xref: /llvm-project/llvm/lib/CodeGen/MachineInstr.cpp (revision e1494c353a8f13b71a41ae21a4f1c4ab535b82dc)
1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Methods common to all machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/ADT/FoldingSet.h"
16 #include "llvm/ADT/Hashing.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/CodeGen/MachineConstantPool.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineMemOperand.h"
21 #include "llvm/CodeGen/MachineModuleInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/PseudoSourceValue.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DebugInfo.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InlineAsm.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/IR/ModuleSlotTracker.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/MC/MCInstrDesc.h"
35 #include "llvm/MC/MCSymbol.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Target/TargetInstrInfo.h"
42 #include "llvm/Target/TargetMachine.h"
43 #include "llvm/Target/TargetRegisterInfo.h"
44 #include "llvm/Target/TargetSubtargetInfo.h"
45 using namespace llvm;
46 
47 static cl::opt<bool> PrintWholeRegMask(
48     "print-whole-regmask",
49     cl::desc("Print the full contents of regmask operands in IR dumps"),
50     cl::init(true), cl::Hidden);
51 
52 //===----------------------------------------------------------------------===//
53 // MachineOperand Implementation
54 //===----------------------------------------------------------------------===//
55 
56 void MachineOperand::setReg(unsigned Reg) {
57   if (getReg() == Reg) return; // No change.
58 
59   // Otherwise, we have to change the register.  If this operand is embedded
60   // into a machine function, we need to update the old and new register's
61   // use/def lists.
62   if (MachineInstr *MI = getParent())
63     if (MachineBasicBlock *MBB = MI->getParent())
64       if (MachineFunction *MF = MBB->getParent()) {
65         MachineRegisterInfo &MRI = MF->getRegInfo();
66         MRI.removeRegOperandFromUseList(this);
67         SmallContents.RegNo = Reg;
68         MRI.addRegOperandToUseList(this);
69         return;
70       }
71 
72   // Otherwise, just change the register, no problem.  :)
73   SmallContents.RegNo = Reg;
74 }
75 
76 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
77                                   const TargetRegisterInfo &TRI) {
78   assert(TargetRegisterInfo::isVirtualRegister(Reg));
79   if (SubIdx && getSubReg())
80     SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
81   setReg(Reg);
82   if (SubIdx)
83     setSubReg(SubIdx);
84 }
85 
86 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
87   assert(TargetRegisterInfo::isPhysicalRegister(Reg));
88   if (getSubReg()) {
89     Reg = TRI.getSubReg(Reg, getSubReg());
90     // Note that getSubReg() may return 0 if the sub-register doesn't exist.
91     // That won't happen in legal code.
92     setSubReg(0);
93   }
94   setReg(Reg);
95 }
96 
97 /// Change a def to a use, or a use to a def.
98 void MachineOperand::setIsDef(bool Val) {
99   assert(isReg() && "Wrong MachineOperand accessor");
100   assert((!Val || !isDebug()) && "Marking a debug operation as def");
101   if (IsDef == Val)
102     return;
103   // MRI may keep uses and defs in different list positions.
104   if (MachineInstr *MI = getParent())
105     if (MachineBasicBlock *MBB = MI->getParent())
106       if (MachineFunction *MF = MBB->getParent()) {
107         MachineRegisterInfo &MRI = MF->getRegInfo();
108         MRI.removeRegOperandFromUseList(this);
109         IsDef = Val;
110         MRI.addRegOperandToUseList(this);
111         return;
112       }
113   IsDef = Val;
114 }
115 
116 // If this operand is currently a register operand, and if this is in a
117 // function, deregister the operand from the register's use/def list.
118 void MachineOperand::removeRegFromUses() {
119   if (!isReg() || !isOnRegUseList())
120     return;
121 
122   if (MachineInstr *MI = getParent()) {
123     if (MachineBasicBlock *MBB = MI->getParent()) {
124       if (MachineFunction *MF = MBB->getParent())
125         MF->getRegInfo().removeRegOperandFromUseList(this);
126     }
127   }
128 }
129 
130 /// ChangeToImmediate - Replace this operand with a new immediate operand of
131 /// the specified value.  If an operand is known to be an immediate already,
132 /// the setImm method should be used.
133 void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
134   assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
135 
136   removeRegFromUses();
137 
138   OpKind = MO_Immediate;
139   Contents.ImmVal = ImmVal;
140 }
141 
142 void MachineOperand::ChangeToFPImmediate(const ConstantFP *FPImm) {
143   assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
144 
145   removeRegFromUses();
146 
147   OpKind = MO_FPImmediate;
148   Contents.CFP = FPImm;
149 }
150 
151 void MachineOperand::ChangeToES(const char *SymName, unsigned char TargetFlags) {
152   assert((!isReg() || !isTied()) &&
153          "Cannot change a tied operand into an external symbol");
154 
155   removeRegFromUses();
156 
157   OpKind = MO_ExternalSymbol;
158   Contents.OffsetedInfo.Val.SymbolName = SymName;
159   setOffset(0); // Offset is always 0.
160   setTargetFlags(TargetFlags);
161 }
162 
163 void MachineOperand::ChangeToMCSymbol(MCSymbol *Sym) {
164   assert((!isReg() || !isTied()) &&
165          "Cannot change a tied operand into an MCSymbol");
166 
167   removeRegFromUses();
168 
169   OpKind = MO_MCSymbol;
170   Contents.Sym = Sym;
171 }
172 
173 /// ChangeToRegister - Replace this operand with a new register operand of
174 /// the specified value.  If an operand is known to be an register already,
175 /// the setReg method should be used.
176 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
177                                       bool isKill, bool isDead, bool isUndef,
178                                       bool isDebug) {
179   MachineRegisterInfo *RegInfo = nullptr;
180   if (MachineInstr *MI = getParent())
181     if (MachineBasicBlock *MBB = MI->getParent())
182       if (MachineFunction *MF = MBB->getParent())
183         RegInfo = &MF->getRegInfo();
184   // If this operand is already a register operand, remove it from the
185   // register's use/def lists.
186   bool WasReg = isReg();
187   if (RegInfo && WasReg)
188     RegInfo->removeRegOperandFromUseList(this);
189 
190   // Change this to a register and set the reg#.
191   OpKind = MO_Register;
192   SmallContents.RegNo = Reg;
193   SubReg_TargetFlags = 0;
194   IsDef = isDef;
195   IsImp = isImp;
196   IsKill = isKill;
197   IsDead = isDead;
198   IsUndef = isUndef;
199   IsInternalRead = false;
200   IsEarlyClobber = false;
201   IsDebug = isDebug;
202   // Ensure isOnRegUseList() returns false.
203   Contents.Reg.Prev = nullptr;
204   // Preserve the tie when the operand was already a register.
205   if (!WasReg)
206     TiedTo = 0;
207 
208   // If this operand is embedded in a function, add the operand to the
209   // register's use/def list.
210   if (RegInfo)
211     RegInfo->addRegOperandToUseList(this);
212 }
213 
214 /// isIdenticalTo - Return true if this operand is identical to the specified
215 /// operand. Note that this should stay in sync with the hash_value overload
216 /// below.
217 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
218   if (getType() != Other.getType() ||
219       getTargetFlags() != Other.getTargetFlags())
220     return false;
221 
222   switch (getType()) {
223   case MachineOperand::MO_Register:
224     return getReg() == Other.getReg() && isDef() == Other.isDef() &&
225            getSubReg() == Other.getSubReg();
226   case MachineOperand::MO_Immediate:
227     return getImm() == Other.getImm();
228   case MachineOperand::MO_CImmediate:
229     return getCImm() == Other.getCImm();
230   case MachineOperand::MO_FPImmediate:
231     return getFPImm() == Other.getFPImm();
232   case MachineOperand::MO_MachineBasicBlock:
233     return getMBB() == Other.getMBB();
234   case MachineOperand::MO_FrameIndex:
235     return getIndex() == Other.getIndex();
236   case MachineOperand::MO_ConstantPoolIndex:
237   case MachineOperand::MO_TargetIndex:
238     return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
239   case MachineOperand::MO_JumpTableIndex:
240     return getIndex() == Other.getIndex();
241   case MachineOperand::MO_GlobalAddress:
242     return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
243   case MachineOperand::MO_ExternalSymbol:
244     return !strcmp(getSymbolName(), Other.getSymbolName()) &&
245            getOffset() == Other.getOffset();
246   case MachineOperand::MO_BlockAddress:
247     return getBlockAddress() == Other.getBlockAddress() &&
248            getOffset() == Other.getOffset();
249   case MachineOperand::MO_RegisterMask:
250   case MachineOperand::MO_RegisterLiveOut:
251     return getRegMask() == Other.getRegMask();
252   case MachineOperand::MO_MCSymbol:
253     return getMCSymbol() == Other.getMCSymbol();
254   case MachineOperand::MO_CFIIndex:
255     return getCFIIndex() == Other.getCFIIndex();
256   case MachineOperand::MO_Metadata:
257     return getMetadata() == Other.getMetadata();
258   }
259   llvm_unreachable("Invalid machine operand type");
260 }
261 
262 // Note: this must stay exactly in sync with isIdenticalTo above.
