xref: /llvm-project/llvm/lib/CodeGen/MachineInstr.cpp (revision e10e936315410abd222eb58911b1e20fbfa80baf)
1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Methods common to all machine instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MachineInstr.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/Hashing.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallBitVector.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/MemoryLocation.h"
21 #include "llvm/CodeGen/MachineBasicBlock.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineInstrBundle.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineModuleInfo.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/PseudoSourceValue.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/CodeGen/TargetInstrInfo.h"
33 #include "llvm/CodeGen/TargetRegisterInfo.h"
34 #include "llvm/CodeGen/TargetSubtargetInfo.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DebugInfoMetadata.h"
37 #include "llvm/IR/DebugLoc.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/InlineAsm.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/Metadata.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/ModuleSlotTracker.h"
44 #include "llvm/IR/Operator.h"
45 #include "llvm/MC/MCInstrDesc.h"
46 #include "llvm/MC/MCRegisterInfo.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/Compiler.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/FormattedStream.h"
52 #include "llvm/Support/LowLevelTypeImpl.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Target/TargetMachine.h"
55 #include <algorithm>
56 #include <cassert>
57 #include <cstdint>
58 #include <cstring>
59 #include <utility>
60 
61 using namespace llvm;
62 
63 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
64   if (const MachineBasicBlock *MBB = MI.getParent())
65     if (const MachineFunction *MF = MBB->getParent())
66       return MF;
67   return nullptr;
68 }
69 
70 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
71 // it.
72 static void tryToGetTargetInfo(const MachineInstr &MI,
73                                const TargetRegisterInfo *&TRI,
74                                const MachineRegisterInfo *&MRI,
75                                const TargetIntrinsicInfo *&IntrinsicInfo,
76                                const TargetInstrInfo *&TII) {
77 
78   if (const MachineFunction *MF = getMFIfAvailable(MI)) {
79     TRI = MF->getSubtarget().getRegisterInfo();
80     MRI = &MF->getRegInfo();
81     IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
82     TII = MF->getSubtarget().getInstrInfo();
83   }
84 }
85 
86 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
87   if (MCID->getImplicitDefs())
88     for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
89            ++ImpDefs)
90       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
91   if (MCID->getImplicitUses())
92     for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
93            ++ImpUses)
94       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
95 }
96 
97 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
98 /// implicit operands. It reserves space for the number of operands specified by
99 /// the MCInstrDesc.
100 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &TID,
101                            DebugLoc DL, bool NoImp)
102     : MCID(&TID), DbgLoc(std::move(DL)), DebugInstrNum(0) {
103   assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
104 
105   // Reserve space for the expected number of operands.
106   if (unsigned NumOps = MCID->getNumOperands() +
107     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
108     CapOperands = OperandCapacity::get(NumOps);
109     Operands = MF.allocateOperandArray(CapOperands);
110   }
111 
112   if (!NoImp)
113     addImplicitDefUseOperands(MF);
114 }
115 
116 /// MachineInstr ctor - Copies MachineInstr arg exactly.
117 /// Does not copy the number from debug instruction numbering, to preserve
118 /// uniqueness.
119 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
120     : MCID(&MI.getDesc()), Info(MI.Info), DbgLoc(MI.getDebugLoc()),
121       DebugInstrNum(0) {
122   assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
123 
124   CapOperands = OperandCapacity::get(MI.getNumOperands());
125   Operands = MF.allocateOperandArray(CapOperands);
126 
127   // Copy operands.
128   for (const MachineOperand &MO : MI.operands())
129     addOperand(MF, MO);
130 
131   // Replicate ties between the operands, which addOperand was not
132   // able to do reliably.
133   for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
134     MachineOperand &NewMO = getOperand(i);
135     const MachineOperand &OrigMO = MI.getOperand(i);
136     NewMO.TiedTo = OrigMO.TiedTo;
137   }
138 
139   // Copy all the sensible flags.
140   setFlags(MI.Flags);
141 }
142 
143 void MachineInstr::moveBefore(MachineInstr *MovePos) {
144   MovePos->getParent()->splice(MovePos, getParent(), getIterator());
145 }
146 
147 /// getRegInfo - If this instruction is embedded into a MachineFunction,
148 /// return the MachineRegisterInfo object for the current function, otherwise
149 /// return null.
150 MachineRegisterInfo *MachineInstr::getRegInfo() {
151   if (MachineBasicBlock *MBB = getParent())
152     return &MBB->getParent()->getRegInfo();
153   return nullptr;
154 }
155 
156 void MachineInstr::removeRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
157   for (MachineOperand &MO : operands())
158     if (MO.isReg())
159       MRI.removeRegOperandFromUseList(&MO);
160 }
161 
162 void MachineInstr::addRegOperandsToUseLists(MachineRegisterInfo &MRI) {
163   for (MachineOperand &MO : operands())
164     if (MO.isReg())
165       MRI.addRegOperandToUseList(&MO);
166 }
167 
168 void MachineInstr::addOperand(const MachineOperand &Op) {
169   MachineBasicBlock *MBB = getParent();
170   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
171   MachineFunction *MF = MBB->getParent();
172   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
173   addOperand(*MF, Op);
174 }
175 
176 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
177 /// ranges. If MRI is non-null also update use-def chains.
178 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
179                          unsigned NumOps, MachineRegisterInfo *MRI) {
180   if (MRI)
181     return MRI->moveOperands(Dst, Src, NumOps);
182   // MachineOperand is a trivially copyable type so we can just use memmove.
183   assert(Dst && Src && "Unknown operands");
184   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
185 }
186 
187 /// addOperand - Add the specified operand to the instruction.  If it is an
188 /// implicit operand, it is added to the end of the operand list.  If it is
189 /// an explicit operand it is added at the end of the explicit operand list
190 /// (before the first implicit operand).
191 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
192   assert(MCID && "Cannot add operands before providing an instr descriptor");
193 
194   // Check if we're adding one of our existing operands.
195   if (&Op >= Operands && &Op < Operands + NumOperands) {
196     // This is unusual: MI->addOperand(MI->getOperand(i)).
197     // If adding Op requires reallocating or moving existing operands around,
198     // the Op reference could go stale. Support it by copying Op.
199     MachineOperand CopyOp(Op);
200     return addOperand(MF, CopyOp);
201   }
202 
203   // Find the insert location for the new operand.  Implicit registers go at
204   // the end, everything else goes before the implicit regs.
205   //
206   // FIXME: Allow mixed explicit and implicit operands on inline asm.
207   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
208   // implicit-defs, but they must not be moved around.  See the FIXME in
209   // InstrEmitter.cpp.
210   unsigned OpNo = getNumOperands();
211   bool isImpReg = Op.isReg() && Op.isImplicit();
212   if (!isImpReg && !isInlineAsm()) {
213     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
214       --OpNo;
215       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
216     }
217   }
218 
219   // OpNo now points as the desired insertion point.  Unless this is a variadic
220   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
221   // RegMask operands go between the explicit and implicit operands.
222   assert((MCID->isVariadic() || OpNo < MCID->getNumOperands() ||
223           Op.isValidExcessOperand()) &&
224          "Trying to add an operand to a machine instr that is already done!");
225 
226   MachineRegisterInfo *MRI = getRegInfo();
227 
228   // Determine if the Operands array needs to be reallocated.
229   // Save the old capacity and operand array.
230   OperandCapacity OldCap = CapOperands;
231   MachineOperand *OldOperands = Operands;
232   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
233     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
234     Operands = MF.allocateOperandArray(CapOperands);
235     // Move the operands before the insertion point.
236     if (OpNo)
237       moveOperands(Operands, OldOperands, OpNo, MRI);
238   }
239 
240   // Move the operands following the insertion point.
241   if (OpNo != NumOperands)
242     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
243                  MRI);
244   ++NumOperands;
245 
246   // Deallocate the old operand array.
247   if (OldOperands != Operands && OldOperands)
248     MF.deallocateOperandArray(OldCap, OldOperands);
249 
250   // Copy Op into place. It still needs to be inserted into the MRI use lists.
251   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
252   NewMO->ParentMI = this;
253 
254   // When adding a register operand, tell MRI about it.
255   if (NewMO->isReg()) {
256     // Ensure isOnRegUseList() returns false, regardless of Op's status.
257     NewMO->Contents.Reg.Prev = nullptr;
258     // Ignore existing ties. This is not a property that can be copied.
259     NewMO->TiedTo = 0;
260     // Add the new operand to MRI, but only for instructions in an MBB.
261     if (MRI)
262       MRI->addRegOperandToUseList(NewMO);
263     // The MCID operand information isn't accurate until we start adding
264     // explicit operands. The implicit operands are added first, then the
265     // explicits are inserted before them.
266     if (!isImpReg) {
267       // Tie uses to defs as indicated in MCInstrDesc.
268       if (NewMO->isUse()) {
269         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
270         if (DefIdx != -1)
271           tieOperands(DefIdx, OpNo);
272       }
273       // If the register operand is flagged as early, mark the operand as such.
274       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
275         NewMO->setIsEarlyClobber(true);
276     }
277     // Ensure debug instructions set debug flag on register uses.
278     if (NewMO->isUse() && isDebugInstr())
279       NewMO->setIsDebug();
280   }
281 }
282 
283 void MachineInstr::removeOperand(unsigned OpNo) {
284   assert(OpNo < getNumOperands() && "Invalid operand number");
285   untieRegOperand(OpNo);
286 
287 #ifndef NDEBUG
288   // Moving tied operands would break the ties.
289   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
290     if (Operands[i].isReg())
291       assert(!Operands[i].isTied() && "Cannot move tied operands");
292 #endif
293 
294   MachineRegisterInfo *MRI = getRegInfo();
295   if (MRI && Operands[OpNo].isReg())
296     MRI->removeRegOperandFromUseList(Operands + OpNo);
297 
298   // Don't call the MachineOperand destructor. A lot of this code depends on
299   // MachineOperand having a trivial destructor anyway, and adding a call here
300   // wouldn't make it 'destructor-correct'.
