xref: /llvm-project/llvm/lib/CodeGen/MachineInstr.cpp (revision db65a5b776f20795df41741bc7042d6b61070886)
1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Methods common to all machine instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MachineInstr.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/FoldingSet.h"
17 #include "llvm/ADT/Hashing.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallBitVector.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/Loads.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/Config/llvm-config.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DebugInfoMetadata.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/ModuleSlotTracker.h"
53 #include "llvm/IR/Operator.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/MC/MCInstrDesc.h"
57 #include "llvm/MC/MCRegisterInfo.h"
58 #include "llvm/MC/MCSymbol.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/LowLevelTypeImpl.h"
65 #include "llvm/Support/MathExtras.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetIntrinsicInfo.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include <algorithm>
70 #include <cassert>
71 #include <cstddef>
72 #include <cstdint>
73 #include <cstring>
74 #include <iterator>
75 #include <utility>
76 
77 using namespace llvm;
78 
79 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
80   if (const MachineBasicBlock *MBB = MI.getParent())
81     if (const MachineFunction *MF = MBB->getParent())
82       return MF;
83   return nullptr;
84 }
85 
86 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
87 // it.
88 static void tryToGetTargetInfo(const MachineInstr &MI,
89                                const TargetRegisterInfo *&TRI,
90                                const MachineRegisterInfo *&MRI,
91                                const TargetIntrinsicInfo *&IntrinsicInfo,
92                                const TargetInstrInfo *&TII) {
93 
94   if (const MachineFunction *MF = getMFIfAvailable(MI)) {
95     TRI = MF->getSubtarget().getRegisterInfo();
96     MRI = &MF->getRegInfo();
97     IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
98     TII = MF->getSubtarget().getInstrInfo();
99   }
100 }
101 
102 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
103   if (MCID->ImplicitDefs)
104     for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
105            ++ImpDefs)
106       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
107   if (MCID->ImplicitUses)
108     for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
109            ++ImpUses)
110       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
111 }
112 
113 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
114 /// implicit operands. It reserves space for the number of operands specified by
115 /// the MCInstrDesc.
116 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
117                            DebugLoc dl, bool NoImp)
118     : MCID(&tid), debugLoc(std::move(dl)) {
119   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
120 
121   // Reserve space for the expected number of operands.
122   if (unsigned NumOps = MCID->getNumOperands() +
123     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
124     CapOperands = OperandCapacity::get(NumOps);
125     Operands = MF.allocateOperandArray(CapOperands);
126   }
127 
128   if (!NoImp)
129     addImplicitDefUseOperands(MF);
130 }
131 
132 /// MachineInstr ctor - Copies MachineInstr arg exactly
133 ///
134 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
135     : MCID(&MI.getDesc()), Info(MI.Info), debugLoc(MI.getDebugLoc()) {
136   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
137 
138   CapOperands = OperandCapacity::get(MI.getNumOperands());
139   Operands = MF.allocateOperandArray(CapOperands);
140 
141   // Copy operands.
142   for (const MachineOperand &MO : MI.operands())
143     addOperand(MF, MO);
144 
145   // Copy all the sensible flags.
146   setFlags(MI.Flags);
147 }
148 
149 /// getRegInfo - If this instruction is embedded into a MachineFunction,
150 /// return the MachineRegisterInfo object for the current function, otherwise
151 /// return null.
152 MachineRegisterInfo *MachineInstr::getRegInfo() {
153   if (MachineBasicBlock *MBB = getParent())
154     return &MBB->getParent()->getRegInfo();
155   return nullptr;
156 }
157 
158 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
159 /// this instruction from their respective use lists.  This requires that the
160 /// operands already be on their use lists.
161 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
162   for (MachineOperand &MO : operands())
163     if (MO.isReg())
164       MRI.removeRegOperandFromUseList(&MO);
165 }
166 
167 /// AddRegOperandsToUseLists - Add all of the register operands in
168 /// this instruction from their respective use lists.  This requires that the
169 /// operands not be on their use lists yet.
170 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
171   for (MachineOperand &MO : operands())
172     if (MO.isReg())
173       MRI.addRegOperandToUseList(&MO);
174 }
175 
176 void MachineInstr::addOperand(const MachineOperand &Op) {
177   MachineBasicBlock *MBB = getParent();
178   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
179   MachineFunction *MF = MBB->getParent();
180   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
181   addOperand(*MF, Op);
182 }
183 
184 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
185 /// ranges. If MRI is non-null also update use-def chains.
186 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
187                          unsigned NumOps, MachineRegisterInfo *MRI) {
188   if (MRI)
189     return MRI->moveOperands(Dst, Src, NumOps);
190 
191   // MachineOperand is a trivially copyable type so we can just use memmove.
192   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
193 }
194 
195 /// addOperand - Add the specified operand to the instruction.  If it is an
196 /// implicit operand, it is added to the end of the operand list.  If it is
197 /// an explicit operand it is added at the end of the explicit operand list
198 /// (before the first implicit operand).
199 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
200   assert(MCID && "Cannot add operands before providing an instr descriptor");
201 
202   // Check if we're adding one of our existing operands.
203   if (&Op >= Operands && &Op < Operands + NumOperands) {
204     // This is unusual: MI->addOperand(MI->getOperand(i)).
205     // If adding Op requires reallocating or moving existing operands around,
206     // the Op reference could go stale. Support it by copying Op.
207     MachineOperand CopyOp(Op);
208     return addOperand(MF, CopyOp);
209   }
210 
211   // Find the insert location for the new operand.  Implicit registers go at
212   // the end, everything else goes before the implicit regs.
213   //
214   // FIXME: Allow mixed explicit and implicit operands on inline asm.
215   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
216   // implicit-defs, but they must not be moved around.  See the FIXME in
217   // InstrEmitter.cpp.
218   unsigned OpNo = getNumOperands();
219   bool isImpReg = Op.isReg() && Op.isImplicit();
220   if (!isImpReg && !isInlineAsm()) {
221     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
222       --OpNo;
223       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
224     }
225   }
226 
227 #ifndef NDEBUG
228   bool isDebugOp = Op.getType() == MachineOperand::MO_Metadata ||
229                    Op.getType() == MachineOperand::MO_MCSymbol;
230   // OpNo now points as the desired insertion point.  Unless this is a variadic
231   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
232   // RegMask operands go between the explicit and implicit operands.
233   assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
234           OpNo < MCID->getNumOperands() || isDebugOp) &&
235          "Trying to add an operand to a machine instr that is already done!");
236 #endif
237 
238   MachineRegisterInfo *MRI = getRegInfo();
239 
240   // Determine if the Operands array needs to be reallocated.
241   // Save the old capacity and operand array.
242   OperandCapacity OldCap = CapOperands;
243   MachineOperand *OldOperands = Operands;
244   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
245     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
246     Operands = MF.allocateOperandArray(CapOperands);
247     // Move the operands before the insertion point.
248     if (OpNo)
249       moveOperands(Operands, OldOperands, OpNo, MRI);
250   }
251 
252   // Move the operands following the insertion point.
253   if (OpNo != NumOperands)
254     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
255                  MRI);
256   ++NumOperands;
257 
258   // Deallocate the old operand array.
259   if (OldOperands != Operands && OldOperands)
260     MF.deallocateOperandArray(OldCap, OldOperands);
261 
262   // Copy Op into place. It still needs to be inserted into the MRI use lists.
263   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
264   NewMO->ParentMI = this;
265 
266   // When adding a register operand, tell MRI about it.
267   if (NewMO->isReg()) {
268     // Ensure isOnRegUseList() returns false, regardless of Op's status.
269     NewMO->Contents.Reg.Prev = nullptr;
270     // Ignore existing ties. This is not a property that can be copied.
271     NewMO->TiedTo = 0;
272     // Add the new operand to MRI, but only for instructions in an MBB.
273     if (MRI)
274       MRI->addRegOperandToUseList(NewMO);
275     // The MCID operand information isn't accurate until we start adding
276     // explicit operands. The implicit operands are added first, then the
277     // explicits are inserted before them.
278     if (!isImpReg) {
279       // Tie uses to defs as indicated in MCInstrDesc.
280       if (NewMO->isUse()) {
281         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
282         if (DefIdx != -1)
283           tieOperands(DefIdx, OpNo);
284       }
285       // If the register operand is flagged as early, mark the operand as such.
286       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
287         NewMO->setIsEarlyClobber(true);
288     }
289   }
290 }
291 
292 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
293 /// fewer operand than it started with.
294 ///
295 void MachineInstr::RemoveOperand(unsigned OpNo) {
296   assert(OpNo < getNumOperands() && "Invalid operand number");
297   untieRegOperand(OpNo);
298 
299 #ifndef NDEBUG
300   // Moving tied operands would break the ties.
301   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
302     if (Operands[i].isReg())
303       assert(!Operands[i].isTied() && "Cannot move tied operands");
304 #endif
305 
306   MachineRegisterInfo *MRI = getRegInfo();
307   if (MRI && Operands[OpNo].isReg())
308     MRI->removeRegOperandFromUseList(Operands + OpNo);
309 
310   // Don't call the MachineOperand destructor. A lot of this code depends on
311   // MachineOperand having a trivial destructor anyway, and adding a call here
312   // wouldn't make it 'destructor-correct'.
