1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/FoldingSet.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallString.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/Loads.h" 25 #include "llvm/Analysis/MemoryLocation.h" 26 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineInstrBundle.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/PseudoSourceValue.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/InlineAsm.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Intrinsics.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/IR/Metadata.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/IR/ModuleSlotTracker.h" 48 #include "llvm/IR/Type.h" 49 #include "llvm/IR/Value.h" 50 #include "llvm/MC/MCInstrDesc.h" 51 #include "llvm/MC/MCRegisterInfo.h" 52 #include "llvm/MC/MCSymbol.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Compiler.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/LowLevelTypeImpl.h" 59 #include "llvm/Support/MathExtras.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Target/TargetInstrInfo.h" 62 #include "llvm/Target/TargetIntrinsicInfo.h" 63 #include "llvm/Target/TargetMachine.h" 64 #include "llvm/Target/TargetRegisterInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 #include <cassert> 68 #include <cstddef> 69 #include <cstdint> 70 #include <cstring> 71 #include <iterator> 72 #include <utility> 73 74 using namespace llvm; 75 76 static cl::opt<int> PrintRegMaskNumRegs( 77 "print-regmask-num-regs", 78 cl::desc("Number of registers to limit to when " 79 "printing regmask operands in IR dumps. " 80 "unlimited = -1"), 81 cl::init(32), cl::Hidden); 82 83 //===----------------------------------------------------------------------===// 84 // MachineOperand Implementation 85 //===----------------------------------------------------------------------===// 86 87 void MachineOperand::setReg(unsigned Reg) { 88 if (getReg() == Reg) return; // No change. 89 90 // Otherwise, we have to change the register. If this operand is embedded 91 // into a machine function, we need to update the old and new register's 92 // use/def lists. 93 if (MachineInstr *MI = getParent()) 94 if (MachineBasicBlock *MBB = MI->getParent()) 95 if (MachineFunction *MF = MBB->getParent()) { 96 MachineRegisterInfo &MRI = MF->getRegInfo(); 97 MRI.removeRegOperandFromUseList(this); 98 SmallContents.RegNo = Reg; 99 MRI.addRegOperandToUseList(this); 100 return; 101 } 102 103 // Otherwise, just change the register, no problem. :) 104 SmallContents.RegNo = Reg; 105 } 106 107 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 108 const TargetRegisterInfo &TRI) { 109 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 110 if (SubIdx && getSubReg()) 111 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 112 setReg(Reg); 113 if (SubIdx) 114 setSubReg(SubIdx); 115 } 116 117 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 118 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 119 if (getSubReg()) { 120 Reg = TRI.getSubReg(Reg, getSubReg()); 121 // Note that getSubReg() may return 0 if the sub-register doesn't exist. 122 // That won't happen in legal code. 123 setSubReg(0); 124 if (isDef()) 125 setIsUndef(false); 126 } 127 setReg(Reg); 128 } 129 130 /// Change a def to a use, or a use to a def. 131 void MachineOperand::setIsDef(bool Val) { 132 assert(isReg() && "Wrong MachineOperand accessor"); 133 assert((!Val || !isDebug()) && "Marking a debug operation as def"); 134 if (IsDef == Val) 135 return; 136 // MRI may keep uses and defs in different list positions. 137 if (MachineInstr *MI = getParent()) 138 if (MachineBasicBlock *MBB = MI->getParent()) 139 if (MachineFunction *MF = MBB->getParent()) { 140 MachineRegisterInfo &MRI = MF->getRegInfo(); 141 MRI.removeRegOperandFromUseList(this); 142 IsDef = Val; 143 MRI.addRegOperandToUseList(this); 144 return; 145 } 146 IsDef = Val; 147 } 148 149 // If this operand is currently a register operand, and if this is in a 150 // function, deregister the operand from the register's use/def list. 151 void MachineOperand::removeRegFromUses() { 152 if (!isReg() || !isOnRegUseList()) 153 return; 154 155 if (MachineInstr *MI = getParent()) { 156 if (MachineBasicBlock *MBB = MI->getParent()) { 157 if (MachineFunction *MF = MBB->getParent()) 158 MF->getRegInfo().removeRegOperandFromUseList(this); 159 } 160 } 161 } 162 163 /// ChangeToImmediate - Replace this operand with a new immediate operand of 164 /// the specified value. If an operand is known to be an immediate already, 165 /// the setImm method should be used. 166 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 167 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 168 169 removeRegFromUses(); 170 171 OpKind = MO_Immediate; 172 Contents.ImmVal = ImmVal; 173 } 174 175 void MachineOperand::ChangeToFPImmediate(const ConstantFP *FPImm) { 176 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 177 178 removeRegFromUses(); 179 180 OpKind = MO_FPImmediate; 181 Contents.CFP = FPImm; 182 } 183 184 void MachineOperand::ChangeToES(const char *SymName, unsigned char TargetFlags) { 185 assert((!isReg() || !isTied()) && 186 "Cannot change a tied operand into an external symbol"); 187 188 removeRegFromUses(); 189 190 OpKind = MO_ExternalSymbol; 191 Contents.OffsetedInfo.Val.SymbolName = SymName; 192 setOffset(0); // Offset is always 0. 193 setTargetFlags(TargetFlags); 194 } 195 196 void MachineOperand::ChangeToMCSymbol(MCSymbol *Sym) { 197 assert((!isReg() || !isTied()) && 198 "Cannot change a tied operand into an MCSymbol"); 199 200 removeRegFromUses(); 201 202 OpKind = MO_MCSymbol; 203 Contents.Sym = Sym; 204 } 205 206 void MachineOperand::ChangeToFrameIndex(int Idx) { 207 assert((!isReg() || !isTied()) && 208 "Cannot change a tied operand into a FrameIndex"); 209 210 removeRegFromUses(); 211 212 OpKind = MO_FrameIndex; 213 setIndex(Idx); 214 } 215 216 /// ChangeToRegister - Replace this operand with a new register operand of 217 /// the specified value. If an operand is known to be an register already, 218 /// the setReg method should be used. 219 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 220 bool isKill, bool isDead, bool isUndef, 221 bool isDebug) { 222 MachineRegisterInfo *RegInfo = nullptr; 223 if (MachineInstr *MI = getParent()) 224 if (MachineBasicBlock *MBB = MI->getParent()) 225 if (MachineFunction *MF = MBB->getParent()) 226 RegInfo = &MF->getRegInfo(); 227 // If this operand is already a register operand, remove it from the 228 // register's use/def lists. 229 bool WasReg = isReg(); 230 if (RegInfo && WasReg) 231 RegInfo->removeRegOperandFromUseList(this); 232 233 // Change this to a register and set the reg#. 234 OpKind = MO_Register; 235 SmallContents.RegNo = Reg; 236 SubReg_TargetFlags = 0; 237 IsDef = isDef; 238 IsImp = isImp; 239 IsKill = isKill; 240 IsDead = isDead; 241 IsUndef = isUndef; 242 IsInternalRead = false; 243 IsEarlyClobber = false; 244 IsDebug = isDebug; 245 // Ensure isOnRegUseList() returns false. 246 Contents.Reg.Prev = nullptr; 247 // Preserve the tie when the operand was already a register. 248 if (!WasReg) 249 TiedTo = 0; 250 251 // If this operand is embedded in a function, add the operand to the 252 // register's use/def list. 253 if (RegInfo) 254 RegInfo->addRegOperandToUseList(this); 255 } 256 257 /// isIdenticalTo - Return true if this operand is identical to the specified 258 /// operand. Note that this should stay in sync with the hash_value overload 259 /// below. 260 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 261 if (getType() != Other.getType() || 262 getTargetFlags() != Other.getTargetFlags()) 263 return false; 264 265 switch (getType()) { 266 case MachineOperand::MO_Register: 267 return getReg() == Other.getReg() && isDef() == Other.isDef() && 268 getSubReg() == Other.getSubReg(); 269 case MachineOperand::MO_Immediate: 270 return getImm() == Other.getImm(); 271 case MachineOperand::MO_CImmediate: 272 return getCImm() == Other.getCImm(); 273 case MachineOperand::MO_FPImmediate: 274 return getFPImm() == Other.getFPImm(); 275 case MachineOperand::MO_MachineBasicBlock: 276 return getMBB() == Other.getMBB(); 277 case MachineOperand::MO_FrameIndex: 278 return getIndex() == Other.getIndex(); 279 case MachineOperand::MO_ConstantPoolIndex: 280 case MachineOperand::MO_TargetIndex: 281 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 282 case MachineOperand::MO_JumpTableIndex: 283 return getIndex() == Other.getIndex(); 284 case MachineOperand::MO_GlobalAddress: 285 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 286 case MachineOperand::MO_ExternalSymbol: 287 return strcmp(getSymbolName(), Other.getSymbolName()) == 0 && 288 getOffset() == Other.getOffset(); 289 case MachineOperand::MO_BlockAddress: 290 return getBlockAddress() == Other.getBlockAddress() && 291 getOffset() == Other.getOffset(); 292 case MachineOperand::MO_RegisterMask: 293 case MachineOperand::MO_RegisterLiveOut: { 294 // Shallow compare of the two RegMasks 295 const uint32_t *RegMask = getRegMask(); 296 const uint32_t *OtherRegMask = Other.getRegMask(); 297 if (RegMask == OtherRegMask) 298 return true; 299 300 // Calculate the size of the RegMask 301 const MachineFunction *MF = getParent()->getParent()->getParent(); 302 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 303 unsigned RegMaskSize = (TRI->getNumRegs() + 31) / 32; 304 305 // Deep compare of the two RegMasks 306 return std::equal(RegMask, RegMask + RegMaskSize, OtherRegMask); 307 } 308 case MachineOperand::MO_MCSymbol: 309 return getMCSymbol() == Other.getMCSymbol(); 310 case MachineOperand::MO_CFIIndex: 311 return getCFIIndex() == Other.getCFIIndex(); 312 case MachineOperand::MO_Metadata: 313 return getMetadata() == Other.getMetadata(); 314 case MachineOperand::MO_IntrinsicID: 315 return getIntrinsicID() == Other.getIntrinsicID(); 316 case MachineOperand::MO_Predicate: 317 return getPredicate() == Other.getPredicate(); 318 } 319 llvm_unreachable("Invalid machine operand type"); 320 } 321 322 // Note: this must stay exactly in sync with isIdenticalTo above. 323 hash_code llvm::hash_value(const MachineOperand &MO) { 324 switch (MO.getType()) { 325 case MachineOperand::MO_Register: 326 // Register operands don't have target flags. 