xref: /llvm-project/llvm/lib/CodeGen/MachineInstr.cpp (revision d3af441dfeb69d4c2a91b427e3d7a57e04c59201)
1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Methods common to all machine instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MachineInstr.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/FoldingSet.h"
17 #include "llvm/ADT/Hashing.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallBitVector.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/Loads.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/Config/llvm-config.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DebugInfoMetadata.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/ModuleSlotTracker.h"
53 #include "llvm/IR/Operator.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/MC/MCInstrDesc.h"
57 #include "llvm/MC/MCRegisterInfo.h"
58 #include "llvm/MC/MCSymbol.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/FormattedStream.h"
65 #include "llvm/Support/LowLevelTypeImpl.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Target/TargetIntrinsicInfo.h"
69 #include "llvm/Target/TargetMachine.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cstddef>
73 #include <cstdint>
74 #include <cstring>
75 #include <iterator>
76 #include <utility>
77 
78 using namespace llvm;
79 
80 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
81   if (const MachineBasicBlock *MBB = MI.getParent())
82     if (const MachineFunction *MF = MBB->getParent())
83       return MF;
84   return nullptr;
85 }
86 
87 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
88 // it.
89 static void tryToGetTargetInfo(const MachineInstr &MI,
90                                const TargetRegisterInfo *&TRI,
91                                const MachineRegisterInfo *&MRI,
92                                const TargetIntrinsicInfo *&IntrinsicInfo,
93                                const TargetInstrInfo *&TII) {
94 
95   if (const MachineFunction *MF = getMFIfAvailable(MI)) {
96     TRI = MF->getSubtarget().getRegisterInfo();
97     MRI = &MF->getRegInfo();
98     IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
99     TII = MF->getSubtarget().getInstrInfo();
100   }
101 }
102 
103 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
104   if (MCID->ImplicitDefs)
105     for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
106            ++ImpDefs)
107       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
108   if (MCID->ImplicitUses)
109     for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
110            ++ImpUses)
111       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
112 }
113 
114 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
115 /// implicit operands. It reserves space for the number of operands specified by
116 /// the MCInstrDesc.
117 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
118                            DebugLoc dl, bool NoImp)
119     : MCID(&tid), debugLoc(std::move(dl)), DebugInstrNum(0) {
120   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
121 
122   // Reserve space for the expected number of operands.
123   if (unsigned NumOps = MCID->getNumOperands() +
124     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
125     CapOperands = OperandCapacity::get(NumOps);
126     Operands = MF.allocateOperandArray(CapOperands);
127   }
128 
129   if (!NoImp)
130     addImplicitDefUseOperands(MF);
131 }
132 
133 /// MachineInstr ctor - Copies MachineInstr arg exactly.
134 /// Does not copy the number from debug instruction numbering, to preserve
135 /// uniqueness.
136 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
137     : MCID(&MI.getDesc()), Info(MI.Info), debugLoc(MI.getDebugLoc()),
138       DebugInstrNum(0) {
139   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
140 
141   CapOperands = OperandCapacity::get(MI.getNumOperands());
142   Operands = MF.allocateOperandArray(CapOperands);
143 
144   // Copy operands.
145   for (const MachineOperand &MO : MI.operands())
146     addOperand(MF, MO);
147 
148   // Copy all the sensible flags.
149   setFlags(MI.Flags);
150 }
151 
152 void MachineInstr::moveBefore(MachineInstr *MovePos) {
153   MovePos->getParent()->splice(MovePos, getParent(), getIterator());
154 }
155 
156 /// getRegInfo - If this instruction is embedded into a MachineFunction,
157 /// return the MachineRegisterInfo object for the current function, otherwise
158 /// return null.
159 MachineRegisterInfo *MachineInstr::getRegInfo() {
160   if (MachineBasicBlock *MBB = getParent())
161     return &MBB->getParent()->getRegInfo();
162   return nullptr;
163 }
164 
165 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
166 /// this instruction from their respective use lists.  This requires that the
167 /// operands already be on their use lists.
168 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
169   for (MachineOperand &MO : operands())
170     if (MO.isReg())
171       MRI.removeRegOperandFromUseList(&MO);
172 }
173 
174 /// AddRegOperandsToUseLists - Add all of the register operands in
175 /// this instruction from their respective use lists.  This requires that the
176 /// operands not be on their use lists yet.
177 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
178   for (MachineOperand &MO : operands())
179     if (MO.isReg())
180       MRI.addRegOperandToUseList(&MO);
181 }
182 
183 void MachineInstr::addOperand(const MachineOperand &Op) {
184   MachineBasicBlock *MBB = getParent();
185   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
186   MachineFunction *MF = MBB->getParent();
187   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
188   addOperand(*MF, Op);
189 }
190 
191 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
192 /// ranges. If MRI is non-null also update use-def chains.
