1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Methods common to all machine instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MachineInstr.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/Hashing.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallBitVector.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/MemoryLocation.h" 21 #include "llvm/CodeGen/MachineBasicBlock.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineInstrBundle.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineModuleInfo.h" 28 #include "llvm/CodeGen/MachineOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/PseudoSourceValue.h" 31 #include "llvm/CodeGen/StackMaps.h" 32 #include "llvm/CodeGen/TargetInstrInfo.h" 33 #include "llvm/CodeGen/TargetRegisterInfo.h" 34 #include "llvm/CodeGen/TargetSubtargetInfo.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DebugLoc.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/InlineAsm.h" 40 #include "llvm/IR/LLVMContext.h" 41 #include "llvm/IR/Metadata.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/ModuleSlotTracker.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/MC/MCInstrDesc.h" 46 #include "llvm/MC/MCRegisterInfo.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/Compiler.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/FormattedStream.h" 52 #include "llvm/Support/LowLevelTypeImpl.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetMachine.h" 55 #include <algorithm> 56 #include <cassert> 57 #include <cstdint> 58 #include <cstring> 59 #include <utility> 60 61 using namespace llvm; 62 63 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) { 64 if (const MachineBasicBlock *MBB = MI.getParent()) 65 if (const MachineFunction *MF = MBB->getParent()) 66 return MF; 67 return nullptr; 68 } 69 70 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from 71 // it. 72 static void tryToGetTargetInfo(const MachineInstr &MI, 73 const TargetRegisterInfo *&TRI, 74 const MachineRegisterInfo *&MRI, 75 const TargetIntrinsicInfo *&IntrinsicInfo, 76 const TargetInstrInfo *&TII) { 77 78 if (const MachineFunction *MF = getMFIfAvailable(MI)) { 79 TRI = MF->getSubtarget().getRegisterInfo(); 80 MRI = &MF->getRegInfo(); 81 IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); 82 TII = MF->getSubtarget().getInstrInfo(); 83 } 84 } 85 86 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 87 if (MCID->getImplicitDefs()) 88 for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; 89 ++ImpDefs) 90 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 91 if (MCID->getImplicitUses()) 92 for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses; 93 ++ImpUses) 94 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 95 } 96 97 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 98 /// implicit operands. It reserves space for the number of operands specified by 99 /// the MCInstrDesc. 100 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &TID, 101 DebugLoc DL, bool NoImp) 102 : MCID(&TID), DbgLoc(std::move(DL)), DebugInstrNum(0) { 103 assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor"); 104 105 // Reserve space for the expected number of operands. 106 if (unsigned NumOps = MCID->getNumOperands() + 107 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 108 CapOperands = OperandCapacity::get(NumOps); 109 Operands = MF.allocateOperandArray(CapOperands); 110 } 111 112 if (!NoImp) 113 addImplicitDefUseOperands(MF); 114 } 115 116 /// MachineInstr ctor - Copies MachineInstr arg exactly. 117 /// Does not copy the number from debug instruction numbering, to preserve 118 /// uniqueness. 119 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 120 : MCID(&MI.getDesc()), Info(MI.Info), DbgLoc(MI.getDebugLoc()), 121 DebugInstrNum(0) { 122 assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor"); 123 124 CapOperands = OperandCapacity::get(MI.getNumOperands()); 125 Operands = MF.allocateOperandArray(CapOperands); 126 127 // Copy operands. 128 for (const MachineOperand &MO : MI.operands()) 129 addOperand(MF, MO); 130 131 // Replicate ties between the operands, which addOperand was not 132 // able to do reliably. 133 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { 134 MachineOperand &NewMO = getOperand(i); 135 const MachineOperand &OrigMO = MI.getOperand(i); 136 NewMO.TiedTo = OrigMO.TiedTo; 137 } 138 139 // Copy all the sensible flags. 140 setFlags(MI.Flags); 141 } 142 143 void MachineInstr::moveBefore(MachineInstr *MovePos) { 144 MovePos->getParent()->splice(MovePos, getParent(), getIterator()); 145 } 146 147 /// getRegInfo - If this instruction is embedded into a MachineFunction, 148 /// return the MachineRegisterInfo object for the current function, otherwise 149 /// return null. 150 MachineRegisterInfo *MachineInstr::getRegInfo() { 151 if (MachineBasicBlock *MBB = getParent()) 152 return &MBB->getParent()->getRegInfo(); 153 return nullptr; 154 } 155 156 void MachineInstr::removeRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 157 for (MachineOperand &MO : operands()) 158 if (MO.isReg()) 159 MRI.removeRegOperandFromUseList(&MO); 160 } 161 162 void MachineInstr::addRegOperandsToUseLists(MachineRegisterInfo &MRI) { 163 for (MachineOperand &MO : operands()) 164 if (MO.isReg()) 165 MRI.addRegOperandToUseList(&MO); 166 } 167 168 void MachineInstr::addOperand(const MachineOperand &Op) { 169 MachineBasicBlock *MBB = getParent(); 170 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 171 MachineFunction *MF = MBB->getParent(); 172 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 173 addOperand(*MF, Op); 174 } 175 176 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 177 /// ranges. If MRI is non-null also update use-def chains. 178 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 179 unsigned NumOps, MachineRegisterInfo *MRI) { 180 if (MRI) 181 return MRI->moveOperands(Dst, Src, NumOps); 182 // MachineOperand is a trivially copyable type so we can just use memmove. 183 assert(Dst && Src && "Unknown operands"); 184 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 185 } 186 187 /// addOperand - Add the specified operand to the instruction. If it is an 188 /// implicit operand, it is added to the end of the operand list. If it is 189 /// an explicit operand it is added at the end of the explicit operand list 190 /// (before the first implicit operand). 191 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 192 assert(MCID && "Cannot add operands before providing an instr descriptor"); 193 194 // Check if we're adding one of our existing operands. 195 if (&Op >= Operands && &Op < Operands + NumOperands) { 196 // This is unusual: MI->addOperand(MI->getOperand(i)). 197 // If adding Op requires reallocating or moving existing operands around, 198 // the Op reference could go stale. Support it by copying Op. 199 MachineOperand CopyOp(Op); 200 return addOperand(MF, CopyOp); 201 } 202 203 // Find the insert location for the new operand. Implicit registers go at 204 // the end, everything else goes before the implicit regs. 205 // 206 // FIXME: Allow mixed explicit and implicit operands on inline asm. 207 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 208 // implicit-defs, but they must not be moved around. See the FIXME in 209 // InstrEmitter.cpp. 210 unsigned OpNo = getNumOperands(); 211 bool isImpReg = Op.isReg() && Op.isImplicit(); 212 if (!isImpReg && !isInlineAsm()) { 213 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 214 --OpNo; 215 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 216 } 217 } 218 219 // OpNo now points as the desired insertion point. Unless this is a variadic 220 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 221 // RegMask operands go between the explicit and implicit operands. 222 assert((MCID->isVariadic() || OpNo < MCID->getNumOperands() || 223 Op.isValidExcessOperand()) && 224 "Trying to add an operand to a machine instr that is already done!"); 225 226 MachineRegisterInfo *MRI = getRegInfo(); 227 228 // Determine if the Operands array needs to be reallocated. 229 // Save the old capacity and operand array. 230 OperandCapacity OldCap = CapOperands; 231 MachineOperand *OldOperands = Operands; 232 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 233 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 234 Operands = MF.allocateOperandArray(CapOperands); 235 // Move the operands before the insertion point. 236 if (OpNo) 237 moveOperands(Operands, OldOperands, OpNo, MRI); 238 } 239 240 // Move the operands following the insertion point. 241 if (OpNo != NumOperands) 242 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 243 MRI); 244 ++NumOperands; 245 246 // Deallocate the old operand array. 247 if (OldOperands != Operands && OldOperands) 248 MF.deallocateOperandArray(OldCap, OldOperands); 249 250 // Copy Op into place. It still needs to be inserted into the MRI use lists. 251 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 252 NewMO->ParentMI = this; 253 254 // When adding a register operand, tell MRI about it. 255 if (NewMO->isReg()) { 256 // Ensure isOnRegUseList() returns false, regardless of Op's status. 257 NewMO->Contents.Reg.Prev = nullptr; 258 // Ignore existing ties. This is not a property that can be copied. 259 NewMO->TiedTo = 0; 260 // Add the new operand to MRI, but only for instructions in an MBB. 261 if (MRI) 262 MRI->addRegOperandToUseList(NewMO); 263 // The MCID operand information isn't accurate until we start adding 264 // explicit operands. The implicit operands are added first, then the 265 // explicits are inserted before them. 266 if (!isImpReg) { 267 // Tie uses to defs as indicated in MCInstrDesc. 268 if (NewMO->isUse()) { 269 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 270 if (DefIdx != -1) 271 tieOperands(DefIdx, OpNo); 272 } 273 // If the register operand is flagged as early, mark the operand as such. 274 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 275 NewMO->setIsEarlyClobber(true); 276 } 277 // Ensure debug instructions set debug flag on register uses. 278 if (NewMO->isUse() && isDebugInstr()) 279 NewMO->setIsDebug(); 280 } 281 } 282 283 void MachineInstr::removeOperand(unsigned OpNo) { 284 assert(OpNo < getNumOperands() && "Invalid operand number"); 285 untieRegOperand(OpNo); 286 287 #ifndef NDEBUG 288 // Moving tied operands would break the ties. 289 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 290 if (Operands[i].isReg()) 291 assert(!Operands[i].isTied() && "Cannot move tied operands"); 292 #endif 293 294 MachineRegisterInfo *MRI = getRegInfo(); 295 if (MRI && Operands[OpNo].isReg()) 296 MRI->removeRegOperandFromUseList(Operands + OpNo); 297 298 // Don't call the MachineOperand destructor. A lot of this code depends on 299 // MachineOperand having a trivial destructor anyway, and adding a call here 300 // wouldn't make it 'destructor-correct'. 