301 
302   if (unsigned N = NumOperands - 1 - OpNo)
303     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
304   --NumOperands;
305 }
306 
307 void MachineInstr::setExtraInfo(MachineFunction &MF,
308                                 ArrayRef<MachineMemOperand *> MMOs,
309                                 MCSymbol *PreInstrSymbol,
310                                 MCSymbol *PostInstrSymbol,
311                                 MDNode *HeapAllocMarker, MDNode *PCSections,
312                                 uint32_t CFIType) {
313   bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
314   bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
315   bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
316   bool HasPCSections = PCSections != nullptr;
317   bool HasCFIType = CFIType != 0;
318   int NumPointers = MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol +
319                     HasHeapAllocMarker + HasPCSections + HasCFIType;
320 
321   // Drop all extra info if there is none.
322   if (NumPointers <= 0) {
323     Info.clear();
324     return;
325   }
326 
327   // If more than one pointer, then store out of line. Store heap alloc markers
328   // out of line because PointerSumType cannot hold more than 4 tag types with
329   // 32-bit pointers.
330   // FIXME: Maybe we should make the symbols in the extra info mutable?
331   else if (NumPointers > 1 || HasHeapAllocMarker || HasPCSections ||
332            HasCFIType) {
333     Info.set<EIIK_OutOfLine>(
334         MF.createMIExtraInfo(MMOs, PreInstrSymbol, PostInstrSymbol,
335                              HeapAllocMarker, PCSections, CFIType));
336     return;
337   }
338 
339   // Otherwise store the single pointer inline.
340   if (HasPreInstrSymbol)
341     Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol);
342   else if (HasPostInstrSymbol)
343     Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol);
344   else
345     Info.set<EIIK_MMO>(MMOs[0]);
346 }
347 
348 void MachineInstr::dropMemRefs(MachineFunction &MF) {
349   if (memoperands_empty())
350     return;
351 
352   setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(),
353                getHeapAllocMarker(), getPCSections(), getCFIType());
354 }
355 
356 void MachineInstr::setMemRefs(MachineFunction &MF,
357                               ArrayRef<MachineMemOperand *> MMOs) {
358   if (MMOs.empty()) {
359     dropMemRefs(MF);
360     return;
361   }
362 
363   setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(),
364                getHeapAllocMarker(), getPCSections(), getCFIType());
365 }
366 
367 void MachineInstr::addMemOperand(MachineFunction &MF,
368                                  MachineMemOperand *MO) {
369   SmallVector<MachineMemOperand *, 2> MMOs;
370   MMOs.append(memoperands_begin(), memoperands_end());
371   MMOs.push_back(MO);
372   setMemRefs(MF, MMOs);
373 }
374 
375 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) {
376   if (this == &MI)
377     // Nothing to do for a self-clone!
378     return;
379 
380   assert(&MF == MI.getMF() &&
381          "Invalid machine functions when cloning memory refrences!");
382   // See if we can just steal the extra info already allocated for the
383   // instruction. We can do this whenever the pre- and post-instruction symbols
384   // are the same (including null).
385   if (getPreInstrSymbol() == MI.getPreInstrSymbol() &&
386       getPostInstrSymbol() == MI.getPostInstrSymbol() &&
387       getHeapAllocMarker() == MI.getHeapAllocMarker() &&
388       getPCSections() == MI.getPCSections()) {
389     Info = MI.Info;
390     return;
391   }
392 
393   // Otherwise, fall back on a copy-based clone.
394   setMemRefs(MF, MI.memoperands());
395 }
396 
397 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
398 /// identical.
399 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS,
400                              ArrayRef<MachineMemOperand *> RHS) {
401   if (LHS.size() != RHS.size())
402     return false;
403 
404   auto LHSPointees = make_pointee_range(LHS);
405   auto RHSPointees = make_pointee_range(RHS);
406   return std::equal(LHSPointees.begin(), LHSPointees.end(),
407                     RHSPointees.begin());
408 }
409 
410 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF,
411                                       ArrayRef<const MachineInstr *> MIs) {
412   // Try handling easy numbers of MIs with simpler mechanisms.
413   if (MIs.empty()) {
414     dropMemRefs(MF);
415     return;
416   }
417   if (MIs.size() == 1) {
418     cloneMemRefs(MF, *MIs[0]);
419     return;
420   }
421   // Because an empty memoperands list provides *no* information and must be
422   // handled conservatively (assuming the instruction can do anything), the only
423   // way to merge with it is to drop all other memoperands.
424   if (MIs[0]->memoperands_empty()) {
425     dropMemRefs(MF);
426     return;
427   }
428 
429   // Handle the general case.
430   SmallVector<MachineMemOperand *, 2> MergedMMOs;
431   // Start with the first instruction.
432   assert(&MF == MIs[0]->getMF() &&
433          "Invalid machine functions when cloning memory references!");
434   MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end());
435   // Now walk all the other instructions and accumulate any different MMOs.
436   for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) {
437     assert(&MF == MI.getMF() &&
438            "Invalid machine functions when cloning memory references!");
439 
440     // Skip MIs with identical operands to the first. This is a somewhat
441     // arbitrary hack but will catch common cases without being quadratic.
442     // TODO: We could fully implement merge semantics here if needed.
443     if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands()))
444       continue;
445 
446     // Because an empty memoperands list provides *no* information and must be
447     // handled conservatively (assuming the instruction can do anything), the
448     // only way to merge with it is to drop all other memoperands.
449     if (MI.memoperands_empty()) {
450       dropMemRefs(MF);
451       return;
452     }
453 
454     // Otherwise accumulate these into our temporary buffer of the merged state.
455     MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end());
456   }
457 
458   setMemRefs(MF, MergedMMOs);
459 }
460 
461 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
462   // Do nothing if old and new symbols are the same.
463   if (Symbol == getPreInstrSymbol())
464     return;
465 
466   // If there was only one symbol and we're removing it, just clear info.
467   if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) {
468     Info.clear();
469     return;
470   }
471 
472   setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(),
473                getHeapAllocMarker(), getPCSections(), getCFIType());
474 }
475 
476 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
477   // Do nothing if old and new symbols are the same.
478   if (Symbol == getPostInstrSymbol())
479     return;
480 
481   // If there was only one symbol and we're removing it, just clear info.
482   if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) {
483     Info.clear();
484     return;
485   }
486 
487   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol,
488                getHeapAllocMarker(), getPCSections(), getCFIType());
489 }
490 
491 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) {
492   // Do nothing if old and new symbols are the same.
493   if (Marker == getHeapAllocMarker())
494     return;
495 
496   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
497                Marker, getPCSections(), getCFIType());
498 }
499 
500 void MachineInstr::setPCSections(MachineFunction &MF, MDNode *PCSections) {
501   // Do nothing if old and new symbols are the same.
502   if (PCSections == getPCSections())
503     return;
504 
505   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
506                getHeapAllocMarker(), PCSections, getCFIType());
507 }
508 
509 void MachineInstr::setCFIType(MachineFunction &MF, uint32_t Type) {
510   // Do nothing if old and new types are the same.
511   if (Type == getCFIType())
512     return;
513 
514   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
515                getHeapAllocMarker(), getPCSections(), Type);
516 }
517 
518 void MachineInstr::cloneInstrSymbols(MachineFunction &MF,
519                                      const MachineInstr &MI) {
520   if (this == &MI)
521     // Nothing to do for a self-clone!
522     return;
523 
524   assert(&MF == MI.getMF() &&
525          "Invalid machine functions when cloning instruction symbols!");
526 
527   setPreInstrSymbol(MF, MI.getPreInstrSymbol());
528   setPostInstrSymbol(MF, MI.getPostInstrSymbol());
529   setHeapAllocMarker(MF, MI.getHeapAllocMarker());
530   setPCSections(MF, MI.getPCSections());
531 }
532 
533 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
534   // For now, the just return the union of the flags. If the flags get more
535   // complicated over time, we might need more logic here.
536   return getFlags() | Other.getFlags();
537 }
538 
539 uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) {
540   uint16_t MIFlags = 0;
541   // Copy the wrapping flags.
542   if (const OverflowingBinaryOperator *OB =
543           dyn_cast<OverflowingBinaryOperator>(&I)) {
544     if (OB->hasNoSignedWrap())
545       MIFlags |= MachineInstr::MIFlag::NoSWrap;
546     if (OB->hasNoUnsignedWrap())
547       MIFlags |= MachineInstr::MIFlag::NoUWrap;
548   }
549 
550   // Copy the exact flag.
551   if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I))
552     if (PE->isExact())
553       MIFlags |= MachineInstr::MIFlag::IsExact;
554 
555   // Copy the fast-math flags.
556   if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) {
557     const FastMathFlags Flags = FP->getFastMathFlags();
558     if (Flags.noNaNs())
559       MIFlags |= MachineInstr::MIFlag::FmNoNans;
560     if (Flags.noInfs())
561       MIFlags |= MachineInstr::MIFlag::FmNoInfs;
562     if (Flags.noSignedZeros())
563       MIFlags |= MachineInstr::MIFlag::FmNsz;
564     if (Flags.allowReciprocal())
565       MIFlags |= MachineInstr::MIFlag::FmArcp;
566     if (Flags.allowContract())
567       MIFlags |= MachineInstr::MIFlag::FmContract;
568     if (Flags.approxFunc())
569       MIFlags |= MachineInstr::MIFlag::FmAfn;
570     if (Flags.allowReassoc())
571       MIFlags |= MachineInstr::MIFlag::FmReassoc;
572   }
573 
574   return MIFlags;
575 }
576 
577 void MachineInstr::copyIRFlags(const Instruction &I) {
578   Flags = copyFlagsFromInstruction(I);
579 }
580 
581 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const {
582   assert(!isBundledWithPred() && "Must be called on bundle header");
583   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
584     if (MII->getDesc().getFlags() & Mask) {
585       if (Type == AnyInBundle)
586         return true;
587     } else {
588       if (Type == AllInBundle && !MII->isBundle())
589         return false;
590     }
591     // This was the last instruction in the bundle.
592     if (!MII->isBundledWithSucc())
593       return Type == AllInBundle;
594   }
595 }
596 
597 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
598                                  MICheckType Check) const {
599   // If opcodes or number of operands are not the same then the two
600   // instructions are obviously not identical.
601   if (Other.getOpcode() != getOpcode() ||
602       Other.getNumOperands() != getNumOperands())
603     return false;
604 
605   if (isBundle()) {
606     // We have passed the test above that both instructions have the same
607     // opcode, so we know that both instructions are bundles here. Let's compare
608     // MIs inside the bundle.
