xref: /llvm-project/llvm/lib/CodeGen/MachineInstr.cpp (revision d62fe83005cae1c370570a5e49b902d81648958b)
1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Methods common to all machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/FoldingSet.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/Loads.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineInstrBundle.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/PseudoSourceValue.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/InlineAsm.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/Metadata.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/ModuleSlotTracker.h"
48 #include "llvm/IR/Type.h"
49 #include "llvm/IR/Value.h"
50 #include "llvm/MC/MCInstrDesc.h"
51 #include "llvm/MC/MCRegisterInfo.h"
52 #include "llvm/MC/MCSymbol.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Compiler.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/LowLevelTypeImpl.h"
59 #include "llvm/Support/MathExtras.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Target/TargetInstrInfo.h"
62 #include "llvm/Target/TargetIntrinsicInfo.h"
63 #include "llvm/Target/TargetMachine.h"
64 #include "llvm/Target/TargetRegisterInfo.h"
65 #include "llvm/Target/TargetSubtargetInfo.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstddef>
69 #include <cstdint>
70 #include <cstring>
71 #include <iterator>
72 #include <utility>
73 
74 using namespace llvm;
75 
76 static cl::opt<int> PrintRegMaskNumRegs(
77     "print-regmask-num-regs",
78     cl::desc("Number of registers to limit to when "
79              "printing regmask operands in IR dumps. "
80              "unlimited = -1"),
81     cl::init(32), cl::Hidden);
82 
83 //===----------------------------------------------------------------------===//
84 // MachineOperand Implementation
85 //===----------------------------------------------------------------------===//
86 
87 void MachineOperand::setReg(unsigned Reg) {
88   if (getReg() == Reg) return; // No change.
89 
90   // Otherwise, we have to change the register.  If this operand is embedded
91   // into a machine function, we need to update the old and new register's
92   // use/def lists.
93   if (MachineInstr *MI = getParent())
94     if (MachineBasicBlock *MBB = MI->getParent())
95       if (MachineFunction *MF = MBB->getParent()) {
96         MachineRegisterInfo &MRI = MF->getRegInfo();
97         MRI.removeRegOperandFromUseList(this);
98         SmallContents.RegNo = Reg;
99         MRI.addRegOperandToUseList(this);
100         return;
101       }
102 
103   // Otherwise, just change the register, no problem.  :)
104   SmallContents.RegNo = Reg;
105 }
106 
107 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
108                                   const TargetRegisterInfo &TRI) {
109   assert(TargetRegisterInfo::isVirtualRegister(Reg));
110   if (SubIdx && getSubReg())
111     SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
112   setReg(Reg);
113   if (SubIdx)
114     setSubReg(SubIdx);
115 }
116 
117 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
118   assert(TargetRegisterInfo::isPhysicalRegister(Reg));
119   if (getSubReg()) {
120     Reg = TRI.getSubReg(Reg, getSubReg());
121     // Note that getSubReg() may return 0 if the sub-register doesn't exist.
122     // That won't happen in legal code.
123     setSubReg(0);
124     if (isDef())
125       setIsUndef(false);
126   }
127   setReg(Reg);
128 }
129 
130 /// Change a def to a use, or a use to a def.
131 void MachineOperand::setIsDef(bool Val) {
132   assert(isReg() && "Wrong MachineOperand accessor");
133   assert((!Val || !isDebug()) && "Marking a debug operation as def");
134   if (IsDef == Val)
135     return;
136   // MRI may keep uses and defs in different list positions.
137   if (MachineInstr *MI = getParent())
138     if (MachineBasicBlock *MBB = MI->getParent())
139       if (MachineFunction *MF = MBB->getParent()) {
140         MachineRegisterInfo &MRI = MF->getRegInfo();
141         MRI.removeRegOperandFromUseList(this);
142         IsDef = Val;
143         MRI.addRegOperandToUseList(this);
144         return;
145       }
146   IsDef = Val;
147 }
148 
149 // If this operand is currently a register operand, and if this is in a
150 // function, deregister the operand from the register's use/def list.
151 void MachineOperand::removeRegFromUses() {
152   if (!isReg() || !isOnRegUseList())
153     return;
154 
155   if (MachineInstr *MI = getParent()) {
156     if (MachineBasicBlock *MBB = MI->getParent()) {
157       if (MachineFunction *MF = MBB->getParent())
158         MF->getRegInfo().removeRegOperandFromUseList(this);
159     }
160   }
161 }
162 
163 /// ChangeToImmediate - Replace this operand with a new immediate operand of
164 /// the specified value.  If an operand is known to be an immediate already,
165 /// the setImm method should be used.
166 void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
167   assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
168 
169   removeRegFromUses();
170 
171   OpKind = MO_Immediate;
172   Contents.ImmVal = ImmVal;
173 }
174 
175 void MachineOperand::ChangeToFPImmediate(const ConstantFP *FPImm) {
176   assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
177 
178   removeRegFromUses();
179 
180   OpKind = MO_FPImmediate;
181   Contents.CFP = FPImm;
182 }
183 
184 void MachineOperand::ChangeToES(const char *SymName, unsigned char TargetFlags) {
185   assert((!isReg() || !isTied()) &&
186          "Cannot change a tied operand into an external symbol");
187 
188   removeRegFromUses();
189 
190   OpKind = MO_ExternalSymbol;
191   Contents.OffsetedInfo.Val.SymbolName = SymName;
192   setOffset(0); // Offset is always 0.
193   setTargetFlags(TargetFlags);
194 }
195 
196 void MachineOperand::ChangeToMCSymbol(MCSymbol *Sym) {
197   assert((!isReg() || !isTied()) &&
198          "Cannot change a tied operand into an MCSymbol");
199 
200   removeRegFromUses();
201 
202   OpKind = MO_MCSymbol;
203   Contents.Sym = Sym;
204 }
205 
206 void MachineOperand::ChangeToFrameIndex(int Idx) {
207   assert((!isReg() || !isTied()) &&
208          "Cannot change a tied operand into a FrameIndex");
209 
210   removeRegFromUses();
211 
212   OpKind = MO_FrameIndex;
213   setIndex(Idx);
214 }
215 
216 /// ChangeToRegister - Replace this operand with a new register operand of
217 /// the specified value.  If an operand is known to be an register already,
218 /// the setReg method should be used.
219 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
220                                       bool isKill, bool isDead, bool isUndef,
221                                       bool isDebug) {
222   MachineRegisterInfo *RegInfo = nullptr;
223   if (MachineInstr *MI = getParent())
224     if (MachineBasicBlock *MBB = MI->getParent())
225       if (MachineFunction *MF = MBB->getParent())
226         RegInfo = &MF->getRegInfo();
227   // If this operand is already a register operand, remove it from the
228   // register's use/def lists.
229   bool WasReg = isReg();
230   if (RegInfo && WasReg)
231     RegInfo->removeRegOperandFromUseList(this);
232 
233   // Change this to a register and set the reg#.
234   OpKind = MO_Register;
235   SmallContents.RegNo = Reg;
236   SubReg_TargetFlags = 0;
237   IsDef = isDef;
238   IsImp = isImp;
239   IsKill = isKill;
240   IsDead = isDead;
241   IsUndef = isUndef;
242   IsInternalRead = false;
243   IsEarlyClobber = false;
244   IsDebug = isDebug;
245   // Ensure isOnRegUseList() returns false.
246   Contents.Reg.Prev = nullptr;
247   // Preserve the tie when the operand was already a register.
248   if (!WasReg)
249     TiedTo = 0;
250 
251   // If this operand is embedded in a function, add the operand to the
252   // register's use/def list.
253   if (RegInfo)
254     RegInfo->addRegOperandToUseList(this);
255 }
256 
257 /// isIdenticalTo - Return true if this operand is identical to the specified
258 /// operand. Note that this should stay in sync with the hash_value overload
259 /// below.
260 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
261   if (getType() != Other.getType() ||
262       getTargetFlags() != Other.getTargetFlags())
263     return false;
264 
265   switch (getType()) {
266   case MachineOperand::MO_Register:
267     return getReg() == Other.getReg() && isDef() == Other.isDef() &&
268            getSubReg() == Other.getSubReg();
269   case MachineOperand::MO_Immediate:
270     return getImm() == Other.getImm();
271   case MachineOperand::MO_CImmediate:
272     return getCImm() == Other.getCImm();
273   case MachineOperand::MO_FPImmediate:
274     return getFPImm() == Other.getFPImm();
275   case MachineOperand::MO_MachineBasicBlock:
276     return getMBB() == Other.getMBB();
277   case MachineOperand::MO_FrameIndex:
278     return getIndex() == Other.getIndex();
279   case MachineOperand::MO_ConstantPoolIndex:
280   case MachineOperand::MO_TargetIndex:
281     return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
282   case MachineOperand::MO_JumpTableIndex:
283     return getIndex() == Other.getIndex();
284   case MachineOperand::MO_GlobalAddress:
285     return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
286   case MachineOperand::MO_ExternalSymbol:
287     return strcmp(getSymbolName(), Other.getSymbolName()) == 0 &&
288            getOffset() == Other.getOffset();
289   case MachineOperand::MO_BlockAddress:
290     return getBlockAddress() == Other.getBlockAddress() &&
291            getOffset() == Other.getOffset();
292   case MachineOperand::MO_RegisterMask:
293   case MachineOperand::MO_RegisterLiveOut: {
294     // Shallow compare of the two RegMasks
295     const uint32_t *RegMask = getRegMask();
296     const uint32_t *OtherRegMask = Other.getRegMask();
297     if (RegMask == OtherRegMask)
298       return true;
299 
300     // Calculate the size of the RegMask
301     const MachineFunction *MF = getParent()->getParent()->getParent();
302     const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
303     unsigned RegMaskSize = (TRI->getNumRegs() + 31) / 32;
304 
305     // Deep compare of the two RegMasks
306     return std::equal(RegMask, RegMask + RegMaskSize, OtherRegMask);
307   }
308   case MachineOperand::MO_MCSymbol:
309     return getMCSymbol() == Other.getMCSymbol();
310   case MachineOperand::MO_CFIIndex:
311     return getCFIIndex() == Other.getCFIIndex();
312   case MachineOperand::MO_Metadata:
313     return getMetadata() == Other.getMetadata();
314   case MachineOperand::MO_IntrinsicID:
315     return getIntrinsicID() == Other.getIntrinsicID();
316   case MachineOperand::MO_Predicate:
317     return getPredicate() == Other.getPredicate();
318   }
319   llvm_unreachable("Invalid machine operand type");
320 }
321 
322 // Note: this must stay exactly in sync with isIdenticalTo above.
