1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/ADT/FoldingSet.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/CodeGen/MachineConstantPool.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineMemOperand.h" 21 #include "llvm/CodeGen/MachineModuleInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/PseudoSourceValue.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DebugInfo.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/InlineAsm.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/Metadata.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/ModuleSlotTracker.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/IR/Value.h" 34 #include "llvm/MC/MCInstrDesc.h" 35 #include "llvm/MC/MCSymbol.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Target/TargetInstrInfo.h" 42 #include "llvm/Target/TargetMachine.h" 43 #include "llvm/Target/TargetRegisterInfo.h" 44 #include "llvm/Target/TargetSubtargetInfo.h" 45 using namespace llvm; 46 47 static cl::opt<bool> PrintWholeRegMask( 48 "print-whole-regmask", 49 cl::desc("Print the full contents of regmask operands in IR dumps"), 50 cl::init(true), cl::Hidden); 51 52 //===----------------------------------------------------------------------===// 53 // MachineOperand Implementation 54 //===----------------------------------------------------------------------===// 55 56 void MachineOperand::setReg(unsigned Reg) { 57 if (getReg() == Reg) return; // No change. 58 59 // Otherwise, we have to change the register. If this operand is embedded 60 // into a machine function, we need to update the old and new register's 61 // use/def lists. 62 if (MachineInstr *MI = getParent()) 63 if (MachineBasicBlock *MBB = MI->getParent()) 64 if (MachineFunction *MF = MBB->getParent()) { 65 MachineRegisterInfo &MRI = MF->getRegInfo(); 66 MRI.removeRegOperandFromUseList(this); 67 SmallContents.RegNo = Reg; 68 MRI.addRegOperandToUseList(this); 69 return; 70 } 71 72 // Otherwise, just change the register, no problem. :) 73 SmallContents.RegNo = Reg; 74 } 75 76 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 77 const TargetRegisterInfo &TRI) { 78 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 79 if (SubIdx && getSubReg()) 80 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 81 setReg(Reg); 82 if (SubIdx) 83 setSubReg(SubIdx); 84 } 85 86 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 87 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 88 if (getSubReg()) { 89 Reg = TRI.getSubReg(Reg, getSubReg()); 90 // Note that getSubReg() may return 0 if the sub-register doesn't exist. 91 // That won't happen in legal code. 92 setSubReg(0); 93 } 94 setReg(Reg); 95 } 96 97 /// Change a def to a use, or a use to a def. 98 void MachineOperand::setIsDef(bool Val) { 99 assert(isReg() && "Wrong MachineOperand accessor"); 100 assert((!Val || !isDebug()) && "Marking a debug operation as def"); 101 if (IsDef == Val) 102 return; 103 // MRI may keep uses and defs in different list positions. 104 if (MachineInstr *MI = getParent()) 105 if (MachineBasicBlock *MBB = MI->getParent()) 106 if (MachineFunction *MF = MBB->getParent()) { 107 MachineRegisterInfo &MRI = MF->getRegInfo(); 108 MRI.removeRegOperandFromUseList(this); 109 IsDef = Val; 110 MRI.addRegOperandToUseList(this); 111 return; 112 } 113 IsDef = Val; 114 } 115 116 // If this operand is currently a register operand, and if this is in a 117 // function, deregister the operand from the register's use/def list. 118 void MachineOperand::removeRegFromUses() { 119 if (!isReg() || !isOnRegUseList()) 120 return; 121 122 if (MachineInstr *MI = getParent()) { 123 if (MachineBasicBlock *MBB = MI->getParent()) { 124 if (MachineFunction *MF = MBB->getParent()) 125 MF->getRegInfo().removeRegOperandFromUseList(this); 126 } 127 } 128 } 129 130 /// ChangeToImmediate - Replace this operand with a new immediate operand of 131 /// the specified value. If an operand is known to be an immediate already, 132 /// the setImm method should be used. 133 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 134 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 135 136 removeRegFromUses(); 137 138 OpKind = MO_Immediate; 139 Contents.ImmVal = ImmVal; 140 } 141 142 void MachineOperand::ChangeToFPImmediate(const ConstantFP *FPImm) { 143 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 144 145 removeRegFromUses(); 146 147 OpKind = MO_FPImmediate; 148 Contents.CFP = FPImm; 149 } 150 151 void MachineOperand::ChangeToES(const char *SymName, unsigned char TargetFlags) { 152 assert((!isReg() || !isTied()) && 153 "Cannot change a tied operand into an external symbol"); 154 155 removeRegFromUses(); 156 157 OpKind = MO_ExternalSymbol; 158 Contents.OffsetedInfo.Val.SymbolName = SymName; 159 setOffset(0); // Offset is always 0. 160 setTargetFlags(TargetFlags); 161 } 162 163 void MachineOperand::ChangeToMCSymbol(MCSymbol *Sym) { 164 assert((!isReg() || !isTied()) && 165 "Cannot change a tied operand into an MCSymbol"); 166 167 removeRegFromUses(); 168 169 OpKind = MO_MCSymbol; 170 Contents.Sym = Sym; 171 } 172 173 /// ChangeToRegister - Replace this operand with a new register operand of 174 /// the specified value. If an operand is known to be an register already, 175 /// the setReg method should be used. 176 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 177 bool isKill, bool isDead, bool isUndef, 178 bool isDebug) { 179 MachineRegisterInfo *RegInfo = nullptr; 180 if (MachineInstr *MI = getParent()) 181 if (MachineBasicBlock *MBB = MI->getParent()) 182 if (MachineFunction *MF = MBB->getParent()) 183 RegInfo = &MF->getRegInfo(); 184 // If this operand is already a register operand, remove it from the 185 // register's use/def lists. 186 bool WasReg = isReg(); 187 if (RegInfo && WasReg) 188 RegInfo->removeRegOperandFromUseList(this); 189 190 // Change this to a register and set the reg#. 191 OpKind = MO_Register; 192 SmallContents.RegNo = Reg; 193 SubReg_TargetFlags = 0; 194 IsDef = isDef; 195 IsImp = isImp; 196 IsKill = isKill; 197 IsDead = isDead; 198 IsUndef = isUndef; 199 IsInternalRead = false; 200 IsEarlyClobber = false; 201 IsDebug = isDebug; 202 // Ensure isOnRegUseList() returns false. 203 Contents.Reg.Prev = nullptr; 204 // Preserve the tie when the operand was already a register. 205 if (!WasReg) 206 TiedTo = 0; 207 208 // If this operand is embedded in a function, add the operand to the 209 // register's use/def list. 210 if (RegInfo) 211 RegInfo->addRegOperandToUseList(this); 212 } 213 214 /// isIdenticalTo - Return true if this operand is identical to the specified 215 /// operand. Note that this should stay in sync with the hash_value overload 216 /// below. 217 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 218 if (getType() != Other.getType() || 219 getTargetFlags() != Other.getTargetFlags()) 220 return false; 221 222 switch (getType()) { 223 case MachineOperand::MO_Register: 224 return getReg() == Other.getReg() && isDef() == Other.isDef() && 225 getSubReg() == Other.getSubReg(); 226 case MachineOperand::MO_Immediate: 227 return getImm() == Other.getImm(); 228 case MachineOperand::MO_CImmediate: 229 return getCImm() == Other.getCImm(); 230 case MachineOperand::MO_FPImmediate: 231 return getFPImm() == Other.getFPImm(); 232 case MachineOperand::MO_MachineBasicBlock: 233 return getMBB() == Other.getMBB(); 234 case MachineOperand::MO_FrameIndex: 235 return getIndex() == Other.getIndex(); 236 case MachineOperand::MO_ConstantPoolIndex: 237 case MachineOperand::MO_TargetIndex: 238 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 239 case MachineOperand::MO_JumpTableIndex: 240 return getIndex() == Other.getIndex(); 241 case MachineOperand::MO_GlobalAddress: 242 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 243 case MachineOperand::MO_ExternalSymbol: 244 return !strcmp(getSymbolName(), Other.getSymbolName()) && 245 getOffset() == Other.getOffset(); 246 case MachineOperand::MO_BlockAddress: 247 return getBlockAddress() == Other.getBlockAddress() && 248 getOffset() == Other.getOffset(); 249 case MachineOperand::MO_RegisterMask: 250 case MachineOperand::MO_RegisterLiveOut: 251 return getRegMask() == Other.getRegMask(); 252 case MachineOperand::MO_MCSymbol: 253 return getMCSymbol() == Other.getMCSymbol(); 254 case MachineOperand::MO_CFIIndex: 255 return getCFIIndex() == Other.getCFIIndex(); 256 case MachineOperand::MO_Metadata: 257 return getMetadata() == Other.getMetadata(); 258 } 259 llvm_unreachable("Invalid machine operand type"); 260 } 261 262 // Note: this must stay exactly in sync with isIdenticalTo above. 263 hash_code llvm::hash_value(const MachineOperand &MO) { 264 switch (MO.getType()) { 265 case MachineOperand::MO_Register: 266 // Register operands don't have target flags. 