609     assert(Other.isBundle() && "Expected that both instructions are bundles.");
610     MachineBasicBlock::const_instr_iterator I1 = getIterator();
611     MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
612     // Loop until we analysed the last intruction inside at least one of the
613     // bundles.
614     while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
615       ++I1;
616       ++I2;
617       if (!I1->isIdenticalTo(*I2, Check))
618         return false;
619     }
620     // If we've reached the end of just one of the two bundles, but not both,
621     // the instructions are not identical.
622     if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
623       return false;
624   }
625 
626   // Check operands to make sure they match.
627   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
628     const MachineOperand &MO = getOperand(i);
629     const MachineOperand &OMO = Other.getOperand(i);
630     if (!MO.isReg()) {
631       if (!MO.isIdenticalTo(OMO))
632         return false;
633       continue;
634     }
635 
636     // Clients may or may not want to ignore defs when testing for equality.
637     // For example, machine CSE pass only cares about finding common
638     // subexpressions, so it's safe to ignore virtual register defs.
639     if (MO.isDef()) {
640       if (Check == IgnoreDefs)
641         continue;
642       else if (Check == IgnoreVRegDefs) {
643         if (!Register::isVirtualRegister(MO.getReg()) ||
644             !Register::isVirtualRegister(OMO.getReg()))
645           if (!MO.isIdenticalTo(OMO))
646             return false;
647       } else {
648         if (!MO.isIdenticalTo(OMO))
649           return false;
650         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
651           return false;
652       }
653     } else {
654       if (!MO.isIdenticalTo(OMO))
655         return false;
656       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
657         return false;
658     }
659   }
660   // If DebugLoc does not match then two debug instructions are not identical.
661   if (isDebugInstr())
662     if (getDebugLoc() && Other.getDebugLoc() &&
663         getDebugLoc() != Other.getDebugLoc())
664       return false;
665   // If pre- or post-instruction symbols do not match then the two instructions
666   // are not identical.
667   if (getPreInstrSymbol() != Other.getPreInstrSymbol() ||
668       getPostInstrSymbol() != Other.getPostInstrSymbol())
669     return false;
670   // Call instructions with different CFI types are not identical.
671   if (isCall() && getCFIType() != Other.getCFIType())
672     return false;
673 
674   return true;
675 }
676 
677 bool MachineInstr::isEquivalentDbgInstr(const MachineInstr &Other) const {
678   if (!isDebugValueLike() || !Other.isDebugValueLike())
679     return false;
680   if (getDebugLoc() != Other.getDebugLoc())
681     return false;
682   if (getDebugVariable() != Other.getDebugVariable())
683     return false;
684   if (getNumDebugOperands() != Other.getNumDebugOperands())
685     return false;
686   for (unsigned OpIdx = 0; OpIdx < getNumDebugOperands(); ++OpIdx)
687     if (!getDebugOperand(OpIdx).isIdenticalTo(Other.getDebugOperand(OpIdx)))
688       return false;
689   if (!DIExpression::isEqualExpression(
690           getDebugExpression(), isIndirectDebugValue(),
691           Other.getDebugExpression(), Other.isIndirectDebugValue()))
692     return false;
693   return true;
694 }
695 
696 const MachineFunction *MachineInstr::getMF() const {
697   return getParent()->getParent();
698 }
699 
700 MachineInstr *MachineInstr::removeFromParent() {
701   assert(getParent() && "Not embedded in a basic block!");
702   return getParent()->remove(this);
703 }
704 
705 MachineInstr *MachineInstr::removeFromBundle() {
706   assert(getParent() && "Not embedded in a basic block!");
707   return getParent()->remove_instr(this);
708 }
709 
710 void MachineInstr::eraseFromParent() {
711   assert(getParent() && "Not embedded in a basic block!");
712   getParent()->erase(this);
713 }
714 
715 void MachineInstr::eraseFromBundle() {
716   assert(getParent() && "Not embedded in a basic block!");
717   getParent()->erase_instr(this);
718 }
719 
720 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const {
721   if (!isCall(Type))
722     return false;
723   switch (getOpcode()) {
724   case TargetOpcode::PATCHPOINT:
725   case TargetOpcode::STACKMAP:
726   case TargetOpcode::STATEPOINT:
727   case TargetOpcode::FENTRY_CALL:
728     return false;
729   }
730   return true;
731 }
732 
733 bool MachineInstr::shouldUpdateCallSiteInfo() const {
734   if (isBundle())
735     return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle);
736   return isCandidateForCallSiteEntry();
737 }
738 
739 unsigned MachineInstr::getNumExplicitOperands() const {
740   unsigned NumOperands = MCID->getNumOperands();
741   if (!MCID->isVariadic())
742     return NumOperands;
743 
744   for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) {
745     const MachineOperand &MO = getOperand(I);
746     // The operands must always be in the following order:
747     // - explicit reg defs,
748     // - other explicit operands (reg uses, immediates, etc.),
749     // - implicit reg defs
750     // - implicit reg uses
751     if (MO.isReg() && MO.isImplicit())
752       break;
753     ++NumOperands;
754   }
755   return NumOperands;
756 }
757 
758 unsigned MachineInstr::getNumExplicitDefs() const {
759   unsigned NumDefs = MCID->getNumDefs();
760   if (!MCID->isVariadic())
761     return NumDefs;
762 
763   for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) {
764     const MachineOperand &MO = getOperand(I);
765     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
766       break;
767     ++NumDefs;
768   }
769   return NumDefs;
770 }
771 
772 void MachineInstr::bundleWithPred() {
773   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
774   setFlag(BundledPred);
775   MachineBasicBlock::instr_iterator Pred = getIterator();
776   --Pred;
777   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
778   Pred->setFlag(BundledSucc);
779 }
780 
781 void MachineInstr::bundleWithSucc() {
782   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
783   setFlag(BundledSucc);
784   MachineBasicBlock::instr_iterator Succ = getIterator();
785   ++Succ;
786   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
787   Succ->setFlag(BundledPred);
788 }
789 
790 void MachineInstr::unbundleFromPred() {
791   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
792   clearFlag(BundledPred);
793   MachineBasicBlock::instr_iterator Pred = getIterator();
794   --Pred;
795   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
796   Pred->clearFlag(BundledSucc);
797 }
798 
799 void MachineInstr::unbundleFromSucc() {
800   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
801   clearFlag(BundledSucc);
802   MachineBasicBlock::instr_iterator Succ = getIterator();
803   ++Succ;
804   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
805   Succ->clearFlag(BundledPred);
806 }
807 
808 bool MachineInstr::isStackAligningInlineAsm() const {
809   if (isInlineAsm()) {
810     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
811     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
812       return true;
813   }
814   return false;
815 }
816 
817 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
818   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
819   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
820   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
821 }
822 
823 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
824                                        unsigned *GroupNo) const {
825   assert(isInlineAsm() && "Expected an inline asm instruction");
826   assert(OpIdx < getNumOperands() && "OpIdx out of range");
827 
828   // Ignore queries about the initial operands.
829   if (OpIdx < InlineAsm::MIOp_FirstOperand)
830     return -1;
831 
832   unsigned Group = 0;
833   unsigned NumOps;
834   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
835        i += NumOps) {
836     const MachineOperand &FlagMO = getOperand(i);
837     // If we reach the implicit register operands, stop looking.
838     if (!FlagMO.isImm())
839       return -1;
840     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
841     if (i + NumOps > OpIdx) {
842       if (GroupNo)
843         *GroupNo = Group;
844       return i;
845     }
846     ++Group;
847   }
848   return -1;
849 }
850 
851 const DILabel *MachineInstr::getDebugLabel() const {
852   assert(isDebugLabel() && "not a DBG_LABEL");
853   return cast<DILabel>(getOperand(0).getMetadata());
854 }
855 
856 const MachineOperand &MachineInstr::getDebugVariableOp() const {
857   assert((isDebugValueLike()) && "not a DBG_VALUE*");
858   unsigned VariableOp = isNonListDebugValue() ? 2 : 0;
859   return getOperand(VariableOp);
860 }
861 
862 MachineOperand &MachineInstr::getDebugVariableOp() {
863   assert((isDebugValueLike()) && "not a DBG_VALUE*");
864   unsigned VariableOp = isNonListDebugValue() ? 2 : 0;
865   return getOperand(VariableOp);
866 }
867 
868 const DILocalVariable *MachineInstr::getDebugVariable() const {
869   return cast<DILocalVariable>(getDebugVariableOp().getMetadata());
870 }
871 
872 const MachineOperand &MachineInstr::getDebugExpressionOp() const {
873   assert((isDebugValueLike()) && "not a DBG_VALUE*");
874   unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1;
875   return getOperand(ExpressionOp);
876 }
877 
878 MachineOperand &MachineInstr::getDebugExpressionOp() {
879   assert((isDebugValueLike()) && "not a DBG_VALUE*");
880   unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1;
881   return getOperand(ExpressionOp);
882 }
883 
884 const DIExpression *MachineInstr::getDebugExpression() const {
885   return cast<DIExpression>(getDebugExpressionOp().getMetadata());
886 }
887 
888 bool MachineInstr::isDebugEntryValue() const {
889   return isDebugValue() && getDebugExpression()->isEntryValue();
890 }
891 
892 const TargetRegisterClass*
893 MachineInstr::getRegClassConstraint(unsigned OpIdx,
894                                     const TargetInstrInfo *TII,
895                                     const TargetRegisterInfo *TRI) const {
896   assert(getParent() && "Can't have an MBB reference here!");
897   assert(getMF() && "Can't have an MF reference here!");
898   const MachineFunction &MF = *getMF();
899 
900   // Most opcodes have fixed constraints in their MCInstrDesc.
901   if (!isInlineAsm())
902     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
903 
904   if (!getOperand(OpIdx).isReg())
905     return nullptr;
906 
907   // For tied uses on inline asm, get the constraint from the def.
908   unsigned DefIdx;
909   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
910     OpIdx = DefIdx;
911 
912   // Inline asm stores register class constraints in the flag word.
913   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
914   if (FlagIdx < 0)
915     return nullptr;
916 
917   unsigned Flag = getOperand(FlagIdx).getImm();
918   unsigned RCID;
919   if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
920        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
921        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
922       InlineAsm::hasRegClassConstraint(Flag, RCID))
923     return TRI->getRegClass(RCID);
924 
925   // Assume that all registers in a memory operand are pointers.
