1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/ADT/FoldingSet.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/CodeGen/MachineConstantPool.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineMemOperand.h" 21 #include "llvm/CodeGen/MachineModuleInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/PseudoSourceValue.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DebugInfo.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/InlineAsm.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/Metadata.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/ModuleSlotTracker.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/IR/Value.h" 34 #include "llvm/MC/MCInstrDesc.h" 35 #include "llvm/MC/MCSymbol.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Target/TargetInstrInfo.h" 41 #include "llvm/Target/TargetMachine.h" 42 #include "llvm/Target/TargetRegisterInfo.h" 43 #include "llvm/Target/TargetSubtargetInfo.h" 44 using namespace llvm; 45 46 //===----------------------------------------------------------------------===// 47 // MachineOperand Implementation 48 //===----------------------------------------------------------------------===// 49 50 void MachineOperand::setReg(unsigned Reg) { 51 if (getReg() == Reg) return; // No change. 52 53 // Otherwise, we have to change the register. If this operand is embedded 54 // into a machine function, we need to update the old and new register's 55 // use/def lists. 56 if (MachineInstr *MI = getParent()) 57 if (MachineBasicBlock *MBB = MI->getParent()) 58 if (MachineFunction *MF = MBB->getParent()) { 59 MachineRegisterInfo &MRI = MF->getRegInfo(); 60 MRI.removeRegOperandFromUseList(this); 61 SmallContents.RegNo = Reg; 62 MRI.addRegOperandToUseList(this); 63 return; 64 } 65 66 // Otherwise, just change the register, no problem. :) 67 SmallContents.RegNo = Reg; 68 } 69 70 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 71 const TargetRegisterInfo &TRI) { 72 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 73 if (SubIdx && getSubReg()) 74 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 75 setReg(Reg); 76 if (SubIdx) 77 setSubReg(SubIdx); 78 } 79 80 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 81 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 82 if (getSubReg()) { 83 Reg = TRI.getSubReg(Reg, getSubReg()); 84 // Note that getSubReg() may return 0 if the sub-register doesn't exist. 85 // That won't happen in legal code. 86 setSubReg(0); 87 } 88 setReg(Reg); 89 } 90 91 /// Change a def to a use, or a use to a def. 92 void MachineOperand::setIsDef(bool Val) { 93 assert(isReg() && "Wrong MachineOperand accessor"); 94 assert((!Val || !isDebug()) && "Marking a debug operation as def"); 95 if (IsDef == Val) 96 return; 97 // MRI may keep uses and defs in different list positions. 98 if (MachineInstr *MI = getParent()) 99 if (MachineBasicBlock *MBB = MI->getParent()) 100 if (MachineFunction *MF = MBB->getParent()) { 101 MachineRegisterInfo &MRI = MF->getRegInfo(); 102 MRI.removeRegOperandFromUseList(this); 103 IsDef = Val; 104 MRI.addRegOperandToUseList(this); 105 return; 106 } 107 IsDef = Val; 108 } 109 110 // If this operand is currently a register operand, and if this is in a 111 // function, deregister the operand from the register's use/def list. 112 void MachineOperand::removeRegFromUses() { 113 if (!isReg() || !isOnRegUseList()) 114 return; 115 116 if (MachineInstr *MI = getParent()) { 117 if (MachineBasicBlock *MBB = MI->getParent()) { 118 if (MachineFunction *MF = MBB->getParent()) 119 MF->getRegInfo().removeRegOperandFromUseList(this); 120 } 121 } 122 } 123 124 /// ChangeToImmediate - Replace this operand with a new immediate operand of 125 /// the specified value. If an operand is known to be an immediate already, 126 /// the setImm method should be used. 127 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 128 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 129 130 removeRegFromUses(); 131 132 OpKind = MO_Immediate; 133 Contents.ImmVal = ImmVal; 134 } 135 136 void MachineOperand::ChangeToFPImmediate(const ConstantFP *FPImm) { 137 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 138 139 removeRegFromUses(); 140 141 OpKind = MO_FPImmediate; 142 Contents.CFP = FPImm; 143 } 144 145 void MachineOperand::ChangeToES(const char *SymName, unsigned char TargetFlags) { 146 assert((!isReg() || !isTied()) && 147 "Cannot change a tied operand into an external symbol"); 148 149 removeRegFromUses(); 150 151 OpKind = MO_ExternalSymbol; 152 Contents.OffsetedInfo.Val.SymbolName = SymName; 153 setOffset(0); // Offset is always 0. 154 setTargetFlags(TargetFlags); 155 } 156 157 void MachineOperand::ChangeToMCSymbol(MCSymbol *Sym) { 158 assert((!isReg() || !isTied()) && 159 "Cannot change a tied operand into an MCSymbol"); 160 161 removeRegFromUses(); 162 163 OpKind = MO_MCSymbol; 164 Contents.Sym = Sym; 165 } 166 167 /// ChangeToRegister - Replace this operand with a new register operand of 168 /// the specified value. If an operand is known to be an register already, 169 /// the setReg method should be used. 170 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 171 bool isKill, bool isDead, bool isUndef, 172 bool isDebug) { 173 MachineRegisterInfo *RegInfo = nullptr; 174 if (MachineInstr *MI = getParent()) 175 if (MachineBasicBlock *MBB = MI->getParent()) 176 if (MachineFunction *MF = MBB->getParent()) 177 RegInfo = &MF->getRegInfo(); 178 // If this operand is already a register operand, remove it from the 179 // register's use/def lists. 180 bool WasReg = isReg(); 181 if (RegInfo && WasReg) 182 RegInfo->removeRegOperandFromUseList(this); 183 184 // Change this to a register and set the reg#. 185 OpKind = MO_Register; 186 SmallContents.RegNo = Reg; 187 SubReg_TargetFlags = 0; 188 IsDef = isDef; 189 IsImp = isImp; 190 IsKill = isKill; 191 IsDead = isDead; 192 IsUndef = isUndef; 193 IsInternalRead = false; 194 IsEarlyClobber = false; 195 IsDebug = isDebug; 196 // Ensure isOnRegUseList() returns false. 197 Contents.Reg.Prev = nullptr; 198 // Preserve the tie when the operand was already a register. 199 if (!WasReg) 200 TiedTo = 0; 201 202 // If this operand is embedded in a function, add the operand to the 203 // register's use/def list. 204 if (RegInfo) 205 RegInfo->addRegOperandToUseList(this); 206 } 207 208 /// isIdenticalTo - Return true if this operand is identical to the specified 209 /// operand. Note that this should stay in sync with the hash_value overload 210 /// below. 211 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 212 if (getType() != Other.getType() || 213 getTargetFlags() != Other.getTargetFlags()) 214 return false; 215 216 switch (getType()) { 217 case MachineOperand::MO_Register: 218 return getReg() == Other.getReg() && isDef() == Other.isDef() && 219 getSubReg() == Other.getSubReg(); 220 case MachineOperand::MO_Immediate: 221 return getImm() == Other.getImm(); 222 case MachineOperand::MO_CImmediate: 223 return getCImm() == Other.getCImm(); 224 case MachineOperand::MO_FPImmediate: 225 return getFPImm() == Other.getFPImm(); 226 case MachineOperand::MO_MachineBasicBlock: 227 return getMBB() == Other.getMBB(); 228 case MachineOperand::MO_FrameIndex: 229 return getIndex() == Other.getIndex(); 230 case MachineOperand::MO_ConstantPoolIndex: 231 case MachineOperand::MO_TargetIndex: 232 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 233 case MachineOperand::MO_JumpTableIndex: 234 return getIndex() == Other.getIndex(); 235 case MachineOperand::MO_GlobalAddress: 236 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 237 case MachineOperand::MO_ExternalSymbol: 238 return !strcmp(getSymbolName(), Other.getSymbolName()) && 239 getOffset() == Other.getOffset(); 240 case MachineOperand::MO_BlockAddress: 241 return getBlockAddress() == Other.getBlockAddress() && 242 getOffset() == Other.getOffset(); 243 case MachineOperand::MO_RegisterMask: 244 case MachineOperand::MO_RegisterLiveOut: 245 return getRegMask() == Other.getRegMask(); 246 case MachineOperand::MO_MCSymbol: 247 return getMCSymbol() == Other.getMCSymbol(); 248 case MachineOperand::MO_CFIIndex: 249 return getCFIIndex() == Other.getCFIIndex(); 250 case MachineOperand::MO_Metadata: 251 return getMetadata() == Other.getMetadata(); 252 } 253 llvm_unreachable("Invalid machine operand type"); 254 } 255 256 // Note: this must stay exactly in sync with isIdenticalTo above. 257 hash_code llvm::hash_value(const MachineOperand &MO) { 258 switch (MO.getType()) { 259 case MachineOperand::MO_Register: 260 // Register operands don't have target flags. 