323 hash_code llvm::hash_value(const MachineOperand &MO) {
324   switch (MO.getType()) {
325   case MachineOperand::MO_Register:
326     // Register operands don't have target flags.
327     return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef());
328   case MachineOperand::MO_Immediate:
329     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm());
330   case MachineOperand::MO_CImmediate:
331     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm());
332   case MachineOperand::MO_FPImmediate:
333     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm());
334   case MachineOperand::MO_MachineBasicBlock:
335     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB());
336   case MachineOperand::MO_FrameIndex:
337     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
338   case MachineOperand::MO_ConstantPoolIndex:
339   case MachineOperand::MO_TargetIndex:
340     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(),
341                         MO.getOffset());
342   case MachineOperand::MO_JumpTableIndex:
343     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
344   case MachineOperand::MO_ExternalSymbol:
345     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(),
346                         MO.getSymbolName());
347   case MachineOperand::MO_GlobalAddress:
348     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(),
349                         MO.getOffset());
350   case MachineOperand::MO_BlockAddress:
351     return hash_combine(MO.getType(), MO.getTargetFlags(),
352                         MO.getBlockAddress(), MO.getOffset());
353   case MachineOperand::MO_RegisterMask:
354   case MachineOperand::MO_RegisterLiveOut:
355     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask());
356   case MachineOperand::MO_Metadata:
357     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata());
358   case MachineOperand::MO_MCSymbol:
359     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol());
360   case MachineOperand::MO_CFIIndex:
361     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex());
362   case MachineOperand::MO_IntrinsicID:
363     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIntrinsicID());
364   case MachineOperand::MO_Predicate:
365     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getPredicate());
366   }
367   llvm_unreachable("Invalid machine operand type");
368 }
369 
370 void MachineOperand::print(raw_ostream &OS, const TargetRegisterInfo *TRI,
371                            const TargetIntrinsicInfo *IntrinsicInfo) const {
372   ModuleSlotTracker DummyMST(nullptr);
373   print(OS, DummyMST, TRI, IntrinsicInfo);
374 }
375 
376 void MachineOperand::print(raw_ostream &OS, ModuleSlotTracker &MST,
377                            const TargetRegisterInfo *TRI,
378                            const TargetIntrinsicInfo *IntrinsicInfo) const {
379   switch (getType()) {
380   case MachineOperand::MO_Register:
381     OS << PrintReg(getReg(), TRI, getSubReg());
382 
383     if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
384         isInternalRead() || isEarlyClobber() || isTied()) {
385       OS << '<';
386       bool NeedComma = false;
387       if (isDef()) {
388         if (NeedComma) OS << ',';
389         if (isEarlyClobber())
390           OS << "earlyclobber,";
391         if (isImplicit())
392           OS << "imp-";
393         OS << "def";
394         NeedComma = true;
395         // <def,read-undef> only makes sense when getSubReg() is set.
396         // Don't clutter the output otherwise.
397         if (isUndef() && getSubReg())
398           OS << ",read-undef";
399       } else if (isImplicit()) {
400         OS << "imp-use";
401         NeedComma = true;
402       }
403 
404       if (isKill()) {
405         if (NeedComma) OS << ',';
406         OS << "kill";
407         NeedComma = true;
408       }
409       if (isDead()) {
410         if (NeedComma) OS << ',';
411         OS << "dead";
412         NeedComma = true;
413       }
414       if (isUndef() && isUse()) {
415         if (NeedComma) OS << ',';
416         OS << "undef";
417         NeedComma = true;
418       }
419       if (isInternalRead()) {
420         if (NeedComma) OS << ',';
421         OS << "internal";
422         NeedComma = true;
423       }
424       if (isTied()) {
425         if (NeedComma) OS << ',';
426         OS << "tied";
427         if (TiedTo != 15)
428           OS << unsigned(TiedTo - 1);
429       }
430       OS << '>';
431     }
432     break;
433   case MachineOperand::MO_Immediate:
434     OS << getImm();
435     break;
436   case MachineOperand::MO_CImmediate:
437     getCImm()->getValue().print(OS, false);
438     break;
439   case MachineOperand::MO_FPImmediate:
440     if (getFPImm()->getType()->isFloatTy()) {
441       OS << getFPImm()->getValueAPF().convertToFloat();
442     } else if (getFPImm()->getType()->isHalfTy()) {
443       APFloat APF = getFPImm()->getValueAPF();
444       bool Unused;
445       APF.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &Unused);
446       OS << "half " << APF.convertToFloat();
447     } else if (getFPImm()->getType()->isFP128Ty()) {
448       APFloat APF = getFPImm()->getValueAPF();
449       SmallString<16> Str;
450       getFPImm()->getValueAPF().toString(Str);
451       OS << "quad " << Str;
452     } else if (getFPImm()->getType()->isX86_FP80Ty()) {
453       APFloat APF = getFPImm()->getValueAPF();
454       OS << "x86_fp80 0xK";
455       APInt API = APF.bitcastToAPInt();
456       OS << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4,
457                                  /*Upper=*/true);
458       OS << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
459                                  /*Upper=*/true);
460     } else {
461       OS << getFPImm()->getValueAPF().convertToDouble();
462     }
463     break;
464   case MachineOperand::MO_MachineBasicBlock:
465     OS << "<BB#" << getMBB()->getNumber() << ">";
466     break;
467   case MachineOperand::MO_FrameIndex:
468     OS << "<fi#" << getIndex() << '>';
469     break;
470   case MachineOperand::MO_ConstantPoolIndex:
471     OS << "<cp#" << getIndex();
472     if (getOffset()) OS << "+" << getOffset();
473     OS << '>';
474     break;
475   case MachineOperand::MO_TargetIndex:
476     OS << "<ti#" << getIndex();
477     if (getOffset()) OS << "+" << getOffset();
478     OS << '>';
479     break;
480   case MachineOperand::MO_JumpTableIndex:
481     OS << "<jt#" << getIndex() << '>';
482     break;
483   case MachineOperand::MO_GlobalAddress:
484     OS << "<ga:";
485     getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST);
486     if (getOffset()) OS << "+" << getOffset();
487     OS << '>';
488     break;
489   case MachineOperand::MO_ExternalSymbol:
490     OS << "<es:" << getSymbolName();
491     if (getOffset()) OS << "+" << getOffset();
492     OS << '>';
493     break;
494   case MachineOperand::MO_BlockAddress:
495     OS << '<';
496     getBlockAddress()->printAsOperand(OS, /*PrintType=*/false, MST);
497     if (getOffset()) OS << "+" << getOffset();
498     OS << '>';
499     break;
500   case MachineOperand::MO_RegisterMask: {
501     unsigned NumRegsInMask = 0;
502     unsigned NumRegsEmitted = 0;
503     OS << "<regmask";
504     for (unsigned i = 0; i < TRI->getNumRegs(); ++i) {
505       unsigned MaskWord = i / 32;
506       unsigned MaskBit = i % 32;
507       if (getRegMask()[MaskWord] & (1 << MaskBit)) {
508         if (PrintRegMaskNumRegs < 0 ||
509             NumRegsEmitted <= static_cast<unsigned>(PrintRegMaskNumRegs)) {
510           OS << " " << PrintReg(i, TRI);
511           NumRegsEmitted++;
512         }
513         NumRegsInMask++;
514       }
515     }
516     if (NumRegsEmitted != NumRegsInMask)
517       OS << " and " << (NumRegsInMask - NumRegsEmitted) << " more...";
518     OS << ">";
519     break;
520   }
521   case MachineOperand::MO_RegisterLiveOut:
522     OS << "<regliveout>";
523     break;
524   case MachineOperand::MO_Metadata:
525     OS << '<';
526     getMetadata()->printAsOperand(OS, MST);
527     OS << '>';
528     break;
529   case MachineOperand::MO_MCSymbol:
530     OS << "<MCSym=" << *getMCSymbol() << '>';
531     break;
532   case MachineOperand::MO_CFIIndex:
533     OS << "<call frame instruction>";
534     break;
535   case MachineOperand::MO_IntrinsicID: {
536     Intrinsic::ID ID = getIntrinsicID();
537     if (ID < Intrinsic::num_intrinsics)
538       OS << "<intrinsic:@" << Intrinsic::getName(ID, None) << '>';
539     else if (IntrinsicInfo)
540       OS << "<intrinsic:@" << IntrinsicInfo->getName(ID) << '>';
541     else
542       OS << "<intrinsic:" << ID << '>';
543     break;
544   }
545   case MachineOperand::MO_Predicate: {
546     auto Pred = static_cast<CmpInst::Predicate>(getPredicate());
547     OS << '<' << (CmpInst::isIntPredicate(Pred) ? "intpred" : "floatpred")
548        << CmpInst::getPredicateName(Pred) << '>';
549     break;
550   }
551   }
552   if (unsigned TF = getTargetFlags())
553     OS << "[TF=" << TF << ']';
554 }
555 
556 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
557 LLVM_DUMP_METHOD void MachineOperand::dump() const {
558   dbgs() << *this << '\n';
559 }
560 #endif
561 
562 //===----------------------------------------------------------------------===//
563 // MachineMemOperand Implementation
564 //===----------------------------------------------------------------------===//
565 
566 /// getAddrSpace - Return the LLVM IR address space number that this pointer
567 /// points into.
568 unsigned MachinePointerInfo::getAddrSpace() const {
569   if (V.isNull() || V.is<const PseudoSourceValue*>()) return 0;
570   return cast<PointerType>(V.get<const Value*>()->getType())->getAddressSpace();
571 }
572 
573 /// isDereferenceable - Return true if V is always dereferenceable for
574 /// Offset + Size byte.
575 bool MachinePointerInfo::isDereferenceable(unsigned Size, LLVMContext &C,
576                                            const DataLayout &DL) const {
577   if (!V.is<const Value*>())
578     return false;
579 
580   const Value *BasePtr = V.get<const Value*>();
581   if (BasePtr == nullptr)
582     return false;
583 
584   return isDereferenceableAndAlignedPointer(BasePtr, 1,
585                                             APInt(DL.getPointerSize(),
586                                                   Offset + Size),
587                                             DL);
588 }
589 
590 /// getConstantPool - Return a MachinePointerInfo record that refers to the
591 /// constant pool.
592 MachinePointerInfo MachinePointerInfo::getConstantPool(MachineFunction &MF) {
593   return MachinePointerInfo(MF.getPSVManager().getConstantPool());
594 }
595 
596 /// getFixedStack - Return a MachinePointerInfo record that refers to the
597 /// the specified FrameIndex.
