 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1495 VirtRegs.push_back(MO.getReg()); 1496 1497 // Omit call-clobbered registers which aren't used anywhere. This makes 1498 // call instructions much less noisy on targets where calls clobber lots 1499 // of registers. Don't rely on MO.isDead() because we may be called before 1500 // LiveVariables is run, or we may be looking at a non-allocatable reg. 1501 if (MF && isCall() && 1502 MO.isReg() && MO.isImplicit() && MO.isDef()) { 1503 unsigned Reg = MO.getReg(); 1504 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1505 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1506 if (MRI.use_empty(Reg)) { 1507 bool HasAliasLive = false; 1508 for (MCRegAliasIterator AI(Reg, TM->getRegisterInfo(), true); 1509 AI.isValid(); ++AI) { 1510 unsigned AliasReg = *AI; 1511 if (!MRI.use_empty(AliasReg)) { 1512 HasAliasLive = true; 1513 break; 1514 } 1515 } 1516 if (!HasAliasLive) { 1517 OmittedAnyCallClobbers = true; 1518 continue; 1519 } 1520 } 1521 } 1522 } 1523 1524 if (FirstOp) FirstOp = false; else OS << ","; 1525 OS << " "; 1526 if (i < getDesc().NumOperands) { 1527 const MCOperandInfo &MCOI = getDesc().OpInfo[i]; 1528 if (MCOI.isPredicate()) 1529 OS << "pred:"; 1530 if (MCOI.isOptionalDef()) 1531 OS << "opt:"; 1532 } 1533 if (isDebugValue() && MO.isMetadata()) { 1534 // Pretty print DBG_VALUE instructions. 1535 const MDNode *MD = MO.getMetadata(); 1536 if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2))) 1537 OS << "!\"" << MDS->getString() << '\"'; 1538 else 1539 MO.print(OS, TM); 1540 } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) { 1541 OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm()); 1542 } else if (i == AsmDescOp && MO.isImm()) { 1543 // Pretty print the inline asm operand descriptor. 1544 OS << '$' << AsmOpCount++; 1545 unsigned Flag = MO.getImm(); 1546 switch (InlineAsm::getKind(Flag)) { 1547 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1548 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1549 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1550 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1551 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1552 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1553 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1554 } 1555 1556 unsigned RCID = 0; 1557 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1558 if (TM) 1559 OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName(); 1560 else 1561 OS << ":RC" << RCID; 1562 } 1563 1564 unsigned TiedTo = 0; 1565 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1566 OS << " tiedto:$" << TiedTo; 1567 1568 OS << ']'; 1569 1570 // Compute the index of the next operand descriptor. 1571 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1572 } else 1573 MO.print(OS, TM); 1574 } 1575 1576 // Briefly indicate whether any call clobbers were omitted. 1577 if (OmittedAnyCallClobbers) { 1578 if (!FirstOp) OS << ","; 1579 OS << " ..."; 1580 } 1581 1582 bool HaveSemi = false; 1583 const unsigned PrintableFlags = FrameSetup; 1584 if (Flags & PrintableFlags) { 1585 if (!HaveSemi) OS << ";"; HaveSemi = true; 1586 OS << " flags: "; 1587 1588 if (Flags & FrameSetup) 1589 OS << "FrameSetup"; 1590 } 1591 1592 if (!memoperands_empty()) { 1593 if (!HaveSemi) OS << ";"; HaveSemi = true; 1594 1595 OS << " mem:"; 1596 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 1597 i != e; ++i) { 1598 OS << **i; 1599 if (llvm::next(i) != e) 1600 OS << " "; 1601 } 1602 } 1603 1604 // Print the regclass of any virtual registers encountered. 