327 return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef()); 328 case MachineOperand::MO_Immediate: 329 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm()); 330 case MachineOperand::MO_CImmediate: 331 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm()); 332 case MachineOperand::MO_FPImmediate: 333 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm()); 334 case MachineOperand::MO_MachineBasicBlock: 335 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB()); 336 case MachineOperand::MO_FrameIndex: 337 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 338 case MachineOperand::MO_ConstantPoolIndex: 339 case MachineOperand::MO_TargetIndex: 340 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(), 341 MO.getOffset()); 342 case MachineOperand::MO_JumpTableIndex: 343 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 344 case MachineOperand::MO_ExternalSymbol: 345 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(), 346 MO.getSymbolName()); 347 case MachineOperand::MO_GlobalAddress: 348 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(), 349 MO.getOffset()); 350 case MachineOperand::MO_BlockAddress: 351 return hash_combine(MO.getType(), MO.getTargetFlags(), 352 MO.getBlockAddress(), MO.getOffset()); 353 case MachineOperand::MO_RegisterMask: 354 case MachineOperand::MO_RegisterLiveOut: 355 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask()); 356 case MachineOperand::MO_Metadata: 357 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata()); 358 case MachineOperand::MO_MCSymbol: 359 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol()); 360 case MachineOperand::MO_CFIIndex: 361 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex()); 362 case MachineOperand::MO_IntrinsicID: 363 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIntrinsicID()); 364 case MachineOperand::MO_Predicate: 365 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getPredicate()); 366 } 367 llvm_unreachable("Invalid machine operand type"); 368 } 369 370 void MachineOperand::print(raw_ostream &OS, const TargetRegisterInfo *TRI, 371 const TargetIntrinsicInfo *IntrinsicInfo) const { 372 ModuleSlotTracker DummyMST(nullptr); 373 print(OS, DummyMST, TRI, IntrinsicInfo); 374 } 375 376 void MachineOperand::print(raw_ostream &OS, ModuleSlotTracker &MST, 377 const TargetRegisterInfo *TRI, 378 const TargetIntrinsicInfo *IntrinsicInfo) const { 379 switch (getType()) { 380 case MachineOperand::MO_Register: 381 OS << PrintReg(getReg(), TRI, getSubReg()); 382 383 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 384 isInternalRead() || isEarlyClobber() || isTied()) { 385 OS << '<'; 386 bool NeedComma = false; 387 if (isDef()) { 388 if (NeedComma) OS << ','; 389 if (isEarlyClobber()) 390 OS << "earlyclobber,"; 391 if (isImplicit()) 392 OS << "imp-"; 393 OS << "def"; 394 NeedComma = true; 395 // <def,read-undef> only makes sense when getSubReg() is set. 396 // Don't clutter the output otherwise. 397 if (isUndef() && getSubReg()) 398 OS << ",read-undef"; 399 } else if (isImplicit()) { 400 OS << "imp-use"; 401 NeedComma = true; 402 } 403 404 if (isKill()) { 405 if (NeedComma) OS << ','; 406 OS << "kill"; 407 NeedComma = true; 408 } 409 if (isDead()) { 410 if (NeedComma) OS << ','; 411 OS << "dead"; 412 NeedComma = true; 413 } 414 if (isUndef() && isUse()) { 415 if (NeedComma) OS << ','; 416 OS << "undef"; 417 NeedComma = true; 418 } 419 if (isInternalRead()) { 420 if (NeedComma) OS << ','; 421 OS << "internal"; 422 NeedComma = true; 423 } 424 if (isTied()) { 425 if (NeedComma) OS << ','; 426 OS << "tied"; 427 if (TiedTo != 15) 428 OS << unsigned(TiedTo - 1); 429 } 430 OS << '>'; 431 } 432 break; 433 case MachineOperand::MO_Immediate: 434 OS << getImm(); 435 break; 436 case MachineOperand::MO_CImmediate: 437 getCImm()->getValue().print(OS, false); 438 break; 439 case MachineOperand::MO_FPImmediate: 440 if (getFPImm()->getType()->isFloatTy()) { 441 OS << getFPImm()->getValueAPF().convertToFloat(); 442 } else if (getFPImm()->getType()->isHalfTy()) { 443 APFloat APF = getFPImm()->getValueAPF(); 444 bool Unused; 445 APF.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &Unused); 446 OS << "half " << APF.convertToFloat(); 447 } else if (getFPImm()->getType()->isFP128Ty()) { 448 APFloat APF = getFPImm()->getValueAPF(); 449 SmallString<16> Str; 450 getFPImm()->getValueAPF().toString(Str); 451 OS << "quad " << Str; 452 } else if (getFPImm()->getType()->isX86_FP80Ty()) { 453 APFloat APF = getFPImm()->getValueAPF(); 454 OS << "x86_fp80 0xK"; 455 APInt API = APF.bitcastToAPInt(); 456 OS << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4, 457 /*Upper=*/true); 458 OS << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16, 459 /*Upper=*/true); 460 } else { 461 OS << getFPImm()->getValueAPF().convertToDouble(); 462 } 463 break; 464 case MachineOperand::MO_MachineBasicBlock: 465 OS << "<BB#" << getMBB()->getNumber() << ">"; 466 break; 467 case MachineOperand::MO_FrameIndex: 468 OS << "<fi#" << getIndex() << '>'; 469 break; 470 case MachineOperand::MO_ConstantPoolIndex: 471 OS << "<cp#" << getIndex(); 472 if (getOffset()) OS << "+" << getOffset(); 473 OS << '>'; 474 break; 475 case MachineOperand::MO_TargetIndex: 476 OS << "<ti#" << getIndex(); 477 if (getOffset()) OS << "+" << getOffset(); 478 OS << '>'; 479 break; 480 case MachineOperand::MO_JumpTableIndex: 481 OS << "<jt#" << getIndex() << '>'; 482 break; 483 case MachineOperand::MO_GlobalAddress: 484 OS << "<ga:"; 485 getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST); 486 if (getOffset()) OS << "+" << getOffset(); 487 OS << '>'; 488 break; 489 case MachineOperand::MO_ExternalSymbol: 490 OS << "<es:" << getSymbolName(); 491 if (getOffset()) OS << "+" << getOffset(); 492 OS << '>'; 493 break; 494 case MachineOperand::MO_BlockAddress: 495 OS << '<'; 496 getBlockAddress()->printAsOperand(OS, /*PrintType=*/false, MST); 497 if (getOffset()) OS << "+" << getOffset(); 498 OS << '>'; 499 break; 500 case MachineOperand::MO_RegisterMask: { 501 unsigned NumRegsInMask = 0; 502 unsigned NumRegsEmitted = 0; 503 OS << "<regmask"; 504 for (unsigned i = 0; i < TRI->getNumRegs(); ++i) { 505 unsigned MaskWord = i / 32; 506 unsigned MaskBit = i % 32; 507 if (getRegMask()[MaskWord] & (1 << MaskBit)) { 508 if (PrintRegMaskNumRegs < 0 || 509 NumRegsEmitted <= static_cast<unsigned>(PrintRegMaskNumRegs)) { 510 OS << " " << PrintReg(i, TRI); 511 NumRegsEmitted++; 512 } 513 NumRegsInMask++; 514 } 515 } 516 if (NumRegsEmitted != NumRegsInMask) 517 OS << " and " << (NumRegsInMask - NumRegsEmitted) << " more..."; 518 OS << ">"; 519 break; 520 } 521 case MachineOperand::MO_RegisterLiveOut: 522 OS << "<regliveout>"; 523 break; 524 case MachineOperand::MO_Metadata: 525 OS << '<'; 526 getMetadata()->printAsOperand(OS, MST); 527 OS << '>'; 528 break; 529 case MachineOperand::MO_MCSymbol: 530 OS << "<MCSym=" << *getMCSymbol() << '>'; 531 break; 532 case MachineOperand::MO_CFIIndex: 533 OS << "<call frame instruction>"; 534 break; 535 case MachineOperand::MO_IntrinsicID: { 536 Intrinsic::ID ID = getIntrinsicID(); 537 if (ID < Intrinsic::num_intrinsics) 538 OS << "<intrinsic:@" << Intrinsic::getName(ID, None) << '>'; 539 else if (IntrinsicInfo) 540 OS << "<intrinsic:@" << IntrinsicInfo->getName(ID) << '>'; 541 else 542 OS << "<intrinsic:" << ID << '>'; 543 break; 544 } 545 case MachineOperand::MO_Predicate: { 546 auto Pred = static_cast<CmpInst::Predicate>(getPredicate()); 547 OS << '<' << (CmpInst::isIntPredicate(Pred) ? "intpred" : "floatpred") 548 << CmpInst::getPredicateName(Pred) << '>'; 549 break; 550 } 551 } 552 if (unsigned TF = getTargetFlags()) 553 OS << "[TF=" << TF << ']'; 554 } 555 556 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 557 LLVM_DUMP_METHOD void MachineOperand::dump() const { 558 dbgs() << *this << '\n'; 559 } 560 #endif 561 562 //===----------------------------------------------------------------------===// 563 // MachineMemOperand Implementation 564 //===----------------------------------------------------------------------===// 565 566 /// getAddrSpace - Return the LLVM IR address space number that this pointer 567 /// points into. 568 unsigned MachinePointerInfo::getAddrSpace() const { 569 if (V.isNull() || V.is<const PseudoSourceValue*>()) return 0; 570 return cast<PointerType>(V.get<const Value*>()->getType())->getAddressSpace(); 571 } 572 573 /// isDereferenceable - Return true if V is always dereferenceable for 574 /// Offset + Size byte. 575 bool MachinePointerInfo::isDereferenceable(unsigned Size, LLVMContext &C, 576 const DataLayout &DL) const { 577 if (!V.is<const Value*>()) 578 return false; 579 580 const Value *BasePtr = V.get<const Value*>(); 581 if (BasePtr == nullptr) 582 return false; 583 584 return isDereferenceableAndAlignedPointer(BasePtr, 1, 585 APInt(DL.getPointerSize(), 586 Offset + Size), 587 DL); 588 } 589 590 /// getConstantPool - Return a MachinePointerInfo record that refers to the 591 /// constant pool. 592 MachinePointerInfo MachinePointerInfo::getConstantPool(MachineFunction &MF) { 593 return MachinePointerInfo(MF.getPSVManager().getConstantPool()); 594 } 595 596 /// getFixedStack - Return a MachinePointerInfo record that refers to the 597 /// the specified FrameIndex. 598 MachinePointerInfo MachinePointerInfo::getFixedStack(MachineFunction &MF, 599 int FI, int64_t Offset) { 600 return MachinePointerInfo(MF.getPSVManager().getFixedStack(FI), Offset); 601 } 602 603 MachinePointerInfo MachinePointerInfo::getJumpTable(MachineFunction &MF) { 604 return MachinePointerInfo(MF.getPSVManager().getJumpTable()); 605 } 606 607 MachinePointerInfo MachinePointerInfo::getGOT(MachineFunction &MF) { 608 return MachinePointerInfo(MF.getPSVManager().getGOT()); 609 } 610 611 MachinePointerInfo MachinePointerInfo::getStack(MachineFunction &MF, 612 int64_t Offset, 613 uint8_t ID) { 614 return MachinePointerInfo(MF.getPSVManager().getStack(), Offset,ID); 615 } 616 617 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, Flags f, 618 uint64_t s, unsigned int a, 619 const AAMDNodes &AAInfo, 620 const MDNode *Ranges, 621 SyncScope::ID SSID, 622 AtomicOrdering Ordering, 623 AtomicOrdering FailureOrdering) 624 : PtrInfo(ptrinfo), Size(s), FlagVals(f), BaseAlignLog2(Log2_32(a) + 1), 625 AAInfo(AAInfo), Ranges(Ranges) { 626 assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() || 627 isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) && 628 "invalid pointer value"); 629 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 630 assert((isLoad() || isStore()) && "Not a load/store!"); 631 632 AtomicInfo.SSID = static_cast<unsigned>(SSID); 633 assert(getSyncScopeID() == SSID && "Value truncated"); 634 AtomicInfo.Ordering = static_cast<unsigned>(Ordering); 635 assert(getOrdering() == Ordering && "Value truncated"); 636 AtomicInfo.FailureOrdering = static_cast<unsigned>(FailureOrdering); 637 assert(getFailureOrdering() == FailureOrdering && "Value truncated"); 638 } 639 640 /// Profile - Gather unique data for the object. 