263 hash_code llvm::hash_value(const MachineOperand &MO) {
264   switch (MO.getType()) {
265   case MachineOperand::MO_Register:
266     // Register operands don't have target flags.
267     return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef());
268   case MachineOperand::MO_Immediate:
269     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm());
270   case MachineOperand::MO_CImmediate:
271     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm());
272   case MachineOperand::MO_FPImmediate:
273     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm());
274   case MachineOperand::MO_MachineBasicBlock:
275     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB());
276   case MachineOperand::MO_FrameIndex:
277     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
278   case MachineOperand::MO_ConstantPoolIndex:
279   case MachineOperand::MO_TargetIndex:
280     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(),
281                         MO.getOffset());
282   case MachineOperand::MO_JumpTableIndex:
283     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
284   case MachineOperand::MO_ExternalSymbol:
285     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(),
286                         MO.getSymbolName());
287   case MachineOperand::MO_GlobalAddress:
288     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(),
289                         MO.getOffset());
290   case MachineOperand::MO_BlockAddress:
291     return hash_combine(MO.getType(), MO.getTargetFlags(),
292                         MO.getBlockAddress(), MO.getOffset());
293   case MachineOperand::MO_RegisterMask:
294   case MachineOperand::MO_RegisterLiveOut:
295     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask());
296   case MachineOperand::MO_Metadata:
297     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata());
298   case MachineOperand::MO_MCSymbol:
299     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol());
300   case MachineOperand::MO_CFIIndex:
301     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex());
302   }
303   llvm_unreachable("Invalid machine operand type");
304 }
305 
306 void MachineOperand::print(raw_ostream &OS,
307                            const TargetRegisterInfo *TRI) const {
308   ModuleSlotTracker DummyMST(nullptr);
309   print(OS, DummyMST, TRI);
310 }
311 
312 void MachineOperand::print(raw_ostream &OS, ModuleSlotTracker &MST,
313                            const TargetRegisterInfo *TRI) const {
314   switch (getType()) {
315   case MachineOperand::MO_Register:
316     OS << PrintReg(getReg(), TRI, getSubReg());
317 
318     if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
319         isInternalRead() || isEarlyClobber() || isTied()) {
320       OS << '<';
321       bool NeedComma = false;
322       if (isDef()) {
323         if (NeedComma) OS << ',';
324         if (isEarlyClobber())
325           OS << "earlyclobber,";
326         if (isImplicit())
327           OS << "imp-";
328         OS << "def";
329         NeedComma = true;
330         // <def,read-undef> only makes sense when getSubReg() is set.
331         // Don't clutter the output otherwise.
332         if (isUndef() && getSubReg())
333           OS << ",read-undef";
334       } else if (isImplicit()) {
335         OS << "imp-use";
336         NeedComma = true;
337       }
338 
339       if (isKill()) {
340         if (NeedComma) OS << ',';
341         OS << "kill";
342         NeedComma = true;
343       }
344       if (isDead()) {
345         if (NeedComma) OS << ',';
346         OS << "dead";
347         NeedComma = true;
348       }
349       if (isUndef() && isUse()) {
350         if (NeedComma) OS << ',';
351         OS << "undef";
352         NeedComma = true;
353       }
354       if (isInternalRead()) {
355         if (NeedComma) OS << ',';
356         OS << "internal";
357         NeedComma = true;
358       }
359       if (isTied()) {
360         if (NeedComma) OS << ',';
361         OS << "tied";
362         if (TiedTo != 15)
363           OS << unsigned(TiedTo - 1);
364       }
365       OS << '>';
366     }
367     break;
368   case MachineOperand::MO_Immediate:
369     OS << getImm();
370     break;
371   case MachineOperand::MO_CImmediate:
372     getCImm()->getValue().print(OS, false);
373     break;
374   case MachineOperand::MO_FPImmediate:
375     if (getFPImm()->getType()->isFloatTy()) {
376       OS << getFPImm()->getValueAPF().convertToFloat();
377     } else if (getFPImm()->getType()->isHalfTy()) {
378       APFloat APF = getFPImm()->getValueAPF();
379       bool Unused;
380       APF.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &Unused);
381       OS << "half " << APF.convertToFloat();
382     } else {
383       OS << getFPImm()->getValueAPF().convertToDouble();
384     }
385     break;
386   case MachineOperand::MO_MachineBasicBlock:
387     OS << "<BB#" << getMBB()->getNumber() << ">";
388     break;
389   case MachineOperand::MO_FrameIndex:
390     OS << "<fi#" << getIndex() << '>';
391     break;
392   case MachineOperand::MO_ConstantPoolIndex:
393     OS << "<cp#" << getIndex();
394     if (getOffset()) OS << "+" << getOffset();
395     OS << '>';
396     break;
397   case MachineOperand::MO_TargetIndex:
398     OS << "<ti#" << getIndex();
399     if (getOffset()) OS << "+" << getOffset();
400     OS << '>';
401     break;
402   case MachineOperand::MO_JumpTableIndex:
403     OS << "<jt#" << getIndex() << '>';
404     break;
405   case MachineOperand::MO_GlobalAddress:
406     OS << "<ga:";
407     getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST);
408     if (getOffset()) OS << "+" << getOffset();
409     OS << '>';
410     break;
411   case MachineOperand::MO_ExternalSymbol:
412     OS << "<es:" << getSymbolName();
413     if (getOffset()) OS << "+" << getOffset();
414     OS << '>';
415     break;
416   case MachineOperand::MO_BlockAddress:
417     OS << '<';
418     getBlockAddress()->printAsOperand(OS, /*PrintType=*/false, MST);
419     if (getOffset()) OS << "+" << getOffset();
420     OS << '>';
421     break;
422   case MachineOperand::MO_RegisterMask: {
423     unsigned NumRegsInMask = 0;
424     unsigned NumRegsEmitted = 0;
425     OS << "<regmask";
426     for (unsigned i = 0; i < TRI->getNumRegs(); ++i) {
427       unsigned MaskWord = i / 32;
428       unsigned MaskBit = i % 32;
429       if (getRegMask()[MaskWord] & (1 << MaskBit)) {
430         if (PrintWholeRegMask || NumRegsEmitted <= 10) {
431           OS << " " << PrintReg(i, TRI);
432           NumRegsEmitted++;
433         }
434         NumRegsInMask++;
435       }
436     }
437     if (NumRegsEmitted != NumRegsInMask)
438       OS << " and " << (NumRegsInMask - NumRegsEmitted) << " more...";
439     OS << ">";
440     break;
441   }
442   case MachineOperand::MO_RegisterLiveOut:
443     OS << "<regliveout>";
444     break;
445   case MachineOperand::MO_Metadata:
446     OS << '<';
447     getMetadata()->printAsOperand(OS, MST);
448     OS << '>';
449     break;
450   case MachineOperand::MO_MCSymbol:
451     OS << "<MCSym=" << *getMCSymbol() << '>';
452     break;
453   case MachineOperand::MO_CFIIndex:
454     OS << "<call frame instruction>";
455     break;
456   }
457 
458   if (unsigned TF = getTargetFlags())
459     OS << "[TF=" << TF << ']';
460 }
461 
462 //===----------------------------------------------------------------------===//
463 // MachineMemOperand Implementation
464 //===----------------------------------------------------------------------===//
465 
466 /// getAddrSpace - Return the LLVM IR address space number that this pointer
467 /// points into.
468 unsigned MachinePointerInfo::getAddrSpace() const {
469   if (V.isNull() || V.is<const PseudoSourceValue*>()) return 0;
470   return cast<PointerType>(V.get<const Value*>()->getType())->getAddressSpace();
471 }
472 
473 /// getConstantPool - Return a MachinePointerInfo record that refers to the
474 /// constant pool.
475 MachinePointerInfo MachinePointerInfo::getConstantPool(MachineFunction &MF) {
476   return MachinePointerInfo(MF.getPSVManager().getConstantPool());
477 }
478 
479 /// getFixedStack - Return a MachinePointerInfo record that refers to the
480 /// the specified FrameIndex.
481 MachinePointerInfo MachinePointerInfo::getFixedStack(MachineFunction &MF,
482                                                      int FI, int64_t Offset) {
483   return MachinePointerInfo(MF.getPSVManager().getFixedStack(FI), Offset);
484 }
485 
486 MachinePointerInfo MachinePointerInfo::getJumpTable(MachineFunction &MF) {
487   return MachinePointerInfo(MF.getPSVManager().getJumpTable());
488 }
489 
490 MachinePointerInfo MachinePointerInfo::getGOT(MachineFunction &MF) {
491   return MachinePointerInfo(MF.getPSVManager().getGOT());
492 }
493 
494 MachinePointerInfo MachinePointerInfo::getStack(MachineFunction &MF,
495                                                 int64_t Offset) {
496   return MachinePointerInfo(MF.getPSVManager().getStack(), Offset);
497 }
498 
499 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f,
500                                      uint64_t s, unsigned int a,
501                                      const AAMDNodes &AAInfo,
502                                      const MDNode *Ranges)
503   : PtrInfo(ptrinfo), Size(s),
504     Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)),
505     AAInfo(AAInfo), Ranges(Ranges) {
506   assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() ||
507           isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) &&
508          "invalid pointer value");
509   assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
510   assert((isLoad() || isStore()) && "Not a load/store!");
511 }
512 
513 /// Profile - Gather unique data for the object.