261 return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef()); 262 case MachineOperand::MO_Immediate: 263 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm()); 264 case MachineOperand::MO_CImmediate: 265 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm()); 266 case MachineOperand::MO_FPImmediate: 267 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm()); 268 case MachineOperand::MO_MachineBasicBlock: 269 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB()); 270 case MachineOperand::MO_FrameIndex: 271 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 272 case MachineOperand::MO_ConstantPoolIndex: 273 case MachineOperand::MO_TargetIndex: 274 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(), 275 MO.getOffset()); 276 case MachineOperand::MO_JumpTableIndex: 277 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 278 case MachineOperand::MO_ExternalSymbol: 279 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(), 280 MO.getSymbolName()); 281 case MachineOperand::MO_GlobalAddress: 282 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(), 283 MO.getOffset()); 284 case MachineOperand::MO_BlockAddress: 285 return hash_combine(MO.getType(), MO.getTargetFlags(), 286 MO.getBlockAddress(), MO.getOffset()); 287 case MachineOperand::MO_RegisterMask: 288 case MachineOperand::MO_RegisterLiveOut: 289 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask()); 290 case MachineOperand::MO_Metadata: 291 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata()); 292 case MachineOperand::MO_MCSymbol: 293 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol()); 294 case MachineOperand::MO_CFIIndex: 295 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex()); 296 } 297 llvm_unreachable("Invalid machine operand type"); 298 } 299 300 void MachineOperand::print(raw_ostream &OS, 301 const TargetRegisterInfo *TRI) const { 302 ModuleSlotTracker DummyMST(nullptr); 303 print(OS, DummyMST, TRI); 304 } 305 306 void MachineOperand::print(raw_ostream &OS, ModuleSlotTracker &MST, 307 const TargetRegisterInfo *TRI) const { 308 switch (getType()) { 309 case MachineOperand::MO_Register: 310 OS << PrintReg(getReg(), TRI, getSubReg()); 311 312 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 313 isInternalRead() || isEarlyClobber() || isTied()) { 314 OS << '<'; 315 bool NeedComma = false; 316 if (isDef()) { 317 if (NeedComma) OS << ','; 318 if (isEarlyClobber()) 319 OS << "earlyclobber,"; 320 if (isImplicit()) 321 OS << "imp-"; 322 OS << "def"; 323 NeedComma = true; 324 // <def,read-undef> only makes sense when getSubReg() is set. 325 // Don't clutter the output otherwise. 326 if (isUndef() && getSubReg()) 327 OS << ",read-undef"; 328 } else if (isImplicit()) { 329 OS << "imp-use"; 330 NeedComma = true; 331 } 332 333 if (isKill()) { 334 if (NeedComma) OS << ','; 335 OS << "kill"; 336 NeedComma = true; 337 } 338 if (isDead()) { 339 if (NeedComma) OS << ','; 340 OS << "dead"; 341 NeedComma = true; 342 } 343 if (isUndef() && isUse()) { 344 if (NeedComma) OS << ','; 345 OS << "undef"; 346 NeedComma = true; 347 } 348 if (isInternalRead()) { 349 if (NeedComma) OS << ','; 350 OS << "internal"; 351 NeedComma = true; 352 } 353 if (isTied()) { 354 if (NeedComma) OS << ','; 355 OS << "tied"; 356 if (TiedTo != 15) 357 OS << unsigned(TiedTo - 1); 358 } 359 OS << '>'; 360 } 361 break; 362 case MachineOperand::MO_Immediate: 363 OS << getImm(); 364 break; 365 case MachineOperand::MO_CImmediate: 366 getCImm()->getValue().print(OS, false); 367 break; 368 case MachineOperand::MO_FPImmediate: 369 if (getFPImm()->getType()->isFloatTy()) 370 OS << getFPImm()->getValueAPF().convertToFloat(); 371 else 372 OS << getFPImm()->getValueAPF().convertToDouble(); 373 break; 374 case MachineOperand::MO_MachineBasicBlock: 375 OS << "<BB#" << getMBB()->getNumber() << ">"; 376 break; 377 case MachineOperand::MO_FrameIndex: 378 OS << "<fi#" << getIndex() << '>'; 379 break; 380 case MachineOperand::MO_ConstantPoolIndex: 381 OS << "<cp#" << getIndex(); 382 if (getOffset()) OS << "+" << getOffset(); 383 OS << '>'; 384 break; 385 case MachineOperand::MO_TargetIndex: 386 OS << "<ti#" << getIndex(); 387 if (getOffset()) OS << "+" << getOffset(); 388 OS << '>'; 389 break; 390 case MachineOperand::MO_JumpTableIndex: 391 OS << "<jt#" << getIndex() << '>'; 392 break; 393 case MachineOperand::MO_GlobalAddress: 394 OS << "<ga:"; 395 getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST); 396 if (getOffset()) OS << "+" << getOffset(); 397 OS << '>'; 398 break; 399 case MachineOperand::MO_ExternalSymbol: 400 OS << "<es:" << getSymbolName(); 401 if (getOffset()) OS << "+" << getOffset(); 402 OS << '>'; 403 break; 404 case MachineOperand::MO_BlockAddress: 405 OS << '<'; 406 getBlockAddress()->printAsOperand(OS, /*PrintType=*/false, MST); 407 if (getOffset()) OS << "+" << getOffset(); 408 OS << '>'; 409 break; 410 case MachineOperand::MO_RegisterMask: 411 OS << "<regmask>"; 412 break; 413 case MachineOperand::MO_RegisterLiveOut: 414 OS << "<regliveout>"; 415 break; 416 case MachineOperand::MO_Metadata: 417 OS << '<'; 418 getMetadata()->printAsOperand(OS, MST); 419 OS << '>'; 420 break; 421 case MachineOperand::MO_MCSymbol: 422 OS << "<MCSym=" << *getMCSymbol() << '>'; 423 break; 424 case MachineOperand::MO_CFIIndex: 425 OS << "<call frame instruction>"; 426 break; 427 } 428 429 if (unsigned TF = getTargetFlags()) 430 OS << "[TF=" << TF << ']'; 431 } 432 433 //===----------------------------------------------------------------------===// 434 // MachineMemOperand Implementation 435 //===----------------------------------------------------------------------===// 436 437 /// getAddrSpace - Return the LLVM IR address space number that this pointer 438 /// points into. 439 unsigned MachinePointerInfo::getAddrSpace() const { 440 if (V.isNull() || V.is<const PseudoSourceValue*>()) return 0; 441 return cast<PointerType>(V.get<const Value*>()->getType())->getAddressSpace(); 442 } 443 444 /// getConstantPool - Return a MachinePointerInfo record that refers to the 445 /// constant pool. 446 MachinePointerInfo MachinePointerInfo::getConstantPool(MachineFunction &MF) { 447 return MachinePointerInfo(MF.getPSVManager().getConstantPool()); 448 } 449 450 /// getFixedStack - Return a MachinePointerInfo record that refers to the 451 /// the specified FrameIndex. 452 MachinePointerInfo MachinePointerInfo::getFixedStack(MachineFunction &MF, 453 int FI, int64_t Offset) { 454 return MachinePointerInfo(MF.getPSVManager().getFixedStack(FI), Offset); 455 } 456 457 MachinePointerInfo MachinePointerInfo::getJumpTable(MachineFunction &MF) { 458 return MachinePointerInfo(MF.getPSVManager().getJumpTable()); 459 } 460 461 MachinePointerInfo MachinePointerInfo::getGOT(MachineFunction &MF) { 462 return MachinePointerInfo(MF.getPSVManager().getGOT()); 463 } 464 465 MachinePointerInfo MachinePointerInfo::getStack(MachineFunction &MF, 466 int64_t Offset) { 467 return MachinePointerInfo(MF.getPSVManager().getStack(), Offset); 468 } 469 470 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f, 471 uint64_t s, unsigned int a, 472 const AAMDNodes &AAInfo, 473 const MDNode *Ranges) 474 : PtrInfo(ptrinfo), Size(s), 475 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)), 476 AAInfo(AAInfo), Ranges(Ranges) { 477 assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() || 478 isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) && 479 "invalid pointer value"); 480 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 481 assert((isLoad() || isStore()) && "Not a load/store!"); 482 } 483 484 /// Profile - Gather unique data for the object. 485 /// 486 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 487 ID.AddInteger(getOffset()); 488 ID.AddInteger(Size); 489 ID.AddPointer(getOpaqueValue()); 490 ID.AddInteger(Flags); 491 } 492 493 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 494 // The Value and Offset may differ due to CSE. But the flags and size 495 // should be the same. 496 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 497 assert(MMO->getSize() == getSize() && "Size mismatch!"); 498 499 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 500 // Update the alignment value. 501 Flags = (Flags & ((1 << MOMaxBits) - 1)) | 502 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits); 503 // Also update the base and offset, because the new alignment may 504 // not be applicable with the old ones. 505 PtrInfo = MMO->PtrInfo; 506 } 507 } 508 509 /// getAlignment - Return the minimum known alignment in bytes of the 510 /// actual memory reference. 