313 
314   if (unsigned N = NumOperands - 1 - OpNo)
315     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
316   --NumOperands;
317 }
318 
319 void MachineInstr::dropMemRefs(MachineFunction &MF) {
320   if (memoperands_empty())
321     return;
322 
323   // See if we can just drop all of our extra info.
324   if (!getPreInstrSymbol() && !getPostInstrSymbol()) {
325     Info.clear();
326     return;
327   }
328   if (!getPostInstrSymbol()) {
329     Info.set<EIIK_PreInstrSymbol>(getPreInstrSymbol());
330     return;
331   }
332   if (!getPreInstrSymbol()) {
333     Info.set<EIIK_PostInstrSymbol>(getPostInstrSymbol());
334     return;
335   }
336 
337   // Otherwise allocate a fresh extra info with just these symbols.
338   Info.set<EIIK_OutOfLine>(
339       MF.createMIExtraInfo({}, getPreInstrSymbol(), getPostInstrSymbol()));
340 }
341 
342 void MachineInstr::setMemRefs(MachineFunction &MF,
343                               ArrayRef<MachineMemOperand *> MMOs) {
344   if (MMOs.empty()) {
345     dropMemRefs(MF);
346     return;
347   }
348 
349   // Try to store a single MMO inline.
350   if (MMOs.size() == 1 && !getPreInstrSymbol() && !getPostInstrSymbol()) {
351     Info.set<EIIK_MMO>(MMOs[0]);
352     return;
353   }
354 
355   // Otherwise create an extra info struct with all of our info.
356   Info.set<EIIK_OutOfLine>(
357       MF.createMIExtraInfo(MMOs, getPreInstrSymbol(), getPostInstrSymbol()));
358 }
359 
360 void MachineInstr::addMemOperand(MachineFunction &MF,
361                                  MachineMemOperand *MO) {
362   SmallVector<MachineMemOperand *, 2> MMOs;
363   MMOs.append(memoperands_begin(), memoperands_end());
364   MMOs.push_back(MO);
365   setMemRefs(MF, MMOs);
366 }
367 
368 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) {
369   if (this == &MI)
370     // Nothing to do for a self-clone!
371     return;
372 
373   assert(&MF == MI.getMF() &&
374          "Invalid machine functions when cloning memory refrences!");
375   // See if we can just steal the extra info already allocated for the
376   // instruction. We can do this whenever the pre- and post-instruction symbols
377   // are the same (including null).
378   if (getPreInstrSymbol() == MI.getPreInstrSymbol() &&
379       getPostInstrSymbol() == MI.getPostInstrSymbol()) {
380     Info = MI.Info;
381     return;
382   }
383 
384   // Otherwise, fall back on a copy-based clone.
385   setMemRefs(MF, MI.memoperands());
386 }
387 
388 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
389 /// identical.
390 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS,
391                              ArrayRef<MachineMemOperand *> RHS) {
392   if (LHS.size() != RHS.size())
393     return false;
394 
395   auto LHSPointees = make_pointee_range(LHS);
396   auto RHSPointees = make_pointee_range(RHS);
397   return std::equal(LHSPointees.begin(), LHSPointees.end(),
398                     RHSPointees.begin());
399 }
400 
401 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF,
402                                       ArrayRef<const MachineInstr *> MIs) {
403   // Try handling easy numbers of MIs with simpler mechanisms.
404   if (MIs.empty()) {
405     dropMemRefs(MF);
406     return;
407   }
408   if (MIs.size() == 1) {
409     cloneMemRefs(MF, *MIs[0]);
410     return;
411   }
412   // Because an empty memoperands list provides *no* information and must be
413   // handled conservatively (assuming the instruction can do anything), the only
414   // way to merge with it is to drop all other memoperands.
415   if (MIs[0]->memoperands_empty()) {
416     dropMemRefs(MF);
417     return;
418   }
419 
420   // Handle the general case.
421   SmallVector<MachineMemOperand *, 2> MergedMMOs;
422   // Start with the first instruction.
423   assert(&MF == MIs[0]->getMF() &&
424          "Invalid machine functions when cloning memory references!");
425   MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end());
426   // Now walk all the other instructions and accumulate any different MMOs.
427   for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) {
428     assert(&MF == MI.getMF() &&
429            "Invalid machine functions when cloning memory references!");
430 
431     // Skip MIs with identical operands to the first. This is a somewhat
432     // arbitrary hack but will catch common cases without being quadratic.
433     // TODO: We could fully implement merge semantics here if needed.
434     if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands()))
435       continue;
436 
437     // Because an empty memoperands list provides *no* information and must be
438     // handled conservatively (assuming the instruction can do anything), the
439     // only way to merge with it is to drop all other memoperands.
440     if (MI.memoperands_empty()) {
441       dropMemRefs(MF);
442       return;
443     }
444 
445     // Otherwise accumulate these into our temporary buffer of the merged state.
446     MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end());
447   }
448 
449   setMemRefs(MF, MergedMMOs);
450 }
451 
452 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
453   MCSymbol *OldSymbol = getPreInstrSymbol();
454   if (OldSymbol == Symbol)
455     return;
456   if (OldSymbol && !Symbol) {
457     // We're removing a symbol rather than adding one. Try to clean up any
458     // extra info carried around.
459     if (Info.is<EIIK_PreInstrSymbol>()) {
460       Info.clear();
461       return;
462     }
463 
464     if (memoperands_empty()) {
465       assert(getPostInstrSymbol() &&
466              "Should never have only a single symbol allocated out-of-line!");
467       Info.set<EIIK_PostInstrSymbol>(getPostInstrSymbol());
468       return;
469     }
470 
471     // Otherwise fallback on the generic update.
472   } else if (!Info || Info.is<EIIK_PreInstrSymbol>()) {
473     // If we don't have any other extra info, we can store this inline.
474     Info.set<EIIK_PreInstrSymbol>(Symbol);
475     return;
476   }
477 
478   // Otherwise, allocate a full new set of extra info.
479   // FIXME: Maybe we should make the symbols in the extra info mutable?
480   Info.set<EIIK_OutOfLine>(
481       MF.createMIExtraInfo(memoperands(), Symbol, getPostInstrSymbol()));
482 }
483 
484 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
485   MCSymbol *OldSymbol = getPostInstrSymbol();
486   if (OldSymbol == Symbol)
487     return;
488   if (OldSymbol && !Symbol) {
489     // We're removing a symbol rather than adding one. Try to clean up any
490     // extra info carried around.
491     if (Info.is<EIIK_PostInstrSymbol>()) {
492       Info.clear();
493       return;
494     }
495 
496     if (memoperands_empty()) {
497       assert(getPreInstrSymbol() &&
498              "Should never have only a single symbol allocated out-of-line!");
499       Info.set<EIIK_PreInstrSymbol>(getPreInstrSymbol());
500       return;
501     }
502 
503     // Otherwise fallback on the generic update.
504   } else if (!Info || Info.is<EIIK_PostInstrSymbol>()) {
505     // If we don't have any other extra info, we can store this inline.
506     Info.set<EIIK_PostInstrSymbol>(Symbol);
507     return;
508   }
509 
510   // Otherwise, allocate a full new set of extra info.
511   // FIXME: Maybe we should make the symbols in the extra info mutable?
512   Info.set<EIIK_OutOfLine>(
513       MF.createMIExtraInfo(memoperands(), getPreInstrSymbol(), Symbol));
514 }
515 
516 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
517   // For now, the just return the union of the flags. If the flags get more
518   // complicated over time, we might need more logic here.
519   return getFlags() | Other.getFlags();
520 }
521 
522 uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) {
523   uint16_t MIFlags = 0;
524   // Copy the wrapping flags.
525   if (const OverflowingBinaryOperator *OB =
526           dyn_cast<OverflowingBinaryOperator>(&I)) {
527     if (OB->hasNoSignedWrap())
528       MIFlags |= MachineInstr::MIFlag::NoSWrap;
529     if (OB->hasNoUnsignedWrap())
530       MIFlags |= MachineInstr::MIFlag::NoUWrap;
531   }
532 
533   // Copy the exact flag.
534   if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I))
535     if (PE->isExact())
536       MIFlags |= MachineInstr::MIFlag::IsExact;
537 
538   // Copy the fast-math flags.
539   if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) {
540     const FastMathFlags Flags = FP->getFastMathFlags();
541     if (Flags.noNaNs())
542       MIFlags |= MachineInstr::MIFlag::FmNoNans;
543     if (Flags.noInfs())
544       MIFlags |= MachineInstr::MIFlag::FmNoInfs;
545     if (Flags.noSignedZeros())
546       MIFlags |= MachineInstr::MIFlag::FmNsz;
547     if (Flags.allowReciprocal())
548       MIFlags |= MachineInstr::MIFlag::FmArcp;
549     if (Flags.allowContract())
550       MIFlags |= MachineInstr::MIFlag::FmContract;
551     if (Flags.approxFunc())
552       MIFlags |= MachineInstr::MIFlag::FmAfn;
553     if (Flags.allowReassoc())
554       MIFlags |= MachineInstr::MIFlag::FmReassoc;
555   }
556 
557   return MIFlags;
558 }
559 
560 void MachineInstr::copyIRFlags(const Instruction &I) {
561   Flags = copyFlagsFromInstruction(I);
562 }
563 
564 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const {
565   assert(!isBundledWithPred() && "Must be called on bundle header");
566   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
567     if (MII->getDesc().getFlags() & Mask) {
568       if (Type == AnyInBundle)
569         return true;
570     } else {
571       if (Type == AllInBundle && !MII->isBundle())
572         return false;
573     }
574     // This was the last instruction in the bundle.