193 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
194                          unsigned NumOps, MachineRegisterInfo *MRI) {
195   if (MRI)
196     return MRI->moveOperands(Dst, Src, NumOps);
197   // MachineOperand is a trivially copyable type so we can just use memmove.
198   assert(Dst && Src && "Unknown operands");
199   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
200 }
201 
202 /// addOperand - Add the specified operand to the instruction.  If it is an
203 /// implicit operand, it is added to the end of the operand list.  If it is
204 /// an explicit operand it is added at the end of the explicit operand list
205 /// (before the first implicit operand).
206 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
207   assert(MCID && "Cannot add operands before providing an instr descriptor");
208 
209   // Check if we're adding one of our existing operands.
210   if (&Op >= Operands && &Op < Operands + NumOperands) {
211     // This is unusual: MI->addOperand(MI->getOperand(i)).
212     // If adding Op requires reallocating or moving existing operands around,
213     // the Op reference could go stale. Support it by copying Op.
214     MachineOperand CopyOp(Op);
215     return addOperand(MF, CopyOp);
216   }
217 
218   // Find the insert location for the new operand.  Implicit registers go at
219   // the end, everything else goes before the implicit regs.
220   //
221   // FIXME: Allow mixed explicit and implicit operands on inline asm.
222   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
223   // implicit-defs, but they must not be moved around.  See the FIXME in
224   // InstrEmitter.cpp.
225   unsigned OpNo = getNumOperands();
226   bool isImpReg = Op.isReg() && Op.isImplicit();
227   if (!isImpReg && !isInlineAsm()) {
228     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
229       --OpNo;
230       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
231     }
232   }
233 
234 #ifndef NDEBUG
235   bool isDebugOp = Op.getType() == MachineOperand::MO_Metadata ||
236                    Op.getType() == MachineOperand::MO_MCSymbol;
237   // OpNo now points as the desired insertion point.  Unless this is a variadic
238   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
239   // RegMask operands go between the explicit and implicit operands.
240   assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
241           OpNo < MCID->getNumOperands() || isDebugOp) &&
242          "Trying to add an operand to a machine instr that is already done!");
243 #endif
244 
245   MachineRegisterInfo *MRI = getRegInfo();
246 
247   // Determine if the Operands array needs to be reallocated.
248   // Save the old capacity and operand array.
249   OperandCapacity OldCap = CapOperands;
250   MachineOperand *OldOperands = Operands;
251   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
252     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
253     Operands = MF.allocateOperandArray(CapOperands);
254     // Move the operands before the insertion point.
255     if (OpNo)
256       moveOperands(Operands, OldOperands, OpNo, MRI);
257   }
258 
259   // Move the operands following the insertion point.
260   if (OpNo != NumOperands)
261     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
262                  MRI);
263   ++NumOperands;
264 
265   // Deallocate the old operand array.
266   if (OldOperands != Operands && OldOperands)
267     MF.deallocateOperandArray(OldCap, OldOperands);
268 
269   // Copy Op into place. It still needs to be inserted into the MRI use lists.
270   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
271   NewMO->ParentMI = this;
272 
273   // When adding a register operand, tell MRI about it.
274   if (NewMO->isReg()) {
275     // Ensure isOnRegUseList() returns false, regardless of Op's status.
276     NewMO->Contents.Reg.Prev = nullptr;
277     // Ignore existing ties. This is not a property that can be copied.
278     NewMO->TiedTo = 0;
279     // Add the new operand to MRI, but only for instructions in an MBB.
280     if (MRI)
281       MRI->addRegOperandToUseList(NewMO);
282     // The MCID operand information isn't accurate until we start adding
283     // explicit operands. The implicit operands are added first, then the
284     // explicits are inserted before them.
285     if (!isImpReg) {
286       // Tie uses to defs as indicated in MCInstrDesc.
287       if (NewMO->isUse()) {
288         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
289         if (DefIdx != -1)
290           tieOperands(DefIdx, OpNo);
291       }
292       // If the register operand is flagged as early, mark the operand as such.
293       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
294         NewMO->setIsEarlyClobber(true);
295     }
296   }
297 }
298 
299 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
300 /// fewer operand than it started with.
301 ///
302 void MachineInstr::RemoveOperand(unsigned OpNo) {
303   assert(OpNo < getNumOperands() && "Invalid operand number");
304   untieRegOperand(OpNo);
305 
306 #ifndef NDEBUG
307   // Moving tied operands would break the ties.