301 302 if (unsigned N = NumOperands - 1 - OpNo) 303 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 304 --NumOperands; 305 } 306 307 void MachineInstr::setExtraInfo(MachineFunction &MF, 308 ArrayRef<MachineMemOperand *> MMOs, 309 MCSymbol *PreInstrSymbol, 310 MCSymbol *PostInstrSymbol, 311 MDNode *HeapAllocMarker, MDNode *PCSections, 312 uint32_t CFIType) { 313 bool HasPreInstrSymbol = PreInstrSymbol != nullptr; 314 bool HasPostInstrSymbol = PostInstrSymbol != nullptr; 315 bool HasHeapAllocMarker = HeapAllocMarker != nullptr; 316 bool HasPCSections = PCSections != nullptr; 317 bool HasCFIType = CFIType != 0; 318 int NumPointers = MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + 319 HasHeapAllocMarker + HasPCSections + HasCFIType; 320 321 // Drop all extra info if there is none. 322 if (NumPointers <= 0) { 323 Info.clear(); 324 return; 325 } 326 327 // If more than one pointer, then store out of line. Store heap alloc markers 328 // out of line because PointerSumType cannot hold more than 4 tag types with 329 // 32-bit pointers. 330 // FIXME: Maybe we should make the symbols in the extra info mutable? 331 else if (NumPointers > 1 || HasHeapAllocMarker || HasPCSections || 332 HasCFIType) { 333 Info.set<EIIK_OutOfLine>( 334 MF.createMIExtraInfo(MMOs, PreInstrSymbol, PostInstrSymbol, 335 HeapAllocMarker, PCSections, CFIType)); 336 return; 337 } 338 339 // Otherwise store the single pointer inline. 340 if (HasPreInstrSymbol) 341 Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol); 342 else if (HasPostInstrSymbol) 343 Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol); 344 else 345 Info.set<EIIK_MMO>(MMOs[0]); 346 } 347 348 void MachineInstr::dropMemRefs(MachineFunction &MF) { 349 if (memoperands_empty()) 350 return; 351 352 setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(), 353 getHeapAllocMarker(), getPCSections(), getCFIType()); 354 } 355 356 void MachineInstr::setMemRefs(MachineFunction &MF, 357 ArrayRef<MachineMemOperand *> MMOs) { 358 if (MMOs.empty()) { 359 dropMemRefs(MF); 360 return; 361 } 362 363 setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(), 364 getHeapAllocMarker(), getPCSections(), getCFIType()); 365 } 366 367 void MachineInstr::addMemOperand(MachineFunction &MF, 368 MachineMemOperand *MO) { 369 SmallVector<MachineMemOperand *, 2> MMOs; 370 MMOs.append(memoperands_begin(), memoperands_end()); 371 MMOs.push_back(MO); 372 setMemRefs(MF, MMOs); 373 } 374 375 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) { 376 if (this == &MI) 377 // Nothing to do for a self-clone! 378 return; 379 380 assert(&MF == MI.getMF() && 381 "Invalid machine functions when cloning memory refrences!"); 382 // See if we can just steal the extra info already allocated for the 383 // instruction. We can do this whenever the pre- and post-instruction symbols 384 // are the same (including null). 385 if (getPreInstrSymbol() == MI.getPreInstrSymbol() && 386 getPostInstrSymbol() == MI.getPostInstrSymbol() && 387 getHeapAllocMarker() == MI.getHeapAllocMarker() && 388 getPCSections() == MI.getPCSections()) { 389 Info = MI.Info; 390 return; 391 } 392 393 // Otherwise, fall back on a copy-based clone. 394 setMemRefs(MF, MI.memoperands()); 395 } 396 397 /// Check to see if the MMOs pointed to by the two MemRefs arrays are 398 /// identical. 399 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS, 400 ArrayRef<MachineMemOperand *> RHS) { 401 if (LHS.size() != RHS.size()) 402 return false; 403 404 auto LHSPointees = make_pointee_range(LHS); 405 auto RHSPointees = make_pointee_range(RHS); 406 return std::equal(LHSPointees.begin(), LHSPointees.end(), 407 RHSPointees.begin()); 408 } 409 410 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF, 411 ArrayRef<const MachineInstr *> MIs) { 412 // Try handling easy numbers of MIs with simpler mechanisms. 413 if (MIs.empty()) { 414 dropMemRefs(MF); 415 return; 416 } 417 if (MIs.size() == 1) { 418 cloneMemRefs(MF, *MIs[0]); 419 return; 420 } 421 // Because an empty memoperands list provides *no* information and must be 422 // handled conservatively (assuming the instruction can do anything), the only 423 // way to merge with it is to drop all other memoperands. 424 if (MIs[0]->memoperands_empty()) { 425 dropMemRefs(MF); 426 return; 427 } 428 429 // Handle the general case. 430 SmallVector<MachineMemOperand *, 2> MergedMMOs; 431 // Start with the first instruction. 432 assert(&MF == MIs[0]->getMF() && 433 "Invalid machine functions when cloning memory references!"); 434 MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end()); 435 // Now walk all the other instructions and accumulate any different MMOs. 436 for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) { 437 assert(&MF == MI.getMF() && 438 "Invalid machine functions when cloning memory references!"); 439 440 // Skip MIs with identical operands to the first. This is a somewhat 441 // arbitrary hack but will catch common cases without being quadratic. 442 // TODO: We could fully implement merge semantics here if needed. 443 if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands())) 444 continue; 445 446 // Because an empty memoperands list provides *no* information and must be 447 // handled conservatively (assuming the instruction can do anything), the 448 // only way to merge with it is to drop all other memoperands. 449 if (MI.memoperands_empty()) { 450 dropMemRefs(MF); 451 return; 452 } 453 454 // Otherwise accumulate these into our temporary buffer of the merged state. 455 MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end()); 456 } 457 458 setMemRefs(MF, MergedMMOs); 459 } 460 461 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 462 // Do nothing if old and new symbols are the same. 463 if (Symbol == getPreInstrSymbol()) 464 return; 465 466 // If there was only one symbol and we're removing it, just clear info. 467 if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) { 468 Info.clear(); 469 return; 470 } 471 472 setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(), 473 getHeapAllocMarker(), getPCSections(), getCFIType()); 474 } 475 476 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 477 // Do nothing if old and new symbols are the same. 478 if (Symbol == getPostInstrSymbol()) 479 return; 480 481 // If there was only one symbol and we're removing it, just clear info. 482 if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) { 483 Info.clear(); 484 return; 485 } 486 487 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol, 488 getHeapAllocMarker(), getPCSections(), getCFIType()); 489 } 490 491 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) { 492 // Do nothing if old and new symbols are the same. 493 if (Marker == getHeapAllocMarker()) 494 return; 495 496 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 497 Marker, getPCSections(), getCFIType()); 498 } 499 500 void MachineInstr::setPCSections(MachineFunction &MF, MDNode *PCSections) { 501 // Do nothing if old and new symbols are the same. 502 if (PCSections == getPCSections()) 503 return; 504 505 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 506 getHeapAllocMarker(), PCSections, getCFIType()); 507 } 508 509 void MachineInstr::setCFIType(MachineFunction &MF, uint32_t Type) { 510 // Do nothing if old and new types are the same. 511 if (Type == getCFIType()) 512 return; 513 514 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 515 getHeapAllocMarker(), getPCSections(), Type); 516 } 517 518 void MachineInstr::cloneInstrSymbols(MachineFunction &MF, 519 const MachineInstr &MI) { 520 if (this == &MI) 521 // Nothing to do for a self-clone! 522 return; 523 524 assert(&MF == MI.getMF() && 525 "Invalid machine functions when cloning instruction symbols!"); 526 527 setPreInstrSymbol(MF, MI.getPreInstrSymbol()); 528 setPostInstrSymbol(MF, MI.getPostInstrSymbol()); 529 setHeapAllocMarker(MF, MI.getHeapAllocMarker()); 530 setPCSections(MF, MI.getPCSections()); 531 } 532 533 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const { 534 // For now, the just return the union of the flags. If the flags get more 535 // complicated over time, we might need more logic here. 536 return getFlags() | Other.getFlags(); 537 } 538 539 uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) { 540 uint16_t MIFlags = 0; 541 // Copy the wrapping flags. 542 if (const OverflowingBinaryOperator *OB = 543 dyn_cast<OverflowingBinaryOperator>(&I)) { 544 if (OB->hasNoSignedWrap()) 545 MIFlags |= MachineInstr::MIFlag::NoSWrap; 546 if (OB->hasNoUnsignedWrap()) 547 MIFlags |= MachineInstr::MIFlag::NoUWrap; 548 } 549 550 // Copy the exact flag. 551 if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I)) 552 if (PE->isExact()) 553 MIFlags |= MachineInstr::MIFlag::IsExact; 554 555 // Copy the fast-math flags. 556 if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) { 557 const FastMathFlags Flags = FP->getFastMathFlags(); 558 if (Flags.noNaNs()) 559 MIFlags |= MachineInstr::MIFlag::FmNoNans; 560 if (Flags.noInfs()) 561 MIFlags |= MachineInstr::MIFlag::FmNoInfs; 562 if (Flags.noSignedZeros()) 563 MIFlags |= MachineInstr::MIFlag::FmNsz; 564 if (Flags.allowReciprocal()) 565 MIFlags |= MachineInstr::MIFlag::FmArcp; 566 if (Flags.allowContract()) 567 MIFlags |= MachineInstr::MIFlag::FmContract; 568 if (Flags.approxFunc()) 569 MIFlags |= MachineInstr::MIFlag::FmAfn; 570 if (Flags.allowReassoc()) 571 MIFlags |= MachineInstr::MIFlag::FmReassoc; 572 } 573 574 return MIFlags; 575 } 576 577 void MachineInstr::copyIRFlags(const Instruction &I) { 578 Flags = copyFlagsFromInstruction(I); 579 } 580 581 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const { 582 assert(!isBundledWithPred() && "Must be called on bundle header"); 583 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { 584 if (MII->getDesc().getFlags() & Mask) { 585 if (Type == AnyInBundle) 586 return true; 587 } else { 588 if (Type == AllInBundle && !MII->isBundle()) 589 return false; 590 } 591 // This was the last instruction in the bundle. 