575     if (!MII->isBundledWithSucc())
576       return Type == AllInBundle;
577   }
578 }
579 
580 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
581                                  MICheckType Check) const {
582   // If opcodes or number of operands are not the same then the two
583   // instructions are obviously not identical.
584   if (Other.getOpcode() != getOpcode() ||
585       Other.getNumOperands() != getNumOperands())
586     return false;
587 
588   if (isBundle()) {
589     // We have passed the test above that both instructions have the same
590     // opcode, so we know that both instructions are bundles here. Let's compare
591     // MIs inside the bundle.
592     assert(Other.isBundle() && "Expected that both instructions are bundles.");
593     MachineBasicBlock::const_instr_iterator I1 = getIterator();
594     MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
595     // Loop until we analysed the last intruction inside at least one of the
596     // bundles.
597     while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
598       ++I1;
599       ++I2;
600       if (!I1->isIdenticalTo(*I2, Check))
601         return false;
602     }
603     // If we've reached the end of just one of the two bundles, but not both,
604     // the instructions are not identical.
605     if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
606       return false;
607   }
608 
609   // Check operands to make sure they match.
610   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
611     const MachineOperand &MO = getOperand(i);
612     const MachineOperand &OMO = Other.getOperand(i);
613     if (!MO.isReg()) {
614       if (!MO.isIdenticalTo(OMO))
615         return false;
616       continue;
617     }
618 
619     // Clients may or may not want to ignore defs when testing for equality.
620     // For example, machine CSE pass only cares about finding common
621     // subexpressions, so it's safe to ignore virtual register defs.
622     if (MO.isDef()) {
623       if (Check == IgnoreDefs)
624         continue;
625       else if (Check == IgnoreVRegDefs) {
626         if (!TargetRegisterInfo::isVirtualRegister(MO.getReg()) ||
627             !TargetRegisterInfo::isVirtualRegister(OMO.getReg()))
628           if (!MO.isIdenticalTo(OMO))
629             return false;
630       } else {
631         if (!MO.isIdenticalTo(OMO))
632           return false;
633         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
634           return false;
635       }
636     } else {
637       if (!MO.isIdenticalTo(OMO))
638         return false;
639       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
640         return false;
641     }
642   }
643   // If DebugLoc does not match then two debug instructions are not identical.
644   if (isDebugInstr())
645     if (getDebugLoc() && Other.getDebugLoc() &&
646         getDebugLoc() != Other.getDebugLoc())
647       return false;
648   return true;
649 }
650 
651 const MachineFunction *MachineInstr::getMF() const {
652   return getParent()->getParent();
653 }
654 
655 MachineInstr *MachineInstr::removeFromParent() {
656   assert(getParent() && "Not embedded in a basic block!");
657   return getParent()->remove(this);
658 }
659 
660 MachineInstr *MachineInstr::removeFromBundle() {
661   assert(getParent() && "Not embedded in a basic block!");
662   return getParent()->remove_instr(this);
663 }
664 
665 void MachineInstr::eraseFromParent() {
666   assert(getParent() && "Not embedded in a basic block!");
667   getParent()->erase(this);
668 }
669 
670 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
671   assert(getParent() && "Not embedded in a basic block!");
672   MachineBasicBlock *MBB = getParent();
673   MachineFunction *MF = MBB->getParent();
674   assert(MF && "Not embedded in a function!");
675 
676   MachineInstr *MI = (MachineInstr *)this;
677   MachineRegisterInfo &MRI = MF->getRegInfo();
678 
679   for (const MachineOperand &MO : MI->operands()) {
680     if (!MO.isReg() || !MO.isDef())
681       continue;
682     unsigned Reg = MO.getReg();
683     if (!TargetRegisterInfo::isVirtualRegister(Reg))
684       continue;
685     MRI.markUsesInDebugValueAsUndef(Reg);
686   }
687   MI->eraseFromParent();
688 }
689 
690 void MachineInstr::eraseFromBundle() {
691   assert(getParent() && "Not embedded in a basic block!");
692   getParent()->erase_instr(this);
693 }
694 
695 unsigned MachineInstr::getNumExplicitOperands() const {
696   unsigned NumOperands = MCID->getNumOperands();
697   if (!MCID->isVariadic())
698     return NumOperands;
699 
700   for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) {
701     const MachineOperand &MO = getOperand(I);
702     // The operands must always be in the following order:
703     // - explicit reg defs,
704     // - other explicit operands (reg uses, immediates, etc.),
705     // - implicit reg defs
706     // - implicit reg uses
707     if (MO.isReg() && MO.isImplicit())
708       break;
709     ++NumOperands;
710   }
711   return NumOperands;
712 }
713 
714 unsigned MachineInstr::getNumExplicitDefs() const {
715   unsigned NumDefs = MCID->getNumDefs();
716   if (!MCID->isVariadic())
717     return NumDefs;
718 
719   for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) {
720     const MachineOperand &MO = getOperand(I);
721     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
722       break;
723     ++NumDefs;
724   }
725   return NumDefs;
726 }
727 
728 void MachineInstr::bundleWithPred() {
729   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
730   setFlag(BundledPred);
731   MachineBasicBlock::instr_iterator Pred = getIterator();
732   --Pred;
733   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
734   Pred->setFlag(BundledSucc);
735 }
736 
737 void MachineInstr::bundleWithSucc() {
738   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
739   setFlag(BundledSucc);
740   MachineBasicBlock::instr_iterator Succ = getIterator();
741   ++Succ;
742   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
743   Succ->setFlag(BundledPred);
744 }
745 
746 void MachineInstr::unbundleFromPred() {
747   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
748   clearFlag(BundledPred);
749   MachineBasicBlock::instr_iterator Pred = getIterator();
750   --Pred;
751   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
752   Pred->clearFlag(BundledSucc);
753 }
754 
755 void MachineInstr::unbundleFromSucc() {
756   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
757   clearFlag(BundledSucc);
758   MachineBasicBlock::instr_iterator Succ = getIterator();
759   ++Succ;
760   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
761   Succ->clearFlag(BundledPred);
762 }
763 
764 bool MachineInstr::isStackAligningInlineAsm() const {
765   if (isInlineAsm()) {
766     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
767     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
768       return true;
769   }
770   return false;
771 }
772 
773 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
774   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
775   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
776   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
777 }
778 
779 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
780                                        unsigned *GroupNo) const {
781   assert(isInlineAsm() && "Expected an inline asm instruction");
782   assert(OpIdx < getNumOperands() && "OpIdx out of range");
783 
784   // Ignore queries about the initial operands.
785   if (OpIdx < InlineAsm::MIOp_FirstOperand)
786     return -1;
787 
788   unsigned Group = 0;
789   unsigned NumOps;
790   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
791        i += NumOps) {
792     const MachineOperand &FlagMO = getOperand(i);
793     // If we reach the implicit register operands, stop looking.
794     if (!FlagMO.isImm())
795       return -1;
796     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
797     if (i + NumOps > OpIdx) {
798       if (GroupNo)
799         *GroupNo = Group;
800       return i;
801     }
802     ++Group;
803   }
804   return -1;
805 }
806 
807 const DILabel *MachineInstr::getDebugLabel() const {
808   assert(isDebugLabel() && "not a DBG_LABEL");
809   return cast<DILabel>(getOperand(0).getMetadata());
810 }
811 
812 const DILocalVariable *MachineInstr::getDebugVariable() const {
813   assert(isDebugValue() && "not a DBG_VALUE");
814   return cast<DILocalVariable>(getOperand(2).getMetadata());
815 }
816 
817 const DIExpression *MachineInstr::getDebugExpression() const {
818   assert(isDebugValue() && "not a DBG_VALUE");
819   return cast<DIExpression>(getOperand(3).getMetadata());
820 }
821 
822 const TargetRegisterClass*
823 MachineInstr::getRegClassConstraint(unsigned OpIdx,
824                                     const TargetInstrInfo *TII,
825                                     const TargetRegisterInfo *TRI) const {
826   assert(getParent() && "Can't have an MBB reference here!");
827   assert(getMF() && "Can't have an MF reference here!");
828   const MachineFunction &MF = *getMF();
829 
830   // Most opcodes have fixed constraints in their MCInstrDesc.
831   if (!isInlineAsm())
832     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
833 
834   if (!getOperand(OpIdx).isReg())
835     return nullptr;
836 
837   // For tied uses on inline asm, get the constraint from the def.
838   unsigned DefIdx;
839   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
840     OpIdx = DefIdx;
841 
842   // Inline asm stores register class constraints in the flag word.
