xref: /llvm-project/llvm/lib/CodeGen/MachineInstr.cpp (revision db78273b6ea5cdce18c768fce5a1bdf55d61d91d)
1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Methods common to all machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/FoldingSet.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/Loads.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineInstrBundle.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/PseudoSourceValue.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/InlineAsm.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/Metadata.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/ModuleSlotTracker.h"
48 #include "llvm/IR/Type.h"
49 #include "llvm/IR/Value.h"
50 #include "llvm/MC/MCInstrDesc.h"
51 #include "llvm/MC/MCRegisterInfo.h"
52 #include "llvm/MC/MCSymbol.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Compiler.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/LowLevelTypeImpl.h"
59 #include "llvm/Support/MathExtras.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Target/TargetInstrInfo.h"
62 #include "llvm/Target/TargetIntrinsicInfo.h"
63 #include "llvm/Target/TargetMachine.h"
64 #include "llvm/Target/TargetRegisterInfo.h"
65 #include "llvm/Target/TargetSubtargetInfo.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstddef>
69 #include <cstdint>
70 #include <cstring>
71 #include <iterator>
72 #include <utility>
73 
74 using namespace llvm;
75 
76 static cl::opt<int> PrintRegMaskNumRegs(
77     "print-regmask-num-regs",
78     cl::desc("Number of registers to limit to when "
79              "printing regmask operands in IR dumps. "
80              "unlimited = -1"),
81     cl::init(32), cl::Hidden);
82 
83 //===----------------------------------------------------------------------===//
84 // MachineOperand Implementation
85 //===----------------------------------------------------------------------===//
86 
87 void MachineOperand::setReg(unsigned Reg) {
88   if (getReg() == Reg) return; // No change.
89 
90   // Otherwise, we have to change the register.  If this operand is embedded
91   // into a machine function, we need to update the old and new register's
92   // use/def lists.
93   if (MachineInstr *MI = getParent())
94     if (MachineBasicBlock *MBB = MI->getParent())
95       if (MachineFunction *MF = MBB->getParent()) {
96         MachineRegisterInfo &MRI = MF->getRegInfo();
97         MRI.removeRegOperandFromUseList(this);
98         SmallContents.RegNo = Reg;
99         MRI.addRegOperandToUseList(this);
100         return;
101       }
102 
103   // Otherwise, just change the register, no problem.  :)
104   SmallContents.RegNo = Reg;
105 }
106 
107 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
108                                   const TargetRegisterInfo &TRI) {
109   assert(TargetRegisterInfo::isVirtualRegister(Reg));
110   if (SubIdx && getSubReg())
111     SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
112   setReg(Reg);
113   if (SubIdx)
114     setSubReg(SubIdx);
115 }
116 
117 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
118   assert(TargetRegisterInfo::isPhysicalRegister(Reg));
119   if (getSubReg()) {
120     Reg = TRI.getSubReg(Reg, getSubReg());
121     // Note that getSubReg() may return 0 if the sub-register doesn't exist.
122     // That won't happen in legal code.
123     setSubReg(0);
124     if (isDef())
125       setIsUndef(false);
126   }
127   setReg(Reg);
128 }
129 
130 /// Change a def to a use, or a use to a def.
131 void MachineOperand::setIsDef(bool Val) {
132   assert(isReg() && "Wrong MachineOperand accessor");
133   assert((!Val || !isDebug()) && "Marking a debug operation as def");
134   if (IsDef == Val)
135     return;
136   // MRI may keep uses and defs in different list positions.
137   if (MachineInstr *MI = getParent())
138     if (MachineBasicBlock *MBB = MI->getParent())
139       if (MachineFunction *MF = MBB->getParent()) {
140         MachineRegisterInfo &MRI = MF->getRegInfo();
141         MRI.removeRegOperandFromUseList(this);
142         IsDef = Val;
143         MRI.addRegOperandToUseList(this);
144         return;
145       }
146   IsDef = Val;
147 }
148 
149 // If this operand is currently a register operand, and if this is in a
150 // function, deregister the operand from the register's use/def list.
151 void MachineOperand::removeRegFromUses() {
152   if (!isReg() || !isOnRegUseList())
153     return;
154 
155   if (MachineInstr *MI = getParent()) {
156     if (MachineBasicBlock *MBB = MI->getParent()) {
157       if (MachineFunction *MF = MBB->getParent())
158         MF->getRegInfo().removeRegOperandFromUseList(this);
159     }
160   }
161 }
162 
163 /// ChangeToImmediate - Replace this operand with a new immediate operand of
164 /// the specified value.  If an operand is known to be an immediate already,
165 /// the setImm method should be used.
166 void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
167   assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
168 
169   removeRegFromUses();
170 
171   OpKind = MO_Immediate;
172   Contents.ImmVal = ImmVal;
173 }
174 
175 void MachineOperand::ChangeToFPImmediate(const ConstantFP *FPImm) {
176   assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
177 
178   removeRegFromUses();
179 
180   OpKind = MO_FPImmediate;
181   Contents.CFP = FPImm;
182 }
183 
184 void MachineOperand::ChangeToES(const char *SymName, unsigned char TargetFlags) {
185   assert((!isReg() || !isTied()) &&
186          "Cannot change a tied operand into an external symbol");
187 
188   removeRegFromUses();
189 
190   OpKind = MO_ExternalSymbol;
191   Contents.OffsetedInfo.Val.SymbolName = SymName;
192   setOffset(0); // Offset is always 0.
193   setTargetFlags(TargetFlags);
194 }
195 
196 void MachineOperand::ChangeToMCSymbol(MCSymbol *Sym) {
197   assert((!isReg() || !isTied()) &&
198          "Cannot change a tied operand into an MCSymbol");
199 
200   removeRegFromUses();
201 
202   OpKind = MO_MCSymbol;
203   Contents.Sym = Sym;
204 }
205 
206 void MachineOperand::ChangeToFrameIndex(int Idx) {
207   assert((!isReg() || !isTied()) &&
208          "Cannot change a tied operand into a FrameIndex");
209 
210   removeRegFromUses();
211 
212   OpKind = MO_FrameIndex;
213   setIndex(Idx);
214 }
215 
216 /// ChangeToRegister - Replace this operand with a new register operand of
217 /// the specified value.  If an operand is known to be an register already,
218 /// the setReg method should be used.
219 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
220                                       bool isKill, bool isDead, bool isUndef,
221                                       bool isDebug) {
222   MachineRegisterInfo *RegInfo = nullptr;
223   if (MachineInstr *MI = getParent())
224     if (MachineBasicBlock *MBB = MI->getParent())
225       if (MachineFunction *MF = MBB->getParent())
226         RegInfo = &MF->getRegInfo();
227   // If this operand is already a register operand, remove it from the
228   // register's use/def lists.
229   bool WasReg = isReg();
230   if (RegInfo && WasReg)
231     RegInfo->removeRegOperandFromUseList(this);
232 
233   // Change this to a register and set the reg#.
234   OpKind = MO_Register;
235   SmallContents.RegNo = Reg;
236   SubReg_TargetFlags = 0;
237   IsDef = isDef;
238   IsImp = isImp;
239   IsKill = isKill;
240   IsDead = isDead;
241   IsUndef = isUndef;
242   IsInternalRead = false;
243   IsEarlyClobber = false;
244   IsDebug = isDebug;
245   // Ensure isOnRegUseList() returns false.
246   Contents.Reg.Prev = nullptr;
247   // Preserve the tie when the operand was already a register.
248   if (!WasReg)
249     TiedTo = 0;
250 
251   // If this operand is embedded in a function, add the operand to the
252   // register's use/def list.
253   if (RegInfo)
254     RegInfo->addRegOperandToUseList(this);
255 }
256 
257 /// isIdenticalTo - Return true if this operand is identical to the specified
258 /// operand. Note that this should stay in sync with the hash_value overload
259 /// below.
260 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
261   if (getType() != Other.getType() ||
262       getTargetFlags() != Other.getTargetFlags())
263     return false;
264 
265   switch (getType()) {
266   case MachineOperand::MO_Register:
267     return getReg() == Other.getReg() && isDef() == Other.isDef() &&
268            getSubReg() == Other.getSubReg();
269   case MachineOperand::MO_Immediate:
270     return getImm() == Other.getImm();
271   case MachineOperand::MO_CImmediate:
272     return getCImm() == Other.getCImm();
273   case MachineOperand::MO_FPImmediate:
274     return getFPImm() == Other.getFPImm();
275   case MachineOperand::MO_MachineBasicBlock:
276     return getMBB() == Other.getMBB();
277   case MachineOperand::MO_FrameIndex:
278     return getIndex() == Other.getIndex();
279   case MachineOperand::MO_ConstantPoolIndex:
280   case MachineOperand::MO_TargetIndex:
281     return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
282   case MachineOperand::MO_JumpTableIndex:
283     return getIndex() == Other.getIndex();
284   case MachineOperand::MO_GlobalAddress:
285     return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
286   case MachineOperand::MO_ExternalSymbol:
287     return strcmp(getSymbolName(), Other.getSymbolName()) == 0 &&
288            getOffset() == Other.getOffset();
289   case MachineOperand::MO_BlockAddress:
290     return getBlockAddress() == Other.getBlockAddress() &&
291            getOffset() == Other.getOffset();
292   case MachineOperand::MO_RegisterMask:
293   case MachineOperand::MO_RegisterLiveOut: {
294     // Shallow compare of the two RegMasks
295     const uint32_t *RegMask = getRegMask();
296     const uint32_t *OtherRegMask = Other.getRegMask();
297     if (RegMask == OtherRegMask)
298       return true;
299 
300     // Calculate the size of the RegMask
301     const MachineFunction *MF = getParent()->getParent()->getParent();
302     const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
303     unsigned RegMaskSize = (TRI->getNumRegs() + 31) / 32;
304 
305     // Deep compare of the two RegMasks
306     return std::equal(RegMask, RegMask + RegMaskSize, OtherRegMask);
307   }
308   case MachineOperand::MO_MCSymbol:
309     return getMCSymbol() == Other.getMCSymbol();
310   case MachineOperand::MO_CFIIndex:
311     return getCFIIndex() == Other.getCFIIndex();
312   case MachineOperand::MO_Metadata:
313     return getMetadata() == Other.getMetadata();
314   case MachineOperand::MO_IntrinsicID:
315     return getIntrinsicID() == Other.getIntrinsicID();
316   case MachineOperand::MO_Predicate:
317     return getPredicate() == Other.getPredicate();
318   }
319   llvm_unreachable("Invalid machine operand type");
320 }
321 
322 // Note: this must stay exactly in sync with isIdenticalTo above.