641 /// 642 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 643 ID.AddInteger(getOffset()); 644 ID.AddInteger(Size); 645 ID.AddPointer(getOpaqueValue()); 646 ID.AddInteger(getFlags()); 647 ID.AddInteger(getBaseAlignment()); 648 } 649 650 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 651 // The Value and Offset may differ due to CSE. But the flags and size 652 // should be the same. 653 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 654 assert(MMO->getSize() == getSize() && "Size mismatch!"); 655 656 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 657 // Update the alignment value. 658 BaseAlignLog2 = Log2_32(MMO->getBaseAlignment()) + 1; 659 // Also update the base and offset, because the new alignment may 660 // not be applicable with the old ones. 661 PtrInfo = MMO->PtrInfo; 662 } 663 } 664 665 /// getAlignment - Return the minimum known alignment in bytes of the 666 /// actual memory reference. 667 uint64_t MachineMemOperand::getAlignment() const { 668 return MinAlign(getBaseAlignment(), getOffset()); 669 } 670 671 void MachineMemOperand::print(raw_ostream &OS) const { 672 ModuleSlotTracker DummyMST(nullptr); 673 print(OS, DummyMST); 674 } 675 void MachineMemOperand::print(raw_ostream &OS, ModuleSlotTracker &MST) const { 676 assert((isLoad() || isStore()) && 677 "SV has to be a load, store or both."); 678 679 if (isVolatile()) 680 OS << "Volatile "; 681 682 if (isLoad()) 683 OS << "LD"; 684 if (isStore()) 685 OS << "ST"; 686 OS << getSize(); 687 688 // Print the address information. 689 OS << "["; 690 if (const Value *V = getValue()) 691 V->printAsOperand(OS, /*PrintType=*/false, MST); 692 else if (const PseudoSourceValue *PSV = getPseudoValue()) 693 PSV->printCustom(OS); 694 else 695 OS << "<unknown>"; 696 697 unsigned AS = getAddrSpace(); 698 if (AS != 0) 699 OS << "(addrspace=" << AS << ')'; 700 701 // If the alignment of the memory reference itself differs from the alignment 702 // of the base pointer, print the base alignment explicitly, next to the base 703 // pointer. 704 if (getBaseAlignment() != getAlignment()) 705 OS << "(align=" << getBaseAlignment() << ")"; 706 707 if (getOffset() != 0) 708 OS << "+" << getOffset(); 709 OS << "]"; 710 711 // Print the alignment of the reference. 712 if (getBaseAlignment() != getAlignment() || getBaseAlignment() != getSize()) 713 OS << "(align=" << getAlignment() << ")"; 714 715 // Print TBAA info. 716 if (const MDNode *TBAAInfo = getAAInfo().TBAA) { 717 OS << "(tbaa="; 718 if (TBAAInfo->getNumOperands() > 0) 719 TBAAInfo->getOperand(0)->printAsOperand(OS, MST); 720 else 721 OS << "<unknown>"; 722 OS << ")"; 723 } 724 725 // Print AA scope info. 726 if (const MDNode *ScopeInfo = getAAInfo().Scope) { 727 OS << "(alias.scope="; 728 if (ScopeInfo->getNumOperands() > 0) 729 for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) { 730 ScopeInfo->getOperand(i)->printAsOperand(OS, MST); 731 if (i != ie-1) 732 OS << ","; 733 } 734 else 735 OS << "<unknown>"; 736 OS << ")"; 737 } 738 739 // Print AA noalias scope info. 740 if (const MDNode *NoAliasInfo = getAAInfo().NoAlias) { 741 OS << "(noalias="; 742 if (NoAliasInfo->getNumOperands() > 0) 743 for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) { 744 NoAliasInfo->getOperand(i)->printAsOperand(OS, MST); 745 if (i != ie-1) 746 OS << ","; 747 } 748 else 749 OS << "<unknown>"; 750 OS << ")"; 751 } 752 753 if (isNonTemporal()) 754 OS << "(nontemporal)"; 755 if (isDereferenceable()) 756 OS << "(dereferenceable)"; 757 if (isInvariant()) 758 OS << "(invariant)"; 759 if (getFlags() & MOTargetFlag1) 760 OS << "(flag1)"; 761 if (getFlags() & MOTargetFlag2) 762 OS << "(flag2)"; 763 if (getFlags() & MOTargetFlag3) 764 OS << "(flag3)"; 765 } 766 767 //===----------------------------------------------------------------------===// 768 // MachineInstr Implementation 769 //===----------------------------------------------------------------------===// 770 771 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 772 if (MCID->ImplicitDefs) 773 for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; 774 ++ImpDefs) 775 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 776 if (MCID->ImplicitUses) 777 for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses; 778 ++ImpUses) 779 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 780 } 781 782 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 783 /// implicit operands. It reserves space for the number of operands specified by 784 /// the MCInstrDesc. 785 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, 786 DebugLoc dl, bool NoImp) 787 : MCID(&tid), debugLoc(std::move(dl)) { 788 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 789 790 // Reserve space for the expected number of operands. 791 if (unsigned NumOps = MCID->getNumOperands() + 792 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 793 CapOperands = OperandCapacity::get(NumOps); 794 Operands = MF.allocateOperandArray(CapOperands); 795 } 796 797 if (!NoImp) 798 addImplicitDefUseOperands(MF); 799 } 800 801 /// MachineInstr ctor - Copies MachineInstr arg exactly 802 /// 803 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 804 : MCID(&MI.getDesc()), NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs), 805 debugLoc(MI.getDebugLoc()) { 806 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 807 808 CapOperands = OperandCapacity::get(MI.getNumOperands()); 809 Operands = MF.allocateOperandArray(CapOperands); 810 811 // Copy operands. 812 for (const MachineOperand &MO : MI.operands()) 813 addOperand(MF, MO); 814 815 // Copy all the sensible flags. 816 setFlags(MI.Flags); 817 } 818 819 /// getRegInfo - If this instruction is embedded into a MachineFunction, 820 /// return the MachineRegisterInfo object for the current function, otherwise 821 /// return null. 822 MachineRegisterInfo *MachineInstr::getRegInfo() { 823 if (MachineBasicBlock *MBB = getParent()) 824 return &MBB->getParent()->getRegInfo(); 825 return nullptr; 826 } 827 828 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 829 /// this instruction from their respective use lists. This requires that the 830 /// operands already be on their use lists. 831 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 832 for (MachineOperand &MO : operands()) 833 if (MO.isReg()) 834 MRI.removeRegOperandFromUseList(&MO); 835 } 836 837 /// AddRegOperandsToUseLists - Add all of the register operands in 838 /// this instruction from their respective use lists. This requires that the 839 /// operands not be on their use lists yet. 840 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 841 for (MachineOperand &MO : operands()) 842 if (MO.isReg()) 843 MRI.addRegOperandToUseList(&MO); 844 } 845 846 void MachineInstr::addOperand(const MachineOperand &Op) { 847 MachineBasicBlock *MBB = getParent(); 848 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 849 MachineFunction *MF = MBB->getParent(); 850 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 851 addOperand(*MF, Op); 852 } 853 854 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 855 /// ranges. If MRI is non-null also update use-def chains. 856 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 857 unsigned NumOps, MachineRegisterInfo *MRI) { 858 if (MRI) 859 return MRI->moveOperands(Dst, Src, NumOps); 860 861 // MachineOperand is a trivially copyable type so we can just use memmove. 862 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 863 } 864 865 /// addOperand - Add the specified operand to the instruction. If it is an 866 /// implicit operand, it is added to the end of the operand list. If it is 867 /// an explicit operand it is added at the end of the explicit operand list 868 /// (before the first implicit operand). 869 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 870 assert(MCID && "Cannot add operands before providing an instr descriptor"); 871 872 // Check if we're adding one of our existing operands. 873 if (&Op >= Operands && &Op < Operands + NumOperands) { 874 // This is unusual: MI->addOperand(MI->getOperand(i)). 875 // If adding Op requires reallocating or moving existing operands around, 876 // the Op reference could go stale. Support it by copying Op. 877 MachineOperand CopyOp(Op); 878 return addOperand(MF, CopyOp); 879 } 880 881 // Find the insert location for the new operand. Implicit registers go at 882 // the end, everything else goes before the implicit regs. 883 // 884 // FIXME: Allow mixed explicit and implicit operands on inline asm. 885 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 886 // implicit-defs, but they must not be moved around. See the FIXME in 887 // InstrEmitter.cpp. 888 unsigned OpNo = getNumOperands(); 889 bool isImpReg = Op.isReg() && Op.isImplicit(); 890 if (!isImpReg && !isInlineAsm()) { 891 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 892 --OpNo; 893 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 894 } 895 } 896 897 #ifndef NDEBUG 898 bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata; 899 // OpNo now points as the desired insertion point. Unless this is a variadic 900 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 901 // RegMask operands go between the explicit and implicit operands. 902 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 903 OpNo < MCID->getNumOperands() || isMetaDataOp) && 904 "Trying to add an operand to a machine instr that is already done!"); 905 #endif 906 907 MachineRegisterInfo *MRI = getRegInfo(); 908 909 // Determine if the Operands array needs to be reallocated. 910 // Save the old capacity and operand array. 911 OperandCapacity OldCap = CapOperands; 912 MachineOperand *OldOperands = Operands; 913 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 914 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 915 Operands = MF.allocateOperandArray(CapOperands); 916 // Move the operands before the insertion point. 917 if (OpNo) 918 moveOperands(Operands, OldOperands, OpNo, MRI); 919 } 920 921 // Move the operands following the insertion point. 