843   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
844   if (FlagIdx < 0)
845     return nullptr;
846 
847   unsigned Flag = getOperand(FlagIdx).getImm();
848   unsigned RCID;
849   if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
850        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
851        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
852       InlineAsm::hasRegClassConstraint(Flag, RCID))
853     return TRI->getRegClass(RCID);
854 
855   // Assume that all registers in a memory operand are pointers.
856   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
857     return TRI->getPointerRegClass(MF);
858 
859   return nullptr;
860 }
861 
862 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
863     unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
864     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
865   // Check every operands inside the bundle if we have
866   // been asked to.
867   if (ExploreBundle)
868     for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
869          ++OpndIt)
870       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
871           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
872   else
873     // Otherwise, just check the current operands.
874     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
875       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
876   return CurRC;
877 }
878 
879 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
880     unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
881     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
882   assert(CurRC && "Invalid initial register class");
883   // Check if Reg is constrained by some of its use/def from MI.
884   const MachineOperand &MO = getOperand(OpIdx);
885   if (!MO.isReg() || MO.getReg() != Reg)
886     return CurRC;
887   // If yes, accumulate the constraints through the operand.
888   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
889 }
890 
891 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
892     unsigned OpIdx, const TargetRegisterClass *CurRC,
893     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
894   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
895   const MachineOperand &MO = getOperand(OpIdx);
896   assert(MO.isReg() &&
897          "Cannot get register constraints for non-register operand");
898   assert(CurRC && "Invalid initial register class");
899   if (unsigned SubIdx = MO.getSubReg()) {
900     if (OpRC)
901       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
902     else
903       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
904   } else if (OpRC)
905     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
906   return CurRC;
907 }
908 
909 /// Return the number of instructions inside the MI bundle, not counting the
910 /// header instruction.
911 unsigned MachineInstr::getBundleSize() const {
912   MachineBasicBlock::const_instr_iterator I = getIterator();
913   unsigned Size = 0;
914   while (I->isBundledWithSucc()) {
915     ++Size;
916     ++I;
917   }
918   return Size;
919 }
920 
921 /// Returns true if the MachineInstr has an implicit-use operand of exactly
922 /// the given register (not considering sub/super-registers).
923 bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const {
924   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
925     const MachineOperand &MO = getOperand(i);
926     if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
927       return true;
928   }
929   return false;
930 }
931 
932 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
933 /// the specific register or -1 if it is not found. It further tightens
934 /// the search criteria to a use that kills the register if isKill is true.
935 int MachineInstr::findRegisterUseOperandIdx(
936     unsigned Reg, bool isKill, const TargetRegisterInfo *TRI) const {
937   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
938     const MachineOperand &MO = getOperand(i);
939     if (!MO.isReg() || !MO.isUse())
940       continue;
941     unsigned MOReg = MO.getReg();
942     if (!MOReg)
943       continue;
944     if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg)))
945       if (!isKill || MO.isKill())
946         return i;
947   }
948   return -1;
949 }
950 
951 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
952 /// indicating if this instruction reads or writes Reg. This also considers
953 /// partial defines.
954 std::pair<bool,bool>
955 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
956                                          SmallVectorImpl<unsigned> *Ops) const {
957   bool PartDef = false; // Partial redefine.
958   bool FullDef = false; // Full define.
959   bool Use = false;
960 
961   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
962     const MachineOperand &MO = getOperand(i);
963     if (!MO.isReg() || MO.getReg() != Reg)
964       continue;
965     if (Ops)
966       Ops->push_back(i);
967     if (MO.isUse())
968       Use |= !MO.isUndef();
969     else if (MO.getSubReg() && !MO.isUndef())
970       // A partial def undef doesn't count as reading the register.
971       PartDef = true;
972     else
973       FullDef = true;
974   }
975   // A partial redefine uses Reg unless there is also a full define.
976   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
977 }
978 
979 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
980 /// the specified register or -1 if it is not found. If isDead is true, defs
981 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
982 /// also checks if there is a def of a super-register.
983 int
984 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
985                                         const TargetRegisterInfo *TRI) const {
986   bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
987   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
988     const MachineOperand &MO = getOperand(i);
989     // Accept regmask operands when Overlap is set.
990     // Ignore them when looking for a specific def operand (Overlap == false).
991     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
992       return i;
993     if (!MO.isReg() || !MO.isDef())
994       continue;
995     unsigned MOReg = MO.getReg();
996     bool Found = (MOReg == Reg);
997     if (!Found && TRI && isPhys &&
998         TargetRegisterInfo::isPhysicalRegister(MOReg)) {
999       if (Overlap)
1000         Found = TRI->regsOverlap(MOReg, Reg);
1001       else
1002         Found = TRI->isSubRegister(MOReg, Reg);
1003     }
1004     if (Found && (!isDead || MO.isDead()))
1005       return i;
1006   }
1007   return -1;
1008 }
1009 
1010 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1011 /// operand list that is used to represent the predicate. It returns -1 if
1012 /// none is found.
1013 int MachineInstr::findFirstPredOperandIdx() const {
1014   // Don't call MCID.findFirstPredOperandIdx() because this variant
1015   // is sometimes called on an instruction that's not yet complete, and
1016   // so the number of operands is less than the MCID indicates. In
1017   // particular, the PTX target does this.
1018   const MCInstrDesc &MCID = getDesc();
1019   if (MCID.isPredicable()) {
1020     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1021       if (MCID.OpInfo[i].isPredicate())
1022         return i;
1023   }
1024 
1025   return -1;
1026 }
1027 
1028 // MachineOperand::TiedTo is 4 bits wide.
1029 const unsigned TiedMax = 15;
1030 
1031 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1032 ///
1033 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1034 /// field. TiedTo can have these values:
1035 ///
1036 /// 0:              Operand is not tied to anything.
1037 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1038 /// TiedMax:        Tied to an operand >= TiedMax-1.
1039 ///
1040 /// The tied def must be one of the first TiedMax operands on a normal
1041 /// instruction. INLINEASM instructions allow more tied defs.
1042 ///
1043 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1044   MachineOperand &DefMO = getOperand(DefIdx);
1045   MachineOperand &UseMO = getOperand(UseIdx);
1046   assert(DefMO.isDef() && "DefIdx must be a def operand");
1047   assert(UseMO.isUse() && "UseIdx must be a use operand");
1048   assert(!DefMO.isTied() && "Def is already tied to another use");
1049   assert(!UseMO.isTied() && "Use is already tied to another def");
1050 
1051   if (DefIdx < TiedMax)
1052     UseMO.TiedTo = DefIdx + 1;
1053   else {
1054     // Inline asm can use the group descriptors to find tied operands, but on
1055     // normal instruction, the tied def must be within the first TiedMax
1056     // operands.
1057     assert(isInlineAsm() && "DefIdx out of range");
1058     UseMO.TiedTo = TiedMax;
1059   }
1060 
1061   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1062   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1063 }
1064 
1065 /// Given the index of a tied register operand, find the operand it is tied to.
1066 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1067 /// which must exist.
1068 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1069   const MachineOperand &MO = getOperand(OpIdx);
1070   assert(MO.isTied() && "Operand isn't tied");
1071 
1072   // Normally TiedTo is in range.
1073   if (MO.TiedTo < TiedMax)
1074     return MO.TiedTo - 1;
1075 
1076   // Uses on normal instructions can be out of range.
1077   if (!isInlineAsm()) {
1078     // Normal tied defs must be in the 0..TiedMax-1 range.
1079     if (MO.isUse())
1080       return TiedMax - 1;
1081     // MO is a def. Search for the tied use.
1082     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1083       const MachineOperand &UseMO = getOperand(i);
1084       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1085         return i;
1086     }
1087     llvm_unreachable("Can't find tied use");
1088   }
1089 
1090   // Now deal with inline asm by parsing the operand group descriptor flags.
1091   // Find the beginning of each operand group.
1092   SmallVector<unsigned, 8> GroupIdx;
1093   unsigned OpIdxGroup = ~0u;
1094   unsigned NumOps;
1095   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1096        i += NumOps) {
1097     const MachineOperand &FlagMO = getOperand(i);
1098     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1099     unsigned CurGroup = GroupIdx.size();
1100     GroupIdx.push_back(i);
1101     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1102     // OpIdx belongs to this operand group.
1103     if (OpIdx > i && OpIdx < i + NumOps)
1104       OpIdxGroup = CurGroup;
1105     unsigned TiedGroup;
1106     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1107       continue;
1108     // Operands in this group are tied to operands in TiedGroup which must be
1109     // earlier. Find the number of operands between the two groups.
1110     unsigned Delta = i - GroupIdx[TiedGroup];
1111 
1112     // OpIdx is a use tied to TiedGroup.
1113     if (OpIdxGroup == CurGroup)
1114       return OpIdx - Delta;
1115 
1116     // OpIdx is a def tied to this use group.
1117     if (OpIdxGroup == TiedGroup)
1118       return OpIdx + Delta;
1119   }
1120   llvm_unreachable("Invalid tied operand on inline asm");
1121 }
1122 
1123 /// clearKillInfo - Clears kill flags on all operands.