323 hash_code llvm::hash_value(const MachineOperand &MO) {
324   switch (MO.getType()) {
325   case MachineOperand::MO_Register:
326     // Register operands don't have target flags.
327     return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef());
328   case MachineOperand::MO_Immediate:
329     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm());
330   case MachineOperand::MO_CImmediate:
331     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm());
332   case MachineOperand::MO_FPImmediate:
333     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm());
334   case MachineOperand::MO_MachineBasicBlock:
335     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB());
336   case MachineOperand::MO_FrameIndex:
337     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
338   case MachineOperand::MO_ConstantPoolIndex:
339   case MachineOperand::MO_TargetIndex:
340     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(),
341                         MO.getOffset());
342   case MachineOperand::MO_JumpTableIndex:
343     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
344   case MachineOperand::MO_ExternalSymbol:
345     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(),
346                         MO.getSymbolName());
347   case MachineOperand::MO_GlobalAddress:
348     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(),
349                         MO.getOffset());
350   case MachineOperand::MO_BlockAddress:
351     return hash_combine(MO.getType(), MO.getTargetFlags(),
352                         MO.getBlockAddress(), MO.getOffset());
353   case MachineOperand::MO_RegisterMask:
354   case MachineOperand::MO_RegisterLiveOut:
355     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask());
356   case MachineOperand::MO_Metadata:
357     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata());
358   case MachineOperand::MO_MCSymbol:
359     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol());
360   case MachineOperand::MO_CFIIndex:
361     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex());
362   case MachineOperand::MO_IntrinsicID:
363     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIntrinsicID());
364   case MachineOperand::MO_Predicate:
365     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getPredicate());
366   }
367   llvm_unreachable("Invalid machine operand type");
368 }
369 
370 void MachineOperand::print(raw_ostream &OS, const TargetRegisterInfo *TRI,
371                            const TargetIntrinsicInfo *IntrinsicInfo) const {
372   ModuleSlotTracker DummyMST(nullptr);
373   print(OS, DummyMST, TRI, IntrinsicInfo);
374 }
375 
376 void MachineOperand::print(raw_ostream &OS, ModuleSlotTracker &MST,
377                            const TargetRegisterInfo *TRI,
378                            const TargetIntrinsicInfo *IntrinsicInfo) const {
379   switch (getType()) {
380   case MachineOperand::MO_Register:
381     OS << PrintReg(getReg(), TRI, getSubReg());
382 
383     if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
384         isInternalRead() || isEarlyClobber() || isTied()) {
385       OS << '<';
386       bool NeedComma = false;
387       if (isDef()) {
388         if (NeedComma) OS << ',';
389         if (isEarlyClobber())
390           OS << "earlyclobber,";
391         if (isImplicit())
392           OS << "imp-";
393         OS << "def";
394         NeedComma = true;
395         // <def,read-undef> only makes sense when getSubReg() is set.
396         // Don't clutter the output otherwise.
397         if (isUndef() && getSubReg())
398           OS << ",read-undef";
399       } else if (isImplicit()) {
400         OS << "imp-use";
401         NeedComma = true;
402       }
403 
404       if (isKill()) {
405         if (NeedComma) OS << ',';
406         OS << "kill";
407         NeedComma = true;
408       }
409       if (isDead()) {
410         if (NeedComma) OS << ',';
411         OS << "dead";
412         NeedComma = true;
413       }
414       if (isUndef() && isUse()) {
415         if (NeedComma) OS << ',';
416         OS << "undef";
417         NeedComma = true;
418       }
419       if (isInternalRead()) {
420         if (NeedComma) OS << ',';
421         OS << "internal";
422         NeedComma = true;
423       }
424       if (isTied()) {
425         if (NeedComma) OS << ',';
426         OS << "tied";
427         if (TiedTo != 15)
428           OS << unsigned(TiedTo - 1);
429       }
430       OS << '>';
431     }
432     break;
433   case MachineOperand::MO_Immediate:
434     OS << getImm();
435     break;
436   case MachineOperand::MO_CImmediate:
437     getCImm()->getValue().print(OS, false);
438     break;
439   case MachineOperand::MO_FPImmediate:
440     if (getFPImm()->getType()->isFloatTy()) {
441       OS << getFPImm()->getValueAPF().convertToFloat();
442     } else if (getFPImm()->getType()->isHalfTy()) {
443       APFloat APF = getFPImm()->getValueAPF();
444       bool Unused;
445       APF.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &Unused);
446       OS << "half " << APF.convertToFloat();
447     } else if (getFPImm()->getType()->isFP128Ty()) {
448       APFloat APF = getFPImm()->getValueAPF();
449       SmallString<16> Str;
450       getFPImm()->getValueAPF().toString(Str);
451       OS << "quad " << Str;
452     } else if (getFPImm()->getType()->isX86_FP80Ty()) {
453       APFloat APF = getFPImm()->getValueAPF();
454       OS << "x86_fp80 0xK";
455       APInt API = APF.bitcastToAPInt();
456       OS << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4,
457                                  /*Upper=*/true);
458       OS << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
459                                  /*Upper=*/true);
460     } else {
461       OS << getFPImm()->getValueAPF().convertToDouble();
462     }
463     break;
464   case MachineOperand::MO_MachineBasicBlock:
465     OS << "<BB#" << getMBB()->getNumber() << ">";
466     break;
467   case MachineOperand::MO_FrameIndex:
468     OS << "<fi#" << getIndex() << '>';
469     break;
470   case MachineOperand::MO_ConstantPoolIndex:
471     OS << "<cp#" << getIndex();
472     if (getOffset()) OS << "+" << getOffset();
473     OS << '>';
474     break;
475   case MachineOperand::MO_TargetIndex:
476     OS << "<ti#" << getIndex();
477     if (getOffset()) OS << "+" << getOffset();
478     OS << '>';
479     break;
480   case MachineOperand::MO_JumpTableIndex:
481     OS << "<jt#" << getIndex() << '>';
482     break;
483   case MachineOperand::MO_GlobalAddress:
484     OS << "<ga:";
485     getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST);
486     if (getOffset()) OS << "+" << getOffset();
487     OS << '>';
488     break;
489   case MachineOperand::MO_ExternalSymbol:
490     OS << "<es:" << getSymbolName();
491     if (getOffset()) OS << "+" << getOffset();
492     OS << '>';
493     break;
494   case MachineOperand::MO_BlockAddress:
495     OS << '<';
496     getBlockAddress()->printAsOperand(OS, /*PrintType=*/false, MST);
497     if (getOffset()) OS << "+" << getOffset();
498     OS << '>';
499     break;
500   case MachineOperand::MO_RegisterMask: {
501     unsigned NumRegsInMask = 0;
502     unsigned NumRegsEmitted = 0;
503     OS << "<regmask";
504     for (unsigned i = 0; i < TRI->getNumRegs(); ++i) {
505       unsigned MaskWord = i / 32;
506       unsigned MaskBit = i % 32;
507       if (getRegMask()[MaskWord] & (1 << MaskBit)) {
508         if (PrintRegMaskNumRegs < 0 ||
509             NumRegsEmitted <= static_cast<unsigned>(PrintRegMaskNumRegs)) {
510           OS << " " << PrintReg(i, TRI);
511           NumRegsEmitted++;
512         }
513         NumRegsInMask++;
514       }
515     }
516     if (NumRegsEmitted != NumRegsInMask)
517       OS << " and " << (NumRegsInMask - NumRegsEmitted) << " more...";
518     OS << ">";
519     break;
520   }
521   case MachineOperand::MO_RegisterLiveOut:
522     OS << "<regliveout>";
523     break;
524   case MachineOperand::MO_Metadata:
525     OS << '<';
526     getMetadata()->printAsOperand(OS, MST);
527     OS << '>';
528     break;
529   case MachineOperand::MO_MCSymbol:
530     OS << "<MCSym=" << *getMCSymbol() << '>';
531     break;
532   case MachineOperand::MO_CFIIndex:
533     OS << "<call frame instruction>";
534     break;
535   case MachineOperand::MO_IntrinsicID: {
536     Intrinsic::ID ID = getIntrinsicID();
537     if (ID < Intrinsic::num_intrinsics)
538       OS << "<intrinsic:@" << Intrinsic::getName(ID, None) << '>';
539     else if (IntrinsicInfo)
540       OS << "<intrinsic:@" << IntrinsicInfo->getName(ID) << '>';
541     else
542       OS << "<intrinsic:" << ID << '>';
543     break;
544   }
545   case MachineOperand::MO_Predicate: {
546     auto Pred = static_cast<CmpInst::Predicate>(getPredicate());
547     OS << '<' << (CmpInst::isIntPredicate(Pred) ? "intpred" : "floatpred")
548        << CmpInst::getPredicateName(Pred) << '>';
549     break;
550   }
551   }
552   if (unsigned TF = getTargetFlags())
553     OS << "[TF=" << TF << ']';
554 }
555 
556 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
557 LLVM_DUMP_METHOD void MachineOperand::dump() const {
558   dbgs() << *this << '\n';
559 }
560 #endif
561 
562 //===----------------------------------------------------------------------===//
563 // MachineMemOperand Implementation
564 //===----------------------------------------------------------------------===//
565 
566 /// getAddrSpace - Return the LLVM IR address space number that this pointer
567 /// points into.
568 unsigned MachinePointerInfo::getAddrSpace() const {
569   if (V.isNull() || V.is<const PseudoSourceValue*>()) return 0;
570   return cast<PointerType>(V.get<const Value*>()->getType())->getAddressSpace();
571 }
572 
573 /// isDereferenceable - Return true if V is always dereferenceable for
574 /// Offset + Size byte.
575 bool MachinePointerInfo::isDereferenceable(unsigned Size, LLVMContext &C,
576                                            const DataLayout &DL) const {
577   if (!V.is<const Value*>())
578     return false;
579 
580   const Value *BasePtr = V.get<const Value*>();
581   if (BasePtr == nullptr)
582     return false;
583 
584   return isDereferenceableAndAlignedPointer(BasePtr, 1,
585                                             APInt(DL.getPointerSize(),
586                                                   Offset + Size),
587                                             DL);
588 }
589 
590 /// getConstantPool - Return a MachinePointerInfo record that refers to the
591 /// constant pool.
592 MachinePointerInfo MachinePointerInfo::getConstantPool(MachineFunction &MF) {
593   return MachinePointerInfo(MF.getPSVManager().getConstantPool());
594 }
595 
596 /// getFixedStack - Return a MachinePointerInfo record that refers to the
597 /// the specified FrameIndex.