267 return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef()); 268 case MachineOperand::MO_Immediate: 269 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm()); 270 case MachineOperand::MO_CImmediate: 271 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm()); 272 case MachineOperand::MO_FPImmediate: 273 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm()); 274 case MachineOperand::MO_MachineBasicBlock: 275 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB()); 276 case MachineOperand::MO_FrameIndex: 277 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 278 case MachineOperand::MO_ConstantPoolIndex: 279 case MachineOperand::MO_TargetIndex: 280 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(), 281 MO.getOffset()); 282 case MachineOperand::MO_JumpTableIndex: 283 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 284 case MachineOperand::MO_ExternalSymbol: 285 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(), 286 MO.getSymbolName()); 287 case MachineOperand::MO_GlobalAddress: 288 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(), 289 MO.getOffset()); 290 case MachineOperand::MO_BlockAddress: 291 return hash_combine(MO.getType(), MO.getTargetFlags(), 292 MO.getBlockAddress(), MO.getOffset()); 293 case MachineOperand::MO_RegisterMask: 294 case MachineOperand::MO_RegisterLiveOut: 295 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask()); 296 case MachineOperand::MO_Metadata: 297 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata()); 298 case MachineOperand::MO_MCSymbol: 299 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol()); 300 case MachineOperand::MO_CFIIndex: 301 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex()); 302 } 303 llvm_unreachable("Invalid machine operand type"); 304 } 305 306 void MachineOperand::print(raw_ostream &OS, 307 const TargetRegisterInfo *TRI) const { 308 ModuleSlotTracker DummyMST(nullptr); 309 print(OS, DummyMST, TRI); 310 } 311 312 void MachineOperand::print(raw_ostream &OS, ModuleSlotTracker &MST, 313 const TargetRegisterInfo *TRI) const { 314 switch (getType()) { 315 case MachineOperand::MO_Register: 316 OS << PrintReg(getReg(), TRI, getSubReg()); 317 318 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 319 isInternalRead() || isEarlyClobber() || isTied()) { 320 OS << '<'; 321 bool NeedComma = false; 322 if (isDef()) { 323 if (NeedComma) OS << ','; 324 if (isEarlyClobber()) 325 OS << "earlyclobber,"; 326 if (isImplicit()) 327 OS << "imp-"; 328 OS << "def"; 329 NeedComma = true; 330 // <def,read-undef> only makes sense when getSubReg() is set. 331 // Don't clutter the output otherwise. 332 if (isUndef() && getSubReg()) 333 OS << ",read-undef"; 334 } else if (isImplicit()) { 335 OS << "imp-use"; 336 NeedComma = true; 337 } 338 339 if (isKill()) { 340 if (NeedComma) OS << ','; 341 OS << "kill"; 342 NeedComma = true; 343 } 344 if (isDead()) { 345 if (NeedComma) OS << ','; 346 OS << "dead"; 347 NeedComma = true; 348 } 349 if (isUndef() && isUse()) { 350 if (NeedComma) OS << ','; 351 OS << "undef"; 352 NeedComma = true; 353 } 354 if (isInternalRead()) { 355 if (NeedComma) OS << ','; 356 OS << "internal"; 357 NeedComma = true; 358 } 359 if (isTied()) { 360 if (NeedComma) OS << ','; 361 OS << "tied"; 362 if (TiedTo != 15) 363 OS << unsigned(TiedTo - 1); 364 } 365 OS << '>'; 366 } 367 break; 368 case MachineOperand::MO_Immediate: 369 OS << getImm(); 370 break; 371 case MachineOperand::MO_CImmediate: 372 getCImm()->getValue().print(OS, false); 373 break; 374 case MachineOperand::MO_FPImmediate: 375 if (getFPImm()->getType()->isFloatTy()) { 376 OS << getFPImm()->getValueAPF().convertToFloat(); 377 } else if (getFPImm()->getType()->isHalfTy()) { 378 APFloat APF = getFPImm()->getValueAPF(); 379 bool Unused; 380 APF.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &Unused); 381 OS << "half " << APF.convertToFloat(); 382 } else { 383 OS << getFPImm()->getValueAPF().convertToDouble(); 384 } 385 break; 386 case MachineOperand::MO_MachineBasicBlock: 387 OS << "<BB#" << getMBB()->getNumber() << ">"; 388 break; 389 case MachineOperand::MO_FrameIndex: 390 OS << "<fi#" << getIndex() << '>'; 391 break; 392 case MachineOperand::MO_ConstantPoolIndex: 393 OS << "<cp#" << getIndex(); 394 if (getOffset()) OS << "+" << getOffset(); 395 OS << '>'; 396 break; 397 case MachineOperand::MO_TargetIndex: 398 OS << "<ti#" << getIndex(); 399 if (getOffset()) OS << "+" << getOffset(); 400 OS << '>'; 401 break; 402 case MachineOperand::MO_JumpTableIndex: 403 OS << "<jt#" << getIndex() << '>'; 404 break; 405 case MachineOperand::MO_GlobalAddress: 406 OS << "<ga:"; 407 getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST); 408 if (getOffset()) OS << "+" << getOffset(); 409 OS << '>'; 410 break; 411 case MachineOperand::MO_ExternalSymbol: 412 OS << "<es:" << getSymbolName(); 413 if (getOffset()) OS << "+" << getOffset(); 414 OS << '>'; 415 break; 416 case MachineOperand::MO_BlockAddress: 417 OS << '<'; 418 getBlockAddress()->printAsOperand(OS, /*PrintType=*/false, MST); 419 if (getOffset()) OS << "+" << getOffset(); 420 OS << '>'; 421 break; 422 case MachineOperand::MO_RegisterMask: { 423 unsigned NumRegsInMask = 0; 424 unsigned NumRegsEmitted = 0; 425 OS << "<regmask"; 426 for (unsigned i = 0; i < TRI->getNumRegs(); ++i) { 427 unsigned MaskWord = i / 32; 428 unsigned MaskBit = i % 32; 429 if (getRegMask()[MaskWord] & (1 << MaskBit)) { 430 if (PrintWholeRegMask || NumRegsEmitted <= 10) { 431 OS << " " << PrintReg(i, TRI); 432 NumRegsEmitted++; 433 } 434 NumRegsInMask++; 435 } 436 } 437 if (NumRegsEmitted != NumRegsInMask) 438 OS << " and " << (NumRegsInMask - NumRegsEmitted) << " more..."; 439 OS << ">"; 440 break; 441 } 442 case MachineOperand::MO_RegisterLiveOut: 443 OS << "<regliveout>"; 444 break; 445 case MachineOperand::MO_Metadata: 446 OS << '<'; 447 getMetadata()->printAsOperand(OS, MST); 448 OS << '>'; 449 break; 450 case MachineOperand::MO_MCSymbol: 451 OS << "<MCSym=" << *getMCSymbol() << '>'; 452 break; 453 case MachineOperand::MO_CFIIndex: 454 OS << "<call frame instruction>"; 455 break; 456 } 457 458 if (unsigned TF = getTargetFlags()) 459 OS << "[TF=" << TF << ']'; 460 } 461 462 //===----------------------------------------------------------------------===// 463 // MachineMemOperand Implementation 464 //===----------------------------------------------------------------------===// 465 466 /// getAddrSpace - Return the LLVM IR address space number that this pointer 467 /// points into. 468 unsigned MachinePointerInfo::getAddrSpace() const { 469 if (V.isNull() || V.is<const PseudoSourceValue*>()) return 0; 470 return cast<PointerType>(V.get<const Value*>()->getType())->getAddressSpace(); 471 } 472 473 /// getConstantPool - Return a MachinePointerInfo record that refers to the 474 /// constant pool. 475 MachinePointerInfo MachinePointerInfo::getConstantPool(MachineFunction &MF) { 476 return MachinePointerInfo(MF.getPSVManager().getConstantPool()); 477 } 478 479 /// getFixedStack - Return a MachinePointerInfo record that refers to the 480 /// the specified FrameIndex. 481 MachinePointerInfo MachinePointerInfo::getFixedStack(MachineFunction &MF, 482 int FI, int64_t Offset) { 483 return MachinePointerInfo(MF.getPSVManager().getFixedStack(FI), Offset); 484 } 485 486 MachinePointerInfo MachinePointerInfo::getJumpTable(MachineFunction &MF) { 487 return MachinePointerInfo(MF.getPSVManager().getJumpTable()); 488 } 489 490 MachinePointerInfo MachinePointerInfo::getGOT(MachineFunction &MF) { 491 return MachinePointerInfo(MF.getPSVManager().getGOT()); 492 } 493 494 MachinePointerInfo MachinePointerInfo::getStack(MachineFunction &MF, 495 int64_t Offset) { 496 return MachinePointerInfo(MF.getPSVManager().getStack(), Offset); 497 } 498 499 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f, 500 uint64_t s, unsigned int a, 501 const AAMDNodes &AAInfo, 502 const MDNode *Ranges) 503 : PtrInfo(ptrinfo), Size(s), 504 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)), 505 AAInfo(AAInfo), Ranges(Ranges) { 506 assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() || 507 isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) && 508 "invalid pointer value"); 509 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 510 assert((isLoad() || isStore()) && "Not a load/store!"); 511 } 512 513 /// Profile - Gather unique data for the object. 514 /// 515 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 516 ID.AddInteger(getOffset()); 517 ID.AddInteger(Size); 518 ID.AddPointer(getOpaqueValue()); 519 ID.AddInteger(Flags); 520 } 521 522 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 523 // The Value and Offset may differ due to CSE. But the flags and size 524 // should be the same. 525 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 526 assert(MMO->getSize() == getSize() && "Size mismatch!"); 527 528 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 529 // Update the alignment value. 530 Flags = (Flags & ((1 << MOMaxBits) - 1)) | 531 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits); 532 // Also update the base and offset, because the new alignment may 533 // not be applicable with the old ones. 534 PtrInfo = MMO->PtrInfo; 535 } 536 } 537 538 /// getAlignment - Return the minimum known alignment in bytes of the 539 /// actual memory reference. 