926   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
927     return TRI->getPointerRegClass(MF);
928 
929   return nullptr;
930 }
931 
932 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
933     Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
934     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
935   // Check every operands inside the bundle if we have
936   // been asked to.
937   if (ExploreBundle)
938     for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
939          ++OpndIt)
940       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
941           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
942   else
943     // Otherwise, just check the current operands.
944     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
945       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
946   return CurRC;
947 }
948 
949 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
950     unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
951     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
952   assert(CurRC && "Invalid initial register class");
953   // Check if Reg is constrained by some of its use/def from MI.
954   const MachineOperand &MO = getOperand(OpIdx);
955   if (!MO.isReg() || MO.getReg() != Reg)
956     return CurRC;
957   // If yes, accumulate the constraints through the operand.
958   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
959 }
960 
961 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
962     unsigned OpIdx, const TargetRegisterClass *CurRC,
963     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
964   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
965   const MachineOperand &MO = getOperand(OpIdx);
966   assert(MO.isReg() &&
967          "Cannot get register constraints for non-register operand");
968   assert(CurRC && "Invalid initial register class");
969   if (unsigned SubIdx = MO.getSubReg()) {
970     if (OpRC)
971       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
972     else
973       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
974   } else if (OpRC)
975     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
976   return CurRC;
977 }
978 
979 /// Return the number of instructions inside the MI bundle, not counting the
980 /// header instruction.
981 unsigned MachineInstr::getBundleSize() const {
982   MachineBasicBlock::const_instr_iterator I = getIterator();
983   unsigned Size = 0;
984   while (I->isBundledWithSucc()) {
985     ++Size;
986     ++I;
987   }
988   return Size;
989 }
990 
991 /// Returns true if the MachineInstr has an implicit-use operand of exactly
992 /// the given register (not considering sub/super-registers).
993 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const {
994   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
995     const MachineOperand &MO = getOperand(i);
996     if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
997       return true;
998   }
999   return false;
1000 }
1001 
1002 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
1003 /// the specific register or -1 if it is not found. It further tightens
1004 /// the search criteria to a use that kills the register if isKill is true.
1005 int MachineInstr::findRegisterUseOperandIdx(
1006     Register Reg, bool isKill, const TargetRegisterInfo *TRI) const {
1007   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1008     const MachineOperand &MO = getOperand(i);
1009     if (!MO.isReg() || !MO.isUse())
1010       continue;
1011     Register MOReg = MO.getReg();
1012     if (!MOReg)
1013       continue;
1014     if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg)))
1015       if (!isKill || MO.isKill())
1016         return i;
1017   }
1018   return -1;
1019 }
1020 
1021 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1022 /// indicating if this instruction reads or writes Reg. This also considers
1023 /// partial defines.
1024 std::pair<bool,bool>
1025 MachineInstr::readsWritesVirtualRegister(Register Reg,
1026                                          SmallVectorImpl<unsigned> *Ops) const {
1027   bool PartDef = false; // Partial redefine.
1028   bool FullDef = false; // Full define.
1029   bool Use = false;
1030 
1031   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1032     const MachineOperand &MO = getOperand(i);
1033     if (!MO.isReg() || MO.getReg() != Reg)
1034       continue;
1035     if (Ops)
1036       Ops->push_back(i);
1037     if (MO.isUse())
1038       Use |= !MO.isUndef();
1039     else if (MO.getSubReg() && !MO.isUndef())
1040       // A partial def undef doesn't count as reading the register.
1041       PartDef = true;
1042     else
1043       FullDef = true;
1044   }
1045   // A partial redefine uses Reg unless there is also a full define.
1046   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1047 }
1048 
1049 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1050 /// the specified register or -1 if it is not found. If isDead is true, defs
1051 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1052 /// also checks if there is a def of a super-register.
1053 int
1054 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap,
1055                                         const TargetRegisterInfo *TRI) const {
1056   bool isPhys = Register::isPhysicalRegister(Reg);
1057   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1058     const MachineOperand &MO = getOperand(i);
1059     // Accept regmask operands when Overlap is set.
1060     // Ignore them when looking for a specific def operand (Overlap == false).
1061     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1062       return i;
1063     if (!MO.isReg() || !MO.isDef())
1064       continue;
1065     Register MOReg = MO.getReg();
1066     bool Found = (MOReg == Reg);
1067     if (!Found && TRI && isPhys && Register::isPhysicalRegister(MOReg)) {
1068       if (Overlap)
1069         Found = TRI->regsOverlap(MOReg, Reg);
1070       else
1071         Found = TRI->isSubRegister(MOReg, Reg);
1072     }
1073     if (Found && (!isDead || MO.isDead()))
1074       return i;
1075   }
1076   return -1;
1077 }
1078 
1079 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1080 /// operand list that is used to represent the predicate. It returns -1 if
1081 /// none is found.
1082 int MachineInstr::findFirstPredOperandIdx() const {
1083   // Don't call MCID.findFirstPredOperandIdx() because this variant
1084   // is sometimes called on an instruction that's not yet complete, and
1085   // so the number of operands is less than the MCID indicates. In
1086   // particular, the PTX target does this.
1087   const MCInstrDesc &MCID = getDesc();
1088   if (MCID.isPredicable()) {
1089     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1090       if (MCID.OpInfo[i].isPredicate())
1091         return i;
1092   }
1093 
1094   return -1;
1095 }
1096 
1097 // MachineOperand::TiedTo is 4 bits wide.
1098 const unsigned TiedMax = 15;
1099 
1100 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1101 ///
1102 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1103 /// field. TiedTo can have these values:
1104 ///
1105 /// 0:              Operand is not tied to anything.
1106 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1107 /// TiedMax:        Tied to an operand >= TiedMax-1.
1108 ///
1109 /// The tied def must be one of the first TiedMax operands on a normal
1110 /// instruction. INLINEASM instructions allow more tied defs.
1111 ///
1112 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1113   MachineOperand &DefMO = getOperand(DefIdx);
1114   MachineOperand &UseMO = getOperand(UseIdx);
1115   assert(DefMO.isDef() && "DefIdx must be a def operand");
1116   assert(UseMO.isUse() && "UseIdx must be a use operand");
1117   assert(!DefMO.isTied() && "Def is already tied to another use");
1118   assert(!UseMO.isTied() && "Use is already tied to another def");
1119 
1120   if (DefIdx < TiedMax)
1121     UseMO.TiedTo = DefIdx + 1;
1122   else {
1123     // Inline asm can use the group descriptors to find tied operands,
1124     // statepoint tied operands are trivial to match (1-1 reg def with reg use),
1125     // but on normal instruction, the tied def must be within the first TiedMax
1126     // operands.
1127     assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) &&
1128            "DefIdx out of range");
1129     UseMO.TiedTo = TiedMax;
1130   }
1131 
1132   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1133   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1134 }
1135 
1136 /// Given the index of a tied register operand, find the operand it is tied to.
1137 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1138 /// which must exist.
1139 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1140   const MachineOperand &MO = getOperand(OpIdx);
1141   assert(MO.isTied() && "Operand isn't tied");
1142 
1143   // Normally TiedTo is in range.
1144   if (MO.TiedTo < TiedMax)
1145     return MO.TiedTo - 1;
1146 
1147   // Uses on normal instructions can be out of range.
1148   if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) {
1149     // Normal tied defs must be in the 0..TiedMax-1 range.
1150     if (MO.isUse())
1151       return TiedMax - 1;
1152     // MO is a def. Search for the tied use.
1153     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1154       const MachineOperand &UseMO = getOperand(i);
1155       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1156         return i;
1157     }
1158     llvm_unreachable("Can't find tied use");
1159   }
1160 
1161   if (getOpcode() == TargetOpcode::STATEPOINT) {
1162     // In STATEPOINT defs correspond 1-1 to GC pointer operands passed
1163     // on registers.
1164     StatepointOpers SO(this);
1165     unsigned CurUseIdx = SO.getFirstGCPtrIdx();
1166     assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied");
1167     unsigned NumDefs = getNumDefs();
1168     for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) {
1169       while (!getOperand(CurUseIdx).isReg())
1170         CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1171       if (OpIdx == CurDefIdx)
1172         return CurUseIdx;
1173       if (OpIdx == CurUseIdx)
1174         return CurDefIdx;
1175       CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1176     }
1177     llvm_unreachable("Can't find tied use");
1178   }
1179 
1180   // Now deal with inline asm by parsing the operand group descriptor flags.
1181   // Find the beginning of each operand group.
1182   SmallVector<unsigned, 8> GroupIdx;
1183   unsigned OpIdxGroup = ~0u;
1184   unsigned NumOps;
1185   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1186        i += NumOps) {
1187     const MachineOperand &FlagMO = getOperand(i);
1188     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1189     unsigned CurGroup = GroupIdx.size();
1190     GroupIdx.push_back(i);
1191     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1192     // OpIdx belongs to this operand group.
1193     if (OpIdx > i && OpIdx < i + NumOps)
1194       OpIdxGroup = CurGroup;
1195     unsigned TiedGroup;
1196     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1197       continue;
1198     // Operands in this group are tied to operands in TiedGroup which must be
1199     // earlier. Find the number of operands between the two groups.
1200     unsigned Delta = i - GroupIdx[TiedGroup];
1201 
1202     // OpIdx is a use tied to TiedGroup.
1203     if (OpIdxGroup == CurGroup)
1204       return OpIdx - Delta;
1205 
1206     // OpIdx is a def tied to this use group.
1207     if (OpIdxGroup == TiedGroup)
1208       return OpIdx + Delta;
1209   }
1210   llvm_unreachable("Invalid tied operand on inline asm");
1211 }
1212 
1213 /// clearKillInfo - Clears kill flags on all operands.
1214 ///
1215 void MachineInstr::clearKillInfo() {
1216   for (MachineOperand &MO : operands()) {
1217     if (MO.isReg() && MO.isUse())
1218       MO.setIsKill(false);
1219   }
1220 }
1221 
1222 void MachineInstr::substituteRegister(Register FromReg, Register ToReg,
1223                                       unsigned SubIdx,
1224                                       const TargetRegisterInfo &RegInfo) {
1225   if (Register::isPhysicalRegister(ToReg)) {
1226     if (SubIdx)
1227       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1228     for (MachineOperand &MO : operands()) {
1229       if (!MO.isReg() || MO.getReg() != FromReg)
1230         continue;
1231       MO.substPhysReg(ToReg, RegInfo);
1232     }
1233   } else {
1234     for (MachineOperand &MO : operands()) {
1235       if (!MO.isReg() || MO.getReg() != FromReg)
1236         continue;
1237       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1238     }
1239   }
1240 }
1241 
1242 /// isSafeToMove - Return true if it is safe to move this instruction. If
1243 /// SawStore is set to true, it means that there is a store (or call) between
1244 /// the instruction's location and its intended destination.