598 MachinePointerInfo MachinePointerInfo::getFixedStack(MachineFunction &MF,
599                                                      int FI, int64_t Offset) {
600   return MachinePointerInfo(MF.getPSVManager().getFixedStack(FI), Offset);
601 }
602 
603 MachinePointerInfo MachinePointerInfo::getJumpTable(MachineFunction &MF) {
604   return MachinePointerInfo(MF.getPSVManager().getJumpTable());
605 }
606 
607 MachinePointerInfo MachinePointerInfo::getGOT(MachineFunction &MF) {
608   return MachinePointerInfo(MF.getPSVManager().getGOT());
609 }
610 
611 MachinePointerInfo MachinePointerInfo::getStack(MachineFunction &MF,
612                                                 int64_t Offset,
613                                                 uint8_t ID) {
614   return MachinePointerInfo(MF.getPSVManager().getStack(), Offset,ID);
615 }
616 
617 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, Flags f,
618                                      uint64_t s, unsigned int a,
619                                      const AAMDNodes &AAInfo,
620                                      const MDNode *Ranges,
621                                      SyncScope::ID SSID,
622                                      AtomicOrdering Ordering,
623                                      AtomicOrdering FailureOrdering)
624     : PtrInfo(ptrinfo), Size(s), FlagVals(f), BaseAlignLog2(Log2_32(a) + 1),
625       AAInfo(AAInfo), Ranges(Ranges) {
626   assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() ||
627           isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) &&
628          "invalid pointer value");
629   assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
630   assert((isLoad() || isStore()) && "Not a load/store!");
631 
632   AtomicInfo.SSID = static_cast<unsigned>(SSID);
633   assert(getSyncScopeID() == SSID && "Value truncated");
634   AtomicInfo.Ordering = static_cast<unsigned>(Ordering);
635   assert(getOrdering() == Ordering && "Value truncated");
636   AtomicInfo.FailureOrdering = static_cast<unsigned>(FailureOrdering);
637   assert(getFailureOrdering() == FailureOrdering && "Value truncated");
638 }
639 
640 /// Profile - Gather unique data for the object.
641 ///
642 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
643   ID.AddInteger(getOffset());
644   ID.AddInteger(Size);
645   ID.AddPointer(getOpaqueValue());
646   ID.AddInteger(getFlags());
647   ID.AddInteger(getBaseAlignment());
648 }
649 
650 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
651   // The Value and Offset may differ due to CSE. But the flags and size
652   // should be the same.
653   assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
654   assert(MMO->getSize() == getSize() && "Size mismatch!");
655 
656   if (MMO->getBaseAlignment() >= getBaseAlignment()) {
657     // Update the alignment value.
658     BaseAlignLog2 = Log2_32(MMO->getBaseAlignment()) + 1;
659     // Also update the base and offset, because the new alignment may
660     // not be applicable with the old ones.
661     PtrInfo = MMO->PtrInfo;
662   }
663 }
664 
665 /// getAlignment - Return the minimum known alignment in bytes of the
666 /// actual memory reference.
667 uint64_t MachineMemOperand::getAlignment() const {
668   return MinAlign(getBaseAlignment(), getOffset());
669 }
670 
671 void MachineMemOperand::print(raw_ostream &OS) const {
672   ModuleSlotTracker DummyMST(nullptr);
673   print(OS, DummyMST);
674 }
675 void MachineMemOperand::print(raw_ostream &OS, ModuleSlotTracker &MST) const {
676   assert((isLoad() || isStore()) &&
677          "SV has to be a load, store or both.");
678 
679   if (isVolatile())
680     OS << "Volatile ";
681 
682   if (isLoad())
683     OS << "LD";
684   if (isStore())
685     OS << "ST";
686   OS << getSize();
687 
688   // Print the address information.
689   OS << "[";
690   if (const Value *V = getValue())
691     V->printAsOperand(OS, /*PrintType=*/false, MST);
692   else if (const PseudoSourceValue *PSV = getPseudoValue())
693     PSV->printCustom(OS);
694   else
695     OS << "<unknown>";
696 
697   unsigned AS = getAddrSpace();
698   if (AS != 0)
699     OS << "(addrspace=" << AS << ')';
700 
701   // If the alignment of the memory reference itself differs from the alignment
702   // of the base pointer, print the base alignment explicitly, next to the base
703   // pointer.
704   if (getBaseAlignment() != getAlignment())
705     OS << "(align=" << getBaseAlignment() << ")";
706 
707   if (getOffset() != 0)
708     OS << "+" << getOffset();
709   OS << "]";
710 
711   // Print the alignment of the reference.
712   if (getBaseAlignment() != getAlignment() || getBaseAlignment() != getSize())
713     OS << "(align=" << getAlignment() << ")";
714 
715   // Print TBAA info.
716   if (const MDNode *TBAAInfo = getAAInfo().TBAA) {
717     OS << "(tbaa=";
718     if (TBAAInfo->getNumOperands() > 0)
719       TBAAInfo->getOperand(0)->printAsOperand(OS, MST);
720     else
721       OS << "<unknown>";
722     OS << ")";
723   }
724 
725   // Print AA scope info.
726   if (const MDNode *ScopeInfo = getAAInfo().Scope) {
727     OS << "(alias.scope=";
728     if (ScopeInfo->getNumOperands() > 0)
729       for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) {
730         ScopeInfo->getOperand(i)->printAsOperand(OS, MST);
731         if (i != ie-1)
732           OS << ",";
733       }
734     else
735       OS << "<unknown>";
736     OS << ")";
737   }
738 
739   // Print AA noalias scope info.
740   if (const MDNode *NoAliasInfo = getAAInfo().NoAlias) {
741     OS << "(noalias=";
742     if (NoAliasInfo->getNumOperands() > 0)
743       for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) {
744         NoAliasInfo->getOperand(i)->printAsOperand(OS, MST);
745         if (i != ie-1)
746           OS << ",";
747       }
748     else
749       OS << "<unknown>";
750     OS << ")";
751   }
752 
753   if (isNonTemporal())
754     OS << "(nontemporal)";
755   if (isDereferenceable())
756     OS << "(dereferenceable)";
757   if (isInvariant())
758     OS << "(invariant)";
759   if (getFlags() & MOTargetFlag1)
760     OS << "(flag1)";
761   if (getFlags() & MOTargetFlag2)
762     OS << "(flag2)";
763   if (getFlags() & MOTargetFlag3)
764     OS << "(flag3)";
765 }
766 
767 //===----------------------------------------------------------------------===//
768 // MachineInstr Implementation
769 //===----------------------------------------------------------------------===//
770 
771 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
772   if (MCID->ImplicitDefs)
773     for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
774            ++ImpDefs)
775       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
776   if (MCID->ImplicitUses)
777     for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
778            ++ImpUses)
779       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
780 }
781 
782 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
783 /// implicit operands. It reserves space for the number of operands specified by
784 /// the MCInstrDesc.
785 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
786                            DebugLoc dl, bool NoImp)
787     : MCID(&tid), debugLoc(std::move(dl)) {
788   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
789 
790   // Reserve space for the expected number of operands.
791   if (unsigned NumOps = MCID->getNumOperands() +
792     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
793     CapOperands = OperandCapacity::get(NumOps);
794     Operands = MF.allocateOperandArray(CapOperands);
795   }
796 
797   if (!NoImp)
798     addImplicitDefUseOperands(MF);
799 }
800 
801 /// MachineInstr ctor - Copies MachineInstr arg exactly
802 ///
803 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
804     : MCID(&MI.getDesc()), NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs),
805       debugLoc(MI.getDebugLoc()) {
806   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
807 
808   CapOperands = OperandCapacity::get(MI.getNumOperands());
809   Operands = MF.allocateOperandArray(CapOperands);
810 
811   // Copy operands.
812   for (const MachineOperand &MO : MI.operands())
813     addOperand(MF, MO);
814 
815   // Copy all the sensible flags.
816   setFlags(MI.Flags);
817 }
818 
819 /// getRegInfo - If this instruction is embedded into a MachineFunction,
820 /// return the MachineRegisterInfo object for the current function, otherwise
821 /// return null.
822 MachineRegisterInfo *MachineInstr::getRegInfo() {
823   if (MachineBasicBlock *MBB = getParent())
824     return &MBB->getParent()->getRegInfo();
825   return nullptr;
826 }
827 
828 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
829 /// this instruction from their respective use lists.  This requires that the
830 /// operands already be on their use lists.
831 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
832   for (MachineOperand &MO : operands())
833     if (MO.isReg())
834       MRI.removeRegOperandFromUseList(&MO);
835 }
836 
837 /// AddRegOperandsToUseLists - Add all of the register operands in
838 /// this instruction from their respective use lists.  This requires that the
839 /// operands not be on their use lists yet.
840 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
841   for (MachineOperand &MO : operands())
842     if (MO.isReg())
843       MRI.addRegOperandToUseList(&MO);
844 }
845 
846 void MachineInstr::addOperand(const MachineOperand &Op) {
847   MachineBasicBlock *MBB = getParent();
848   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
849   MachineFunction *MF = MBB->getParent();
850   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
851   addOperand(*MF, Op);
852 }
853 
854 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
855 /// ranges. If MRI is non-null also update use-def chains.
856 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
857                          unsigned NumOps, MachineRegisterInfo *MRI) {
858   if (MRI)
859     return MRI->moveOperands(Dst, Src, NumOps);
860 
861   // MachineOperand is a trivially copyable type so we can just use memmove.
862   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
863 }
864 
865 /// addOperand - Add the specified operand to the instruction.  If it is an
866 /// implicit operand, it is added to the end of the operand list.  If it is
867 /// an explicit operand it is added at the end of the explicit operand list
868 /// (before the first implicit operand).
869 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
870   assert(MCID && "Cannot add operands before providing an instr descriptor");
871 
872   // Check if we're adding one of our existing operands.
873   if (&Op >= Operands && &Op < Operands + NumOperands) {
874     // This is unusual: MI->addOperand(MI->getOperand(i)).
875     // If adding Op requires reallocating or moving existing operands around,
876     // the Op reference could go stale. Support it by copying Op.
877     MachineOperand CopyOp(Op);
878     return addOperand(MF, CopyOp);
879   }
880 
881   // Find the insert location for the new operand.  Implicit registers go at
882   // the end, everything else goes before the implicit regs.
883   //
884   // FIXME: Allow mixed explicit and implicit operands on inline asm.
885   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
886   // implicit-defs, but they must not be moved around.  See the FIXME in
887   // InstrEmitter.cpp.
888   unsigned OpNo = getNumOperands();
889   bool isImpReg = Op.isReg() && Op.isImplicit();
890   if (!isImpReg && !isInlineAsm()) {
891     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
892       --OpNo;
893       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
894     }
895   }
896 
897 #ifndef NDEBUG
898   bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata;
899   // OpNo now points as the desired insertion point.  Unless this is a variadic
900   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
901   // RegMask operands go between the explicit and implicit operands.