592 if (!MII->isBundledWithSucc()) 593 return Type == AllInBundle; 594 } 595 } 596 597 bool MachineInstr::isIdenticalTo(const MachineInstr &Other, 598 MICheckType Check) const { 599 // If opcodes or number of operands are not the same then the two 600 // instructions are obviously not identical. 601 if (Other.getOpcode() != getOpcode() || 602 Other.getNumOperands() != getNumOperands()) 603 return false; 604 605 if (isBundle()) { 606 // We have passed the test above that both instructions have the same 607 // opcode, so we know that both instructions are bundles here. Let's compare 608 // MIs inside the bundle. 609 assert(Other.isBundle() && "Expected that both instructions are bundles."); 610 MachineBasicBlock::const_instr_iterator I1 = getIterator(); 611 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); 612 // Loop until we analysed the last intruction inside at least one of the 613 // bundles. 614 while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) { 615 ++I1; 616 ++I2; 617 if (!I1->isIdenticalTo(*I2, Check)) 618 return false; 619 } 620 // If we've reached the end of just one of the two bundles, but not both, 621 // the instructions are not identical. 622 if (I1->isBundledWithSucc() || I2->isBundledWithSucc()) 623 return false; 624 } 625 626 // Check operands to make sure they match. 627 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 628 const MachineOperand &MO = getOperand(i); 629 const MachineOperand &OMO = Other.getOperand(i); 630 if (!MO.isReg()) { 631 if (!MO.isIdenticalTo(OMO)) 632 return false; 633 continue; 634 } 635 636 // Clients may or may not want to ignore defs when testing for equality. 637 // For example, machine CSE pass only cares about finding common 638 // subexpressions, so it's safe to ignore virtual register defs. 639 if (MO.isDef()) { 640 if (Check == IgnoreDefs) 641 continue; 642 else if (Check == IgnoreVRegDefs) { 643 if (!MO.getReg().isVirtual() || !OMO.getReg().isVirtual()) 644 if (!MO.isIdenticalTo(OMO)) 645 return false; 646 } else { 647 if (!MO.isIdenticalTo(OMO)) 648 return false; 649 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 650 return false; 651 } 652 } else { 653 if (!MO.isIdenticalTo(OMO)) 654 return false; 655 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 656 return false; 657 } 658 } 659 // If DebugLoc does not match then two debug instructions are not identical. 660 if (isDebugInstr()) 661 if (getDebugLoc() && Other.getDebugLoc() && 662 getDebugLoc() != Other.getDebugLoc()) 663 return false; 664 // If pre- or post-instruction symbols do not match then the two instructions 665 // are not identical. 666 if (getPreInstrSymbol() != Other.getPreInstrSymbol() || 667 getPostInstrSymbol() != Other.getPostInstrSymbol()) 668 return false; 669 // Call instructions with different CFI types are not identical. 670 if (isCall() && getCFIType() != Other.getCFIType()) 671 return false; 672 673 return true; 674 } 675 676 bool MachineInstr::isEquivalentDbgInstr(const MachineInstr &Other) const { 677 if (!isDebugValueLike() || !Other.isDebugValueLike()) 678 return false; 679 if (getDebugLoc() != Other.getDebugLoc()) 680 return false; 681 if (getDebugVariable() != Other.getDebugVariable()) 682 return false; 683 if (getNumDebugOperands() != Other.getNumDebugOperands()) 684 return false; 685 for (unsigned OpIdx = 0; OpIdx < getNumDebugOperands(); ++OpIdx) 686 if (!getDebugOperand(OpIdx).isIdenticalTo(Other.getDebugOperand(OpIdx))) 687 return false; 688 if (!DIExpression::isEqualExpression( 689 getDebugExpression(), isIndirectDebugValue(), 690 Other.getDebugExpression(), Other.isIndirectDebugValue())) 691 return false; 692 return true; 693 } 694 695 const MachineFunction *MachineInstr::getMF() const { 696 return getParent()->getParent(); 697 } 698 699 MachineInstr *MachineInstr::removeFromParent() { 700 assert(getParent() && "Not embedded in a basic block!"); 701 return getParent()->remove(this); 702 } 703 704 MachineInstr *MachineInstr::removeFromBundle() { 705 assert(getParent() && "Not embedded in a basic block!"); 706 return getParent()->remove_instr(this); 707 } 708 709 void MachineInstr::eraseFromParent() { 710 assert(getParent() && "Not embedded in a basic block!"); 711 getParent()->erase(this); 712 } 713 714 void MachineInstr::eraseFromBundle() { 715 assert(getParent() && "Not embedded in a basic block!"); 716 getParent()->erase_instr(this); 717 } 718 719 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const { 720 if (!isCall(Type)) 721 return false; 722 switch (getOpcode()) { 723 case TargetOpcode::PATCHPOINT: 724 case TargetOpcode::STACKMAP: 725 case TargetOpcode::STATEPOINT: 726 case TargetOpcode::FENTRY_CALL: 727 return false; 728 } 729 return true; 730 } 731 732 bool MachineInstr::shouldUpdateCallSiteInfo() const { 733 if (isBundle()) 734 return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle); 735 return isCandidateForCallSiteEntry(); 736 } 737 738 unsigned MachineInstr::getNumExplicitOperands() const { 739 unsigned NumOperands = MCID->getNumOperands(); 740 if (!MCID->isVariadic()) 741 return NumOperands; 742 743 for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) { 744 const MachineOperand &MO = getOperand(I); 745 // The operands must always be in the following order: 746 // - explicit reg defs, 747 // - other explicit operands (reg uses, immediates, etc.), 748 // - implicit reg defs 749 // - implicit reg uses 750 if (MO.isReg() && MO.isImplicit()) 751 break; 752 ++NumOperands; 753 } 754 return NumOperands; 755 } 756 757 unsigned MachineInstr::getNumExplicitDefs() const { 758 unsigned NumDefs = MCID->getNumDefs(); 759 if (!MCID->isVariadic()) 760 return NumDefs; 761 762 for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) { 763 const MachineOperand &MO = getOperand(I); 764 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 765 break; 766 ++NumDefs; 767 } 768 return NumDefs; 769 } 770 771 void MachineInstr::bundleWithPred() { 772 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 773 setFlag(BundledPred); 774 MachineBasicBlock::instr_iterator Pred = getIterator(); 775 --Pred; 776 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 777 Pred->setFlag(BundledSucc); 778 } 779 780 void MachineInstr::bundleWithSucc() { 781 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 782 setFlag(BundledSucc); 783 MachineBasicBlock::instr_iterator Succ = getIterator(); 784 ++Succ; 785 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 786 Succ->setFlag(BundledPred); 787 } 788 789 void MachineInstr::unbundleFromPred() { 790 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 791 clearFlag(BundledPred); 792 MachineBasicBlock::instr_iterator Pred = getIterator(); 793 --Pred; 794 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 795 Pred->clearFlag(BundledSucc); 796 } 797 798 void MachineInstr::unbundleFromSucc() { 799 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 800 clearFlag(BundledSucc); 801 MachineBasicBlock::instr_iterator Succ = getIterator(); 802 ++Succ; 803 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 804 Succ->clearFlag(BundledPred); 805 } 806 807 bool MachineInstr::isStackAligningInlineAsm() const { 808 if (isInlineAsm()) { 809 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 810 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 811 return true; 812 } 813 return false; 814 } 815 816 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 817 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 818 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 819 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 820 } 821 822 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 823 unsigned *GroupNo) const { 824 assert(isInlineAsm() && "Expected an inline asm instruction"); 825 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 826 827 // Ignore queries about the initial operands. 828 if (OpIdx < InlineAsm::MIOp_FirstOperand) 829 return -1; 830 831 unsigned Group = 0; 832 unsigned NumOps; 833 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 834 i += NumOps) { 835 const MachineOperand &FlagMO = getOperand(i); 836 // If we reach the implicit register operands, stop looking. 837 if (!FlagMO.isImm()) 838 return -1; 839 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 840 if (i + NumOps > OpIdx) { 841 if (GroupNo) 842 *GroupNo = Group; 843 return i; 844 } 845 ++Group; 846 } 847 return -1; 848 } 849 850 const DILabel *MachineInstr::getDebugLabel() const { 851 assert(isDebugLabel() && "not a DBG_LABEL"); 852 return cast<DILabel>(getOperand(0).getMetadata()); 853 } 854 855 const MachineOperand &MachineInstr::getDebugVariableOp() const { 856 assert((isDebugValueLike()) && "not a DBG_VALUE*"); 857 unsigned VariableOp = isNonListDebugValue() ? 2 : 0; 858 return getOperand(VariableOp); 859 } 860 861 MachineOperand &MachineInstr::getDebugVariableOp() { 862 assert((isDebugValueLike()) && "not a DBG_VALUE*"); 863 unsigned VariableOp = isNonListDebugValue() ? 2 : 0; 864 return getOperand(VariableOp); 865 } 866 867 const DILocalVariable *MachineInstr::getDebugVariable() const { 868 return cast<DILocalVariable>(getDebugVariableOp().getMetadata()); 869 } 870 871 const MachineOperand &MachineInstr::getDebugExpressionOp() const { 872 assert((isDebugValueLike()) && "not a DBG_VALUE*"); 873 unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1; 874 return getOperand(ExpressionOp); 875 } 876 877 MachineOperand &MachineInstr::getDebugExpressionOp() { 878 assert((isDebugValueLike()) && "not a DBG_VALUE*"); 879 unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1; 880 return getOperand(ExpressionOp); 881 } 882 883 const DIExpression *MachineInstr::getDebugExpression() const { 884 return cast<DIExpression>(getDebugExpressionOp().getMetadata()); 885 } 886 887 bool MachineInstr::isDebugEntryValue() const { 888 return isDebugValue() && getDebugExpression()->isEntryValue(); 889 } 890 891 const TargetRegisterClass* 892 MachineInstr::getRegClassConstraint(unsigned OpIdx, 893 const TargetInstrInfo *TII, 894 const TargetRegisterInfo *TRI) const { 895 assert(getParent() && "Can't have an MBB reference here!"); 896 assert(getMF() && "Can't have an MF reference here!"); 897 const MachineFunction &MF = *getMF(); 898 899 // Most opcodes have fixed constraints in their MCInstrDesc. 