540 uint64_t MachineMemOperand::getAlignment() const { 541 return MinAlign(getBaseAlignment(), getOffset()); 542 } 543 544 void MachineMemOperand::print(raw_ostream &OS) const { 545 ModuleSlotTracker DummyMST(nullptr); 546 print(OS, DummyMST); 547 } 548 void MachineMemOperand::print(raw_ostream &OS, ModuleSlotTracker &MST) const { 549 assert((isLoad() || isStore()) && 550 "SV has to be a load, store or both."); 551 552 if (isVolatile()) 553 OS << "Volatile "; 554 555 if (isLoad()) 556 OS << "LD"; 557 if (isStore()) 558 OS << "ST"; 559 OS << getSize(); 560 561 // Print the address information. 562 OS << "["; 563 if (const Value *V = getValue()) 564 V->printAsOperand(OS, /*PrintType=*/false, MST); 565 else if (const PseudoSourceValue *PSV = getPseudoValue()) 566 PSV->printCustom(OS); 567 else 568 OS << "<unknown>"; 569 570 unsigned AS = getAddrSpace(); 571 if (AS != 0) 572 OS << "(addrspace=" << AS << ')'; 573 574 // If the alignment of the memory reference itself differs from the alignment 575 // of the base pointer, print the base alignment explicitly, next to the base 576 // pointer. 577 if (getBaseAlignment() != getAlignment()) 578 OS << "(align=" << getBaseAlignment() << ")"; 579 580 if (getOffset() != 0) 581 OS << "+" << getOffset(); 582 OS << "]"; 583 584 // Print the alignment of the reference. 585 if (getBaseAlignment() != getAlignment() || getBaseAlignment() != getSize()) 586 OS << "(align=" << getAlignment() << ")"; 587 588 // Print TBAA info. 589 if (const MDNode *TBAAInfo = getAAInfo().TBAA) { 590 OS << "(tbaa="; 591 if (TBAAInfo->getNumOperands() > 0) 592 TBAAInfo->getOperand(0)->printAsOperand(OS, MST); 593 else 594 OS << "<unknown>"; 595 OS << ")"; 596 } 597 598 // Print AA scope info. 599 if (const MDNode *ScopeInfo = getAAInfo().Scope) { 600 OS << "(alias.scope="; 601 if (ScopeInfo->getNumOperands() > 0) 602 for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) { 603 ScopeInfo->getOperand(i)->printAsOperand(OS, MST); 604 if (i != ie-1) 605 OS << ","; 606 } 607 else 608 OS << "<unknown>"; 609 OS << ")"; 610 } 611 612 // Print AA noalias scope info. 613 if (const MDNode *NoAliasInfo = getAAInfo().NoAlias) { 614 OS << "(noalias="; 615 if (NoAliasInfo->getNumOperands() > 0) 616 for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) { 617 NoAliasInfo->getOperand(i)->printAsOperand(OS, MST); 618 if (i != ie-1) 619 OS << ","; 620 } 621 else 622 OS << "<unknown>"; 623 OS << ")"; 624 } 625 626 // Print nontemporal info. 627 if (isNonTemporal()) 628 OS << "(nontemporal)"; 629 630 if (isInvariant()) 631 OS << "(invariant)"; 632 } 633 634 //===----------------------------------------------------------------------===// 635 // MachineInstr Implementation 636 //===----------------------------------------------------------------------===// 637 638 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 639 if (MCID->ImplicitDefs) 640 for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; 641 ++ImpDefs) 642 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 643 if (MCID->ImplicitUses) 644 for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses; 645 ++ImpUses) 646 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 647 } 648 649 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 650 /// implicit operands. It reserves space for the number of operands specified by 651 /// the MCInstrDesc. 652 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, 653 DebugLoc dl, bool NoImp) 654 : MCID(&tid), Parent(nullptr), Operands(nullptr), NumOperands(0), Flags(0), 655 AsmPrinterFlags(0), NumMemRefs(0), MemRefs(nullptr), 656 debugLoc(std::move(dl)) 657 #ifdef LLVM_BUILD_GLOBAL_ISEL 658 , 659 Ty(nullptr) 660 #endif 661 { 662 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 663 664 // Reserve space for the expected number of operands. 665 if (unsigned NumOps = MCID->getNumOperands() + 666 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 667 CapOperands = OperandCapacity::get(NumOps); 668 Operands = MF.allocateOperandArray(CapOperands); 669 } 670 671 if (!NoImp) 672 addImplicitDefUseOperands(MF); 673 } 674 675 /// MachineInstr ctor - Copies MachineInstr arg exactly 676 /// 677 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 678 : MCID(&MI.getDesc()), Parent(nullptr), Operands(nullptr), NumOperands(0), 679 Flags(0), AsmPrinterFlags(0), NumMemRefs(MI.NumMemRefs), 680 MemRefs(MI.MemRefs), debugLoc(MI.getDebugLoc()) 681 #ifdef LLVM_BUILD_GLOBAL_ISEL 682 , 683 Ty(nullptr) 684 #endif 685 { 686 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 687 688 CapOperands = OperandCapacity::get(MI.getNumOperands()); 689 Operands = MF.allocateOperandArray(CapOperands); 690 691 // Copy operands. 692 for (const MachineOperand &MO : MI.operands()) 693 addOperand(MF, MO); 694 695 // Copy all the sensible flags. 696 setFlags(MI.Flags); 697 } 698 699 /// getRegInfo - If this instruction is embedded into a MachineFunction, 700 /// return the MachineRegisterInfo object for the current function, otherwise 701 /// return null. 702 MachineRegisterInfo *MachineInstr::getRegInfo() { 703 if (MachineBasicBlock *MBB = getParent()) 704 return &MBB->getParent()->getRegInfo(); 705 return nullptr; 706 } 707 708 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 709 /// this instruction from their respective use lists. This requires that the 710 /// operands already be on their use lists. 711 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 712 for (MachineOperand &MO : operands()) 713 if (MO.isReg()) 714 MRI.removeRegOperandFromUseList(&MO); 715 } 716 717 /// AddRegOperandsToUseLists - Add all of the register operands in 718 /// this instruction from their respective use lists. This requires that the 719 /// operands not be on their use lists yet. 720 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 721 for (MachineOperand &MO : operands()) 722 if (MO.isReg()) 723 MRI.addRegOperandToUseList(&MO); 724 } 725 726 void MachineInstr::addOperand(const MachineOperand &Op) { 727 MachineBasicBlock *MBB = getParent(); 728 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 729 MachineFunction *MF = MBB->getParent(); 730 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 731 addOperand(*MF, Op); 732 } 733 734 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 735 /// ranges. If MRI is non-null also update use-def chains. 736 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 737 unsigned NumOps, MachineRegisterInfo *MRI) { 738 if (MRI) 739 return MRI->moveOperands(Dst, Src, NumOps); 740 741 // MachineOperand is a trivially copyable type so we can just use memmove. 742 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 743 } 744 745 /// addOperand - Add the specified operand to the instruction. If it is an 746 /// implicit operand, it is added to the end of the operand list. If it is 747 /// an explicit operand it is added at the end of the explicit operand list 748 /// (before the first implicit operand). 749 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 750 assert(MCID && "Cannot add operands before providing an instr descriptor"); 751 752 // Check if we're adding one of our existing operands. 753 if (&Op >= Operands && &Op < Operands + NumOperands) { 754 // This is unusual: MI->addOperand(MI->getOperand(i)). 755 // If adding Op requires reallocating or moving existing operands around, 756 // the Op reference could go stale. Support it by copying Op. 757 MachineOperand CopyOp(Op); 758 return addOperand(MF, CopyOp); 759 } 760 761 // Find the insert location for the new operand. Implicit registers go at 762 // the end, everything else goes before the implicit regs. 763 // 764 // FIXME: Allow mixed explicit and implicit operands on inline asm. 765 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 766 // implicit-defs, but they must not be moved around. See the FIXME in 767 // InstrEmitter.cpp. 768 unsigned OpNo = getNumOperands(); 769 bool isImpReg = Op.isReg() && Op.isImplicit(); 770 if (!isImpReg && !isInlineAsm()) { 771 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 772 --OpNo; 773 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 774 } 775 } 776 777 #ifndef NDEBUG 778 bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata; 779 // OpNo now points as the desired insertion point. Unless this is a variadic 780 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 781 // RegMask operands go between the explicit and implicit operands. 782 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 783 OpNo < MCID->getNumOperands() || isMetaDataOp) && 784 "Trying to add an operand to a machine instr that is already done!"); 785 #endif 786 787 MachineRegisterInfo *MRI = getRegInfo(); 788 789 // Determine if the Operands array needs to be reallocated. 790 // Save the old capacity and operand array. 791 OperandCapacity OldCap = CapOperands; 792 MachineOperand *OldOperands = Operands; 793 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 794 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 795 Operands = MF.allocateOperandArray(CapOperands); 796 // Move the operands before the insertion point. 