922 if (OpNo != NumOperands) 923 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 924 MRI); 925 ++NumOperands; 926 927 // Deallocate the old operand array. 928 if (OldOperands != Operands && OldOperands) 929 MF.deallocateOperandArray(OldCap, OldOperands); 930 931 // Copy Op into place. It still needs to be inserted into the MRI use lists. 932 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 933 NewMO->ParentMI = this; 934 935 // When adding a register operand, tell MRI about it. 936 if (NewMO->isReg()) { 937 // Ensure isOnRegUseList() returns false, regardless of Op's status. 938 NewMO->Contents.Reg.Prev = nullptr; 939 // Ignore existing ties. This is not a property that can be copied. 940 NewMO->TiedTo = 0; 941 // Add the new operand to MRI, but only for instructions in an MBB. 942 if (MRI) 943 MRI->addRegOperandToUseList(NewMO); 944 // The MCID operand information isn't accurate until we start adding 945 // explicit operands. The implicit operands are added first, then the 946 // explicits are inserted before them. 947 if (!isImpReg) { 948 // Tie uses to defs as indicated in MCInstrDesc. 949 if (NewMO->isUse()) { 950 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 951 if (DefIdx != -1) 952 tieOperands(DefIdx, OpNo); 953 } 954 // If the register operand is flagged as early, mark the operand as such. 955 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 956 NewMO->setIsEarlyClobber(true); 957 } 958 } 959 } 960 961 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 962 /// fewer operand than it started with. 963 /// 964 void MachineInstr::RemoveOperand(unsigned OpNo) { 965 assert(OpNo < getNumOperands() && "Invalid operand number"); 966 untieRegOperand(OpNo); 967 968 #ifndef NDEBUG 969 // Moving tied operands would break the ties. 970 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 971 if (Operands[i].isReg()) 972 assert(!Operands[i].isTied() && "Cannot move tied operands"); 973 #endif 974 975 MachineRegisterInfo *MRI = getRegInfo(); 976 if (MRI && Operands[OpNo].isReg()) 977 MRI->removeRegOperandFromUseList(Operands + OpNo); 978 979 // Don't call the MachineOperand destructor. A lot of this code depends on 980 // MachineOperand having a trivial destructor anyway, and adding a call here 981 // wouldn't make it 'destructor-correct'. 982 983 if (unsigned N = NumOperands - 1 - OpNo) 984 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 985 --NumOperands; 986 } 987 988 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 989 /// This function should be used only occasionally. The setMemRefs function 990 /// is the primary method for setting up a MachineInstr's MemRefs list. 991 void MachineInstr::addMemOperand(MachineFunction &MF, 992 MachineMemOperand *MO) { 993 mmo_iterator OldMemRefs = MemRefs; 994 unsigned OldNumMemRefs = NumMemRefs; 995 996 unsigned NewNum = NumMemRefs + 1; 997 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 998 999 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs); 1000 NewMemRefs[NewNum - 1] = MO; 1001 setMemRefs(NewMemRefs, NewMemRefs + NewNum); 1002 } 1003 1004 /// Check to see if the MMOs pointed to by the two MemRefs arrays are 1005 /// identical. 1006 static bool hasIdenticalMMOs(const MachineInstr &MI1, const MachineInstr &MI2) { 1007 auto I1 = MI1.memoperands_begin(), E1 = MI1.memoperands_end(); 1008 auto I2 = MI2.memoperands_begin(), E2 = MI2.memoperands_end(); 1009 if ((E1 - I1) != (E2 - I2)) 1010 return false; 1011 for (; I1 != E1; ++I1, ++I2) { 1012 if (**I1 != **I2) 1013 return false; 1014 } 1015 return true; 1016 } 1017 1018 std::pair<MachineInstr::mmo_iterator, unsigned> 1019 MachineInstr::mergeMemRefsWith(const MachineInstr& Other) { 1020 1021 // If either of the incoming memrefs are empty, we must be conservative and 1022 // treat this as if we've exhausted our space for memrefs and dropped them. 1023 if (memoperands_empty() || Other.memoperands_empty()) 1024 return std::make_pair(nullptr, 0); 1025 1026 // If both instructions have identical memrefs, we don't need to merge them. 1027 // Since many instructions have a single memref, and we tend to merge things 1028 // like pairs of loads from the same location, this catches a large number of 1029 // cases in practice. 1030 if (hasIdenticalMMOs(*this, Other)) 1031 return std::make_pair(MemRefs, NumMemRefs); 1032 1033 // TODO: consider uniquing elements within the operand lists to reduce 1034 // space usage and fall back to conservative information less often. 1035 size_t CombinedNumMemRefs = NumMemRefs + Other.NumMemRefs; 1036 1037 // If we don't have enough room to store this many memrefs, be conservative 1038 // and drop them. Otherwise, we'd fail asserts when trying to add them to 1039 // the new instruction. 1040 if (CombinedNumMemRefs != uint8_t(CombinedNumMemRefs)) 1041 return std::make_pair(nullptr, 0); 1042 1043 MachineFunction *MF = getParent()->getParent(); 1044 mmo_iterator MemBegin = MF->allocateMemRefsArray(CombinedNumMemRefs); 1045 mmo_iterator MemEnd = std::copy(memoperands_begin(), memoperands_end(), 1046 MemBegin); 1047 MemEnd = std::copy(Other.memoperands_begin(), Other.memoperands_end(), 1048 MemEnd); 1049 assert(MemEnd - MemBegin == (ptrdiff_t)CombinedNumMemRefs && 1050 "missing memrefs"); 1051 1052 return std::make_pair(MemBegin, CombinedNumMemRefs); 1053 } 1054 1055 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { 1056 assert(!isBundledWithPred() && "Must be called on bundle header"); 1057 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { 1058 if (MII->getDesc().getFlags() & Mask) { 1059 if (Type == AnyInBundle) 1060 return true; 1061 } else { 1062 if (Type == AllInBundle && !MII->isBundle()) 1063 return false; 1064 } 1065 // This was the last instruction in the bundle. 1066 if (!MII->isBundledWithSucc()) 1067 return Type == AllInBundle; 1068 } 1069 } 1070 1071 bool MachineInstr::isIdenticalTo(const MachineInstr &Other, 1072 MICheckType Check) const { 1073 // If opcodes or number of operands are not the same then the two 1074 // instructions are obviously not identical. 1075 if (Other.getOpcode() != getOpcode() || 1076 Other.getNumOperands() != getNumOperands()) 1077 return false; 1078 1079 if (isBundle()) { 1080 // We have passed the test above that both instructions have the same 1081 // opcode, so we know that both instructions are bundles here. Let's compare 1082 // MIs inside the bundle. 1083 assert(Other.isBundle() && "Expected that both instructions are bundles."); 1084 MachineBasicBlock::const_instr_iterator I1 = getIterator(); 1085 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); 1086 // Loop until we analysed the last intruction inside at least one of the 1087 // bundles. 1088 while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) { 1089 ++I1; 1090 ++I2; 1091 if (!I1->isIdenticalTo(*I2, Check)) 1092 return false; 1093 } 1094 // If we've reached the end of just one of the two bundles, but not both, 1095 // the instructions are not identical. 1096 if (I1->isBundledWithSucc() || I2->isBundledWithSucc()) 1097 return false; 1098 } 1099 1100 // Check operands to make sure they match. 1101 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1102 const MachineOperand &MO = getOperand(i); 1103 const MachineOperand &OMO = Other.getOperand(i); 1104 if (!MO.isReg()) { 1105 if (!MO.isIdenticalTo(OMO)) 1106 return false; 1107 continue; 1108 } 1109 1110 // Clients may or may not want to ignore defs when testing for equality. 1111 // For example, machine CSE pass only cares about finding common 1112 // subexpressions, so it's safe to ignore virtual register defs. 1113 if (MO.isDef()) { 1114 if (Check == IgnoreDefs) 1115 continue; 1116 else if (Check == IgnoreVRegDefs) { 1117 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 1118 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 1119 if (MO.getReg() != OMO.getReg()) 1120 return false; 1121 } else { 1122 if (!MO.isIdenticalTo(OMO)) 1123 return false; 1124 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 1125 return false; 1126 } 1127 } else { 1128 if (!MO.isIdenticalTo(OMO)) 1129 return false; 1130 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 1131 return false; 1132 } 1133 } 1134 // If DebugLoc does not match then two dbg.values are not identical. 1135 if (isDebugValue()) 1136 if (getDebugLoc() && Other.getDebugLoc() && 1137 getDebugLoc() != Other.getDebugLoc()) 1138 return false; 1139 return true; 1140 } 1141 1142 MachineInstr *MachineInstr::removeFromParent() { 1143 assert(getParent() && "Not embedded in a basic block!"); 1144 return getParent()->remove(this); 1145 } 1146 1147 MachineInstr *MachineInstr::removeFromBundle() { 1148 assert(getParent() && "Not embedded in a basic block!"); 1149 return getParent()->remove_instr(this); 1150 } 1151 1152 void MachineInstr::eraseFromParent() { 1153 assert(getParent() && "Not embedded in a basic block!"); 1154 getParent()->erase(this); 1155 } 1156 1157 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() { 1158 assert(getParent() && "Not embedded in a basic block!"); 1159 MachineBasicBlock *MBB = getParent(); 1160 MachineFunction *MF = MBB->getParent(); 1161 assert(MF && "Not embedded in a function!"); 1162 1163 MachineInstr *MI = (MachineInstr *)this; 1164 MachineRegisterInfo &MRI = MF->getRegInfo(); 1165 1166 for (const MachineOperand &MO : MI->operands()) { 1167 if (!MO.isReg() || !MO.isDef()) 1168 continue; 1169 unsigned Reg = MO.getReg(); 1170 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1171 continue; 1172 MRI.markUsesInDebugValueAsUndef(Reg); 1173 } 1174 MI->eraseFromParent(); 1175 } 1176 1177 void MachineInstr::eraseFromBundle() { 1178 assert(getParent() && "Not embedded in a basic block!"); 1179 getParent()->erase_instr(this); 1180 } 1181 1182 /// getNumExplicitOperands - Returns the number of non-implicit operands. 