514 ///
515 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
516   ID.AddInteger(getOffset());
517   ID.AddInteger(Size);
518   ID.AddPointer(getOpaqueValue());
519   ID.AddInteger(Flags);
520 }
521 
522 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
523   // The Value and Offset may differ due to CSE. But the flags and size
524   // should be the same.
525   assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
526   assert(MMO->getSize() == getSize() && "Size mismatch!");
527 
528   if (MMO->getBaseAlignment() >= getBaseAlignment()) {
529     // Update the alignment value.
530     Flags = (Flags & ((1 << MOMaxBits) - 1)) |
531       ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits);
532     // Also update the base and offset, because the new alignment may
533     // not be applicable with the old ones.
534     PtrInfo = MMO->PtrInfo;
535   }
536 }
537 
538 /// getAlignment - Return the minimum known alignment in bytes of the
539 /// actual memory reference.
540 uint64_t MachineMemOperand::getAlignment() const {
541   return MinAlign(getBaseAlignment(), getOffset());
542 }
543 
544 void MachineMemOperand::print(raw_ostream &OS) const {
545   ModuleSlotTracker DummyMST(nullptr);
546   print(OS, DummyMST);
547 }
548 void MachineMemOperand::print(raw_ostream &OS, ModuleSlotTracker &MST) const {
549   assert((isLoad() || isStore()) &&
550          "SV has to be a load, store or both.");
551 
552   if (isVolatile())
553     OS << "Volatile ";
554 
555   if (isLoad())
556     OS << "LD";
557   if (isStore())
558     OS << "ST";
559   OS << getSize();
560 
561   // Print the address information.
562   OS << "[";
563   if (const Value *V = getValue())
564     V->printAsOperand(OS, /*PrintType=*/false, MST);
565   else if (const PseudoSourceValue *PSV = getPseudoValue())
566     PSV->printCustom(OS);
567   else
568     OS << "<unknown>";
569 
570   unsigned AS = getAddrSpace();
571   if (AS != 0)
572     OS << "(addrspace=" << AS << ')';
573 
574   // If the alignment of the memory reference itself differs from the alignment
575   // of the base pointer, print the base alignment explicitly, next to the base
576   // pointer.
577   if (getBaseAlignment() != getAlignment())
578     OS << "(align=" << getBaseAlignment() << ")";
579 
580   if (getOffset() != 0)
581     OS << "+" << getOffset();
582   OS << "]";
583 
584   // Print the alignment of the reference.
585   if (getBaseAlignment() != getAlignment() || getBaseAlignment() != getSize())
586     OS << "(align=" << getAlignment() << ")";
587 
588   // Print TBAA info.
589   if (const MDNode *TBAAInfo = getAAInfo().TBAA) {
590     OS << "(tbaa=";
591     if (TBAAInfo->getNumOperands() > 0)
592       TBAAInfo->getOperand(0)->printAsOperand(OS, MST);
593     else
594       OS << "<unknown>";
595     OS << ")";
596   }
597 
598   // Print AA scope info.
599   if (const MDNode *ScopeInfo = getAAInfo().Scope) {
600     OS << "(alias.scope=";
601     if (ScopeInfo->getNumOperands() > 0)
602       for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) {
603         ScopeInfo->getOperand(i)->printAsOperand(OS, MST);
604         if (i != ie-1)
605           OS << ",";
606       }
607     else
608       OS << "<unknown>";
609     OS << ")";
610   }
611 
612   // Print AA noalias scope info.
613   if (const MDNode *NoAliasInfo = getAAInfo().NoAlias) {
614     OS << "(noalias=";
615     if (NoAliasInfo->getNumOperands() > 0)
616       for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) {
617         NoAliasInfo->getOperand(i)->printAsOperand(OS, MST);
618         if (i != ie-1)
619           OS << ",";
620       }
621     else
622       OS << "<unknown>";
623     OS << ")";
624   }
625 
626   // Print nontemporal info.
627   if (isNonTemporal())
628     OS << "(nontemporal)";
629 
630   if (isInvariant())
631     OS << "(invariant)";
632 }
633 
634 //===----------------------------------------------------------------------===//
635 // MachineInstr Implementation
636 //===----------------------------------------------------------------------===//
637 
638 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
639   if (MCID->ImplicitDefs)
640     for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
641            ++ImpDefs)
642       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
643   if (MCID->ImplicitUses)
644     for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
645            ++ImpUses)
646       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
647 }
648 
649 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
650 /// implicit operands. It reserves space for the number of operands specified by
651 /// the MCInstrDesc.
652 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
653                            DebugLoc dl, bool NoImp)
654     : MCID(&tid), Parent(nullptr), Operands(nullptr), NumOperands(0), Flags(0),
655       AsmPrinterFlags(0), NumMemRefs(0), MemRefs(nullptr),
656       debugLoc(std::move(dl)) {
657   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
658 
659   // Reserve space for the expected number of operands.
660   if (unsigned NumOps = MCID->getNumOperands() +
661     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
662     CapOperands = OperandCapacity::get(NumOps);
663     Operands = MF.allocateOperandArray(CapOperands);
664   }
665 
666   if (!NoImp)
667     addImplicitDefUseOperands(MF);
668 }
669 
670 /// MachineInstr ctor - Copies MachineInstr arg exactly
671 ///
672 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
673   : MCID(&MI.getDesc()), Parent(nullptr), Operands(nullptr), NumOperands(0),
674     Flags(0), AsmPrinterFlags(0),
675     NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs),
676     debugLoc(MI.getDebugLoc()) {
677   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
678 
679   CapOperands = OperandCapacity::get(MI.getNumOperands());
680   Operands = MF.allocateOperandArray(CapOperands);
681 
682   // Copy operands.
683   for (const MachineOperand &MO : MI.operands())
684     addOperand(MF, MO);
685 
686   // Copy all the sensible flags.
687   setFlags(MI.Flags);
688 }
689 
690 /// getRegInfo - If this instruction is embedded into a MachineFunction,
691 /// return the MachineRegisterInfo object for the current function, otherwise
692 /// return null.
693 MachineRegisterInfo *MachineInstr::getRegInfo() {
694   if (MachineBasicBlock *MBB = getParent())
695     return &MBB->getParent()->getRegInfo();
696   return nullptr;
697 }
698 
699 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
700 /// this instruction from their respective use lists.  This requires that the
701 /// operands already be on their use lists.
702 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
703   for (MachineOperand &MO : operands())
704     if (MO.isReg())
705       MRI.removeRegOperandFromUseList(&MO);
706 }
707 
708 /// AddRegOperandsToUseLists - Add all of the register operands in
709 /// this instruction from their respective use lists.  This requires that the
710 /// operands not be on their use lists yet.
711 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
712   for (MachineOperand &MO : operands())
713     if (MO.isReg())
714       MRI.addRegOperandToUseList(&MO);
715 }
716 
717 void MachineInstr::addOperand(const MachineOperand &Op) {
718   MachineBasicBlock *MBB = getParent();
719   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
720   MachineFunction *MF = MBB->getParent();
721   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
722   addOperand(*MF, Op);
723 }
724 
725 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
726 /// ranges. If MRI is non-null also update use-def chains.
727 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
728                          unsigned NumOps, MachineRegisterInfo *MRI) {
729   if (MRI)
730     return MRI->moveOperands(Dst, Src, NumOps);
731 
732   // MachineOperand is a trivially copyable type so we can just use memmove.
733   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
734 }
735 
736 /// addOperand - Add the specified operand to the instruction.  If it is an
737 /// implicit operand, it is added to the end of the operand list.  If it is
738 /// an explicit operand it is added at the end of the explicit operand list
739 /// (before the first implicit operand).
740 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
741   assert(MCID && "Cannot add operands before providing an instr descriptor");
742 
743   // Check if we're adding one of our existing operands.
744   if (&Op >= Operands && &Op < Operands + NumOperands) {
745     // This is unusual: MI->addOperand(MI->getOperand(i)).
746     // If adding Op requires reallocating or moving existing operands around,
747     // the Op reference could go stale. Support it by copying Op.
748     MachineOperand CopyOp(Op);
749     return addOperand(MF, CopyOp);
750   }
751 
752   // Find the insert location for the new operand.  Implicit registers go at
753   // the end, everything else goes before the implicit regs.
754   //
755   // FIXME: Allow mixed explicit and implicit operands on inline asm.
756   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
757   // implicit-defs, but they must not be moved around.  See the FIXME in
758   // InstrEmitter.cpp.
759   unsigned OpNo = getNumOperands();
760   bool isImpReg = Op.isReg() && Op.isImplicit();
761   if (!isImpReg && !isInlineAsm()) {
762     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
763       --OpNo;
764       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
765     }
766   }
767 
768 #ifndef NDEBUG
769   bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata;
770   // OpNo now points as the desired insertion point.  Unless this is a variadic
771   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
772   // RegMask operands go between the explicit and implicit operands.
773   assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
774           OpNo < MCID->getNumOperands() || isMetaDataOp) &&
775          "Trying to add an operand to a machine instr that is already done!");
776 #endif
777 
778   MachineRegisterInfo *MRI = getRegInfo();
779 
780   // Determine if the Operands array needs to be reallocated.