511 uint64_t MachineMemOperand::getAlignment() const { 512 return MinAlign(getBaseAlignment(), getOffset()); 513 } 514 515 void MachineMemOperand::print(raw_ostream &OS) const { 516 ModuleSlotTracker DummyMST(nullptr); 517 print(OS, DummyMST); 518 } 519 void MachineMemOperand::print(raw_ostream &OS, ModuleSlotTracker &MST) const { 520 assert((isLoad() || isStore()) && 521 "SV has to be a load, store or both."); 522 523 if (isVolatile()) 524 OS << "Volatile "; 525 526 if (isLoad()) 527 OS << "LD"; 528 if (isStore()) 529 OS << "ST"; 530 OS << getSize(); 531 532 // Print the address information. 533 OS << "["; 534 if (const Value *V = getValue()) 535 V->printAsOperand(OS, /*PrintType=*/false, MST); 536 else if (const PseudoSourceValue *PSV = getPseudoValue()) 537 PSV->printCustom(OS); 538 else 539 OS << "<unknown>"; 540 541 unsigned AS = getAddrSpace(); 542 if (AS != 0) 543 OS << "(addrspace=" << AS << ')'; 544 545 // If the alignment of the memory reference itself differs from the alignment 546 // of the base pointer, print the base alignment explicitly, next to the base 547 // pointer. 548 if (getBaseAlignment() != getAlignment()) 549 OS << "(align=" << getBaseAlignment() << ")"; 550 551 if (getOffset() != 0) 552 OS << "+" << getOffset(); 553 OS << "]"; 554 555 // Print the alignment of the reference. 556 if (getBaseAlignment() != getAlignment() || getBaseAlignment() != getSize()) 557 OS << "(align=" << getAlignment() << ")"; 558 559 // Print TBAA info. 560 if (const MDNode *TBAAInfo = getAAInfo().TBAA) { 561 OS << "(tbaa="; 562 if (TBAAInfo->getNumOperands() > 0) 563 TBAAInfo->getOperand(0)->printAsOperand(OS, MST); 564 else 565 OS << "<unknown>"; 566 OS << ")"; 567 } 568 569 // Print AA scope info. 570 if (const MDNode *ScopeInfo = getAAInfo().Scope) { 571 OS << "(alias.scope="; 572 if (ScopeInfo->getNumOperands() > 0) 573 for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) { 574 ScopeInfo->getOperand(i)->printAsOperand(OS, MST); 575 if (i != ie-1) 576 OS << ","; 577 } 578 else 579 OS << "<unknown>"; 580 OS << ")"; 581 } 582 583 // Print AA noalias scope info. 584 if (const MDNode *NoAliasInfo = getAAInfo().NoAlias) { 585 OS << "(noalias="; 586 if (NoAliasInfo->getNumOperands() > 0) 587 for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) { 588 NoAliasInfo->getOperand(i)->printAsOperand(OS, MST); 589 if (i != ie-1) 590 OS << ","; 591 } 592 else 593 OS << "<unknown>"; 594 OS << ")"; 595 } 596 597 // Print nontemporal info. 598 if (isNonTemporal()) 599 OS << "(nontemporal)"; 600 601 if (isInvariant()) 602 OS << "(invariant)"; 603 } 604 605 //===----------------------------------------------------------------------===// 606 // MachineInstr Implementation 607 //===----------------------------------------------------------------------===// 608 609 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 610 if (MCID->ImplicitDefs) 611 for (const uint16_t *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; ++ImpDefs) 612 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 613 if (MCID->ImplicitUses) 614 for (const uint16_t *ImpUses = MCID->getImplicitUses(); *ImpUses; ++ImpUses) 615 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 616 } 617 618 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 619 /// implicit operands. It reserves space for the number of operands specified by 620 /// the MCInstrDesc. 621 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, 622 DebugLoc dl, bool NoImp) 623 : MCID(&tid), Parent(nullptr), Operands(nullptr), NumOperands(0), Flags(0), 624 AsmPrinterFlags(0), NumMemRefs(0), MemRefs(nullptr), 625 debugLoc(std::move(dl)) { 626 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 627 628 // Reserve space for the expected number of operands. 629 if (unsigned NumOps = MCID->getNumOperands() + 630 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 631 CapOperands = OperandCapacity::get(NumOps); 632 Operands = MF.allocateOperandArray(CapOperands); 633 } 634 635 if (!NoImp) 636 addImplicitDefUseOperands(MF); 637 } 638 639 /// MachineInstr ctor - Copies MachineInstr arg exactly 640 /// 641 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 642 : MCID(&MI.getDesc()), Parent(nullptr), Operands(nullptr), NumOperands(0), 643 Flags(0), AsmPrinterFlags(0), 644 NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs), 645 debugLoc(MI.getDebugLoc()) { 646 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 647 648 CapOperands = OperandCapacity::get(MI.getNumOperands()); 649 Operands = MF.allocateOperandArray(CapOperands); 650 651 // Copy operands. 652 for (const MachineOperand &MO : MI.operands()) 653 addOperand(MF, MO); 654 655 // Copy all the sensible flags. 656 setFlags(MI.Flags); 657 } 658 659 /// getRegInfo - If this instruction is embedded into a MachineFunction, 660 /// return the MachineRegisterInfo object for the current function, otherwise 661 /// return null. 662 MachineRegisterInfo *MachineInstr::getRegInfo() { 663 if (MachineBasicBlock *MBB = getParent()) 664 return &MBB->getParent()->getRegInfo(); 665 return nullptr; 666 } 667 668 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 669 /// this instruction from their respective use lists. This requires that the 670 /// operands already be on their use lists. 671 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 672 for (MachineOperand &MO : operands()) 673 if (MO.isReg()) 674 MRI.removeRegOperandFromUseList(&MO); 675 } 676 677 /// AddRegOperandsToUseLists - Add all of the register operands in 678 /// this instruction from their respective use lists. This requires that the 679 /// operands not be on their use lists yet. 680 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 681 for (MachineOperand &MO : operands()) 682 if (MO.isReg()) 683 MRI.addRegOperandToUseList(&MO); 684 } 685 686 void MachineInstr::addOperand(const MachineOperand &Op) { 687 MachineBasicBlock *MBB = getParent(); 688 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 689 MachineFunction *MF = MBB->getParent(); 690 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 691 addOperand(*MF, Op); 692 } 693 694 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 695 /// ranges. If MRI is non-null also update use-def chains. 696 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 697 unsigned NumOps, MachineRegisterInfo *MRI) { 698 if (MRI) 699 return MRI->moveOperands(Dst, Src, NumOps); 700 701 // MachineOperand is a trivially copyable type so we can just use memmove. 702 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 703 } 704 705 /// addOperand - Add the specified operand to the instruction. If it is an 706 /// implicit operand, it is added to the end of the operand list. If it is 707 /// an explicit operand it is added at the end of the explicit operand list 708 /// (before the first implicit operand). 709 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 710 assert(MCID && "Cannot add operands before providing an instr descriptor"); 711 712 // Check if we're adding one of our existing operands. 713 if (&Op >= Operands && &Op < Operands + NumOperands) { 714 // This is unusual: MI->addOperand(MI->getOperand(i)). 715 // If adding Op requires reallocating or moving existing operands around, 716 // the Op reference could go stale. Support it by copying Op. 717 MachineOperand CopyOp(Op); 718 return addOperand(MF, CopyOp); 719 } 720 721 // Find the insert location for the new operand. Implicit registers go at 722 // the end, everything else goes before the implicit regs. 723 // 724 // FIXME: Allow mixed explicit and implicit operands on inline asm. 725 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 726 // implicit-defs, but they must not be moved around. See the FIXME in 727 // InstrEmitter.cpp. 728 unsigned OpNo = getNumOperands(); 729 bool isImpReg = Op.isReg() && Op.isImplicit(); 730 if (!isImpReg && !isInlineAsm()) { 731 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 732 --OpNo; 733 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 734 } 735 } 736 737 #ifndef NDEBUG 738 bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata; 739 // OpNo now points as the desired insertion point. Unless this is a variadic 740 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 741 // RegMask operands go between the explicit and implicit operands. 742 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 743 OpNo < MCID->getNumOperands() || isMetaDataOp) && 744 "Trying to add an operand to a machine instr that is already done!"); 745 #endif 746 747 MachineRegisterInfo *MRI = getRegInfo(); 748 749 // Determine if the Operands array needs to be reallocated. 