900 if (!isInlineAsm()) 901 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 902 903 if (!getOperand(OpIdx).isReg()) 904 return nullptr; 905 906 // For tied uses on inline asm, get the constraint from the def. 907 unsigned DefIdx; 908 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 909 OpIdx = DefIdx; 910 911 // Inline asm stores register class constraints in the flag word. 912 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 913 if (FlagIdx < 0) 914 return nullptr; 915 916 unsigned Flag = getOperand(FlagIdx).getImm(); 917 unsigned RCID; 918 if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse || 919 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef || 920 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) && 921 InlineAsm::hasRegClassConstraint(Flag, RCID)) 922 return TRI->getRegClass(RCID); 923 924 // Assume that all registers in a memory operand are pointers. 925 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 926 return TRI->getPointerRegClass(MF); 927 928 return nullptr; 929 } 930 931 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 932 Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 933 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 934 // Check every operands inside the bundle if we have 935 // been asked to. 936 if (ExploreBundle) 937 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; 938 ++OpndIt) 939 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 940 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 941 else 942 // Otherwise, just check the current operands. 943 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 944 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 945 return CurRC; 946 } 947 948 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 949 unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC, 950 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 951 assert(CurRC && "Invalid initial register class"); 952 // Check if Reg is constrained by some of its use/def from MI. 953 const MachineOperand &MO = getOperand(OpIdx); 954 if (!MO.isReg() || MO.getReg() != Reg) 955 return CurRC; 956 // If yes, accumulate the constraints through the operand. 957 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 958 } 959 960 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 961 unsigned OpIdx, const TargetRegisterClass *CurRC, 962 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 963 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 964 const MachineOperand &MO = getOperand(OpIdx); 965 assert(MO.isReg() && 966 "Cannot get register constraints for non-register operand"); 967 assert(CurRC && "Invalid initial register class"); 968 if (unsigned SubIdx = MO.getSubReg()) { 969 if (OpRC) 970 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 971 else 972 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 973 } else if (OpRC) 974 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 975 return CurRC; 976 } 977 978 /// Return the number of instructions inside the MI bundle, not counting the 979 /// header instruction. 980 unsigned MachineInstr::getBundleSize() const { 981 MachineBasicBlock::const_instr_iterator I = getIterator(); 982 unsigned Size = 0; 983 while (I->isBundledWithSucc()) { 984 ++Size; 985 ++I; 986 } 987 return Size; 988 } 989 990 /// Returns true if the MachineInstr has an implicit-use operand of exactly 991 /// the given register (not considering sub/super-registers). 992 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const { 993 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 994 const MachineOperand &MO = getOperand(i); 995 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) 996 return true; 997 } 998 return false; 999 } 1000 1001 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 1002 /// the specific register or -1 if it is not found. It further tightens 1003 /// the search criteria to a use that kills the register if isKill is true. 1004 int MachineInstr::findRegisterUseOperandIdx( 1005 Register Reg, bool isKill, const TargetRegisterInfo *TRI) const { 1006 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1007 const MachineOperand &MO = getOperand(i); 1008 if (!MO.isReg() || !MO.isUse()) 1009 continue; 1010 Register MOReg = MO.getReg(); 1011 if (!MOReg) 1012 continue; 1013 if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg))) 1014 if (!isKill || MO.isKill()) 1015 return i; 1016 } 1017 return -1; 1018 } 1019 1020 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1021 /// indicating if this instruction reads or writes Reg. This also considers 1022 /// partial defines. 1023 std::pair<bool,bool> 1024 MachineInstr::readsWritesVirtualRegister(Register Reg, 1025 SmallVectorImpl<unsigned> *Ops) const { 1026 bool PartDef = false; // Partial redefine. 1027 bool FullDef = false; // Full define. 1028 bool Use = false; 1029 1030 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1031 const MachineOperand &MO = getOperand(i); 1032 if (!MO.isReg() || MO.getReg() != Reg) 1033 continue; 1034 if (Ops) 1035 Ops->push_back(i); 1036 if (MO.isUse()) 1037 Use |= !MO.isUndef(); 1038 else if (MO.getSubReg() && !MO.isUndef()) 1039 // A partial def undef doesn't count as reading the register. 1040 PartDef = true; 1041 else 1042 FullDef = true; 1043 } 1044 // A partial redefine uses Reg unless there is also a full define. 1045 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1046 } 1047 1048 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1049 /// the specified register or -1 if it is not found. If isDead is true, defs 1050 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1051 /// also checks if there is a def of a super-register. 1052 int 1053 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap, 1054 const TargetRegisterInfo *TRI) const { 1055 bool isPhys = Reg.isPhysical(); 1056 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1057 const MachineOperand &MO = getOperand(i); 1058 // Accept regmask operands when Overlap is set. 1059 // Ignore them when looking for a specific def operand (Overlap == false). 1060 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1061 return i; 1062 if (!MO.isReg() || !MO.isDef()) 1063 continue; 1064 Register MOReg = MO.getReg(); 1065 bool Found = (MOReg == Reg); 1066 if (!Found && TRI && isPhys && MOReg.isPhysical()) { 1067 if (Overlap) 1068 Found = TRI->regsOverlap(MOReg, Reg); 1069 else 1070 Found = TRI->isSubRegister(MOReg, Reg); 1071 } 1072 if (Found && (!isDead || MO.isDead())) 1073 return i; 1074 } 1075 return -1; 1076 } 1077 1078 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1079 /// operand list that is used to represent the predicate. It returns -1 if 1080 /// none is found. 1081 int MachineInstr::findFirstPredOperandIdx() const { 1082 // Don't call MCID.findFirstPredOperandIdx() because this variant 1083 // is sometimes called on an instruction that's not yet complete, and 1084 // so the number of operands is less than the MCID indicates. In 1085 // particular, the PTX target does this. 1086 const MCInstrDesc &MCID = getDesc(); 1087 if (MCID.isPredicable()) { 1088 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1089 if (MCID.OpInfo[i].isPredicate()) 1090 return i; 1091 } 1092 1093 return -1; 1094 } 1095 1096 // MachineOperand::TiedTo is 4 bits wide. 1097 const unsigned TiedMax = 15; 1098 1099 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1100 /// 1101 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1102 /// field. TiedTo can have these values: 1103 /// 1104 /// 0: Operand is not tied to anything. 1105 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1106 /// TiedMax: Tied to an operand >= TiedMax-1. 1107 /// 1108 /// The tied def must be one of the first TiedMax operands on a normal 1109 /// instruction. INLINEASM instructions allow more tied defs. 1110 /// 1111 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1112 MachineOperand &DefMO = getOperand(DefIdx); 1113 MachineOperand &UseMO = getOperand(UseIdx); 1114 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1115 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1116 assert(!DefMO.isTied() && "Def is already tied to another use"); 1117 assert(!UseMO.isTied() && "Use is already tied to another def"); 1118 1119 if (DefIdx < TiedMax) 1120 UseMO.TiedTo = DefIdx + 1; 1121 else { 1122 // Inline asm can use the group descriptors to find tied operands, 1123 // statepoint tied operands are trivial to match (1-1 reg def with reg use), 1124 // but on normal instruction, the tied def must be within the first TiedMax 1125 // operands. 1126 assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) && 1127 "DefIdx out of range"); 1128 UseMO.TiedTo = TiedMax; 1129 } 1130 1131 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1132 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1133 } 1134 1135 /// Given the index of a tied register operand, find the operand it is tied to. 1136 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1137 /// which must exist. 1138 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1139 const MachineOperand &MO = getOperand(OpIdx); 1140 assert(MO.isTied() && "Operand isn't tied"); 1141 1142 // Normally TiedTo is in range. 1143 if (MO.TiedTo < TiedMax) 1144 return MO.TiedTo - 1; 1145 1146 // Uses on normal instructions can be out of range. 1147 if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) { 1148 // Normal tied defs must be in the 0..TiedMax-1 range. 1149 if (MO.isUse()) 1150 return TiedMax - 1; 1151 // MO is a def. Search for the tied use. 1152 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1153 const MachineOperand &UseMO = getOperand(i); 1154 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1155 return i; 1156 } 1157 llvm_unreachable("Can't find tied use"); 1158 } 1159 1160 if (getOpcode() == TargetOpcode::STATEPOINT) { 1161 // In STATEPOINT defs correspond 1-1 to GC pointer operands passed 1162 // on registers. 