902   assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
903           OpNo < MCID->getNumOperands() || isMetaDataOp) &&
904          "Trying to add an operand to a machine instr that is already done!");
905 #endif
906 
907   MachineRegisterInfo *MRI = getRegInfo();
908 
909   // Determine if the Operands array needs to be reallocated.
910   // Save the old capacity and operand array.
911   OperandCapacity OldCap = CapOperands;
912   MachineOperand *OldOperands = Operands;
913   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
914     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
915     Operands = MF.allocateOperandArray(CapOperands);
916     // Move the operands before the insertion point.
917     if (OpNo)
918       moveOperands(Operands, OldOperands, OpNo, MRI);
919   }
920 
921   // Move the operands following the insertion point.
922   if (OpNo != NumOperands)
923     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
924                  MRI);
925   ++NumOperands;
926 
927   // Deallocate the old operand array.
928   if (OldOperands != Operands && OldOperands)
929     MF.deallocateOperandArray(OldCap, OldOperands);
930 
931   // Copy Op into place. It still needs to be inserted into the MRI use lists.
932   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
933   NewMO->ParentMI = this;
934 
935   // When adding a register operand, tell MRI about it.
936   if (NewMO->isReg()) {
937     // Ensure isOnRegUseList() returns false, regardless of Op's status.
938     NewMO->Contents.Reg.Prev = nullptr;
939     // Ignore existing ties. This is not a property that can be copied.
940     NewMO->TiedTo = 0;
941     // Add the new operand to MRI, but only for instructions in an MBB.
942     if (MRI)
943       MRI->addRegOperandToUseList(NewMO);
944     // The MCID operand information isn't accurate until we start adding
945     // explicit operands. The implicit operands are added first, then the
946     // explicits are inserted before them.
947     if (!isImpReg) {
948       // Tie uses to defs as indicated in MCInstrDesc.
949       if (NewMO->isUse()) {
950         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
951         if (DefIdx != -1)
952           tieOperands(DefIdx, OpNo);
953       }
954       // If the register operand is flagged as early, mark the operand as such.
955       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
956         NewMO->setIsEarlyClobber(true);
957     }
958   }
959 }
960 
961 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
962 /// fewer operand than it started with.
963 ///
964 void MachineInstr::RemoveOperand(unsigned OpNo) {
965   assert(OpNo < getNumOperands() && "Invalid operand number");
966   untieRegOperand(OpNo);
967 
968 #ifndef NDEBUG
969   // Moving tied operands would break the ties.
970   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
971     if (Operands[i].isReg())
972       assert(!Operands[i].isTied() && "Cannot move tied operands");
973 #endif
974 
975   MachineRegisterInfo *MRI = getRegInfo();
976   if (MRI && Operands[OpNo].isReg())
977     MRI->removeRegOperandFromUseList(Operands + OpNo);
978 
979   // Don't call the MachineOperand destructor. A lot of this code depends on
980   // MachineOperand having a trivial destructor anyway, and adding a call here
981   // wouldn't make it 'destructor-correct'.
982 
983   if (unsigned N = NumOperands - 1 - OpNo)
984     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
985   --NumOperands;
986 }
987 
988 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
989 /// This function should be used only occasionally. The setMemRefs function
990 /// is the primary method for setting up a MachineInstr's MemRefs list.
991 void MachineInstr::addMemOperand(MachineFunction &MF,
992                                  MachineMemOperand *MO) {
993   mmo_iterator OldMemRefs = MemRefs;
994   unsigned OldNumMemRefs = NumMemRefs;
995 
996   unsigned NewNum = NumMemRefs + 1;
997   mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
998 
999   std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs);
1000   NewMemRefs[NewNum - 1] = MO;
1001   setMemRefs(NewMemRefs, NewMemRefs + NewNum);
1002 }
1003 
1004 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
1005 /// identical.
1006 static bool hasIdenticalMMOs(const MachineInstr &MI1, const MachineInstr &MI2) {
1007   auto I1 = MI1.memoperands_begin(), E1 = MI1.memoperands_end();
1008   auto I2 = MI2.memoperands_begin(), E2 = MI2.memoperands_end();
1009   if ((E1 - I1) != (E2 - I2))
1010     return false;
1011   for (; I1 != E1; ++I1, ++I2) {
1012     if (**I1 != **I2)
1013       return false;
1014   }
1015   return true;
1016 }
1017 
1018 std::pair<MachineInstr::mmo_iterator, unsigned>
1019 MachineInstr::mergeMemRefsWith(const MachineInstr& Other) {
1020 
1021   // If either of the incoming memrefs are empty, we must be conservative and
1022   // treat this as if we've exhausted our space for memrefs and dropped them.
1023   if (memoperands_empty() || Other.memoperands_empty())
1024     return std::make_pair(nullptr, 0);
1025 
1026   // If both instructions have identical memrefs, we don't need to merge them.
1027   // Since many instructions have a single memref, and we tend to merge things
1028   // like pairs of loads from the same location, this catches a large number of
1029   // cases in practice.
1030   if (hasIdenticalMMOs(*this, Other))
1031     return std::make_pair(MemRefs, NumMemRefs);
1032 
1033   // TODO: consider uniquing elements within the operand lists to reduce
1034   // space usage and fall back to conservative information less often.
1035   size_t CombinedNumMemRefs = NumMemRefs + Other.NumMemRefs;
1036 
1037   // If we don't have enough room to store this many memrefs, be conservative
1038   // and drop them.  Otherwise, we'd fail asserts when trying to add them to
1039   // the new instruction.
1040   if (CombinedNumMemRefs != uint8_t(CombinedNumMemRefs))
1041     return std::make_pair(nullptr, 0);
1042 
1043   MachineFunction *MF = getParent()->getParent();
1044   mmo_iterator MemBegin = MF->allocateMemRefsArray(CombinedNumMemRefs);
1045   mmo_iterator MemEnd = std::copy(memoperands_begin(), memoperands_end(),
1046                                   MemBegin);
1047   MemEnd = std::copy(Other.memoperands_begin(), Other.memoperands_end(),
1048                      MemEnd);
1049   assert(MemEnd - MemBegin == (ptrdiff_t)CombinedNumMemRefs &&
1050          "missing memrefs");
1051 
1052   return std::make_pair(MemBegin, CombinedNumMemRefs);
1053 }
1054 
1055 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const {
1056   assert(!isBundledWithPred() && "Must be called on bundle header");
1057   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
1058     if (MII->getDesc().getFlags() & Mask) {
1059       if (Type == AnyInBundle)
1060         return true;
1061     } else {
1062       if (Type == AllInBundle && !MII->isBundle())
1063         return false;
1064     }
1065     // This was the last instruction in the bundle.
1066     if (!MII->isBundledWithSucc())
1067       return Type == AllInBundle;
1068   }
1069 }
1070 
1071 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
1072                                  MICheckType Check) const {
1073   // If opcodes or number of operands are not the same then the two
1074   // instructions are obviously not identical.
1075   if (Other.getOpcode() != getOpcode() ||
1076       Other.getNumOperands() != getNumOperands())
1077     return false;
1078 
1079   if (isBundle()) {
1080     // We have passed the test above that both instructions have the same
1081     // opcode, so we know that both instructions are bundles here. Let's compare
1082     // MIs inside the bundle.
1083     assert(Other.isBundle() && "Expected that both instructions are bundles.");
1084     MachineBasicBlock::const_instr_iterator I1 = getIterator();
1085     MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
1086     // Loop until we analysed the last intruction inside at least one of the
1087     // bundles.
1088     while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
1089       ++I1;
1090       ++I2;
1091       if (!I1->isIdenticalTo(*I2, Check))
1092         return false;
1093     }
1094     // If we've reached the end of just one of the two bundles, but not both,
1095     // the instructions are not identical.
1096     if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
1097       return false;
1098   }
1099 
1100   // Check operands to make sure they match.
1101   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1102     const MachineOperand &MO = getOperand(i);
1103     const MachineOperand &OMO = Other.getOperand(i);
1104     if (!MO.isReg()) {
1105       if (!MO.isIdenticalTo(OMO))
1106         return false;
1107       continue;
1108     }
1109 
1110     // Clients may or may not want to ignore defs when testing for equality.
1111     // For example, machine CSE pass only cares about finding common
1112     // subexpressions, so it's safe to ignore virtual register defs.
1113     if (MO.isDef()) {
1114       if (Check == IgnoreDefs)
1115         continue;
1116       else if (Check == IgnoreVRegDefs) {
1117         if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
1118             TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
1119           if (MO.getReg() != OMO.getReg())
1120             return false;
1121       } else {
1122         if (!MO.isIdenticalTo(OMO))
1123           return false;
1124         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
1125           return false;
1126       }
1127     } else {
1128       if (!MO.isIdenticalTo(OMO))
1129         return false;
1130       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
1131         return false;
1132     }
1133   }
1134   // If DebugLoc does not match then two dbg.values are not identical.
1135   if (isDebugValue())
1136     if (getDebugLoc() && Other.getDebugLoc() &&
1137         getDebugLoc() != Other.getDebugLoc())
1138       return false;
1139   return true;
1140 }
1141 
1142 MachineInstr *MachineInstr::removeFromParent() {
1143   assert(getParent() && "Not embedded in a basic block!");
1144   return getParent()->remove(this);
1145 }
1146 
1147 MachineInstr *MachineInstr::removeFromBundle() {
1148   assert(getParent() && "Not embedded in a basic block!");
1149   return getParent()->remove_instr(this);
1150 }
1151 
1152 void MachineInstr::eraseFromParent() {
1153   assert(getParent() && "Not embedded in a basic block!");
1154   getParent()->erase(this);
1155 }
1156 
1157 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
1158   assert(getParent() && "Not embedded in a basic block!");
1159   MachineBasicBlock *MBB = getParent();
1160   MachineFunction *MF = MBB->getParent();
1161   assert(MF && "Not embedded in a function!");
1162 
1163   MachineInstr *MI = (MachineInstr *)this;
1164   MachineRegisterInfo &MRI = MF->getRegInfo();
1165 
1166   for (const MachineOperand &MO : MI->operands()) {
1167     if (!MO.isReg() || !MO.isDef())
1168       continue;
1169     unsigned Reg = MO.getReg();
1170     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1171       continue;
1172     MRI.markUsesInDebugValueAsUndef(Reg);
1173   }
1174   MI->eraseFromParent();
1175 }
1176 
1177 void MachineInstr::eraseFromBundle() {
1178   assert(getParent() && "Not embedded in a basic block!");
1179   getParent()->erase_instr(this);
1180 }
1181 
1182 /// getNumExplicitOperands - Returns the number of non-implicit operands.