1605 if (MRI && !VirtRegs.empty()) { 1606 if (!HaveSemi) OS << ";"; HaveSemi = true; 1607 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 1608 const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]); 1609 OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]); 1610 for (unsigned j = i+1; j != VirtRegs.size();) { 1611 if (MRI->getRegClass(VirtRegs[j]) != RC) { 1612 ++j; 1613 continue; 1614 } 1615 if (VirtRegs[i] != VirtRegs[j]) 1616 OS << "," << PrintReg(VirtRegs[j]); 1617 VirtRegs.erase(VirtRegs.begin()+j); 1618 } 1619 } 1620 } 1621 1622 // Print debug location information. 1623 if (isDebugValue() && getOperand(e - 1).isMetadata()) { 1624 if (!HaveSemi) OS << ";"; HaveSemi = true; 1625 DIVariable DV(getOperand(e - 1).getMetadata()); 1626 OS << " line no:" << DV.getLineNumber(); 1627 if (MDNode *InlinedAt = DV.getInlinedAt()) { 1628 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt); 1629 if (!InlinedAtDL.isUnknown()) { 1630 OS << " inlined @[ "; 1631 printDebugLoc(InlinedAtDL, MF, OS); 1632 OS << " ]"; 1633 } 1634 } 1635 } else if (!debugLoc.isUnknown() && MF) { 1636 if (!HaveSemi) OS << ";"; HaveSemi = true; 1637 OS << " dbg:"; 1638 printDebugLoc(debugLoc, MF, OS); 1639 } 1640 1641 OS << '\n'; 1642 } 1643 1644 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 1645 const TargetRegisterInfo *RegInfo, 1646 bool AddIfNotFound) { 1647 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1648 bool hasAliases = isPhysReg && 1649 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1650 bool Found = false; 1651 SmallVector<unsigned,4> DeadOps; 1652 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1653 MachineOperand &MO = getOperand(i); 1654 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1655 continue; 1656 unsigned Reg = MO.getReg(); 1657 if (!Reg) 1658 continue; 1659 1660 if (Reg == IncomingReg) { 1661 if (!Found) { 1662 if (MO.isKill()) 1663 // The register is already marked kill. 1664 return true; 1665 if (isPhysReg && isRegTiedToDefOperand(i)) 1666 // Two-address uses of physregs must not be marked kill. 1667 return true; 1668 MO.setIsKill(); 1669 Found = true; 1670 } 1671 } else if (hasAliases && MO.isKill() && 1672 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1673 // A super-register kill already exists. 1674 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1675 return true; 1676 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1677 DeadOps.push_back(i); 1678 } 1679 } 1680 1681 // Trim unneeded kill operands. 1682 while (!DeadOps.empty()) { 1683 unsigned OpIdx = DeadOps.back(); 1684 if (getOperand(OpIdx).isImplicit()) 1685 RemoveOperand(OpIdx); 1686 else 1687 getOperand(OpIdx).setIsKill(false); 1688 DeadOps.pop_back(); 1689 } 1690 1691 // If not found, this means an alias of one of the operands is killed. Add a 1692 // new implicit operand if required. 1693 if (!Found && AddIfNotFound) { 1694 addOperand(MachineOperand::CreateReg(IncomingReg, 1695 false /*IsDef*/, 1696 true /*IsImp*/, 1697 true /*IsKill*/)); 1698 return true; 1699 } 1700 return Found; 1701 } 1702 1703 void MachineInstr::clearRegisterKills(unsigned Reg, 1704 const TargetRegisterInfo *RegInfo) { 1705 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 1706 RegInfo = 0; 1707 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1708 MachineOperand &MO = getOperand(i); 1709 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1710 continue; 1711 unsigned OpReg = MO.getReg(); 1712 if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg))) 1713 MO.setIsKill(false); 1714 } 1715 } 1716 1717 bool MachineInstr::addRegisterDead(unsigned Reg, 1718 const TargetRegisterInfo *RegInfo, 1719 bool AddIfNotFound) { 1720 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg); 1721 bool hasAliases = isPhysReg && 1722 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 1723 bool Found = false; 1724 SmallVector<unsigned,4> DeadOps; 1725 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1726 MachineOperand &MO = getOperand(i); 1727 if (!MO.isReg() || !MO.isDef()) 1728 continue; 1729 unsigned MOReg = MO.getReg(); 1730 if (!MOReg) 1731 continue; 1732 1733 if (MOReg == Reg) { 1734 MO.setIsDead(); 1735 Found = true; 1736 } else if (hasAliases && MO.isDead() && 1737 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1738 // There exists a super-register that's marked dead. 1739 if (RegInfo->isSuperRegister(Reg, MOReg)) 1740 return true; 1741 if (RegInfo->isSubRegister(Reg, MOReg)) 1742 DeadOps.push_back(i); 1743 } 1744 } 1745 1746 // Trim unneeded dead operands. 