750 // Save the old capacity and operand array. 751 OperandCapacity OldCap = CapOperands; 752 MachineOperand *OldOperands = Operands; 753 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 754 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 755 Operands = MF.allocateOperandArray(CapOperands); 756 // Move the operands before the insertion point. 757 if (OpNo) 758 moveOperands(Operands, OldOperands, OpNo, MRI); 759 } 760 761 // Move the operands following the insertion point. 762 if (OpNo != NumOperands) 763 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 764 MRI); 765 ++NumOperands; 766 767 // Deallocate the old operand array. 768 if (OldOperands != Operands && OldOperands) 769 MF.deallocateOperandArray(OldCap, OldOperands); 770 771 // Copy Op into place. It still needs to be inserted into the MRI use lists. 772 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 773 NewMO->ParentMI = this; 774 775 // When adding a register operand, tell MRI about it. 776 if (NewMO->isReg()) { 777 // Ensure isOnRegUseList() returns false, regardless of Op's status. 778 NewMO->Contents.Reg.Prev = nullptr; 779 // Ignore existing ties. This is not a property that can be copied. 780 NewMO->TiedTo = 0; 781 // Add the new operand to MRI, but only for instructions in an MBB. 782 if (MRI) 783 MRI->addRegOperandToUseList(NewMO); 784 // The MCID operand information isn't accurate until we start adding 785 // explicit operands. The implicit operands are added first, then the 786 // explicits are inserted before them. 787 if (!isImpReg) { 788 // Tie uses to defs as indicated in MCInstrDesc. 789 if (NewMO->isUse()) { 790 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 791 if (DefIdx != -1) 792 tieOperands(DefIdx, OpNo); 793 } 794 // If the register operand is flagged as early, mark the operand as such. 795 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 796 NewMO->setIsEarlyClobber(true); 797 } 798 } 799 } 800 801 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 802 /// fewer operand than it started with. 803 /// 804 void MachineInstr::RemoveOperand(unsigned OpNo) { 805 assert(OpNo < getNumOperands() && "Invalid operand number"); 806 untieRegOperand(OpNo); 807 808 #ifndef NDEBUG 809 // Moving tied operands would break the ties. 810 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 811 if (Operands[i].isReg()) 812 assert(!Operands[i].isTied() && "Cannot move tied operands"); 813 #endif 814 815 MachineRegisterInfo *MRI = getRegInfo(); 816 if (MRI && Operands[OpNo].isReg()) 817 MRI->removeRegOperandFromUseList(Operands + OpNo); 818 819 // Don't call the MachineOperand destructor. A lot of this code depends on 820 // MachineOperand having a trivial destructor anyway, and adding a call here 821 // wouldn't make it 'destructor-correct'. 822 823 if (unsigned N = NumOperands - 1 - OpNo) 824 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 825 --NumOperands; 826 } 827 828 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 829 /// This function should be used only occasionally. The setMemRefs function 830 /// is the primary method for setting up a MachineInstr's MemRefs list. 831 void MachineInstr::addMemOperand(MachineFunction &MF, 832 MachineMemOperand *MO) { 833 mmo_iterator OldMemRefs = MemRefs; 834 unsigned OldNumMemRefs = NumMemRefs; 835 836 unsigned NewNum = NumMemRefs + 1; 837 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 838 839 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs); 840 NewMemRefs[NewNum - 1] = MO; 841 setMemRefs(NewMemRefs, NewMemRefs + NewNum); 842 } 843 844 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { 845 assert(!isBundledWithPred() && "Must be called on bundle header"); 846 for (MachineBasicBlock::const_instr_iterator MII = this;; ++MII) { 847 if (MII->getDesc().getFlags() & Mask) { 848 if (Type == AnyInBundle) 849 return true; 850 } else { 851 if (Type == AllInBundle && !MII->isBundle()) 852 return false; 853 } 854 // This was the last instruction in the bundle. 855 if (!MII->isBundledWithSucc()) 856 return Type == AllInBundle; 857 } 858 } 859 860 bool MachineInstr::isIdenticalTo(const MachineInstr *Other, 861 MICheckType Check) const { 862 // If opcodes or number of operands are not the same then the two 863 // instructions are obviously not identical. 864 if (Other->getOpcode() != getOpcode() || 865 Other->getNumOperands() != getNumOperands()) 866 return false; 867 868 if (isBundle()) { 869 // Both instructions are bundles, compare MIs inside the bundle. 870 MachineBasicBlock::const_instr_iterator I1 = *this; 871 MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end(); 872 MachineBasicBlock::const_instr_iterator I2 = *Other; 873 MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end(); 874 while (++I1 != E1 && I1->isInsideBundle()) { 875 ++I2; 876 if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check)) 877 return false; 878 } 879 } 880 881 // Check operands to make sure they match. 882 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 883 const MachineOperand &MO = getOperand(i); 884 const MachineOperand &OMO = Other->getOperand(i); 885 if (!MO.isReg()) { 886 if (!MO.isIdenticalTo(OMO)) 887 return false; 888 continue; 889 } 890 891 // Clients may or may not want to ignore defs when testing for equality. 892 // For example, machine CSE pass only cares about finding common 893 // subexpressions, so it's safe to ignore virtual register defs. 894 if (MO.isDef()) { 895 if (Check == IgnoreDefs) 896 continue; 897 else if (Check == IgnoreVRegDefs) { 898 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 899 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 900 if (MO.getReg() != OMO.getReg()) 901 return false; 902 } else { 903 if (!MO.isIdenticalTo(OMO)) 904 return false; 905 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 906 return false; 907 } 908 } else { 909 if (!MO.isIdenticalTo(OMO)) 910 return false; 911 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 912 return false; 913 } 914 } 915 // If DebugLoc does not match then two dbg.values are not identical. 916 if (isDebugValue()) 917 if (getDebugLoc() && Other->getDebugLoc() && 918 getDebugLoc() != Other->getDebugLoc()) 919 return false; 920 return true; 921 } 922 923 MachineInstr *MachineInstr::removeFromParent() { 924 assert(getParent() && "Not embedded in a basic block!"); 925 return getParent()->remove(this); 926 } 927 928 MachineInstr *MachineInstr::removeFromBundle() { 929 assert(getParent() && "Not embedded in a basic block!"); 930 return getParent()->remove_instr(this); 931 } 932 933 void MachineInstr::eraseFromParent() { 934 assert(getParent() && "Not embedded in a basic block!"); 935 getParent()->erase(this); 936 } 937 938 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() { 939 assert(getParent() && "Not embedded in a basic block!"); 940 MachineBasicBlock *MBB = getParent(); 941 MachineFunction *MF = MBB->getParent(); 942 assert(MF && "Not embedded in a function!"); 943 944 MachineInstr *MI = (MachineInstr *)this; 945 MachineRegisterInfo &MRI = MF->getRegInfo(); 946 947 for (const MachineOperand &MO : MI->operands()) { 948 if (!MO.isReg() || !MO.isDef()) 949 continue; 950 unsigned Reg = MO.getReg(); 951 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 952 continue; 953 MRI.markUsesInDebugValueAsUndef(Reg); 954 } 955 MI->eraseFromParent(); 956 } 957 958 void MachineInstr::eraseFromBundle() { 959 assert(getParent() && "Not embedded in a basic block!"); 960 getParent()->erase_instr(this); 961 } 962 963 /// getNumExplicitOperands - Returns the number of non-implicit operands. 