1183 ///
1184 unsigned MachineInstr::getNumExplicitOperands() const {
1185   unsigned NumOperands = MCID->getNumOperands();
1186   if (!MCID->isVariadic())
1187     return NumOperands;
1188 
1189   for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
1190     const MachineOperand &MO = getOperand(i);
1191     if (!MO.isReg() || !MO.isImplicit())
1192       NumOperands++;
1193   }
1194   return NumOperands;
1195 }
1196 
1197 void MachineInstr::bundleWithPred() {
1198   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
1199   setFlag(BundledPred);
1200   MachineBasicBlock::instr_iterator Pred = getIterator();
1201   --Pred;
1202   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
1203   Pred->setFlag(BundledSucc);
1204 }
1205 
1206 void MachineInstr::bundleWithSucc() {
1207   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
1208   setFlag(BundledSucc);
1209   MachineBasicBlock::instr_iterator Succ = getIterator();
1210   ++Succ;
1211   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
1212   Succ->setFlag(BundledPred);
1213 }
1214 
1215 void MachineInstr::unbundleFromPred() {
1216   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
1217   clearFlag(BundledPred);
1218   MachineBasicBlock::instr_iterator Pred = getIterator();
1219   --Pred;
1220   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
1221   Pred->clearFlag(BundledSucc);
1222 }
1223 
1224 void MachineInstr::unbundleFromSucc() {
1225   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
1226   clearFlag(BundledSucc);
1227   MachineBasicBlock::instr_iterator Succ = getIterator();
1228   ++Succ;
1229   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
1230   Succ->clearFlag(BundledPred);
1231 }
1232 
1233 bool MachineInstr::isStackAligningInlineAsm() const {
1234   if (isInlineAsm()) {
1235     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1236     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1237       return true;
1238   }
1239   return false;
1240 }
1241 
1242 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
1243   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
1244   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1245   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
1246 }
1247 
1248 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
1249                                        unsigned *GroupNo) const {
1250   assert(isInlineAsm() && "Expected an inline asm instruction");
1251   assert(OpIdx < getNumOperands() && "OpIdx out of range");
1252 
1253   // Ignore queries about the initial operands.
1254   if (OpIdx < InlineAsm::MIOp_FirstOperand)
1255     return -1;
1256 
1257   unsigned Group = 0;
1258   unsigned NumOps;
1259   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1260        i += NumOps) {
1261     const MachineOperand &FlagMO = getOperand(i);
1262     // If we reach the implicit register operands, stop looking.
1263     if (!FlagMO.isImm())
1264       return -1;
1265     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1266     if (i + NumOps > OpIdx) {
1267       if (GroupNo)
1268         *GroupNo = Group;
1269       return i;
1270     }
1271     ++Group;
1272   }
1273   return -1;
1274 }
1275 
1276 const DILocalVariable *MachineInstr::getDebugVariable() const {
1277   assert(isDebugValue() && "not a DBG_VALUE");
1278   return cast<DILocalVariable>(getOperand(2).getMetadata());
1279 }
1280 
1281 const DIExpression *MachineInstr::getDebugExpression() const {
1282   assert(isDebugValue() && "not a DBG_VALUE");
1283   return cast<DIExpression>(getOperand(3).getMetadata());
1284 }
1285 
1286 const TargetRegisterClass*
1287 MachineInstr::getRegClassConstraint(unsigned OpIdx,
1288                                     const TargetInstrInfo *TII,
1289                                     const TargetRegisterInfo *TRI) const {
1290   assert(getParent() && "Can't have an MBB reference here!");
1291   assert(getParent()->getParent() && "Can't have an MF reference here!");
1292   const MachineFunction &MF = *getParent()->getParent();
1293 
1294   // Most opcodes have fixed constraints in their MCInstrDesc.
1295   if (!isInlineAsm())
1296     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
1297 
1298   if (!getOperand(OpIdx).isReg())
1299     return nullptr;
1300 
1301   // For tied uses on inline asm, get the constraint from the def.
1302   unsigned DefIdx;
1303   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
1304     OpIdx = DefIdx;
1305 
1306   // Inline asm stores register class constraints in the flag word.
1307   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
1308   if (FlagIdx < 0)
1309     return nullptr;
1310 
1311   unsigned Flag = getOperand(FlagIdx).getImm();
1312   unsigned RCID;
1313   if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
1314        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
1315        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
1316       InlineAsm::hasRegClassConstraint(Flag, RCID))
1317     return TRI->getRegClass(RCID);
1318 
1319   // Assume that all registers in a memory operand are pointers.
1320   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
1321     return TRI->getPointerRegClass(MF);
1322 
1323   return nullptr;
1324 }
1325 
1326 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
1327     unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
1328     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
1329   // Check every operands inside the bundle if we have
1330   // been asked to.
1331   if (ExploreBundle)
1332     for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
1333          ++OpndIt)
1334       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
1335           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
1336   else
1337     // Otherwise, just check the current operands.
1338     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
1339       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
1340   return CurRC;
1341 }
1342 
1343 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
1344     unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
1345     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
1346   assert(CurRC && "Invalid initial register class");
1347   // Check if Reg is constrained by some of its use/def from MI.
1348   const MachineOperand &MO = getOperand(OpIdx);
1349   if (!MO.isReg() || MO.getReg() != Reg)
1350     return CurRC;
1351   // If yes, accumulate the constraints through the operand.
1352   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
1353 }
1354 
1355 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
1356     unsigned OpIdx, const TargetRegisterClass *CurRC,
1357     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
1358   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
1359   const MachineOperand &MO = getOperand(OpIdx);
1360   assert(MO.isReg() &&
1361          "Cannot get register constraints for non-register operand");
1362   assert(CurRC && "Invalid initial register class");
1363   if (unsigned SubIdx = MO.getSubReg()) {
1364     if (OpRC)
1365       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
1366     else
1367       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
1368   } else if (OpRC)
1369     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
1370   return CurRC;
1371 }
1372 
1373 /// Return the number of instructions inside the MI bundle, not counting the
1374 /// header instruction.
1375 unsigned MachineInstr::getBundleSize() const {
1376   MachineBasicBlock::const_instr_iterator I = getIterator();
1377   unsigned Size = 0;
1378   while (I->isBundledWithSucc()) {
1379     ++Size;
1380     ++I;
1381   }
1382   return Size;
1383 }
1384 
1385 /// Returns true if the MachineInstr has an implicit-use operand of exactly
1386 /// the given register (not considering sub/super-registers).
1387 bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const {
1388   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1389     const MachineOperand &MO = getOperand(i);
1390     if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
1391       return true;
1392   }
1393   return false;
1394 }
1395 
1396 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
1397 /// the specific register or -1 if it is not found. It further tightens
1398 /// the search criteria to a use that kills the register if isKill is true.
1399 int MachineInstr::findRegisterUseOperandIdx(
1400     unsigned Reg, bool isKill, const TargetRegisterInfo *TRI) const {
1401   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1402     const MachineOperand &MO = getOperand(i);
1403     if (!MO.isReg() || !MO.isUse())
1404       continue;
1405     unsigned MOReg = MO.getReg();
1406     if (!MOReg)
1407       continue;
1408     if (MOReg == Reg || (TRI && TargetRegisterInfo::isPhysicalRegister(MOReg) &&
1409                          TargetRegisterInfo::isPhysicalRegister(Reg) &&
1410                          TRI->isSubRegister(MOReg, Reg)))
1411       if (!isKill || MO.isKill())
1412         return i;
1413   }
1414   return -1;
1415 }
1416 
1417 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1418 /// indicating if this instruction reads or writes Reg. This also considers
1419 /// partial defines.
1420 std::pair<bool,bool>
1421 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
1422                                          SmallVectorImpl<unsigned> *Ops) const {
1423   bool PartDef = false; // Partial redefine.
1424   bool FullDef = false; // Full define.
1425   bool Use = false;
1426 
1427   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1428     const MachineOperand &MO = getOperand(i);
1429     if (!MO.isReg() || MO.getReg() != Reg)
1430       continue;
1431     if (Ops)
1432       Ops->push_back(i);
1433     if (MO.isUse())
1434       Use |= !MO.isUndef();
1435     else if (MO.getSubReg() && !MO.isUndef())
1436       // A partial <def,undef> doesn't count as reading the register.
1437       PartDef = true;
1438     else
1439       FullDef = true;
1440   }
1441   // A partial redefine uses Reg unless there is also a full define.
1442   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1443 }
1444 
1445 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1446 /// the specified register or -1 if it is not found. If isDead is true, defs
1447 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1448 /// also checks if there is a def of a super-register.
1449 int
1450 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
1451                                         const TargetRegisterInfo *TRI) const {
1452   bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
1453   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1454     const MachineOperand &MO = getOperand(i);
1455     // Accept regmask operands when Overlap is set.
1456     // Ignore them when looking for a specific def operand (Overlap == false).
1457     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1458       return i;
1459     if (!MO.isReg() || !MO.isDef())
1460       continue;
1461     unsigned MOReg = MO.getReg();
1462     bool Found = (MOReg == Reg);
1463     if (!Found && TRI && isPhys &&
1464         TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1465       if (Overlap)
1466         Found = TRI->regsOverlap(MOReg, Reg);
1467       else
1468         Found = TRI->isSubRegister(MOReg, Reg);
1469     }
1470     if (Found && (!isDead || MO.isDead()))
1471       return i;
1472   }
1473   return -1;
1474 }
1475 
1476 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1477 /// operand list that is used to represent the predicate. It returns -1 if
1478 /// none is found.
1479 int MachineInstr::findFirstPredOperandIdx() const {
1480   // Don't call MCID.findFirstPredOperandIdx() because this variant
1481   // is sometimes called on an instruction that's not yet complete, and
1482   // so the number of operands is less than the MCID indicates. In
1483   // particular, the PTX target does this.
1484   const MCInstrDesc &MCID = getDesc();
1485   if (MCID.isPredicable()) {
1486     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1487       if (MCID.OpInfo[i].isPredicate())
1488         return i;
1489   }
1490 
1491   return -1;
1492 }
1493 
1494 // MachineOperand::TiedTo is 4 bits wide.
1495 const unsigned TiedMax = 15;
1496 
1497 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1498 ///
1499 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1500 /// field. TiedTo can have these values:
1501 ///
1502 /// 0:              Operand is not tied to anything.
1503 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1504 /// TiedMax:        Tied to an operand >= TiedMax-1.
1505 ///
1506 /// The tied def must be one of the first TiedMax operands on a normal
1507 /// instruction. INLINEASM instructions allow more tied defs.