1183 /// 1184 unsigned MachineInstr::getNumExplicitOperands() const { 1185 unsigned NumOperands = MCID->getNumOperands(); 1186 if (!MCID->isVariadic()) 1187 return NumOperands; 1188 1189 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 1190 const MachineOperand &MO = getOperand(i); 1191 if (!MO.isReg() || !MO.isImplicit()) 1192 NumOperands++; 1193 } 1194 return NumOperands; 1195 } 1196 1197 void MachineInstr::bundleWithPred() { 1198 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 1199 setFlag(BundledPred); 1200 MachineBasicBlock::instr_iterator Pred = getIterator(); 1201 --Pred; 1202 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 1203 Pred->setFlag(BundledSucc); 1204 } 1205 1206 void MachineInstr::bundleWithSucc() { 1207 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 1208 setFlag(BundledSucc); 1209 MachineBasicBlock::instr_iterator Succ = getIterator(); 1210 ++Succ; 1211 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 1212 Succ->setFlag(BundledPred); 1213 } 1214 1215 void MachineInstr::unbundleFromPred() { 1216 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 1217 clearFlag(BundledPred); 1218 MachineBasicBlock::instr_iterator Pred = getIterator(); 1219 --Pred; 1220 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 1221 Pred->clearFlag(BundledSucc); 1222 } 1223 1224 void MachineInstr::unbundleFromSucc() { 1225 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 1226 clearFlag(BundledSucc); 1227 MachineBasicBlock::instr_iterator Succ = getIterator(); 1228 ++Succ; 1229 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 1230 Succ->clearFlag(BundledPred); 1231 } 1232 1233 bool MachineInstr::isStackAligningInlineAsm() const { 1234 if (isInlineAsm()) { 1235 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1236 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1237 return true; 1238 } 1239 return false; 1240 } 1241 1242 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 1243 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 1244 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1245 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 1246 } 1247 1248 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 1249 unsigned *GroupNo) const { 1250 assert(isInlineAsm() && "Expected an inline asm instruction"); 1251 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 1252 1253 // Ignore queries about the initial operands. 1254 if (OpIdx < InlineAsm::MIOp_FirstOperand) 1255 return -1; 1256 1257 unsigned Group = 0; 1258 unsigned NumOps; 1259 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1260 i += NumOps) { 1261 const MachineOperand &FlagMO = getOperand(i); 1262 // If we reach the implicit register operands, stop looking. 1263 if (!FlagMO.isImm()) 1264 return -1; 1265 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1266 if (i + NumOps > OpIdx) { 1267 if (GroupNo) 1268 *GroupNo = Group; 1269 return i; 1270 } 1271 ++Group; 1272 } 1273 return -1; 1274 } 1275 1276 const DILocalVariable *MachineInstr::getDebugVariable() const { 1277 assert(isDebugValue() && "not a DBG_VALUE"); 1278 return cast<DILocalVariable>(getOperand(2).getMetadata()); 1279 } 1280 1281 const DIExpression *MachineInstr::getDebugExpression() const { 1282 assert(isDebugValue() && "not a DBG_VALUE"); 1283 return cast<DIExpression>(getOperand(3).getMetadata()); 1284 } 1285 1286 const TargetRegisterClass* 1287 MachineInstr::getRegClassConstraint(unsigned OpIdx, 1288 const TargetInstrInfo *TII, 1289 const TargetRegisterInfo *TRI) const { 1290 assert(getParent() && "Can't have an MBB reference here!"); 1291 assert(getParent()->getParent() && "Can't have an MF reference here!"); 1292 const MachineFunction &MF = *getParent()->getParent(); 1293 1294 // Most opcodes have fixed constraints in their MCInstrDesc. 1295 if (!isInlineAsm()) 1296 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 1297 1298 if (!getOperand(OpIdx).isReg()) 1299 return nullptr; 1300 1301 // For tied uses on inline asm, get the constraint from the def. 1302 unsigned DefIdx; 1303 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 1304 OpIdx = DefIdx; 1305 1306 // Inline asm stores register class constraints in the flag word. 1307 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 1308 if (FlagIdx < 0) 1309 return nullptr; 1310 1311 unsigned Flag = getOperand(FlagIdx).getImm(); 1312 unsigned RCID; 1313 if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse || 1314 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef || 1315 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) && 1316 InlineAsm::hasRegClassConstraint(Flag, RCID)) 1317 return TRI->getRegClass(RCID); 1318 1319 // Assume that all registers in a memory operand are pointers. 1320 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 1321 return TRI->getPointerRegClass(MF); 1322 1323 return nullptr; 1324 } 1325 1326 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 1327 unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 1328 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 1329 // Check every operands inside the bundle if we have 1330 // been asked to. 1331 if (ExploreBundle) 1332 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; 1333 ++OpndIt) 1334 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 1335 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 1336 else 1337 // Otherwise, just check the current operands. 1338 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 1339 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 1340 return CurRC; 1341 } 1342 1343 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 1344 unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC, 1345 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1346 assert(CurRC && "Invalid initial register class"); 1347 // Check if Reg is constrained by some of its use/def from MI. 1348 const MachineOperand &MO = getOperand(OpIdx); 1349 if (!MO.isReg() || MO.getReg() != Reg) 1350 return CurRC; 1351 // If yes, accumulate the constraints through the operand. 1352 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 1353 } 1354 1355 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 1356 unsigned OpIdx, const TargetRegisterClass *CurRC, 1357 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1358 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 1359 const MachineOperand &MO = getOperand(OpIdx); 1360 assert(MO.isReg() && 1361 "Cannot get register constraints for non-register operand"); 1362 assert(CurRC && "Invalid initial register class"); 1363 if (unsigned SubIdx = MO.getSubReg()) { 1364 if (OpRC) 1365 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 1366 else 1367 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 1368 } else if (OpRC) 1369 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 1370 return CurRC; 1371 } 1372 1373 /// Return the number of instructions inside the MI bundle, not counting the 1374 /// header instruction. 1375 unsigned MachineInstr::getBundleSize() const { 1376 MachineBasicBlock::const_instr_iterator I = getIterator(); 1377 unsigned Size = 0; 1378 while (I->isBundledWithSucc()) { 1379 ++Size; 1380 ++I; 1381 } 1382 return Size; 1383 } 1384 1385 /// Returns true if the MachineInstr has an implicit-use operand of exactly 1386 /// the given register (not considering sub/super-registers). 1387 bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const { 1388 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1389 const MachineOperand &MO = getOperand(i); 1390 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) 1391 return true; 1392 } 1393 return false; 1394 } 1395 1396 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 1397 /// the specific register or -1 if it is not found. It further tightens 1398 /// the search criteria to a use that kills the register if isKill is true. 1399 int MachineInstr::findRegisterUseOperandIdx( 1400 unsigned Reg, bool isKill, const TargetRegisterInfo *TRI) const { 1401 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1402 const MachineOperand &MO = getOperand(i); 1403 if (!MO.isReg() || !MO.isUse()) 1404 continue; 1405 unsigned MOReg = MO.getReg(); 1406 if (!MOReg) 1407 continue; 1408 if (MOReg == Reg || (TRI && TargetRegisterInfo::isPhysicalRegister(MOReg) && 1409 TargetRegisterInfo::isPhysicalRegister(Reg) && 1410 TRI->isSubRegister(MOReg, Reg))) 1411 if (!isKill || MO.isKill()) 1412 return i; 1413 } 1414 return -1; 1415 } 1416 1417 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1418 /// indicating if this instruction reads or writes Reg. This also considers 1419 /// partial defines. 1420 std::pair<bool,bool> 1421 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 1422 SmallVectorImpl<unsigned> *Ops) const { 1423 bool PartDef = false; // Partial redefine. 1424 bool FullDef = false; // Full define. 1425 bool Use = false; 1426 1427 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1428 const MachineOperand &MO = getOperand(i); 1429 if (!MO.isReg() || MO.getReg() != Reg) 1430 continue; 1431 if (Ops) 1432 Ops->push_back(i); 1433 if (MO.isUse()) 1434 Use |= !MO.isUndef(); 1435 else if (MO.getSubReg() && !MO.isUndef()) 1436 // A partial <def,undef> doesn't count as reading the register. 1437 PartDef = true; 1438 else 1439 FullDef = true; 1440 } 1441 // A partial redefine uses Reg unless there is also a full define. 1442 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1443 } 1444 1445 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1446 /// the specified register or -1 if it is not found. If isDead is true, defs 1447 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1448 /// also checks if there is a def of a super-register. 1449 int 1450 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 1451 const TargetRegisterInfo *TRI) const { 1452 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 1453 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1454 const MachineOperand &MO = getOperand(i); 1455 // Accept regmask operands when Overlap is set. 1456 // Ignore them when looking for a specific def operand (Overlap == false). 1457 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1458 return i; 1459 if (!MO.isReg() || !MO.isDef()) 1460 continue; 1461 unsigned MOReg = MO.getReg(); 1462 bool Found = (MOReg == Reg); 1463 if (!Found && TRI && isPhys && 1464 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1465 if (Overlap) 1466 Found = TRI->regsOverlap(MOReg, Reg); 1467 else 1468 Found = TRI->isSubRegister(MOReg, Reg); 1469 } 1470 if (Found && (!isDead || MO.isDead())) 1471 return i; 1472 } 1473 return -1; 1474 } 1475 1476 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1477 /// operand list that is used to represent the predicate. It returns -1 if 1478 /// none is found. 