598 MachinePointerInfo MachinePointerInfo::getFixedStack(MachineFunction &MF,
599                                                      int FI, int64_t Offset) {
600   return MachinePointerInfo(MF.getPSVManager().getFixedStack(FI), Offset);
601 }
602 
603 MachinePointerInfo MachinePointerInfo::getJumpTable(MachineFunction &MF) {
604   return MachinePointerInfo(MF.getPSVManager().getJumpTable());
605 }
606 
607 MachinePointerInfo MachinePointerInfo::getGOT(MachineFunction &MF) {
608   return MachinePointerInfo(MF.getPSVManager().getGOT());
609 }
610 
611 MachinePointerInfo MachinePointerInfo::getStack(MachineFunction &MF,
612                                                 int64_t Offset) {
613   return MachinePointerInfo(MF.getPSVManager().getStack(), Offset);
614 }
615 
616 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, Flags f,
617                                      uint64_t s, unsigned int a,
618                                      const AAMDNodes &AAInfo,
619                                      const MDNode *Ranges,
620                                      SyncScope::ID SSID,
621                                      AtomicOrdering Ordering,
622                                      AtomicOrdering FailureOrdering)
623     : PtrInfo(ptrinfo), Size(s), FlagVals(f), BaseAlignLog2(Log2_32(a) + 1),
624       AAInfo(AAInfo), Ranges(Ranges) {
625   assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() ||
626           isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) &&
627          "invalid pointer value");
628   assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
629   assert((isLoad() || isStore()) && "Not a load/store!");
630 
631   AtomicInfo.SSID = static_cast<unsigned>(SSID);
632   assert(getSyncScopeID() == SSID && "Value truncated");
633   AtomicInfo.Ordering = static_cast<unsigned>(Ordering);
634   assert(getOrdering() == Ordering && "Value truncated");
635   AtomicInfo.FailureOrdering = static_cast<unsigned>(FailureOrdering);
636   assert(getFailureOrdering() == FailureOrdering && "Value truncated");
637 }
638 
639 /// Profile - Gather unique data for the object.
640 ///
641 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
642   ID.AddInteger(getOffset());
643   ID.AddInteger(Size);
644   ID.AddPointer(getOpaqueValue());
645   ID.AddInteger(getFlags());
646   ID.AddInteger(getBaseAlignment());
647 }
648 
649 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
650   // The Value and Offset may differ due to CSE. But the flags and size
651   // should be the same.
652   assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
653   assert(MMO->getSize() == getSize() && "Size mismatch!");
654 
655   if (MMO->getBaseAlignment() >= getBaseAlignment()) {
656     // Update the alignment value.
657     BaseAlignLog2 = Log2_32(MMO->getBaseAlignment()) + 1;
658     // Also update the base and offset, because the new alignment may
659     // not be applicable with the old ones.
660     PtrInfo = MMO->PtrInfo;
661   }
662 }
663 
664 /// getAlignment - Return the minimum known alignment in bytes of the
665 /// actual memory reference.
666 uint64_t MachineMemOperand::getAlignment() const {
667   return MinAlign(getBaseAlignment(), getOffset());
668 }
669 
670 void MachineMemOperand::print(raw_ostream &OS) const {
671   ModuleSlotTracker DummyMST(nullptr);
672   print(OS, DummyMST);
673 }
674 void MachineMemOperand::print(raw_ostream &OS, ModuleSlotTracker &MST) const {
675   assert((isLoad() || isStore()) &&
676          "SV has to be a load, store or both.");
677 
678   if (isVolatile())
679     OS << "Volatile ";
680 
681   if (isLoad())
682     OS << "LD";
683   if (isStore())
684     OS << "ST";
685   OS << getSize();
686 
687   // Print the address information.
688   OS << "[";
689   if (const Value *V = getValue())
690     V->printAsOperand(OS, /*PrintType=*/false, MST);
691   else if (const PseudoSourceValue *PSV = getPseudoValue())
692     PSV->printCustom(OS);
693   else
694     OS << "<unknown>";
695 
696   unsigned AS = getAddrSpace();
697   if (AS != 0)
698     OS << "(addrspace=" << AS << ')';
699 
700   // If the alignment of the memory reference itself differs from the alignment
701   // of the base pointer, print the base alignment explicitly, next to the base
702   // pointer.
703   if (getBaseAlignment() != getAlignment())
704     OS << "(align=" << getBaseAlignment() << ")";
705 
706   if (getOffset() != 0)
707     OS << "+" << getOffset();
708   OS << "]";
709 
710   // Print the alignment of the reference.
711   if (getBaseAlignment() != getAlignment() || getBaseAlignment() != getSize())
712     OS << "(align=" << getAlignment() << ")";
713 
714   // Print TBAA info.
715   if (const MDNode *TBAAInfo = getAAInfo().TBAA) {
716     OS << "(tbaa=";
717     if (TBAAInfo->getNumOperands() > 0)
718       TBAAInfo->getOperand(0)->printAsOperand(OS, MST);
719     else
720       OS << "<unknown>";
721     OS << ")";
722   }
723 
724   // Print AA scope info.
725   if (const MDNode *ScopeInfo = getAAInfo().Scope) {
726     OS << "(alias.scope=";
727     if (ScopeInfo->getNumOperands() > 0)
728       for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) {
729         ScopeInfo->getOperand(i)->printAsOperand(OS, MST);
730         if (i != ie-1)
731           OS << ",";
732       }
733     else
734       OS << "<unknown>";
735     OS << ")";
736   }
737 
738   // Print AA noalias scope info.
739   if (const MDNode *NoAliasInfo = getAAInfo().NoAlias) {
740     OS << "(noalias=";
741     if (NoAliasInfo->getNumOperands() > 0)
742       for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) {
743         NoAliasInfo->getOperand(i)->printAsOperand(OS, MST);
744         if (i != ie-1)
745           OS << ",";
746       }
747     else
748       OS << "<unknown>";
749     OS << ")";
750   }
751 
752   if (isNonTemporal())
753     OS << "(nontemporal)";
754   if (isDereferenceable())
755     OS << "(dereferenceable)";
756   if (isInvariant())
757     OS << "(invariant)";
758   if (getFlags() & MOTargetFlag1)
759     OS << "(flag1)";
760   if (getFlags() & MOTargetFlag2)
761     OS << "(flag2)";
762   if (getFlags() & MOTargetFlag3)
763     OS << "(flag3)";
764 }
765 
766 //===----------------------------------------------------------------------===//
767 // MachineInstr Implementation
768 //===----------------------------------------------------------------------===//
769 
770 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
771   if (MCID->ImplicitDefs)
772     for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
773            ++ImpDefs)
774       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
775   if (MCID->ImplicitUses)
776     for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
777            ++ImpUses)
778       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
779 }
780 
781 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
782 /// implicit operands. It reserves space for the number of operands specified by
783 /// the MCInstrDesc.
784 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
785                            DebugLoc dl, bool NoImp)
786     : MCID(&tid), debugLoc(std::move(dl)) {
787   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
788 
789   // Reserve space for the expected number of operands.
790   if (unsigned NumOps = MCID->getNumOperands() +
791     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
792     CapOperands = OperandCapacity::get(NumOps);
793     Operands = MF.allocateOperandArray(CapOperands);
794   }
795 
796   if (!NoImp)
797     addImplicitDefUseOperands(MF);
798 }
799 
800 /// MachineInstr ctor - Copies MachineInstr arg exactly
801 ///
802 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
803     : MCID(&MI.getDesc()), NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs),
804       debugLoc(MI.getDebugLoc()) {
805   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
806 
807   CapOperands = OperandCapacity::get(MI.getNumOperands());
808   Operands = MF.allocateOperandArray(CapOperands);
809 
810   // Copy operands.
811   for (const MachineOperand &MO : MI.operands())
812     addOperand(MF, MO);
813 
814   // Copy all the sensible flags.
815   setFlags(MI.Flags);
816 }
817 
818 /// getRegInfo - If this instruction is embedded into a MachineFunction,
819 /// return the MachineRegisterInfo object for the current function, otherwise
820 /// return null.
821 MachineRegisterInfo *MachineInstr::getRegInfo() {
822   if (MachineBasicBlock *MBB = getParent())
823     return &MBB->getParent()->getRegInfo();
824   return nullptr;
825 }
826 
827 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
828 /// this instruction from their respective use lists.  This requires that the
829 /// operands already be on their use lists.
830 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
831   for (MachineOperand &MO : operands())
832     if (MO.isReg())
833       MRI.removeRegOperandFromUseList(&MO);
834 }
835 
836 /// AddRegOperandsToUseLists - Add all of the register operands in
837 /// this instruction from their respective use lists.  This requires that the
838 /// operands not be on their use lists yet.
839 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
840   for (MachineOperand &MO : operands())
841     if (MO.isReg())
842       MRI.addRegOperandToUseList(&MO);
843 }
844 
845 void MachineInstr::addOperand(const MachineOperand &Op) {
846   MachineBasicBlock *MBB = getParent();
847   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
848   MachineFunction *MF = MBB->getParent();
849   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
850   addOperand(*MF, Op);
851 }
852 
853 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
854 /// ranges. If MRI is non-null also update use-def chains.
855 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
856                          unsigned NumOps, MachineRegisterInfo *MRI) {
857   if (MRI)
858     return MRI->moveOperands(Dst, Src, NumOps);
859 
860   // MachineOperand is a trivially copyable type so we can just use memmove.
861   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
862 }
863 
864 /// addOperand - Add the specified operand to the instruction.  If it is an
865 /// implicit operand, it is added to the end of the operand list.  If it is
866 /// an explicit operand it is added at the end of the explicit operand list
867 /// (before the first implicit operand).
868 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
869   assert(MCID && "Cannot add operands before providing an instr descriptor");
870 
871   // Check if we're adding one of our existing operands.
872   if (&Op >= Operands && &Op < Operands + NumOperands) {
873     // This is unusual: MI->addOperand(MI->getOperand(i)).
874     // If adding Op requires reallocating or moving existing operands around,
875     // the Op reference could go stale. Support it by copying Op.
876     MachineOperand CopyOp(Op);
877     return addOperand(MF, CopyOp);
878   }
879 
880   // Find the insert location for the new operand.  Implicit registers go at
881   // the end, everything else goes before the implicit regs.
882   //
883   // FIXME: Allow mixed explicit and implicit operands on inline asm.
884   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
885   // implicit-defs, but they must not be moved around.  See the FIXME in
886   // InstrEmitter.cpp.
887   unsigned OpNo = getNumOperands();
888   bool isImpReg = Op.isReg() && Op.isImplicit();
889   if (!isImpReg && !isInlineAsm()) {
890     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
891       --OpNo;
892       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
893     }
894   }
895 
896 #ifndef NDEBUG
897   bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata;
898   // OpNo now points as the desired insertion point.  Unless this is a variadic
899   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
900   // RegMask operands go between the explicit and implicit operands.