1508 ///
1509 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1510   MachineOperand &DefMO = getOperand(DefIdx);
1511   MachineOperand &UseMO = getOperand(UseIdx);
1512   assert(DefMO.isDef() && "DefIdx must be a def operand");
1513   assert(UseMO.isUse() && "UseIdx must be a use operand");
1514   assert(!DefMO.isTied() && "Def is already tied to another use");
1515   assert(!UseMO.isTied() && "Use is already tied to another def");
1516 
1517   if (DefIdx < TiedMax)
1518     UseMO.TiedTo = DefIdx + 1;
1519   else {
1520     // Inline asm can use the group descriptors to find tied operands, but on
1521     // normal instruction, the tied def must be within the first TiedMax
1522     // operands.
1523     assert(isInlineAsm() && "DefIdx out of range");
1524     UseMO.TiedTo = TiedMax;
1525   }
1526 
1527   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1528   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1529 }
1530 
1531 /// Given the index of a tied register operand, find the operand it is tied to.
1532 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1533 /// which must exist.
1534 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1535   const MachineOperand &MO = getOperand(OpIdx);
1536   assert(MO.isTied() && "Operand isn't tied");
1537 
1538   // Normally TiedTo is in range.
1539   if (MO.TiedTo < TiedMax)
1540     return MO.TiedTo - 1;
1541 
1542   // Uses on normal instructions can be out of range.
1543   if (!isInlineAsm()) {
1544     // Normal tied defs must be in the 0..TiedMax-1 range.
1545     if (MO.isUse())
1546       return TiedMax - 1;
1547     // MO is a def. Search for the tied use.
1548     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1549       const MachineOperand &UseMO = getOperand(i);
1550       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1551         return i;
1552     }
1553     llvm_unreachable("Can't find tied use");
1554   }
1555 
1556   // Now deal with inline asm by parsing the operand group descriptor flags.
1557   // Find the beginning of each operand group.
1558   SmallVector<unsigned, 8> GroupIdx;
1559   unsigned OpIdxGroup = ~0u;
1560   unsigned NumOps;
1561   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1562        i += NumOps) {
1563     const MachineOperand &FlagMO = getOperand(i);
1564     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1565     unsigned CurGroup = GroupIdx.size();
1566     GroupIdx.push_back(i);
1567     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1568     // OpIdx belongs to this operand group.
1569     if (OpIdx > i && OpIdx < i + NumOps)
1570       OpIdxGroup = CurGroup;
1571     unsigned TiedGroup;
1572     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1573       continue;
1574     // Operands in this group are tied to operands in TiedGroup which must be
1575     // earlier. Find the number of operands between the two groups.
1576     unsigned Delta = i - GroupIdx[TiedGroup];
1577 
1578     // OpIdx is a use tied to TiedGroup.
1579     if (OpIdxGroup == CurGroup)
1580       return OpIdx - Delta;
1581 
1582     // OpIdx is a def tied to this use group.
1583     if (OpIdxGroup == TiedGroup)
1584       return OpIdx + Delta;
1585   }
1586   llvm_unreachable("Invalid tied operand on inline asm");
1587 }
1588 
1589 /// clearKillInfo - Clears kill flags on all operands.
1590 ///
1591 void MachineInstr::clearKillInfo() {
1592   for (MachineOperand &MO : operands()) {
1593     if (MO.isReg() && MO.isUse())
1594       MO.setIsKill(false);
1595   }
1596 }
1597 
1598 void MachineInstr::substituteRegister(unsigned FromReg,
1599                                       unsigned ToReg,
1600                                       unsigned SubIdx,
1601                                       const TargetRegisterInfo &RegInfo) {
1602   if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
1603     if (SubIdx)
1604       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1605     for (MachineOperand &MO : operands()) {
1606       if (!MO.isReg() || MO.getReg() != FromReg)
1607         continue;
1608       MO.substPhysReg(ToReg, RegInfo);
1609     }
1610   } else {
1611     for (MachineOperand &MO : operands()) {
1612       if (!MO.isReg() || MO.getReg() != FromReg)
1613         continue;
1614       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1615     }
1616   }
1617 }
1618 
1619 /// isSafeToMove - Return true if it is safe to move this instruction. If
1620 /// SawStore is set to true, it means that there is a store (or call) between
1621 /// the instruction's location and its intended destination.
1622 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const {
1623   // Ignore stuff that we obviously can't move.
1624   //
1625   // Treat volatile loads as stores. This is not strictly necessary for
1626   // volatiles, but it is required for atomic loads. It is not allowed to move
1627   // a load across an atomic load with Ordering > Monotonic.
1628   if (mayStore() || isCall() ||
1629       (mayLoad() && hasOrderedMemoryRef())) {
1630     SawStore = true;
1631     return false;
1632   }
1633 
1634   if (isPosition() || isDebugValue() || isTerminator() ||
1635       hasUnmodeledSideEffects())
1636     return false;
1637 
1638   // See if this instruction does a load.  If so, we have to guarantee that the
1639   // loaded value doesn't change between the load and the its intended
1640   // destination. The check for isInvariantLoad gives the targe the chance to
1641   // classify the load as always returning a constant, e.g. a constant pool
1642   // load.
1643   if (mayLoad() && !isDereferenceableInvariantLoad(AA))
1644     // Otherwise, this is a real load.  If there is a store between the load and
1645     // end of block, we can't move it.
1646     return !SawStore;
1647 
1648   return true;
1649 }
1650 
1651 bool MachineInstr::mayAlias(AliasAnalysis *AA, MachineInstr &Other,
1652                             bool UseTBAA) {
1653   const MachineFunction *MF = getParent()->getParent();
1654   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1655 
1656   // If neither instruction stores to memory, they can't alias in any
1657   // meaningful way, even if they read from the same address.
1658   if (!mayStore() && !Other.mayStore())
1659     return false;
1660 
1661   // Let the target decide if memory accesses cannot possibly overlap.
1662   if (TII->areMemAccessesTriviallyDisjoint(*this, Other, AA))
1663     return false;
1664 
1665   if (!AA)
1666     return true;
1667 
1668   // FIXME: Need to handle multiple memory operands to support all targets.
1669   if (!hasOneMemOperand() || !Other.hasOneMemOperand())
1670     return true;
1671 
1672   MachineMemOperand *MMOa = *memoperands_begin();
1673   MachineMemOperand *MMOb = *Other.memoperands_begin();
1674 
1675   if (!MMOa->getValue() || !MMOb->getValue())
1676     return true;
1677 
1678   // The following interface to AA is fashioned after DAGCombiner::isAlias
1679   // and operates with MachineMemOperand offset with some important
1680   // assumptions:
1681   //   - LLVM fundamentally assumes flat address spaces.
1682   //   - MachineOperand offset can *only* result from legalization and
1683   //     cannot affect queries other than the trivial case of overlap
1684   //     checking.
1685   //   - These offsets never wrap and never step outside
1686   //     of allocated objects.
1687   //   - There should never be any negative offsets here.
1688   //
1689   // FIXME: Modify API to hide this math from "user"
1690   // FIXME: Even before we go to AA we can reason locally about some
1691   // memory objects. It can save compile time, and possibly catch some
1692   // corner cases not currently covered.
1693 
1694   assert((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset");
1695   assert((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset");
1696 
1697   int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset());
1698   int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset;
1699   int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset;
1700 
1701   AliasResult AAResult =
1702       AA->alias(MemoryLocation(MMOa->getValue(), Overlapa,
1703                                UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1704                 MemoryLocation(MMOb->getValue(), Overlapb,
1705                                UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1706 
1707   return (AAResult != NoAlias);
1708 }
1709 
1710 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1711 /// or volatile memory reference, or if the information describing the memory
1712 /// reference is not available. Return false if it is known to have no ordered
1713 /// memory references.
1714 bool MachineInstr::hasOrderedMemoryRef() const {
1715   // An instruction known never to access memory won't have a volatile access.
1716   if (!mayStore() &&
1717       !mayLoad() &&
1718       !isCall() &&
1719       !hasUnmodeledSideEffects())
1720     return false;
1721 
1722   // Otherwise, if the instruction has no memory reference information,
1723   // conservatively assume it wasn't preserved.
1724   if (memoperands_empty())
1725     return true;
1726 
1727   // Check if any of our memory operands are ordered.
1728   return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1729     return !MMO->isUnordered();
1730   });
1731 }
1732 
1733 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1734 /// trap and is loading from a location whose value is invariant across a run of
1735 /// this function.
1736 bool MachineInstr::isDereferenceableInvariantLoad(AliasAnalysis *AA) const {
1737   // If the instruction doesn't load at all, it isn't an invariant load.
1738   if (!mayLoad())
1739     return false;
1740 
1741   // If the instruction has lost its memoperands, conservatively assume that
1742   // it may not be an invariant load.
1743   if (memoperands_empty())
1744     return false;
1745 
1746   const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1747 
1748   for (MachineMemOperand *MMO : memoperands()) {
1749     if (MMO->isVolatile()) return false;
1750     if (MMO->isStore()) return false;
1751     if (MMO->isInvariant() && MMO->isDereferenceable())
1752       continue;
1753 
1754     // A load from a constant PseudoSourceValue is invariant.
1755     if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1756       if (PSV->isConstant(&MFI))
1757         continue;
1758 
1759     if (const Value *V = MMO->getValue()) {
1760       // If we have an AliasAnalysis, ask it whether the memory is constant.
1761       if (AA &&
1762           AA->pointsToConstantMemory(
1763               MemoryLocation(V, MMO->getSize(), MMO->getAAInfo())))
1764         continue;
1765     }
1766 
1767     // Otherwise assume conservatively.
1768     return false;
1769   }
1770 
1771   // Everything checks out.
1772   return true;
1773 }
1774 
1775 /// isConstantValuePHI - If the specified instruction is a PHI that always
1776 /// merges together the same virtual register, return the register, otherwise
1777 /// return 0.
1778 unsigned MachineInstr::isConstantValuePHI() const {
1779   if (!isPHI())
1780     return 0;
1781   assert(getNumOperands() >= 3 &&
1782          "It's illegal to have a PHI without source operands");
1783 
1784   unsigned Reg = getOperand(1).getReg();
1785   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1786     if (getOperand(i).getReg() != Reg)
1787       return 0;
1788   return Reg;
1789 }
1790 
1791 bool MachineInstr::hasUnmodeledSideEffects() const {
1792   if (hasProperty(MCID::UnmodeledSideEffects))
1793     return true;
1794   if (isInlineAsm()) {
1795     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1796     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1797       return true;
1798   }
1799 
1800   return false;
1801 }
1802 
1803 bool MachineInstr::isLoadFoldBarrier() const {
1804   return mayStore() || isCall() || hasUnmodeledSideEffects();
1805 }
1806 
1807 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1808 ///
1809 bool MachineInstr::allDefsAreDead() const {
1810   for (const MachineOperand &MO : operands()) {
1811     if (!MO.isReg() || MO.isUse())
1812       continue;
1813     if (!MO.isDead())
1814       return false;
1815   }
1816   return true;
1817 }
1818 
1819 /// copyImplicitOps - Copy implicit register operands from specified
1820 /// instruction to this instruction.