1479 int MachineInstr::findFirstPredOperandIdx() const { 1480 // Don't call MCID.findFirstPredOperandIdx() because this variant 1481 // is sometimes called on an instruction that's not yet complete, and 1482 // so the number of operands is less than the MCID indicates. In 1483 // particular, the PTX target does this. 1484 const MCInstrDesc &MCID = getDesc(); 1485 if (MCID.isPredicable()) { 1486 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1487 if (MCID.OpInfo[i].isPredicate()) 1488 return i; 1489 } 1490 1491 return -1; 1492 } 1493 1494 // MachineOperand::TiedTo is 4 bits wide. 1495 const unsigned TiedMax = 15; 1496 1497 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1498 /// 1499 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1500 /// field. TiedTo can have these values: 1501 /// 1502 /// 0: Operand is not tied to anything. 1503 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1504 /// TiedMax: Tied to an operand >= TiedMax-1. 1505 /// 1506 /// The tied def must be one of the first TiedMax operands on a normal 1507 /// instruction. INLINEASM instructions allow more tied defs. 1508 /// 1509 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1510 MachineOperand &DefMO = getOperand(DefIdx); 1511 MachineOperand &UseMO = getOperand(UseIdx); 1512 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1513 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1514 assert(!DefMO.isTied() && "Def is already tied to another use"); 1515 assert(!UseMO.isTied() && "Use is already tied to another def"); 1516 1517 if (DefIdx < TiedMax) 1518 UseMO.TiedTo = DefIdx + 1; 1519 else { 1520 // Inline asm can use the group descriptors to find tied operands, but on 1521 // normal instruction, the tied def must be within the first TiedMax 1522 // operands. 1523 assert(isInlineAsm() && "DefIdx out of range"); 1524 UseMO.TiedTo = TiedMax; 1525 } 1526 1527 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1528 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1529 } 1530 1531 /// Given the index of a tied register operand, find the operand it is tied to. 1532 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1533 /// which must exist. 1534 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1535 const MachineOperand &MO = getOperand(OpIdx); 1536 assert(MO.isTied() && "Operand isn't tied"); 1537 1538 // Normally TiedTo is in range. 1539 if (MO.TiedTo < TiedMax) 1540 return MO.TiedTo - 1; 1541 1542 // Uses on normal instructions can be out of range. 1543 if (!isInlineAsm()) { 1544 // Normal tied defs must be in the 0..TiedMax-1 range. 1545 if (MO.isUse()) 1546 return TiedMax - 1; 1547 // MO is a def. Search for the tied use. 1548 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1549 const MachineOperand &UseMO = getOperand(i); 1550 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1551 return i; 1552 } 1553 llvm_unreachable("Can't find tied use"); 1554 } 1555 1556 // Now deal with inline asm by parsing the operand group descriptor flags. 1557 // Find the beginning of each operand group. 1558 SmallVector<unsigned, 8> GroupIdx; 1559 unsigned OpIdxGroup = ~0u; 1560 unsigned NumOps; 1561 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1562 i += NumOps) { 1563 const MachineOperand &FlagMO = getOperand(i); 1564 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1565 unsigned CurGroup = GroupIdx.size(); 1566 GroupIdx.push_back(i); 1567 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1568 // OpIdx belongs to this operand group. 1569 if (OpIdx > i && OpIdx < i + NumOps) 1570 OpIdxGroup = CurGroup; 1571 unsigned TiedGroup; 1572 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1573 continue; 1574 // Operands in this group are tied to operands in TiedGroup which must be 1575 // earlier. Find the number of operands between the two groups. 1576 unsigned Delta = i - GroupIdx[TiedGroup]; 1577 1578 // OpIdx is a use tied to TiedGroup. 1579 if (OpIdxGroup == CurGroup) 1580 return OpIdx - Delta; 1581 1582 // OpIdx is a def tied to this use group. 1583 if (OpIdxGroup == TiedGroup) 1584 return OpIdx + Delta; 1585 } 1586 llvm_unreachable("Invalid tied operand on inline asm"); 1587 } 1588 1589 /// clearKillInfo - Clears kill flags on all operands. 1590 /// 1591 void MachineInstr::clearKillInfo() { 1592 for (MachineOperand &MO : operands()) { 1593 if (MO.isReg() && MO.isUse()) 1594 MO.setIsKill(false); 1595 } 1596 } 1597 1598 void MachineInstr::substituteRegister(unsigned FromReg, 1599 unsigned ToReg, 1600 unsigned SubIdx, 1601 const TargetRegisterInfo &RegInfo) { 1602 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1603 if (SubIdx) 1604 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1605 for (MachineOperand &MO : operands()) { 1606 if (!MO.isReg() || MO.getReg() != FromReg) 1607 continue; 1608 MO.substPhysReg(ToReg, RegInfo); 1609 } 1610 } else { 1611 for (MachineOperand &MO : operands()) { 1612 if (!MO.isReg() || MO.getReg() != FromReg) 1613 continue; 1614 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1615 } 1616 } 1617 } 1618 1619 /// isSafeToMove - Return true if it is safe to move this instruction. If 1620 /// SawStore is set to true, it means that there is a store (or call) between 1621 /// the instruction's location and its intended destination. 1622 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const { 1623 // Ignore stuff that we obviously can't move. 1624 // 1625 // Treat volatile loads as stores. This is not strictly necessary for 1626 // volatiles, but it is required for atomic loads. It is not allowed to move 1627 // a load across an atomic load with Ordering > Monotonic. 1628 if (mayStore() || isCall() || 1629 (mayLoad() && hasOrderedMemoryRef())) { 1630 SawStore = true; 1631 return false; 1632 } 1633 1634 if (isPosition() || isDebugValue() || isTerminator() || 1635 hasUnmodeledSideEffects()) 1636 return false; 1637 1638 // See if this instruction does a load. If so, we have to guarantee that the 1639 // loaded value doesn't change between the load and the its intended 1640 // destination. The check for isInvariantLoad gives the targe the chance to 1641 // classify the load as always returning a constant, e.g. a constant pool 1642 // load. 1643 if (mayLoad() && !isDereferenceableInvariantLoad(AA)) 1644 // Otherwise, this is a real load. If there is a store between the load and 1645 // end of block, we can't move it. 1646 return !SawStore; 1647 1648 return true; 1649 } 1650 1651 bool MachineInstr::mayAlias(AliasAnalysis *AA, MachineInstr &Other, 1652 bool UseTBAA) { 1653 const MachineFunction *MF = getParent()->getParent(); 1654 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1655 1656 // If neither instruction stores to memory, they can't alias in any 1657 // meaningful way, even if they read from the same address. 1658 if (!mayStore() && !Other.mayStore()) 1659 return false; 1660 1661 // Let the target decide if memory accesses cannot possibly overlap. 1662 if (TII->areMemAccessesTriviallyDisjoint(*this, Other, AA)) 1663 return false; 1664 1665 if (!AA) 1666 return true; 1667 1668 // FIXME: Need to handle multiple memory operands to support all targets. 1669 if (!hasOneMemOperand() || !Other.hasOneMemOperand()) 1670 return true; 1671 1672 MachineMemOperand *MMOa = *memoperands_begin(); 1673 MachineMemOperand *MMOb = *Other.memoperands_begin(); 1674 1675 if (!MMOa->getValue() || !MMOb->getValue()) 1676 return true; 1677 1678 // The following interface to AA is fashioned after DAGCombiner::isAlias 1679 // and operates with MachineMemOperand offset with some important 1680 // assumptions: 1681 // - LLVM fundamentally assumes flat address spaces. 1682 // - MachineOperand offset can *only* result from legalization and 1683 // cannot affect queries other than the trivial case of overlap 1684 // checking. 1685 // - These offsets never wrap and never step outside 1686 // of allocated objects. 1687 // - There should never be any negative offsets here. 1688 // 1689 // FIXME: Modify API to hide this math from "user" 1690 // FIXME: Even before we go to AA we can reason locally about some 1691 // memory objects. It can save compile time, and possibly catch some 1692 // corner cases not currently covered. 1693 1694 assert((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset"); 1695 assert((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset"); 1696 1697 int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset()); 1698 int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset; 1699 int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset; 1700 1701 AliasResult AAResult = 1702 AA->alias(MemoryLocation(MMOa->getValue(), Overlapa, 1703 UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 1704 MemoryLocation(MMOb->getValue(), Overlapb, 1705 UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 1706 1707 return (AAResult != NoAlias); 1708 } 1709 1710 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1711 /// or volatile memory reference, or if the information describing the memory 1712 /// reference is not available. Return false if it is known to have no ordered 1713 /// memory references. 1714 bool MachineInstr::hasOrderedMemoryRef() const { 1715 // An instruction known never to access memory won't have a volatile access. 1716 if (!mayStore() && 1717 !mayLoad() && 1718 !isCall() && 1719 !hasUnmodeledSideEffects()) 1720 return false; 1721 1722 // Otherwise, if the instruction has no memory reference information, 1723 // conservatively assume it wasn't preserved. 1724 if (memoperands_empty()) 1725 return true; 1726 1727 // Check if any of our memory operands are ordered. 1728 return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) { 1729 return !MMO->isUnordered(); 1730 }); 1731 } 1732 1733 /// isDereferenceableInvariantLoad - Return true if this instruction will never 1734 /// trap and is loading from a location whose value is invariant across a run of 1735 /// this function. 1736 bool MachineInstr::isDereferenceableInvariantLoad(AliasAnalysis *AA) const { 1737 // If the instruction doesn't load at all, it isn't an invariant load. 1738 if (!mayLoad()) 1739 return false; 1740 1741 // If the instruction has lost its memoperands, conservatively assume that 1742 // it may not be an invariant load. 1743 if (memoperands_empty()) 1744 return false; 1745 1746 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); 1747 1748 for (MachineMemOperand *MMO : memoperands()) { 1749 if (MMO->isVolatile()) return false; 1750 if (MMO->isStore()) return false; 1751 if (MMO->isInvariant() && MMO->isDereferenceable()) 1752 continue; 1753 1754 // A load from a constant PseudoSourceValue is invariant. 