1245 bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const {
1246   // Ignore stuff that we obviously can't move.
1247   //
1248   // Treat volatile loads as stores. This is not strictly necessary for
1249   // volatiles, but it is required for atomic loads. It is not allowed to move
1250   // a load across an atomic load with Ordering > Monotonic.
1251   if (mayStore() || isCall() || isPHI() ||
1252       (mayLoad() && hasOrderedMemoryRef())) {
1253     SawStore = true;
1254     return false;
1255   }
1256 
1257   if (isPosition() || isDebugInstr() || isTerminator() ||
1258       mayRaiseFPException() || hasUnmodeledSideEffects())
1259     return false;
1260 
1261   // See if this instruction does a load.  If so, we have to guarantee that the
1262   // loaded value doesn't change between the load and the its intended
1263   // destination. The check for isInvariantLoad gives the target the chance to
1264   // classify the load as always returning a constant, e.g. a constant pool
1265   // load.
1266   if (mayLoad() && !isDereferenceableInvariantLoad())
1267     // Otherwise, this is a real load.  If there is a store between the load and
1268     // end of block, we can't move it.
1269     return !SawStore;
1270 
1271   return true;
1272 }
1273 
1274 static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, AAResults *AA,
1275                                  bool UseTBAA, const MachineMemOperand *MMOa,
1276                                  const MachineMemOperand *MMOb) {
1277   // The following interface to AA is fashioned after DAGCombiner::isAlias and
1278   // operates with MachineMemOperand offset with some important assumptions:
1279   //   - LLVM fundamentally assumes flat address spaces.
1280   //   - MachineOperand offset can *only* result from legalization and cannot
1281   //     affect queries other than the trivial case of overlap checking.
1282   //   - These offsets never wrap and never step outside of allocated objects.
1283   //   - There should never be any negative offsets here.
1284   //
1285   // FIXME: Modify API to hide this math from "user"
1286   // Even before we go to AA we can reason locally about some memory objects. It
1287   // can save compile time, and possibly catch some corner cases not currently
1288   // covered.
1289 
1290   int64_t OffsetA = MMOa->getOffset();
1291   int64_t OffsetB = MMOb->getOffset();
1292   int64_t MinOffset = std::min(OffsetA, OffsetB);
1293 
1294   uint64_t WidthA = MMOa->getSize();
1295   uint64_t WidthB = MMOb->getSize();
1296   bool KnownWidthA = WidthA != MemoryLocation::UnknownSize;
1297   bool KnownWidthB = WidthB != MemoryLocation::UnknownSize;
1298 
1299   const Value *ValA = MMOa->getValue();
1300   const Value *ValB = MMOb->getValue();
1301   bool SameVal = (ValA && ValB && (ValA == ValB));
1302   if (!SameVal) {
1303     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1304     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1305     if (PSVa && ValB && !PSVa->mayAlias(&MFI))
1306       return false;
1307     if (PSVb && ValA && !PSVb->mayAlias(&MFI))
1308       return false;
1309     if (PSVa && PSVb && (PSVa == PSVb))
1310       SameVal = true;
1311   }
1312 
1313   if (SameVal) {
1314     if (!KnownWidthA || !KnownWidthB)
1315       return true;
1316     int64_t MaxOffset = std::max(OffsetA, OffsetB);
1317     int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
1318     return (MinOffset + LowWidth > MaxOffset);
1319   }
1320 
1321   if (!AA)
1322     return true;
1323 
1324   if (!ValA || !ValB)
1325     return true;
1326 
1327   assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
1328   assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
1329 
1330   int64_t OverlapA =
1331       KnownWidthA ? WidthA + OffsetA - MinOffset : MemoryLocation::UnknownSize;
1332   int64_t OverlapB =
1333       KnownWidthB ? WidthB + OffsetB - MinOffset : MemoryLocation::UnknownSize;
1334 
1335   return !AA->isNoAlias(
1336       MemoryLocation(ValA, OverlapA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1337       MemoryLocation(ValB, OverlapB,
1338                      UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1339 }
1340 
1341 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other,
1342                             bool UseTBAA) const {
1343   const MachineFunction *MF = getMF();
1344   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1345   const MachineFrameInfo &MFI = MF->getFrameInfo();
1346 
1347   // Exclude call instruction which may alter the memory but can not be handled
1348   // by this function.
1349   if (isCall() || Other.isCall())
1350     return true;
1351 
1352   // If neither instruction stores to memory, they can't alias in any
1353   // meaningful way, even if they read from the same address.
1354   if (!mayStore() && !Other.mayStore())
1355     return false;
1356 
1357   // Both instructions must be memory operations to be able to alias.
1358   if (!mayLoadOrStore() || !Other.mayLoadOrStore())
1359     return false;
1360 
1361   // Let the target decide if memory accesses cannot possibly overlap.
1362   if (TII->areMemAccessesTriviallyDisjoint(*this, Other))
1363     return false;
1364 
1365   // Memory operations without memory operands may access anything. Be
1366   // conservative and assume `MayAlias`.
1367   if (memoperands_empty() || Other.memoperands_empty())
1368     return true;
1369 
1370   // Skip if there are too many memory operands.
1371   auto NumChecks = getNumMemOperands() * Other.getNumMemOperands();
1372   if (NumChecks > TII->getMemOperandAACheckLimit())
1373     return true;
1374 
1375   // Check each pair of memory operands from both instructions, which can't
1376   // alias only if all pairs won't alias.
1377   for (auto *MMOa : memoperands())
1378     for (auto *MMOb : Other.memoperands())
1379       if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb))
1380         return true;
1381 
1382   return false;
1383 }
1384 
1385 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1386 /// or volatile memory reference, or if the information describing the memory
1387 /// reference is not available. Return false if it is known to have no ordered
1388 /// memory references.
1389 bool MachineInstr::hasOrderedMemoryRef() const {
1390   // An instruction known never to access memory won't have a volatile access.
1391   if (!mayStore() &&
1392       !mayLoad() &&
1393       !isCall() &&
1394       !hasUnmodeledSideEffects())
1395     return false;
1396 
1397   // Otherwise, if the instruction has no memory reference information,
1398   // conservatively assume it wasn't preserved.
1399   if (memoperands_empty())
1400     return true;
1401 
1402   // Check if any of our memory operands are ordered.
1403   return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1404     return !MMO->isUnordered();
1405   });
1406 }
1407 
1408 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1409 /// trap and is loading from a location whose value is invariant across a run of
1410 /// this function.
1411 bool MachineInstr::isDereferenceableInvariantLoad() const {
1412   // If the instruction doesn't load at all, it isn't an invariant load.
1413   if (!mayLoad())
1414     return false;
1415 
1416   // If the instruction has lost its memoperands, conservatively assume that
1417   // it may not be an invariant load.
1418   if (memoperands_empty())
1419     return false;
1420 
1421   const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1422 
1423   for (MachineMemOperand *MMO : memoperands()) {
1424     if (!MMO->isUnordered())
1425       // If the memory operand has ordering side effects, we can't move the
1426       // instruction.  Such an instruction is technically an invariant load,
1427       // but the caller code would need updated to expect that.
1428       return false;
1429     if (MMO->isStore()) return false;
1430     if (MMO->isInvariant() && MMO->isDereferenceable())
1431       continue;
1432 
1433     // A load from a constant PseudoSourceValue is invariant.
1434     if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) {
1435       if (PSV->isConstant(&MFI))
1436         continue;
1437     }
1438 
1439     // Otherwise assume conservatively.
1440     return false;
1441   }
1442 
1443   // Everything checks out.
1444   return true;
1445 }
1446 
1447 /// isConstantValuePHI - If the specified instruction is a PHI that always
1448 /// merges together the same virtual register, return the register, otherwise
1449 /// return 0.
1450 unsigned MachineInstr::isConstantValuePHI() const {
1451   if (!isPHI())
1452     return 0;
1453   assert(getNumOperands() >= 3 &&
1454          "It's illegal to have a PHI without source operands");
1455 
1456   Register Reg = getOperand(1).getReg();
1457   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1458     if (getOperand(i).getReg() != Reg)
1459       return 0;
1460   return Reg;
1461 }
1462 
1463 bool MachineInstr::hasUnmodeledSideEffects() const {
1464   if (hasProperty(MCID::UnmodeledSideEffects))
1465     return true;
1466   if (isInlineAsm()) {
1467     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1468     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1469       return true;
1470   }
1471 
1472   return false;
1473 }
1474 
1475 bool MachineInstr::isLoadFoldBarrier() const {
1476   return mayStore() || isCall() ||
1477          (hasUnmodeledSideEffects() && !isPseudoProbe());
1478 }
1479 
1480 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1481 ///
1482 bool MachineInstr::allDefsAreDead() const {
1483   for (const MachineOperand &MO : operands()) {
1484     if (!MO.isReg() || MO.isUse())
1485       continue;
1486     if (!MO.isDead())
1487       return false;
1488   }
1489   return true;
1490 }
1491 
1492 /// copyImplicitOps - Copy implicit register operands from specified
1493 /// instruction to this instruction.
1494 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1495                                    const MachineInstr &MI) {
1496   for (const MachineOperand &MO :
1497        llvm::drop_begin(MI.operands(), MI.getDesc().getNumOperands()))
1498     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1499       addOperand(MF, MO);
1500 }
1501 
1502 bool MachineInstr::hasComplexRegisterTies() const {
1503   const MCInstrDesc &MCID = getDesc();
1504   if (MCID.Opcode == TargetOpcode::STATEPOINT)
1505     return true;
1506   for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
1507     const auto &Operand = getOperand(I);
1508     if (!Operand.isReg() || Operand.isDef())
1509       // Ignore the defined registers as MCID marks only the uses as tied.