781   // Save the old capacity and operand array.
782   OperandCapacity OldCap = CapOperands;
783   MachineOperand *OldOperands = Operands;
784   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
785     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
786     Operands = MF.allocateOperandArray(CapOperands);
787     // Move the operands before the insertion point.
788     if (OpNo)
789       moveOperands(Operands, OldOperands, OpNo, MRI);
790   }
791 
792   // Move the operands following the insertion point.
793   if (OpNo != NumOperands)
794     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
795                  MRI);
796   ++NumOperands;
797 
798   // Deallocate the old operand array.
799   if (OldOperands != Operands && OldOperands)
800     MF.deallocateOperandArray(OldCap, OldOperands);
801 
802   // Copy Op into place. It still needs to be inserted into the MRI use lists.
803   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
804   NewMO->ParentMI = this;
805 
806   // When adding a register operand, tell MRI about it.
807   if (NewMO->isReg()) {
808     // Ensure isOnRegUseList() returns false, regardless of Op's status.
809     NewMO->Contents.Reg.Prev = nullptr;
810     // Ignore existing ties. This is not a property that can be copied.
811     NewMO->TiedTo = 0;
812     // Add the new operand to MRI, but only for instructions in an MBB.
813     if (MRI)
814       MRI->addRegOperandToUseList(NewMO);
815     // The MCID operand information isn't accurate until we start adding
816     // explicit operands. The implicit operands are added first, then the
817     // explicits are inserted before them.
818     if (!isImpReg) {
819       // Tie uses to defs as indicated in MCInstrDesc.
820       if (NewMO->isUse()) {
821         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
822         if (DefIdx != -1)
823           tieOperands(DefIdx, OpNo);
824       }
825       // If the register operand is flagged as early, mark the operand as such.
826       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
827         NewMO->setIsEarlyClobber(true);
828     }
829   }
830 }
831 
832 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
833 /// fewer operand than it started with.
834 ///
835 void MachineInstr::RemoveOperand(unsigned OpNo) {
836   assert(OpNo < getNumOperands() && "Invalid operand number");
837   untieRegOperand(OpNo);
838 
839 #ifndef NDEBUG
840   // Moving tied operands would break the ties.
841   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
842     if (Operands[i].isReg())
843       assert(!Operands[i].isTied() && "Cannot move tied operands");
844 #endif
845 
846   MachineRegisterInfo *MRI = getRegInfo();
847   if (MRI && Operands[OpNo].isReg())
848     MRI->removeRegOperandFromUseList(Operands + OpNo);
849 
850   // Don't call the MachineOperand destructor. A lot of this code depends on
851   // MachineOperand having a trivial destructor anyway, and adding a call here
852   // wouldn't make it 'destructor-correct'.
853 
854   if (unsigned N = NumOperands - 1 - OpNo)
855     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
856   --NumOperands;
857 }
858 
859 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
860 /// This function should be used only occasionally. The setMemRefs function
861 /// is the primary method for setting up a MachineInstr's MemRefs list.
862 void MachineInstr::addMemOperand(MachineFunction &MF,
863                                  MachineMemOperand *MO) {
864   mmo_iterator OldMemRefs = MemRefs;
865   unsigned OldNumMemRefs = NumMemRefs;
866 
867   unsigned NewNum = NumMemRefs + 1;
868   mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
869 
870   std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs);
871   NewMemRefs[NewNum - 1] = MO;
872   setMemRefs(NewMemRefs, NewMemRefs + NewNum);
873 }
874 
875 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
876 /// identical.
877 static bool hasIdenticalMMOs(const MachineInstr &MI1, const MachineInstr &MI2) {
878   auto I1 = MI1.memoperands_begin(), E1 = MI1.memoperands_end();
879   auto I2 = MI2.memoperands_begin(), E2 = MI2.memoperands_end();
880   if ((E1 - I1) != (E2 - I2))
881     return false;
882   for (; I1 != E1; ++I1, ++I2) {
883     if (**I1 != **I2)
884       return false;
885   }
886   return true;
887 }
888 
889 std::pair<MachineInstr::mmo_iterator, unsigned>
890 MachineInstr::mergeMemRefsWith(const MachineInstr& Other) {
891 
892   // If either of the incoming memrefs are empty, we must be conservative and
893   // treat this as if we've exhausted our space for memrefs and dropped them.
894   if (memoperands_empty() || Other.memoperands_empty())
895     return std::make_pair(nullptr, 0);
896 
897   // If both instructions have identical memrefs, we don't need to merge them.
898   // Since many instructions have a single memref, and we tend to merge things
899   // like pairs of loads from the same location, this catches a large number of
900   // cases in practice.
901   if (hasIdenticalMMOs(*this, Other))
902     return std::make_pair(MemRefs, NumMemRefs);
903 
904   // TODO: consider uniquing elements within the operand lists to reduce
905   // space usage and fall back to conservative information less often.
906   size_t CombinedNumMemRefs = NumMemRefs + Other.NumMemRefs;
907 
908   // If we don't have enough room to store this many memrefs, be conservative
909   // and drop them.  Otherwise, we'd fail asserts when trying to add them to
910   // the new instruction.
911   if (CombinedNumMemRefs != uint8_t(CombinedNumMemRefs))
912     return std::make_pair(nullptr, 0);
913 
914   MachineFunction *MF = getParent()->getParent();
915   mmo_iterator MemBegin = MF->allocateMemRefsArray(CombinedNumMemRefs);
916   mmo_iterator MemEnd = std::copy(memoperands_begin(), memoperands_end(),
917                                   MemBegin);
918   MemEnd = std::copy(Other.memoperands_begin(), Other.memoperands_end(),
919                      MemEnd);
920   assert(MemEnd - MemBegin == (ptrdiff_t)CombinedNumMemRefs &&
921          "missing memrefs");
922 
923   return std::make_pair(MemBegin, CombinedNumMemRefs);
924 }
925 
926 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const {
927   assert(!isBundledWithPred() && "Must be called on bundle header");
928   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
929     if (MII->getDesc().getFlags() & Mask) {
930       if (Type == AnyInBundle)
931         return true;
932     } else {
933       if (Type == AllInBundle && !MII->isBundle())
934         return false;
935     }
936     // This was the last instruction in the bundle.
937     if (!MII->isBundledWithSucc())
938       return Type == AllInBundle;
939   }
940 }
941 
942 bool MachineInstr::isIdenticalTo(const MachineInstr *Other,
943                                  MICheckType Check) const {
944   // If opcodes or number of operands are not the same then the two
945   // instructions are obviously not identical.
946   if (Other->getOpcode() != getOpcode() ||
947       Other->getNumOperands() != getNumOperands())
948     return false;
949 
950   if (isBundle()) {
951     // Both instructions are bundles, compare MIs inside the bundle.
952     MachineBasicBlock::const_instr_iterator I1 = getIterator();
953     MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end();
954     MachineBasicBlock::const_instr_iterator I2 = Other->getIterator();
955     MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end();
956     while (++I1 != E1 && I1->isInsideBundle()) {
957       ++I2;
958       if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(&*I2, Check))
959         return false;
960     }
961   }
962 
963   // Check operands to make sure they match.
964   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
965     const MachineOperand &MO = getOperand(i);
966     const MachineOperand &OMO = Other->getOperand(i);
967     if (!MO.isReg()) {
968       if (!MO.isIdenticalTo(OMO))
969         return false;
970       continue;
971     }
972 
973     // Clients may or may not want to ignore defs when testing for equality.
974     // For example, machine CSE pass only cares about finding common
975     // subexpressions, so it's safe to ignore virtual register defs.
976     if (MO.isDef()) {
977       if (Check == IgnoreDefs)
978         continue;
979       else if (Check == IgnoreVRegDefs) {
980         if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
981             TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
982           if (MO.getReg() != OMO.getReg())
983             return false;
984       } else {
985         if (!MO.isIdenticalTo(OMO))
986           return false;
987         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
988           return false;
989       }
990     } else {
991       if (!MO.isIdenticalTo(OMO))
992         return false;
993       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
994         return false;
995     }
996   }
997   // If DebugLoc does not match then two dbg.values are not identical.
998   if (isDebugValue())
999     if (getDebugLoc() && Other->getDebugLoc() &&
1000         getDebugLoc() != Other->getDebugLoc())
1001       return false;
1002   return true;
1003 }
1004 
1005 MachineInstr *MachineInstr::removeFromParent() {
1006   assert(getParent() && "Not embedded in a basic block!");
1007   return getParent()->remove(this);
1008 }
1009 
1010 MachineInstr *MachineInstr::removeFromBundle() {
1011   assert(getParent() && "Not embedded in a basic block!");
1012   return getParent()->remove_instr(this);
1013 }
1014 
1015 void MachineInstr::eraseFromParent() {
1016   assert(getParent() && "Not embedded in a basic block!");
1017   getParent()->erase(this);
1018 }
1019 
1020 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
1021   assert(getParent() && "Not embedded in a basic block!");
1022   MachineBasicBlock *MBB = getParent();
1023   MachineFunction *MF = MBB->getParent();
1024   assert(MF && "Not embedded in a function!");
1025 
1026   MachineInstr *MI = (MachineInstr *)this;
1027   MachineRegisterInfo &MRI = MF->getRegInfo();
1028 
1029   for (const MachineOperand &MO : MI->operands()) {
1030     if (!MO.isReg() || !MO.isDef())
1031       continue;
1032     unsigned Reg = MO.getReg();
1033     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1034       continue;
1035     MRI.markUsesInDebugValueAsUndef(Reg);
1036   }
1037   MI->eraseFromParent();
1038 }
1039 
1040 void MachineInstr::eraseFromBundle() {
1041   assert(getParent() && "Not embedded in a basic block!");
1042   getParent()->erase_instr(this);
1043 }
1044 
1045 /// getNumExplicitOperands - Returns the number of non-implicit operands.