901   assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
902           OpNo < MCID->getNumOperands() || isMetaDataOp) &&
903          "Trying to add an operand to a machine instr that is already done!");
904 #endif
905 
906   MachineRegisterInfo *MRI = getRegInfo();
907 
908   // Determine if the Operands array needs to be reallocated.
909   // Save the old capacity and operand array.
910   OperandCapacity OldCap = CapOperands;
911   MachineOperand *OldOperands = Operands;
912   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
913     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
914     Operands = MF.allocateOperandArray(CapOperands);
915     // Move the operands before the insertion point.
916     if (OpNo)
917       moveOperands(Operands, OldOperands, OpNo, MRI);
918   }
919 
920   // Move the operands following the insertion point.
921   if (OpNo != NumOperands)
922     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
923                  MRI);
924   ++NumOperands;
925 
926   // Deallocate the old operand array.
927   if (OldOperands != Operands && OldOperands)
928     MF.deallocateOperandArray(OldCap, OldOperands);
929 
930   // Copy Op into place. It still needs to be inserted into the MRI use lists.
931   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
932   NewMO->ParentMI = this;
933 
934   // When adding a register operand, tell MRI about it.
935   if (NewMO->isReg()) {
936     // Ensure isOnRegUseList() returns false, regardless of Op's status.
937     NewMO->Contents.Reg.Prev = nullptr;
938     // Ignore existing ties. This is not a property that can be copied.
939     NewMO->TiedTo = 0;
940     // Add the new operand to MRI, but only for instructions in an MBB.
941     if (MRI)
942       MRI->addRegOperandToUseList(NewMO);
943     // The MCID operand information isn't accurate until we start adding
944     // explicit operands. The implicit operands are added first, then the
945     // explicits are inserted before them.
946     if (!isImpReg) {
947       // Tie uses to defs as indicated in MCInstrDesc.
948       if (NewMO->isUse()) {
949         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
950         if (DefIdx != -1)
951           tieOperands(DefIdx, OpNo);
952       }
953       // If the register operand is flagged as early, mark the operand as such.
954       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
955         NewMO->setIsEarlyClobber(true);
956     }
957   }
958 }
959 
960 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
961 /// fewer operand than it started with.
962 ///
963 void MachineInstr::RemoveOperand(unsigned OpNo) {
964   assert(OpNo < getNumOperands() && "Invalid operand number");
965   untieRegOperand(OpNo);
966 
967 #ifndef NDEBUG
968   // Moving tied operands would break the ties.
969   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
970     if (Operands[i].isReg())
971       assert(!Operands[i].isTied() && "Cannot move tied operands");
972 #endif
973 
974   MachineRegisterInfo *MRI = getRegInfo();
975   if (MRI && Operands[OpNo].isReg())
976     MRI->removeRegOperandFromUseList(Operands + OpNo);
977 
978   // Don't call the MachineOperand destructor. A lot of this code depends on
979   // MachineOperand having a trivial destructor anyway, and adding a call here
980   // wouldn't make it 'destructor-correct'.
981 
982   if (unsigned N = NumOperands - 1 - OpNo)
983     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
984   --NumOperands;
985 }
986 
987 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
988 /// This function should be used only occasionally. The setMemRefs function
989 /// is the primary method for setting up a MachineInstr's MemRefs list.
990 void MachineInstr::addMemOperand(MachineFunction &MF,
991                                  MachineMemOperand *MO) {
992   mmo_iterator OldMemRefs = MemRefs;
993   unsigned OldNumMemRefs = NumMemRefs;
994 
995   unsigned NewNum = NumMemRefs + 1;
996   mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
997 
998   std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs);
999   NewMemRefs[NewNum - 1] = MO;
1000   setMemRefs(NewMemRefs, NewMemRefs + NewNum);
1001 }
1002 
1003 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
1004 /// identical.
1005 static bool hasIdenticalMMOs(const MachineInstr &MI1, const MachineInstr &MI2) {
1006   auto I1 = MI1.memoperands_begin(), E1 = MI1.memoperands_end();
1007   auto I2 = MI2.memoperands_begin(), E2 = MI2.memoperands_end();
1008   if ((E1 - I1) != (E2 - I2))
1009     return false;
1010   for (; I1 != E1; ++I1, ++I2) {
1011     if (**I1 != **I2)
1012       return false;
1013   }
1014   return true;
1015 }
1016 
1017 std::pair<MachineInstr::mmo_iterator, unsigned>
1018 MachineInstr::mergeMemRefsWith(const MachineInstr& Other) {
1019 
1020   // If either of the incoming memrefs are empty, we must be conservative and
1021   // treat this as if we've exhausted our space for memrefs and dropped them.
1022   if (memoperands_empty() || Other.memoperands_empty())
1023     return std::make_pair(nullptr, 0);
1024 
1025   // If both instructions have identical memrefs, we don't need to merge them.
1026   // Since many instructions have a single memref, and we tend to merge things
1027   // like pairs of loads from the same location, this catches a large number of
1028   // cases in practice.
1029   if (hasIdenticalMMOs(*this, Other))
1030     return std::make_pair(MemRefs, NumMemRefs);
1031 
1032   // TODO: consider uniquing elements within the operand lists to reduce
1033   // space usage and fall back to conservative information less often.
1034   size_t CombinedNumMemRefs = NumMemRefs + Other.NumMemRefs;
1035 
1036   // If we don't have enough room to store this many memrefs, be conservative
1037   // and drop them.  Otherwise, we'd fail asserts when trying to add them to
1038   // the new instruction.
1039   if (CombinedNumMemRefs != uint8_t(CombinedNumMemRefs))
1040     return std::make_pair(nullptr, 0);
1041 
1042   MachineFunction *MF = getParent()->getParent();
1043   mmo_iterator MemBegin = MF->allocateMemRefsArray(CombinedNumMemRefs);
1044   mmo_iterator MemEnd = std::copy(memoperands_begin(), memoperands_end(),
1045                                   MemBegin);
1046   MemEnd = std::copy(Other.memoperands_begin(), Other.memoperands_end(),
1047                      MemEnd);
1048   assert(MemEnd - MemBegin == (ptrdiff_t)CombinedNumMemRefs &&
1049          "missing memrefs");
1050 
1051   return std::make_pair(MemBegin, CombinedNumMemRefs);
1052 }
1053 
1054 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const {
1055   assert(!isBundledWithPred() && "Must be called on bundle header");
1056   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
1057     if (MII->getDesc().getFlags() & Mask) {
1058       if (Type == AnyInBundle)
1059         return true;
1060     } else {
1061       if (Type == AllInBundle && !MII->isBundle())
1062         return false;
1063     }
1064     // This was the last instruction in the bundle.
1065     if (!MII->isBundledWithSucc())
1066       return Type == AllInBundle;
1067   }
1068 }
1069 
1070 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
1071                                  MICheckType Check) const {
1072   // If opcodes or number of operands are not the same then the two
1073   // instructions are obviously not identical.
1074   if (Other.getOpcode() != getOpcode() ||
1075       Other.getNumOperands() != getNumOperands())
1076     return false;
1077 
1078   if (isBundle()) {
1079     // We have passed the test above that both instructions have the same
1080     // opcode, so we know that both instructions are bundles here. Let's compare
1081     // MIs inside the bundle.
1082     assert(Other.isBundle() && "Expected that both instructions are bundles.");
1083     MachineBasicBlock::const_instr_iterator I1 = getIterator();
1084     MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
1085     // Loop until we analysed the last intruction inside at least one of the
1086     // bundles.
1087     while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
1088       ++I1;
1089       ++I2;
1090       if (!I1->isIdenticalTo(*I2, Check))
1091         return false;
1092     }
1093     // If we've reached the end of just one of the two bundles, but not both,
1094     // the instructions are not identical.
1095     if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
1096       return false;
1097   }
1098 
1099   // Check operands to make sure they match.
1100   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1101     const MachineOperand &MO = getOperand(i);
1102     const MachineOperand &OMO = Other.getOperand(i);
1103     if (!MO.isReg()) {
1104       if (!MO.isIdenticalTo(OMO))
1105         return false;
1106       continue;
1107     }
1108 
1109     // Clients may or may not want to ignore defs when testing for equality.
1110     // For example, machine CSE pass only cares about finding common
1111     // subexpressions, so it's safe to ignore virtual register defs.
1112     if (MO.isDef()) {
1113       if (Check == IgnoreDefs)
1114         continue;
1115       else if (Check == IgnoreVRegDefs) {
1116         if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
1117             TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
1118           if (MO.getReg() != OMO.getReg())
1119             return false;
1120       } else {
1121         if (!MO.isIdenticalTo(OMO))
1122           return false;
1123         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
1124           return false;
1125       }
1126     } else {
1127       if (!MO.isIdenticalTo(OMO))
1128         return false;
1129       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
1130         return false;
1131     }
1132   }
1133   // If DebugLoc does not match then two dbg.values are not identical.
1134   if (isDebugValue())
1135     if (getDebugLoc() && Other.getDebugLoc() &&
1136         getDebugLoc() != Other.getDebugLoc())
1137       return false;
1138   return true;
1139 }
1140 
1141 MachineInstr *MachineInstr::removeFromParent() {
1142   assert(getParent() && "Not embedded in a basic block!");
1143   return getParent()->remove(this);
1144 }
1145 
1146 MachineInstr *MachineInstr::removeFromBundle() {
1147   assert(getParent() && "Not embedded in a basic block!");
1148   return getParent()->remove_instr(this);
1149 }
1150 
1151 void MachineInstr::eraseFromParent() {
1152   assert(getParent() && "Not embedded in a basic block!");
1153   getParent()->erase(this);
1154 }
1155 
1156 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
1157   assert(getParent() && "Not embedded in a basic block!");
1158   MachineBasicBlock *MBB = getParent();
1159   MachineFunction *MF = MBB->getParent();
1160   assert(MF && "Not embedded in a function!");
1161 
1162   MachineInstr *MI = (MachineInstr *)this;
1163   MachineRegisterInfo &MRI = MF->getRegInfo();
1164 
1165   for (const MachineOperand &MO : MI->operands()) {
1166     if (!MO.isReg() || !MO.isDef())
1167       continue;
1168     unsigned Reg = MO.getReg();
1169     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1170       continue;
1171     MRI.markUsesInDebugValueAsUndef(Reg);
1172   }
1173   MI->eraseFromParent();
1174 }
1175 
1176 void MachineInstr::eraseFromBundle() {
1177   assert(getParent() && "Not embedded in a basic block!");
1178   getParent()->erase_instr(this);
1179 }
1180 
1181 /// getNumExplicitOperands - Returns the number of non-implicit operands.