308   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
309     if (Operands[i].isReg())
310       assert(!Operands[i].isTied() && "Cannot move tied operands");
311 #endif
312 
313   MachineRegisterInfo *MRI = getRegInfo();
314   if (MRI && Operands[OpNo].isReg())
315     MRI->removeRegOperandFromUseList(Operands + OpNo);
316 
317   // Don't call the MachineOperand destructor. A lot of this code depends on
318   // MachineOperand having a trivial destructor anyway, and adding a call here
319   // wouldn't make it 'destructor-correct'.
320 
321   if (unsigned N = NumOperands - 1 - OpNo)
322     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
323   --NumOperands;
324 }
325 
326 void MachineInstr::setExtraInfo(MachineFunction &MF,
327                                 ArrayRef<MachineMemOperand *> MMOs,
328                                 MCSymbol *PreInstrSymbol,
329                                 MCSymbol *PostInstrSymbol,
330                                 MDNode *HeapAllocMarker) {
331   bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
332   bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
333   bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
334   int NumPointers =
335       MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + HasHeapAllocMarker;
336 
337   // Drop all extra info if there is none.
338   if (NumPointers <= 0) {
339     Info.clear();
340     return;
341   }
342 
343   // If more than one pointer, then store out of line. Store heap alloc markers
344   // out of line because PointerSumType cannot hold more than 4 tag types with
345   // 32-bit pointers.
346   // FIXME: Maybe we should make the symbols in the extra info mutable?
347   else if (NumPointers > 1 || HasHeapAllocMarker) {
348     Info.set<EIIK_OutOfLine>(MF.createMIExtraInfo(
349         MMOs, PreInstrSymbol, PostInstrSymbol, HeapAllocMarker));
350     return;
351   }
352 
353   // Otherwise store the single pointer inline.
354   if (HasPreInstrSymbol)
355     Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol);
356   else if (HasPostInstrSymbol)
357     Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol);
358   else
359     Info.set<EIIK_MMO>(MMOs[0]);
360 }
361 
362 void MachineInstr::dropMemRefs(MachineFunction &MF) {
363   if (memoperands_empty())
364     return;
365 
366   setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(),
367                getHeapAllocMarker());
368 }
369 
370 void MachineInstr::setMemRefs(MachineFunction &MF,
371                               ArrayRef<MachineMemOperand *> MMOs) {
372   if (MMOs.empty()) {
373     dropMemRefs(MF);
374     return;
375   }
376 
377   setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(),
378                getHeapAllocMarker());
379 }
380 
381 void MachineInstr::addMemOperand(MachineFunction &MF,
382                                  MachineMemOperand *MO) {
383   SmallVector<MachineMemOperand *, 2> MMOs;
384   MMOs.append(memoperands_begin(), memoperands_end());
385   MMOs.push_back(MO);
386   setMemRefs(MF, MMOs);
387 }
388 
389 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) {
390   if (this == &MI)
391     // Nothing to do for a self-clone!
392     return;
393 
394   assert(&MF == MI.getMF() &&
395          "Invalid machine functions when cloning memory refrences!");
396   // See if we can just steal the extra info already allocated for the
397   // instruction. We can do this whenever the pre- and post-instruction symbols
398   // are the same (including null).
399   if (getPreInstrSymbol() == MI.getPreInstrSymbol() &&
400       getPostInstrSymbol() == MI.getPostInstrSymbol() &&
401       getHeapAllocMarker() == MI.getHeapAllocMarker()) {
402     Info = MI.Info;
403     return;
404   }
405 
406   // Otherwise, fall back on a copy-based clone.
407   setMemRefs(MF, MI.memoperands());
408 }
409 
410 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
411 /// identical.
412 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS,
413                              ArrayRef<MachineMemOperand *> RHS) {
414   if (LHS.size() != RHS.size())
415     return false;
416 
417   auto LHSPointees = make_pointee_range(LHS);
418   auto RHSPointees = make_pointee_range(RHS);
419   return std::equal(LHSPointees.begin(), LHSPointees.end(),
420                     RHSPointees.begin());
421 }
422 
423 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF,
424                                       ArrayRef<const MachineInstr *> MIs) {
425   // Try handling easy numbers of MIs with simpler mechanisms.
426   if (MIs.empty()) {
427     dropMemRefs(MF);
428     return;
429   }
430   if (MIs.size() == 1) {
431     cloneMemRefs(MF, *MIs[0]);
432     return;
433   }
434   // Because an empty memoperands list provides *no* information and must be
435   // handled conservatively (assuming the instruction can do anything), the only
436   // way to merge with it is to drop all other memoperands.