1046 ///
1047 unsigned MachineInstr::getNumExplicitOperands() const {
1048   unsigned NumOperands = MCID->getNumOperands();
1049   if (!MCID->isVariadic())
1050     return NumOperands;
1051 
1052   for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
1053     const MachineOperand &MO = getOperand(i);
1054     if (!MO.isReg() || !MO.isImplicit())
1055       NumOperands++;
1056   }
1057   return NumOperands;
1058 }
1059 
1060 void MachineInstr::bundleWithPred() {
1061   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
1062   setFlag(BundledPred);
1063   MachineBasicBlock::instr_iterator Pred = getIterator();
1064   --Pred;
1065   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
1066   Pred->setFlag(BundledSucc);
1067 }
1068 
1069 void MachineInstr::bundleWithSucc() {
1070   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
1071   setFlag(BundledSucc);
1072   MachineBasicBlock::instr_iterator Succ = getIterator();
1073   ++Succ;
1074   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
1075   Succ->setFlag(BundledPred);
1076 }
1077 
1078 void MachineInstr::unbundleFromPred() {
1079   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
1080   clearFlag(BundledPred);
1081   MachineBasicBlock::instr_iterator Pred = getIterator();
1082   --Pred;
1083   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
1084   Pred->clearFlag(BundledSucc);
1085 }
1086 
1087 void MachineInstr::unbundleFromSucc() {
1088   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
1089   clearFlag(BundledSucc);
1090   MachineBasicBlock::instr_iterator Succ = getIterator();
1091   ++Succ;
1092   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
1093   Succ->clearFlag(BundledPred);
1094 }
1095 
1096 bool MachineInstr::isStackAligningInlineAsm() const {
1097   if (isInlineAsm()) {
1098     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1099     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1100       return true;
1101   }
1102   return false;
1103 }
1104 
1105 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
1106   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
1107   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1108   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
1109 }
1110 
1111 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
1112                                        unsigned *GroupNo) const {
1113   assert(isInlineAsm() && "Expected an inline asm instruction");
1114   assert(OpIdx < getNumOperands() && "OpIdx out of range");
1115 
1116   // Ignore queries about the initial operands.
1117   if (OpIdx < InlineAsm::MIOp_FirstOperand)
1118     return -1;
1119 
1120   unsigned Group = 0;
1121   unsigned NumOps;
1122   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1123        i += NumOps) {
1124     const MachineOperand &FlagMO = getOperand(i);
1125     // If we reach the implicit register operands, stop looking.
1126     if (!FlagMO.isImm())
1127       return -1;
1128     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1129     if (i + NumOps > OpIdx) {
1130       if (GroupNo)
1131         *GroupNo = Group;
1132       return i;
1133     }
1134     ++Group;
1135   }
1136   return -1;
1137 }
1138 
1139 const TargetRegisterClass*
1140 MachineInstr::getRegClassConstraint(unsigned OpIdx,
1141                                     const TargetInstrInfo *TII,
1142                                     const TargetRegisterInfo *TRI) const {
1143   assert(getParent() && "Can't have an MBB reference here!");
1144   assert(getParent()->getParent() && "Can't have an MF reference here!");
1145   const MachineFunction &MF = *getParent()->getParent();
1146 
1147   // Most opcodes have fixed constraints in their MCInstrDesc.
1148   if (!isInlineAsm())
1149     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
1150 
1151   if (!getOperand(OpIdx).isReg())
1152     return nullptr;
1153 
1154   // For tied uses on inline asm, get the constraint from the def.
1155   unsigned DefIdx;
1156   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
1157     OpIdx = DefIdx;
1158 
1159   // Inline asm stores register class constraints in the flag word.
1160   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
1161   if (FlagIdx < 0)
1162     return nullptr;
1163 
1164   unsigned Flag = getOperand(FlagIdx).getImm();
1165   unsigned RCID;
1166   if (InlineAsm::hasRegClassConstraint(Flag, RCID))
1167     return TRI->getRegClass(RCID);
1168 
1169   // Assume that all registers in a memory operand are pointers.
1170   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
1171     return TRI->getPointerRegClass(MF);
1172 
1173   return nullptr;
1174 }
1175 
1176 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
1177     unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
1178     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
1179   // Check every operands inside the bundle if we have
1180   // been asked to.
1181   if (ExploreBundle)
1182     for (ConstMIBundleOperands OpndIt(this); OpndIt.isValid() && CurRC;
1183          ++OpndIt)
1184       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
1185           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
1186   else
1187     // Otherwise, just check the current operands.
1188     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
1189       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
1190   return CurRC;
1191 }
1192 
1193 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
1194     unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
1195     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
1196   assert(CurRC && "Invalid initial register class");
1197   // Check if Reg is constrained by some of its use/def from MI.
1198   const MachineOperand &MO = getOperand(OpIdx);
1199   if (!MO.isReg() || MO.getReg() != Reg)
1200     return CurRC;
1201   // If yes, accumulate the constraints through the operand.
1202   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
1203 }
1204 
1205 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
1206     unsigned OpIdx, const TargetRegisterClass *CurRC,
1207     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
1208   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
1209   const MachineOperand &MO = getOperand(OpIdx);
1210   assert(MO.isReg() &&
1211          "Cannot get register constraints for non-register operand");
1212   assert(CurRC && "Invalid initial register class");
1213   if (unsigned SubIdx = MO.getSubReg()) {
1214     if (OpRC)
1215       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
1216     else
1217       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
1218   } else if (OpRC)
1219     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
1220   return CurRC;
1221 }
1222 
1223 /// Return the number of instructions inside the MI bundle, not counting the
1224 /// header instruction.
1225 unsigned MachineInstr::getBundleSize() const {
1226   MachineBasicBlock::const_instr_iterator I = getIterator();
1227   unsigned Size = 0;
1228   while (I->isBundledWithSucc())
1229     ++Size, ++I;
1230   return Size;
1231 }
1232 
1233 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
1234 /// the specific register or -1 if it is not found. It further tightens
1235 /// the search criteria to a use that kills the register if isKill is true.
1236 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
1237                                           const TargetRegisterInfo *TRI) const {
1238   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1239     const MachineOperand &MO = getOperand(i);
1240     if (!MO.isReg() || !MO.isUse())
1241       continue;
1242     unsigned MOReg = MO.getReg();
1243     if (!MOReg)
1244       continue;
1245     if (MOReg == Reg ||
1246         (TRI &&
1247          TargetRegisterInfo::isPhysicalRegister(MOReg) &&
1248          TargetRegisterInfo::isPhysicalRegister(Reg) &&
1249          TRI->isSubRegister(MOReg, Reg)))
1250       if (!isKill || MO.isKill())
1251         return i;
1252   }
1253   return -1;
1254 }
1255 
1256 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1257 /// indicating if this instruction reads or writes Reg. This also considers
1258 /// partial defines.
1259 std::pair<bool,bool>
1260 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
1261                                          SmallVectorImpl<unsigned> *Ops) const {
1262   bool PartDef = false; // Partial redefine.
1263   bool FullDef = false; // Full define.
1264   bool Use = false;
1265 
1266   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1267     const MachineOperand &MO = getOperand(i);
1268     if (!MO.isReg() || MO.getReg() != Reg)
1269       continue;
1270     if (Ops)
1271       Ops->push_back(i);
1272     if (MO.isUse())
1273       Use |= !MO.isUndef();
1274     else if (MO.getSubReg() && !MO.isUndef())
1275       // A partial <def,undef> doesn't count as reading the register.
1276       PartDef = true;
1277     else
1278       FullDef = true;
1279   }
1280   // A partial redefine uses Reg unless there is also a full define.
1281   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1282 }
1283 
1284 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1285 /// the specified register or -1 if it is not found. If isDead is true, defs
1286 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1287 /// also checks if there is a def of a super-register.
1288 int
1289 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
1290                                         const TargetRegisterInfo *TRI) const {
1291   bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
1292   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1293     const MachineOperand &MO = getOperand(i);
1294     // Accept regmask operands when Overlap is set.
1295     // Ignore them when looking for a specific def operand (Overlap == false).
1296     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1297       return i;
1298     if (!MO.isReg() || !MO.isDef())
1299       continue;
1300     unsigned MOReg = MO.getReg();
1301     bool Found = (MOReg == Reg);
1302     if (!Found && TRI && isPhys &&
1303         TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1304       if (Overlap)
1305         Found = TRI->regsOverlap(MOReg, Reg);
1306       else
1307         Found = TRI->isSubRegister(MOReg, Reg);
1308     }
1309     if (Found && (!isDead || MO.isDead()))
1310       return i;
1311   }
1312   return -1;
1313 }
1314 
1315 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1316 /// operand list that is used to represent the predicate. It returns -1 if
1317 /// none is found.