1182 ///
1183 unsigned MachineInstr::getNumExplicitOperands() const {
1184   unsigned NumOperands = MCID->getNumOperands();
1185   if (!MCID->isVariadic())
1186     return NumOperands;
1187 
1188   for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
1189     const MachineOperand &MO = getOperand(i);
1190     if (!MO.isReg() || !MO.isImplicit())
1191       NumOperands++;
1192   }
1193   return NumOperands;
1194 }
1195 
1196 void MachineInstr::bundleWithPred() {
1197   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
1198   setFlag(BundledPred);
1199   MachineBasicBlock::instr_iterator Pred = getIterator();
1200   --Pred;
1201   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
1202   Pred->setFlag(BundledSucc);
1203 }
1204 
1205 void MachineInstr::bundleWithSucc() {
1206   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
1207   setFlag(BundledSucc);
1208   MachineBasicBlock::instr_iterator Succ = getIterator();
1209   ++Succ;
1210   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
1211   Succ->setFlag(BundledPred);
1212 }
1213 
1214 void MachineInstr::unbundleFromPred() {
1215   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
1216   clearFlag(BundledPred);
1217   MachineBasicBlock::instr_iterator Pred = getIterator();
1218   --Pred;
1219   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
1220   Pred->clearFlag(BundledSucc);
1221 }
1222 
1223 void MachineInstr::unbundleFromSucc() {
1224   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
1225   clearFlag(BundledSucc);
1226   MachineBasicBlock::instr_iterator Succ = getIterator();
1227   ++Succ;
1228   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
1229   Succ->clearFlag(BundledPred);
1230 }
1231 
1232 bool MachineInstr::isStackAligningInlineAsm() const {
1233   if (isInlineAsm()) {
1234     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1235     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1236       return true;
1237   }
1238   return false;
1239 }
1240 
1241 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
1242   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
1243   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1244   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
1245 }
1246 
1247 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
1248                                        unsigned *GroupNo) const {
1249   assert(isInlineAsm() && "Expected an inline asm instruction");
1250   assert(OpIdx < getNumOperands() && "OpIdx out of range");
1251 
1252   // Ignore queries about the initial operands.
1253   if (OpIdx < InlineAsm::MIOp_FirstOperand)
1254     return -1;
1255 
1256   unsigned Group = 0;
1257   unsigned NumOps;
1258   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1259        i += NumOps) {
1260     const MachineOperand &FlagMO = getOperand(i);
1261     // If we reach the implicit register operands, stop looking.
1262     if (!FlagMO.isImm())
1263       return -1;
1264     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1265     if (i + NumOps > OpIdx) {
1266       if (GroupNo)
1267         *GroupNo = Group;
1268       return i;
1269     }
1270     ++Group;
1271   }
1272   return -1;
1273 }
1274 
1275 const DILocalVariable *MachineInstr::getDebugVariable() const {
1276   assert(isDebugValue() && "not a DBG_VALUE");
1277   return cast<DILocalVariable>(getOperand(2).getMetadata());
1278 }
1279 
1280 const DIExpression *MachineInstr::getDebugExpression() const {
1281   assert(isDebugValue() && "not a DBG_VALUE");
1282   return cast<DIExpression>(getOperand(3).getMetadata());
1283 }
1284 
1285 const TargetRegisterClass*
1286 MachineInstr::getRegClassConstraint(unsigned OpIdx,
1287                                     const TargetInstrInfo *TII,
1288                                     const TargetRegisterInfo *TRI) const {
1289   assert(getParent() && "Can't have an MBB reference here!");
1290   assert(getParent()->getParent() && "Can't have an MF reference here!");
1291   const MachineFunction &MF = *getParent()->getParent();
1292 
1293   // Most opcodes have fixed constraints in their MCInstrDesc.
1294   if (!isInlineAsm())
1295     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
1296 
1297   if (!getOperand(OpIdx).isReg())
1298     return nullptr;
1299 
1300   // For tied uses on inline asm, get the constraint from the def.
1301   unsigned DefIdx;
1302   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
1303     OpIdx = DefIdx;
1304 
1305   // Inline asm stores register class constraints in the flag word.
1306   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
1307   if (FlagIdx < 0)
1308     return nullptr;
1309 
1310   unsigned Flag = getOperand(FlagIdx).getImm();
1311   unsigned RCID;
1312   if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
1313        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
1314        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
1315       InlineAsm::hasRegClassConstraint(Flag, RCID))
1316     return TRI->getRegClass(RCID);
1317 
1318   // Assume that all registers in a memory operand are pointers.
1319   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
1320     return TRI->getPointerRegClass(MF);
1321 
1322   return nullptr;
1323 }
1324 
1325 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
1326     unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
1327     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
1328   // Check every operands inside the bundle if we have
1329   // been asked to.
1330   if (ExploreBundle)
1331     for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
1332          ++OpndIt)
1333       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
1334           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
1335   else
1336     // Otherwise, just check the current operands.
1337     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
1338       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
1339   return CurRC;
1340 }
1341 
1342 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
1343     unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
1344     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
1345   assert(CurRC && "Invalid initial register class");
1346   // Check if Reg is constrained by some of its use/def from MI.
1347   const MachineOperand &MO = getOperand(OpIdx);
1348   if (!MO.isReg() || MO.getReg() != Reg)
1349     return CurRC;
1350   // If yes, accumulate the constraints through the operand.
1351   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
1352 }
1353 
1354 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
1355     unsigned OpIdx, const TargetRegisterClass *CurRC,
1356     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
1357   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
1358   const MachineOperand &MO = getOperand(OpIdx);
1359   assert(MO.isReg() &&
1360          "Cannot get register constraints for non-register operand");
1361   assert(CurRC && "Invalid initial register class");
1362   if (unsigned SubIdx = MO.getSubReg()) {
1363     if (OpRC)
1364       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
1365     else
1366       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
1367   } else if (OpRC)
1368     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
1369   return CurRC;
1370 }
1371 
1372 /// Return the number of instructions inside the MI bundle, not counting the
1373 /// header instruction.
1374 unsigned MachineInstr::getBundleSize() const {
1375   MachineBasicBlock::const_instr_iterator I = getIterator();
1376   unsigned Size = 0;
1377   while (I->isBundledWithSucc()) {
1378     ++Size;
1379     ++I;
1380   }
1381   return Size;
1382 }
1383 
1384 /// Returns true if the MachineInstr has an implicit-use operand of exactly
1385 /// the given register (not considering sub/super-registers).
1386 bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const {
1387   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1388     const MachineOperand &MO = getOperand(i);
1389     if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
1390       return true;
1391   }
1392   return false;
1393 }
1394 
1395 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
1396 /// the specific register or -1 if it is not found. It further tightens
1397 /// the search criteria to a use that kills the register if isKill is true.
1398 int MachineInstr::findRegisterUseOperandIdx(
1399     unsigned Reg, bool isKill, const TargetRegisterInfo *TRI) const {
1400   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1401     const MachineOperand &MO = getOperand(i);
1402     if (!MO.isReg() || !MO.isUse())
1403       continue;
1404     unsigned MOReg = MO.getReg();
1405     if (!MOReg)
1406       continue;
1407     if (MOReg == Reg || (TRI && TargetRegisterInfo::isPhysicalRegister(MOReg) &&
1408                          TargetRegisterInfo::isPhysicalRegister(Reg) &&
1409                          TRI->isSubRegister(MOReg, Reg)))
1410       if (!isKill || MO.isKill())
1411         return i;
1412   }
1413   return -1;
1414 }
1415 
1416 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1417 /// indicating if this instruction reads or writes Reg. This also considers
1418 /// partial defines.
1419 std::pair<bool,bool>
1420 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
1421                                          SmallVectorImpl<unsigned> *Ops) const {
1422   bool PartDef = false; // Partial redefine.
1423   bool FullDef = false; // Full define.
1424   bool Use = false;
1425 
1426   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1427     const MachineOperand &MO = getOperand(i);
1428     if (!MO.isReg() || MO.getReg() != Reg)
1429       continue;
1430     if (Ops)
1431       Ops->push_back(i);
1432     if (MO.isUse())
1433       Use |= !MO.isUndef();
1434     else if (MO.getSubReg() && !MO.isUndef())
1435       // A partial <def,undef> doesn't count as reading the register.
1436       PartDef = true;
1437     else
1438       FullDef = true;
1439   }
1440   // A partial redefine uses Reg unless there is also a full define.
1441   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1442 }
1443 
1444 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1445 /// the specified register or -1 if it is not found. If isDead is true, defs
1446 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1447 /// also checks if there is a def of a super-register.
1448 int
1449 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
1450                                         const TargetRegisterInfo *TRI) const {
1451   bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
1452   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1453     const MachineOperand &MO = getOperand(i);
1454     // Accept regmask operands when Overlap is set.
1455     // Ignore them when looking for a specific def operand (Overlap == false).
1456     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1457       return i;
1458     if (!MO.isReg() || !MO.isDef())
1459       continue;
1460     unsigned MOReg = MO.getReg();
1461     bool Found = (MOReg == Reg);
1462     if (!Found && TRI && isPhys &&
1463         TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1464       if (Overlap)
1465         Found = TRI->regsOverlap(MOReg, Reg);
1466       else
1467         Found = TRI->isSubRegister(MOReg, Reg);
1468     }
1469     if (Found && (!isDead || MO.isDead()))
1470       return i;
1471   }
1472   return -1;
1473 }
1474 
1475 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1476 /// operand list that is used to represent the predicate. It returns -1 if
1477 /// none is found.
1478 int MachineInstr::findFirstPredOperandIdx() const {
1479   // Don't call MCID.findFirstPredOperandIdx() because this variant
1480   // is sometimes called on an instruction that's not yet complete, and
1481   // so the number of operands is less than the MCID indicates. In
1482   // particular, the PTX target does this.
1483   const MCInstrDesc &MCID = getDesc();
1484   if (MCID.isPredicable()) {
1485     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1486       if (MCID.OpInfo[i].isPredicate())
1487         return i;
1488   }
1489 
1490   return -1;
1491 }
1492 
1493 // MachineOperand::TiedTo is 4 bits wide.
1494 const unsigned TiedMax = 15;
1495 
1496 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1497 ///
1498 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1499 /// field. TiedTo can have these values:
1500 ///
1501 /// 0:              Operand is not tied to anything.
1502 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1503 /// TiedMax:        Tied to an operand >= TiedMax-1.
1504 ///
1505 /// The tied def must be one of the first TiedMax operands on a normal
1506 /// instruction. INLINEASM instructions allow more tied defs.
