xref: /llvm-project/llvm/lib/CodeGen/MachineInstr.cpp (revision d4ff3360ae972da790834818b6b63f54037334d4)
1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Methods common to all machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/ADT/FoldingSet.h"
16 #include "llvm/ADT/Hashing.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/CodeGen/MachineConstantPool.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineMemOperand.h"
21 #include "llvm/CodeGen/MachineModuleInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/PseudoSourceValue.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DebugInfo.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InlineAsm.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/IR/ModuleSlotTracker.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/MC/MCInstrDesc.h"
35 #include "llvm/MC/MCSymbol.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Support/type_traits.h"
42 #include "llvm/Target/TargetInstrInfo.h"
43 #include "llvm/Target/TargetMachine.h"
44 #include "llvm/Target/TargetRegisterInfo.h"
45 #include "llvm/Target/TargetSubtargetInfo.h"
46 using namespace llvm;
47 
48 static cl::opt<bool> PrintWholeRegMask(
49     "print-whole-regmask",
50     cl::desc("Print the full contents of regmask operands in IR dumps"),
51     cl::init(true), cl::Hidden);
52 
53 //===----------------------------------------------------------------------===//
54 // MachineOperand Implementation
55 //===----------------------------------------------------------------------===//
56 
57 void MachineOperand::setReg(unsigned Reg) {
58   if (getReg() == Reg) return; // No change.
59 
60   // Otherwise, we have to change the register.  If this operand is embedded
61   // into a machine function, we need to update the old and new register's
62   // use/def lists.
63   if (MachineInstr *MI = getParent())
64     if (MachineBasicBlock *MBB = MI->getParent())
65       if (MachineFunction *MF = MBB->getParent()) {
66         MachineRegisterInfo &MRI = MF->getRegInfo();
67         MRI.removeRegOperandFromUseList(this);
68         SmallContents.RegNo = Reg;
69         MRI.addRegOperandToUseList(this);
70         return;
71       }
72 
73   // Otherwise, just change the register, no problem.  :)
74   SmallContents.RegNo = Reg;
75 }
76 
77 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
78                                   const TargetRegisterInfo &TRI) {
79   assert(TargetRegisterInfo::isVirtualRegister(Reg));
80   if (SubIdx && getSubReg())
81     SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
82   setReg(Reg);
83   if (SubIdx)
84     setSubReg(SubIdx);
85 }
86 
87 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
88   assert(TargetRegisterInfo::isPhysicalRegister(Reg));
89   if (getSubReg()) {
90     Reg = TRI.getSubReg(Reg, getSubReg());
91     // Note that getSubReg() may return 0 if the sub-register doesn't exist.
92     // That won't happen in legal code.
93     setSubReg(0);
94   }
95   setReg(Reg);
96 }
97 
98 /// Change a def to a use, or a use to a def.
99 void MachineOperand::setIsDef(bool Val) {
100   assert(isReg() && "Wrong MachineOperand accessor");
101   assert((!Val || !isDebug()) && "Marking a debug operation as def");
102   if (IsDef == Val)
103     return;
104   // MRI may keep uses and defs in different list positions.
105   if (MachineInstr *MI = getParent())
106     if (MachineBasicBlock *MBB = MI->getParent())
107       if (MachineFunction *MF = MBB->getParent()) {
108         MachineRegisterInfo &MRI = MF->getRegInfo();
109         MRI.removeRegOperandFromUseList(this);
110         IsDef = Val;
111         MRI.addRegOperandToUseList(this);
112         return;
113       }
114   IsDef = Val;
115 }
116 
117 // If this operand is currently a register operand, and if this is in a
118 // function, deregister the operand from the register's use/def list.
119 void MachineOperand::removeRegFromUses() {
120   if (!isReg() || !isOnRegUseList())
121     return;
122 
123   if (MachineInstr *MI = getParent()) {
124     if (MachineBasicBlock *MBB = MI->getParent()) {
125       if (MachineFunction *MF = MBB->getParent())
126         MF->getRegInfo().removeRegOperandFromUseList(this);
127     }
128   }
129 }
130 
131 /// ChangeToImmediate - Replace this operand with a new immediate operand of
132 /// the specified value.  If an operand is known to be an immediate already,
133 /// the setImm method should be used.
134 void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
135   assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
136 
137   removeRegFromUses();
138 
139   OpKind = MO_Immediate;
140   Contents.ImmVal = ImmVal;
141 }
142 
143 void MachineOperand::ChangeToFPImmediate(const ConstantFP *FPImm) {
144   assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
145 
146   removeRegFromUses();
147 
148   OpKind = MO_FPImmediate;
149   Contents.CFP = FPImm;
150 }
151 
152 void MachineOperand::ChangeToES(const char *SymName, unsigned char TargetFlags) {
153   assert((!isReg() || !isTied()) &&
154          "Cannot change a tied operand into an external symbol");
155 
156   removeRegFromUses();
157 
158   OpKind = MO_ExternalSymbol;
159   Contents.OffsetedInfo.Val.SymbolName = SymName;
160   setOffset(0); // Offset is always 0.
161   setTargetFlags(TargetFlags);
162 }
163 
164 void MachineOperand::ChangeToMCSymbol(MCSymbol *Sym) {
165   assert((!isReg() || !isTied()) &&
166          "Cannot change a tied operand into an MCSymbol");
167 
168   removeRegFromUses();
169 
170   OpKind = MO_MCSymbol;
171   Contents.Sym = Sym;
172 }
173 
174 /// ChangeToRegister - Replace this operand with a new register operand of
175 /// the specified value.  If an operand is known to be an register already,
176 /// the setReg method should be used.
177 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
178                                       bool isKill, bool isDead, bool isUndef,
179                                       bool isDebug) {
180   MachineRegisterInfo *RegInfo = nullptr;
181   if (MachineInstr *MI = getParent())
182     if (MachineBasicBlock *MBB = MI->getParent())
183       if (MachineFunction *MF = MBB->getParent())
184         RegInfo = &MF->getRegInfo();
185   // If this operand is already a register operand, remove it from the
186   // register's use/def lists.
187   bool WasReg = isReg();
188   if (RegInfo && WasReg)
189     RegInfo->removeRegOperandFromUseList(this);
190 
191   // Change this to a register and set the reg#.
192   OpKind = MO_Register;
193   SmallContents.RegNo = Reg;
194   SubReg_TargetFlags = 0;
195   IsDef = isDef;
196   IsImp = isImp;
197   IsKill = isKill;
198   IsDead = isDead;
199   IsUndef = isUndef;
200   IsInternalRead = false;
201   IsEarlyClobber = false;
202   IsDebug = isDebug;
203   // Ensure isOnRegUseList() returns false.
204   Contents.Reg.Prev = nullptr;
205   // Preserve the tie when the operand was already a register.
206   if (!WasReg)
207     TiedTo = 0;
208 
209   // If this operand is embedded in a function, add the operand to the
210   // register's use/def list.
211   if (RegInfo)
212     RegInfo->addRegOperandToUseList(this);
213 }
214 
215 /// isIdenticalTo - Return true if this operand is identical to the specified
216 /// operand. Note that this should stay in sync with the hash_value overload
217 /// below.
218 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
219   if (getType() != Other.getType() ||
220       getTargetFlags() != Other.getTargetFlags())
221     return false;
222 
223   switch (getType()) {
224   case MachineOperand::MO_Register:
225     return getReg() == Other.getReg() && isDef() == Other.isDef() &&
226            getSubReg() == Other.getSubReg();
227   case MachineOperand::MO_Immediate:
228     return getImm() == Other.getImm();
229   case MachineOperand::MO_CImmediate:
230     return getCImm() == Other.getCImm();
231   case MachineOperand::MO_FPImmediate:
232     return getFPImm() == Other.getFPImm();
233   case MachineOperand::MO_MachineBasicBlock:
234     return getMBB() == Other.getMBB();
235   case MachineOperand::MO_FrameIndex:
236     return getIndex() == Other.getIndex();
237   case MachineOperand::MO_ConstantPoolIndex:
238   case MachineOperand::MO_TargetIndex:
239     return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
240   case MachineOperand::MO_JumpTableIndex:
241     return getIndex() == Other.getIndex();
242   case MachineOperand::MO_GlobalAddress:
243     return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
244   case MachineOperand::MO_ExternalSymbol:
245     return !strcmp(getSymbolName(), Other.getSymbolName()) &&
246            getOffset() == Other.getOffset();
247   case MachineOperand::MO_BlockAddress:
248     return getBlockAddress() == Other.getBlockAddress() &&
249            getOffset() == Other.getOffset();
250   case MachineOperand::MO_RegisterMask:
251   case MachineOperand::MO_RegisterLiveOut:
252     return getRegMask() == Other.getRegMask();
253   case MachineOperand::MO_MCSymbol:
254     return getMCSymbol() == Other.getMCSymbol();
255   case MachineOperand::MO_CFIIndex:
256     return getCFIIndex() == Other.getCFIIndex();
257   case MachineOperand::MO_Metadata:
258     return getMetadata() == Other.getMetadata();
259   }
260   llvm_unreachable("Invalid machine operand type");
261 }
262 
263 // Note: this must stay exactly in sync with isIdenticalTo above.
264 hash_code llvm::hash_value(const MachineOperand &MO) {
265   switch (MO.getType()) {
266   case MachineOperand::MO_Register:
267     // Register operands don't have target flags.