1163 StatepointOpers SO(this); 1164 unsigned CurUseIdx = SO.getFirstGCPtrIdx(); 1165 assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied"); 1166 unsigned NumDefs = getNumDefs(); 1167 for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) { 1168 while (!getOperand(CurUseIdx).isReg()) 1169 CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx); 1170 if (OpIdx == CurDefIdx) 1171 return CurUseIdx; 1172 if (OpIdx == CurUseIdx) 1173 return CurDefIdx; 1174 CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx); 1175 } 1176 llvm_unreachable("Can't find tied use"); 1177 } 1178 1179 // Now deal with inline asm by parsing the operand group descriptor flags. 1180 // Find the beginning of each operand group. 1181 SmallVector<unsigned, 8> GroupIdx; 1182 unsigned OpIdxGroup = ~0u; 1183 unsigned NumOps; 1184 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1185 i += NumOps) { 1186 const MachineOperand &FlagMO = getOperand(i); 1187 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1188 unsigned CurGroup = GroupIdx.size(); 1189 GroupIdx.push_back(i); 1190 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1191 // OpIdx belongs to this operand group. 1192 if (OpIdx > i && OpIdx < i + NumOps) 1193 OpIdxGroup = CurGroup; 1194 unsigned TiedGroup; 1195 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1196 continue; 1197 // Operands in this group are tied to operands in TiedGroup which must be 1198 // earlier. Find the number of operands between the two groups. 1199 unsigned Delta = i - GroupIdx[TiedGroup]; 1200 1201 // OpIdx is a use tied to TiedGroup. 1202 if (OpIdxGroup == CurGroup) 1203 return OpIdx - Delta; 1204 1205 // OpIdx is a def tied to this use group. 1206 if (OpIdxGroup == TiedGroup) 1207 return OpIdx + Delta; 1208 } 1209 llvm_unreachable("Invalid tied operand on inline asm"); 1210 } 1211 1212 /// clearKillInfo - Clears kill flags on all operands. 1213 /// 1214 void MachineInstr::clearKillInfo() { 1215 for (MachineOperand &MO : operands()) { 1216 if (MO.isReg() && MO.isUse()) 1217 MO.setIsKill(false); 1218 } 1219 } 1220 1221 void MachineInstr::substituteRegister(Register FromReg, Register ToReg, 1222 unsigned SubIdx, 1223 const TargetRegisterInfo &RegInfo) { 1224 if (ToReg.isPhysical()) { 1225 if (SubIdx) 1226 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1227 for (MachineOperand &MO : operands()) { 1228 if (!MO.isReg() || MO.getReg() != FromReg) 1229 continue; 1230 MO.substPhysReg(ToReg, RegInfo); 1231 } 1232 } else { 1233 for (MachineOperand &MO : operands()) { 1234 if (!MO.isReg() || MO.getReg() != FromReg) 1235 continue; 1236 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1237 } 1238 } 1239 } 1240 1241 /// isSafeToMove - Return true if it is safe to move this instruction. If 1242 /// SawStore is set to true, it means that there is a store (or call) between 1243 /// the instruction's location and its intended destination. 1244 bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const { 1245 // Ignore stuff that we obviously can't move. 1246 // 1247 // Treat volatile loads as stores. This is not strictly necessary for 1248 // volatiles, but it is required for atomic loads. It is not allowed to move 1249 // a load across an atomic load with Ordering > Monotonic. 1250 if (mayStore() || isCall() || isPHI() || 1251 (mayLoad() && hasOrderedMemoryRef())) { 1252 SawStore = true; 1253 return false; 1254 } 1255 1256 if (isPosition() || isDebugInstr() || isTerminator() || 1257 mayRaiseFPException() || hasUnmodeledSideEffects()) 1258 return false; 1259 1260 // See if this instruction does a load. If so, we have to guarantee that the 1261 // loaded value doesn't change between the load and the its intended 1262 // destination. The check for isInvariantLoad gives the target the chance to 1263 // classify the load as always returning a constant, e.g. a constant pool 1264 // load. 1265 if (mayLoad() && !isDereferenceableInvariantLoad()) 1266 // Otherwise, this is a real load. If there is a store between the load and 1267 // end of block, we can't move it. 1268 return !SawStore; 1269 1270 return true; 1271 } 1272 1273 static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, AAResults *AA, 1274 bool UseTBAA, const MachineMemOperand *MMOa, 1275 const MachineMemOperand *MMOb) { 1276 // The following interface to AA is fashioned after DAGCombiner::isAlias and 1277 // operates with MachineMemOperand offset with some important assumptions: 1278 // - LLVM fundamentally assumes flat address spaces. 1279 // - MachineOperand offset can *only* result from legalization and cannot 1280 // affect queries other than the trivial case of overlap checking. 1281 // - These offsets never wrap and never step outside of allocated objects. 1282 // - There should never be any negative offsets here. 1283 // 1284 // FIXME: Modify API to hide this math from "user" 1285 // Even before we go to AA we can reason locally about some memory objects. It 1286 // can save compile time, and possibly catch some corner cases not currently 1287 // covered. 1288 1289 int64_t OffsetA = MMOa->getOffset(); 1290 int64_t OffsetB = MMOb->getOffset(); 1291 int64_t MinOffset = std::min(OffsetA, OffsetB); 1292 1293 uint64_t WidthA = MMOa->getSize(); 1294 uint64_t WidthB = MMOb->getSize(); 1295 bool KnownWidthA = WidthA != MemoryLocation::UnknownSize; 1296 bool KnownWidthB = WidthB != MemoryLocation::UnknownSize; 1297 1298 const Value *ValA = MMOa->getValue(); 1299 const Value *ValB = MMOb->getValue(); 1300 bool SameVal = (ValA && ValB && (ValA == ValB)); 1301 if (!SameVal) { 1302 const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); 1303 const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); 1304 if (PSVa && ValB && !PSVa->mayAlias(&MFI)) 1305 return false; 1306 if (PSVb && ValA && !PSVb->mayAlias(&MFI)) 1307 return false; 1308 if (PSVa && PSVb && (PSVa == PSVb)) 1309 SameVal = true; 1310 } 1311 1312 if (SameVal) { 1313 if (!KnownWidthA || !KnownWidthB) 1314 return true; 1315 int64_t MaxOffset = std::max(OffsetA, OffsetB); 1316 int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB; 1317 return (MinOffset + LowWidth > MaxOffset); 1318 } 1319 1320 if (!AA) 1321 return true; 1322 1323 if (!ValA || !ValB) 1324 return true; 1325 1326 assert((OffsetA >= 0) && "Negative MachineMemOperand offset"); 1327 assert((OffsetB >= 0) && "Negative MachineMemOperand offset"); 1328 1329 int64_t OverlapA = 1330 KnownWidthA ? WidthA + OffsetA - MinOffset : MemoryLocation::UnknownSize; 1331 int64_t OverlapB = 1332 KnownWidthB ? WidthB + OffsetB - MinOffset : MemoryLocation::UnknownSize; 1333 1334 return !AA->isNoAlias( 1335 MemoryLocation(ValA, OverlapA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 1336 MemoryLocation(ValB, OverlapB, 1337 UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 1338 } 1339 1340 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other, 1341 bool UseTBAA) const { 1342 const MachineFunction *MF = getMF(); 1343 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1344 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1345 1346 // Exclude call instruction which may alter the memory but can not be handled 1347 // by this function. 1348 if (isCall() || Other.isCall()) 1349 return true; 1350 1351 // If neither instruction stores to memory, they can't alias in any 1352 // meaningful way, even if they read from the same address. 1353 if (!mayStore() && !Other.mayStore()) 1354 return false; 1355 1356 // Both instructions must be memory operations to be able to alias. 1357 if (!mayLoadOrStore() || !Other.mayLoadOrStore()) 1358 return false; 1359 1360 // Let the target decide if memory accesses cannot possibly overlap. 1361 if (TII->areMemAccessesTriviallyDisjoint(*this, Other)) 1362 return false; 1363 1364 // Memory operations without memory operands may access anything. Be 1365 // conservative and assume `MayAlias`. 1366 if (memoperands_empty() || Other.memoperands_empty()) 1367 return true; 1368 1369 // Skip if there are too many memory operands. 1370 auto NumChecks = getNumMemOperands() * Other.getNumMemOperands(); 1371 if (NumChecks > TII->getMemOperandAACheckLimit()) 1372 return true; 1373 1374 // Check each pair of memory operands from both instructions, which can't 1375 // alias only if all pairs won't alias. 1376 for (auto *MMOa : memoperands()) 1377 for (auto *MMOb : Other.memoperands()) 1378 if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb)) 1379 return true; 1380 1381 return false; 1382 } 1383 1384 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1385 /// or volatile memory reference, or if the information describing the memory 1386 /// reference is not available. Return false if it is known to have no ordered 1387 /// memory references. 1388 bool MachineInstr::hasOrderedMemoryRef() const { 1389 // An instruction known never to access memory won't have a volatile access. 1390 if (!mayStore() && 1391 !mayLoad() && 1392 !isCall() && 1393 !hasUnmodeledSideEffects()) 1394 return false; 1395 1396 // Otherwise, if the instruction has no memory reference information, 1397 // conservatively assume it wasn't preserved. 1398 if (memoperands_empty()) 1399 return true; 1400 1401 // Check if any of our memory operands are ordered. 1402 return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) { 1403 return !MMO->isUnordered(); 1404 }); 1405 } 1406 1407 /// isDereferenceableInvariantLoad - Return true if this instruction will never 1408 /// trap and is loading from a location whose value is invariant across a run of 1409 /// this function. 1410 bool MachineInstr::isDereferenceableInvariantLoad() const { 1411 // If the instruction doesn't load at all, it isn't an invariant load. 1412 if (!mayLoad()) 1413 return false; 1414 1415 // If the instruction has lost its memoperands, conservatively assume that 1416 // it may not be an invariant load. 1417 if (memoperands_empty()) 1418 return false; 1419 1420 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); 1421 1422 for (MachineMemOperand *MMO : memoperands()) { 1423 if (!MMO->isUnordered()) 1424 // If the memory operand has ordering side effects, we can't move the 1425 // instruction. Such an instruction is technically an invariant load, 1426 // but the caller code would need updated to expect that. 1427 return false; 1428 if (MMO->isStore()) return false; 1429 if (MMO->isInvariant() && MMO->isDereferenceable()) 1430 continue; 1431 1432 // A load from a constant PseudoSourceValue is invariant. 1433 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) { 1434 if (PSV->isConstant(&MFI)) 1435 continue; 1436 } 1437 1438 // Otherwise assume conservatively. 