1507 ///
1508 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1509   MachineOperand &DefMO = getOperand(DefIdx);
1510   MachineOperand &UseMO = getOperand(UseIdx);
1511   assert(DefMO.isDef() && "DefIdx must be a def operand");
1512   assert(UseMO.isUse() && "UseIdx must be a use operand");
1513   assert(!DefMO.isTied() && "Def is already tied to another use");
1514   assert(!UseMO.isTied() && "Use is already tied to another def");
1515 
1516   if (DefIdx < TiedMax)
1517     UseMO.TiedTo = DefIdx + 1;
1518   else {
1519     // Inline asm can use the group descriptors to find tied operands, but on
1520     // normal instruction, the tied def must be within the first TiedMax
1521     // operands.
1522     assert(isInlineAsm() && "DefIdx out of range");
1523     UseMO.TiedTo = TiedMax;
1524   }
1525 
1526   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1527   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1528 }
1529 
1530 /// Given the index of a tied register operand, find the operand it is tied to.
1531 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1532 /// which must exist.
1533 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1534   const MachineOperand &MO = getOperand(OpIdx);
1535   assert(MO.isTied() && "Operand isn't tied");
1536 
1537   // Normally TiedTo is in range.
1538   if (MO.TiedTo < TiedMax)
1539     return MO.TiedTo - 1;
1540 
1541   // Uses on normal instructions can be out of range.
1542   if (!isInlineAsm()) {
1543     // Normal tied defs must be in the 0..TiedMax-1 range.
1544     if (MO.isUse())
1545       return TiedMax - 1;
1546     // MO is a def. Search for the tied use.
1547     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1548       const MachineOperand &UseMO = getOperand(i);
1549       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1550         return i;
1551     }
1552     llvm_unreachable("Can't find tied use");
1553   }
1554 
1555   // Now deal with inline asm by parsing the operand group descriptor flags.
1556   // Find the beginning of each operand group.
1557   SmallVector<unsigned, 8> GroupIdx;
1558   unsigned OpIdxGroup = ~0u;
1559   unsigned NumOps;
1560   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1561        i += NumOps) {
1562     const MachineOperand &FlagMO = getOperand(i);
1563     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1564     unsigned CurGroup = GroupIdx.size();
1565     GroupIdx.push_back(i);
1566     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1567     // OpIdx belongs to this operand group.
1568     if (OpIdx > i && OpIdx < i + NumOps)
1569       OpIdxGroup = CurGroup;
1570     unsigned TiedGroup;
1571     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1572       continue;
1573     // Operands in this group are tied to operands in TiedGroup which must be
1574     // earlier. Find the number of operands between the two groups.
1575     unsigned Delta = i - GroupIdx[TiedGroup];
1576 
1577     // OpIdx is a use tied to TiedGroup.
1578     if (OpIdxGroup == CurGroup)
1579       return OpIdx - Delta;
1580 
1581     // OpIdx is a def tied to this use group.
1582     if (OpIdxGroup == TiedGroup)
1583       return OpIdx + Delta;
1584   }
1585   llvm_unreachable("Invalid tied operand on inline asm");
1586 }
1587 
1588 /// clearKillInfo - Clears kill flags on all operands.
1589 ///
1590 void MachineInstr::clearKillInfo() {
1591   for (MachineOperand &MO : operands()) {
1592     if (MO.isReg() && MO.isUse())
1593       MO.setIsKill(false);
1594   }
1595 }
1596 
1597 void MachineInstr::substituteRegister(unsigned FromReg,
1598                                       unsigned ToReg,
1599                                       unsigned SubIdx,
1600                                       const TargetRegisterInfo &RegInfo) {
1601   if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
1602     if (SubIdx)
1603       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1604     for (MachineOperand &MO : operands()) {
1605       if (!MO.isReg() || MO.getReg() != FromReg)
1606         continue;
1607       MO.substPhysReg(ToReg, RegInfo);
1608     }
1609   } else {
1610     for (MachineOperand &MO : operands()) {
1611       if (!MO.isReg() || MO.getReg() != FromReg)
1612         continue;
1613       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1614     }
1615   }
1616 }
1617 
1618 /// isSafeToMove - Return true if it is safe to move this instruction. If
1619 /// SawStore is set to true, it means that there is a store (or call) between
1620 /// the instruction's location and its intended destination.
1621 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const {
1622   // Ignore stuff that we obviously can't move.
1623   //
1624   // Treat volatile loads as stores. This is not strictly necessary for
1625   // volatiles, but it is required for atomic loads. It is not allowed to move
1626   // a load across an atomic load with Ordering > Monotonic.
1627   if (mayStore() || isCall() ||
1628       (mayLoad() && hasOrderedMemoryRef())) {
1629     SawStore = true;
1630     return false;
1631   }
1632 
1633   if (isPosition() || isDebugValue() || isTerminator() ||
1634       hasUnmodeledSideEffects())
1635     return false;
1636 
1637   // See if this instruction does a load.  If so, we have to guarantee that the
1638   // loaded value doesn't change between the load and the its intended
1639   // destination. The check for isInvariantLoad gives the targe the chance to
1640   // classify the load as always returning a constant, e.g. a constant pool
1641   // load.
1642   if (mayLoad() && !isDereferenceableInvariantLoad(AA))
1643     // Otherwise, this is a real load.  If there is a store between the load and
1644     // end of block, we can't move it.
1645     return !SawStore;
1646 
1647   return true;
1648 }
1649 
1650 bool MachineInstr::mayAlias(AliasAnalysis *AA, MachineInstr &Other,
1651                             bool UseTBAA) {
1652   const MachineFunction *MF = getParent()->getParent();
1653   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1654 
1655   // If neither instruction stores to memory, they can't alias in any
1656   // meaningful way, even if they read from the same address.
1657   if (!mayStore() && !Other.mayStore())
1658     return false;
1659 
1660   // Let the target decide if memory accesses cannot possibly overlap.
1661   if (TII->areMemAccessesTriviallyDisjoint(*this, Other, AA))
1662     return false;
1663 
1664   if (!AA)
1665     return true;
1666 
1667   // FIXME: Need to handle multiple memory operands to support all targets.
1668   if (!hasOneMemOperand() || !Other.hasOneMemOperand())
1669     return true;
1670 
1671   MachineMemOperand *MMOa = *memoperands_begin();
1672   MachineMemOperand *MMOb = *Other.memoperands_begin();
1673 
1674   if (!MMOa->getValue() || !MMOb->getValue())
1675     return true;
1676 
1677   // The following interface to AA is fashioned after DAGCombiner::isAlias
1678   // and operates with MachineMemOperand offset with some important
1679   // assumptions:
1680   //   - LLVM fundamentally assumes flat address spaces.
1681   //   - MachineOperand offset can *only* result from legalization and
1682   //     cannot affect queries other than the trivial case of overlap
1683   //     checking.
1684   //   - These offsets never wrap and never step outside
1685   //     of allocated objects.
1686   //   - There should never be any negative offsets here.
1687   //
1688   // FIXME: Modify API to hide this math from "user"
1689   // FIXME: Even before we go to AA we can reason locally about some
1690   // memory objects. It can save compile time, and possibly catch some
1691   // corner cases not currently covered.
1692 
1693   assert((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset");
1694   assert((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset");
1695 
1696   int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset());
1697   int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset;
1698   int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset;
1699 
1700   AliasResult AAResult =
1701       AA->alias(MemoryLocation(MMOa->getValue(), Overlapa,
1702                                UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1703                 MemoryLocation(MMOb->getValue(), Overlapb,
1704                                UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1705 
1706   return (AAResult != NoAlias);
1707 }
1708 
1709 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1710 /// or volatile memory reference, or if the information describing the memory
1711 /// reference is not available. Return false if it is known to have no ordered
1712 /// memory references.
1713 bool MachineInstr::hasOrderedMemoryRef() const {
1714   // An instruction known never to access memory won't have a volatile access.
1715   if (!mayStore() &&
1716       !mayLoad() &&
1717       !isCall() &&
1718       !hasUnmodeledSideEffects())
1719     return false;
1720 
1721   // Otherwise, if the instruction has no memory reference information,
1722   // conservatively assume it wasn't preserved.
1723   if (memoperands_empty())
1724     return true;
1725 
1726   // Check if any of our memory operands are ordered.
1727   return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1728     return !MMO->isUnordered();
1729   });
1730 }
1731 
1732 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1733 /// trap and is loading from a location whose value is invariant across a run of
1734 /// this function.
1735 bool MachineInstr::isDereferenceableInvariantLoad(AliasAnalysis *AA) const {
1736   // If the instruction doesn't load at all, it isn't an invariant load.
1737   if (!mayLoad())
1738     return false;
1739 
1740   // If the instruction has lost its memoperands, conservatively assume that
1741   // it may not be an invariant load.
1742   if (memoperands_empty())
1743     return false;
1744 
1745   const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1746 
1747   for (MachineMemOperand *MMO : memoperands()) {
1748     if (MMO->isVolatile()) return false;
1749     if (MMO->isStore()) return false;
1750     if (MMO->isInvariant() && MMO->isDereferenceable())
1751       continue;
1752 
1753     // A load from a constant PseudoSourceValue is invariant.
1754     if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1755       if (PSV->isConstant(&MFI))
1756         continue;
1757 
1758     if (const Value *V = MMO->getValue()) {
1759       // If we have an AliasAnalysis, ask it whether the memory is constant.
1760       if (AA &&
1761           AA->pointsToConstantMemory(
1762               MemoryLocation(V, MMO->getSize(), MMO->getAAInfo())))
1763         continue;
1764     }
1765 
1766     // Otherwise assume conservatively.
1767     return false;
1768   }
1769 
1770   // Everything checks out.
1771   return true;
1772 }
1773 
1774 /// isConstantValuePHI - If the specified instruction is a PHI that always
1775 /// merges together the same virtual register, return the register, otherwise
1776 /// return 0.
1777 unsigned MachineInstr::isConstantValuePHI() const {
1778   if (!isPHI())
1779     return 0;
1780   assert(getNumOperands() >= 3 &&
1781          "It's illegal to have a PHI without source operands");
1782 
1783   unsigned Reg = getOperand(1).getReg();
1784   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1785     if (getOperand(i).getReg() != Reg)
1786       return 0;
1787   return Reg;
1788 }
1789 
1790 bool MachineInstr::hasUnmodeledSideEffects() const {
1791   if (hasProperty(MCID::UnmodeledSideEffects))
1792     return true;
1793   if (isInlineAsm()) {
1794     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1795     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1796       return true;
1797   }
1798 
1799   return false;
1800 }
1801 
1802 bool MachineInstr::isLoadFoldBarrier() const {
1803   return mayStore() || isCall() || hasUnmodeledSideEffects();
1804 }
1805 
1806 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1807 ///
1808 bool MachineInstr::allDefsAreDead() const {
1809   for (const MachineOperand &MO : operands()) {
1810     if (!MO.isReg() || MO.isUse())
1811       continue;
1812     if (!MO.isDead())
1813       return false;
1814   }
1815   return true;
1816 }
1817 
1818 /// copyImplicitOps - Copy implicit register operands from specified
1819 /// instruction to this instruction.