1821 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1822                                    const MachineInstr &MI) {
1823   for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands();
1824        i != e; ++i) {
1825     const MachineOperand &MO = MI.getOperand(i);
1826     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1827       addOperand(MF, MO);
1828   }
1829 }
1830 
1831 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1832 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1833   dbgs() << "  ";
1834   print(dbgs());
1835 }
1836 #endif
1837 
1838 void MachineInstr::print(raw_ostream &OS, bool SkipOpers, bool SkipDebugLoc,
1839                          const TargetInstrInfo *TII) const {
1840   const Module *M = nullptr;
1841   if (const MachineBasicBlock *MBB = getParent())
1842     if (const MachineFunction *MF = MBB->getParent())
1843       M = MF->getFunction()->getParent();
1844 
1845   ModuleSlotTracker MST(M);
1846   print(OS, MST, SkipOpers, SkipDebugLoc, TII);
1847 }
1848 
1849 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1850                          bool SkipOpers, bool SkipDebugLoc,
1851                          const TargetInstrInfo *TII) const {
1852   // We can be a bit tidier if we know the MachineFunction.
1853   const MachineFunction *MF = nullptr;
1854   const TargetRegisterInfo *TRI = nullptr;
1855   const MachineRegisterInfo *MRI = nullptr;
1856   const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1857 
1858   if (const MachineBasicBlock *MBB = getParent()) {
1859     MF = MBB->getParent();
1860     if (MF) {
1861       MRI = &MF->getRegInfo();
1862       TRI = MF->getSubtarget().getRegisterInfo();
1863       if (!TII)
1864         TII = MF->getSubtarget().getInstrInfo();
1865       IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
1866     }
1867   }
1868 
1869   // Save a list of virtual registers.
1870   SmallVector<unsigned, 8> VirtRegs;
1871 
1872   // Print explicitly defined operands on the left of an assignment syntax.
1873   unsigned StartOp = 0, e = getNumOperands();
1874   for (; StartOp < e && getOperand(StartOp).isReg() &&
1875          getOperand(StartOp).isDef() &&
1876          !getOperand(StartOp).isImplicit();
1877        ++StartOp) {
1878     if (StartOp != 0) OS << ", ";
1879     getOperand(StartOp).print(OS, MST, TRI, IntrinsicInfo);
1880     unsigned Reg = getOperand(StartOp).getReg();
1881     if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1882       VirtRegs.push_back(Reg);
1883       LLT Ty = MRI ? MRI->getType(Reg) : LLT{};
1884       if (Ty.isValid())
1885         OS << '(' << Ty << ')';
1886     }
1887   }
1888 
1889   if (StartOp != 0)
1890     OS << " = ";
1891 
1892   // Print the opcode name.
1893   if (TII)
1894     OS << TII->getName(getOpcode());
1895   else
1896     OS << "UNKNOWN";
1897 
1898   if (SkipOpers)
1899     return;
1900 
1901   // Print the rest of the operands.
1902   bool FirstOp = true;
1903   unsigned AsmDescOp = ~0u;
1904   unsigned AsmOpCount = 0;
1905 
1906   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1907     // Print asm string.
1908     OS << " ";
1909     getOperand(InlineAsm::MIOp_AsmString).print(OS, MST, TRI);
1910 
1911     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1912     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1913     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1914       OS << " [sideeffect]";
1915     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1916       OS << " [mayload]";
1917     if (ExtraInfo & InlineAsm::Extra_MayStore)
1918       OS << " [maystore]";
1919     if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1920       OS << " [isconvergent]";
1921     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1922       OS << " [alignstack]";
1923     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1924       OS << " [attdialect]";
1925     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1926       OS << " [inteldialect]";
1927 
1928     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1929     FirstOp = false;
1930   }
1931 
1932   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1933     const MachineOperand &MO = getOperand(i);
1934 
1935     if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1936       VirtRegs.push_back(MO.getReg());
1937 
1938     if (FirstOp) FirstOp = false; else OS << ",";
1939     OS << " ";
1940     if (i < getDesc().NumOperands) {
1941       const MCOperandInfo &MCOI = getDesc().OpInfo[i];
1942       if (MCOI.isPredicate())
1943         OS << "pred:";
1944       if (MCOI.isOptionalDef())
1945         OS << "opt:";
1946     }
1947     if (isDebugValue() && MO.isMetadata()) {
1948       // Pretty print DBG_VALUE instructions.
1949       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1950       if (DIV && !DIV->getName().empty())
1951         OS << "!\"" << DIV->getName() << '\"';
1952       else
1953         MO.print(OS, MST, TRI);
1954     } else if (TRI && (isInsertSubreg() || isRegSequence() ||
1955                        (isSubregToReg() && i == 3)) && MO.isImm()) {
1956       OS << TRI->getSubRegIndexName(MO.getImm());
1957     } else if (i == AsmDescOp && MO.isImm()) {
1958       // Pretty print the inline asm operand descriptor.
1959       OS << '$' << AsmOpCount++;
1960       unsigned Flag = MO.getImm();
1961       switch (InlineAsm::getKind(Flag)) {
1962       case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break;
1963       case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break;
1964       case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1965       case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break;
1966       case InlineAsm::Kind_Imm:                OS << ":[imm"; break;
1967       case InlineAsm::Kind_Mem:                OS << ":[mem"; break;
1968       default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1969       }
1970 
1971       unsigned RCID = 0;
1972       if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1973           InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1974         if (TRI) {
1975           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1976         } else
1977           OS << ":RC" << RCID;
1978       }
1979 
1980       if (InlineAsm::isMemKind(Flag)) {
1981         unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1982         switch (MCID) {
1983         case InlineAsm::Constraint_es: OS << ":es"; break;
1984         case InlineAsm::Constraint_i:  OS << ":i"; break;
1985         case InlineAsm::Constraint_m:  OS << ":m"; break;
1986         case InlineAsm::Constraint_o:  OS << ":o"; break;
1987         case InlineAsm::Constraint_v:  OS << ":v"; break;
1988         case InlineAsm::Constraint_Q:  OS << ":Q"; break;
1989         case InlineAsm::Constraint_R:  OS << ":R"; break;
1990         case InlineAsm::Constraint_S:  OS << ":S"; break;
1991         case InlineAsm::Constraint_T:  OS << ":T"; break;
1992         case InlineAsm::Constraint_Um: OS << ":Um"; break;
1993         case InlineAsm::Constraint_Un: OS << ":Un"; break;
1994         case InlineAsm::Constraint_Uq: OS << ":Uq"; break;
1995         case InlineAsm::Constraint_Us: OS << ":Us"; break;
1996         case InlineAsm::Constraint_Ut: OS << ":Ut"; break;
1997         case InlineAsm::Constraint_Uv: OS << ":Uv"; break;
1998         case InlineAsm::Constraint_Uy: OS << ":Uy"; break;
1999         case InlineAsm::Constraint_X:  OS << ":X"; break;
2000         case InlineAsm::Constraint_Z:  OS << ":Z"; break;
2001         case InlineAsm::Constraint_ZC: OS << ":ZC"; break;
2002         case InlineAsm::Constraint_Zy: OS << ":Zy"; break;
2003         default: OS << ":?"; break;
2004         }
2005       }
2006 
2007       unsigned TiedTo = 0;
2008       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
2009         OS << " tiedto:$" << TiedTo;
2010 
2011       OS << ']';
2012 
2013       // Compute the index of the next operand descriptor.
2014       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
2015     } else
2016       MO.print(OS, MST, TRI);
2017   }
2018 
2019   bool HaveSemi = false;
2020   const unsigned PrintableFlags = FrameSetup | FrameDestroy;
2021   if (Flags & PrintableFlags) {
2022     if (!HaveSemi) {
2023       OS << ";";
2024       HaveSemi = true;
2025     }
2026     OS << " flags: ";
2027 
2028     if (Flags & FrameSetup)
2029       OS << "FrameSetup";
2030 
2031     if (Flags & FrameDestroy)
2032       OS << "FrameDestroy";
2033   }
2034 
2035   if (!memoperands_empty()) {
2036     if (!HaveSemi) {
2037       OS << ";";
2038       HaveSemi = true;
2039     }
2040 
2041     OS << " mem:";
2042     for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
2043          i != e; ++i) {
2044       (*i)->print(OS, MST);
2045       if (std::next(i) != e)
2046         OS << " ";
2047     }
2048   }
2049 
2050   // Print the regclass of any virtual registers encountered.
2051   if (MRI && !VirtRegs.empty()) {
2052     if (!HaveSemi) {
2053       OS << ";";
2054       HaveSemi = true;
2055     }
2056     for (unsigned i = 0; i != VirtRegs.size(); ++i) {
2057       const RegClassOrRegBank &RC = MRI->getRegClassOrRegBank(VirtRegs[i]);
2058       if (!RC)
2059         continue;
2060       // Generic virtual registers do not have register classes.
2061       if (RC.is<const RegisterBank *>())
2062         OS << " " << RC.get<const RegisterBank *>()->getName();
2063       else
2064         OS << " "
2065            << TRI->getRegClassName(RC.get<const TargetRegisterClass *>());
2066       OS << ':' << PrintReg(VirtRegs[i]);
2067       for (unsigned j = i+1; j != VirtRegs.size();) {
2068         if (MRI->getRegClassOrRegBank(VirtRegs[j]) != RC) {
2069           ++j;
2070           continue;
2071         }
2072         if (VirtRegs[i] != VirtRegs[j])
2073           OS << "," << PrintReg(VirtRegs[j]);
2074         VirtRegs.erase(VirtRegs.begin()+j);
2075       }
2076     }
2077   }
2078 
2079   // Print debug location information.
2080   if (isDebugValue() && getOperand(e - 2).isMetadata()) {
2081     if (!HaveSemi)
2082       OS << ";";
2083     auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata());
2084     OS << " line no:" <<  DV->getLine();
2085     if (auto *InlinedAt = debugLoc->getInlinedAt()) {
2086       DebugLoc InlinedAtDL(InlinedAt);
2087       if (InlinedAtDL && MF) {
2088         OS << " inlined @[ ";
2089         InlinedAtDL.print(OS);
2090         OS << " ]";
2091       }
2092     }
2093     if (isIndirectDebugValue())
2094       OS << " indirect";
2095   } else if (SkipDebugLoc) {
2096     return;
2097   } else if (debugLoc && MF) {
2098     if (!HaveSemi)
2099       OS << ";";
2100     OS << " dbg:";
2101     debugLoc.print(OS);
2102   }
2103 
2104   OS << '\n';
2105 }
2106 
2107 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
2108                                      const TargetRegisterInfo *RegInfo,
2109                                      bool AddIfNotFound) {
2110   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
2111   bool hasAliases = isPhysReg &&
2112     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
2113   bool Found = false;
2114   SmallVector<unsigned,4> DeadOps;
2115   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2116     MachineOperand &MO = getOperand(i);
2117     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
2118       continue;
2119 
2120     // DEBUG_VALUE nodes do not contribute to code generation and should
2121     // always be ignored. Failure to do so may result in trying to modify
2122     // KILL flags on DEBUG_VALUE nodes.