1510       continue;
1511     int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
1512     int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
1513     if (ExpectedTiedIdx != TiedIdx)
1514       return true;
1515   }
1516   return false;
1517 }
1518 
1519 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1520                                  const MachineRegisterInfo &MRI) const {
1521   const MachineOperand &Op = getOperand(OpIdx);
1522   if (!Op.isReg())
1523     return LLT{};
1524 
1525   if (isVariadic() || OpIdx >= getNumExplicitOperands())
1526     return MRI.getType(Op.getReg());
1527 
1528   auto &OpInfo = getDesc().OpInfo[OpIdx];
1529   if (!OpInfo.isGenericType())
1530     return MRI.getType(Op.getReg());
1531 
1532   if (PrintedTypes[OpInfo.getGenericTypeIndex()])
1533     return LLT{};
1534 
1535   LLT TypeToPrint = MRI.getType(Op.getReg());
1536   // Don't mark the type index printed if it wasn't actually printed: maybe
1537   // another operand with the same type index has an actual type attached:
1538   if (TypeToPrint.isValid())
1539     PrintedTypes.set(OpInfo.getGenericTypeIndex());
1540   return TypeToPrint;
1541 }
1542 
1543 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1544 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1545   dbgs() << "  ";
1546   print(dbgs());
1547 }
1548 
1549 LLVM_DUMP_METHOD void MachineInstr::dumprImpl(
1550     const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
1551     SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const {
1552   if (Depth >= MaxDepth)
1553     return;
1554   if (!AlreadySeenInstrs.insert(this).second)
1555     return;
1556   // PadToColumn always inserts at least one space.
1557   // Don't mess up the alignment if we don't want any space.
1558   if (Depth)
1559     fdbgs().PadToColumn(Depth * 2);
1560   print(fdbgs());
1561   for (const MachineOperand &MO : operands()) {
1562     if (!MO.isReg() || MO.isDef())
1563       continue;
1564     Register Reg = MO.getReg();
1565     if (Reg.isPhysical())
1566       continue;
1567     const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg);
1568     if (NewMI == nullptr)
1569       continue;
1570     NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs);
1571   }
1572 }
1573 
1574 LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI,
1575                                           unsigned MaxDepth) const {
1576   SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs;
1577   dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs);
1578 }
1579 #endif
1580 
1581 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
1582                          bool SkipDebugLoc, bool AddNewLine,
1583                          const TargetInstrInfo *TII) const {
1584   const Module *M = nullptr;
1585   const Function *F = nullptr;
1586   if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1587     F = &MF->getFunction();
1588     M = F->getParent();
1589     if (!TII)
1590       TII = MF->getSubtarget().getInstrInfo();
1591   }
1592 
1593   ModuleSlotTracker MST(M);
1594   if (F)
1595     MST.incorporateFunction(*F);
1596   print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII);
1597 }
1598 
1599 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1600                          bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
1601                          bool AddNewLine, const TargetInstrInfo *TII) const {
1602   // We can be a bit tidier if we know the MachineFunction.
1603   const TargetRegisterInfo *TRI = nullptr;
1604   const MachineRegisterInfo *MRI = nullptr;
1605   const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1606   tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
1607 
1608   if (isCFIInstruction())
1609     assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1610 
1611   SmallBitVector PrintedTypes(8);
1612   bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies();
1613   auto getTiedOperandIdx = [&](unsigned OpIdx) {
1614     if (!ShouldPrintRegisterTies)
1615       return 0U;
1616     const MachineOperand &MO = getOperand(OpIdx);
1617     if (MO.isReg() && MO.isTied() && !MO.isDef())
1618       return findTiedOperandIdx(OpIdx);
1619     return 0U;
1620   };
1621   unsigned StartOp = 0;
1622   unsigned e = getNumOperands();
1623 
1624   // Print explicitly defined operands on the left of an assignment syntax.
1625   while (StartOp < e) {
1626     const MachineOperand &MO = getOperand(StartOp);
1627     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
1628       break;
1629 
1630     if (StartOp != 0)
1631       OS << ", ";
1632 
1633     LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
1634     unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
1635     MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone,
1636              ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1637     ++StartOp;
1638   }
1639 
1640   if (StartOp != 0)
1641     OS << " = ";
1642 
1643   if (getFlag(MachineInstr::FrameSetup))
1644     OS << "frame-setup ";
1645   if (getFlag(MachineInstr::FrameDestroy))
1646     OS << "frame-destroy ";
1647   if (getFlag(MachineInstr::FmNoNans))
1648     OS << "nnan ";
1649   if (getFlag(MachineInstr::FmNoInfs))
1650     OS << "ninf ";
1651   if (getFlag(MachineInstr::FmNsz))
1652     OS << "nsz ";
1653   if (getFlag(MachineInstr::FmArcp))
1654     OS << "arcp ";
1655   if (getFlag(MachineInstr::FmContract))
1656     OS << "contract ";
1657   if (getFlag(MachineInstr::FmAfn))
1658     OS << "afn ";
1659   if (getFlag(MachineInstr::FmReassoc))
1660     OS << "reassoc ";
1661   if (getFlag(MachineInstr::NoUWrap))
1662     OS << "nuw ";
1663   if (getFlag(MachineInstr::NoSWrap))
1664     OS << "nsw ";
1665   if (getFlag(MachineInstr::IsExact))
1666     OS << "exact ";
1667   if (getFlag(MachineInstr::NoFPExcept))
1668     OS << "nofpexcept ";
1669   if (getFlag(MachineInstr::NoMerge))
1670     OS << "nomerge ";
1671 
1672   // Print the opcode name.
1673   if (TII)
1674     OS << TII->getName(getOpcode());
1675   else
1676     OS << "UNKNOWN";
1677 
1678   if (SkipOpers)
1679     return;
1680 
1681   // Print the rest of the operands.
1682   bool FirstOp = true;
1683   unsigned AsmDescOp = ~0u;
1684   unsigned AsmOpCount = 0;
1685 
1686   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1687     // Print asm string.
1688     OS << " ";
1689     const unsigned OpIdx = InlineAsm::MIOp_AsmString;
1690     LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
1691     unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
1692     getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone,
1693                             ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1694                             IntrinsicInfo);
1695 
1696     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1697     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1698     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1699       OS << " [sideeffect]";
1700     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1701       OS << " [mayload]";
1702     if (ExtraInfo & InlineAsm::Extra_MayStore)
1703       OS << " [maystore]";
1704     if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1705       OS << " [isconvergent]";
1706     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1707       OS << " [alignstack]";
1708     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1709       OS << " [attdialect]";
1710     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1711       OS << " [inteldialect]";
1712 
1713     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1714     FirstOp = false;
1715   }
1716 
1717   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1718     const MachineOperand &MO = getOperand(i);
1719 
1720     if (FirstOp) FirstOp = false; else OS << ",";
1721     OS << " ";
1722 
1723     if (isDebugValue() && MO.isMetadata()) {
1724       // Pretty print DBG_VALUE* instructions.
1725       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1726       if (DIV && !DIV->getName().empty())
1727         OS << "!\"" << DIV->getName() << '\"';
1728       else {
1729         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1730         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1731         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1732                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1733       }
1734     } else if (isDebugLabel() && MO.isMetadata()) {
1735       // Pretty print DBG_LABEL instructions.
1736       auto *DIL = dyn_cast<DILabel>(MO.getMetadata());
1737       if (DIL && !DIL->getName().empty())
1738         OS << "\"" << DIL->getName() << '\"';
1739       else {
1740         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1741         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1742         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1743                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1744       }
1745     } else if (i == AsmDescOp && MO.isImm()) {
1746       // Pretty print the inline asm operand descriptor.
1747       OS << '$' << AsmOpCount++;
1748       unsigned Flag = MO.getImm();
1749       OS << ":[";
1750       OS << InlineAsm::getKindName(InlineAsm::getKind(Flag));
1751 
1752       unsigned RCID = 0;
1753       if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1754           InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1755         if (TRI) {
1756           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1757         } else
1758           OS << ":RC" << RCID;
1759       }
1760 
1761       if (InlineAsm::isMemKind(Flag)) {
1762         unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1763         OS << ":" << InlineAsm::getMemConstraintName(MCID);
1764       }
1765 
1766       unsigned TiedTo = 0;
1767       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1768         OS << " tiedto:$" << TiedTo;
1769 
1770       OS << ']';
1771 
1772       // Compute the index of the next operand descriptor.
1773       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1774     } else {
1775       LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1776       unsigned TiedOperandIdx = getTiedOperandIdx(i);
1777       if (MO.isImm() && isOperandSubregIdx(i))
1778         MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
1779       else
1780         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1781                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1782     }
1783   }
1784 
1785   // Print any optional symbols attached to this instruction as-if they were
1786   // operands.
1787   if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) {
1788     if (!FirstOp) {
1789       FirstOp = false;
1790       OS << ',';
1791     }
1792     OS << " pre-instr-symbol ";
1793     MachineOperand::printSymbol(OS, *PreInstrSymbol);
1794   }
1795   if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) {
1796     if (!FirstOp) {
1797       FirstOp = false;
1798       OS << ',';
1799     }
1800     OS << " post-instr-symbol ";
1801     MachineOperand::printSymbol(OS, *PostInstrSymbol);
1802   }
1803   if (MDNode *HeapAllocMarker = getHeapAllocMarker()) {
1804     if (!FirstOp) {
1805       FirstOp = false;
1806       OS << ',';
1807     }
1808     OS << " heap-alloc-marker ";
1809     HeapAllocMarker->printAsOperand(OS, MST);
1810   }
1811   if (MDNode *PCSections = getPCSections()) {
1812     if (!FirstOp) {
1813       FirstOp = false;
1814       OS << ',';
1815     }
1816     OS << " pcsections ";
1817     PCSections->printAsOperand(OS, MST);
1818   }
1819   if (uint32_t CFIType = getCFIType()) {
1820     if (!FirstOp)
1821       OS << ',';
1822     OS << " cfi-type " << CFIType;
1823   }
1824 
1825   if (DebugInstrNum) {
1826     if (!FirstOp)
1827       OS << ",";
1828     OS << " debug-instr-number " << DebugInstrNum;
1829   }
1830 
1831   if (!SkipDebugLoc) {
1832     if (const DebugLoc &DL = getDebugLoc()) {
1833       if (!FirstOp)
1834         OS << ',';
1835       OS << " debug-location ";
1836       DL->printAsOperand(OS, MST);
1837     }
1838   }
1839 
1840   if (!memoperands_empty()) {
1841     SmallVector<StringRef, 0> SSNs;
1842     const LLVMContext *Context = nullptr;
1843     std::unique_ptr<LLVMContext> CtxPtr;
1844     const MachineFrameInfo *MFI = nullptr;
1845     if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1846       MFI = &MF->getFrameInfo();
1847       Context = &MF->getFunction().getContext();
1848     } else {
1849       CtxPtr = std::make_unique<LLVMContext>();
1850       Context = CtxPtr.get();
1851     }
1852 
1853     OS << " :: ";
1854     bool NeedComma = false;
1855     for (const MachineMemOperand *Op : memoperands()) {
1856       if (NeedComma)
1857         OS << ", ";
1858       Op->print(OS, MST, SSNs, *Context, MFI, TII);
1859       NeedComma = true;
1860     }
1861   }
1862 
1863   if (SkipDebugLoc)
1864     return;
1865 
1866   bool HaveSemi = false;
1867 
1868   // Print debug location information.