1820 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1821                                    const MachineInstr &MI) {
1822   for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands();
1823        i != e; ++i) {
1824     const MachineOperand &MO = MI.getOperand(i);
1825     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1826       addOperand(MF, MO);
1827   }
1828 }
1829 
1830 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1831 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1832   dbgs() << "  ";
1833   print(dbgs());
1834 }
1835 #endif
1836 
1837 void MachineInstr::print(raw_ostream &OS, bool SkipOpers, bool SkipDebugLoc,
1838                          const TargetInstrInfo *TII) const {
1839   const Module *M = nullptr;
1840   if (const MachineBasicBlock *MBB = getParent())
1841     if (const MachineFunction *MF = MBB->getParent())
1842       M = MF->getFunction()->getParent();
1843 
1844   ModuleSlotTracker MST(M);
1845   print(OS, MST, SkipOpers, SkipDebugLoc, TII);
1846 }
1847 
1848 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1849                          bool SkipOpers, bool SkipDebugLoc,
1850                          const TargetInstrInfo *TII) const {
1851   // We can be a bit tidier if we know the MachineFunction.
1852   const MachineFunction *MF = nullptr;
1853   const TargetRegisterInfo *TRI = nullptr;
1854   const MachineRegisterInfo *MRI = nullptr;
1855   const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1856 
1857   if (const MachineBasicBlock *MBB = getParent()) {
1858     MF = MBB->getParent();
1859     if (MF) {
1860       MRI = &MF->getRegInfo();
1861       TRI = MF->getSubtarget().getRegisterInfo();
1862       if (!TII)
1863         TII = MF->getSubtarget().getInstrInfo();
1864       IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
1865     }
1866   }
1867 
1868   // Save a list of virtual registers.
1869   SmallVector<unsigned, 8> VirtRegs;
1870 
1871   // Print explicitly defined operands on the left of an assignment syntax.
1872   unsigned StartOp = 0, e = getNumOperands();
1873   for (; StartOp < e && getOperand(StartOp).isReg() &&
1874          getOperand(StartOp).isDef() &&
1875          !getOperand(StartOp).isImplicit();
1876        ++StartOp) {
1877     if (StartOp != 0) OS << ", ";
1878     getOperand(StartOp).print(OS, MST, TRI, IntrinsicInfo);
1879     unsigned Reg = getOperand(StartOp).getReg();
1880     if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1881       VirtRegs.push_back(Reg);
1882       LLT Ty = MRI ? MRI->getType(Reg) : LLT{};
1883       if (Ty.isValid())
1884         OS << '(' << Ty << ')';
1885     }
1886   }
1887 
1888   if (StartOp != 0)
1889     OS << " = ";
1890 
1891   // Print the opcode name.
1892   if (TII)
1893     OS << TII->getName(getOpcode());
1894   else
1895     OS << "UNKNOWN";
1896 
1897   if (SkipOpers)
1898     return;
1899 
1900   // Print the rest of the operands.
1901   bool FirstOp = true;
1902   unsigned AsmDescOp = ~0u;
1903   unsigned AsmOpCount = 0;
1904 
1905   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1906     // Print asm string.
1907     OS << " ";
1908     getOperand(InlineAsm::MIOp_AsmString).print(OS, MST, TRI);
1909 
1910     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1911     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1912     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1913       OS << " [sideeffect]";
1914     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1915       OS << " [mayload]";
1916     if (ExtraInfo & InlineAsm::Extra_MayStore)
1917       OS << " [maystore]";
1918     if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1919       OS << " [isconvergent]";
1920     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1921       OS << " [alignstack]";
1922     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1923       OS << " [attdialect]";
1924     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1925       OS << " [inteldialect]";
1926 
1927     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1928     FirstOp = false;
1929   }
1930 
1931   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1932     const MachineOperand &MO = getOperand(i);
1933 
1934     if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1935       VirtRegs.push_back(MO.getReg());
1936 
1937     if (FirstOp) FirstOp = false; else OS << ",";
1938     OS << " ";
1939     if (i < getDesc().NumOperands) {
1940       const MCOperandInfo &MCOI = getDesc().OpInfo[i];
1941       if (MCOI.isPredicate())
1942         OS << "pred:";
1943       if (MCOI.isOptionalDef())
1944         OS << "opt:";
1945     }
1946     if (isDebugValue() && MO.isMetadata()) {
1947       // Pretty print DBG_VALUE instructions.
1948       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1949       if (DIV && !DIV->getName().empty())
1950         OS << "!\"" << DIV->getName() << '\"';
1951       else
1952         MO.print(OS, MST, TRI);
1953     } else if (TRI && (isInsertSubreg() || isRegSequence() ||
1954                        (isSubregToReg() && i == 3)) && MO.isImm()) {
1955       OS << TRI->getSubRegIndexName(MO.getImm());
1956     } else if (i == AsmDescOp && MO.isImm()) {
1957       // Pretty print the inline asm operand descriptor.
1958       OS << '$' << AsmOpCount++;
1959       unsigned Flag = MO.getImm();
1960       switch (InlineAsm::getKind(Flag)) {
1961       case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break;
1962       case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break;
1963       case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1964       case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break;
1965       case InlineAsm::Kind_Imm:                OS << ":[imm"; break;
1966       case InlineAsm::Kind_Mem:                OS << ":[mem"; break;
1967       default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1968       }
1969 
1970       unsigned RCID = 0;
1971       if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1972           InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1973         if (TRI) {
1974           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1975         } else
1976           OS << ":RC" << RCID;
1977       }
1978 
1979       if (InlineAsm::isMemKind(Flag)) {
1980         unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1981         switch (MCID) {
1982         case InlineAsm::Constraint_es: OS << ":es"; break;
1983         case InlineAsm::Constraint_i:  OS << ":i"; break;
1984         case InlineAsm::Constraint_m:  OS << ":m"; break;
1985         case InlineAsm::Constraint_o:  OS << ":o"; break;
1986         case InlineAsm::Constraint_v:  OS << ":v"; break;
1987         case InlineAsm::Constraint_Q:  OS << ":Q"; break;
1988         case InlineAsm::Constraint_R:  OS << ":R"; break;
1989         case InlineAsm::Constraint_S:  OS << ":S"; break;
1990         case InlineAsm::Constraint_T:  OS << ":T"; break;
1991         case InlineAsm::Constraint_Um: OS << ":Um"; break;
1992         case InlineAsm::Constraint_Un: OS << ":Un"; break;
1993         case InlineAsm::Constraint_Uq: OS << ":Uq"; break;
1994         case InlineAsm::Constraint_Us: OS << ":Us"; break;
1995         case InlineAsm::Constraint_Ut: OS << ":Ut"; break;
1996         case InlineAsm::Constraint_Uv: OS << ":Uv"; break;
1997         case InlineAsm::Constraint_Uy: OS << ":Uy"; break;
1998         case InlineAsm::Constraint_X:  OS << ":X"; break;
1999         case InlineAsm::Constraint_Z:  OS << ":Z"; break;
2000         case InlineAsm::Constraint_ZC: OS << ":ZC"; break;
2001         case InlineAsm::Constraint_Zy: OS << ":Zy"; break;
2002         default: OS << ":?"; break;
2003         }
2004       }
2005 
2006       unsigned TiedTo = 0;
2007       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
2008         OS << " tiedto:$" << TiedTo;
2009 
2010       OS << ']';
2011 
2012       // Compute the index of the next operand descriptor.
2013       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
2014     } else
2015       MO.print(OS, MST, TRI);
2016   }
2017 
2018   bool HaveSemi = false;
2019   const unsigned PrintableFlags = FrameSetup | FrameDestroy;
2020   if (Flags & PrintableFlags) {
2021     if (!HaveSemi) {
2022       OS << ";";
2023       HaveSemi = true;
2024     }
2025     OS << " flags: ";
2026 
2027     if (Flags & FrameSetup)
2028       OS << "FrameSetup";
2029 
2030     if (Flags & FrameDestroy)
2031       OS << "FrameDestroy";
2032   }
2033 
2034   if (!memoperands_empty()) {
2035     if (!HaveSemi) {
2036       OS << ";";
2037       HaveSemi = true;
2038     }
2039 
2040     OS << " mem:";
2041     for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
2042          i != e; ++i) {
2043       (*i)->print(OS, MST);
2044       if (std::next(i) != e)
2045         OS << " ";
2046     }
2047   }
2048 
2049   // Print the regclass of any virtual registers encountered.
2050   if (MRI && !VirtRegs.empty()) {
2051     if (!HaveSemi) {
2052       OS << ";";
2053       HaveSemi = true;
2054     }
2055     for (unsigned i = 0; i != VirtRegs.size(); ++i) {
2056       const RegClassOrRegBank &RC = MRI->getRegClassOrRegBank(VirtRegs[i]);
2057       if (!RC)
2058         continue;
2059       // Generic virtual registers do not have register classes.
2060       if (RC.is<const RegisterBank *>())
2061         OS << " " << RC.get<const RegisterBank *>()->getName();
2062       else
2063         OS << " "
2064            << TRI->getRegClassName(RC.get<const TargetRegisterClass *>());
2065       OS << ':' << PrintReg(VirtRegs[i]);
2066       for (unsigned j = i+1; j != VirtRegs.size();) {
2067         if (MRI->getRegClassOrRegBank(VirtRegs[j]) != RC) {
2068           ++j;
2069           continue;
2070         }
2071         if (VirtRegs[i] != VirtRegs[j])
2072           OS << "," << PrintReg(VirtRegs[j]);
2073         VirtRegs.erase(VirtRegs.begin()+j);
2074       }
2075     }
2076   }
2077 
2078   // Print debug location information.
2079   if (isDebugValue() && getOperand(e - 2).isMetadata()) {
2080     if (!HaveSemi)
2081       OS << ";";
2082     auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata());
2083     OS << " line no:" <<  DV->getLine();
2084     if (auto *InlinedAt = debugLoc->getInlinedAt()) {
2085       DebugLoc InlinedAtDL(InlinedAt);
2086       if (InlinedAtDL && MF) {
2087         OS << " inlined @[ ";
2088         InlinedAtDL.print(OS);
2089         OS << " ]";
2090       }
2091     }
2092     if (isIndirectDebugValue())
2093       OS << " indirect";
2094   } else if (SkipDebugLoc) {
2095     return;
2096   } else if (debugLoc && MF) {
2097     if (!HaveSemi)
2098       OS << ";";
2099     OS << " dbg:";
2100     debugLoc.print(OS);
2101   }
2102 
2103   OS << '\n';
2104 }
2105 
2106 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
2107                                      const TargetRegisterInfo *RegInfo,
2108                                      bool AddIfNotFound) {
2109   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
2110   bool hasAliases = isPhysReg &&
2111     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
2112   bool Found = false;
2113   SmallVector<unsigned,4> DeadOps;
2114   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2115     MachineOperand &MO = getOperand(i);
2116     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
2117       continue;
2118 
2119     // DEBUG_VALUE nodes do not contribute to code generation and should
2120     // always be ignored. Failure to do so may result in trying to modify
2121     // KILL flags on DEBUG_VALUE nodes.