268     return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef());
269   case MachineOperand::MO_Immediate:
270     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm());
271   case MachineOperand::MO_CImmediate:
272     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm());
273   case MachineOperand::MO_FPImmediate:
274     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm());
275   case MachineOperand::MO_MachineBasicBlock:
276     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB());
277   case MachineOperand::MO_FrameIndex:
278     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
279   case MachineOperand::MO_ConstantPoolIndex:
280   case MachineOperand::MO_TargetIndex:
281     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(),
282                         MO.getOffset());
283   case MachineOperand::MO_JumpTableIndex:
284     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
285   case MachineOperand::MO_ExternalSymbol:
286     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(),
287                         MO.getSymbolName());
288   case MachineOperand::MO_GlobalAddress:
289     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(),
290                         MO.getOffset());
291   case MachineOperand::MO_BlockAddress:
292     return hash_combine(MO.getType(), MO.getTargetFlags(),
293                         MO.getBlockAddress(), MO.getOffset());
294   case MachineOperand::MO_RegisterMask:
295   case MachineOperand::MO_RegisterLiveOut:
296     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask());
297   case MachineOperand::MO_Metadata:
298     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata());
299   case MachineOperand::MO_MCSymbol:
300     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol());
301   case MachineOperand::MO_CFIIndex:
302     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex());
303   }
304   llvm_unreachable("Invalid machine operand type");
305 }
306 
307 void MachineOperand::print(raw_ostream &OS,
308                            const TargetRegisterInfo *TRI) const {
309   ModuleSlotTracker DummyMST(nullptr);
310   print(OS, DummyMST, TRI);
311 }
312 
313 void MachineOperand::print(raw_ostream &OS, ModuleSlotTracker &MST,
314                            const TargetRegisterInfo *TRI) const {
315   switch (getType()) {
316   case MachineOperand::MO_Register:
317     OS << PrintReg(getReg(), TRI, getSubReg());
318 
319     if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
320         isInternalRead() || isEarlyClobber() || isTied()) {
321       OS << '<';
322       bool NeedComma = false;
323       if (isDef()) {
324         if (NeedComma) OS << ',';
325         if (isEarlyClobber())
326           OS << "earlyclobber,";
327         if (isImplicit())
328           OS << "imp-";
329         OS << "def";
330         NeedComma = true;
331         // <def,read-undef> only makes sense when getSubReg() is set.
332         // Don't clutter the output otherwise.
333         if (isUndef() && getSubReg())
334           OS << ",read-undef";
335       } else if (isImplicit()) {
336         OS << "imp-use";
337         NeedComma = true;
338       }
339 
340       if (isKill()) {
341         if (NeedComma) OS << ',';
342         OS << "kill";
343         NeedComma = true;
344       }
345       if (isDead()) {
346         if (NeedComma) OS << ',';
347         OS << "dead";
348         NeedComma = true;
349       }
350       if (isUndef() && isUse()) {
351         if (NeedComma) OS << ',';
352         OS << "undef";
353         NeedComma = true;
354       }
355       if (isInternalRead()) {
356         if (NeedComma) OS << ',';
357         OS << "internal";
358         NeedComma = true;
359       }
360       if (isTied()) {
361         if (NeedComma) OS << ',';
362         OS << "tied";
363         if (TiedTo != 15)
364           OS << unsigned(TiedTo - 1);
365       }
366       OS << '>';
367     }
368     break;
369   case MachineOperand::MO_Immediate:
370     OS << getImm();
371     break;
372   case MachineOperand::MO_CImmediate:
373     getCImm()->getValue().print(OS, false);
374     break;
375   case MachineOperand::MO_FPImmediate:
376     if (getFPImm()->getType()->isFloatTy()) {
377       OS << getFPImm()->getValueAPF().convertToFloat();
378     } else if (getFPImm()->getType()->isHalfTy()) {
379       APFloat APF = getFPImm()->getValueAPF();
380       bool Unused;
381       APF.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &Unused);
382       OS << "half " << APF.convertToFloat();
383     } else {
384       OS << getFPImm()->getValueAPF().convertToDouble();
385     }
386     break;
387   case MachineOperand::MO_MachineBasicBlock:
388     OS << "<BB#" << getMBB()->getNumber() << ">";
389     break;
390   case MachineOperand::MO_FrameIndex:
391     OS << "<fi#" << getIndex() << '>';
392     break;
393   case MachineOperand::MO_ConstantPoolIndex:
394     OS << "<cp#" << getIndex();
395     if (getOffset()) OS << "+" << getOffset();
396     OS << '>';
397     break;
398   case MachineOperand::MO_TargetIndex:
399     OS << "<ti#" << getIndex();
400     if (getOffset()) OS << "+" << getOffset();
401     OS << '>';
402     break;
403   case MachineOperand::MO_JumpTableIndex:
404     OS << "<jt#" << getIndex() << '>';
405     break;
406   case MachineOperand::MO_GlobalAddress:
407     OS << "<ga:";
408     getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST);
409     if (getOffset()) OS << "+" << getOffset();
410     OS << '>';
411     break;
412   case MachineOperand::MO_ExternalSymbol:
413     OS << "<es:" << getSymbolName();
414     if (getOffset()) OS << "+" << getOffset();
415     OS << '>';
416     break;
417   case MachineOperand::MO_BlockAddress:
418     OS << '<';
419     getBlockAddress()->printAsOperand(OS, /*PrintType=*/false, MST);
420     if (getOffset()) OS << "+" << getOffset();
421     OS << '>';
422     break;
423   case MachineOperand::MO_RegisterMask: {
424     unsigned NumRegsInMask = 0;
425     unsigned NumRegsEmitted = 0;
426     OS << "<regmask";
427     for (unsigned i = 0; i < TRI->getNumRegs(); ++i) {
428       unsigned MaskWord = i / 32;
429       unsigned MaskBit = i % 32;
430       if (getRegMask()[MaskWord] & (1 << MaskBit)) {
431         if (PrintWholeRegMask || NumRegsEmitted <= 10) {
432           OS << " " << PrintReg(i, TRI);
433           NumRegsEmitted++;
434         }
435         NumRegsInMask++;
436       }
437     }
438     if (NumRegsEmitted != NumRegsInMask)
439       OS << " and " << (NumRegsInMask - NumRegsEmitted) << " more...";
440     OS << ">";
441     break;
442   }
443   case MachineOperand::MO_RegisterLiveOut:
444     OS << "<regliveout>";
445     break;
446   case MachineOperand::MO_Metadata:
447     OS << '<';
448     getMetadata()->printAsOperand(OS, MST);
449     OS << '>';
450     break;
451   case MachineOperand::MO_MCSymbol:
452     OS << "<MCSym=" << *getMCSymbol() << '>';
453     break;
454   case MachineOperand::MO_CFIIndex:
455     OS << "<call frame instruction>";
456     break;
457   }
458 
459   if (unsigned TF = getTargetFlags())
460     OS << "[TF=" << TF << ']';
461 }
462 
463 //===----------------------------------------------------------------------===//
464 // MachineMemOperand Implementation
465 //===----------------------------------------------------------------------===//
466 
467 /// getAddrSpace - Return the LLVM IR address space number that this pointer
468 /// points into.
469 unsigned MachinePointerInfo::getAddrSpace() const {
470   if (V.isNull() || V.is<const PseudoSourceValue*>()) return 0;
471   return cast<PointerType>(V.get<const Value*>()->getType())->getAddressSpace();
472 }
473 
474 /// getConstantPool - Return a MachinePointerInfo record that refers to the
475 /// constant pool.
476 MachinePointerInfo MachinePointerInfo::getConstantPool(MachineFunction &MF) {
477   return MachinePointerInfo(MF.getPSVManager().getConstantPool());
478 }
479 
480 /// getFixedStack - Return a MachinePointerInfo record that refers to the
481 /// the specified FrameIndex.
482 MachinePointerInfo MachinePointerInfo::getFixedStack(MachineFunction &MF,
483                                                      int FI, int64_t Offset) {
484   return MachinePointerInfo(MF.getPSVManager().getFixedStack(FI), Offset);
485 }
486 
487 MachinePointerInfo MachinePointerInfo::getJumpTable(MachineFunction &MF) {
488   return MachinePointerInfo(MF.getPSVManager().getJumpTable());
489 }
490 
491 MachinePointerInfo MachinePointerInfo::getGOT(MachineFunction &MF) {
492   return MachinePointerInfo(MF.getPSVManager().getGOT());
493 }
494 
495 MachinePointerInfo MachinePointerInfo::getStack(MachineFunction &MF,
496                                                 int64_t Offset) {
497   return MachinePointerInfo(MF.getPSVManager().getStack(), Offset);
498 }
499 
500 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f,
501                                      uint64_t s, unsigned int a,
502                                      const AAMDNodes &AAInfo,
503                                      const MDNode *Ranges)
504   : PtrInfo(ptrinfo), Size(s),
505     Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)),
506     AAInfo(AAInfo), Ranges(Ranges) {
507   assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() ||
508           isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) &&
509          "invalid pointer value");
510   assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
511   assert((isLoad() || isStore()) && "Not a load/store!");
512 }
513 
514 /// Profile - Gather unique data for the object.
515 ///
516 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
517   ID.AddInteger(getOffset());
518   ID.AddInteger(Size);
519   ID.AddPointer(getOpaqueValue());
520   ID.AddInteger(Flags);
521 }
522 
523 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
524   // The Value and Offset may differ due to CSE. But the flags and size
525   // should be the same.