1318 int MachineInstr::findFirstPredOperandIdx() const {
1319   // Don't call MCID.findFirstPredOperandIdx() because this variant
1320   // is sometimes called on an instruction that's not yet complete, and
1321   // so the number of operands is less than the MCID indicates. In
1322   // particular, the PTX target does this.
1323   const MCInstrDesc &MCID = getDesc();
1324   if (MCID.isPredicable()) {
1325     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1326       if (MCID.OpInfo[i].isPredicate())
1327         return i;
1328   }
1329 
1330   return -1;
1331 }
1332 
1333 // MachineOperand::TiedTo is 4 bits wide.
1334 const unsigned TiedMax = 15;
1335 
1336 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1337 ///
1338 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1339 /// field. TiedTo can have these values:
1340 ///
1341 /// 0:              Operand is not tied to anything.
1342 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1343 /// TiedMax:        Tied to an operand >= TiedMax-1.
1344 ///
1345 /// The tied def must be one of the first TiedMax operands on a normal
1346 /// instruction. INLINEASM instructions allow more tied defs.
1347 ///
1348 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1349   MachineOperand &DefMO = getOperand(DefIdx);
1350   MachineOperand &UseMO = getOperand(UseIdx);
1351   assert(DefMO.isDef() && "DefIdx must be a def operand");
1352   assert(UseMO.isUse() && "UseIdx must be a use operand");
1353   assert(!DefMO.isTied() && "Def is already tied to another use");
1354   assert(!UseMO.isTied() && "Use is already tied to another def");
1355 
1356   if (DefIdx < TiedMax)
1357     UseMO.TiedTo = DefIdx + 1;
1358   else {
1359     // Inline asm can use the group descriptors to find tied operands, but on
1360     // normal instruction, the tied def must be within the first TiedMax
1361     // operands.
1362     assert(isInlineAsm() && "DefIdx out of range");
1363     UseMO.TiedTo = TiedMax;
1364   }
1365 
1366   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1367   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1368 }
1369 
1370 /// Given the index of a tied register operand, find the operand it is tied to.
1371 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1372 /// which must exist.
1373 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1374   const MachineOperand &MO = getOperand(OpIdx);
1375   assert(MO.isTied() && "Operand isn't tied");
1376 
1377   // Normally TiedTo is in range.
1378   if (MO.TiedTo < TiedMax)
1379     return MO.TiedTo - 1;
1380 
1381   // Uses on normal instructions can be out of range.
1382   if (!isInlineAsm()) {
1383     // Normal tied defs must be in the 0..TiedMax-1 range.
1384     if (MO.isUse())
1385       return TiedMax - 1;
1386     // MO is a def. Search for the tied use.
1387     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1388       const MachineOperand &UseMO = getOperand(i);
1389       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1390         return i;
1391     }
1392     llvm_unreachable("Can't find tied use");
1393   }
1394 
1395   // Now deal with inline asm by parsing the operand group descriptor flags.
1396   // Find the beginning of each operand group.
1397   SmallVector<unsigned, 8> GroupIdx;
1398   unsigned OpIdxGroup = ~0u;
1399   unsigned NumOps;
1400   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1401        i += NumOps) {
1402     const MachineOperand &FlagMO = getOperand(i);
1403     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1404     unsigned CurGroup = GroupIdx.size();
1405     GroupIdx.push_back(i);
1406     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1407     // OpIdx belongs to this operand group.
1408     if (OpIdx > i && OpIdx < i + NumOps)
1409       OpIdxGroup = CurGroup;
1410     unsigned TiedGroup;
1411     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1412       continue;
1413     // Operands in this group are tied to operands in TiedGroup which must be
1414     // earlier. Find the number of operands between the two groups.
1415     unsigned Delta = i - GroupIdx[TiedGroup];
1416 
1417     // OpIdx is a use tied to TiedGroup.
1418     if (OpIdxGroup == CurGroup)
1419       return OpIdx - Delta;
1420 
1421     // OpIdx is a def tied to this use group.
1422     if (OpIdxGroup == TiedGroup)
1423       return OpIdx + Delta;
1424   }
1425   llvm_unreachable("Invalid tied operand on inline asm");
1426 }
1427 
1428 /// clearKillInfo - Clears kill flags on all operands.
1429 ///
1430 void MachineInstr::clearKillInfo() {
1431   for (MachineOperand &MO : operands()) {
1432     if (MO.isReg() && MO.isUse())
1433       MO.setIsKill(false);
1434   }
1435 }
1436 
1437 void MachineInstr::substituteRegister(unsigned FromReg,
1438                                       unsigned ToReg,
1439                                       unsigned SubIdx,
1440                                       const TargetRegisterInfo &RegInfo) {
1441   if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
1442     if (SubIdx)
1443       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1444     for (MachineOperand &MO : operands()) {
1445       if (!MO.isReg() || MO.getReg() != FromReg)
1446         continue;
1447       MO.substPhysReg(ToReg, RegInfo);
1448     }
1449   } else {
1450     for (MachineOperand &MO : operands()) {
1451       if (!MO.isReg() || MO.getReg() != FromReg)
1452         continue;
1453       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1454     }
1455   }
1456 }
1457 
1458 /// isSafeToMove - Return true if it is safe to move this instruction. If
1459 /// SawStore is set to true, it means that there is a store (or call) between
1460 /// the instruction's location and its intended destination.
1461 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const {
1462   // Ignore stuff that we obviously can't move.
1463   //
1464   // Treat volatile loads as stores. This is not strictly necessary for
1465   // volatiles, but it is required for atomic loads. It is not allowed to move
1466   // a load across an atomic load with Ordering > Monotonic.
1467   if (mayStore() || isCall() ||
1468       (mayLoad() && hasOrderedMemoryRef())) {
1469     SawStore = true;
1470     return false;
1471   }
1472 
1473   if (isPosition() || isDebugValue() || isTerminator() ||
1474       hasUnmodeledSideEffects())
1475     return false;
1476 
1477   // See if this instruction does a load.  If so, we have to guarantee that the
1478   // loaded value doesn't change between the load and the its intended
1479   // destination. The check for isInvariantLoad gives the targe the chance to
1480   // classify the load as always returning a constant, e.g. a constant pool
1481   // load.
1482   if (mayLoad() && !isInvariantLoad(AA))
1483     // Otherwise, this is a real load.  If there is a store between the load and
1484     // end of block, we can't move it.
1485     return !SawStore;
1486 
1487   return true;
1488 }
1489 
1490 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1491 /// or volatile memory reference, or if the information describing the memory
1492 /// reference is not available. Return false if it is known to have no ordered
1493 /// memory references.
1494 bool MachineInstr::hasOrderedMemoryRef() const {
1495   // An instruction known never to access memory won't have a volatile access.
1496   if (!mayStore() &&
1497       !mayLoad() &&
1498       !isCall() &&
1499       !hasUnmodeledSideEffects())
1500     return false;
1501 
1502   // Otherwise, if the instruction has no memory reference information,
1503   // conservatively assume it wasn't preserved.
1504   if (memoperands_empty())
1505     return true;
1506 
1507   // Check the memory reference information for ordered references.
1508   for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
1509     if (!(*I)->isUnordered())
1510       return true;
1511 
1512   return false;
1513 }
1514 
1515 /// isInvariantLoad - Return true if this instruction is loading from a
1516 /// location whose value is invariant across the function.  For example,
1517 /// loading a value from the constant pool or from the argument area
1518 /// of a function if it does not change.  This should only return true of
1519 /// *all* loads the instruction does are invariant (if it does multiple loads).
1520 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
1521   // If the instruction doesn't load at all, it isn't an invariant load.
1522   if (!mayLoad())
1523     return false;
1524 
1525   // If the instruction has lost its memoperands, conservatively assume that
1526   // it may not be an invariant load.
1527   if (memoperands_empty())
1528     return false;
1529 
1530   const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
1531 
1532   for (mmo_iterator I = memoperands_begin(),
1533        E = memoperands_end(); I != E; ++I) {
1534     if ((*I)->isVolatile()) return false;
1535     if ((*I)->isStore()) return false;
1536     if ((*I)->isInvariant()) return true;
1537 
1538 
1539     // A load from a constant PseudoSourceValue is invariant.
1540     if (const PseudoSourceValue *PSV = (*I)->getPseudoValue())
1541       if (PSV->isConstant(MFI))
1542         continue;
1543 
1544     if (const Value *V = (*I)->getValue()) {
1545       // If we have an AliasAnalysis, ask it whether the memory is constant.
1546       if (AA &&
1547           AA->pointsToConstantMemory(
1548               MemoryLocation(V, (*I)->getSize(), (*I)->getAAInfo())))
1549         continue;
1550     }
1551 
1552     // Otherwise assume conservatively.
1553     return false;
1554   }
1555 
1556   // Everything checks out.
1557   return true;
1558 }
1559 
1560 /// isConstantValuePHI - If the specified instruction is a PHI that always
1561 /// merges together the same virtual register, return the register, otherwise
1562 /// return 0.