1747 while (!DeadOps.empty()) { 1748 unsigned OpIdx = DeadOps.back(); 1749 if (getOperand(OpIdx).isImplicit()) 1750 RemoveOperand(OpIdx); 1751 else 1752 getOperand(OpIdx).setIsDead(false); 1753 DeadOps.pop_back(); 1754 } 1755 1756 // If not found, this means an alias of one of the operands is dead. Add a 1757 // new implicit operand if required. 1758 if (Found || !AddIfNotFound) 1759 return Found; 1760 1761 addOperand(MachineOperand::CreateReg(Reg, 1762 true /*IsDef*/, 1763 true /*IsImp*/, 1764 false /*IsKill*/, 1765 true /*IsDead*/)); 1766 return true; 1767 } 1768 1769 void MachineInstr::addRegisterDefined(unsigned Reg, 1770 const TargetRegisterInfo *RegInfo) { 1771 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1772 MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo); 1773 if (MO) 1774 return; 1775 } else { 1776 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1777 const MachineOperand &MO = getOperand(i); 1778 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 1779 MO.getSubReg() == 0) 1780 return; 1781 } 1782 } 1783 addOperand(MachineOperand::CreateReg(Reg, 1784 true /*IsDef*/, 1785 true /*IsImp*/)); 1786 } 1787 1788 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 1789 const TargetRegisterInfo &TRI) { 1790 bool HasRegMask = false; 1791 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1792 MachineOperand &MO = getOperand(i); 1793 if (MO.isRegMask()) { 1794 HasRegMask = true; 1795 continue; 1796 } 1797 if (!MO.isReg() || !MO.isDef()) continue; 1798 unsigned Reg = MO.getReg(); 1799 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 1800 bool Dead = true; 1801 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1802 I != E; ++I) 1803 if (TRI.regsOverlap(*I, Reg)) { 1804 Dead = false; 1805 break; 1806 } 1807 // If there are no uses, including partial uses, the def is dead. 1808 if (Dead) MO.setIsDead(); 1809 } 1810 1811 // This is a call with a register mask operand. 1812 // Mask clobbers are always dead, so add defs for the non-dead defines. 1813 if (HasRegMask) 1814 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1815 I != E; ++I) 1816 addRegisterDefined(*I, &TRI); 1817 } 1818 1819 unsigned 1820 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 1821 // Build up a buffer of hash code components. 1822 SmallVector<size_t, 8> HashComponents; 1823 HashComponents.reserve(MI->getNumOperands() + 1); 1824 HashComponents.push_back(MI->getOpcode()); 1825 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1826 const MachineOperand &MO = MI->getOperand(i); 1827 if (MO.isReg() && MO.isDef() && 1828 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1829 continue; // Skip virtual register defs. 1830 1831 HashComponents.push_back(hash_value(MO)); 1832 } 1833 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 1834 } 1835 1836 void MachineInstr::emitError(StringRef Msg) const { 1837 // Find the source location cookie. 1838 unsigned LocCookie = 0; 1839 const MDNode *LocMD = 0; 1840 for (unsigned i = getNumOperands(); i != 0; --i) { 1841 if (getOperand(i-1).isMetadata() && 1842 (LocMD = getOperand(i-1).getMetadata()) && 1843 LocMD->getNumOperands() != 0) { 1844 if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) { 1845 LocCookie = CI->getZExtValue(); 1846 break; 1847 } 1848 } 1849 } 1850 1851 if (const MachineBasicBlock *MBB = getParent()) 1852 if (const MachineFunction *MF = MBB->getParent()) 1853 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 1854 report_fatal_error(Msg); 1855 } 1856