526   assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
527   assert(MMO->getSize() == getSize() && "Size mismatch!");
528 
529   if (MMO->getBaseAlignment() >= getBaseAlignment()) {
530     // Update the alignment value.
531     Flags = (Flags & ((1 << MOMaxBits) - 1)) |
532       ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits);
533     // Also update the base and offset, because the new alignment may
534     // not be applicable with the old ones.
535     PtrInfo = MMO->PtrInfo;
536   }
537 }
538 
539 /// getAlignment - Return the minimum known alignment in bytes of the
540 /// actual memory reference.
541 uint64_t MachineMemOperand::getAlignment() const {
542   return MinAlign(getBaseAlignment(), getOffset());
543 }
544 
545 void MachineMemOperand::print(raw_ostream &OS) const {
546   ModuleSlotTracker DummyMST(nullptr);
547   print(OS, DummyMST);
548 }
549 void MachineMemOperand::print(raw_ostream &OS, ModuleSlotTracker &MST) const {
550   assert((isLoad() || isStore()) &&
551          "SV has to be a load, store or both.");
552 
553   if (isVolatile())
554     OS << "Volatile ";
555 
556   if (isLoad())
557     OS << "LD";
558   if (isStore())
559     OS << "ST";
560   OS << getSize();
561 
562   // Print the address information.
563   OS << "[";
564   if (const Value *V = getValue())
565     V->printAsOperand(OS, /*PrintType=*/false, MST);
566   else if (const PseudoSourceValue *PSV = getPseudoValue())
567     PSV->printCustom(OS);
568   else
569     OS << "<unknown>";
570 
571   unsigned AS = getAddrSpace();
572   if (AS != 0)
573     OS << "(addrspace=" << AS << ')';
574 
575   // If the alignment of the memory reference itself differs from the alignment
576   // of the base pointer, print the base alignment explicitly, next to the base
577   // pointer.
578   if (getBaseAlignment() != getAlignment())
579     OS << "(align=" << getBaseAlignment() << ")";
580 
581   if (getOffset() != 0)
582     OS << "+" << getOffset();
583   OS << "]";
584 
585   // Print the alignment of the reference.
586   if (getBaseAlignment() != getAlignment() || getBaseAlignment() != getSize())
587     OS << "(align=" << getAlignment() << ")";
588 
589   // Print TBAA info.
590   if (const MDNode *TBAAInfo = getAAInfo().TBAA) {
591     OS << "(tbaa=";
592     if (TBAAInfo->getNumOperands() > 0)
593       TBAAInfo->getOperand(0)->printAsOperand(OS, MST);
594     else
595       OS << "<unknown>";
596     OS << ")";
597   }
598 
599   // Print AA scope info.
600   if (const MDNode *ScopeInfo = getAAInfo().Scope) {
601     OS << "(alias.scope=";
602     if (ScopeInfo->getNumOperands() > 0)
603       for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) {
604         ScopeInfo->getOperand(i)->printAsOperand(OS, MST);
605         if (i != ie-1)
606           OS << ",";
607       }
608     else
609       OS << "<unknown>";
610     OS << ")";
611   }
612 
613   // Print AA noalias scope info.
614   if (const MDNode *NoAliasInfo = getAAInfo().NoAlias) {
615     OS << "(noalias=";
616     if (NoAliasInfo->getNumOperands() > 0)
617       for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) {
618         NoAliasInfo->getOperand(i)->printAsOperand(OS, MST);
619         if (i != ie-1)
620           OS << ",";
621       }
622     else
623       OS << "<unknown>";
624     OS << ")";
625   }
626 
627   // Print nontemporal info.
628   if (isNonTemporal())
629     OS << "(nontemporal)";
630 
631   if (isInvariant())
632     OS << "(invariant)";
633 }
634 
635 //===----------------------------------------------------------------------===//
636 // MachineInstr Implementation
637 //===----------------------------------------------------------------------===//
638 
639 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
640   if (MCID->ImplicitDefs)
641     for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
642            ++ImpDefs)
643       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
644   if (MCID->ImplicitUses)
645     for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
646            ++ImpUses)
647       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
648 }
649 
650 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
651 /// implicit operands. It reserves space for the number of operands specified by
652 /// the MCInstrDesc.
653 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
654                            DebugLoc dl, bool NoImp)
655     : MCID(&tid), Parent(nullptr), Operands(nullptr), NumOperands(0), Flags(0),
656       AsmPrinterFlags(0), NumMemRefs(0), MemRefs(nullptr),
657       debugLoc(std::move(dl))
658 #ifdef LLVM_BUILD_GLOBAL_ISEL
659       ,
660       Ty(nullptr)
661 #endif
662 {
663   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
664 
665   // Reserve space for the expected number of operands.
666   if (unsigned NumOps = MCID->getNumOperands() +
667     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
668     CapOperands = OperandCapacity::get(NumOps);
669     Operands = MF.allocateOperandArray(CapOperands);
670   }
671 
672   if (!NoImp)
673     addImplicitDefUseOperands(MF);
674 }
675 
676 /// MachineInstr ctor - Copies MachineInstr arg exactly
677 ///
678 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
679     : MCID(&MI.getDesc()), Parent(nullptr), Operands(nullptr), NumOperands(0),
680       Flags(0), AsmPrinterFlags(0), NumMemRefs(MI.NumMemRefs),
681       MemRefs(MI.MemRefs), debugLoc(MI.getDebugLoc())
682 #ifdef LLVM_BUILD_GLOBAL_ISEL
683       ,
684       Ty(nullptr)
685 #endif
686 {
687   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
688 
689   CapOperands = OperandCapacity::get(MI.getNumOperands());
690   Operands = MF.allocateOperandArray(CapOperands);
691 
692   // Copy operands.
693   for (const MachineOperand &MO : MI.operands())
694     addOperand(MF, MO);
695 
696   // Copy all the sensible flags.
697   setFlags(MI.Flags);
698 }
699 
700 /// getRegInfo - If this instruction is embedded into a MachineFunction,
701 /// return the MachineRegisterInfo object for the current function, otherwise
702 /// return null.
703 MachineRegisterInfo *MachineInstr::getRegInfo() {
704   if (MachineBasicBlock *MBB = getParent())
705     return &MBB->getParent()->getRegInfo();
706   return nullptr;
707 }
708 
709 // Implement dummy setter and getter for type when
710 // global-isel is not built.
711 // The proper implementation is WIP and is tracked here:
712 // PR26576.
713 #ifndef LLVM_BUILD_GLOBAL_ISEL
714 void MachineInstr::setType(Type *Ty) {}
715 
716 Type *MachineInstr::getType() const { return nullptr; }
717 
718 #else
719 void MachineInstr::setType(Type *Ty) {
720   assert((!Ty || isPreISelGenericOpcode(getOpcode())) &&
721          "Non generic instructions are not supposed to be typed");
722   this->Ty = Ty;
723 }
724 
725 Type *MachineInstr::getType() const { return Ty; }
726 #endif // LLVM_BUILD_GLOBAL_ISEL
727 
728 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
729 /// this instruction from their respective use lists.  This requires that the
730 /// operands already be on their use lists.
731 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
732   for (MachineOperand &MO : operands())
733     if (MO.isReg())
734       MRI.removeRegOperandFromUseList(&MO);
735 }
736 
737 /// AddRegOperandsToUseLists - Add all of the register operands in
738 /// this instruction from their respective use lists.  This requires that the
739 /// operands not be on their use lists yet.
740 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
741   for (MachineOperand &MO : operands())
742     if (MO.isReg())
743       MRI.addRegOperandToUseList(&MO);
744 }
745 
746 void MachineInstr::addOperand(const MachineOperand &Op) {
747   MachineBasicBlock *MBB = getParent();
748   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
749   MachineFunction *MF = MBB->getParent();
750   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
751   addOperand(*MF, Op);
752 }
753 
754 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
755 /// ranges. If MRI is non-null also update use-def chains.
756 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
757                          unsigned NumOps, MachineRegisterInfo *MRI) {
758   if (MRI)
759     return MRI->moveOperands(Dst, Src, NumOps);
760 
761   static_assert(isPodLike<MachineOperand>::value,
762                 "must be trivially copyable to memmove");
763   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
764 }
765 
766 /// addOperand - Add the specified operand to the instruction.  If it is an
767 /// implicit operand, it is added to the end of the operand list.  If it is
768 /// an explicit operand it is added at the end of the explicit operand list
769 /// (before the first implicit operand).
770 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
771   assert(MCID && "Cannot add operands before providing an instr descriptor");
772 
773   // Check if we're adding one of our existing operands.
774   if (&Op >= Operands && &Op < Operands + NumOperands) {
775     // This is unusual: MI->addOperand(MI->getOperand(i)).
776     // If adding Op requires reallocating or moving existing operands around,
777     // the Op reference could go stale. Support it by copying Op.
778     MachineOperand CopyOp(Op);
779     return addOperand(MF, CopyOp);
780   }
781 
782   // Find the insert location for the new operand.  Implicit registers go at
783   // the end, everything else goes before the implicit regs.
784   //
785   // FIXME: Allow mixed explicit and implicit operands on inline asm.
786   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
787   // implicit-defs, but they must not be moved around.  See the FIXME in
788   // InstrEmitter.cpp.