964 /// 965 unsigned MachineInstr::getNumExplicitOperands() const { 966 unsigned NumOperands = MCID->getNumOperands(); 967 if (!MCID->isVariadic()) 968 return NumOperands; 969 970 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 971 const MachineOperand &MO = getOperand(i); 972 if (!MO.isReg() || !MO.isImplicit()) 973 NumOperands++; 974 } 975 return NumOperands; 976 } 977 978 void MachineInstr::bundleWithPred() { 979 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 980 setFlag(BundledPred); 981 MachineBasicBlock::instr_iterator Pred = this; 982 --Pred; 983 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 984 Pred->setFlag(BundledSucc); 985 } 986 987 void MachineInstr::bundleWithSucc() { 988 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 989 setFlag(BundledSucc); 990 MachineBasicBlock::instr_iterator Succ = this; 991 ++Succ; 992 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 993 Succ->setFlag(BundledPred); 994 } 995 996 void MachineInstr::unbundleFromPred() { 997 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 998 clearFlag(BundledPred); 999 MachineBasicBlock::instr_iterator Pred = this; 1000 --Pred; 1001 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 1002 Pred->clearFlag(BundledSucc); 1003 } 1004 1005 void MachineInstr::unbundleFromSucc() { 1006 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 1007 clearFlag(BundledSucc); 1008 MachineBasicBlock::instr_iterator Succ = this; 1009 ++Succ; 1010 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 1011 Succ->clearFlag(BundledPred); 1012 } 1013 1014 bool MachineInstr::isStackAligningInlineAsm() const { 1015 if (isInlineAsm()) { 1016 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1017 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1018 return true; 1019 } 1020 return false; 1021 } 1022 1023 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 1024 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 1025 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1026 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 1027 } 1028 1029 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 1030 unsigned *GroupNo) const { 1031 assert(isInlineAsm() && "Expected an inline asm instruction"); 1032 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 1033 1034 // Ignore queries about the initial operands. 1035 if (OpIdx < InlineAsm::MIOp_FirstOperand) 1036 return -1; 1037 1038 unsigned Group = 0; 1039 unsigned NumOps; 1040 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1041 i += NumOps) { 1042 const MachineOperand &FlagMO = getOperand(i); 1043 // If we reach the implicit register operands, stop looking. 1044 if (!FlagMO.isImm()) 1045 return -1; 1046 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1047 if (i + NumOps > OpIdx) { 1048 if (GroupNo) 1049 *GroupNo = Group; 1050 return i; 1051 } 1052 ++Group; 1053 } 1054 return -1; 1055 } 1056 1057 const TargetRegisterClass* 1058 MachineInstr::getRegClassConstraint(unsigned OpIdx, 1059 const TargetInstrInfo *TII, 1060 const TargetRegisterInfo *TRI) const { 1061 assert(getParent() && "Can't have an MBB reference here!"); 1062 assert(getParent()->getParent() && "Can't have an MF reference here!"); 1063 const MachineFunction &MF = *getParent()->getParent(); 1064 1065 // Most opcodes have fixed constraints in their MCInstrDesc. 1066 if (!isInlineAsm()) 1067 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 1068 1069 if (!getOperand(OpIdx).isReg()) 1070 return nullptr; 1071 1072 // For tied uses on inline asm, get the constraint from the def. 1073 unsigned DefIdx; 1074 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 1075 OpIdx = DefIdx; 1076 1077 // Inline asm stores register class constraints in the flag word. 1078 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 1079 if (FlagIdx < 0) 1080 return nullptr; 1081 1082 unsigned Flag = getOperand(FlagIdx).getImm(); 1083 unsigned RCID; 1084 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) 1085 return TRI->getRegClass(RCID); 1086 1087 // Assume that all registers in a memory operand are pointers. 1088 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 1089 return TRI->getPointerRegClass(MF); 1090 1091 return nullptr; 1092 } 1093 1094 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 1095 unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 1096 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 1097 // Check every operands inside the bundle if we have 1098 // been asked to. 1099 if (ExploreBundle) 1100 for (ConstMIBundleOperands OpndIt(this); OpndIt.isValid() && CurRC; 1101 ++OpndIt) 1102 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 1103 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 1104 else 1105 // Otherwise, just check the current operands. 1106 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 1107 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 1108 return CurRC; 1109 } 1110 1111 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 1112 unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC, 1113 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1114 assert(CurRC && "Invalid initial register class"); 1115 // Check if Reg is constrained by some of its use/def from MI. 1116 const MachineOperand &MO = getOperand(OpIdx); 1117 if (!MO.isReg() || MO.getReg() != Reg) 1118 return CurRC; 1119 // If yes, accumulate the constraints through the operand. 1120 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 1121 } 1122 1123 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 1124 unsigned OpIdx, const TargetRegisterClass *CurRC, 1125 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1126 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 1127 const MachineOperand &MO = getOperand(OpIdx); 1128 assert(MO.isReg() && 1129 "Cannot get register constraints for non-register operand"); 1130 assert(CurRC && "Invalid initial register class"); 1131 if (unsigned SubIdx = MO.getSubReg()) { 1132 if (OpRC) 1133 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 1134 else 1135 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 1136 } else if (OpRC) 1137 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 1138 return CurRC; 1139 } 1140 1141 /// Return the number of instructions inside the MI bundle, not counting the 1142 /// header instruction. 1143 unsigned MachineInstr::getBundleSize() const { 1144 MachineBasicBlock::const_instr_iterator I = this; 1145 unsigned Size = 0; 1146 while (I->isBundledWithSucc()) 1147 ++Size, ++I; 1148 return Size; 1149 } 1150 1151 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 1152 /// the specific register or -1 if it is not found. It further tightens 1153 /// the search criteria to a use that kills the register if isKill is true. 1154 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, 1155 const TargetRegisterInfo *TRI) const { 1156 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1157 const MachineOperand &MO = getOperand(i); 1158 if (!MO.isReg() || !MO.isUse()) 1159 continue; 1160 unsigned MOReg = MO.getReg(); 1161 if (!MOReg) 1162 continue; 1163 if (MOReg == Reg || 1164 (TRI && 1165 TargetRegisterInfo::isPhysicalRegister(MOReg) && 1166 TargetRegisterInfo::isPhysicalRegister(Reg) && 1167 TRI->isSubRegister(MOReg, Reg))) 1168 if (!isKill || MO.isKill()) 1169 return i; 1170 } 1171 return -1; 1172 } 1173 1174 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1175 /// indicating if this instruction reads or writes Reg. This also considers 1176 /// partial defines. 1177 std::pair<bool,bool> 1178 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 1179 SmallVectorImpl<unsigned> *Ops) const { 1180 bool PartDef = false; // Partial redefine. 1181 bool FullDef = false; // Full define. 1182 bool Use = false; 1183 1184 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1185 const MachineOperand &MO = getOperand(i); 1186 if (!MO.isReg() || MO.getReg() != Reg) 1187 continue; 1188 if (Ops) 1189 Ops->push_back(i); 1190 if (MO.isUse()) 1191 Use |= !MO.isUndef(); 1192 else if (MO.getSubReg() && !MO.isUndef()) 1193 // A partial <def,undef> doesn't count as reading the register. 1194 PartDef = true; 1195 else 1196 FullDef = true; 1197 } 1198 // A partial redefine uses Reg unless there is also a full define. 1199 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1200 } 1201 1202 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1203 /// the specified register or -1 if it is not found. If isDead is true, defs 1204 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1205 /// also checks if there is a def of a super-register. 1206 int 1207 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 1208 const TargetRegisterInfo *TRI) const { 1209 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 1210 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1211 const MachineOperand &MO = getOperand(i); 1212 // Accept regmask operands when Overlap is set. 1213 // Ignore them when looking for a specific def operand (Overlap == false). 1214 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1215 return i; 1216 if (!MO.isReg() || !MO.isDef()) 1217 continue; 1218 unsigned MOReg = MO.getReg(); 1219 bool Found = (MOReg == Reg); 1220 if (!Found && TRI && isPhys && 1221 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1222 if (Overlap) 1223 Found = TRI->regsOverlap(MOReg, Reg); 1224 else 1225 Found = TRI->isSubRegister(MOReg, Reg); 1226 } 1227 if (Found && (!isDead || MO.isDead())) 1228 return i; 1229 } 1230 return -1; 1231 } 1232 1233 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1234 /// operand list that is used to represent the predicate. It returns -1 if 1235 /// none is found. 