2122     if (MO.isDebug())
2123       continue;
2124 
2125     unsigned Reg = MO.getReg();
2126     if (!Reg)
2127       continue;
2128 
2129     if (Reg == IncomingReg) {
2130       if (!Found) {
2131         if (MO.isKill())
2132           // The register is already marked kill.
2133           return true;
2134         if (isPhysReg && isRegTiedToDefOperand(i))
2135           // Two-address uses of physregs must not be marked kill.
2136           return true;
2137         MO.setIsKill();
2138         Found = true;
2139       }
2140     } else if (hasAliases && MO.isKill() &&
2141                TargetRegisterInfo::isPhysicalRegister(Reg)) {
2142       // A super-register kill already exists.
2143       if (RegInfo->isSuperRegister(IncomingReg, Reg))
2144         return true;
2145       if (RegInfo->isSubRegister(IncomingReg, Reg))
2146         DeadOps.push_back(i);
2147     }
2148   }
2149 
2150   // Trim unneeded kill operands.
2151   while (!DeadOps.empty()) {
2152     unsigned OpIdx = DeadOps.back();
2153     if (getOperand(OpIdx).isImplicit())
2154       RemoveOperand(OpIdx);
2155     else
2156       getOperand(OpIdx).setIsKill(false);
2157     DeadOps.pop_back();
2158   }
2159 
2160   // If not found, this means an alias of one of the operands is killed. Add a
2161   // new implicit operand if required.
2162   if (!Found && AddIfNotFound) {
2163     addOperand(MachineOperand::CreateReg(IncomingReg,
2164                                          false /*IsDef*/,
2165                                          true  /*IsImp*/,
2166                                          true  /*IsKill*/));
2167     return true;
2168   }
2169   return Found;
2170 }
2171 
2172 void MachineInstr::clearRegisterKills(unsigned Reg,
2173                                       const TargetRegisterInfo *RegInfo) {
2174   if (!TargetRegisterInfo::isPhysicalRegister(Reg))
2175     RegInfo = nullptr;
2176   for (MachineOperand &MO : operands()) {
2177     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
2178       continue;
2179     unsigned OpReg = MO.getReg();
2180     if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
2181       MO.setIsKill(false);
2182   }
2183 }
2184 
2185 bool MachineInstr::addRegisterDead(unsigned Reg,
2186                                    const TargetRegisterInfo *RegInfo,
2187                                    bool AddIfNotFound) {
2188   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg);
2189   bool hasAliases = isPhysReg &&
2190     MCRegAliasIterator(Reg, RegInfo, false).isValid();
2191   bool Found = false;
2192   SmallVector<unsigned,4> DeadOps;
2193   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2194     MachineOperand &MO = getOperand(i);
2195     if (!MO.isReg() || !MO.isDef())
2196       continue;
2197     unsigned MOReg = MO.getReg();
2198     if (!MOReg)
2199       continue;
2200 
2201     if (MOReg == Reg) {
2202       MO.setIsDead();
2203       Found = true;
2204     } else if (hasAliases && MO.isDead() &&
2205                TargetRegisterInfo::isPhysicalRegister(MOReg)) {
2206       // There exists a super-register that's marked dead.
2207       if (RegInfo->isSuperRegister(Reg, MOReg))
2208         return true;
2209       if (RegInfo->isSubRegister(Reg, MOReg))
2210         DeadOps.push_back(i);
2211     }
2212   }
2213 
2214   // Trim unneeded dead operands.
2215   while (!DeadOps.empty()) {
2216     unsigned OpIdx = DeadOps.back();
2217     if (getOperand(OpIdx).isImplicit())
2218       RemoveOperand(OpIdx);
2219     else
2220       getOperand(OpIdx).setIsDead(false);
2221     DeadOps.pop_back();
2222   }
2223 
2224   // If not found, this means an alias of one of the operands is dead. Add a
2225   // new implicit operand if required.
2226   if (Found || !AddIfNotFound)
2227     return Found;
2228 
2229   addOperand(MachineOperand::CreateReg(Reg,
2230                                        true  /*IsDef*/,
2231                                        true  /*IsImp*/,
2232                                        false /*IsKill*/,
2233                                        true  /*IsDead*/));
2234   return true;
2235 }
2236 
2237 void MachineInstr::clearRegisterDeads(unsigned Reg) {
2238   for (MachineOperand &MO : operands()) {
2239     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
2240       continue;
2241     MO.setIsDead(false);
2242   }
2243 }
2244 
2245 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) {
2246   for (MachineOperand &MO : operands()) {
2247     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
2248       continue;
2249     MO.setIsUndef(IsUndef);
2250   }
2251 }
2252 
2253 void MachineInstr::addRegisterDefined(unsigned Reg,
2254                                       const TargetRegisterInfo *RegInfo) {
2255   if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
2256     MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo);
2257     if (MO)
2258       return;
2259   } else {
2260     for (const MachineOperand &MO : operands()) {
2261       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
2262           MO.getSubReg() == 0)
2263         return;
2264     }
2265   }
2266   addOperand(MachineOperand::CreateReg(Reg,
2267                                        true  /*IsDef*/,
2268                                        true  /*IsImp*/));
2269 }
2270 
2271 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
2272                                          const TargetRegisterInfo &TRI) {
2273   bool HasRegMask = false;
2274   for (MachineOperand &MO : operands()) {
2275     if (MO.isRegMask()) {
2276       HasRegMask = true;
2277       continue;
2278     }
2279     if (!MO.isReg() || !MO.isDef()) continue;
2280     unsigned Reg = MO.getReg();
2281     if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
2282     // If there are no uses, including partial uses, the def is dead.
2283     if (llvm::none_of(UsedRegs,
2284                       [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); }))
2285       MO.setIsDead();
2286   }
2287 
2288   // This is a call with a register mask operand.
2289   // Mask clobbers are always dead, so add defs for the non-dead defines.
2290   if (HasRegMask)
2291     for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
2292          I != E; ++I)
2293       addRegisterDefined(*I, &TRI);
2294 }
2295 
2296 unsigned
2297 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
2298   // Build up a buffer of hash code components.
2299   SmallVector<size_t, 8> HashComponents;
2300   HashComponents.reserve(MI->getNumOperands() + 1);
2301   HashComponents.push_back(MI->getOpcode());
2302   for (const MachineOperand &MO : MI->operands()) {
2303     if (MO.isReg() && MO.isDef() &&
2304         TargetRegisterInfo::isVirtualRegister(MO.getReg()))
2305       continue;  // Skip virtual register defs.
2306 
2307     HashComponents.push_back(hash_value(MO));
2308   }
2309   return hash_combine_range(HashComponents.begin(), HashComponents.end());
2310 }
2311 
2312 void MachineInstr::emitError(StringRef Msg) const {
2313   // Find the source location cookie.
2314   unsigned LocCookie = 0;
2315   const MDNode *LocMD = nullptr;
2316   for (unsigned i = getNumOperands(); i != 0; --i) {
2317     if (getOperand(i-1).isMetadata() &&
2318         (LocMD = getOperand(i-1).getMetadata()) &&
2319         LocMD->getNumOperands() != 0) {
2320       if (const ConstantInt *CI =
2321               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
2322         LocCookie = CI->getZExtValue();
2323         break;
2324       }
2325     }
2326   }
2327 
2328   if (const MachineBasicBlock *MBB = getParent())
2329     if (const MachineFunction *MF = MBB->getParent())
2330       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2331   report_fatal_error(Msg);
2332 }
2333 
2334 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2335                                   const MCInstrDesc &MCID, bool IsIndirect,
2336                                   unsigned Reg, unsigned Offset,
2337                                   const MDNode *Variable, const MDNode *Expr) {
2338   assert(isa<DILocalVariable>(Variable) && "not a variable");
2339   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2340   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2341          "Expected inlined-at fields to agree");
2342   if (IsIndirect)
2343     return BuildMI(MF, DL, MCID)
2344         .addReg(Reg, RegState::Debug)
2345         .addImm(Offset)
2346         .addMetadata(Variable)
2347         .addMetadata(Expr);
2348   else {
2349     assert(Offset == 0 && "A direct address cannot have an offset.");
2350     return BuildMI(MF, DL, MCID)
2351         .addReg(Reg, RegState::Debug)
2352         .addReg(0U, RegState::Debug)
2353         .addMetadata(Variable)
2354         .addMetadata(Expr);
2355   }
2356 }
2357 
2358 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2359                                   MachineBasicBlock::iterator I,
2360                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2361                                   bool IsIndirect, unsigned Reg,
2362                                   unsigned Offset, const MDNode *Variable,
2363                                   const MDNode *Expr) {
2364   assert(isa<DILocalVariable>(Variable) && "not a variable");
2365   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2366   MachineFunction &MF = *BB.getParent();
2367   MachineInstr *MI =
2368       BuildMI(MF, DL, MCID, IsIndirect, Reg, Offset, Variable, Expr);
2369   BB.insert(I, MI);
2370   return MachineInstrBuilder(MF, MI);
2371 }
2372 
2373 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
2374                                           MachineBasicBlock::iterator I,
2375                                           const MachineInstr &Orig,
2376                                           int FrameIndex) {
2377   const MDNode *Var = Orig.getDebugVariable();
2378   const auto *Expr = cast_or_null<DIExpression>(Orig.getDebugExpression());
2379   bool IsIndirect = Orig.isIndirectDebugValue();
2380   uint64_t Offset = IsIndirect ? Orig.getOperand(1).getImm() : 0;
2381   DebugLoc DL = Orig.getDebugLoc();
2382   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
2383          "Expected inlined-at fields to agree");
2384   // If the DBG_VALUE already was a memory location, add an extra
2385   // DW_OP_deref. Otherwise just turning this from a register into a
2386   // memory/indirect location is sufficient.
2387   if (IsIndirect)
2388     Expr = DIExpression::prepend(Expr, DIExpression::WithDeref);
2389   return BuildMI(BB, I, DL, Orig.getDesc())
2390       .addFrameIndex(FrameIndex)
2391       .addImm(Offset)
2392       .addMetadata(Var)
2393       .addMetadata(Expr);
2394 }
2395