789   unsigned OpNo = getNumOperands();
790   bool isImpReg = Op.isReg() && Op.isImplicit();
791   if (!isImpReg && !isInlineAsm()) {
792     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
793       --OpNo;
794       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
795     }
796   }
797 
798 #ifndef NDEBUG
799   bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata;
800   // OpNo now points as the desired insertion point.  Unless this is a variadic
801   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
802   // RegMask operands go between the explicit and implicit operands.
803   assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
804           OpNo < MCID->getNumOperands() || isMetaDataOp) &&
805          "Trying to add an operand to a machine instr that is already done!");
806 #endif
807 
808   MachineRegisterInfo *MRI = getRegInfo();
809 
810   // Determine if the Operands array needs to be reallocated.
811   // Save the old capacity and operand array.
812   OperandCapacity OldCap = CapOperands;
813   MachineOperand *OldOperands = Operands;
814   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
815     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
816     Operands = MF.allocateOperandArray(CapOperands);
817     // Move the operands before the insertion point.
818     if (OpNo)
819       moveOperands(Operands, OldOperands, OpNo, MRI);
820   }
821 
822   // Move the operands following the insertion point.
823   if (OpNo != NumOperands)
824     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
825                  MRI);
826   ++NumOperands;
827 
828   // Deallocate the old operand array.
829   if (OldOperands != Operands && OldOperands)
830     MF.deallocateOperandArray(OldCap, OldOperands);
831 
832   // Copy Op into place. It still needs to be inserted into the MRI use lists.
833   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
834   NewMO->ParentMI = this;
835 
836   // When adding a register operand, tell MRI about it.
837   if (NewMO->isReg()) {
838     // Ensure isOnRegUseList() returns false, regardless of Op's status.
839     NewMO->Contents.Reg.Prev = nullptr;
840     // Ignore existing ties. This is not a property that can be copied.
841     NewMO->TiedTo = 0;
842     // Add the new operand to MRI, but only for instructions in an MBB.
843     if (MRI)
844       MRI->addRegOperandToUseList(NewMO);
845     // The MCID operand information isn't accurate until we start adding
846     // explicit operands. The implicit operands are added first, then the
847     // explicits are inserted before them.
848     if (!isImpReg) {
849       // Tie uses to defs as indicated in MCInstrDesc.
850       if (NewMO->isUse()) {
851         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
852         if (DefIdx != -1)
853           tieOperands(DefIdx, OpNo);
854       }
855       // If the register operand is flagged as early, mark the operand as such.
856       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
857         NewMO->setIsEarlyClobber(true);
858     }
859   }
860 }
861 
862 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
863 /// fewer operand than it started with.
864 ///
865 void MachineInstr::RemoveOperand(unsigned OpNo) {
866   assert(OpNo < getNumOperands() && "Invalid operand number");
867   untieRegOperand(OpNo);
868 
869 #ifndef NDEBUG
870   // Moving tied operands would break the ties.
871   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
872     if (Operands[i].isReg())
873       assert(!Operands[i].isTied() && "Cannot move tied operands");
874 #endif
875 
876   MachineRegisterInfo *MRI = getRegInfo();
877   if (MRI && Operands[OpNo].isReg())
878     MRI->removeRegOperandFromUseList(Operands + OpNo);
879 
880   // Don't call the MachineOperand destructor. A lot of this code depends on
881   // MachineOperand having a trivial destructor anyway, and adding a call here
882   // wouldn't make it 'destructor-correct'.
883 
884   if (unsigned N = NumOperands - 1 - OpNo)
885     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
886   --NumOperands;
887 }
888 
889 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
890 /// This function should be used only occasionally. The setMemRefs function
891 /// is the primary method for setting up a MachineInstr's MemRefs list.
892 void MachineInstr::addMemOperand(MachineFunction &MF,
893                                  MachineMemOperand *MO) {
894   mmo_iterator OldMemRefs = MemRefs;
895   unsigned OldNumMemRefs = NumMemRefs;
896 
897   unsigned NewNum = NumMemRefs + 1;
898   mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
899 
900   std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs);
901   NewMemRefs[NewNum - 1] = MO;
902   setMemRefs(NewMemRefs, NewMemRefs + NewNum);
903 }
904 
905 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
906 /// identical.
907 static bool hasIdenticalMMOs(const MachineInstr &MI1, const MachineInstr &MI2) {
908   auto I1 = MI1.memoperands_begin(), E1 = MI1.memoperands_end();
909   auto I2 = MI2.memoperands_begin(), E2 = MI2.memoperands_end();
910   if ((E1 - I1) != (E2 - I2))
911     return false;
912   for (; I1 != E1; ++I1, ++I2) {
913     if (**I1 != **I2)
914       return false;
915   }
916   return true;
917 }
918 
919 std::pair<MachineInstr::mmo_iterator, unsigned>
920 MachineInstr::mergeMemRefsWith(const MachineInstr& Other) {
921 
922   // If either of the incoming memrefs are empty, we must be conservative and
923   // treat this as if we've exhausted our space for memrefs and dropped them.
924   if (memoperands_empty() || Other.memoperands_empty())
925     return std::make_pair(nullptr, 0);
926 
927   // If both instructions have identical memrefs, we don't need to merge them.
928   // Since many instructions have a single memref, and we tend to merge things
929   // like pairs of loads from the same location, this catches a large number of
930   // cases in practice.
931   if (hasIdenticalMMOs(*this, Other))
932     return std::make_pair(MemRefs, NumMemRefs);
933 
934   // TODO: consider uniquing elements within the operand lists to reduce
935   // space usage and fall back to conservative information less often.
936   size_t CombinedNumMemRefs = NumMemRefs + Other.NumMemRefs;
937 
938   // If we don't have enough room to store this many memrefs, be conservative
939   // and drop them.  Otherwise, we'd fail asserts when trying to add them to
940   // the new instruction.
941   if (CombinedNumMemRefs != uint8_t(CombinedNumMemRefs))
942     return std::make_pair(nullptr, 0);
943 
944   MachineFunction *MF = getParent()->getParent();
945   mmo_iterator MemBegin = MF->allocateMemRefsArray(CombinedNumMemRefs);
946   mmo_iterator MemEnd = std::copy(memoperands_begin(), memoperands_end(),
947                                   MemBegin);
948   MemEnd = std::copy(Other.memoperands_begin(), Other.memoperands_end(),
949                      MemEnd);
950   assert(MemEnd - MemBegin == (ptrdiff_t)CombinedNumMemRefs &&
951          "missing memrefs");
952 
953   return std::make_pair(MemBegin, CombinedNumMemRefs);
954 }
955 
956 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const {
957   assert(!isBundledWithPred() && "Must be called on bundle header");
958   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
959     if (MII->getDesc().getFlags() & Mask) {
960       if (Type == AnyInBundle)
961         return true;
962     } else {
963       if (Type == AllInBundle && !MII->isBundle())
964         return false;
965     }
966     // This was the last instruction in the bundle.
967     if (!MII->isBundledWithSucc())
968       return Type == AllInBundle;
969   }
970 }
971 
972 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
973                                  MICheckType Check) const {
974   // If opcodes or number of operands are not the same then the two
975   // instructions are obviously not identical.
976   if (Other.getOpcode() != getOpcode() ||
977       Other.getNumOperands() != getNumOperands())
978     return false;
979 
980   if (isBundle()) {
981     // Both instructions are bundles, compare MIs inside the bundle.
982     MachineBasicBlock::const_instr_iterator I1 = getIterator();
983     MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end();
984     MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
985     MachineBasicBlock::const_instr_iterator E2 = Other.getParent()->instr_end();
986     while (++I1 != E1 && I1->isInsideBundle()) {
987       ++I2;
988       if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(*I2, Check))
989         return false;
990     }
991   }
992 
993   // Check operands to make sure they match.
994   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
995     const MachineOperand &MO = getOperand(i);
996     const MachineOperand &OMO = Other.getOperand(i);
997     if (!MO.isReg()) {
998       if (!MO.isIdenticalTo(OMO))
999         return false;
1000       continue;
1001     }
1002 
1003     // Clients may or may not want to ignore defs when testing for equality.
1004     // For example, machine CSE pass only cares about finding common
1005     // subexpressions, so it's safe to ignore virtual register defs.
1006     if (MO.isDef()) {
1007       if (Check == IgnoreDefs)
1008         continue;
1009       else if (Check == IgnoreVRegDefs) {
1010         if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
1011             TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
1012           if (MO.getReg() != OMO.getReg())
1013             return false;
1014       } else {
1015         if (!MO.isIdenticalTo(OMO))
1016           return false;
1017         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
1018           return false;
1019       }
1020     } else {
1021       if (!MO.isIdenticalTo(OMO))
1022         return false;
1023       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
1024         return false;
1025     }
1026   }
1027   // If DebugLoc does not match then two dbg.values are not identical.