1439 return false; 1440 } 1441 1442 // Everything checks out. 1443 return true; 1444 } 1445 1446 /// isConstantValuePHI - If the specified instruction is a PHI that always 1447 /// merges together the same virtual register, return the register, otherwise 1448 /// return 0. 1449 unsigned MachineInstr::isConstantValuePHI() const { 1450 if (!isPHI()) 1451 return 0; 1452 assert(getNumOperands() >= 3 && 1453 "It's illegal to have a PHI without source operands"); 1454 1455 Register Reg = getOperand(1).getReg(); 1456 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1457 if (getOperand(i).getReg() != Reg) 1458 return 0; 1459 return Reg; 1460 } 1461 1462 bool MachineInstr::hasUnmodeledSideEffects() const { 1463 if (hasProperty(MCID::UnmodeledSideEffects)) 1464 return true; 1465 if (isInlineAsm()) { 1466 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1467 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1468 return true; 1469 } 1470 1471 return false; 1472 } 1473 1474 bool MachineInstr::isLoadFoldBarrier() const { 1475 return mayStore() || isCall() || 1476 (hasUnmodeledSideEffects() && !isPseudoProbe()); 1477 } 1478 1479 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1480 /// 1481 bool MachineInstr::allDefsAreDead() const { 1482 for (const MachineOperand &MO : operands()) { 1483 if (!MO.isReg() || MO.isUse()) 1484 continue; 1485 if (!MO.isDead()) 1486 return false; 1487 } 1488 return true; 1489 } 1490 1491 /// copyImplicitOps - Copy implicit register operands from specified 1492 /// instruction to this instruction. 1493 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1494 const MachineInstr &MI) { 1495 for (const MachineOperand &MO : 1496 llvm::drop_begin(MI.operands(), MI.getDesc().getNumOperands())) 1497 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1498 addOperand(MF, MO); 1499 } 1500 1501 bool MachineInstr::hasComplexRegisterTies() const { 1502 const MCInstrDesc &MCID = getDesc(); 1503 if (MCID.Opcode == TargetOpcode::STATEPOINT) 1504 return true; 1505 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 1506 const auto &Operand = getOperand(I); 1507 if (!Operand.isReg() || Operand.isDef()) 1508 // Ignore the defined registers as MCID marks only the uses as tied. 1509 continue; 1510 int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO); 1511 int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1; 1512 if (ExpectedTiedIdx != TiedIdx) 1513 return true; 1514 } 1515 return false; 1516 } 1517 1518 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, 1519 const MachineRegisterInfo &MRI) const { 1520 const MachineOperand &Op = getOperand(OpIdx); 1521 if (!Op.isReg()) 1522 return LLT{}; 1523 1524 if (isVariadic() || OpIdx >= getNumExplicitOperands()) 1525 return MRI.getType(Op.getReg()); 1526 1527 auto &OpInfo = getDesc().OpInfo[OpIdx]; 1528 if (!OpInfo.isGenericType()) 1529 return MRI.getType(Op.getReg()); 1530 1531 if (PrintedTypes[OpInfo.getGenericTypeIndex()]) 1532 return LLT{}; 1533 1534 LLT TypeToPrint = MRI.getType(Op.getReg()); 1535 // Don't mark the type index printed if it wasn't actually printed: maybe 1536 // another operand with the same type index has an actual type attached: 1537 if (TypeToPrint.isValid()) 1538 PrintedTypes.set(OpInfo.getGenericTypeIndex()); 1539 return TypeToPrint; 1540 } 1541 1542 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1543 LLVM_DUMP_METHOD void MachineInstr::dump() const { 1544 dbgs() << " "; 1545 print(dbgs()); 1546 } 1547 1548 LLVM_DUMP_METHOD void MachineInstr::dumprImpl( 1549 const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth, 1550 SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const { 1551 if (Depth >= MaxDepth) 1552 return; 1553 if (!AlreadySeenInstrs.insert(this).second) 1554 return; 1555 // PadToColumn always inserts at least one space. 1556 // Don't mess up the alignment if we don't want any space. 1557 if (Depth) 1558 fdbgs().PadToColumn(Depth * 2); 1559 print(fdbgs()); 1560 for (const MachineOperand &MO : operands()) { 1561 if (!MO.isReg() || MO.isDef()) 1562 continue; 1563 Register Reg = MO.getReg(); 1564 if (Reg.isPhysical()) 1565 continue; 1566 const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg); 1567 if (NewMI == nullptr) 1568 continue; 1569 NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs); 1570 } 1571 } 1572 1573 LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI, 1574 unsigned MaxDepth) const { 1575 SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs; 1576 dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs); 1577 } 1578 #endif 1579 1580 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers, 1581 bool SkipDebugLoc, bool AddNewLine, 1582 const TargetInstrInfo *TII) const { 1583 const Module *M = nullptr; 1584 const Function *F = nullptr; 1585 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1586 F = &MF->getFunction(); 1587 M = F->getParent(); 1588 if (!TII) 1589 TII = MF->getSubtarget().getInstrInfo(); 1590 } 1591 1592 ModuleSlotTracker MST(M); 1593 if (F) 1594 MST.incorporateFunction(*F); 1595 print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII); 1596 } 1597 1598 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1599 bool IsStandalone, bool SkipOpers, bool SkipDebugLoc, 1600 bool AddNewLine, const TargetInstrInfo *TII) const { 1601 // We can be a bit tidier if we know the MachineFunction. 1602 const TargetRegisterInfo *TRI = nullptr; 1603 const MachineRegisterInfo *MRI = nullptr; 1604 const TargetIntrinsicInfo *IntrinsicInfo = nullptr; 1605 tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII); 1606 1607 if (isCFIInstruction()) 1608 assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction"); 1609 1610 SmallBitVector PrintedTypes(8); 1611 bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies(); 1612 auto getTiedOperandIdx = [&](unsigned OpIdx) { 1613 if (!ShouldPrintRegisterTies) 1614 return 0U; 1615 const MachineOperand &MO = getOperand(OpIdx); 1616 if (MO.isReg() && MO.isTied() && !MO.isDef()) 1617 return findTiedOperandIdx(OpIdx); 1618 return 0U; 1619 }; 1620 unsigned StartOp = 0; 1621 unsigned e = getNumOperands(); 1622 1623 // Print explicitly defined operands on the left of an assignment syntax. 1624 while (StartOp < e) { 1625 const MachineOperand &MO = getOperand(StartOp); 1626 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 1627 break; 1628 1629 if (StartOp != 0) 1630 OS << ", "; 1631 1632 LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{}; 1633 unsigned TiedOperandIdx = getTiedOperandIdx(StartOp); 1634 MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone, 1635 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1636 ++StartOp; 1637 } 1638 1639 if (StartOp != 0) 1640 OS << " = "; 1641 1642 if (getFlag(MachineInstr::FrameSetup)) 1643 OS << "frame-setup "; 1644 if (getFlag(MachineInstr::FrameDestroy)) 1645 OS << "frame-destroy "; 1646 if (getFlag(MachineInstr::FmNoNans)) 1647 OS << "nnan "; 1648 if (getFlag(MachineInstr::FmNoInfs)) 1649 OS << "ninf "; 1650 if (getFlag(MachineInstr::FmNsz)) 1651 OS << "nsz "; 1652 if (getFlag(MachineInstr::FmArcp)) 1653 OS << "arcp "; 1654 if (getFlag(MachineInstr::FmContract)) 1655 OS << "contract "; 1656 if (getFlag(MachineInstr::FmAfn)) 1657 OS << "afn "; 1658 if (getFlag(MachineInstr::FmReassoc)) 1659 OS << "reassoc "; 1660 if (getFlag(MachineInstr::NoUWrap)) 1661 OS << "nuw "; 1662 if (getFlag(MachineInstr::NoSWrap)) 1663 OS << "nsw "; 1664 if (getFlag(MachineInstr::IsExact)) 1665 OS << "exact "; 1666 if (getFlag(MachineInstr::NoFPExcept)) 1667 OS << "nofpexcept "; 1668 if (getFlag(MachineInstr::NoMerge)) 1669 OS << "nomerge "; 1670 1671 // Print the opcode name. 1672 if (TII) 1673 OS << TII->getName(getOpcode()); 1674 else 1675 OS << "UNKNOWN"; 1676 1677 if (SkipOpers) 1678 return; 1679 1680 // Print the rest of the operands. 1681 bool FirstOp = true; 1682 unsigned AsmDescOp = ~0u; 1683 unsigned AsmOpCount = 0; 1684 1685 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1686 // Print asm string. 1687 OS << " "; 1688 const unsigned OpIdx = InlineAsm::MIOp_AsmString; 1689 LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{}; 1690 unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx); 1691 getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone, 1692 ShouldPrintRegisterTies, TiedOperandIdx, TRI, 1693 IntrinsicInfo); 1694 1695 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1696 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1697 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1698 OS << " [sideeffect]"; 1699 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1700 OS << " [mayload]"; 1701 if (ExtraInfo & InlineAsm::Extra_MayStore) 1702 OS << " [maystore]"; 1703 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 1704 OS << " [isconvergent]"; 1705 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1706 OS << " [alignstack]"; 1707 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1708 OS << " [attdialect]"; 1709 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1710 OS << " [inteldialect]"; 1711 1712 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1713 FirstOp = false; 1714 } 1715 1716 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1717 const MachineOperand &MO = getOperand(i); 1718 1719 if (FirstOp) FirstOp = false; else OS << ","; 1720 OS << " "; 1721 1722 if (isDebugValue() && MO.isMetadata()) { 1723 // Pretty print DBG_VALUE* instructions. 1724 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1725 if (DIV && !DIV->getName().empty()) 1726 OS << "!\"" << DIV->getName() << '\"'; 1727 else { 1728 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1729 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1730 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1731 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1732 } 1733 } else if (isDebugLabel() && MO.isMetadata()) { 1734 // Pretty print DBG_LABEL instructions. 1735 auto *DIL = dyn_cast<DILabel>(MO.getMetadata()); 1736 if (DIL && !DIL->getName().empty()) 1737 OS << "\"" << DIL->getName() << '\"'; 1738 else { 1739 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1740 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1741 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1742 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1743 } 1744 } else if (i == AsmDescOp && MO.isImm()) { 1745 // Pretty print the inline asm operand descriptor. 