1124 ///
1125 void MachineInstr::clearKillInfo() {
1126   for (MachineOperand &MO : operands()) {
1127     if (MO.isReg() && MO.isUse())
1128       MO.setIsKill(false);
1129   }
1130 }
1131 
1132 void MachineInstr::substituteRegister(unsigned FromReg, unsigned ToReg,
1133                                       unsigned SubIdx,
1134                                       const TargetRegisterInfo &RegInfo) {
1135   if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
1136     if (SubIdx)
1137       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1138     for (MachineOperand &MO : operands()) {
1139       if (!MO.isReg() || MO.getReg() != FromReg)
1140         continue;
1141       MO.substPhysReg(ToReg, RegInfo);
1142     }
1143   } else {
1144     for (MachineOperand &MO : operands()) {
1145       if (!MO.isReg() || MO.getReg() != FromReg)
1146         continue;
1147       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1148     }
1149   }
1150 }
1151 
1152 /// isSafeToMove - Return true if it is safe to move this instruction. If
1153 /// SawStore is set to true, it means that there is a store (or call) between
1154 /// the instruction's location and its intended destination.
1155 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const {
1156   // Ignore stuff that we obviously can't move.
1157   //
1158   // Treat volatile loads as stores. This is not strictly necessary for
1159   // volatiles, but it is required for atomic loads. It is not allowed to move
1160   // a load across an atomic load with Ordering > Monotonic.
1161   if (mayStore() || isCall() || isPHI() ||
1162       (mayLoad() && hasOrderedMemoryRef())) {
1163     SawStore = true;
1164     return false;
1165   }
1166 
1167   if (isPosition() || isDebugInstr() || isTerminator() ||
1168       hasUnmodeledSideEffects())
1169     return false;
1170 
1171   // See if this instruction does a load.  If so, we have to guarantee that the
1172   // loaded value doesn't change between the load and the its intended
1173   // destination. The check for isInvariantLoad gives the targe the chance to
1174   // classify the load as always returning a constant, e.g. a constant pool
1175   // load.
1176   if (mayLoad() && !isDereferenceableInvariantLoad(AA))
1177     // Otherwise, this is a real load.  If there is a store between the load and
1178     // end of block, we can't move it.
1179     return !SawStore;
1180 
1181   return true;
1182 }
1183 
1184 bool MachineInstr::mayAlias(AliasAnalysis *AA, MachineInstr &Other,
1185                             bool UseTBAA) {
1186   const MachineFunction *MF = getMF();
1187   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1188   const MachineFrameInfo &MFI = MF->getFrameInfo();
1189 
1190   // If neither instruction stores to memory, they can't alias in any
1191   // meaningful way, even if they read from the same address.
1192   if (!mayStore() && !Other.mayStore())
1193     return false;
1194 
1195   // Let the target decide if memory accesses cannot possibly overlap.
1196   if (TII->areMemAccessesTriviallyDisjoint(*this, Other, AA))
1197     return false;
1198 
1199   // FIXME: Need to handle multiple memory operands to support all targets.
1200   if (!hasOneMemOperand() || !Other.hasOneMemOperand())
1201     return true;
1202 
1203   MachineMemOperand *MMOa = *memoperands_begin();
1204   MachineMemOperand *MMOb = *Other.memoperands_begin();
1205 
1206   // The following interface to AA is fashioned after DAGCombiner::isAlias
1207   // and operates with MachineMemOperand offset with some important
1208   // assumptions:
1209   //   - LLVM fundamentally assumes flat address spaces.
1210   //   - MachineOperand offset can *only* result from legalization and
1211   //     cannot affect queries other than the trivial case of overlap
1212   //     checking.
1213   //   - These offsets never wrap and never step outside
1214   //     of allocated objects.
1215   //   - There should never be any negative offsets here.
1216   //
1217   // FIXME: Modify API to hide this math from "user"
1218   // Even before we go to AA we can reason locally about some
1219   // memory objects. It can save compile time, and possibly catch some
1220   // corner cases not currently covered.
1221 
1222   int64_t OffsetA = MMOa->getOffset();
1223   int64_t OffsetB = MMOb->getOffset();
1224   int64_t MinOffset = std::min(OffsetA, OffsetB);
1225 
1226   uint64_t WidthA = MMOa->getSize();
1227   uint64_t WidthB = MMOb->getSize();
1228   bool KnownWidthA = WidthA != MemoryLocation::UnknownSize;
1229   bool KnownWidthB = WidthB != MemoryLocation::UnknownSize;
1230 
1231   const Value *ValA = MMOa->getValue();
1232   const Value *ValB = MMOb->getValue();
1233   bool SameVal = (ValA && ValB && (ValA == ValB));
1234   if (!SameVal) {
1235     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1236     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1237     if (PSVa && ValB && !PSVa->mayAlias(&MFI))
1238       return false;
1239     if (PSVb && ValA && !PSVb->mayAlias(&MFI))
1240       return false;
1241     if (PSVa && PSVb && (PSVa == PSVb))
1242       SameVal = true;
1243   }
1244 
1245   if (SameVal) {
1246     if (!KnownWidthA || !KnownWidthB)
1247       return true;
1248     int64_t MaxOffset = std::max(OffsetA, OffsetB);
1249     int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
1250     return (MinOffset + LowWidth > MaxOffset);
1251   }
1252 
1253   if (!AA)
1254     return true;
1255 
1256   if (!ValA || !ValB)
1257     return true;
1258 
1259   assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
1260   assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
1261 
1262   int64_t OverlapA = KnownWidthA ? WidthA + OffsetA - MinOffset
1263                                  : MemoryLocation::UnknownSize;
1264   int64_t OverlapB = KnownWidthB ? WidthB + OffsetB - MinOffset
1265                                  : MemoryLocation::UnknownSize;
1266 
1267   AliasResult AAResult = AA->alias(
1268       MemoryLocation(ValA, OverlapA,
1269                      UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1270       MemoryLocation(ValB, OverlapB,
1271                      UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1272 
1273   return (AAResult != NoAlias);
1274 }
1275 
1276 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1277 /// or volatile memory reference, or if the information describing the memory
1278 /// reference is not available. Return false if it is known to have no ordered
1279 /// memory references.
1280 bool MachineInstr::hasOrderedMemoryRef() const {
1281   // An instruction known never to access memory won't have a volatile access.
1282   if (!mayStore() &&
1283       !mayLoad() &&
1284       !isCall() &&
1285       !hasUnmodeledSideEffects())
1286     return false;
1287 
1288   // Otherwise, if the instruction has no memory reference information,
1289   // conservatively assume it wasn't preserved.
1290   if (memoperands_empty())
1291     return true;
1292 
1293   // Check if any of our memory operands are ordered.
1294   return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1295     return !MMO->isUnordered();
1296   });
1297 }
1298 
1299 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1300 /// trap and is loading from a location whose value is invariant across a run of
1301 /// this function.
1302 bool MachineInstr::isDereferenceableInvariantLoad(AliasAnalysis *AA) const {
1303   // If the instruction doesn't load at all, it isn't an invariant load.
1304   if (!mayLoad())
1305     return false;
1306 
1307   // If the instruction has lost its memoperands, conservatively assume that
1308   // it may not be an invariant load.
1309   if (memoperands_empty())
1310     return false;
1311 
1312   const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1313 
1314   for (MachineMemOperand *MMO : memoperands()) {
1315     if (!MMO->isUnordered())
1316       // If the memory operand has ordering side effects, we can't move the
1317       // instruction.  Such an instruction is technically an invariant load,
1318       // but the caller code would need updated to expect that.
1319       return false;
1320     if (MMO->isStore()) return false;
1321     if (MMO->isInvariant() && MMO->isDereferenceable())
1322       continue;
1323 
1324     // A load from a constant PseudoSourceValue is invariant.
1325     if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1326       if (PSV->isConstant(&MFI))
1327         continue;
1328 
1329     if (const Value *V = MMO->getValue()) {
1330       // If we have an AliasAnalysis, ask it whether the memory is constant.
1331       if (AA &&
1332           AA->pointsToConstantMemory(
1333               MemoryLocation(V, MMO->getSize(), MMO->getAAInfo())))
1334         continue;
1335     }
1336 
1337     // Otherwise assume conservatively.
1338     return false;
1339   }
1340 
1341   // Everything checks out.
1342   return true;
1343 }
1344 
1345 /// isConstantValuePHI - If the specified instruction is a PHI that always
1346 /// merges together the same virtual register, return the register, otherwise
1347 /// return 0.
1348 unsigned MachineInstr::isConstantValuePHI() const {
1349   if (!isPHI())
1350     return 0;
1351   assert(getNumOperands() >= 3 &&
1352          "It's illegal to have a PHI without source operands");
1353 
1354   unsigned Reg = getOperand(1).getReg();
1355   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1356     if (getOperand(i).getReg() != Reg)
1357       return 0;
1358   return Reg;
1359 }
1360 
1361 bool MachineInstr::hasUnmodeledSideEffects() const {
1362   if (hasProperty(MCID::UnmodeledSideEffects))
1363     return true;
1364   if (isInlineAsm()) {
1365     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1366     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1367       return true;
1368   }
1369 
1370   return false;
1371 }
1372 
1373 bool MachineInstr::isLoadFoldBarrier() const {
1374   return mayStore() || isCall() || hasUnmodeledSideEffects();
1375 }
1376 
1377 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1378 ///
1379 bool MachineInstr::allDefsAreDead() const {
1380   for (const MachineOperand &MO : operands()) {
1381     if (!MO.isReg() || MO.isUse())
1382       continue;
1383     if (!MO.isDead())
1384       return false;
1385   }
1386   return true;
1387 }
1388 
1389 /// copyImplicitOps - Copy implicit register operands from specified
1390 /// instruction to this instruction.