1028   if (isDebugValue())
1029     if (getDebugLoc() && Other.getDebugLoc() &&
1030         getDebugLoc() != Other.getDebugLoc())
1031       return false;
1032   return true;
1033 }
1034 
1035 MachineInstr *MachineInstr::removeFromParent() {
1036   assert(getParent() && "Not embedded in a basic block!");
1037   return getParent()->remove(this);
1038 }
1039 
1040 MachineInstr *MachineInstr::removeFromBundle() {
1041   assert(getParent() && "Not embedded in a basic block!");
1042   return getParent()->remove_instr(this);
1043 }
1044 
1045 void MachineInstr::eraseFromParent() {
1046   assert(getParent() && "Not embedded in a basic block!");
1047   getParent()->erase(this);
1048 }
1049 
1050 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
1051   assert(getParent() && "Not embedded in a basic block!");
1052   MachineBasicBlock *MBB = getParent();
1053   MachineFunction *MF = MBB->getParent();
1054   assert(MF && "Not embedded in a function!");
1055 
1056   MachineInstr *MI = (MachineInstr *)this;
1057   MachineRegisterInfo &MRI = MF->getRegInfo();
1058 
1059   for (const MachineOperand &MO : MI->operands()) {
1060     if (!MO.isReg() || !MO.isDef())
1061       continue;
1062     unsigned Reg = MO.getReg();
1063     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1064       continue;
1065     MRI.markUsesInDebugValueAsUndef(Reg);
1066   }
1067   MI->eraseFromParent();
1068 }
1069 
1070 void MachineInstr::eraseFromBundle() {
1071   assert(getParent() && "Not embedded in a basic block!");
1072   getParent()->erase_instr(this);
1073 }
1074 
1075 /// getNumExplicitOperands - Returns the number of non-implicit operands.
1076 ///
1077 unsigned MachineInstr::getNumExplicitOperands() const {
1078   unsigned NumOperands = MCID->getNumOperands();
1079   if (!MCID->isVariadic())
1080     return NumOperands;
1081 
1082   for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
1083     const MachineOperand &MO = getOperand(i);
1084     if (!MO.isReg() || !MO.isImplicit())
1085       NumOperands++;
1086   }
1087   return NumOperands;
1088 }
1089 
1090 void MachineInstr::bundleWithPred() {
1091   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
1092   setFlag(BundledPred);
1093   MachineBasicBlock::instr_iterator Pred = getIterator();
1094   --Pred;
1095   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
1096   Pred->setFlag(BundledSucc);
1097 }
1098 
1099 void MachineInstr::bundleWithSucc() {
1100   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
1101   setFlag(BundledSucc);
1102   MachineBasicBlock::instr_iterator Succ = getIterator();
1103   ++Succ;
1104   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
1105   Succ->setFlag(BundledPred);
1106 }
1107 
1108 void MachineInstr::unbundleFromPred() {
1109   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
1110   clearFlag(BundledPred);
1111   MachineBasicBlock::instr_iterator Pred = getIterator();
1112   --Pred;
1113   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
1114   Pred->clearFlag(BundledSucc);
1115 }
1116 
1117 void MachineInstr::unbundleFromSucc() {
1118   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
1119   clearFlag(BundledSucc);
1120   MachineBasicBlock::instr_iterator Succ = getIterator();
1121   ++Succ;
1122   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
1123   Succ->clearFlag(BundledPred);
1124 }
1125 
1126 bool MachineInstr::isStackAligningInlineAsm() const {
1127   if (isInlineAsm()) {
1128     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1129     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1130       return true;
1131   }
1132   return false;
1133 }
1134 
1135 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
1136   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
1137   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1138   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
1139 }
1140 
1141 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
1142                                        unsigned *GroupNo) const {
1143   assert(isInlineAsm() && "Expected an inline asm instruction");
1144   assert(OpIdx < getNumOperands() && "OpIdx out of range");
1145 
1146   // Ignore queries about the initial operands.
1147   if (OpIdx < InlineAsm::MIOp_FirstOperand)
1148     return -1;
1149 
1150   unsigned Group = 0;
1151   unsigned NumOps;
1152   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1153        i += NumOps) {
1154     const MachineOperand &FlagMO = getOperand(i);
1155     // If we reach the implicit register operands, stop looking.
1156     if (!FlagMO.isImm())
1157       return -1;
1158     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1159     if (i + NumOps > OpIdx) {
1160       if (GroupNo)
1161         *GroupNo = Group;
1162       return i;
1163     }
1164     ++Group;
1165   }
1166   return -1;
1167 }
1168 
1169 const TargetRegisterClass*
1170 MachineInstr::getRegClassConstraint(unsigned OpIdx,
1171                                     const TargetInstrInfo *TII,
1172                                     const TargetRegisterInfo *TRI) const {
1173   assert(getParent() && "Can't have an MBB reference here!");
1174   assert(getParent()->getParent() && "Can't have an MF reference here!");
1175   const MachineFunction &MF = *getParent()->getParent();
1176 
1177   // Most opcodes have fixed constraints in their MCInstrDesc.
1178   if (!isInlineAsm())
1179     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
1180 
1181   if (!getOperand(OpIdx).isReg())
1182     return nullptr;
1183 
1184   // For tied uses on inline asm, get the constraint from the def.
1185   unsigned DefIdx;
1186   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
1187     OpIdx = DefIdx;
1188 
1189   // Inline asm stores register class constraints in the flag word.
1190   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
1191   if (FlagIdx < 0)
1192     return nullptr;
1193 
1194   unsigned Flag = getOperand(FlagIdx).getImm();
1195   unsigned RCID;
1196   if (InlineAsm::hasRegClassConstraint(Flag, RCID))
1197     return TRI->getRegClass(RCID);
1198 
1199   // Assume that all registers in a memory operand are pointers.
1200   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
1201     return TRI->getPointerRegClass(MF);
1202 
1203   return nullptr;
1204 }
1205 
1206 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
1207     unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
1208     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
1209   // Check every operands inside the bundle if we have
1210   // been asked to.
1211   if (ExploreBundle)
1212     for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
1213          ++OpndIt)
1214       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
1215           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
1216   else
1217     // Otherwise, just check the current operands.
1218     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
1219       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
1220   return CurRC;
1221 }
1222 
1223 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
1224     unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
1225     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
1226   assert(CurRC && "Invalid initial register class");
1227   // Check if Reg is constrained by some of its use/def from MI.
1228   const MachineOperand &MO = getOperand(OpIdx);
1229   if (!MO.isReg() || MO.getReg() != Reg)
1230     return CurRC;
1231   // If yes, accumulate the constraints through the operand.
1232   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
1233 }
1234 
1235 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
1236     unsigned OpIdx, const TargetRegisterClass *CurRC,
1237     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
1238   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
1239   const MachineOperand &MO = getOperand(OpIdx);
1240   assert(MO.isReg() &&
1241          "Cannot get register constraints for non-register operand");
1242   assert(CurRC && "Invalid initial register class");
1243   if (unsigned SubIdx = MO.getSubReg()) {
1244     if (OpRC)
1245       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
1246     else
1247       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
1248   } else if (OpRC)
1249     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
1250   return CurRC;
1251 }
1252 
1253 /// Return the number of instructions inside the MI bundle, not counting the
1254 /// header instruction.
1255 unsigned MachineInstr::getBundleSize() const {
1256   MachineBasicBlock::const_instr_iterator I = getIterator();
1257   unsigned Size = 0;
1258   while (I->isBundledWithSucc()) {
1259     ++Size;
1260     ++I;
1261   }
1262   return Size;
1263 }
1264 
1265 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
1266 /// the specific register or -1 if it is not found. It further tightens
1267 /// the search criteria to a use that kills the register if isKill is true.
1268 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
1269                                           const TargetRegisterInfo *TRI) const {
1270   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1271     const MachineOperand &MO = getOperand(i);
1272     if (!MO.isReg() || !MO.isUse())
1273       continue;
1274     unsigned MOReg = MO.getReg();
1275     if (!MOReg)
1276       continue;
1277     if (MOReg == Reg ||
1278         (TRI &&
1279          TargetRegisterInfo::isPhysicalRegister(MOReg) &&
1280          TargetRegisterInfo::isPhysicalRegister(Reg) &&
1281          TRI->isSubRegister(MOReg, Reg)))
1282       if (!isKill || MO.isKill())
1283         return i;
1284   }
1285   return -1;
1286 }
1287 
1288 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1289 /// indicating if this instruction reads or writes Reg. This also considers
1290 /// partial defines.
1291 std::pair<bool,bool>
1292 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
1293                                          SmallVectorImpl<unsigned> *Ops) const {
1294   bool PartDef = false; // Partial redefine.
1295   bool FullDef = false; // Full define.
1296   bool Use = false;
1297 
1298   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1299     const MachineOperand &MO = getOperand(i);
1300     if (!MO.isReg() || MO.getReg() != Reg)
1301       continue;
1302     if (Ops)
1303       Ops->push_back(i);
1304     if (MO.isUse())
1305       Use |= !MO.isUndef();
1306     else if (MO.getSubReg() && !MO.isUndef())
1307       // A partial <def,undef> doesn't count as reading the register.
1308       PartDef = true;
1309     else
1310       FullDef = true;
1311   }
1312   // A partial redefine uses Reg unless there is also a full define.
1313   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1314 }
1315 
1316 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1317 /// the specified register or -1 if it is not found. If isDead is true, defs
1318 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1319 /// also checks if there is a def of a super-register.
1320 int
1321 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
1322                                         const TargetRegisterInfo *TRI) const {
1323   bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
1324   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1325     const MachineOperand &MO = getOperand(i);
1326     // Accept regmask operands when Overlap is set.
1327     // Ignore them when looking for a specific def operand (Overlap == false).