1236 int MachineInstr::findFirstPredOperandIdx() const { 1237 // Don't call MCID.findFirstPredOperandIdx() because this variant 1238 // is sometimes called on an instruction that's not yet complete, and 1239 // so the number of operands is less than the MCID indicates. In 1240 // particular, the PTX target does this. 1241 const MCInstrDesc &MCID = getDesc(); 1242 if (MCID.isPredicable()) { 1243 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1244 if (MCID.OpInfo[i].isPredicate()) 1245 return i; 1246 } 1247 1248 return -1; 1249 } 1250 1251 // MachineOperand::TiedTo is 4 bits wide. 1252 const unsigned TiedMax = 15; 1253 1254 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1255 /// 1256 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1257 /// field. TiedTo can have these values: 1258 /// 1259 /// 0: Operand is not tied to anything. 1260 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1261 /// TiedMax: Tied to an operand >= TiedMax-1. 1262 /// 1263 /// The tied def must be one of the first TiedMax operands on a normal 1264 /// instruction. INLINEASM instructions allow more tied defs. 1265 /// 1266 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1267 MachineOperand &DefMO = getOperand(DefIdx); 1268 MachineOperand &UseMO = getOperand(UseIdx); 1269 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1270 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1271 assert(!DefMO.isTied() && "Def is already tied to another use"); 1272 assert(!UseMO.isTied() && "Use is already tied to another def"); 1273 1274 if (DefIdx < TiedMax) 1275 UseMO.TiedTo = DefIdx + 1; 1276 else { 1277 // Inline asm can use the group descriptors to find tied operands, but on 1278 // normal instruction, the tied def must be within the first TiedMax 1279 // operands. 1280 assert(isInlineAsm() && "DefIdx out of range"); 1281 UseMO.TiedTo = TiedMax; 1282 } 1283 1284 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1285 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1286 } 1287 1288 /// Given the index of a tied register operand, find the operand it is tied to. 1289 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1290 /// which must exist. 1291 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1292 const MachineOperand &MO = getOperand(OpIdx); 1293 assert(MO.isTied() && "Operand isn't tied"); 1294 1295 // Normally TiedTo is in range. 1296 if (MO.TiedTo < TiedMax) 1297 return MO.TiedTo - 1; 1298 1299 // Uses on normal instructions can be out of range. 1300 if (!isInlineAsm()) { 1301 // Normal tied defs must be in the 0..TiedMax-1 range. 1302 if (MO.isUse()) 1303 return TiedMax - 1; 1304 // MO is a def. Search for the tied use. 1305 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1306 const MachineOperand &UseMO = getOperand(i); 1307 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1308 return i; 1309 } 1310 llvm_unreachable("Can't find tied use"); 1311 } 1312 1313 // Now deal with inline asm by parsing the operand group descriptor flags. 1314 // Find the beginning of each operand group. 1315 SmallVector<unsigned, 8> GroupIdx; 1316 unsigned OpIdxGroup = ~0u; 1317 unsigned NumOps; 1318 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1319 i += NumOps) { 1320 const MachineOperand &FlagMO = getOperand(i); 1321 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1322 unsigned CurGroup = GroupIdx.size(); 1323 GroupIdx.push_back(i); 1324 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1325 // OpIdx belongs to this operand group. 1326 if (OpIdx > i && OpIdx < i + NumOps) 1327 OpIdxGroup = CurGroup; 1328 unsigned TiedGroup; 1329 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1330 continue; 1331 // Operands in this group are tied to operands in TiedGroup which must be 1332 // earlier. Find the number of operands between the two groups. 1333 unsigned Delta = i - GroupIdx[TiedGroup]; 1334 1335 // OpIdx is a use tied to TiedGroup. 1336 if (OpIdxGroup == CurGroup) 1337 return OpIdx - Delta; 1338 1339 // OpIdx is a def tied to this use group. 1340 if (OpIdxGroup == TiedGroup) 1341 return OpIdx + Delta; 1342 } 1343 llvm_unreachable("Invalid tied operand on inline asm"); 1344 } 1345 1346 /// clearKillInfo - Clears kill flags on all operands. 1347 /// 1348 void MachineInstr::clearKillInfo() { 1349 for (MachineOperand &MO : operands()) { 1350 if (MO.isReg() && MO.isUse()) 1351 MO.setIsKill(false); 1352 } 1353 } 1354 1355 void MachineInstr::substituteRegister(unsigned FromReg, 1356 unsigned ToReg, 1357 unsigned SubIdx, 1358 const TargetRegisterInfo &RegInfo) { 1359 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1360 if (SubIdx) 1361 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1362 for (MachineOperand &MO : operands()) { 1363 if (!MO.isReg() || MO.getReg() != FromReg) 1364 continue; 1365 MO.substPhysReg(ToReg, RegInfo); 1366 } 1367 } else { 1368 for (MachineOperand &MO : operands()) { 1369 if (!MO.isReg() || MO.getReg() != FromReg) 1370 continue; 1371 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1372 } 1373 } 1374 } 1375 1376 /// isSafeToMove - Return true if it is safe to move this instruction. If 1377 /// SawStore is set to true, it means that there is a store (or call) between 1378 /// the instruction's location and its intended destination. 1379 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const { 1380 // Ignore stuff that we obviously can't move. 1381 // 1382 // Treat volatile loads as stores. This is not strictly necessary for 1383 // volatiles, but it is required for atomic loads. It is not allowed to move 1384 // a load across an atomic load with Ordering > Monotonic. 1385 if (mayStore() || isCall() || 1386 (mayLoad() && hasOrderedMemoryRef())) { 1387 SawStore = true; 1388 return false; 1389 } 1390 1391 if (isPosition() || isDebugValue() || isTerminator() || 1392 hasUnmodeledSideEffects()) 1393 return false; 1394 1395 // See if this instruction does a load. If so, we have to guarantee that the 1396 // loaded value doesn't change between the load and the its intended 1397 // destination. The check for isInvariantLoad gives the targe the chance to 1398 // classify the load as always returning a constant, e.g. a constant pool 1399 // load. 1400 if (mayLoad() && !isInvariantLoad(AA)) 1401 // Otherwise, this is a real load. If there is a store between the load and 1402 // end of block, we can't move it. 1403 return !SawStore; 1404 1405 return true; 1406 } 1407 1408 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1409 /// or volatile memory reference, or if the information describing the memory 1410 /// reference is not available. Return false if it is known to have no ordered 1411 /// memory references. 1412 bool MachineInstr::hasOrderedMemoryRef() const { 1413 // An instruction known never to access memory won't have a volatile access. 1414 if (!mayStore() && 1415 !mayLoad() && 1416 !isCall() && 1417 !hasUnmodeledSideEffects()) 1418 return false; 1419 1420 // Otherwise, if the instruction has no memory reference information, 1421 // conservatively assume it wasn't preserved. 1422 if (memoperands_empty()) 1423 return true; 1424 1425 // Check the memory reference information for ordered references. 1426 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I) 1427 if (!(*I)->isUnordered()) 1428 return true; 1429 1430 return false; 1431 } 1432 1433 /// isInvariantLoad - Return true if this instruction is loading from a 1434 /// location whose value is invariant across the function. For example, 1435 /// loading a value from the constant pool or from the argument area 1436 /// of a function if it does not change. This should only return true of 1437 /// *all* loads the instruction does are invariant (if it does multiple loads). 1438 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const { 1439 // If the instruction doesn't load at all, it isn't an invariant load. 1440 if (!mayLoad()) 1441 return false; 1442 1443 // If the instruction has lost its memoperands, conservatively assume that 1444 // it may not be an invariant load. 1445 if (memoperands_empty()) 1446 return false; 1447 1448 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo(); 1449 1450 for (mmo_iterator I = memoperands_begin(), 1451 E = memoperands_end(); I != E; ++I) { 1452 if ((*I)->isVolatile()) return false; 1453 if ((*I)->isStore()) return false; 1454 if ((*I)->isInvariant()) return true; 1455 1456 1457 // A load from a constant PseudoSourceValue is invariant. 