1563 unsigned MachineInstr::isConstantValuePHI() const {
1564   if (!isPHI())
1565     return 0;
1566   assert(getNumOperands() >= 3 &&
1567          "It's illegal to have a PHI without source operands");
1568 
1569   unsigned Reg = getOperand(1).getReg();
1570   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1571     if (getOperand(i).getReg() != Reg)
1572       return 0;
1573   return Reg;
1574 }
1575 
1576 bool MachineInstr::hasUnmodeledSideEffects() const {
1577   if (hasProperty(MCID::UnmodeledSideEffects))
1578     return true;
1579   if (isInlineAsm()) {
1580     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1581     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1582       return true;
1583   }
1584 
1585   return false;
1586 }
1587 
1588 bool MachineInstr::isLoadFoldBarrier() const {
1589   return mayStore() || isCall() || hasUnmodeledSideEffects();
1590 }
1591 
1592 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1593 ///
1594 bool MachineInstr::allDefsAreDead() const {
1595   for (const MachineOperand &MO : operands()) {
1596     if (!MO.isReg() || MO.isUse())
1597       continue;
1598     if (!MO.isDead())
1599       return false;
1600   }
1601   return true;
1602 }
1603 
1604 /// copyImplicitOps - Copy implicit register operands from specified
1605 /// instruction to this instruction.
1606 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1607                                    const MachineInstr *MI) {
1608   for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands();
1609        i != e; ++i) {
1610     const MachineOperand &MO = MI->getOperand(i);
1611     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1612       addOperand(MF, MO);
1613   }
1614 }
1615 
1616 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1617 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1618   dbgs() << "  " << *this;
1619 #endif
1620 }
1621 
1622 void MachineInstr::print(raw_ostream &OS, bool SkipOpers) const {
1623   const Module *M = nullptr;
1624   if (const MachineBasicBlock *MBB = getParent())
1625     if (const MachineFunction *MF = MBB->getParent())
1626       M = MF->getFunction()->getParent();
1627 
1628   ModuleSlotTracker MST(M);
1629   print(OS, MST, SkipOpers);
1630 }
1631 
1632 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1633                          bool SkipOpers) const {
1634   // We can be a bit tidier if we know the MachineFunction.
1635   const MachineFunction *MF = nullptr;
1636   const TargetRegisterInfo *TRI = nullptr;
1637   const MachineRegisterInfo *MRI = nullptr;
1638   const TargetInstrInfo *TII = nullptr;
1639   if (const MachineBasicBlock *MBB = getParent()) {
1640     MF = MBB->getParent();
1641     if (MF) {
1642       MRI = &MF->getRegInfo();
1643       TRI = MF->getSubtarget().getRegisterInfo();
1644       TII = MF->getSubtarget().getInstrInfo();
1645     }
1646   }
1647 
1648   // Save a list of virtual registers.
1649   SmallVector<unsigned, 8> VirtRegs;
1650 
1651   // Print explicitly defined operands on the left of an assignment syntax.
1652   unsigned StartOp = 0, e = getNumOperands();
1653   for (; StartOp < e && getOperand(StartOp).isReg() &&
1654          getOperand(StartOp).isDef() &&
1655          !getOperand(StartOp).isImplicit();
1656        ++StartOp) {
1657     if (StartOp != 0) OS << ", ";
1658     getOperand(StartOp).print(OS, MST, TRI);
1659     unsigned Reg = getOperand(StartOp).getReg();
1660     if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1661       VirtRegs.push_back(Reg);
1662 #ifdef LLVM_BUILD_GLOBAL_ISEL
1663       unsigned Size;
1664       if (MRI && (Size = MRI->getSize(Reg))) {
1665         OS << '(' << Size << ')';
1666       }
1667 #endif
1668     }
1669   }
1670 
1671   if (StartOp != 0)
1672     OS << " = ";
1673 
1674   // Print the opcode name.
1675   if (TII)
1676     OS << TII->getName(getOpcode());
1677   else
1678     OS << "UNKNOWN";
1679 
1680   if (SkipOpers)
1681     return;
1682 
1683   // Print the rest of the operands.
1684   bool OmittedAnyCallClobbers = false;
1685   bool FirstOp = true;
1686   unsigned AsmDescOp = ~0u;
1687   unsigned AsmOpCount = 0;
1688 
1689   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1690     // Print asm string.
1691     OS << " ";
1692     getOperand(InlineAsm::MIOp_AsmString).print(OS, MST, TRI);
1693 
1694     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1695     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1696     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1697       OS << " [sideeffect]";
1698     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1699       OS << " [mayload]";
1700     if (ExtraInfo & InlineAsm::Extra_MayStore)
1701       OS << " [maystore]";
1702     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1703       OS << " [alignstack]";
1704     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1705       OS << " [attdialect]";
1706     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1707       OS << " [inteldialect]";
1708 
1709     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1710     FirstOp = false;
1711   }
1712 
1713   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1714     const MachineOperand &MO = getOperand(i);
1715 
1716     if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1717       VirtRegs.push_back(MO.getReg());
1718 
1719     // Omit call-clobbered registers which aren't used anywhere. This makes
1720     // call instructions much less noisy on targets where calls clobber lots
1721     // of registers. Don't rely on MO.isDead() because we may be called before
1722     // LiveVariables is run, or we may be looking at a non-allocatable reg.
1723     if (MRI && isCall() &&
1724         MO.isReg() && MO.isImplicit() && MO.isDef()) {
1725       unsigned Reg = MO.getReg();
1726       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1727         if (MRI->use_empty(Reg)) {
1728           bool HasAliasLive = false;
1729           for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
1730             unsigned AliasReg = *AI;
1731             if (!MRI->use_empty(AliasReg)) {
1732               HasAliasLive = true;
1733               break;
1734             }
1735           }
1736           if (!HasAliasLive) {
1737             OmittedAnyCallClobbers = true;
1738             continue;
1739           }
1740         }
1741       }
1742     }
1743 
1744     if (FirstOp) FirstOp = false; else OS << ",";
1745     OS << " ";
1746     if (i < getDesc().NumOperands) {
1747       const MCOperandInfo &MCOI = getDesc().OpInfo[i];
1748       if (MCOI.isPredicate())
1749         OS << "pred:";
1750       if (MCOI.isOptionalDef())
1751         OS << "opt:";
1752     }
1753     if (isDebugValue() && MO.isMetadata()) {
1754       // Pretty print DBG_VALUE instructions.
1755       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1756       if (DIV && !DIV->getName().empty())
1757         OS << "!\"" << DIV->getName() << '\"';
1758       else
1759         MO.print(OS, MST, TRI);
1760     } else if (TRI && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
1761       OS << TRI->getSubRegIndexName(MO.getImm());
1762     } else if (i == AsmDescOp && MO.isImm()) {
1763       // Pretty print the inline asm operand descriptor.
1764       OS << '$' << AsmOpCount++;
1765       unsigned Flag = MO.getImm();
1766       switch (InlineAsm::getKind(Flag)) {
1767       case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break;
1768       case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break;
1769       case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1770       case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break;
1771       case InlineAsm::Kind_Imm:                OS << ":[imm"; break;
1772       case InlineAsm::Kind_Mem:                OS << ":[mem"; break;
1773       default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1774       }
1775 
1776       unsigned RCID = 0;
1777       if (InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1778         if (TRI) {
1779           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1780         } else
1781           OS << ":RC" << RCID;
1782       }
1783 
1784       unsigned TiedTo = 0;
1785       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1786         OS << " tiedto:$" << TiedTo;
1787 
1788       OS << ']';
1789 
1790       // Compute the index of the next operand descriptor.
1791       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1792     } else
1793       MO.print(OS, MST, TRI);
1794   }
1795 
1796   // Briefly indicate whether any call clobbers were omitted.
1797   if (OmittedAnyCallClobbers) {
1798     if (!FirstOp) OS << ",";
1799     OS << " ...";
1800   }
1801 
1802   bool HaveSemi = false;
1803   const unsigned PrintableFlags = FrameSetup | FrameDestroy;
1804   if (Flags & PrintableFlags) {
1805     if (!HaveSemi) {
1806       OS << ";";
1807       HaveSemi = true;
1808     }
1809     OS << " flags: ";
1810 
1811     if (Flags & FrameSetup)
1812       OS << "FrameSetup";
1813 
1814     if (Flags & FrameDestroy)
1815       OS << "FrameDestroy";
1816   }
1817 
1818   if (!memoperands_empty()) {
1819     if (!HaveSemi) {
1820       OS << ";";
1821       HaveSemi = true;
1822     }
1823 
1824     OS << " mem:";
1825     for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
1826          i != e; ++i) {
1827       (*i)->print(OS, MST);
1828       if (std::next(i) != e)
1829         OS << " ";
1830     }
1831   }
1832 
1833   // Print the regclass of any virtual registers encountered.
1834   if (MRI && !VirtRegs.empty()) {
1835     if (!HaveSemi) {
1836       OS << ";";
1837       HaveSemi = true;
1838     }
1839     for (unsigned i = 0; i != VirtRegs.size(); ++i) {
1840       const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]);
1841 #ifdef LLVM_BUILD_GLOBAL_ISEL
1842       // Generic virtual registers do not have register classes.