1869   if (const DebugLoc &DL = getDebugLoc()) {
1870     if (!HaveSemi) {
1871       OS << ';';
1872       HaveSemi = true;
1873     }
1874     OS << ' ';
1875     DL.print(OS);
1876   }
1877 
1878   // Print extra comments for DEBUG_VALUE.
1879   if (isDebugValue() && getDebugVariableOp().isMetadata()) {
1880     if (!HaveSemi) {
1881       OS << ";";
1882       HaveSemi = true;
1883     }
1884     auto *DV = getDebugVariable();
1885     OS << " line no:" <<  DV->getLine();
1886     if (isIndirectDebugValue())
1887       OS << " indirect";
1888   }
1889   // TODO: DBG_LABEL
1890 
1891   if (AddNewLine)
1892     OS << '\n';
1893 }
1894 
1895 bool MachineInstr::addRegisterKilled(Register IncomingReg,
1896                                      const TargetRegisterInfo *RegInfo,
1897                                      bool AddIfNotFound) {
1898   bool isPhysReg = Register::isPhysicalRegister(IncomingReg);
1899   bool hasAliases = isPhysReg &&
1900     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1901   bool Found = false;
1902   SmallVector<unsigned,4> DeadOps;
1903   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1904     MachineOperand &MO = getOperand(i);
1905     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1906       continue;
1907 
1908     // DEBUG_VALUE nodes do not contribute to code generation and should
1909     // always be ignored. Failure to do so may result in trying to modify
1910     // KILL flags on DEBUG_VALUE nodes.
1911     if (MO.isDebug())
1912       continue;
1913 
1914     Register Reg = MO.getReg();
1915     if (!Reg)
1916       continue;
1917 
1918     if (Reg == IncomingReg) {
1919       if (!Found) {
1920         if (MO.isKill())
1921           // The register is already marked kill.
1922           return true;
1923         if (isPhysReg && isRegTiedToDefOperand(i))
1924           // Two-address uses of physregs must not be marked kill.
1925           return true;
1926         MO.setIsKill();
1927         Found = true;
1928       }
1929     } else if (hasAliases && MO.isKill() && Register::isPhysicalRegister(Reg)) {
1930       // A super-register kill already exists.
1931       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1932         return true;
1933       if (RegInfo->isSubRegister(IncomingReg, Reg))
1934         DeadOps.push_back(i);
1935     }
1936   }
1937 
1938   // Trim unneeded kill operands.
1939   while (!DeadOps.empty()) {
1940     unsigned OpIdx = DeadOps.back();
1941     if (getOperand(OpIdx).isImplicit() &&
1942         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1943       removeOperand(OpIdx);
1944     else
1945       getOperand(OpIdx).setIsKill(false);
1946     DeadOps.pop_back();
1947   }
1948 
1949   // If not found, this means an alias of one of the operands is killed. Add a
1950   // new implicit operand if required.
1951   if (!Found && AddIfNotFound) {
1952     addOperand(MachineOperand::CreateReg(IncomingReg,
1953                                          false /*IsDef*/,
1954                                          true  /*IsImp*/,
1955                                          true  /*IsKill*/));
1956     return true;
1957   }
1958   return Found;
1959 }
1960 
1961 void MachineInstr::clearRegisterKills(Register Reg,
1962                                       const TargetRegisterInfo *RegInfo) {
1963   if (!Register::isPhysicalRegister(Reg))
1964     RegInfo = nullptr;
1965   for (MachineOperand &MO : operands()) {
1966     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1967       continue;
1968     Register OpReg = MO.getReg();
1969     if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
1970       MO.setIsKill(false);
1971   }
1972 }
1973 
1974 bool MachineInstr::addRegisterDead(Register Reg,
1975                                    const TargetRegisterInfo *RegInfo,
1976                                    bool AddIfNotFound) {
1977   bool isPhysReg = Register::isPhysicalRegister(Reg);
1978   bool hasAliases = isPhysReg &&
1979     MCRegAliasIterator(Reg, RegInfo, false).isValid();
1980   bool Found = false;
1981   SmallVector<unsigned,4> DeadOps;
1982   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1983     MachineOperand &MO = getOperand(i);
1984     if (!MO.isReg() || !MO.isDef())
1985       continue;
1986     Register MOReg = MO.getReg();
1987     if (!MOReg)
1988       continue;
1989 
1990     if (MOReg == Reg) {
1991       MO.setIsDead();
1992       Found = true;
1993     } else if (hasAliases && MO.isDead() &&
1994                Register::isPhysicalRegister(MOReg)) {
1995       // There exists a super-register that's marked dead.
1996       if (RegInfo->isSuperRegister(Reg, MOReg))
1997         return true;
1998       if (RegInfo->isSubRegister(Reg, MOReg))
1999         DeadOps.push_back(i);
2000     }
2001   }
2002 
2003   // Trim unneeded dead operands.
2004   while (!DeadOps.empty()) {
2005     unsigned OpIdx = DeadOps.back();
2006     if (getOperand(OpIdx).isImplicit() &&
2007         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
2008       removeOperand(OpIdx);
2009     else
2010       getOperand(OpIdx).setIsDead(false);
2011     DeadOps.pop_back();
2012   }
2013 
2014   // If not found, this means an alias of one of the operands is dead. Add a
2015   // new implicit operand if required.
2016   if (Found || !AddIfNotFound)
2017     return Found;
2018 
2019   addOperand(MachineOperand::CreateReg(Reg,
2020                                        true  /*IsDef*/,
2021                                        true  /*IsImp*/,
2022                                        false /*IsKill*/,
2023                                        true  /*IsDead*/));
2024   return true;
2025 }
2026 
2027 void MachineInstr::clearRegisterDeads(Register Reg) {
2028   for (MachineOperand &MO : operands()) {
2029     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
2030       continue;
2031     MO.setIsDead(false);
2032   }
2033 }
2034 
2035 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) {
2036   for (MachineOperand &MO : operands()) {
2037     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
2038       continue;
2039     MO.setIsUndef(IsUndef);
2040   }
2041 }
2042 
2043 void MachineInstr::addRegisterDefined(Register Reg,
2044                                       const TargetRegisterInfo *RegInfo) {
2045   if (Register::isPhysicalRegister(Reg)) {
2046     MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo);
2047     if (MO)
2048       return;
2049   } else {
2050     for (const MachineOperand &MO : operands()) {
2051       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
2052           MO.getSubReg() == 0)
2053         return;
2054     }
2055   }
2056   addOperand(MachineOperand::CreateReg(Reg,
2057                                        true  /*IsDef*/,
2058                                        true  /*IsImp*/));
2059 }
2060 
2061 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
2062                                          const TargetRegisterInfo &TRI) {
2063   bool HasRegMask = false;
2064   for (MachineOperand &MO : operands()) {
2065     if (MO.isRegMask()) {
2066       HasRegMask = true;
2067       continue;
2068     }
2069     if (!MO.isReg() || !MO.isDef()) continue;
2070     Register Reg = MO.getReg();
2071     if (!Reg.isPhysical())
2072       continue;
2073     // If there are no uses, including partial uses, the def is dead.
2074     if (llvm::none_of(UsedRegs,
2075                       [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); }))
2076       MO.setIsDead();
2077   }
2078 
2079   // This is a call with a register mask operand.
2080   // Mask clobbers are always dead, so add defs for the non-dead defines.
2081   if (HasRegMask)
2082     for (const Register &UsedReg : UsedRegs)
2083       addRegisterDefined(UsedReg, &TRI);
2084 }
2085 
2086 unsigned
2087 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
2088   // Build up a buffer of hash code components.
2089   SmallVector<size_t, 16> HashComponents;
2090   HashComponents.reserve(MI->getNumOperands() + 1);
2091   HashComponents.push_back(MI->getOpcode());
2092   for (const MachineOperand &MO : MI->operands()) {
2093     if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg()))
2094       continue;  // Skip virtual register defs.
2095 
2096     HashComponents.push_back(hash_value(MO));
2097   }
2098   return hash_combine_range(HashComponents.begin(), HashComponents.end());
2099 }
2100 
2101 void MachineInstr::emitError(StringRef Msg) const {
2102   // Find the source location cookie.