797 if (OpNo) 798 moveOperands(Operands, OldOperands, OpNo, MRI); 799 } 800 801 // Move the operands following the insertion point. 802 if (OpNo != NumOperands) 803 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 804 MRI); 805 ++NumOperands; 806 807 // Deallocate the old operand array. 808 if (OldOperands != Operands && OldOperands) 809 MF.deallocateOperandArray(OldCap, OldOperands); 810 811 // Copy Op into place. It still needs to be inserted into the MRI use lists. 812 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 813 NewMO->ParentMI = this; 814 815 // When adding a register operand, tell MRI about it. 816 if (NewMO->isReg()) { 817 // Ensure isOnRegUseList() returns false, regardless of Op's status. 818 NewMO->Contents.Reg.Prev = nullptr; 819 // Ignore existing ties. This is not a property that can be copied. 820 NewMO->TiedTo = 0; 821 // Add the new operand to MRI, but only for instructions in an MBB. 822 if (MRI) 823 MRI->addRegOperandToUseList(NewMO); 824 // The MCID operand information isn't accurate until we start adding 825 // explicit operands. The implicit operands are added first, then the 826 // explicits are inserted before them. 827 if (!isImpReg) { 828 // Tie uses to defs as indicated in MCInstrDesc. 829 if (NewMO->isUse()) { 830 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 831 if (DefIdx != -1) 832 tieOperands(DefIdx, OpNo); 833 } 834 // If the register operand is flagged as early, mark the operand as such. 835 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 836 NewMO->setIsEarlyClobber(true); 837 } 838 } 839 } 840 841 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 842 /// fewer operand than it started with. 843 /// 844 void MachineInstr::RemoveOperand(unsigned OpNo) { 845 assert(OpNo < getNumOperands() && "Invalid operand number"); 846 untieRegOperand(OpNo); 847 848 #ifndef NDEBUG 849 // Moving tied operands would break the ties. 850 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 851 if (Operands[i].isReg()) 852 assert(!Operands[i].isTied() && "Cannot move tied operands"); 853 #endif 854 855 MachineRegisterInfo *MRI = getRegInfo(); 856 if (MRI && Operands[OpNo].isReg()) 857 MRI->removeRegOperandFromUseList(Operands + OpNo); 858 859 // Don't call the MachineOperand destructor. A lot of this code depends on 860 // MachineOperand having a trivial destructor anyway, and adding a call here 861 // wouldn't make it 'destructor-correct'. 862 863 if (unsigned N = NumOperands - 1 - OpNo) 864 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 865 --NumOperands; 866 } 867 868 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 869 /// This function should be used only occasionally. The setMemRefs function 870 /// is the primary method for setting up a MachineInstr's MemRefs list. 871 void MachineInstr::addMemOperand(MachineFunction &MF, 872 MachineMemOperand *MO) { 873 mmo_iterator OldMemRefs = MemRefs; 874 unsigned OldNumMemRefs = NumMemRefs; 875 876 unsigned NewNum = NumMemRefs + 1; 877 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 878 879 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs); 880 NewMemRefs[NewNum - 1] = MO; 881 setMemRefs(NewMemRefs, NewMemRefs + NewNum); 882 } 883 884 /// Check to see if the MMOs pointed to by the two MemRefs arrays are 885 /// identical. 886 static bool hasIdenticalMMOs(const MachineInstr &MI1, const MachineInstr &MI2) { 887 auto I1 = MI1.memoperands_begin(), E1 = MI1.memoperands_end(); 888 auto I2 = MI2.memoperands_begin(), E2 = MI2.memoperands_end(); 889 if ((E1 - I1) != (E2 - I2)) 890 return false; 891 for (; I1 != E1; ++I1, ++I2) { 892 if (**I1 != **I2) 893 return false; 894 } 895 return true; 896 } 897 898 std::pair<MachineInstr::mmo_iterator, unsigned> 899 MachineInstr::mergeMemRefsWith(const MachineInstr& Other) { 900 901 // If either of the incoming memrefs are empty, we must be conservative and 902 // treat this as if we've exhausted our space for memrefs and dropped them. 903 if (memoperands_empty() || Other.memoperands_empty()) 904 return std::make_pair(nullptr, 0); 905 906 // If both instructions have identical memrefs, we don't need to merge them. 907 // Since many instructions have a single memref, and we tend to merge things 908 // like pairs of loads from the same location, this catches a large number of 909 // cases in practice. 910 if (hasIdenticalMMOs(*this, Other)) 911 return std::make_pair(MemRefs, NumMemRefs); 912 913 // TODO: consider uniquing elements within the operand lists to reduce 914 // space usage and fall back to conservative information less often. 915 size_t CombinedNumMemRefs = NumMemRefs + Other.NumMemRefs; 916 917 // If we don't have enough room to store this many memrefs, be conservative 918 // and drop them. Otherwise, we'd fail asserts when trying to add them to 919 // the new instruction. 920 if (CombinedNumMemRefs != uint8_t(CombinedNumMemRefs)) 921 return std::make_pair(nullptr, 0); 922 923 MachineFunction *MF = getParent()->getParent(); 924 mmo_iterator MemBegin = MF->allocateMemRefsArray(CombinedNumMemRefs); 925 mmo_iterator MemEnd = std::copy(memoperands_begin(), memoperands_end(), 926 MemBegin); 927 MemEnd = std::copy(Other.memoperands_begin(), Other.memoperands_end(), 928 MemEnd); 929 assert(MemEnd - MemBegin == (ptrdiff_t)CombinedNumMemRefs && 930 "missing memrefs"); 931 932 return std::make_pair(MemBegin, CombinedNumMemRefs); 933 } 934 935 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { 936 assert(!isBundledWithPred() && "Must be called on bundle header"); 937 for (auto MII = getInstrIterator();; ++MII) { 938 if (MII->getDesc().getFlags() & Mask) { 939 if (Type == AnyInBundle) 940 return true; 941 } else { 942 if (Type == AllInBundle && !MII->isBundle()) 943 return false; 944 } 945 // This was the last instruction in the bundle. 946 if (!MII->isBundledWithSucc()) 947 return Type == AllInBundle; 948 } 949 } 950 951 bool MachineInstr::isIdenticalTo(const MachineInstr *Other, 952 MICheckType Check) const { 953 // If opcodes or number of operands are not the same then the two 954 // instructions are obviously not identical. 955 if (Other->getOpcode() != getOpcode() || 956 Other->getNumOperands() != getNumOperands()) 957 return false; 958 959 if (isBundle()) { 960 // Both instructions are bundles, compare MIs inside the bundle. 961 auto I1 = getInstrIterator(); 962 auto E1 = getParent()->instr_end(); 963 auto I2 = Other->getInstrIterator(); 964 auto E2 = Other->getParent()->instr_end(); 965 while (++I1 != E1 && I1->isInsideBundle()) { 966 ++I2; 967 if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(&*I2, Check)) 968 return false; 969 } 970 } 971 972 // Check operands to make sure they match. 973 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 974 const MachineOperand &MO = getOperand(i); 975 const MachineOperand &OMO = Other->getOperand(i); 976 if (!MO.isReg()) { 977 if (!MO.isIdenticalTo(OMO)) 978 return false; 979 continue; 980 } 981 982 // Clients may or may not want to ignore defs when testing for equality. 983 // For example, machine CSE pass only cares about finding common 984 // subexpressions, so it's safe to ignore virtual register defs. 985 if (MO.isDef()) { 986 if (Check == IgnoreDefs) 987 continue; 988 else if (Check == IgnoreVRegDefs) { 989 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 990 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 991 if (MO.getReg() != OMO.getReg()) 992 return false; 993 } else { 994 if (!MO.isIdenticalTo(OMO)) 995 return false; 996 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 997 return false; 998 } 999 } else { 1000 if (!MO.isIdenticalTo(OMO)) 1001 return false; 1002 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 1003 return false; 1004 } 1005 } 1006 // If DebugLoc does not match then two dbg.values are not identical. 1007 if (isDebugValue()) 1008 if (getDebugLoc() && Other->getDebugLoc() && 1009 getDebugLoc() != Other->getDebugLoc()) 1010 return false; 1011 return true; 1012 } 1013 1014 MachineInstr *MachineInstr::removeFromParent() { 1015 assert(getParent() && "Not embedded in a basic block!"); 1016 return getParent()->remove(this); 1017 } 1018 1019 MachineInstr *MachineInstr::removeFromBundle() { 1020 assert(getParent() && "Not embedded in a basic block!"); 1021 return getParent()->remove_instr(this); 1022 } 1023 1024 void MachineInstr::eraseFromParent() { 1025 assert(getParent() && "Not embedded in a basic block!"); 1026 getParent()->erase(this); 1027 } 1028 1029 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() { 1030 assert(getParent() && "Not embedded in a basic block!"); 1031 MachineBasicBlock *MBB = getParent(); 1032 MachineFunction *MF = MBB->getParent(); 1033 assert(MF && "Not embedded in a function!"); 1034 1035 MachineInstr *MI = (MachineInstr *)this; 1036 MachineRegisterInfo &MRI = MF->getRegInfo(); 1037 1038 for (const MachineOperand &MO : MI->operands()) { 1039 if (!MO.isReg() || !MO.isDef()) 1040 continue; 1041 unsigned Reg = MO.getReg(); 1042 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1043 continue; 1044 MRI.markUsesInDebugValueAsUndef(Reg); 1045 } 1046 MI->eraseFromParent(); 1047 } 1048 1049 void MachineInstr::eraseFromBundle() { 1050 assert(getParent() && "Not embedded in a basic block!"); 1051 getParent()->erase_instr(this); 1052 } 1053 1054 /// getNumExplicitOperands - Returns the number of non-implicit operands. 