1755 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) 1756 if (PSV->isConstant(&MFI)) 1757 continue; 1758 1759 if (const Value *V = MMO->getValue()) { 1760 // If we have an AliasAnalysis, ask it whether the memory is constant. 1761 if (AA && 1762 AA->pointsToConstantMemory( 1763 MemoryLocation(V, MMO->getSize(), MMO->getAAInfo()))) 1764 continue; 1765 } 1766 1767 // Otherwise assume conservatively. 1768 return false; 1769 } 1770 1771 // Everything checks out. 1772 return true; 1773 } 1774 1775 /// isConstantValuePHI - If the specified instruction is a PHI that always 1776 /// merges together the same virtual register, return the register, otherwise 1777 /// return 0. 1778 unsigned MachineInstr::isConstantValuePHI() const { 1779 if (!isPHI()) 1780 return 0; 1781 assert(getNumOperands() >= 3 && 1782 "It's illegal to have a PHI without source operands"); 1783 1784 unsigned Reg = getOperand(1).getReg(); 1785 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1786 if (getOperand(i).getReg() != Reg) 1787 return 0; 1788 return Reg; 1789 } 1790 1791 bool MachineInstr::hasUnmodeledSideEffects() const { 1792 if (hasProperty(MCID::UnmodeledSideEffects)) 1793 return true; 1794 if (isInlineAsm()) { 1795 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1796 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1797 return true; 1798 } 1799 1800 return false; 1801 } 1802 1803 bool MachineInstr::isLoadFoldBarrier() const { 1804 return mayStore() || isCall() || hasUnmodeledSideEffects(); 1805 } 1806 1807 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1808 /// 1809 bool MachineInstr::allDefsAreDead() const { 1810 for (const MachineOperand &MO : operands()) { 1811 if (!MO.isReg() || MO.isUse()) 1812 continue; 1813 if (!MO.isDead()) 1814 return false; 1815 } 1816 return true; 1817 } 1818 1819 /// copyImplicitOps - Copy implicit register operands from specified 1820 /// instruction to this instruction. 1821 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1822 const MachineInstr &MI) { 1823 for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands(); 1824 i != e; ++i) { 1825 const MachineOperand &MO = MI.getOperand(i); 1826 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1827 addOperand(MF, MO); 1828 } 1829 } 1830 1831 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1832 LLVM_DUMP_METHOD void MachineInstr::dump() const { 1833 dbgs() << " "; 1834 print(dbgs()); 1835 } 1836 #endif 1837 1838 void MachineInstr::print(raw_ostream &OS, bool SkipOpers, bool SkipDebugLoc, 1839 const TargetInstrInfo *TII) const { 1840 const Module *M = nullptr; 1841 if (const MachineBasicBlock *MBB = getParent()) 1842 if (const MachineFunction *MF = MBB->getParent()) 1843 M = MF->getFunction()->getParent(); 1844 1845 ModuleSlotTracker MST(M); 1846 print(OS, MST, SkipOpers, SkipDebugLoc, TII); 1847 } 1848 1849 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1850 bool SkipOpers, bool SkipDebugLoc, 1851 const TargetInstrInfo *TII) const { 1852 // We can be a bit tidier if we know the MachineFunction. 1853 const MachineFunction *MF = nullptr; 1854 const TargetRegisterInfo *TRI = nullptr; 1855 const MachineRegisterInfo *MRI = nullptr; 1856 const TargetIntrinsicInfo *IntrinsicInfo = nullptr; 1857 1858 if (const MachineBasicBlock *MBB = getParent()) { 1859 MF = MBB->getParent(); 1860 if (MF) { 1861 MRI = &MF->getRegInfo(); 1862 TRI = MF->getSubtarget().getRegisterInfo(); 1863 if (!TII) 1864 TII = MF->getSubtarget().getInstrInfo(); 1865 IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); 1866 } 1867 } 1868 1869 // Save a list of virtual registers. 1870 SmallVector<unsigned, 8> VirtRegs; 1871 1872 // Print explicitly defined operands on the left of an assignment syntax. 1873 unsigned StartOp = 0, e = getNumOperands(); 1874 for (; StartOp < e && getOperand(StartOp).isReg() && 1875 getOperand(StartOp).isDef() && 1876 !getOperand(StartOp).isImplicit(); 1877 ++StartOp) { 1878 if (StartOp != 0) OS << ", "; 1879 getOperand(StartOp).print(OS, MST, TRI, IntrinsicInfo); 1880 unsigned Reg = getOperand(StartOp).getReg(); 1881 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1882 VirtRegs.push_back(Reg); 1883 LLT Ty = MRI ? MRI->getType(Reg) : LLT{}; 1884 if (Ty.isValid()) 1885 OS << '(' << Ty << ')'; 1886 } 1887 } 1888 1889 if (StartOp != 0) 1890 OS << " = "; 1891 1892 // Print the opcode name. 1893 if (TII) 1894 OS << TII->getName(getOpcode()); 1895 else 1896 OS << "UNKNOWN"; 1897 1898 if (SkipOpers) 1899 return; 1900 1901 // Print the rest of the operands. 1902 bool FirstOp = true; 1903 unsigned AsmDescOp = ~0u; 1904 unsigned AsmOpCount = 0; 1905 1906 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1907 // Print asm string. 1908 OS << " "; 1909 getOperand(InlineAsm::MIOp_AsmString).print(OS, MST, TRI); 1910 1911 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1912 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1913 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1914 OS << " [sideeffect]"; 1915 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1916 OS << " [mayload]"; 1917 if (ExtraInfo & InlineAsm::Extra_MayStore) 1918 OS << " [maystore]"; 1919 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 1920 OS << " [isconvergent]"; 1921 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1922 OS << " [alignstack]"; 1923 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1924 OS << " [attdialect]"; 1925 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1926 OS << " [inteldialect]"; 1927 1928 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1929 FirstOp = false; 1930 } 1931 1932 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1933 const MachineOperand &MO = getOperand(i); 1934 1935 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1936 VirtRegs.push_back(MO.getReg()); 1937 1938 if (FirstOp) FirstOp = false; else OS << ","; 1939 OS << " "; 1940 if (i < getDesc().NumOperands) { 1941 const MCOperandInfo &MCOI = getDesc().OpInfo[i]; 1942 if (MCOI.isPredicate()) 1943 OS << "pred:"; 1944 if (MCOI.isOptionalDef()) 1945 OS << "opt:"; 1946 } 1947 if (isDebugValue() && MO.isMetadata()) { 1948 // Pretty print DBG_VALUE instructions. 1949 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1950 if (DIV && !DIV->getName().empty()) 1951 OS << "!\"" << DIV->getName() << '\"'; 1952 else 1953 MO.print(OS, MST, TRI); 1954 } else if (TRI && (isInsertSubreg() || isRegSequence() || 1955 (isSubregToReg() && i == 3)) && MO.isImm()) { 1956 OS << TRI->getSubRegIndexName(MO.getImm()); 1957 } else if (i == AsmDescOp && MO.isImm()) { 1958 // Pretty print the inline asm operand descriptor. 1959 OS << '$' << AsmOpCount++; 1960 unsigned Flag = MO.getImm(); 1961 switch (InlineAsm::getKind(Flag)) { 1962 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1963 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1964 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1965 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1966 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1967 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1968 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1969 } 1970 1971 unsigned RCID = 0; 1972 if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) && 1973 InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1974 if (TRI) { 1975 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1976 } else 1977 OS << ":RC" << RCID; 1978 } 1979 1980 if (InlineAsm::isMemKind(Flag)) { 1981 unsigned MCID = InlineAsm::getMemoryConstraintID(Flag); 1982 switch (MCID) { 1983 case InlineAsm::Constraint_es: OS << ":es"; break; 1984 case InlineAsm::Constraint_i: OS << ":i"; break; 1985 case InlineAsm::Constraint_m: OS << ":m"; break; 1986 case InlineAsm::Constraint_o: OS << ":o"; break; 1987 case InlineAsm::Constraint_v: OS << ":v"; break; 1988 case InlineAsm::Constraint_Q: OS << ":Q"; break; 1989 case InlineAsm::Constraint_R: OS << ":R"; break; 1990 case InlineAsm::Constraint_S: OS << ":S"; break; 1991 case InlineAsm::Constraint_T: OS << ":T"; break; 1992 case InlineAsm::Constraint_Um: OS << ":Um"; break; 1993 case InlineAsm::Constraint_Un: OS << ":Un"; break; 1994 case InlineAsm::Constraint_Uq: OS << ":Uq"; break; 1995 case InlineAsm::Constraint_Us: OS << ":Us"; break; 1996 case InlineAsm::Constraint_Ut: OS << ":Ut"; break; 1997 case InlineAsm::Constraint_Uv: OS << ":Uv"; break; 1998 case InlineAsm::Constraint_Uy: OS << ":Uy"; break; 1999 case InlineAsm::Constraint_X: OS << ":X"; break; 2000 case InlineAsm::Constraint_Z: OS << ":Z"; break; 2001 case InlineAsm::Constraint_ZC: OS << ":ZC"; break; 2002 case InlineAsm::Constraint_Zy: OS << ":Zy"; break; 2003 default: OS << ":?"; break; 2004 } 2005 } 2006 2007 unsigned TiedTo = 0; 2008 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 2009 OS << " tiedto:$" << TiedTo; 2010 2011 OS << ']'; 2012 2013 // Compute the index of the next operand descriptor. 2014 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 2015 } else 2016 MO.print(OS, MST, TRI); 2017 } 2018 2019 bool HaveSemi = false; 2020 const unsigned PrintableFlags = FrameSetup | FrameDestroy; 2021 if (Flags & PrintableFlags) { 2022 if (!HaveSemi) { 2023 OS << ";"; 2024 HaveSemi = true; 2025 } 2026 OS << " flags: "; 2027 2028 if (Flags & FrameSetup) 2029 OS << "FrameSetup"; 2030 2031 if (Flags & FrameDestroy) 2032 OS << "FrameDestroy"; 2033 } 2034 2035 if (!memoperands_empty()) { 2036 if (!HaveSemi) { 2037 OS << ";"; 2038 HaveSemi = true; 2039 } 2040 2041 OS << " mem:"; 2042 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 2043 i != e; ++i) { 2044 (*i)->print(OS, MST); 2045 if (std::next(i) != e) 2046 OS << " "; 2047 } 2048 } 2049 2050 // Print the regclass of any virtual registers encountered. 2051 if (MRI && !VirtRegs.empty()) { 2052 if (!HaveSemi) { 2053 OS << ";"; 2054 HaveSemi = true; 2055 } 2056 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 2057 const RegClassOrRegBank &RC = MRI->getRegClassOrRegBank(VirtRegs[i]); 2058 if (!RC) 2059 continue; 2060 // Generic virtual registers do not have register classes. 2061 if (RC.is<const RegisterBank *>()) 2062 OS << " " << RC.get<const RegisterBank *>()->getName(); 2063 else 2064 OS << " " 2065 << TRI->getRegClassName(RC.get<const TargetRegisterClass *>()); 2066 OS << ':' << PrintReg(VirtRegs[i]); 2067 for (unsigned j = i+1; j != VirtRegs.size();) { 2068 if (MRI->getRegClassOrRegBank(VirtRegs[j]) != RC) { 2069 ++j; 2070 continue; 2071 } 2072 if (VirtRegs[i] != VirtRegs[j]) 2073 OS << "," << PrintReg(VirtRegs[j]); 2074 VirtRegs.erase(VirtRegs.begin()+j); 2075 } 2076 } 2077 } 2078 2079 // Print debug location information. 