1328     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1329       return i;
1330     if (!MO.isReg() || !MO.isDef())
1331       continue;
1332     unsigned MOReg = MO.getReg();
1333     bool Found = (MOReg == Reg);
1334     if (!Found && TRI && isPhys &&
1335         TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1336       if (Overlap)
1337         Found = TRI->regsOverlap(MOReg, Reg);
1338       else
1339         Found = TRI->isSubRegister(MOReg, Reg);
1340     }
1341     if (Found && (!isDead || MO.isDead()))
1342       return i;
1343   }
1344   return -1;
1345 }
1346 
1347 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1348 /// operand list that is used to represent the predicate. It returns -1 if
1349 /// none is found.
1350 int MachineInstr::findFirstPredOperandIdx() const {
1351   // Don't call MCID.findFirstPredOperandIdx() because this variant
1352   // is sometimes called on an instruction that's not yet complete, and
1353   // so the number of operands is less than the MCID indicates. In
1354   // particular, the PTX target does this.
1355   const MCInstrDesc &MCID = getDesc();
1356   if (MCID.isPredicable()) {
1357     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1358       if (MCID.OpInfo[i].isPredicate())
1359         return i;
1360   }
1361 
1362   return -1;
1363 }
1364 
1365 // MachineOperand::TiedTo is 4 bits wide.
1366 const unsigned TiedMax = 15;
1367 
1368 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1369 ///
1370 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1371 /// field. TiedTo can have these values:
1372 ///
1373 /// 0:              Operand is not tied to anything.
1374 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1375 /// TiedMax:        Tied to an operand >= TiedMax-1.
1376 ///
1377 /// The tied def must be one of the first TiedMax operands on a normal
1378 /// instruction. INLINEASM instructions allow more tied defs.
1379 ///
1380 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1381   MachineOperand &DefMO = getOperand(DefIdx);
1382   MachineOperand &UseMO = getOperand(UseIdx);
1383   assert(DefMO.isDef() && "DefIdx must be a def operand");
1384   assert(UseMO.isUse() && "UseIdx must be a use operand");
1385   assert(!DefMO.isTied() && "Def is already tied to another use");
1386   assert(!UseMO.isTied() && "Use is already tied to another def");
1387 
1388   if (DefIdx < TiedMax)
1389     UseMO.TiedTo = DefIdx + 1;
1390   else {
1391     // Inline asm can use the group descriptors to find tied operands, but on
1392     // normal instruction, the tied def must be within the first TiedMax
1393     // operands.
1394     assert(isInlineAsm() && "DefIdx out of range");
1395     UseMO.TiedTo = TiedMax;
1396   }
1397 
1398   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1399   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1400 }
1401 
1402 /// Given the index of a tied register operand, find the operand it is tied to.
1403 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1404 /// which must exist.
1405 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1406   const MachineOperand &MO = getOperand(OpIdx);
1407   assert(MO.isTied() && "Operand isn't tied");
1408 
1409   // Normally TiedTo is in range.
1410   if (MO.TiedTo < TiedMax)
1411     return MO.TiedTo - 1;
1412 
1413   // Uses on normal instructions can be out of range.
1414   if (!isInlineAsm()) {
1415     // Normal tied defs must be in the 0..TiedMax-1 range.
1416     if (MO.isUse())
1417       return TiedMax - 1;
1418     // MO is a def. Search for the tied use.
1419     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1420       const MachineOperand &UseMO = getOperand(i);
1421       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1422         return i;
1423     }
1424     llvm_unreachable("Can't find tied use");
1425   }
1426 
1427   // Now deal with inline asm by parsing the operand group descriptor flags.
1428   // Find the beginning of each operand group.
1429   SmallVector<unsigned, 8> GroupIdx;
1430   unsigned OpIdxGroup = ~0u;
1431   unsigned NumOps;
1432   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1433        i += NumOps) {
1434     const MachineOperand &FlagMO = getOperand(i);
1435     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1436     unsigned CurGroup = GroupIdx.size();
1437     GroupIdx.push_back(i);
1438     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1439     // OpIdx belongs to this operand group.
1440     if (OpIdx > i && OpIdx < i + NumOps)
1441       OpIdxGroup = CurGroup;
1442     unsigned TiedGroup;
1443     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1444       continue;
1445     // Operands in this group are tied to operands in TiedGroup which must be
1446     // earlier. Find the number of operands between the two groups.
1447     unsigned Delta = i - GroupIdx[TiedGroup];
1448 
1449     // OpIdx is a use tied to TiedGroup.
1450     if (OpIdxGroup == CurGroup)
1451       return OpIdx - Delta;
1452 
1453     // OpIdx is a def tied to this use group.
1454     if (OpIdxGroup == TiedGroup)
1455       return OpIdx + Delta;
1456   }
1457   llvm_unreachable("Invalid tied operand on inline asm");
1458 }
1459 
1460 /// clearKillInfo - Clears kill flags on all operands.
1461 ///
1462 void MachineInstr::clearKillInfo() {
1463   for (MachineOperand &MO : operands()) {
1464     if (MO.isReg() && MO.isUse())
1465       MO.setIsKill(false);
1466   }
1467 }
1468 
1469 void MachineInstr::substituteRegister(unsigned FromReg,
1470                                       unsigned ToReg,
1471                                       unsigned SubIdx,
1472                                       const TargetRegisterInfo &RegInfo) {
1473   if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
1474     if (SubIdx)
1475       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1476     for (MachineOperand &MO : operands()) {
1477       if (!MO.isReg() || MO.getReg() != FromReg)
1478         continue;
1479       MO.substPhysReg(ToReg, RegInfo);
1480     }
1481   } else {
1482     for (MachineOperand &MO : operands()) {
1483       if (!MO.isReg() || MO.getReg() != FromReg)
1484         continue;
1485       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1486     }
1487   }
1488 }
1489 
1490 /// isSafeToMove - Return true if it is safe to move this instruction. If
1491 /// SawStore is set to true, it means that there is a store (or call) between
1492 /// the instruction's location and its intended destination.
1493 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const {
1494   // Ignore stuff that we obviously can't move.
1495   //
1496   // Treat volatile loads as stores. This is not strictly necessary for
1497   // volatiles, but it is required for atomic loads. It is not allowed to move
1498   // a load across an atomic load with Ordering > Monotonic.
1499   if (mayStore() || isCall() ||
1500       (mayLoad() && hasOrderedMemoryRef())) {
1501     SawStore = true;
1502     return false;
1503   }
1504 
1505   if (isPosition() || isDebugValue() || isTerminator() ||
1506       hasUnmodeledSideEffects())
1507     return false;
1508 
1509   // See if this instruction does a load.  If so, we have to guarantee that the
1510   // loaded value doesn't change between the load and the its intended
1511   // destination. The check for isInvariantLoad gives the targe the chance to
1512   // classify the load as always returning a constant, e.g. a constant pool
1513   // load.
1514   if (mayLoad() && !isInvariantLoad(AA))
1515     // Otherwise, this is a real load.  If there is a store between the load and
1516     // end of block, we can't move it.
1517     return !SawStore;
1518 
1519   return true;
1520 }
1521 
1522 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1523 /// or volatile memory reference, or if the information describing the memory
1524 /// reference is not available. Return false if it is known to have no ordered
1525 /// memory references.
1526 bool MachineInstr::hasOrderedMemoryRef() const {
1527   // An instruction known never to access memory won't have a volatile access.
1528   if (!mayStore() &&
1529       !mayLoad() &&
1530       !isCall() &&
1531       !hasUnmodeledSideEffects())
1532     return false;
1533 
1534   // Otherwise, if the instruction has no memory reference information,
1535   // conservatively assume it wasn't preserved.
1536   if (memoperands_empty())
1537     return true;
1538 
1539   // Check the memory reference information for ordered references.
1540   for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
1541     if (!(*I)->isUnordered())
1542       return true;
1543 
1544   return false;
1545 }
1546 
1547 /// isInvariantLoad - Return true if this instruction is loading from a
1548 /// location whose value is invariant across the function.  For example,
1549 /// loading a value from the constant pool or from the argument area
1550 /// of a function if it does not change.  This should only return true of
1551 /// *all* loads the instruction does are invariant (if it does multiple loads).
1552 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
1553   // If the instruction doesn't load at all, it isn't an invariant load.
1554   if (!mayLoad())
1555     return false;
1556 
1557   // If the instruction has lost its memoperands, conservatively assume that
1558   // it may not be an invariant load.
1559   if (memoperands_empty())
1560     return false;
1561 
1562   const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
1563 
1564   for (mmo_iterator I = memoperands_begin(),
1565        E = memoperands_end(); I != E; ++I) {
1566     if ((*I)->isVolatile()) return false;
1567     if ((*I)->isStore()) return false;
1568     if ((*I)->isInvariant()) return true;
1569 
1570 
1571     // A load from a constant PseudoSourceValue is invariant.
1572     if (const PseudoSourceValue *PSV = (*I)->getPseudoValue())
1573       if (PSV->isConstant(MFI))
1574         continue;
1575 
1576     if (const Value *V = (*I)->getValue()) {
1577       // If we have an AliasAnalysis, ask it whether the memory is constant.
1578       if (AA &&
1579           AA->pointsToConstantMemory(
1580               MemoryLocation(V, (*I)->getSize(), (*I)->getAAInfo())))
1581         continue;
1582     }
1583 
1584     // Otherwise assume conservatively.
1585     return false;
1586   }
1587 
1588   // Everything checks out.