1055 /// 1056 unsigned MachineInstr::getNumExplicitOperands() const { 1057 unsigned NumOperands = MCID->getNumOperands(); 1058 if (!MCID->isVariadic()) 1059 return NumOperands; 1060 1061 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 1062 const MachineOperand &MO = getOperand(i); 1063 if (!MO.isReg() || !MO.isImplicit()) 1064 NumOperands++; 1065 } 1066 return NumOperands; 1067 } 1068 1069 void MachineInstr::bundleWithPred() { 1070 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 1071 setFlag(BundledPred); 1072 auto Pred = --getInstrIterator(); 1073 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 1074 Pred->setFlag(BundledSucc); 1075 } 1076 1077 void MachineInstr::bundleWithSucc() { 1078 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 1079 setFlag(BundledSucc); 1080 auto Succ = ++getInstrIterator(); 1081 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 1082 Succ->setFlag(BundledPred); 1083 } 1084 1085 void MachineInstr::unbundleFromPred() { 1086 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 1087 clearFlag(BundledPred); 1088 auto Pred = --getInstrIterator(); 1089 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 1090 Pred->clearFlag(BundledSucc); 1091 } 1092 1093 void MachineInstr::unbundleFromSucc() { 1094 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 1095 clearFlag(BundledSucc); 1096 auto Succ = ++getInstrIterator(); 1097 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 1098 Succ->clearFlag(BundledPred); 1099 } 1100 1101 bool MachineInstr::isStackAligningInlineAsm() const { 1102 if (isInlineAsm()) { 1103 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1104 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1105 return true; 1106 } 1107 return false; 1108 } 1109 1110 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 1111 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 1112 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1113 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 1114 } 1115 1116 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 1117 unsigned *GroupNo) const { 1118 assert(isInlineAsm() && "Expected an inline asm instruction"); 1119 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 1120 1121 // Ignore queries about the initial operands. 1122 if (OpIdx < InlineAsm::MIOp_FirstOperand) 1123 return -1; 1124 1125 unsigned Group = 0; 1126 unsigned NumOps; 1127 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1128 i += NumOps) { 1129 const MachineOperand &FlagMO = getOperand(i); 1130 // If we reach the implicit register operands, stop looking. 1131 if (!FlagMO.isImm()) 1132 return -1; 1133 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1134 if (i + NumOps > OpIdx) { 1135 if (GroupNo) 1136 *GroupNo = Group; 1137 return i; 1138 } 1139 ++Group; 1140 } 1141 return -1; 1142 } 1143 1144 const TargetRegisterClass* 1145 MachineInstr::getRegClassConstraint(unsigned OpIdx, 1146 const TargetInstrInfo *TII, 1147 const TargetRegisterInfo *TRI) const { 1148 assert(getParent() && "Can't have an MBB reference here!"); 1149 assert(getParent()->getParent() && "Can't have an MF reference here!"); 1150 const MachineFunction &MF = *getParent()->getParent(); 1151 1152 // Most opcodes have fixed constraints in their MCInstrDesc. 1153 if (!isInlineAsm()) 1154 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 1155 1156 if (!getOperand(OpIdx).isReg()) 1157 return nullptr; 1158 1159 // For tied uses on inline asm, get the constraint from the def. 1160 unsigned DefIdx; 1161 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 1162 OpIdx = DefIdx; 1163 1164 // Inline asm stores register class constraints in the flag word. 1165 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 1166 if (FlagIdx < 0) 1167 return nullptr; 1168 1169 unsigned Flag = getOperand(FlagIdx).getImm(); 1170 unsigned RCID; 1171 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) 1172 return TRI->getRegClass(RCID); 1173 1174 // Assume that all registers in a memory operand are pointers. 1175 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 1176 return TRI->getPointerRegClass(MF); 1177 1178 return nullptr; 1179 } 1180 1181 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 1182 unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 1183 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 1184 // Check every operands inside the bundle if we have 1185 // been asked to. 1186 if (ExploreBundle) 1187 for (ConstMIBundleOperands OpndIt(this); OpndIt.isValid() && CurRC; 1188 ++OpndIt) 1189 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 1190 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 1191 else 1192 // Otherwise, just check the current operands. 1193 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 1194 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 1195 return CurRC; 1196 } 1197 1198 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 1199 unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC, 1200 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1201 assert(CurRC && "Invalid initial register class"); 1202 // Check if Reg is constrained by some of its use/def from MI. 1203 const MachineOperand &MO = getOperand(OpIdx); 1204 if (!MO.isReg() || MO.getReg() != Reg) 1205 return CurRC; 1206 // If yes, accumulate the constraints through the operand. 1207 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 1208 } 1209 1210 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 1211 unsigned OpIdx, const TargetRegisterClass *CurRC, 1212 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1213 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 1214 const MachineOperand &MO = getOperand(OpIdx); 1215 assert(MO.isReg() && 1216 "Cannot get register constraints for non-register operand"); 1217 assert(CurRC && "Invalid initial register class"); 1218 if (unsigned SubIdx = MO.getSubReg()) { 1219 if (OpRC) 1220 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 1221 else 1222 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 1223 } else if (OpRC) 1224 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 1225 return CurRC; 1226 } 1227 1228 /// Return the number of instructions inside the MI bundle, not counting the 1229 /// header instruction. 1230 unsigned MachineInstr::getBundleSize() const { 1231 auto I = getInstrIterator(); 1232 unsigned Size = 0; 1233 while (I->isBundledWithSucc()) { 1234 ++Size; 1235 ++I; 1236 } 1237 return Size; 1238 } 1239 1240 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 1241 /// the specific register or -1 if it is not found. It further tightens 1242 /// the search criteria to a use that kills the register if isKill is true. 1243 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, 1244 const TargetRegisterInfo *TRI) const { 1245 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1246 const MachineOperand &MO = getOperand(i); 1247 if (!MO.isReg() || !MO.isUse()) 1248 continue; 1249 unsigned MOReg = MO.getReg(); 1250 if (!MOReg) 1251 continue; 1252 if (MOReg == Reg || 1253 (TRI && 1254 TargetRegisterInfo::isPhysicalRegister(MOReg) && 1255 TargetRegisterInfo::isPhysicalRegister(Reg) && 1256 TRI->isSubRegister(MOReg, Reg))) 1257 if (!isKill || MO.isKill()) 1258 return i; 1259 } 1260 return -1; 1261 } 1262 1263 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1264 /// indicating if this instruction reads or writes Reg. This also considers 1265 /// partial defines. 1266 std::pair<bool,bool> 1267 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 1268 SmallVectorImpl<unsigned> *Ops) const { 1269 bool PartDef = false; // Partial redefine. 1270 bool FullDef = false; // Full define. 1271 bool Use = false; 1272 1273 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1274 const MachineOperand &MO = getOperand(i); 1275 if (!MO.isReg() || MO.getReg() != Reg) 1276 continue; 1277 if (Ops) 1278 Ops->push_back(i); 1279 if (MO.isUse()) 1280 Use |= !MO.isUndef(); 1281 else if (MO.getSubReg() && !MO.isUndef()) 1282 // A partial <def,undef> doesn't count as reading the register. 1283 PartDef = true; 1284 else 1285 FullDef = true; 1286 } 1287 // A partial redefine uses Reg unless there is also a full define. 1288 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1289 } 1290 1291 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1292 /// the specified register or -1 if it is not found. If isDead is true, defs 1293 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1294 /// also checks if there is a def of a super-register. 