1458 if (const PseudoSourceValue *PSV = (*I)->getPseudoValue()) 1459 if (PSV->isConstant(MFI)) 1460 continue; 1461 1462 if (const Value *V = (*I)->getValue()) { 1463 // If we have an AliasAnalysis, ask it whether the memory is constant. 1464 if (AA && 1465 AA->pointsToConstantMemory( 1466 MemoryLocation(V, (*I)->getSize(), (*I)->getAAInfo()))) 1467 continue; 1468 } 1469 1470 // Otherwise assume conservatively. 1471 return false; 1472 } 1473 1474 // Everything checks out. 1475 return true; 1476 } 1477 1478 /// isConstantValuePHI - If the specified instruction is a PHI that always 1479 /// merges together the same virtual register, return the register, otherwise 1480 /// return 0. 1481 unsigned MachineInstr::isConstantValuePHI() const { 1482 if (!isPHI()) 1483 return 0; 1484 assert(getNumOperands() >= 3 && 1485 "It's illegal to have a PHI without source operands"); 1486 1487 unsigned Reg = getOperand(1).getReg(); 1488 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1489 if (getOperand(i).getReg() != Reg) 1490 return 0; 1491 return Reg; 1492 } 1493 1494 bool MachineInstr::hasUnmodeledSideEffects() const { 1495 if (hasProperty(MCID::UnmodeledSideEffects)) 1496 return true; 1497 if (isInlineAsm()) { 1498 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1499 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1500 return true; 1501 } 1502 1503 return false; 1504 } 1505 1506 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1507 /// 1508 bool MachineInstr::allDefsAreDead() const { 1509 for (const MachineOperand &MO : operands()) { 1510 if (!MO.isReg() || MO.isUse()) 1511 continue; 1512 if (!MO.isDead()) 1513 return false; 1514 } 1515 return true; 1516 } 1517 1518 /// copyImplicitOps - Copy implicit register operands from specified 1519 /// instruction to this instruction. 1520 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1521 const MachineInstr *MI) { 1522 for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands(); 1523 i != e; ++i) { 1524 const MachineOperand &MO = MI->getOperand(i); 1525 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1526 addOperand(MF, MO); 1527 } 1528 } 1529 1530 void MachineInstr::dump() const { 1531 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1532 dbgs() << " " << *this; 1533 #endif 1534 } 1535 1536 void MachineInstr::print(raw_ostream &OS, bool SkipOpers) const { 1537 const Module *M = nullptr; 1538 if (const MachineBasicBlock *MBB = getParent()) 1539 if (const MachineFunction *MF = MBB->getParent()) 1540 M = MF->getFunction()->getParent(); 1541 1542 ModuleSlotTracker MST(M); 1543 print(OS, MST, SkipOpers); 1544 } 1545 1546 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1547 bool SkipOpers) const { 1548 // We can be a bit tidier if we know the MachineFunction. 1549 const MachineFunction *MF = nullptr; 1550 const TargetRegisterInfo *TRI = nullptr; 1551 const MachineRegisterInfo *MRI = nullptr; 1552 const TargetInstrInfo *TII = nullptr; 1553 if (const MachineBasicBlock *MBB = getParent()) { 1554 MF = MBB->getParent(); 1555 if (MF) { 1556 MRI = &MF->getRegInfo(); 1557 TRI = MF->getSubtarget().getRegisterInfo(); 1558 TII = MF->getSubtarget().getInstrInfo(); 1559 } 1560 } 1561 1562 // Save a list of virtual registers. 1563 SmallVector<unsigned, 8> VirtRegs; 1564 1565 // Print explicitly defined operands on the left of an assignment syntax. 1566 unsigned StartOp = 0, e = getNumOperands(); 1567 for (; StartOp < e && getOperand(StartOp).isReg() && 1568 getOperand(StartOp).isDef() && 1569 !getOperand(StartOp).isImplicit(); 1570 ++StartOp) { 1571 if (StartOp != 0) OS << ", "; 1572 getOperand(StartOp).print(OS, MST, TRI); 1573 unsigned Reg = getOperand(StartOp).getReg(); 1574 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1575 VirtRegs.push_back(Reg); 1576 } 1577 1578 if (StartOp != 0) 1579 OS << " = "; 1580 1581 // Print the opcode name. 1582 if (TII) 1583 OS << TII->getName(getOpcode()); 1584 else 1585 OS << "UNKNOWN"; 1586 1587 if (SkipOpers) 1588 return; 1589 1590 // Print the rest of the operands. 1591 bool OmittedAnyCallClobbers = false; 1592 bool FirstOp = true; 1593 unsigned AsmDescOp = ~0u; 1594 unsigned AsmOpCount = 0; 1595 1596 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1597 // Print asm string. 1598 OS << " "; 1599 getOperand(InlineAsm::MIOp_AsmString).print(OS, MST, TRI); 1600 1601 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1602 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1603 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1604 OS << " [sideeffect]"; 1605 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1606 OS << " [mayload]"; 1607 if (ExtraInfo & InlineAsm::Extra_MayStore) 1608 OS << " [maystore]"; 1609 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1610 OS << " [alignstack]"; 1611 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1612 OS << " [attdialect]"; 1613 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1614 OS << " [inteldialect]"; 1615 1616 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1617 FirstOp = false; 1618 } 1619 1620 1621 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1622 const MachineOperand &MO = getOperand(i); 1623 1624 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1625 VirtRegs.push_back(MO.getReg()); 1626 1627 // Omit call-clobbered registers which aren't used anywhere. This makes 1628 // call instructions much less noisy on targets where calls clobber lots 1629 // of registers. Don't rely on MO.isDead() because we may be called before 1630 // LiveVariables is run, or we may be looking at a non-allocatable reg. 1631 if (MRI && isCall() && 1632 MO.isReg() && MO.isImplicit() && MO.isDef()) { 1633 unsigned Reg = MO.getReg(); 1634 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1635 if (MRI->use_empty(Reg)) { 1636 bool HasAliasLive = false; 1637 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 1638 unsigned AliasReg = *AI; 1639 if (!MRI->use_empty(AliasReg)) { 1640 HasAliasLive = true; 1641 break; 1642 } 1643 } 1644 if (!HasAliasLive) { 1645 OmittedAnyCallClobbers = true; 1646 continue; 1647 } 1648 } 1649 } 1650 } 1651 1652 if (FirstOp) FirstOp = false; else OS << ","; 1653 OS << " "; 1654 if (i < getDesc().NumOperands) { 1655 const MCOperandInfo &MCOI = getDesc().OpInfo[i]; 1656 if (MCOI.isPredicate()) 1657 OS << "pred:"; 1658 if (MCOI.isOptionalDef()) 1659 OS << "opt:"; 1660 } 1661 if (isDebugValue() && MO.isMetadata()) { 1662 // Pretty print DBG_VALUE instructions. 1663 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1664 if (DIV && !DIV->getName().empty()) 1665 OS << "!\"" << DIV->getName() << '\"'; 1666 else 1667 MO.print(OS, MST, TRI); 1668 } else if (TRI && (isInsertSubreg() || isRegSequence()) && MO.isImm()) { 1669 OS << TRI->getSubRegIndexName(MO.getImm()); 1670 } else if (i == AsmDescOp && MO.isImm()) { 1671 // Pretty print the inline asm operand descriptor. 1672 OS << '$' << AsmOpCount++; 1673 unsigned Flag = MO.getImm(); 1674 switch (InlineAsm::getKind(Flag)) { 1675 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1676 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1677 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1678 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1679 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1680 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1681 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1682 } 1683 1684 unsigned RCID = 0; 1685 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1686 if (TRI) { 1687 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1688 } else 1689 OS << ":RC" << RCID; 1690 } 1691 1692 unsigned TiedTo = 0; 1693 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1694 OS << " tiedto:$" << TiedTo; 1695 1696 OS << ']'; 1697 1698 // Compute the index of the next operand descriptor. 1699 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1700 } else 1701 MO.print(OS, MST, TRI); 1702 } 1703 1704 // Briefly indicate whether any call clobbers were omitted. 1705 if (OmittedAnyCallClobbers) { 1706 if (!FirstOp) OS << ","; 1707 OS << " ..."; 1708 } 1709 1710 bool HaveSemi = false; 1711 const unsigned PrintableFlags = FrameSetup; 1712 if (Flags & PrintableFlags) { 1713 if (!HaveSemi) OS << ";"; HaveSemi = true; 1714 OS << " flags: "; 1715 1716 if (Flags & FrameSetup) 1717 OS << "FrameSetup"; 1718 } 1719 1720 if (!memoperands_empty()) { 1721 if (!HaveSemi) OS << ";"; HaveSemi = true; 1722 1723 OS << " mem:"; 1724 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 1725 i != e; ++i) { 1726 (*i)->print(OS, MST); 1727 if (std::next(i) != e) 1728 OS << " "; 1729 } 1730 } 1731 1732 // Print the regclass of any virtual registers encountered. 