1746 OS << '$' << AsmOpCount++; 1747 unsigned Flag = MO.getImm(); 1748 OS << ":["; 1749 OS << InlineAsm::getKindName(InlineAsm::getKind(Flag)); 1750 1751 unsigned RCID = 0; 1752 if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) && 1753 InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1754 if (TRI) { 1755 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1756 } else 1757 OS << ":RC" << RCID; 1758 } 1759 1760 if (InlineAsm::isMemKind(Flag)) { 1761 unsigned MCID = InlineAsm::getMemoryConstraintID(Flag); 1762 OS << ":" << InlineAsm::getMemConstraintName(MCID); 1763 } 1764 1765 unsigned TiedTo = 0; 1766 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1767 OS << " tiedto:$" << TiedTo; 1768 1769 OS << ']'; 1770 1771 // Compute the index of the next operand descriptor. 1772 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1773 } else { 1774 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1775 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1776 if (MO.isImm() && isOperandSubregIdx(i)) 1777 MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI); 1778 else 1779 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1780 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1781 } 1782 } 1783 1784 // Print any optional symbols attached to this instruction as-if they were 1785 // operands. 1786 if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) { 1787 if (!FirstOp) { 1788 FirstOp = false; 1789 OS << ','; 1790 } 1791 OS << " pre-instr-symbol "; 1792 MachineOperand::printSymbol(OS, *PreInstrSymbol); 1793 } 1794 if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) { 1795 if (!FirstOp) { 1796 FirstOp = false; 1797 OS << ','; 1798 } 1799 OS << " post-instr-symbol "; 1800 MachineOperand::printSymbol(OS, *PostInstrSymbol); 1801 } 1802 if (MDNode *HeapAllocMarker = getHeapAllocMarker()) { 1803 if (!FirstOp) { 1804 FirstOp = false; 1805 OS << ','; 1806 } 1807 OS << " heap-alloc-marker "; 1808 HeapAllocMarker->printAsOperand(OS, MST); 1809 } 1810 if (MDNode *PCSections = getPCSections()) { 1811 if (!FirstOp) { 1812 FirstOp = false; 1813 OS << ','; 1814 } 1815 OS << " pcsections "; 1816 PCSections->printAsOperand(OS, MST); 1817 } 1818 if (uint32_t CFIType = getCFIType()) { 1819 if (!FirstOp) 1820 OS << ','; 1821 OS << " cfi-type " << CFIType; 1822 } 1823 1824 if (DebugInstrNum) { 1825 if (!FirstOp) 1826 OS << ","; 1827 OS << " debug-instr-number " << DebugInstrNum; 1828 } 1829 1830 if (!SkipDebugLoc) { 1831 if (const DebugLoc &DL = getDebugLoc()) { 1832 if (!FirstOp) 1833 OS << ','; 1834 OS << " debug-location "; 1835 DL->printAsOperand(OS, MST); 1836 } 1837 } 1838 1839 if (!memoperands_empty()) { 1840 SmallVector<StringRef, 0> SSNs; 1841 const LLVMContext *Context = nullptr; 1842 std::unique_ptr<LLVMContext> CtxPtr; 1843 const MachineFrameInfo *MFI = nullptr; 1844 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1845 MFI = &MF->getFrameInfo(); 1846 Context = &MF->getFunction().getContext(); 1847 } else { 1848 CtxPtr = std::make_unique<LLVMContext>(); 1849 Context = CtxPtr.get(); 1850 } 1851 1852 OS << " :: "; 1853 bool NeedComma = false; 1854 for (const MachineMemOperand *Op : memoperands()) { 1855 if (NeedComma) 1856 OS << ", "; 1857 Op->print(OS, MST, SSNs, *Context, MFI, TII); 1858 NeedComma = true; 1859 } 1860 } 1861 1862 if (SkipDebugLoc) 1863 return; 1864 1865 bool HaveSemi = false; 1866 1867 // Print debug location information. 1868 if (const DebugLoc &DL = getDebugLoc()) { 1869 if (!HaveSemi) { 1870 OS << ';'; 1871 HaveSemi = true; 1872 } 1873 OS << ' '; 1874 DL.print(OS); 1875 } 1876 1877 // Print extra comments for DEBUG_VALUE. 1878 if (isDebugValue() && getDebugVariableOp().isMetadata()) { 1879 if (!HaveSemi) { 1880 OS << ";"; 1881 HaveSemi = true; 1882 } 1883 auto *DV = getDebugVariable(); 1884 OS << " line no:" << DV->getLine(); 1885 if (isIndirectDebugValue()) 1886 OS << " indirect"; 1887 } 1888 // TODO: DBG_LABEL 1889 1890 if (AddNewLine) 1891 OS << '\n'; 1892 } 1893 1894 bool MachineInstr::addRegisterKilled(Register IncomingReg, 1895 const TargetRegisterInfo *RegInfo, 1896 bool AddIfNotFound) { 1897 bool isPhysReg = IncomingReg.isPhysical(); 1898 bool hasAliases = isPhysReg && 1899 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1900 bool Found = false; 1901 SmallVector<unsigned,4> DeadOps; 1902 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1903 MachineOperand &MO = getOperand(i); 1904 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1905 continue; 1906 1907 // DEBUG_VALUE nodes do not contribute to code generation and should 1908 // always be ignored. Failure to do so may result in trying to modify 1909 // KILL flags on DEBUG_VALUE nodes. 1910 if (MO.isDebug()) 1911 continue; 1912 1913 Register Reg = MO.getReg(); 1914 if (!Reg) 1915 continue; 1916 1917 if (Reg == IncomingReg) { 1918 if (!Found) { 1919 if (MO.isKill()) 1920 // The register is already marked kill. 1921 return true; 1922 if (isPhysReg && isRegTiedToDefOperand(i)) 1923 // Two-address uses of physregs must not be marked kill. 1924 return true; 1925 MO.setIsKill(); 1926 Found = true; 1927 } 1928 } else if (hasAliases && MO.isKill() && Reg.isPhysical()) { 1929 // A super-register kill already exists. 1930 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1931 return true; 1932 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1933 DeadOps.push_back(i); 1934 } 1935 } 1936 1937 // Trim unneeded kill operands. 1938 while (!DeadOps.empty()) { 1939 unsigned OpIdx = DeadOps.back(); 1940 if (getOperand(OpIdx).isImplicit() && 1941 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 1942 removeOperand(OpIdx); 1943 else 1944 getOperand(OpIdx).setIsKill(false); 1945 DeadOps.pop_back(); 1946 } 1947 1948 // If not found, this means an alias of one of the operands is killed. Add a 1949 // new implicit operand if required. 1950 if (!Found && AddIfNotFound) { 1951 addOperand(MachineOperand::CreateReg(IncomingReg, 1952 false /*IsDef*/, 1953 true /*IsImp*/, 1954 true /*IsKill*/)); 1955 return true; 1956 } 1957 return Found; 1958 } 1959 1960 void MachineInstr::clearRegisterKills(Register Reg, 1961 const TargetRegisterInfo *RegInfo) { 1962 if (!Reg.isPhysical()) 1963 RegInfo = nullptr; 1964 for (MachineOperand &MO : operands()) { 1965 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1966 continue; 1967 Register OpReg = MO.getReg(); 1968 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) 1969 MO.setIsKill(false); 1970 } 1971 } 1972 1973 bool MachineInstr::addRegisterDead(Register Reg, 1974 const TargetRegisterInfo *RegInfo, 1975 bool AddIfNotFound) { 1976 bool isPhysReg = Reg.isPhysical(); 1977 bool hasAliases = isPhysReg && 1978 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 1979 bool Found = false; 1980 SmallVector<unsigned,4> DeadOps; 1981 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1982 MachineOperand &MO = getOperand(i); 1983 if (!MO.isReg() || !MO.isDef()) 1984 continue; 1985 Register MOReg = MO.getReg(); 1986 if (!MOReg) 1987 continue; 1988 1989 if (MOReg == Reg) { 1990 MO.setIsDead(); 1991 Found = true; 1992 } else if (hasAliases && MO.isDead() && MOReg.isPhysical()) { 1993 // There exists a super-register that's marked dead. 1994 if (RegInfo->isSuperRegister(Reg, MOReg)) 1995 return true; 1996 if (RegInfo->isSubRegister(Reg, MOReg)) 1997 DeadOps.push_back(i); 1998 } 1999 } 2000 2001 // Trim unneeded dead operands. 2002 while (!DeadOps.empty()) { 2003 unsigned OpIdx = DeadOps.back(); 2004 if (getOperand(OpIdx).isImplicit() && 2005 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 2006 removeOperand(OpIdx); 2007 else 2008 getOperand(OpIdx).setIsDead(false); 2009 DeadOps.pop_back(); 2010 } 2011 2012 // If not found, this means an alias of one of the operands is dead. Add a 2013 // new implicit operand if required. 2014 if (Found || !AddIfNotFound) 2015 return Found; 2016 2017 addOperand(MachineOperand::CreateReg(Reg, 2018 true /*IsDef*/, 2019 true /*IsImp*/, 2020 false /*IsKill*/, 2021 true /*IsDead*/)); 2022 return true; 2023 } 2024 2025 void MachineInstr::clearRegisterDeads(Register Reg) { 2026 for (MachineOperand &MO : operands()) { 2027 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) 2028 continue; 2029 MO.setIsDead(false); 2030 } 2031 } 2032 2033 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) { 2034 for (MachineOperand &MO : operands()) { 2035 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) 2036 continue; 2037 MO.setIsUndef(IsUndef); 2038 } 2039 } 2040 2041 void MachineInstr::addRegisterDefined(Register Reg, 2042 const TargetRegisterInfo *RegInfo) { 2043 if (Reg.isPhysical()) { 2044 MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo); 2045 if (MO) 2046 return; 2047 } else { 2048 for (const MachineOperand &MO : operands()) { 2049 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 2050 MO.getSubReg() == 0) 2051 return; 2052 } 2053 } 2054 addOperand(MachineOperand::CreateReg(Reg, 2055 true /*IsDef*/, 2056 true /*IsImp*/)); 2057 } 2058 2059 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs, 2060 const TargetRegisterInfo &TRI) { 2061 bool HasRegMask = false; 2062 for (MachineOperand &MO : operands()) { 2063 if (MO.isRegMask()) { 2064 HasRegMask = true; 2065 continue; 2066 } 2067 if (!MO.isReg() || !MO.isDef()) continue; 2068 Register Reg = MO.getReg(); 2069 if (!Reg.isPhysical()) 2070 continue; 2071 // If there are no uses, including partial uses, the def is dead. 2072 if (llvm::none_of(UsedRegs, 2073 [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); })) 2074 MO.setIsDead(); 2075 } 2076 2077 // This is a call with a register mask operand. 2078 // Mask clobbers are always dead, so add defs for the non-dead defines. 2079 if (HasRegMask) 2080 for (const Register &UsedReg : UsedRegs) 2081 addRegisterDefined(UsedReg, &TRI); 2082 } 2083 2084 unsigned 2085 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 2086 // Build up a buffer of hash code components. 2087 SmallVector<size_t, 16> HashComponents; 2088 HashComponents.reserve(MI->getNumOperands() + 1); 2089 HashComponents.push_back(MI->getOpcode()); 2090 for (const MachineOperand &MO : MI->operands()) { 2091 if (MO.isReg() && MO.isDef() && MO.getReg().isVirtual()) 2092 continue; // Skip virtual register defs. 2093 2094 HashComponents.push_back(hash_value(MO)); 2095 } 2096 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 2097 } 2098 2099 void MachineInstr::emitError(StringRef Msg) const { 2100 // Find the source location cookie. 