2123     if (MO.isDebug())
2124       continue;
2125 
2126     unsigned Reg = MO.getReg();
2127     if (!Reg)
2128       continue;
2129 
2130     if (Reg == IncomingReg) {
2131       if (!Found) {
2132         if (MO.isKill())
2133           // The register is already marked kill.
2134           return true;
2135         if (isPhysReg && isRegTiedToDefOperand(i))
2136           // Two-address uses of physregs must not be marked kill.
2137           return true;
2138         MO.setIsKill();
2139         Found = true;
2140       }
2141     } else if (hasAliases && MO.isKill() &&
2142                TargetRegisterInfo::isPhysicalRegister(Reg)) {
2143       // A super-register kill already exists.
2144       if (RegInfo->isSuperRegister(IncomingReg, Reg))
2145         return true;
2146       if (RegInfo->isSubRegister(IncomingReg, Reg))
2147         DeadOps.push_back(i);
2148     }
2149   }
2150 
2151   // Trim unneeded kill operands.
2152   while (!DeadOps.empty()) {
2153     unsigned OpIdx = DeadOps.back();
2154     if (getOperand(OpIdx).isImplicit())
2155       RemoveOperand(OpIdx);
2156     else
2157       getOperand(OpIdx).setIsKill(false);
2158     DeadOps.pop_back();
2159   }
2160 
2161   // If not found, this means an alias of one of the operands is killed. Add a
2162   // new implicit operand if required.
2163   if (!Found && AddIfNotFound) {
2164     addOperand(MachineOperand::CreateReg(IncomingReg,
2165                                          false /*IsDef*/,
2166                                          true  /*IsImp*/,
2167                                          true  /*IsKill*/));
2168     return true;
2169   }
2170   return Found;
2171 }
2172 
2173 void MachineInstr::clearRegisterKills(unsigned Reg,
2174                                       const TargetRegisterInfo *RegInfo) {
2175   if (!TargetRegisterInfo::isPhysicalRegister(Reg))
2176     RegInfo = nullptr;
2177   for (MachineOperand &MO : operands()) {
2178     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
2179       continue;
2180     unsigned OpReg = MO.getReg();
2181     if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
2182       MO.setIsKill(false);
2183   }
2184 }
2185 
2186 bool MachineInstr::addRegisterDead(unsigned Reg,
2187                                    const TargetRegisterInfo *RegInfo,
2188                                    bool AddIfNotFound) {
2189   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg);
2190   bool hasAliases = isPhysReg &&
2191     MCRegAliasIterator(Reg, RegInfo, false).isValid();
2192   bool Found = false;
2193   SmallVector<unsigned,4> DeadOps;
2194   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2195     MachineOperand &MO = getOperand(i);
2196     if (!MO.isReg() || !MO.isDef())
2197       continue;
2198     unsigned MOReg = MO.getReg();
2199     if (!MOReg)
2200       continue;
2201 
2202     if (MOReg == Reg) {
2203       MO.setIsDead();
2204       Found = true;
2205     } else if (hasAliases && MO.isDead() &&
2206                TargetRegisterInfo::isPhysicalRegister(MOReg)) {
2207       // There exists a super-register that's marked dead.
2208       if (RegInfo->isSuperRegister(Reg, MOReg))
2209         return true;
2210       if (RegInfo->isSubRegister(Reg, MOReg))
2211         DeadOps.push_back(i);
2212     }
2213   }
2214 
2215   // Trim unneeded dead operands.
2216   while (!DeadOps.empty()) {
2217     unsigned OpIdx = DeadOps.back();
2218     if (getOperand(OpIdx).isImplicit())
2219       RemoveOperand(OpIdx);
2220     else
2221       getOperand(OpIdx).setIsDead(false);
2222     DeadOps.pop_back();
2223   }
2224 
2225   // If not found, this means an alias of one of the operands is dead. Add a
2226   // new implicit operand if required.
2227   if (Found || !AddIfNotFound)
2228     return Found;
2229 
2230   addOperand(MachineOperand::CreateReg(Reg,
2231                                        true  /*IsDef*/,
2232                                        true  /*IsImp*/,
2233                                        false /*IsKill*/,
2234                                        true  /*IsDead*/));
2235   return true;
2236 }
2237 
2238 void MachineInstr::clearRegisterDeads(unsigned Reg) {
2239   for (MachineOperand &MO : operands()) {
2240     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
2241       continue;
2242     MO.setIsDead(false);
2243   }
2244 }
2245 
2246 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) {
2247   for (MachineOperand &MO : operands()) {
2248     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
2249       continue;
2250     MO.setIsUndef(IsUndef);
2251   }
2252 }
2253 
2254 void MachineInstr::addRegisterDefined(unsigned Reg,
2255                                       const TargetRegisterInfo *RegInfo) {
2256   if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
2257     MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo);
2258     if (MO)
2259       return;
2260   } else {
2261     for (const MachineOperand &MO : operands()) {
2262       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
2263           MO.getSubReg() == 0)
2264         return;
2265     }
2266   }
2267   addOperand(MachineOperand::CreateReg(Reg,
2268                                        true  /*IsDef*/,
2269                                        true  /*IsImp*/));
2270 }
2271 
2272 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
2273                                          const TargetRegisterInfo &TRI) {
2274   bool HasRegMask = false;
2275   for (MachineOperand &MO : operands()) {
2276     if (MO.isRegMask()) {
2277       HasRegMask = true;
2278       continue;
2279     }
2280     if (!MO.isReg() || !MO.isDef()) continue;
2281     unsigned Reg = MO.getReg();
2282     if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
2283     // If there are no uses, including partial uses, the def is dead.
2284     if (llvm::none_of(UsedRegs,
2285                       [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); }))
2286       MO.setIsDead();
2287   }
2288 
2289   // This is a call with a register mask operand.
2290   // Mask clobbers are always dead, so add defs for the non-dead defines.
2291   if (HasRegMask)
2292     for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
2293          I != E; ++I)
2294       addRegisterDefined(*I, &TRI);
2295 }
2296 
2297 unsigned
2298 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
2299   // Build up a buffer of hash code components.
2300   SmallVector<size_t, 8> HashComponents;
2301   HashComponents.reserve(MI->getNumOperands() + 1);
2302   HashComponents.push_back(MI->getOpcode());
2303   for (const MachineOperand &MO : MI->operands()) {
2304     if (MO.isReg() && MO.isDef() &&
2305         TargetRegisterInfo::isVirtualRegister(MO.getReg()))
2306       continue;  // Skip virtual register defs.
2307 
2308     HashComponents.push_back(hash_value(MO));
2309   }
2310   return hash_combine_range(HashComponents.begin(), HashComponents.end());
2311 }
2312 
2313 void MachineInstr::emitError(StringRef Msg) const {
2314   // Find the source location cookie.
2315   unsigned LocCookie = 0;
2316   const MDNode *LocMD = nullptr;
2317   for (unsigned i = getNumOperands(); i != 0; --i) {
2318     if (getOperand(i-1).isMetadata() &&
2319         (LocMD = getOperand(i-1).getMetadata()) &&
2320         LocMD->getNumOperands() != 0) {
2321       if (const ConstantInt *CI =
2322               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
2323         LocCookie = CI->getZExtValue();
2324         break;
2325       }
2326     }
2327   }
2328 
2329   if (const MachineBasicBlock *MBB = getParent())
2330     if (const MachineFunction *MF = MBB->getParent())
2331       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2332   report_fatal_error(Msg);
2333 }
2334 
2335 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2336                                   const MCInstrDesc &MCID, bool IsIndirect,
2337                                   unsigned Reg, unsigned Offset,
2338                                   const MDNode *Variable, const MDNode *Expr) {
2339   assert(isa<DILocalVariable>(Variable) && "not a variable");
2340   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2341   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2342          "Expected inlined-at fields to agree");
2343   if (IsIndirect)
2344     return BuildMI(MF, DL, MCID)
2345         .addReg(Reg, RegState::Debug)
2346         .addImm(Offset)
2347         .addMetadata(Variable)
2348         .addMetadata(Expr);
2349   else {
2350     assert(Offset == 0 && "A direct address cannot have an offset.");
2351     return BuildMI(MF, DL, MCID)
2352         .addReg(Reg, RegState::Debug)
2353         .addReg(0U, RegState::Debug)
2354         .addMetadata(Variable)
2355         .addMetadata(Expr);
2356   }
2357 }
2358 
2359 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2360                                   MachineBasicBlock::iterator I,
2361                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2362                                   bool IsIndirect, unsigned Reg,
2363                                   unsigned Offset, const MDNode *Variable,
2364                                   const MDNode *Expr) {
2365   assert(isa<DILocalVariable>(Variable) && "not a variable");
2366   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2367   MachineFunction &MF = *BB.getParent();
2368   MachineInstr *MI =
2369       BuildMI(MF, DL, MCID, IsIndirect, Reg, Offset, Variable, Expr);
2370   BB.insert(I, MI);
2371   return MachineInstrBuilder(MF, MI);
2372 }
2373 
2374 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
2375                                           MachineBasicBlock::iterator I,
2376                                           const MachineInstr &Orig,
2377                                           int FrameIndex) {
2378   const MDNode *Var = Orig.getDebugVariable();
2379   const auto *Expr = cast_or_null<DIExpression>(Orig.getDebugExpression());
2380   bool IsIndirect = Orig.isIndirectDebugValue();
2381   uint64_t Offset = IsIndirect ? Orig.getOperand(1).getImm() : 0;
2382   DebugLoc DL = Orig.getDebugLoc();
2383   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
2384          "Expected inlined-at fields to agree");
2385   // If the DBG_VALUE already was a memory location, add an extra
2386   // DW_OP_deref. Otherwise just turning this from a register into a
2387   // memory/indirect location is sufficient.
2388   if (IsIndirect)
2389     Expr = DIExpression::prepend(Expr, DIExpression::WithDeref);
2390   return BuildMI(BB, I, DL, Orig.getDesc())
2391       .addFrameIndex(FrameIndex)
2392       .addImm(Offset)
2393       .addMetadata(Var)
2394       .addMetadata(Expr);
2395 }
2396