2103   uint64_t LocCookie = 0;
2104   const MDNode *LocMD = nullptr;
2105   for (unsigned i = getNumOperands(); i != 0; --i) {
2106     if (getOperand(i-1).isMetadata() &&
2107         (LocMD = getOperand(i-1).getMetadata()) &&
2108         LocMD->getNumOperands() != 0) {
2109       if (const ConstantInt *CI =
2110               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
2111         LocCookie = CI->getZExtValue();
2112         break;
2113       }
2114     }
2115   }
2116 
2117   if (const MachineBasicBlock *MBB = getParent())
2118     if (const MachineFunction *MF = MBB->getParent())
2119       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2120   report_fatal_error(Msg);
2121 }
2122 
2123 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2124                                   const MCInstrDesc &MCID, bool IsIndirect,
2125                                   Register Reg, const MDNode *Variable,
2126                                   const MDNode *Expr) {
2127   assert(isa<DILocalVariable>(Variable) && "not a variable");
2128   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2129   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2130          "Expected inlined-at fields to agree");
2131   auto MIB = BuildMI(MF, DL, MCID).addReg(Reg);
2132   if (IsIndirect)
2133     MIB.addImm(0U);
2134   else
2135     MIB.addReg(0U);
2136   return MIB.addMetadata(Variable).addMetadata(Expr);
2137 }
2138 
2139 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2140                                   const MCInstrDesc &MCID, bool IsIndirect,
2141                                   ArrayRef<MachineOperand> DebugOps,
2142                                   const MDNode *Variable, const MDNode *Expr) {
2143   assert(isa<DILocalVariable>(Variable) && "not a variable");
2144   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2145   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2146          "Expected inlined-at fields to agree");
2147   if (MCID.Opcode == TargetOpcode::DBG_VALUE) {
2148     assert(DebugOps.size() == 1 &&
2149            "DBG_VALUE must contain exactly one debug operand");
2150     MachineOperand DebugOp = DebugOps[0];
2151     if (DebugOp.isReg())
2152       return BuildMI(MF, DL, MCID, IsIndirect, DebugOp.getReg(), Variable,
2153                      Expr);
2154 
2155     auto MIB = BuildMI(MF, DL, MCID).add(DebugOp);
2156     if (IsIndirect)
2157       MIB.addImm(0U);
2158     else
2159       MIB.addReg(0U);
2160     return MIB.addMetadata(Variable).addMetadata(Expr);
2161   }
2162 
2163   auto MIB = BuildMI(MF, DL, MCID);
2164   MIB.addMetadata(Variable).addMetadata(Expr);
2165   for (const MachineOperand &DebugOp : DebugOps)
2166     if (DebugOp.isReg())
2167       MIB.addReg(DebugOp.getReg());
2168     else
2169       MIB.add(DebugOp);
2170   return MIB;
2171 }
2172 
2173 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2174                                   MachineBasicBlock::iterator I,
2175                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2176                                   bool IsIndirect, Register Reg,
2177                                   const MDNode *Variable, const MDNode *Expr) {
2178   MachineFunction &MF = *BB.getParent();
2179   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
2180   BB.insert(I, MI);
2181   return MachineInstrBuilder(MF, MI);
2182 }
2183 
2184 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2185                                   MachineBasicBlock::iterator I,
2186                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2187                                   bool IsIndirect,
2188                                   ArrayRef<MachineOperand> DebugOps,
2189                                   const MDNode *Variable, const MDNode *Expr) {
2190   MachineFunction &MF = *BB.getParent();
2191   MachineInstr *MI =
2192       BuildMI(MF, DL, MCID, IsIndirect, DebugOps, Variable, Expr);
2193   BB.insert(I, MI);
2194   return MachineInstrBuilder(MF, *MI);
2195 }
2196 
2197 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2198 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
2199 static const DIExpression *
2200 computeExprForSpill(const MachineInstr &MI,
2201                     SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
2202   assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
2203          "Expected inlined-at fields to agree");
2204 
2205   const DIExpression *Expr = MI.getDebugExpression();
2206   if (MI.isIndirectDebugValue()) {
2207     assert(MI.getDebugOffset().getImm() == 0 &&
2208            "DBG_VALUE with nonzero offset");
2209     Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
2210   } else if (MI.isDebugValueList()) {
2211     // We will replace the spilled register with a frame index, so
2212     // immediately deref all references to the spilled register.
2213     std::array<uint64_t, 1> Ops{{dwarf::DW_OP_deref}};
2214     for (const MachineOperand *Op : SpilledOperands) {
2215       unsigned OpIdx = MI.getDebugOperandIndex(Op);
2216       Expr = DIExpression::appendOpsToArg(Expr, Ops, OpIdx);
2217     }
2218   }
2219   return Expr;
2220 }
2221 static const DIExpression *computeExprForSpill(const MachineInstr &MI,
2222                                                Register SpillReg) {
2223   assert(MI.hasDebugOperandForReg(SpillReg) && "Spill Reg is not used in MI.");
2224   SmallVector<const MachineOperand *> SpillOperands;
2225   for (const MachineOperand &Op : MI.getDebugOperandsForReg(SpillReg))
2226     SpillOperands.push_back(&Op);
2227   return computeExprForSpill(MI, SpillOperands);
2228 }
2229 
2230 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
2231                                           MachineBasicBlock::iterator I,
2232                                           const MachineInstr &Orig,
2233                                           int FrameIndex, Register SpillReg) {
2234   assert(!Orig.isDebugRef() &&
2235          "DBG_INSTR_REF should not reference a virtual register.");
2236   const DIExpression *Expr = computeExprForSpill(Orig, SpillReg);
2237   MachineInstrBuilder NewMI =
2238       BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc());
2239   // Non-Variadic Operands: Location, Offset, Variable, Expression
2240   // Variadic Operands:     Variable, Expression, Locations...
2241   if (Orig.isNonListDebugValue())
2242     NewMI.addFrameIndex(FrameIndex).addImm(0U);
2243   NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr);
2244   if (Orig.isDebugValueList()) {
2245     for (const MachineOperand &Op : Orig.debug_operands())
2246       if (Op.isReg() && Op.getReg() == SpillReg)
2247         NewMI.addFrameIndex(FrameIndex);
2248       else
2249         NewMI.add(MachineOperand(Op));
2250   }
2251   return NewMI;
2252 }
2253 MachineInstr *llvm::buildDbgValueForSpill(
2254     MachineBasicBlock &BB, MachineBasicBlock::iterator I,
2255     const MachineInstr &Orig, int FrameIndex,
2256     SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
2257   const DIExpression *Expr = computeExprForSpill(Orig, SpilledOperands);
2258   MachineInstrBuilder NewMI =
2259       BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc());
2260   // Non-Variadic Operands: Location, Offset, Variable, Expression
2261   // Variadic Operands:     Variable, Expression, Locations...
2262   if (Orig.isNonListDebugValue())
2263     NewMI.addFrameIndex(FrameIndex).addImm(0U);
2264   NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr);
2265   if (Orig.isDebugValueList()) {
2266     for (const MachineOperand &Op : Orig.debug_operands())
2267       if (is_contained(SpilledOperands, &Op))
2268         NewMI.addFrameIndex(FrameIndex);
2269       else
2270         NewMI.add(MachineOperand(Op));
2271   }
2272   return NewMI;
2273 }
2274 
2275 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex,
2276                                   Register Reg) {
2277   const DIExpression *Expr = computeExprForSpill(Orig, Reg);
2278   if (Orig.isNonListDebugValue())
2279     Orig.getDebugOffset().ChangeToImmediate(0U);
2280   for (MachineOperand &Op : Orig.getDebugOperandsForReg(Reg))
2281     Op.ChangeToFrameIndex(FrameIndex);
2282   Orig.getDebugExpressionOp().setMetadata(Expr);
2283 }
2284 
2285 void MachineInstr::collectDebugValues(
2286                                 SmallVectorImpl<MachineInstr *> &DbgValues) {
2287   MachineInstr &MI = *this;
2288   if (!MI.getOperand(0).isReg())
2289     return;
2290 
2291   MachineBasicBlock::iterator DI = MI; ++DI;
2292   for (MachineBasicBlock::iterator DE = MI.getParent()->end();
2293        DI != DE; ++DI) {
2294     if (!DI->isDebugValue())
2295       return;
2296     if (DI->hasDebugOperandForReg(MI.getOperand(0).getReg()))
2297       DbgValues.push_back(&*DI);
2298   }
2299 }
2300 
2301 void MachineInstr::changeDebugValuesDefReg(Register Reg) {
2302   // Collect matching debug values.
2303   SmallVector<MachineInstr *, 2> DbgValues;
2304 
2305   if (!getOperand(0).isReg())
2306     return;
2307 
2308   Register DefReg = getOperand(0).getReg();
2309   auto *MRI = getRegInfo();
2310   for (auto &MO : MRI->use_operands(DefReg)) {
2311     auto *DI = MO.getParent();
2312     if (!DI->isDebugValue())
2313       continue;
2314     if (DI->hasDebugOperandForReg(DefReg)) {
2315       DbgValues.push_back(DI);
2316     }
2317   }
2318 
2319   // Propagate Reg to debug value instructions.
2320   for (auto *DBI : DbgValues)
2321     for (MachineOperand &Op : DBI->getDebugOperandsForReg(DefReg))
2322       Op.setReg(Reg);
2323 }
2324 
2325 using MMOList = SmallVector<const MachineMemOperand *, 2>;
2326 
2327 static unsigned getSpillSlotSize(const MMOList &Accesses,
2328                                  const MachineFrameInfo &MFI) {
2329   unsigned Size = 0;
2330   for (const auto *A : Accesses)
2331     if (MFI.isSpillSlotObjectIndex(
2332             cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
2333                 ->getFrameIndex()))
2334       Size += A->getSize();
2335   return Size;
2336 }
2337 
2338 std::optional<unsigned>
2339 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const {
2340   int FI;
2341   if (TII->isStoreToStackSlotPostFE(*this, FI)) {
2342     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2343     if (MFI.isSpillSlotObjectIndex(FI))
2344       return (*memoperands_begin())->getSize();
2345   }
2346   return std::nullopt;
2347 }
2348 
2349 std::optional<unsigned>
2350 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const {
2351   MMOList Accesses;
2352   if (TII->hasStoreToStackSlot(*this, Accesses))
2353     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2354   return std::nullopt;
2355 }
2356 
2357 std::optional<unsigned>
2358 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const {
2359   int FI;
2360   if (TII->isLoadFromStackSlotPostFE(*this, FI)) {
2361     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2362     if (MFI.isSpillSlotObjectIndex(FI))
2363       return (*memoperands_begin())->getSize();
2364   }
2365   return std::nullopt;
2366 }
2367 
2368 std::optional<unsigned>
2369 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const {
2370   MMOList Accesses;
2371   if (TII->hasLoadFromStackSlot(*this, Accesses))
2372     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2373   return std::nullopt;
2374 }
2375 
2376 unsigned MachineInstr::getDebugInstrNum() {
2377   if (DebugInstrNum == 0)
2378     DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum();
2379   return DebugInstrNum;
2380 }
2381 
2382 unsigned MachineInstr::getDebugInstrNum(MachineFunction &MF) {
2383   if (DebugInstrNum == 0)
2384     DebugInstrNum = MF.getNewDebugInstrNum();
2385   return DebugInstrNum;
2386 }
2387