1589   return true;
1590 }
1591 
1592 /// isConstantValuePHI - If the specified instruction is a PHI that always
1593 /// merges together the same virtual register, return the register, otherwise
1594 /// return 0.
1595 unsigned MachineInstr::isConstantValuePHI() const {
1596   if (!isPHI())
1597     return 0;
1598   assert(getNumOperands() >= 3 &&
1599          "It's illegal to have a PHI without source operands");
1600 
1601   unsigned Reg = getOperand(1).getReg();
1602   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1603     if (getOperand(i).getReg() != Reg)
1604       return 0;
1605   return Reg;
1606 }
1607 
1608 bool MachineInstr::hasUnmodeledSideEffects() const {
1609   if (hasProperty(MCID::UnmodeledSideEffects))
1610     return true;
1611   if (isInlineAsm()) {
1612     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1613     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1614       return true;
1615   }
1616 
1617   return false;
1618 }
1619 
1620 bool MachineInstr::isLoadFoldBarrier() const {
1621   return mayStore() || isCall() || hasUnmodeledSideEffects();
1622 }
1623 
1624 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1625 ///
1626 bool MachineInstr::allDefsAreDead() const {
1627   for (const MachineOperand &MO : operands()) {
1628     if (!MO.isReg() || MO.isUse())
1629       continue;
1630     if (!MO.isDead())
1631       return false;
1632   }
1633   return true;
1634 }
1635 
1636 /// copyImplicitOps - Copy implicit register operands from specified
1637 /// instruction to this instruction.
1638 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1639                                    const MachineInstr &MI) {
1640   for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands();
1641        i != e; ++i) {
1642     const MachineOperand &MO = MI.getOperand(i);
1643     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1644       addOperand(MF, MO);
1645   }
1646 }
1647 
1648 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1649 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1650   dbgs() << "  " << *this;
1651 #endif
1652 }
1653 
1654 void MachineInstr::print(raw_ostream &OS, bool SkipOpers) const {
1655   const Module *M = nullptr;
1656   if (const MachineBasicBlock *MBB = getParent())
1657     if (const MachineFunction *MF = MBB->getParent())
1658       M = MF->getFunction()->getParent();
1659 
1660   ModuleSlotTracker MST(M);
1661   print(OS, MST, SkipOpers);
1662 }
1663 
1664 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1665                          bool SkipOpers) const {
1666   // We can be a bit tidier if we know the MachineFunction.
1667   const MachineFunction *MF = nullptr;
1668   const TargetRegisterInfo *TRI = nullptr;
1669   const MachineRegisterInfo *MRI = nullptr;
1670   const TargetInstrInfo *TII = nullptr;
1671   if (const MachineBasicBlock *MBB = getParent()) {
1672     MF = MBB->getParent();
1673     if (MF) {
1674       MRI = &MF->getRegInfo();
1675       TRI = MF->getSubtarget().getRegisterInfo();
1676       TII = MF->getSubtarget().getInstrInfo();
1677     }
1678   }
1679 
1680   // Save a list of virtual registers.
1681   SmallVector<unsigned, 8> VirtRegs;
1682 
1683   // Print explicitly defined operands on the left of an assignment syntax.
1684   unsigned StartOp = 0, e = getNumOperands();
1685   for (; StartOp < e && getOperand(StartOp).isReg() &&
1686          getOperand(StartOp).isDef() &&
1687          !getOperand(StartOp).isImplicit();
1688        ++StartOp) {
1689     if (StartOp != 0) OS << ", ";
1690     getOperand(StartOp).print(OS, MST, TRI);
1691     unsigned Reg = getOperand(StartOp).getReg();
1692     if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1693       VirtRegs.push_back(Reg);
1694 #ifdef LLVM_BUILD_GLOBAL_ISEL
1695       unsigned Size;
1696       if (MRI && (Size = MRI->getSize(Reg))) {
1697         OS << '(' << Size << ')';
1698       }
1699 #endif
1700     }
1701   }
1702 
1703   if (StartOp != 0)
1704     OS << " = ";
1705 
1706   // Print the opcode name.
1707   if (TII)
1708     OS << TII->getName(getOpcode());
1709   else
1710     OS << "UNKNOWN";
1711 
1712   if (getType()) {
1713     OS << ' ';
1714     getType()->print(OS, /*IsForDebug*/ false, /*NoDetails*/ true);
1715     OS << ' ';
1716   }
1717 
1718   if (SkipOpers)
1719     return;
1720 
1721   // Print the rest of the operands.
1722   bool OmittedAnyCallClobbers = false;
1723   bool FirstOp = true;
1724   unsigned AsmDescOp = ~0u;
1725   unsigned AsmOpCount = 0;
1726 
1727   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1728     // Print asm string.
1729     OS << " ";
1730     getOperand(InlineAsm::MIOp_AsmString).print(OS, MST, TRI);
1731 
1732     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1733     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1734     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1735       OS << " [sideeffect]";
1736     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1737       OS << " [mayload]";
1738     if (ExtraInfo & InlineAsm::Extra_MayStore)
1739       OS << " [maystore]";
1740     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1741       OS << " [alignstack]";
1742     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1743       OS << " [attdialect]";
1744     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1745       OS << " [inteldialect]";
1746 
1747     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1748     FirstOp = false;
1749   }
1750 
1751   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1752     const MachineOperand &MO = getOperand(i);
1753 
1754     if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1755       VirtRegs.push_back(MO.getReg());
1756 
1757     // Omit call-clobbered registers which aren't used anywhere. This makes
1758     // call instructions much less noisy on targets where calls clobber lots
1759     // of registers. Don't rely on MO.isDead() because we may be called before
1760     // LiveVariables is run, or we may be looking at a non-allocatable reg.
1761     if (MRI && isCall() &&
1762         MO.isReg() && MO.isImplicit() && MO.isDef()) {
1763       unsigned Reg = MO.getReg();
1764       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1765         if (MRI->use_empty(Reg)) {
1766           bool HasAliasLive = false;
1767           for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
1768             unsigned AliasReg = *AI;
1769             if (!MRI->use_empty(AliasReg)) {
1770               HasAliasLive = true;
1771               break;
1772             }
1773           }
1774           if (!HasAliasLive) {
1775             OmittedAnyCallClobbers = true;
1776             continue;
1777           }
1778         }
1779       }
1780     }
1781 
1782     if (FirstOp) FirstOp = false; else OS << ",";
1783     OS << " ";
1784     if (i < getDesc().NumOperands) {
1785       const MCOperandInfo &MCOI = getDesc().OpInfo[i];
1786       if (MCOI.isPredicate())
1787         OS << "pred:";
1788       if (MCOI.isOptionalDef())
1789         OS << "opt:";
1790     }
1791     if (isDebugValue() && MO.isMetadata()) {
1792       // Pretty print DBG_VALUE instructions.
1793       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1794       if (DIV && !DIV->getName().empty())
1795         OS << "!\"" << DIV->getName() << '\"';
1796       else
1797         MO.print(OS, MST, TRI);
1798     } else if (TRI && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
1799       OS << TRI->getSubRegIndexName(MO.getImm());
1800     } else if (i == AsmDescOp && MO.isImm()) {
1801       // Pretty print the inline asm operand descriptor.
1802       OS << '$' << AsmOpCount++;
1803       unsigned Flag = MO.getImm();
1804       switch (InlineAsm::getKind(Flag)) {
1805       case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break;
1806       case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break;
1807       case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1808       case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break;
1809       case InlineAsm::Kind_Imm:                OS << ":[imm"; break;
1810       case InlineAsm::Kind_Mem:                OS << ":[mem"; break;
1811       default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1812       }
1813 
1814       unsigned RCID = 0;
1815       if (InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1816         if (TRI) {
1817           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1818         } else
1819           OS << ":RC" << RCID;
1820       }
1821 
1822       unsigned TiedTo = 0;
1823       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1824         OS << " tiedto:$" << TiedTo;
1825 
1826       OS << ']';
1827 
1828       // Compute the index of the next operand descriptor.
1829       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1830     } else
1831       MO.print(OS, MST, TRI);
1832   }
1833 
1834   // Briefly indicate whether any call clobbers were omitted.
1835   if (OmittedAnyCallClobbers) {
1836     if (!FirstOp) OS << ",";
1837     OS << " ...";
1838   }
1839 
1840   bool HaveSemi = false;
1841   const unsigned PrintableFlags = FrameSetup | FrameDestroy;
1842   if (Flags & PrintableFlags) {
1843     if (!HaveSemi) {
1844       OS << ";";
1845       HaveSemi = true;
1846     }
1847     OS << " flags: ";
1848 
1849     if (Flags & FrameSetup)
1850       OS << "FrameSetup";
1851 
1852     if (Flags & FrameDestroy)
1853       OS << "FrameDestroy";
1854   }
1855 
1856   if (!memoperands_empty()) {
1857     if (!HaveSemi) {
1858       OS << ";";
1859       HaveSemi = true;
1860     }
1861 
1862     OS << " mem:";
1863     for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
1864          i != e; ++i) {
1865       (*i)->print(OS, MST);
1866       if (std::next(i) != e)
1867         OS << " ";
1868     }
1869   }
1870 
1871   // Print the regclass of any virtual registers encountered.
1872   if (MRI && !VirtRegs.empty()) {
1873     if (!HaveSemi) {
1874       OS << ";";
1875       HaveSemi = true;
1876     }
1877     for (unsigned i = 0; i != VirtRegs.size(); ++i) {
1878       const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]);
1879 #ifdef LLVM_BUILD_GLOBAL_ISEL
1880       // Generic virtual registers do not have register classes.