1843       if (!RC)
1844         continue;
1845 #endif
1846       OS << " " << TRI->getRegClassName(RC)
1847          << ':' << PrintReg(VirtRegs[i]);
1848       for (unsigned j = i+1; j != VirtRegs.size();) {
1849         if (MRI->getRegClass(VirtRegs[j]) != RC) {
1850           ++j;
1851           continue;
1852         }
1853         if (VirtRegs[i] != VirtRegs[j])
1854           OS << "," << PrintReg(VirtRegs[j]);
1855         VirtRegs.erase(VirtRegs.begin()+j);
1856       }
1857     }
1858   }
1859 
1860   // Print debug location information.
1861   if (isDebugValue() && getOperand(e - 2).isMetadata()) {
1862     if (!HaveSemi)
1863       OS << ";";
1864     auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata());
1865     OS << " line no:" <<  DV->getLine();
1866     if (auto *InlinedAt = debugLoc->getInlinedAt()) {
1867       DebugLoc InlinedAtDL(InlinedAt);
1868       if (InlinedAtDL && MF) {
1869         OS << " inlined @[ ";
1870         InlinedAtDL.print(OS);
1871         OS << " ]";
1872       }
1873     }
1874     if (isIndirectDebugValue())
1875       OS << " indirect";
1876   } else if (debugLoc && MF) {
1877     if (!HaveSemi)
1878       OS << ";";
1879     OS << " dbg:";
1880     debugLoc.print(OS);
1881   }
1882 
1883   OS << '\n';
1884 }
1885 
1886 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1887                                      const TargetRegisterInfo *RegInfo,
1888                                      bool AddIfNotFound) {
1889   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1890   bool hasAliases = isPhysReg &&
1891     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1892   bool Found = false;
1893   SmallVector<unsigned,4> DeadOps;
1894   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1895     MachineOperand &MO = getOperand(i);
1896     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1897       continue;
1898     unsigned Reg = MO.getReg();
1899     if (!Reg)
1900       continue;
1901 
1902     if (Reg == IncomingReg) {
1903       if (!Found) {
1904         if (MO.isKill())
1905           // The register is already marked kill.
1906           return true;
1907         if (isPhysReg && isRegTiedToDefOperand(i))
1908           // Two-address uses of physregs must not be marked kill.
1909           return true;
1910         MO.setIsKill();
1911         Found = true;
1912       }
1913     } else if (hasAliases && MO.isKill() &&
1914                TargetRegisterInfo::isPhysicalRegister(Reg)) {
1915       // A super-register kill already exists.
1916       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1917         return true;
1918       if (RegInfo->isSubRegister(IncomingReg, Reg))
1919         DeadOps.push_back(i);
1920     }
1921   }
1922 
1923   // Trim unneeded kill operands.
1924   while (!DeadOps.empty()) {
1925     unsigned OpIdx = DeadOps.back();
1926     if (getOperand(OpIdx).isImplicit())
1927       RemoveOperand(OpIdx);
1928     else
1929       getOperand(OpIdx).setIsKill(false);
1930     DeadOps.pop_back();
1931   }
1932 
1933   // If not found, this means an alias of one of the operands is killed. Add a
1934   // new implicit operand if required.
1935   if (!Found && AddIfNotFound) {
1936     addOperand(MachineOperand::CreateReg(IncomingReg,
1937                                          false /*IsDef*/,
1938                                          true  /*IsImp*/,
1939                                          true  /*IsKill*/));
1940     return true;
1941   }
1942   return Found;
1943 }
1944 
1945 void MachineInstr::clearRegisterKills(unsigned Reg,
1946                                       const TargetRegisterInfo *RegInfo) {
1947   if (!TargetRegisterInfo::isPhysicalRegister(Reg))
1948     RegInfo = nullptr;
1949   for (MachineOperand &MO : operands()) {
1950     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1951       continue;
1952     unsigned OpReg = MO.getReg();
1953     if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg)))
1954       MO.setIsKill(false);
1955   }
1956 }
1957 
1958 bool MachineInstr::addRegisterDead(unsigned Reg,
1959                                    const TargetRegisterInfo *RegInfo,
1960                                    bool AddIfNotFound) {
1961   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg);
1962   bool hasAliases = isPhysReg &&
1963     MCRegAliasIterator(Reg, RegInfo, false).isValid();
1964   bool Found = false;
1965   SmallVector<unsigned,4> DeadOps;
1966   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1967     MachineOperand &MO = getOperand(i);
1968     if (!MO.isReg() || !MO.isDef())
1969       continue;
1970     unsigned MOReg = MO.getReg();
1971     if (!MOReg)
1972       continue;
1973 
1974     if (MOReg == Reg) {
1975       MO.setIsDead();
1976       Found = true;
1977     } else if (hasAliases && MO.isDead() &&
1978                TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1979       // There exists a super-register that's marked dead.
1980       if (RegInfo->isSuperRegister(Reg, MOReg))
1981         return true;
1982       if (RegInfo->isSubRegister(Reg, MOReg))
1983         DeadOps.push_back(i);
1984     }
1985   }
1986 
1987   // Trim unneeded dead operands.
1988   while (!DeadOps.empty()) {
1989     unsigned OpIdx = DeadOps.back();
1990     if (getOperand(OpIdx).isImplicit())
1991       RemoveOperand(OpIdx);
1992     else
1993       getOperand(OpIdx).setIsDead(false);
1994     DeadOps.pop_back();
1995   }
1996 
1997   // If not found, this means an alias of one of the operands is dead. Add a
1998   // new implicit operand if required.
1999   if (Found || !AddIfNotFound)
2000     return Found;
2001 
2002   addOperand(MachineOperand::CreateReg(Reg,
2003                                        true  /*IsDef*/,
2004                                        true  /*IsImp*/,
2005                                        false /*IsKill*/,
2006                                        true  /*IsDead*/));
2007   return true;
2008 }
2009 
2010 void MachineInstr::clearRegisterDeads(unsigned Reg) {
2011   for (MachineOperand &MO : operands()) {
2012     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
2013       continue;
2014     MO.setIsDead(false);
2015   }
2016 }
2017 
2018 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) {
2019   for (MachineOperand &MO : operands()) {
2020     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
2021       continue;
2022     MO.setIsUndef(IsUndef);
2023   }
2024 }
2025 
2026 void MachineInstr::addRegisterDefined(unsigned Reg,
2027                                       const TargetRegisterInfo *RegInfo) {
2028   if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
2029     MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo);
2030     if (MO)
2031       return;
2032   } else {
2033     for (const MachineOperand &MO : operands()) {
2034       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
2035           MO.getSubReg() == 0)
2036         return;
2037     }
2038   }
2039   addOperand(MachineOperand::CreateReg(Reg,
2040                                        true  /*IsDef*/,
2041                                        true  /*IsImp*/));
2042 }
2043 
2044 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
2045                                          const TargetRegisterInfo &TRI) {
2046   bool HasRegMask = false;
2047   for (MachineOperand &MO : operands()) {
2048     if (MO.isRegMask()) {
2049       HasRegMask = true;
2050       continue;
2051     }
2052     if (!MO.isReg() || !MO.isDef()) continue;
2053     unsigned Reg = MO.getReg();
2054     if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
2055     // If there are no uses, including partial uses, the def is dead.
2056     if (std::none_of(UsedRegs.begin(), UsedRegs.end(),
2057                      [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); }))
2058       MO.setIsDead();
2059   }
2060 
2061   // This is a call with a register mask operand.
2062   // Mask clobbers are always dead, so add defs for the non-dead defines.
2063   if (HasRegMask)
2064     for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
2065          I != E; ++I)
2066       addRegisterDefined(*I, &TRI);
2067 }
2068 
2069 unsigned
2070 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
2071   // Build up a buffer of hash code components.
2072   SmallVector<size_t, 8> HashComponents;
2073   HashComponents.reserve(MI->getNumOperands() + 1);
2074   HashComponents.push_back(MI->getOpcode());
2075   for (const MachineOperand &MO : MI->operands()) {
2076     if (MO.isReg() && MO.isDef() &&
2077         TargetRegisterInfo::isVirtualRegister(MO.getReg()))
2078       continue;  // Skip virtual register defs.
2079 
2080     HashComponents.push_back(hash_value(MO));
2081   }
2082   return hash_combine_range(HashComponents.begin(), HashComponents.end());
2083 }
2084 
2085 void MachineInstr::emitError(StringRef Msg) const {
2086   // Find the source location cookie.
2087   unsigned LocCookie = 0;
2088   const MDNode *LocMD = nullptr;
2089   for (unsigned i = getNumOperands(); i != 0; --i) {
2090     if (getOperand(i-1).isMetadata() &&
2091         (LocMD = getOperand(i-1).getMetadata()) &&
2092         LocMD->getNumOperands() != 0) {
2093       if (const ConstantInt *CI =
2094               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
2095         LocCookie = CI->getZExtValue();
2096         break;
2097       }
2098     }
2099   }
2100 
2101   if (const MachineBasicBlock *MBB = getParent())
2102     if (const MachineFunction *MF = MBB->getParent())
2103       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2104   report_fatal_error(Msg);
2105 }
2106