1391 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1392                                    const MachineInstr &MI) {
1393   for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands();
1394        i != e; ++i) {
1395     const MachineOperand &MO = MI.getOperand(i);
1396     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1397       addOperand(MF, MO);
1398   }
1399 }
1400 
1401 bool MachineInstr::hasComplexRegisterTies() const {
1402   const MCInstrDesc &MCID = getDesc();
1403   for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
1404     const auto &Operand = getOperand(I);
1405     if (!Operand.isReg() || Operand.isDef())
1406       // Ignore the defined registers as MCID marks only the uses as tied.
1407       continue;
1408     int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
1409     int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
1410     if (ExpectedTiedIdx != TiedIdx)
1411       return true;
1412   }
1413   return false;
1414 }
1415 
1416 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1417                                  const MachineRegisterInfo &MRI) const {
1418   const MachineOperand &Op = getOperand(OpIdx);
1419   if (!Op.isReg())
1420     return LLT{};
1421 
1422   if (isVariadic() || OpIdx >= getNumExplicitOperands())
1423     return MRI.getType(Op.getReg());
1424 
1425   auto &OpInfo = getDesc().OpInfo[OpIdx];
1426   if (!OpInfo.isGenericType())
1427     return MRI.getType(Op.getReg());
1428 
1429   if (PrintedTypes[OpInfo.getGenericTypeIndex()])
1430     return LLT{};
1431 
1432   LLT TypeToPrint = MRI.getType(Op.getReg());
1433   // Don't mark the type index printed if it wasn't actually printed: maybe
1434   // another operand with the same type index has an actual type attached:
1435   if (TypeToPrint.isValid())
1436     PrintedTypes.set(OpInfo.getGenericTypeIndex());
1437   return TypeToPrint;
1438 }
1439 
1440 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1441 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1442   dbgs() << "  ";
1443   print(dbgs());
1444 }
1445 #endif
1446 
1447 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
1448                          bool SkipDebugLoc, bool AddNewLine,
1449                          const TargetInstrInfo *TII) const {
1450   const Module *M = nullptr;
1451   const Function *F = nullptr;
1452   if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1453     F = &MF->getFunction();
1454     M = F->getParent();
1455     if (!TII)
1456       TII = MF->getSubtarget().getInstrInfo();
1457   }
1458 
1459   ModuleSlotTracker MST(M);
1460   if (F)
1461     MST.incorporateFunction(*F);
1462   print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, TII);
1463 }
1464 
1465 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1466                          bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
1467                          bool AddNewLine, const TargetInstrInfo *TII) const {
1468   // We can be a bit tidier if we know the MachineFunction.
1469   const MachineFunction *MF = nullptr;
1470   const TargetRegisterInfo *TRI = nullptr;
1471   const MachineRegisterInfo *MRI = nullptr;
1472   const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1473   tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
1474 
1475   if (isCFIInstruction())
1476     assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1477 
1478   SmallBitVector PrintedTypes(8);
1479   bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies();
1480   auto getTiedOperandIdx = [&](unsigned OpIdx) {
1481     if (!ShouldPrintRegisterTies)
1482       return 0U;
1483     const MachineOperand &MO = getOperand(OpIdx);
1484     if (MO.isReg() && MO.isTied() && !MO.isDef())
1485       return findTiedOperandIdx(OpIdx);
1486     return 0U;
1487   };
1488   unsigned StartOp = 0;
1489   unsigned e = getNumOperands();
1490 
1491   // Print explicitly defined operands on the left of an assignment syntax.
1492   while (StartOp < e) {
1493     const MachineOperand &MO = getOperand(StartOp);
1494     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
1495       break;
1496 
1497     if (StartOp != 0)
1498       OS << ", ";
1499 
1500     LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
1501     unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
1502     MO.print(OS, MST, TypeToPrint, /*PrintDef=*/false, IsStandalone,
1503              ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1504     ++StartOp;
1505   }
1506 
1507   if (StartOp != 0)
1508     OS << " = ";
1509 
1510   if (getFlag(MachineInstr::FrameSetup))
1511     OS << "frame-setup ";
1512   if (getFlag(MachineInstr::FrameDestroy))
1513     OS << "frame-destroy ";
1514   if (getFlag(MachineInstr::FmNoNans))
1515     OS << "nnan ";
1516   if (getFlag(MachineInstr::FmNoInfs))
1517     OS << "ninf ";
1518   if (getFlag(MachineInstr::FmNsz))
1519     OS << "nsz ";
1520   if (getFlag(MachineInstr::FmArcp))
1521     OS << "arcp ";
1522   if (getFlag(MachineInstr::FmContract))
1523     OS << "contract ";
1524   if (getFlag(MachineInstr::FmAfn))
1525     OS << "afn ";
1526   if (getFlag(MachineInstr::FmReassoc))
1527     OS << "reassoc ";
1528   if (getFlag(MachineInstr::NoUWrap))
1529     OS << "nuw ";
1530   if (getFlag(MachineInstr::NoSWrap))
1531     OS << "nsw ";
1532   if (getFlag(MachineInstr::IsExact))
1533     OS << "exact ";
1534 
1535   // Print the opcode name.
1536   if (TII)
1537     OS << TII->getName(getOpcode());
1538   else
1539     OS << "UNKNOWN";
1540 
1541   if (SkipOpers)
1542     return;
1543 
1544   // Print the rest of the operands.
1545   bool FirstOp = true;
1546   unsigned AsmDescOp = ~0u;
1547   unsigned AsmOpCount = 0;
1548 
1549   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1550     // Print asm string.
1551     OS << " ";
1552     const unsigned OpIdx = InlineAsm::MIOp_AsmString;
1553     LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
1554     unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
1555     getOperand(OpIdx).print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
1556                             ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1557                             IntrinsicInfo);
1558 
1559     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1560     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1561     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1562       OS << " [sideeffect]";
1563     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1564       OS << " [mayload]";
1565     if (ExtraInfo & InlineAsm::Extra_MayStore)
1566       OS << " [maystore]";
1567     if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1568       OS << " [isconvergent]";
1569     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1570       OS << " [alignstack]";
1571     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1572       OS << " [attdialect]";
1573     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1574       OS << " [inteldialect]";
1575 
1576     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1577     FirstOp = false;
1578   }
1579 
1580   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1581     const MachineOperand &MO = getOperand(i);
1582 
1583     if (FirstOp) FirstOp = false; else OS << ",";
1584     OS << " ";
1585 
1586     if (isDebugValue() && MO.isMetadata()) {
1587       // Pretty print DBG_VALUE instructions.
1588       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1589       if (DIV && !DIV->getName().empty())
1590         OS << "!\"" << DIV->getName() << '\"';
1591       else {
1592         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1593         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1594         MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
1595                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1596       }
1597     } else if (isDebugLabel() && MO.isMetadata()) {
1598       // Pretty print DBG_LABEL instructions.
1599       auto *DIL = dyn_cast<DILabel>(MO.getMetadata());
1600       if (DIL && !DIL->getName().empty())
1601         OS << "\"" << DIL->getName() << '\"';
1602       else {
1603         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1604         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1605         MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
1606                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1607       }
1608     } else if (i == AsmDescOp && MO.isImm()) {
1609       // Pretty print the inline asm operand descriptor.
1610       OS << '$' << AsmOpCount++;
1611       unsigned Flag = MO.getImm();
1612       switch (InlineAsm::getKind(Flag)) {
1613       case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break;
1614       case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break;
1615       case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1616       case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break;
1617       case InlineAsm::Kind_Imm:                OS << ":[imm"; break;
1618       case InlineAsm::Kind_Mem:                OS << ":[mem"; break;
1619       default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1620       }
1621 
1622       unsigned RCID = 0;
1623       if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1624           InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1625         if (TRI) {
1626           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1627         } else
1628           OS << ":RC" << RCID;
1629       }
1630 
1631       if (InlineAsm::isMemKind(Flag)) {
1632         unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1633         switch (MCID) {
1634         case InlineAsm::Constraint_es: OS << ":es"; break;
1635         case InlineAsm::Constraint_i:  OS << ":i"; break;
1636         case InlineAsm::Constraint_m:  OS << ":m"; break;
1637         case InlineAsm::Constraint_o:  OS << ":o"; break;
1638         case InlineAsm::Constraint_v:  OS << ":v"; break;
1639         case InlineAsm::Constraint_Q:  OS << ":Q"; break;
1640         case InlineAsm::Constraint_R:  OS << ":R"; break;
1641         case InlineAsm::Constraint_S:  OS << ":S"; break;
1642         case InlineAsm::Constraint_T:  OS << ":T"; break;
1643         case InlineAsm::Constraint_Um: OS << ":Um"; break;
1644         case InlineAsm::Constraint_Un: OS << ":Un"; break;
1645         case InlineAsm::Constraint_Uq: OS << ":Uq"; break;
1646         case InlineAsm::Constraint_Us: OS << ":Us"; break;
1647         case InlineAsm::Constraint_Ut: OS << ":Ut"; break;
1648         case InlineAsm::Constraint_Uv: OS << ":Uv"; break;
1649         case InlineAsm::Constraint_Uy: OS << ":Uy"; break;
1650         case InlineAsm::Constraint_X:  OS << ":X"; break;
1651         case InlineAsm::Constraint_Z:  OS << ":Z"; break;
1652         case InlineAsm::Constraint_ZC: OS << ":ZC"; break;
1653         case InlineAsm::Constraint_Zy: OS << ":Zy"; break;
1654         default: OS << ":?"; break;
1655         }
1656       }
1657 
1658       unsigned TiedTo = 0;
1659       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1660         OS << " tiedto:$" << TiedTo;
1661 
1662       OS << ']';
1663 
1664       // Compute the index of the next operand descriptor.