1881       if (!RC)
1882         continue;
1883 #endif
1884       OS << " " << TRI->getRegClassName(RC)
1885          << ':' << PrintReg(VirtRegs[i]);
1886       for (unsigned j = i+1; j != VirtRegs.size();) {
1887         if (MRI->getRegClass(VirtRegs[j]) != RC) {
1888           ++j;
1889           continue;
1890         }
1891         if (VirtRegs[i] != VirtRegs[j])
1892           OS << "," << PrintReg(VirtRegs[j]);
1893         VirtRegs.erase(VirtRegs.begin()+j);
1894       }
1895     }
1896   }
1897 
1898   // Print debug location information.
1899   if (isDebugValue() && getOperand(e - 2).isMetadata()) {
1900     if (!HaveSemi)
1901       OS << ";";
1902     auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata());
1903     OS << " line no:" <<  DV->getLine();
1904     if (auto *InlinedAt = debugLoc->getInlinedAt()) {
1905       DebugLoc InlinedAtDL(InlinedAt);
1906       if (InlinedAtDL && MF) {
1907         OS << " inlined @[ ";
1908         InlinedAtDL.print(OS);
1909         OS << " ]";
1910       }
1911     }
1912     if (isIndirectDebugValue())
1913       OS << " indirect";
1914   } else if (debugLoc && MF) {
1915     if (!HaveSemi)
1916       OS << ";";
1917     OS << " dbg:";
1918     debugLoc.print(OS);
1919   }
1920 
1921   OS << '\n';
1922 }
1923 
1924 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1925                                      const TargetRegisterInfo *RegInfo,
1926                                      bool AddIfNotFound) {
1927   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1928   bool hasAliases = isPhysReg &&
1929     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1930   bool Found = false;
1931   SmallVector<unsigned,4> DeadOps;
1932   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1933     MachineOperand &MO = getOperand(i);
1934     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1935       continue;
1936     unsigned Reg = MO.getReg();
1937     if (!Reg)
1938       continue;
1939 
1940     if (Reg == IncomingReg) {
1941       if (!Found) {
1942         if (MO.isKill())
1943           // The register is already marked kill.
1944           return true;
1945         if (isPhysReg && isRegTiedToDefOperand(i))
1946           // Two-address uses of physregs must not be marked kill.
1947           return true;
1948         MO.setIsKill();
1949         Found = true;
1950       }
1951     } else if (hasAliases && MO.isKill() &&
1952                TargetRegisterInfo::isPhysicalRegister(Reg)) {
1953       // A super-register kill already exists.
1954       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1955         return true;
1956       if (RegInfo->isSubRegister(IncomingReg, Reg))
1957         DeadOps.push_back(i);
1958     }
1959   }
1960 
1961   // Trim unneeded kill operands.
1962   while (!DeadOps.empty()) {
1963     unsigned OpIdx = DeadOps.back();
1964     if (getOperand(OpIdx).isImplicit())
1965       RemoveOperand(OpIdx);
1966     else
1967       getOperand(OpIdx).setIsKill(false);
1968     DeadOps.pop_back();
1969   }
1970 
1971   // If not found, this means an alias of one of the operands is killed. Add a
1972   // new implicit operand if required.
1973   if (!Found && AddIfNotFound) {
1974     addOperand(MachineOperand::CreateReg(IncomingReg,
1975                                          false /*IsDef*/,
1976                                          true  /*IsImp*/,
1977                                          true  /*IsKill*/));
1978     return true;
1979   }
1980   return Found;
1981 }
1982 
1983 void MachineInstr::clearRegisterKills(unsigned Reg,
1984                                       const TargetRegisterInfo *RegInfo) {
1985   if (!TargetRegisterInfo::isPhysicalRegister(Reg))
1986     RegInfo = nullptr;
1987   for (MachineOperand &MO : operands()) {
1988     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1989       continue;
1990     unsigned OpReg = MO.getReg();
1991     if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
1992       MO.setIsKill(false);
1993   }
1994 }
1995 
1996 bool MachineInstr::addRegisterDead(unsigned Reg,
1997                                    const TargetRegisterInfo *RegInfo,
1998                                    bool AddIfNotFound) {
1999   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg);
2000   bool hasAliases = isPhysReg &&
2001     MCRegAliasIterator(Reg, RegInfo, false).isValid();
2002   bool Found = false;
2003   SmallVector<unsigned,4> DeadOps;
2004   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2005     MachineOperand &MO = getOperand(i);
2006     if (!MO.isReg() || !MO.isDef())
2007       continue;
2008     unsigned MOReg = MO.getReg();
2009     if (!MOReg)
2010       continue;
2011 
2012     if (MOReg == Reg) {
2013       MO.setIsDead();
2014       Found = true;
2015     } else if (hasAliases && MO.isDead() &&
2016                TargetRegisterInfo::isPhysicalRegister(MOReg)) {
2017       // There exists a super-register that's marked dead.
2018       if (RegInfo->isSuperRegister(Reg, MOReg))
2019         return true;
2020       if (RegInfo->isSubRegister(Reg, MOReg))
2021         DeadOps.push_back(i);
2022     }
2023   }
2024 
2025   // Trim unneeded dead operands.
2026   while (!DeadOps.empty()) {
2027     unsigned OpIdx = DeadOps.back();
2028     if (getOperand(OpIdx).isImplicit())
2029       RemoveOperand(OpIdx);
2030     else
2031       getOperand(OpIdx).setIsDead(false);
2032     DeadOps.pop_back();
2033   }
2034 
2035   // If not found, this means an alias of one of the operands is dead. Add a
2036   // new implicit operand if required.
2037   if (Found || !AddIfNotFound)
2038     return Found;
2039 
2040   addOperand(MachineOperand::CreateReg(Reg,
2041                                        true  /*IsDef*/,
2042                                        true  /*IsImp*/,
2043                                        false /*IsKill*/,
2044                                        true  /*IsDead*/));
2045   return true;
2046 }
2047 
2048 void MachineInstr::clearRegisterDeads(unsigned Reg) {
2049   for (MachineOperand &MO : operands()) {
2050     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
2051       continue;
2052     MO.setIsDead(false);
2053   }
2054 }
2055 
2056 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) {
2057   for (MachineOperand &MO : operands()) {
2058     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
2059       continue;
2060     MO.setIsUndef(IsUndef);
2061   }
2062 }
2063 
2064 void MachineInstr::addRegisterDefined(unsigned Reg,
2065                                       const TargetRegisterInfo *RegInfo) {
2066   if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
2067     MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo);
2068     if (MO)
2069       return;
2070   } else {
2071     for (const MachineOperand &MO : operands()) {
2072       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
2073           MO.getSubReg() == 0)
2074         return;
2075     }
2076   }
2077   addOperand(MachineOperand::CreateReg(Reg,
2078                                        true  /*IsDef*/,
2079                                        true  /*IsImp*/));
2080 }
2081 
2082 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
2083                                          const TargetRegisterInfo &TRI) {
2084   bool HasRegMask = false;
2085   for (MachineOperand &MO : operands()) {
2086     if (MO.isRegMask()) {
2087       HasRegMask = true;
2088       continue;
2089     }
2090     if (!MO.isReg() || !MO.isDef()) continue;
2091     unsigned Reg = MO.getReg();
2092     if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
2093     // If there are no uses, including partial uses, the def is dead.
2094     if (std::none_of(UsedRegs.begin(), UsedRegs.end(),
2095                      [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); }))
2096       MO.setIsDead();
2097   }
2098 
2099   // This is a call with a register mask operand.
2100   // Mask clobbers are always dead, so add defs for the non-dead defines.
2101   if (HasRegMask)
2102     for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
2103          I != E; ++I)
2104       addRegisterDefined(*I, &TRI);
2105 }
2106 
2107 unsigned
2108 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
2109   // Build up a buffer of hash code components.
2110   SmallVector<size_t, 8> HashComponents;
2111   HashComponents.reserve(MI->getNumOperands() + 1);
2112   HashComponents.push_back(MI->getOpcode());
2113   for (const MachineOperand &MO : MI->operands()) {
2114     if (MO.isReg() && MO.isDef() &&
2115         TargetRegisterInfo::isVirtualRegister(MO.getReg()))
2116       continue;  // Skip virtual register defs.
2117 
2118     HashComponents.push_back(hash_value(MO));
2119   }
2120   return hash_combine_range(HashComponents.begin(), HashComponents.end());
2121 }
2122 
2123 void MachineInstr::emitError(StringRef Msg) const {
2124   // Find the source location cookie.
2125   unsigned LocCookie = 0;
2126   const MDNode *LocMD = nullptr;
2127   for (unsigned i = getNumOperands(); i != 0; --i) {
2128     if (getOperand(i-1).isMetadata() &&
2129         (LocMD = getOperand(i-1).getMetadata()) &&
2130         LocMD->getNumOperands() != 0) {
2131       if (const ConstantInt *CI =
2132               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
2133         LocCookie = CI->getZExtValue();
2134         break;
2135       }
2136     }
2137   }
2138 
2139   if (const MachineBasicBlock *MBB = getParent())
2140     if (const MachineFunction *MF = MBB->getParent())
2141       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2142   report_fatal_error(Msg);
2143 }
2144