1295 int 1296 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 1297 const TargetRegisterInfo *TRI) const { 1298 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 1299 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1300 const MachineOperand &MO = getOperand(i); 1301 // Accept regmask operands when Overlap is set. 1302 // Ignore them when looking for a specific def operand (Overlap == false). 1303 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1304 return i; 1305 if (!MO.isReg() || !MO.isDef()) 1306 continue; 1307 unsigned MOReg = MO.getReg(); 1308 bool Found = (MOReg == Reg); 1309 if (!Found && TRI && isPhys && 1310 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1311 if (Overlap) 1312 Found = TRI->regsOverlap(MOReg, Reg); 1313 else 1314 Found = TRI->isSubRegister(MOReg, Reg); 1315 } 1316 if (Found && (!isDead || MO.isDead())) 1317 return i; 1318 } 1319 return -1; 1320 } 1321 1322 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1323 /// operand list that is used to represent the predicate. It returns -1 if 1324 /// none is found. 1325 int MachineInstr::findFirstPredOperandIdx() const { 1326 // Don't call MCID.findFirstPredOperandIdx() because this variant 1327 // is sometimes called on an instruction that's not yet complete, and 1328 // so the number of operands is less than the MCID indicates. In 1329 // particular, the PTX target does this. 1330 const MCInstrDesc &MCID = getDesc(); 1331 if (MCID.isPredicable()) { 1332 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1333 if (MCID.OpInfo[i].isPredicate()) 1334 return i; 1335 } 1336 1337 return -1; 1338 } 1339 1340 // MachineOperand::TiedTo is 4 bits wide. 1341 const unsigned TiedMax = 15; 1342 1343 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1344 /// 1345 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1346 /// field. TiedTo can have these values: 1347 /// 1348 /// 0: Operand is not tied to anything. 1349 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1350 /// TiedMax: Tied to an operand >= TiedMax-1. 1351 /// 1352 /// The tied def must be one of the first TiedMax operands on a normal 1353 /// instruction. INLINEASM instructions allow more tied defs. 1354 /// 1355 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1356 MachineOperand &DefMO = getOperand(DefIdx); 1357 MachineOperand &UseMO = getOperand(UseIdx); 1358 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1359 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1360 assert(!DefMO.isTied() && "Def is already tied to another use"); 1361 assert(!UseMO.isTied() && "Use is already tied to another def"); 1362 1363 if (DefIdx < TiedMax) 1364 UseMO.TiedTo = DefIdx + 1; 1365 else { 1366 // Inline asm can use the group descriptors to find tied operands, but on 1367 // normal instruction, the tied def must be within the first TiedMax 1368 // operands. 1369 assert(isInlineAsm() && "DefIdx out of range"); 1370 UseMO.TiedTo = TiedMax; 1371 } 1372 1373 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1374 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1375 } 1376 1377 /// Given the index of a tied register operand, find the operand it is tied to. 1378 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1379 /// which must exist. 1380 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1381 const MachineOperand &MO = getOperand(OpIdx); 1382 assert(MO.isTied() && "Operand isn't tied"); 1383 1384 // Normally TiedTo is in range. 1385 if (MO.TiedTo < TiedMax) 1386 return MO.TiedTo - 1; 1387 1388 // Uses on normal instructions can be out of range. 1389 if (!isInlineAsm()) { 1390 // Normal tied defs must be in the 0..TiedMax-1 range. 1391 if (MO.isUse()) 1392 return TiedMax - 1; 1393 // MO is a def. Search for the tied use. 1394 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1395 const MachineOperand &UseMO = getOperand(i); 1396 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1397 return i; 1398 } 1399 llvm_unreachable("Can't find tied use"); 1400 } 1401 1402 // Now deal with inline asm by parsing the operand group descriptor flags. 1403 // Find the beginning of each operand group. 1404 SmallVector<unsigned, 8> GroupIdx; 1405 unsigned OpIdxGroup = ~0u; 1406 unsigned NumOps; 1407 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1408 i += NumOps) { 1409 const MachineOperand &FlagMO = getOperand(i); 1410 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1411 unsigned CurGroup = GroupIdx.size(); 1412 GroupIdx.push_back(i); 1413 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1414 // OpIdx belongs to this operand group. 1415 if (OpIdx > i && OpIdx < i + NumOps) 1416 OpIdxGroup = CurGroup; 1417 unsigned TiedGroup; 1418 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1419 continue; 1420 // Operands in this group are tied to operands in TiedGroup which must be 1421 // earlier. Find the number of operands between the two groups. 1422 unsigned Delta = i - GroupIdx[TiedGroup]; 1423 1424 // OpIdx is a use tied to TiedGroup. 1425 if (OpIdxGroup == CurGroup) 1426 return OpIdx - Delta; 1427 1428 // OpIdx is a def tied to this use group. 1429 if (OpIdxGroup == TiedGroup) 1430 return OpIdx + Delta; 1431 } 1432 llvm_unreachable("Invalid tied operand on inline asm"); 1433 } 1434 1435 /// clearKillInfo - Clears kill flags on all operands. 1436 /// 1437 void MachineInstr::clearKillInfo() { 1438 for (MachineOperand &MO : operands()) { 1439 if (MO.isReg() && MO.isUse()) 1440 MO.setIsKill(false); 1441 } 1442 } 1443 1444 void MachineInstr::substituteRegister(unsigned FromReg, 1445 unsigned ToReg, 1446 unsigned SubIdx, 1447 const TargetRegisterInfo &RegInfo) { 1448 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1449 if (SubIdx) 1450 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1451 for (MachineOperand &MO : operands()) { 1452 if (!MO.isReg() || MO.getReg() != FromReg) 1453 continue; 1454 MO.substPhysReg(ToReg, RegInfo); 1455 } 1456 } else { 1457 for (MachineOperand &MO : operands()) { 1458 if (!MO.isReg() || MO.getReg() != FromReg) 1459 continue; 1460 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1461 } 1462 } 1463 } 1464 1465 /// isSafeToMove - Return true if it is safe to move this instruction. If 1466 /// SawStore is set to true, it means that there is a store (or call) between 1467 /// the instruction's location and its intended destination. 1468 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const { 1469 // Ignore stuff that we obviously can't move. 1470 // 1471 // Treat volatile loads as stores. This is not strictly necessary for 1472 // volatiles, but it is required for atomic loads. It is not allowed to move 1473 // a load across an atomic load with Ordering > Monotonic. 1474 if (mayStore() || isCall() || 1475 (mayLoad() && hasOrderedMemoryRef())) { 1476 SawStore = true; 1477 return false; 1478 } 1479 1480 if (isPosition() || isDebugValue() || isTerminator() || 1481 hasUnmodeledSideEffects()) 1482 return false; 1483 1484 // See if this instruction does a load. If so, we have to guarantee that the 1485 // loaded value doesn't change between the load and the its intended 1486 // destination. The check for isInvariantLoad gives the targe the chance to 1487 // classify the load as always returning a constant, e.g. a constant pool 1488 // load. 1489 if (mayLoad() && !isInvariantLoad(AA)) 1490 // Otherwise, this is a real load. If there is a store between the load and 1491 // end of block, we can't move it. 1492 return !SawStore; 1493 1494 return true; 1495 } 1496 1497 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1498 /// or volatile memory reference, or if the information describing the memory 1499 /// reference is not available. Return false if it is known to have no ordered 1500 /// memory references. 1501 bool MachineInstr::hasOrderedMemoryRef() const { 1502 // An instruction known never to access memory won't have a volatile access. 1503 if (!mayStore() && 1504 !mayLoad() && 1505 !isCall() && 1506 !hasUnmodeledSideEffects()) 1507 return false; 1508 1509 // Otherwise, if the instruction has no memory reference information, 1510 // conservatively assume it wasn't preserved. 1511 if (memoperands_empty()) 1512 return true; 1513 1514 // Check the memory reference information for ordered references. 1515 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I) 1516 if (!(*I)->isUnordered()) 1517 return true; 1518 1519 return false; 1520 } 1521 1522 /// isInvariantLoad - Return true if this instruction is loading from a 1523 /// location whose value is invariant across the function. For example, 1524 /// loading a value from the constant pool or from the argument area 1525 /// of a function if it does not change. This should only return true of 1526 /// *all* loads the instruction does are invariant (if it does multiple loads). 