1665       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1666     } else {
1667       LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1668       unsigned TiedOperandIdx = getTiedOperandIdx(i);
1669       if (MO.isImm() && isOperandSubregIdx(i))
1670         MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
1671       else
1672         MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
1673                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1674     }
1675   }
1676 
1677   // Print any optional symbols attached to this instruction as-if they were
1678   // operands.
1679   if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) {
1680     if (!FirstOp) {
1681       FirstOp = false;
1682       OS << ',';
1683     }
1684     OS << " pre-instr-symbol ";
1685     MachineOperand::printSymbol(OS, *PreInstrSymbol);
1686   }
1687   if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) {
1688     if (!FirstOp) {
1689       FirstOp = false;
1690       OS << ',';
1691     }
1692     OS << " post-instr-symbol ";
1693     MachineOperand::printSymbol(OS, *PostInstrSymbol);
1694   }
1695 
1696   if (!SkipDebugLoc) {
1697     if (const DebugLoc &DL = getDebugLoc()) {
1698       if (!FirstOp)
1699         OS << ',';
1700       OS << " debug-location ";
1701       DL->printAsOperand(OS, MST);
1702     }
1703   }
1704 
1705   if (!memoperands_empty()) {
1706     SmallVector<StringRef, 0> SSNs;
1707     const LLVMContext *Context = nullptr;
1708     std::unique_ptr<LLVMContext> CtxPtr;
1709     const MachineFrameInfo *MFI = nullptr;
1710     if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1711       MFI = &MF->getFrameInfo();
1712       Context = &MF->getFunction().getContext();
1713     } else {
1714       CtxPtr = llvm::make_unique<LLVMContext>();
1715       Context = CtxPtr.get();
1716     }
1717 
1718     OS << " :: ";
1719     bool NeedComma = false;
1720     for (const MachineMemOperand *Op : memoperands()) {
1721       if (NeedComma)
1722         OS << ", ";
1723       Op->print(OS, MST, SSNs, *Context, MFI, TII);
1724       NeedComma = true;
1725     }
1726   }
1727 
1728   if (SkipDebugLoc)
1729     return;
1730 
1731   bool HaveSemi = false;
1732 
1733   // Print debug location information.
1734   if (const DebugLoc &DL = getDebugLoc()) {
1735     if (!HaveSemi) {
1736       OS << ';';
1737       HaveSemi = true;
1738     }
1739     OS << ' ';
1740     DL.print(OS);
1741   }
1742 
1743   // Print extra comments for DEBUG_VALUE.
1744   if (isDebugValue() && getOperand(e - 2).isMetadata()) {
1745     if (!HaveSemi) {
1746       OS << ";";
1747       HaveSemi = true;
1748     }
1749     auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata());
1750     OS << " line no:" <<  DV->getLine();
1751     if (auto *InlinedAt = debugLoc->getInlinedAt()) {
1752       DebugLoc InlinedAtDL(InlinedAt);
1753       if (InlinedAtDL && MF) {
1754         OS << " inlined @[ ";
1755         InlinedAtDL.print(OS);
1756         OS << " ]";
1757       }
1758     }
1759     if (isIndirectDebugValue())
1760       OS << " indirect";
1761   }
1762   // TODO: DBG_LABEL
1763 
1764   if (AddNewLine)
1765     OS << '\n';
1766 }
1767 
1768 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1769                                      const TargetRegisterInfo *RegInfo,
1770                                      bool AddIfNotFound) {
1771   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1772   bool hasAliases = isPhysReg &&
1773     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1774   bool Found = false;
1775   SmallVector<unsigned,4> DeadOps;
1776   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1777     MachineOperand &MO = getOperand(i);
1778     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1779       continue;
1780 
1781     // DEBUG_VALUE nodes do not contribute to code generation and should
1782     // always be ignored. Failure to do so may result in trying to modify
1783     // KILL flags on DEBUG_VALUE nodes.
1784     if (MO.isDebug())
1785       continue;
1786 
1787     unsigned Reg = MO.getReg();
1788     if (!Reg)
1789       continue;
1790 
1791     if (Reg == IncomingReg) {
1792       if (!Found) {
1793         if (MO.isKill())
1794           // The register is already marked kill.
1795           return true;
1796         if (isPhysReg && isRegTiedToDefOperand(i))
1797           // Two-address uses of physregs must not be marked kill.
1798           return true;
1799         MO.setIsKill();
1800         Found = true;
1801       }
1802     } else if (hasAliases && MO.isKill() &&
1803                TargetRegisterInfo::isPhysicalRegister(Reg)) {
1804       // A super-register kill already exists.
1805       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1806         return true;
1807       if (RegInfo->isSubRegister(IncomingReg, Reg))
1808         DeadOps.push_back(i);
1809     }
1810   }
1811 
1812   // Trim unneeded kill operands.
1813   while (!DeadOps.empty()) {
1814     unsigned OpIdx = DeadOps.back();
1815     if (getOperand(OpIdx).isImplicit() &&
1816         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1817       RemoveOperand(OpIdx);
1818     else
1819       getOperand(OpIdx).setIsKill(false);
1820     DeadOps.pop_back();
1821   }
1822 
1823   // If not found, this means an alias of one of the operands is killed. Add a
1824   // new implicit operand if required.
1825   if (!Found && AddIfNotFound) {
1826     addOperand(MachineOperand::CreateReg(IncomingReg,
1827                                          false /*IsDef*/,
1828                                          true  /*IsImp*/,
1829                                          true  /*IsKill*/));
1830     return true;
1831   }
1832   return Found;
1833 }
1834 
1835 void MachineInstr::clearRegisterKills(unsigned Reg,
1836                                       const TargetRegisterInfo *RegInfo) {
1837   if (!TargetRegisterInfo::isPhysicalRegister(Reg))
1838     RegInfo = nullptr;
1839   for (MachineOperand &MO : operands()) {
1840     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1841       continue;
1842     unsigned OpReg = MO.getReg();
1843     if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
1844       MO.setIsKill(false);
1845   }
1846 }
1847 
1848 bool MachineInstr::addRegisterDead(unsigned Reg,
1849                                    const TargetRegisterInfo *RegInfo,
1850                                    bool AddIfNotFound) {
1851   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg);
1852   bool hasAliases = isPhysReg &&
1853     MCRegAliasIterator(Reg, RegInfo, false).isValid();
1854   bool Found = false;
1855   SmallVector<unsigned,4> DeadOps;
1856   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1857     MachineOperand &MO = getOperand(i);
1858     if (!MO.isReg() || !MO.isDef())
1859       continue;
1860     unsigned MOReg = MO.getReg();
1861     if (!MOReg)
1862       continue;
1863 
1864     if (MOReg == Reg) {
1865       MO.setIsDead();
1866       Found = true;
1867     } else if (hasAliases && MO.isDead() &&
1868                TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1869       // There exists a super-register that's marked dead.
1870       if (RegInfo->isSuperRegister(Reg, MOReg))
1871         return true;
1872       if (RegInfo->isSubRegister(Reg, MOReg))
1873         DeadOps.push_back(i);
1874     }
1875   }
1876 
1877   // Trim unneeded dead operands.
1878   while (!DeadOps.empty()) {
1879     unsigned OpIdx = DeadOps.back();
1880     if (getOperand(OpIdx).isImplicit() &&
1881         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1882       RemoveOperand(OpIdx);
1883     else
1884       getOperand(OpIdx).setIsDead(false);
1885     DeadOps.pop_back();
1886   }
1887 
1888   // If not found, this means an alias of one of the operands is dead. Add a
1889   // new implicit operand if required.