1733 if (MRI && !VirtRegs.empty()) { 1734 if (!HaveSemi) OS << ";"; HaveSemi = true; 1735 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 1736 const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]); 1737 OS << " " << TRI->getRegClassName(RC) 1738 << ':' << PrintReg(VirtRegs[i]); 1739 for (unsigned j = i+1; j != VirtRegs.size();) { 1740 if (MRI->getRegClass(VirtRegs[j]) != RC) { 1741 ++j; 1742 continue; 1743 } 1744 if (VirtRegs[i] != VirtRegs[j]) 1745 OS << "," << PrintReg(VirtRegs[j]); 1746 VirtRegs.erase(VirtRegs.begin()+j); 1747 } 1748 } 1749 } 1750 1751 // Print debug location information. 1752 if (isDebugValue() && getOperand(e - 2).isMetadata()) { 1753 if (!HaveSemi) OS << ";"; 1754 auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata()); 1755 OS << " line no:" << DV->getLine(); 1756 if (auto *InlinedAt = debugLoc->getInlinedAt()) { 1757 DebugLoc InlinedAtDL(InlinedAt); 1758 if (InlinedAtDL && MF) { 1759 OS << " inlined @[ "; 1760 InlinedAtDL.print(OS); 1761 OS << " ]"; 1762 } 1763 } 1764 if (isIndirectDebugValue()) 1765 OS << " indirect"; 1766 } else if (debugLoc && MF) { 1767 if (!HaveSemi) OS << ";"; 1768 OS << " dbg:"; 1769 debugLoc.print(OS); 1770 } 1771 1772 OS << '\n'; 1773 } 1774 1775 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 1776 const TargetRegisterInfo *RegInfo, 1777 bool AddIfNotFound) { 1778 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1779 bool hasAliases = isPhysReg && 1780 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1781 bool Found = false; 1782 SmallVector<unsigned,4> DeadOps; 1783 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1784 MachineOperand &MO = getOperand(i); 1785 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1786 continue; 1787 unsigned Reg = MO.getReg(); 1788 if (!Reg) 1789 continue; 1790 1791 if (Reg == IncomingReg) { 1792 if (!Found) { 1793 if (MO.isKill()) 1794 // The register is already marked kill. 1795 return true; 1796 if (isPhysReg && isRegTiedToDefOperand(i)) 1797 // Two-address uses of physregs must not be marked kill. 1798 return true; 1799 MO.setIsKill(); 1800 Found = true; 1801 } 1802 } else if (hasAliases && MO.isKill() && 1803 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1804 // A super-register kill already exists. 1805 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1806 return true; 1807 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1808 DeadOps.push_back(i); 1809 } 1810 } 1811 1812 // Trim unneeded kill operands. 1813 while (!DeadOps.empty()) { 1814 unsigned OpIdx = DeadOps.back(); 1815 if (getOperand(OpIdx).isImplicit()) 1816 RemoveOperand(OpIdx); 1817 else 1818 getOperand(OpIdx).setIsKill(false); 1819 DeadOps.pop_back(); 1820 } 1821 1822 // If not found, this means an alias of one of the operands is killed. Add a 1823 // new implicit operand if required. 1824 if (!Found && AddIfNotFound) { 1825 addOperand(MachineOperand::CreateReg(IncomingReg, 1826 false /*IsDef*/, 1827 true /*IsImp*/, 1828 true /*IsKill*/)); 1829 return true; 1830 } 1831 return Found; 1832 } 1833 1834 void MachineInstr::clearRegisterKills(unsigned Reg, 1835 const TargetRegisterInfo *RegInfo) { 1836 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 1837 RegInfo = nullptr; 1838 for (MachineOperand &MO : operands()) { 1839 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1840 continue; 1841 unsigned OpReg = MO.getReg(); 1842 if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg))) 1843 MO.setIsKill(false); 1844 } 1845 } 1846 1847 bool MachineInstr::addRegisterDead(unsigned Reg, 1848 const TargetRegisterInfo *RegInfo, 1849 bool AddIfNotFound) { 1850 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg); 1851 bool hasAliases = isPhysReg && 1852 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 1853 bool Found = false; 1854 SmallVector<unsigned,4> DeadOps; 1855 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1856 MachineOperand &MO = getOperand(i); 1857 if (!MO.isReg() || !MO.isDef()) 1858 continue; 1859 unsigned MOReg = MO.getReg(); 1860 if (!MOReg) 1861 continue; 1862 1863 if (MOReg == Reg) { 1864 MO.setIsDead(); 1865 Found = true; 1866 } else if (hasAliases && MO.isDead() && 1867 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1868 // There exists a super-register that's marked dead. 1869 if (RegInfo->isSuperRegister(Reg, MOReg)) 1870 return true; 1871 if (RegInfo->isSubRegister(Reg, MOReg)) 1872 DeadOps.push_back(i); 1873 } 1874 } 1875 1876 // Trim unneeded dead operands. 1877 while (!DeadOps.empty()) { 1878 unsigned OpIdx = DeadOps.back(); 1879 if (getOperand(OpIdx).isImplicit()) 1880 RemoveOperand(OpIdx); 1881 else 1882 getOperand(OpIdx).setIsDead(false); 1883 DeadOps.pop_back(); 1884 } 1885 1886 // If not found, this means an alias of one of the operands is dead. Add a 1887 // new implicit operand if required. 1888 if (Found || !AddIfNotFound) 1889 return Found; 1890 1891 addOperand(MachineOperand::CreateReg(Reg, 1892 true /*IsDef*/, 1893 true /*IsImp*/, 1894 false /*IsKill*/, 1895 true /*IsDead*/)); 1896 return true; 1897 } 1898 1899 void MachineInstr::clearRegisterDeads(unsigned Reg) { 1900 for (MachineOperand &MO : operands()) { 1901 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) 1902 continue; 1903 MO.setIsDead(false); 1904 } 1905 } 1906 1907 void MachineInstr::addRegisterDefReadUndef(unsigned Reg) { 1908 for (MachineOperand &MO : operands()) { 1909 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) 1910 continue; 1911 MO.setIsUndef(); 1912 } 1913 } 1914 1915 void MachineInstr::addRegisterDefined(unsigned Reg, 1916 const TargetRegisterInfo *RegInfo) { 1917 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1918 MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo); 1919 if (MO) 1920 return; 1921 } else { 1922 for (const MachineOperand &MO : operands()) { 1923 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 1924 MO.getSubReg() == 0) 1925 return; 1926 } 1927 } 1928 addOperand(MachineOperand::CreateReg(Reg, 1929 true /*IsDef*/, 1930 true /*IsImp*/)); 1931 } 1932 1933 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 1934 const TargetRegisterInfo &TRI) { 1935 bool HasRegMask = false; 1936 for (MachineOperand &MO : operands()) { 1937 if (MO.isRegMask()) { 1938 HasRegMask = true; 1939 continue; 1940 } 1941 if (!MO.isReg() || !MO.isDef()) continue; 1942 unsigned Reg = MO.getReg(); 1943 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 1944 // If there are no uses, including partial uses, the def is dead. 1945 if (std::none_of(UsedRegs.begin(), UsedRegs.end(), 1946 [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); })) 1947 MO.setIsDead(); 1948 } 1949 1950 // This is a call with a register mask operand. 1951 // Mask clobbers are always dead, so add defs for the non-dead defines. 1952 if (HasRegMask) 1953 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1954 I != E; ++I) 1955 addRegisterDefined(*I, &TRI); 1956 } 1957 1958 unsigned 1959 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 1960 // Build up a buffer of hash code components. 1961 SmallVector<size_t, 8> HashComponents; 1962 HashComponents.reserve(MI->getNumOperands() + 1); 1963 HashComponents.push_back(MI->getOpcode()); 1964 for (const MachineOperand &MO : MI->operands()) { 1965 if (MO.isReg() && MO.isDef() && 1966 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1967 continue; // Skip virtual register defs. 1968 1969 HashComponents.push_back(hash_value(MO)); 1970 } 1971 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 1972 } 1973 1974 void MachineInstr::emitError(StringRef Msg) const { 1975 // Find the source location cookie. 1976 unsigned LocCookie = 0; 1977 const MDNode *LocMD = nullptr; 1978 for (unsigned i = getNumOperands(); i != 0; --i) { 1979 if (getOperand(i-1).isMetadata() && 1980 (LocMD = getOperand(i-1).getMetadata()) && 1981 LocMD->getNumOperands() != 0) { 1982 if (const ConstantInt *CI = 1983 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 1984 LocCookie = CI->getZExtValue(); 1985 break; 1986 } 1987 } 1988 } 1989 1990 if (const MachineBasicBlock *MBB = getParent()) 1991 if (const MachineFunction *MF = MBB->getParent()) 1992 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 1993 report_fatal_error(Msg); 1994 } 1995