1527 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const { 1528 // If the instruction doesn't load at all, it isn't an invariant load. 1529 if (!mayLoad()) 1530 return false; 1531 1532 // If the instruction has lost its memoperands, conservatively assume that 1533 // it may not be an invariant load. 1534 if (memoperands_empty()) 1535 return false; 1536 1537 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo(); 1538 1539 for (mmo_iterator I = memoperands_begin(), 1540 E = memoperands_end(); I != E; ++I) { 1541 if ((*I)->isVolatile()) return false; 1542 if ((*I)->isStore()) return false; 1543 if ((*I)->isInvariant()) return true; 1544 1545 1546 // A load from a constant PseudoSourceValue is invariant. 1547 if (const PseudoSourceValue *PSV = (*I)->getPseudoValue()) 1548 if (PSV->isConstant(MFI)) 1549 continue; 1550 1551 if (const Value *V = (*I)->getValue()) { 1552 // If we have an AliasAnalysis, ask it whether the memory is constant. 1553 if (AA && 1554 AA->pointsToConstantMemory( 1555 MemoryLocation(V, (*I)->getSize(), (*I)->getAAInfo()))) 1556 continue; 1557 } 1558 1559 // Otherwise assume conservatively. 1560 return false; 1561 } 1562 1563 // Everything checks out. 1564 return true; 1565 } 1566 1567 /// isConstantValuePHI - If the specified instruction is a PHI that always 1568 /// merges together the same virtual register, return the register, otherwise 1569 /// return 0. 1570 unsigned MachineInstr::isConstantValuePHI() const { 1571 if (!isPHI()) 1572 return 0; 1573 assert(getNumOperands() >= 3 && 1574 "It's illegal to have a PHI without source operands"); 1575 1576 unsigned Reg = getOperand(1).getReg(); 1577 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1578 if (getOperand(i).getReg() != Reg) 1579 return 0; 1580 return Reg; 1581 } 1582 1583 bool MachineInstr::hasUnmodeledSideEffects() const { 1584 if (hasProperty(MCID::UnmodeledSideEffects)) 1585 return true; 1586 if (isInlineAsm()) { 1587 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1588 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1589 return true; 1590 } 1591 1592 return false; 1593 } 1594 1595 bool MachineInstr::isLoadFoldBarrier() const { 1596 return mayStore() || isCall() || hasUnmodeledSideEffects(); 1597 } 1598 1599 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1600 /// 1601 bool MachineInstr::allDefsAreDead() const { 1602 for (const MachineOperand &MO : operands()) { 1603 if (!MO.isReg() || MO.isUse()) 1604 continue; 1605 if (!MO.isDead()) 1606 return false; 1607 } 1608 return true; 1609 } 1610 1611 /// copyImplicitOps - Copy implicit register operands from specified 1612 /// instruction to this instruction. 1613 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1614 const MachineInstr *MI) { 1615 for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands(); 1616 i != e; ++i) { 1617 const MachineOperand &MO = MI->getOperand(i); 1618 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1619 addOperand(MF, MO); 1620 } 1621 } 1622 1623 LLVM_DUMP_METHOD void MachineInstr::dump() const { 1624 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1625 dbgs() << " " << *this; 1626 #endif 1627 } 1628 1629 void MachineInstr::print(raw_ostream &OS, bool SkipOpers) const { 1630 const Module *M = nullptr; 1631 if (const MachineBasicBlock *MBB = getParent()) 1632 if (const MachineFunction *MF = MBB->getParent()) 1633 M = MF->getFunction()->getParent(); 1634 1635 ModuleSlotTracker MST(M); 1636 print(OS, MST, SkipOpers); 1637 } 1638 1639 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1640 bool SkipOpers) const { 1641 // We can be a bit tidier if we know the MachineFunction. 1642 const MachineFunction *MF = nullptr; 1643 const TargetRegisterInfo *TRI = nullptr; 1644 const MachineRegisterInfo *MRI = nullptr; 1645 const TargetInstrInfo *TII = nullptr; 1646 if (const MachineBasicBlock *MBB = getParent()) { 1647 MF = MBB->getParent(); 1648 if (MF) { 1649 MRI = &MF->getRegInfo(); 1650 TRI = MF->getSubtarget().getRegisterInfo(); 1651 TII = MF->getSubtarget().getInstrInfo(); 1652 } 1653 } 1654 1655 // Save a list of virtual registers. 1656 SmallVector<unsigned, 8> VirtRegs; 1657 1658 // Print explicitly defined operands on the left of an assignment syntax. 1659 unsigned StartOp = 0, e = getNumOperands(); 1660 for (; StartOp < e && getOperand(StartOp).isReg() && 1661 getOperand(StartOp).isDef() && 1662 !getOperand(StartOp).isImplicit(); 1663 ++StartOp) { 1664 if (StartOp != 0) OS << ", "; 1665 getOperand(StartOp).print(OS, MST, TRI); 1666 unsigned Reg = getOperand(StartOp).getReg(); 1667 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1668 VirtRegs.push_back(Reg); 1669 #ifdef LLVM_BUILD_GLOBAL_ISEL 1670 unsigned Size; 1671 if (MRI && (Size = MRI->getSize(Reg))) { 1672 OS << '(' << Size << ')'; 1673 } 1674 #endif 1675 } 1676 } 1677 1678 if (StartOp != 0) 1679 OS << " = "; 1680 1681 // Print the opcode name. 1682 if (TII) 1683 OS << TII->getName(getOpcode()); 1684 else 1685 OS << "UNKNOWN"; 1686 1687 1688 #ifdef LLVM_BUILD_GLOBAL_ISEL 1689 if (Ty) 1690 OS << ' ' << *Ty << ' '; 1691 #endif 1692 1693 if (SkipOpers) 1694 return; 1695 1696 // Print the rest of the operands. 1697 bool OmittedAnyCallClobbers = false; 1698 bool FirstOp = true; 1699 unsigned AsmDescOp = ~0u; 1700 unsigned AsmOpCount = 0; 1701 1702 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1703 // Print asm string. 1704 OS << " "; 1705 getOperand(InlineAsm::MIOp_AsmString).print(OS, MST, TRI); 1706 1707 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1708 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1709 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1710 OS << " [sideeffect]"; 1711 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1712 OS << " [mayload]"; 1713 if (ExtraInfo & InlineAsm::Extra_MayStore) 1714 OS << " [maystore]"; 1715 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1716 OS << " [alignstack]"; 1717 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1718 OS << " [attdialect]"; 1719 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1720 OS << " [inteldialect]"; 1721 1722 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1723 FirstOp = false; 1724 } 1725 1726 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1727 const MachineOperand &MO = getOperand(i); 1728 1729 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1730 VirtRegs.push_back(MO.getReg()); 1731 1732 // Omit call-clobbered registers which aren't used anywhere. This makes 1733 // call instructions much less noisy on targets where calls clobber lots 1734 // of registers. Don't rely on MO.isDead() because we may be called before 1735 // LiveVariables is run, or we may be looking at a non-allocatable reg. 1736 if (MRI && isCall() && 1737 MO.isReg() && MO.isImplicit() && MO.isDef()) { 1738 unsigned Reg = MO.getReg(); 1739 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1740 if (MRI->use_empty(Reg)) { 1741 bool HasAliasLive = false; 1742 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 1743 unsigned AliasReg = *AI; 1744 if (!MRI->use_empty(AliasReg)) { 1745 HasAliasLive = true; 1746 break; 1747 } 1748 } 1749 if (!HasAliasLive) { 1750 OmittedAnyCallClobbers = true; 1751 continue; 1752 } 1753 } 1754 } 1755 } 1756 1757 if (FirstOp) FirstOp = false; else OS << ","; 1758 OS << " "; 1759 if (i < getDesc().NumOperands) { 1760 const MCOperandInfo &MCOI = getDesc().OpInfo[i]; 1761 if (MCOI.isPredicate()) 1762 OS << "pred:"; 1763 if (MCOI.isOptionalDef()) 1764 OS << "opt:"; 1765 } 1766 if (isDebugValue() && MO.isMetadata()) { 1767 // Pretty print DBG_VALUE instructions. 1768 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1769 if (DIV && !DIV->getName().empty()) 1770 OS << "!\"" << DIV->getName() << '\"'; 1771 else 1772 MO.print(OS, MST, TRI); 1773 } else if (TRI && (isInsertSubreg() || isRegSequence()) && MO.isImm()) { 1774 OS << TRI->getSubRegIndexName(MO.getImm()); 1775 } else if (i == AsmDescOp && MO.isImm()) { 1776 // Pretty print the inline asm operand descriptor. 1777 OS << '$' << AsmOpCount++; 1778 unsigned Flag = MO.getImm(); 1779 switch (InlineAsm::getKind(Flag)) { 1780 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1781 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1782 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1783 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1784 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1785 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1786 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1787 } 1788 1789 unsigned RCID = 0; 1790 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1791 if (TRI) { 1792 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1793 } else 1794 OS << ":RC" << RCID; 1795 } 1796 1797 unsigned TiedTo = 0; 1798 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1799 OS << " tiedto:$" << TiedTo; 1800 1801 OS << ']'; 1802 1803 // Compute the index of the next operand descriptor. 1804 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1805 } else 1806 MO.print(OS, MST, TRI); 1807 } 1808 1809 // Briefly indicate whether any call clobbers were omitted. 