1890   if (Found || !AddIfNotFound)
1891     return Found;
1892 
1893   addOperand(MachineOperand::CreateReg(Reg,
1894                                        true  /*IsDef*/,
1895                                        true  /*IsImp*/,
1896                                        false /*IsKill*/,
1897                                        true  /*IsDead*/));
1898   return true;
1899 }
1900 
1901 void MachineInstr::clearRegisterDeads(unsigned Reg) {
1902   for (MachineOperand &MO : operands()) {
1903     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
1904       continue;
1905     MO.setIsDead(false);
1906   }
1907 }
1908 
1909 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) {
1910   for (MachineOperand &MO : operands()) {
1911     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
1912       continue;
1913     MO.setIsUndef(IsUndef);
1914   }
1915 }
1916 
1917 void MachineInstr::addRegisterDefined(unsigned Reg,
1918                                       const TargetRegisterInfo *RegInfo) {
1919   if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1920     MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo);
1921     if (MO)
1922       return;
1923   } else {
1924     for (const MachineOperand &MO : operands()) {
1925       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
1926           MO.getSubReg() == 0)
1927         return;
1928     }
1929   }
1930   addOperand(MachineOperand::CreateReg(Reg,
1931                                        true  /*IsDef*/,
1932                                        true  /*IsImp*/));
1933 }
1934 
1935 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
1936                                          const TargetRegisterInfo &TRI) {
1937   bool HasRegMask = false;
1938   for (MachineOperand &MO : operands()) {
1939     if (MO.isRegMask()) {
1940       HasRegMask = true;
1941       continue;
1942     }
1943     if (!MO.isReg() || !MO.isDef()) continue;
1944     unsigned Reg = MO.getReg();
1945     if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
1946     // If there are no uses, including partial uses, the def is dead.
1947     if (llvm::none_of(UsedRegs,
1948                       [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); }))
1949       MO.setIsDead();
1950   }
1951 
1952   // This is a call with a register mask operand.
1953   // Mask clobbers are always dead, so add defs for the non-dead defines.
1954   if (HasRegMask)
1955     for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
1956          I != E; ++I)
1957       addRegisterDefined(*I, &TRI);
1958 }
1959 
1960 unsigned
1961 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1962   // Build up a buffer of hash code components.
1963   SmallVector<size_t, 8> HashComponents;
1964   HashComponents.reserve(MI->getNumOperands() + 1);
1965   HashComponents.push_back(MI->getOpcode());
1966   for (const MachineOperand &MO : MI->operands()) {
1967     if (MO.isReg() && MO.isDef() &&
1968         TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1969       continue;  // Skip virtual register defs.
1970 
1971     HashComponents.push_back(hash_value(MO));
1972   }
1973   return hash_combine_range(HashComponents.begin(), HashComponents.end());
1974 }
1975 
1976 void MachineInstr::emitError(StringRef Msg) const {
1977   // Find the source location cookie.
1978   unsigned LocCookie = 0;
1979   const MDNode *LocMD = nullptr;
1980   for (unsigned i = getNumOperands(); i != 0; --i) {
1981     if (getOperand(i-1).isMetadata() &&
1982         (LocMD = getOperand(i-1).getMetadata()) &&
1983         LocMD->getNumOperands() != 0) {
1984       if (const ConstantInt *CI =
1985               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
1986         LocCookie = CI->getZExtValue();
1987         break;
1988       }
1989     }
1990   }
1991 
1992   if (const MachineBasicBlock *MBB = getParent())
1993     if (const MachineFunction *MF = MBB->getParent())
1994       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
1995   report_fatal_error(Msg);
1996 }
1997 
1998 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
1999                                   const MCInstrDesc &MCID, bool IsIndirect,
2000                                   unsigned Reg, const MDNode *Variable,
2001                                   const MDNode *Expr) {
2002   assert(isa<DILocalVariable>(Variable) && "not a variable");
2003   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2004   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2005          "Expected inlined-at fields to agree");
2006   auto MIB = BuildMI(MF, DL, MCID).addReg(Reg, RegState::Debug);
2007   if (IsIndirect)
2008     MIB.addImm(0U);
2009   else
2010     MIB.addReg(0U, RegState::Debug);
2011   return MIB.addMetadata(Variable).addMetadata(Expr);
2012 }
2013 
2014 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2015                                   const MCInstrDesc &MCID, bool IsIndirect,
2016                                   MachineOperand &MO, const MDNode *Variable,
2017                                   const MDNode *Expr) {
2018   assert(isa<DILocalVariable>(Variable) && "not a variable");
2019   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2020   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2021          "Expected inlined-at fields to agree");
2022   if (MO.isReg())
2023     return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr);
2024 
2025   auto MIB = BuildMI(MF, DL, MCID).add(MO);
2026   if (IsIndirect)
2027     MIB.addImm(0U);
2028   else
2029     MIB.addReg(0U, RegState::Debug);
2030   return MIB.addMetadata(Variable).addMetadata(Expr);
2031  }
2032 
2033 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2034                                   MachineBasicBlock::iterator I,
2035                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2036                                   bool IsIndirect, unsigned Reg,
2037                                   const MDNode *Variable, const MDNode *Expr) {
2038   MachineFunction &MF = *BB.getParent();
2039   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
2040   BB.insert(I, MI);
2041   return MachineInstrBuilder(MF, MI);
2042 }
2043 
2044 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2045                                   MachineBasicBlock::iterator I,
2046                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2047                                   bool IsIndirect, MachineOperand &MO,
2048                                   const MDNode *Variable, const MDNode *Expr) {
2049   MachineFunction &MF = *BB.getParent();
2050   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr);
2051   BB.insert(I, MI);
2052   return MachineInstrBuilder(MF, *MI);
2053 }
2054 
2055 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2056 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
2057 static const DIExpression *computeExprForSpill(const MachineInstr &MI) {
2058   assert(MI.getOperand(0).isReg() && "can't spill non-register");
2059   assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
2060          "Expected inlined-at fields to agree");
2061 
2062   const DIExpression *Expr = MI.getDebugExpression();
2063   if (MI.isIndirectDebugValue()) {
2064     assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
2065     Expr = DIExpression::prepend(Expr, DIExpression::WithDeref);
2066   }
2067   return Expr;
2068 }
2069 
2070 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
2071                                           MachineBasicBlock::iterator I,
2072                                           const MachineInstr &Orig,
2073                                           int FrameIndex) {
2074   const DIExpression *Expr = computeExprForSpill(Orig);
2075   return BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc())
2076       .addFrameIndex(FrameIndex)
2077       .addImm(0U)
2078       .addMetadata(Orig.getDebugVariable())
2079       .addMetadata(Expr);
2080 }
2081 
2082 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex) {
2083   const DIExpression *Expr = computeExprForSpill(Orig);
2084   Orig.getOperand(0).ChangeToFrameIndex(FrameIndex);
2085   Orig.getOperand(1).ChangeToImmediate(0U);
2086   Orig.getOperand(3).setMetadata(Expr);
2087 }
2088 
2089 void MachineInstr::collectDebugValues(
2090                                 SmallVectorImpl<MachineInstr *> &DbgValues) {
2091   MachineInstr &MI = *this;
2092   if (!MI.getOperand(0).isReg())
2093     return;
2094 
2095   MachineBasicBlock::iterator DI = MI; ++DI;
2096   for (MachineBasicBlock::iterator DE = MI.getParent()->end();
2097        DI != DE; ++DI) {
2098     if (!DI->isDebugValue())
2099       return;
2100     if (DI->getOperand(0).isReg() &&
2101         DI->getOperand(0).getReg() == MI.getOperand(0).getReg())
2102       DbgValues.push_back(&*DI);
2103   }
2104 }
2105 
2106 void MachineInstr::changeDebugValuesDefReg(unsigned Reg) {
2107   // Collect matching debug values.
2108   SmallVector<MachineInstr *, 2> DbgValues;
2109   collectDebugValues(DbgValues);
2110 
2111   // Propagate Reg to debug value instructions.
2112   for (auto *DBI : DbgValues)
2113     DBI->getOperand(0).setReg(Reg);
2114 }
2115 
2116 using MMOList = SmallVector<const MachineMemOperand *, 2>;
2117 
2118 static unsigned getSpillSlotSize(MMOList &Accesses,
2119                                  const MachineFrameInfo &MFI) {
2120   unsigned Size = 0;
2121   for (auto A : Accesses)
2122     if (MFI.isSpillSlotObjectIndex(
2123             cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
2124                 ->getFrameIndex()))
2125       Size += A->getSize();
2126   return Size;
2127 }
2128 
2129 Optional<unsigned>
2130 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const {
2131   int FI;
2132   if (TII->isStoreToStackSlotPostFE(*this, FI)) {
2133     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2134     if (MFI.isSpillSlotObjectIndex(FI))
2135       return (*memoperands_begin())->getSize();
2136   }
2137   return None;
2138 }
2139 
2140 Optional<unsigned>
2141 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const {
2142   MMOList Accesses;
2143   if (TII->hasStoreToStackSlot(*this, Accesses))
2144     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2145   return None;
2146 }
2147 
2148 Optional<unsigned>
2149 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const {
2150   int FI;
2151   if (TII->isLoadFromStackSlotPostFE(*this, FI)) {
2152     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2153     if (MFI.isSpillSlotObjectIndex(FI))
2154       return (*memoperands_begin())->getSize();
2155   }
2156   return None;
2157 }
2158 
2159 Optional<unsigned>
2160 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const {
2161   MMOList Accesses;
2162   if (TII->hasLoadFromStackSlot(*this, Accesses))
2163     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2164   return None;
2165 }
2166