2101 uint64_t LocCookie = 0; 2102 const MDNode *LocMD = nullptr; 2103 for (unsigned i = getNumOperands(); i != 0; --i) { 2104 if (getOperand(i-1).isMetadata() && 2105 (LocMD = getOperand(i-1).getMetadata()) && 2106 LocMD->getNumOperands() != 0) { 2107 if (const ConstantInt *CI = 2108 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 2109 LocCookie = CI->getZExtValue(); 2110 break; 2111 } 2112 } 2113 } 2114 2115 if (const MachineBasicBlock *MBB = getParent()) 2116 if (const MachineFunction *MF = MBB->getParent()) 2117 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 2118 report_fatal_error(Msg); 2119 } 2120 2121 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2122 const MCInstrDesc &MCID, bool IsIndirect, 2123 Register Reg, const MDNode *Variable, 2124 const MDNode *Expr) { 2125 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2126 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2127 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2128 "Expected inlined-at fields to agree"); 2129 auto MIB = BuildMI(MF, DL, MCID).addReg(Reg); 2130 if (IsIndirect) 2131 MIB.addImm(0U); 2132 else 2133 MIB.addReg(0U); 2134 return MIB.addMetadata(Variable).addMetadata(Expr); 2135 } 2136 2137 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2138 const MCInstrDesc &MCID, bool IsIndirect, 2139 ArrayRef<MachineOperand> DebugOps, 2140 const MDNode *Variable, const MDNode *Expr) { 2141 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2142 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2143 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2144 "Expected inlined-at fields to agree"); 2145 if (MCID.Opcode == TargetOpcode::DBG_VALUE) { 2146 assert(DebugOps.size() == 1 && 2147 "DBG_VALUE must contain exactly one debug operand"); 2148 MachineOperand DebugOp = DebugOps[0]; 2149 if (DebugOp.isReg()) 2150 return BuildMI(MF, DL, MCID, IsIndirect, DebugOp.getReg(), Variable, 2151 Expr); 2152 2153 auto MIB = BuildMI(MF, DL, MCID).add(DebugOp); 2154 if (IsIndirect) 2155 MIB.addImm(0U); 2156 else 2157 MIB.addReg(0U); 2158 return MIB.addMetadata(Variable).addMetadata(Expr); 2159 } 2160 2161 auto MIB = BuildMI(MF, DL, MCID); 2162 MIB.addMetadata(Variable).addMetadata(Expr); 2163 for (const MachineOperand &DebugOp : DebugOps) 2164 if (DebugOp.isReg()) 2165 MIB.addReg(DebugOp.getReg()); 2166 else 2167 MIB.add(DebugOp); 2168 return MIB; 2169 } 2170 2171 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2172 MachineBasicBlock::iterator I, 2173 const DebugLoc &DL, const MCInstrDesc &MCID, 2174 bool IsIndirect, Register Reg, 2175 const MDNode *Variable, const MDNode *Expr) { 2176 MachineFunction &MF = *BB.getParent(); 2177 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr); 2178 BB.insert(I, MI); 2179 return MachineInstrBuilder(MF, MI); 2180 } 2181 2182 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2183 MachineBasicBlock::iterator I, 2184 const DebugLoc &DL, const MCInstrDesc &MCID, 2185 bool IsIndirect, 2186 ArrayRef<MachineOperand> DebugOps, 2187 const MDNode *Variable, const MDNode *Expr) { 2188 MachineFunction &MF = *BB.getParent(); 2189 MachineInstr *MI = 2190 BuildMI(MF, DL, MCID, IsIndirect, DebugOps, Variable, Expr); 2191 BB.insert(I, MI); 2192 return MachineInstrBuilder(MF, *MI); 2193 } 2194 2195 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot. 2196 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE. 2197 static const DIExpression * 2198 computeExprForSpill(const MachineInstr &MI, 2199 SmallVectorImpl<const MachineOperand *> &SpilledOperands) { 2200 assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) && 2201 "Expected inlined-at fields to agree"); 2202 2203 const DIExpression *Expr = MI.getDebugExpression(); 2204 if (MI.isIndirectDebugValue()) { 2205 assert(MI.getDebugOffset().getImm() == 0 && 2206 "DBG_VALUE with nonzero offset"); 2207 Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore); 2208 } else if (MI.isDebugValueList()) { 2209 // We will replace the spilled register with a frame index, so 2210 // immediately deref all references to the spilled register. 2211 std::array<uint64_t, 1> Ops{{dwarf::DW_OP_deref}}; 2212 for (const MachineOperand *Op : SpilledOperands) { 2213 unsigned OpIdx = MI.getDebugOperandIndex(Op); 2214 Expr = DIExpression::appendOpsToArg(Expr, Ops, OpIdx); 2215 } 2216 } 2217 return Expr; 2218 } 2219 static const DIExpression *computeExprForSpill(const MachineInstr &MI, 2220 Register SpillReg) { 2221 assert(MI.hasDebugOperandForReg(SpillReg) && "Spill Reg is not used in MI."); 2222 SmallVector<const MachineOperand *> SpillOperands; 2223 for (const MachineOperand &Op : MI.getDebugOperandsForReg(SpillReg)) 2224 SpillOperands.push_back(&Op); 2225 return computeExprForSpill(MI, SpillOperands); 2226 } 2227 2228 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB, 2229 MachineBasicBlock::iterator I, 2230 const MachineInstr &Orig, 2231 int FrameIndex, Register SpillReg) { 2232 assert(!Orig.isDebugRef() && 2233 "DBG_INSTR_REF should not reference a virtual register."); 2234 const DIExpression *Expr = computeExprForSpill(Orig, SpillReg); 2235 MachineInstrBuilder NewMI = 2236 BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()); 2237 // Non-Variadic Operands: Location, Offset, Variable, Expression 2238 // Variadic Operands: Variable, Expression, Locations... 2239 if (Orig.isNonListDebugValue()) 2240 NewMI.addFrameIndex(FrameIndex).addImm(0U); 2241 NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr); 2242 if (Orig.isDebugValueList()) { 2243 for (const MachineOperand &Op : Orig.debug_operands()) 2244 if (Op.isReg() && Op.getReg() == SpillReg) 2245 NewMI.addFrameIndex(FrameIndex); 2246 else 2247 NewMI.add(MachineOperand(Op)); 2248 } 2249 return NewMI; 2250 } 2251 MachineInstr *llvm::buildDbgValueForSpill( 2252 MachineBasicBlock &BB, MachineBasicBlock::iterator I, 2253 const MachineInstr &Orig, int FrameIndex, 2254 SmallVectorImpl<const MachineOperand *> &SpilledOperands) { 2255 const DIExpression *Expr = computeExprForSpill(Orig, SpilledOperands); 2256 MachineInstrBuilder NewMI = 2257 BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()); 2258 // Non-Variadic Operands: Location, Offset, Variable, Expression 2259 // Variadic Operands: Variable, Expression, Locations... 2260 if (Orig.isNonListDebugValue()) 2261 NewMI.addFrameIndex(FrameIndex).addImm(0U); 2262 NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr); 2263 if (Orig.isDebugValueList()) { 2264 for (const MachineOperand &Op : Orig.debug_operands()) 2265 if (is_contained(SpilledOperands, &Op)) 2266 NewMI.addFrameIndex(FrameIndex); 2267 else 2268 NewMI.add(MachineOperand(Op)); 2269 } 2270 return NewMI; 2271 } 2272 2273 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex, 2274 Register Reg) { 2275 const DIExpression *Expr = computeExprForSpill(Orig, Reg); 2276 if (Orig.isNonListDebugValue()) 2277 Orig.getDebugOffset().ChangeToImmediate(0U); 2278 for (MachineOperand &Op : Orig.getDebugOperandsForReg(Reg)) 2279 Op.ChangeToFrameIndex(FrameIndex); 2280 Orig.getDebugExpressionOp().setMetadata(Expr); 2281 } 2282 2283 void MachineInstr::collectDebugValues( 2284 SmallVectorImpl<MachineInstr *> &DbgValues) { 2285 MachineInstr &MI = *this; 2286 if (!MI.getOperand(0).isReg()) 2287 return; 2288 2289 MachineBasicBlock::iterator DI = MI; ++DI; 2290 for (MachineBasicBlock::iterator DE = MI.getParent()->end(); 2291 DI != DE; ++DI) { 2292 if (!DI->isDebugValue()) 2293 return; 2294 if (DI->hasDebugOperandForReg(MI.getOperand(0).getReg())) 2295 DbgValues.push_back(&*DI); 2296 } 2297 } 2298 2299 void MachineInstr::changeDebugValuesDefReg(Register Reg) { 2300 // Collect matching debug values. 2301 SmallVector<MachineInstr *, 2> DbgValues; 2302 2303 if (!getOperand(0).isReg()) 2304 return; 2305 2306 Register DefReg = getOperand(0).getReg(); 2307 auto *MRI = getRegInfo(); 2308 for (auto &MO : MRI->use_operands(DefReg)) { 2309 auto *DI = MO.getParent(); 2310 if (!DI->isDebugValue()) 2311 continue; 2312 if (DI->hasDebugOperandForReg(DefReg)) { 2313 DbgValues.push_back(DI); 2314 } 2315 } 2316 2317 // Propagate Reg to debug value instructions. 2318 for (auto *DBI : DbgValues) 2319 for (MachineOperand &Op : DBI->getDebugOperandsForReg(DefReg)) 2320 Op.setReg(Reg); 2321 } 2322 2323 using MMOList = SmallVector<const MachineMemOperand *, 2>; 2324 2325 static unsigned getSpillSlotSize(const MMOList &Accesses, 2326 const MachineFrameInfo &MFI) { 2327 unsigned Size = 0; 2328 for (const auto *A : Accesses) 2329 if (MFI.isSpillSlotObjectIndex( 2330 cast<FixedStackPseudoSourceValue>(A->getPseudoValue()) 2331 ->getFrameIndex())) 2332 Size += A->getSize(); 2333 return Size; 2334 } 2335 2336 std::optional<unsigned> 2337 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const { 2338 int FI; 2339 if (TII->isStoreToStackSlotPostFE(*this, FI)) { 2340 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2341 if (MFI.isSpillSlotObjectIndex(FI)) 2342 return (*memoperands_begin())->getSize(); 2343 } 2344 return std::nullopt; 2345 } 2346 2347 std::optional<unsigned> 2348 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const { 2349 MMOList Accesses; 2350 if (TII->hasStoreToStackSlot(*this, Accesses)) 2351 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2352 return std::nullopt; 2353 } 2354 2355 std::optional<unsigned> 2356 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const { 2357 int FI; 2358 if (TII->isLoadFromStackSlotPostFE(*this, FI)) { 2359 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2360 if (MFI.isSpillSlotObjectIndex(FI)) 2361 return (*memoperands_begin())->getSize(); 2362 } 2363 return std::nullopt; 2364 } 2365 2366 std::optional<unsigned> 2367 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const { 2368 MMOList Accesses; 2369 if (TII->hasLoadFromStackSlot(*this, Accesses)) 2370 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2371 return std::nullopt; 2372 } 2373 2374 unsigned MachineInstr::getDebugInstrNum() { 2375 if (DebugInstrNum == 0) 2376 DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum(); 2377 return DebugInstrNum; 2378 } 2379 2380 unsigned MachineInstr::getDebugInstrNum(MachineFunction &MF) { 2381 if (DebugInstrNum == 0) 2382 DebugInstrNum = MF.getNewDebugInstrNum(); 2383 return DebugInstrNum; 2384 } 2385