1810 if (OmittedAnyCallClobbers) { 1811 if (!FirstOp) OS << ","; 1812 OS << " ..."; 1813 } 1814 1815 bool HaveSemi = false; 1816 const unsigned PrintableFlags = FrameSetup | FrameDestroy; 1817 if (Flags & PrintableFlags) { 1818 if (!HaveSemi) { 1819 OS << ";"; 1820 HaveSemi = true; 1821 } 1822 OS << " flags: "; 1823 1824 if (Flags & FrameSetup) 1825 OS << "FrameSetup"; 1826 1827 if (Flags & FrameDestroy) 1828 OS << "FrameDestroy"; 1829 } 1830 1831 if (!memoperands_empty()) { 1832 if (!HaveSemi) { 1833 OS << ";"; 1834 HaveSemi = true; 1835 } 1836 1837 OS << " mem:"; 1838 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 1839 i != e; ++i) { 1840 (*i)->print(OS, MST); 1841 if (std::next(i) != e) 1842 OS << " "; 1843 } 1844 } 1845 1846 // Print the regclass of any virtual registers encountered. 1847 if (MRI && !VirtRegs.empty()) { 1848 if (!HaveSemi) { 1849 OS << ";"; 1850 HaveSemi = true; 1851 } 1852 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 1853 const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]); 1854 #ifdef LLVM_BUILD_GLOBAL_ISEL 1855 // Generic virtual registers do not have register classes. 1856 if (!RC) 1857 continue; 1858 #endif 1859 OS << " " << TRI->getRegClassName(RC) 1860 << ':' << PrintReg(VirtRegs[i]); 1861 for (unsigned j = i+1; j != VirtRegs.size();) { 1862 if (MRI->getRegClass(VirtRegs[j]) != RC) { 1863 ++j; 1864 continue; 1865 } 1866 if (VirtRegs[i] != VirtRegs[j]) 1867 OS << "," << PrintReg(VirtRegs[j]); 1868 VirtRegs.erase(VirtRegs.begin()+j); 1869 } 1870 } 1871 } 1872 1873 // Print debug location information. 1874 if (isDebugValue() && getOperand(e - 2).isMetadata()) { 1875 if (!HaveSemi) 1876 OS << ";"; 1877 auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata()); 1878 OS << " line no:" << DV->getLine(); 1879 if (auto *InlinedAt = debugLoc->getInlinedAt()) { 1880 DebugLoc InlinedAtDL(InlinedAt); 1881 if (InlinedAtDL && MF) { 1882 OS << " inlined @[ "; 1883 InlinedAtDL.print(OS); 1884 OS << " ]"; 1885 } 1886 } 1887 if (isIndirectDebugValue()) 1888 OS << " indirect"; 1889 } else if (debugLoc && MF) { 1890 if (!HaveSemi) 1891 OS << ";"; 1892 OS << " dbg:"; 1893 debugLoc.print(OS); 1894 } 1895 1896 OS << '\n'; 1897 } 1898 1899 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 1900 const TargetRegisterInfo *RegInfo, 1901 bool AddIfNotFound) { 1902 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1903 bool hasAliases = isPhysReg && 1904 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1905 bool Found = false; 1906 SmallVector<unsigned,4> DeadOps; 1907 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1908 MachineOperand &MO = getOperand(i); 1909 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1910 continue; 1911 unsigned Reg = MO.getReg(); 1912 if (!Reg) 1913 continue; 1914 1915 if (Reg == IncomingReg) { 1916 if (!Found) { 1917 if (MO.isKill()) 1918 // The register is already marked kill. 1919 return true; 1920 if (isPhysReg && isRegTiedToDefOperand(i)) 1921 // Two-address uses of physregs must not be marked kill. 1922 return true; 1923 MO.setIsKill(); 1924 Found = true; 1925 } 1926 } else if (hasAliases && MO.isKill() && 1927 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1928 // A super-register kill already exists. 1929 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1930 return true; 1931 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1932 DeadOps.push_back(i); 1933 } 1934 } 1935 1936 // Trim unneeded kill operands. 1937 while (!DeadOps.empty()) { 1938 unsigned OpIdx = DeadOps.back(); 1939 if (getOperand(OpIdx).isImplicit()) 1940 RemoveOperand(OpIdx); 1941 else 1942 getOperand(OpIdx).setIsKill(false); 1943 DeadOps.pop_back(); 1944 } 1945 1946 // If not found, this means an alias of one of the operands is killed. Add a 1947 // new implicit operand if required. 1948 if (!Found && AddIfNotFound) { 1949 addOperand(MachineOperand::CreateReg(IncomingReg, 1950 false /*IsDef*/, 1951 true /*IsImp*/, 1952 true /*IsKill*/)); 1953 return true; 1954 } 1955 return Found; 1956 } 1957 1958 void MachineInstr::clearRegisterKills(unsigned Reg, 1959 const TargetRegisterInfo *RegInfo) { 1960 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 1961 RegInfo = nullptr; 1962 for (MachineOperand &MO : operands()) { 1963 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1964 continue; 1965 unsigned OpReg = MO.getReg(); 1966 if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg))) 1967 MO.setIsKill(false); 1968 } 1969 } 1970 1971 bool MachineInstr::addRegisterDead(unsigned Reg, 1972 const TargetRegisterInfo *RegInfo, 1973 bool AddIfNotFound) { 1974 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg); 1975 bool hasAliases = isPhysReg && 1976 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 1977 bool Found = false; 1978 SmallVector<unsigned,4> DeadOps; 1979 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1980 MachineOperand &MO = getOperand(i); 1981 if (!MO.isReg() || !MO.isDef()) 1982 continue; 1983 unsigned MOReg = MO.getReg(); 1984 if (!MOReg) 1985 continue; 1986 1987 if (MOReg == Reg) { 1988 MO.setIsDead(); 1989 Found = true; 1990 } else if (hasAliases && MO.isDead() && 1991 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1992 // There exists a super-register that's marked dead. 1993 if (RegInfo->isSuperRegister(Reg, MOReg)) 1994 return true; 1995 if (RegInfo->isSubRegister(Reg, MOReg)) 1996 DeadOps.push_back(i); 1997 } 1998 } 1999 2000 // Trim unneeded dead operands. 2001 while (!DeadOps.empty()) { 2002 unsigned OpIdx = DeadOps.back(); 2003 if (getOperand(OpIdx).isImplicit()) 2004 RemoveOperand(OpIdx); 2005 else 2006 getOperand(OpIdx).setIsDead(false); 2007 DeadOps.pop_back(); 2008 } 2009 2010 // If not found, this means an alias of one of the operands is dead. Add a 2011 // new implicit operand if required. 2012 if (Found || !AddIfNotFound) 2013 return Found; 2014 2015 addOperand(MachineOperand::CreateReg(Reg, 2016 true /*IsDef*/, 2017 true /*IsImp*/, 2018 false /*IsKill*/, 2019 true /*IsDead*/)); 2020 return true; 2021 } 2022 2023 void MachineInstr::clearRegisterDeads(unsigned Reg) { 2024 for (MachineOperand &MO : operands()) { 2025 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) 2026 continue; 2027 MO.setIsDead(false); 2028 } 2029 } 2030 2031 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) { 2032 for (MachineOperand &MO : operands()) { 2033 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) 2034 continue; 2035 MO.setIsUndef(IsUndef); 2036 } 2037 } 2038 2039 void MachineInstr::addRegisterDefined(unsigned Reg, 2040 const TargetRegisterInfo *RegInfo) { 2041 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 2042 MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo); 2043 if (MO) 2044 return; 2045 } else { 2046 for (const MachineOperand &MO : operands()) { 2047 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 2048 MO.getSubReg() == 0) 2049 return; 2050 } 2051 } 2052 addOperand(MachineOperand::CreateReg(Reg, 2053 true /*IsDef*/, 2054 true /*IsImp*/)); 2055 } 2056 2057 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 2058 const TargetRegisterInfo &TRI) { 2059 bool HasRegMask = false; 2060 for (MachineOperand &MO : operands()) { 2061 if (MO.isRegMask()) { 2062 HasRegMask = true; 2063 continue; 2064 } 2065 if (!MO.isReg() || !MO.isDef()) continue; 2066 unsigned Reg = MO.getReg(); 2067 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 2068 // If there are no uses, including partial uses, the def is dead. 2069 if (std::none_of(UsedRegs.begin(), UsedRegs.end(), 2070 [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); })) 2071 MO.setIsDead(); 2072 } 2073 2074 // This is a call with a register mask operand. 2075 // Mask clobbers are always dead, so add defs for the non-dead defines. 2076 if (HasRegMask) 2077 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 2078 I != E; ++I) 2079 addRegisterDefined(*I, &TRI); 2080 } 2081 2082 unsigned 2083 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 2084 // Build up a buffer of hash code components. 2085 SmallVector<size_t, 8> HashComponents; 2086 HashComponents.reserve(MI->getNumOperands() + 1); 2087 HashComponents.push_back(MI->getOpcode()); 2088 for (const MachineOperand &MO : MI->operands()) { 2089 if (MO.isReg() && MO.isDef() && 2090 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 2091 continue; // Skip virtual register defs. 2092 2093 HashComponents.push_back(hash_value(MO)); 2094 } 2095 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 2096 } 2097 2098 void MachineInstr::emitError(StringRef Msg) const { 2099 // Find the source location cookie. 2100 unsigned LocCookie = 0; 2101 const MDNode *LocMD = nullptr; 2102 for (unsigned i = getNumOperands(); i != 0; --i) { 2103 if (getOperand(i-1).isMetadata() && 2104 (LocMD = getOperand(i-1).getMetadata()) && 2105 LocMD->getNumOperands() != 0) { 2106 if (const ConstantInt *CI = 2107 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 2108 LocCookie = CI->getZExtValue(); 2109 break; 2110 } 2111 } 2112 } 2113 2114 if (const MachineBasicBlock *MBB = getParent()) 2115 if (const MachineFunction *MF = MBB->getParent()) 2116 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 2117 report_fatal_error(Msg); 2118 } 2119