2080 if (isDebugValue() && getOperand(e - 2).isMetadata()) { 2081 if (!HaveSemi) 2082 OS << ";"; 2083 auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata()); 2084 OS << " line no:" << DV->getLine(); 2085 if (auto *InlinedAt = debugLoc->getInlinedAt()) { 2086 DebugLoc InlinedAtDL(InlinedAt); 2087 if (InlinedAtDL && MF) { 2088 OS << " inlined @[ "; 2089 InlinedAtDL.print(OS); 2090 OS << " ]"; 2091 } 2092 } 2093 if (isIndirectDebugValue()) 2094 OS << " indirect"; 2095 } else if (SkipDebugLoc) { 2096 return; 2097 } else if (debugLoc && MF) { 2098 if (!HaveSemi) 2099 OS << ";"; 2100 OS << " dbg:"; 2101 debugLoc.print(OS); 2102 } 2103 2104 OS << '\n'; 2105 } 2106 2107 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 2108 const TargetRegisterInfo *RegInfo, 2109 bool AddIfNotFound) { 2110 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 2111 bool hasAliases = isPhysReg && 2112 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 2113 bool Found = false; 2114 SmallVector<unsigned,4> DeadOps; 2115 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 2116 MachineOperand &MO = getOperand(i); 2117 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 2118 continue; 2119 2120 // DEBUG_VALUE nodes do not contribute to code generation and should 2121 // always be ignored. Failure to do so may result in trying to modify 2122 // KILL flags on DEBUG_VALUE nodes. 2123 if (MO.isDebug()) 2124 continue; 2125 2126 unsigned Reg = MO.getReg(); 2127 if (!Reg) 2128 continue; 2129 2130 if (Reg == IncomingReg) { 2131 if (!Found) { 2132 if (MO.isKill()) 2133 // The register is already marked kill. 2134 return true; 2135 if (isPhysReg && isRegTiedToDefOperand(i)) 2136 // Two-address uses of physregs must not be marked kill. 2137 return true; 2138 MO.setIsKill(); 2139 Found = true; 2140 } 2141 } else if (hasAliases && MO.isKill() && 2142 TargetRegisterInfo::isPhysicalRegister(Reg)) { 2143 // A super-register kill already exists. 2144 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 2145 return true; 2146 if (RegInfo->isSubRegister(IncomingReg, Reg)) 2147 DeadOps.push_back(i); 2148 } 2149 } 2150 2151 // Trim unneeded kill operands. 2152 while (!DeadOps.empty()) { 2153 unsigned OpIdx = DeadOps.back(); 2154 if (getOperand(OpIdx).isImplicit()) 2155 RemoveOperand(OpIdx); 2156 else 2157 getOperand(OpIdx).setIsKill(false); 2158 DeadOps.pop_back(); 2159 } 2160 2161 // If not found, this means an alias of one of the operands is killed. Add a 2162 // new implicit operand if required. 2163 if (!Found && AddIfNotFound) { 2164 addOperand(MachineOperand::CreateReg(IncomingReg, 2165 false /*IsDef*/, 2166 true /*IsImp*/, 2167 true /*IsKill*/)); 2168 return true; 2169 } 2170 return Found; 2171 } 2172 2173 void MachineInstr::clearRegisterKills(unsigned Reg, 2174 const TargetRegisterInfo *RegInfo) { 2175 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 2176 RegInfo = nullptr; 2177 for (MachineOperand &MO : operands()) { 2178 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 2179 continue; 2180 unsigned OpReg = MO.getReg(); 2181 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) 2182 MO.setIsKill(false); 2183 } 2184 } 2185 2186 bool MachineInstr::addRegisterDead(unsigned Reg, 2187 const TargetRegisterInfo *RegInfo, 2188 bool AddIfNotFound) { 2189 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg); 2190 bool hasAliases = isPhysReg && 2191 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 2192 bool Found = false; 2193 SmallVector<unsigned,4> DeadOps; 2194 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 2195 MachineOperand &MO = getOperand(i); 2196 if (!MO.isReg() || !MO.isDef()) 2197 continue; 2198 unsigned MOReg = MO.getReg(); 2199 if (!MOReg) 2200 continue; 2201 2202 if (MOReg == Reg) { 2203 MO.setIsDead(); 2204 Found = true; 2205 } else if (hasAliases && MO.isDead() && 2206 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 2207 // There exists a super-register that's marked dead. 2208 if (RegInfo->isSuperRegister(Reg, MOReg)) 2209 return true; 2210 if (RegInfo->isSubRegister(Reg, MOReg)) 2211 DeadOps.push_back(i); 2212 } 2213 } 2214 2215 // Trim unneeded dead operands. 2216 while (!DeadOps.empty()) { 2217 unsigned OpIdx = DeadOps.back(); 2218 if (getOperand(OpIdx).isImplicit()) 2219 RemoveOperand(OpIdx); 2220 else 2221 getOperand(OpIdx).setIsDead(false); 2222 DeadOps.pop_back(); 2223 } 2224 2225 // If not found, this means an alias of one of the operands is dead. Add a 2226 // new implicit operand if required. 2227 if (Found || !AddIfNotFound) 2228 return Found; 2229 2230 addOperand(MachineOperand::CreateReg(Reg, 2231 true /*IsDef*/, 2232 true /*IsImp*/, 2233 false /*IsKill*/, 2234 true /*IsDead*/)); 2235 return true; 2236 } 2237 2238 void MachineInstr::clearRegisterDeads(unsigned Reg) { 2239 for (MachineOperand &MO : operands()) { 2240 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) 2241 continue; 2242 MO.setIsDead(false); 2243 } 2244 } 2245 2246 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) { 2247 for (MachineOperand &MO : operands()) { 2248 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) 2249 continue; 2250 MO.setIsUndef(IsUndef); 2251 } 2252 } 2253 2254 void MachineInstr::addRegisterDefined(unsigned Reg, 2255 const TargetRegisterInfo *RegInfo) { 2256 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 2257 MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo); 2258 if (MO) 2259 return; 2260 } else { 2261 for (const MachineOperand &MO : operands()) { 2262 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 2263 MO.getSubReg() == 0) 2264 return; 2265 } 2266 } 2267 addOperand(MachineOperand::CreateReg(Reg, 2268 true /*IsDef*/, 2269 true /*IsImp*/)); 2270 } 2271 2272 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 2273 const TargetRegisterInfo &TRI) { 2274 bool HasRegMask = false; 2275 for (MachineOperand &MO : operands()) { 2276 if (MO.isRegMask()) { 2277 HasRegMask = true; 2278 continue; 2279 } 2280 if (!MO.isReg() || !MO.isDef()) continue; 2281 unsigned Reg = MO.getReg(); 2282 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 2283 // If there are no uses, including partial uses, the def is dead. 2284 if (llvm::none_of(UsedRegs, 2285 [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); })) 2286 MO.setIsDead(); 2287 } 2288 2289 // This is a call with a register mask operand. 2290 // Mask clobbers are always dead, so add defs for the non-dead defines. 2291 if (HasRegMask) 2292 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 2293 I != E; ++I) 2294 addRegisterDefined(*I, &TRI); 2295 } 2296 2297 unsigned 2298 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 2299 // Build up a buffer of hash code components. 2300 SmallVector<size_t, 8> HashComponents; 2301 HashComponents.reserve(MI->getNumOperands() + 1); 2302 HashComponents.push_back(MI->getOpcode()); 2303 for (const MachineOperand &MO : MI->operands()) { 2304 if (MO.isReg() && MO.isDef() && 2305 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 2306 continue; // Skip virtual register defs. 2307 2308 HashComponents.push_back(hash_value(MO)); 2309 } 2310 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 2311 } 2312 2313 void MachineInstr::emitError(StringRef Msg) const { 2314 // Find the source location cookie. 2315 unsigned LocCookie = 0; 2316 const MDNode *LocMD = nullptr; 2317 for (unsigned i = getNumOperands(); i != 0; --i) { 2318 if (getOperand(i-1).isMetadata() && 2319 (LocMD = getOperand(i-1).getMetadata()) && 2320 LocMD->getNumOperands() != 0) { 2321 if (const ConstantInt *CI = 2322 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 2323 LocCookie = CI->getZExtValue(); 2324 break; 2325 } 2326 } 2327 } 2328 2329 if (const MachineBasicBlock *MBB = getParent()) 2330 if (const MachineFunction *MF = MBB->getParent()) 2331 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 2332 report_fatal_error(Msg); 2333 } 2334 2335 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2336 const MCInstrDesc &MCID, bool IsIndirect, 2337 unsigned Reg, unsigned Offset, 2338 const MDNode *Variable, const MDNode *Expr) { 2339 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2340 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2341 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2342 "Expected inlined-at fields to agree"); 2343 if (IsIndirect) 2344 return BuildMI(MF, DL, MCID) 2345 .addReg(Reg, RegState::Debug) 2346 .addImm(Offset) 2347 .addMetadata(Variable) 2348 .addMetadata(Expr); 2349 else { 2350 assert(Offset == 0 && "A direct address cannot have an offset."); 2351 return BuildMI(MF, DL, MCID) 2352 .addReg(Reg, RegState::Debug) 2353 .addReg(0U, RegState::Debug) 2354 .addMetadata(Variable) 2355 .addMetadata(Expr); 2356 } 2357 } 2358 2359 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2360 MachineBasicBlock::iterator I, 2361 const DebugLoc &DL, const MCInstrDesc &MCID, 2362 bool IsIndirect, unsigned Reg, 2363 unsigned Offset, const MDNode *Variable, 2364 const MDNode *Expr) { 2365 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2366 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2367 MachineFunction &MF = *BB.getParent(); 2368 MachineInstr *MI = 2369 BuildMI(MF, DL, MCID, IsIndirect, Reg, Offset, Variable, Expr); 2370 BB.insert(I, MI); 2371 return MachineInstrBuilder(MF, MI); 2372 } 2373 2374 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB, 2375 MachineBasicBlock::iterator I, 2376 const MachineInstr &Orig, 2377 int FrameIndex) { 2378 const MDNode *Var = Orig.getDebugVariable(); 2379 const auto *Expr = cast_or_null<DIExpression>(Orig.getDebugExpression()); 2380 bool IsIndirect = Orig.isIndirectDebugValue(); 2381 uint64_t Offset = IsIndirect ? Orig.getOperand(1).getImm() : 0; 2382 DebugLoc DL = Orig.getDebugLoc(); 2383 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 2384 "Expected inlined-at fields to agree"); 2385 // If the DBG_VALUE already was a memory location, add an extra 2386 // DW_OP_deref. Otherwise just turning this from a register into a 2387 // memory/indirect location is sufficient. 2388 if (IsIndirect) 2389 Expr = DIExpression::prepend(Expr, DIExpression::WithDeref); 2390 return BuildMI(BB, I, DL, Orig.getDesc()) 2391 .addFrameIndex(FrameIndex) 2392 .addImm(Offset) 2393 .addMetadata(Var) 2394 .addMetadata(Expr); 2395 } 2396