437   if (MIs[0]->memoperands_empty()) {
438     dropMemRefs(MF);
439     return;
440   }
441 
442   // Handle the general case.
443   SmallVector<MachineMemOperand *, 2> MergedMMOs;
444   // Start with the first instruction.
445   assert(&MF == MIs[0]->getMF() &&
446          "Invalid machine functions when cloning memory references!");
447   MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end());
448   // Now walk all the other instructions and accumulate any different MMOs.
449   for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) {
450     assert(&MF == MI.getMF() &&
451            "Invalid machine functions when cloning memory references!");
452 
453     // Skip MIs with identical operands to the first. This is a somewhat
454     // arbitrary hack but will catch common cases without being quadratic.
455     // TODO: We could fully implement merge semantics here if needed.
456     if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands()))
457       continue;
458 
459     // Because an empty memoperands list provides *no* information and must be
460     // handled conservatively (assuming the instruction can do anything), the
461     // only way to merge with it is to drop all other memoperands.
462     if (MI.memoperands_empty()) {
463       dropMemRefs(MF);
464       return;
465     }
466 
467     // Otherwise accumulate these into our temporary buffer of the merged state.
468     MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end());
469   }
470 
471   setMemRefs(MF, MergedMMOs);
472 }
473 
474 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
475   // Do nothing if old and new symbols are the same.
476   if (Symbol == getPreInstrSymbol())
477     return;
478 
479   // If there was only one symbol and we're removing it, just clear info.
480   if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) {
481     Info.clear();
482     return;
483   }
484 
485   setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(),
486                getHeapAllocMarker());
487 }
488 
489 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
490   // Do nothing if old and new symbols are the same.
491   if (Symbol == getPostInstrSymbol())
492     return;
493 
494   // If there was only one symbol and we're removing it, just clear info.
495   if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) {
496     Info.clear();
497     return;
498   }
499 
500   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol,
501                getHeapAllocMarker());
502 }
503 
504 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) {
505   // Do nothing if old and new symbols are the same.
506   if (Marker == getHeapAllocMarker())
507     return;
508 
509   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
510                Marker);
511 }
512 
513 void MachineInstr::cloneInstrSymbols(MachineFunction &MF,
514                                      const MachineInstr &MI) {
515   if (this == &MI)
516     // Nothing to do for a self-clone!
517     return;
518 
519   assert(&MF == MI.getMF() &&
520          "Invalid machine functions when cloning instruction symbols!");
521 
522   setPreInstrSymbol(MF, MI.getPreInstrSymbol());
523   setPostInstrSymbol(MF, MI.getPostInstrSymbol());
524   setHeapAllocMarker(MF, MI.getHeapAllocMarker());
525 }
526 
527 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
528   // For now, the just return the union of the flags. If the flags get more
529   // complicated over time, we might need more logic here.
530   return getFlags() | Other.getFlags();
531 }
532 
533 uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) {
534   uint16_t MIFlags = 0;
535   // Copy the wrapping flags.
536   if (const OverflowingBinaryOperator *OB =
537           dyn_cast<OverflowingBinaryOperator>(&I)) {
538     if (OB->hasNoSignedWrap())
539       MIFlags |= MachineInstr::MIFlag::NoSWrap;
540     if (OB->hasNoUnsignedWrap())
541       MIFlags |= MachineInstr::MIFlag::NoUWrap;
542   }
543 
544   // Copy the exact flag.
545   if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I))
546     if (PE->isExact())
547       MIFlags |= MachineInstr::MIFlag::IsExact;
548 
549   // Copy the fast-math flags.
550   if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) {
551     const FastMathFlags Flags = FP->getFastMathFlags();
552     if (Flags.noNaNs())
553       MIFlags |= MachineInstr::MIFlag::FmNoNans;
554     if (Flags.noInfs())
555       MIFlags |= MachineInstr::MIFlag::FmNoInfs;
556     if (Flags.noSignedZeros())
557       MIFlags |= MachineInstr::MIFlag::FmNsz;
558     if (Flags.allowReciprocal())
559       MIFlags |= MachineInstr::MIFlag::FmArcp;
560     if (Flags.allowContract())
561       MIFlags |= MachineInstr::MIFlag::FmContract;
562     if (Flags.approxFunc())
563       MIFlags |= MachineInstr::MIFlag::FmAfn;
564     if (Flags.allowReassoc())
565       MIFlags |= MachineInstr::MIFlag::FmReassoc;
566   }
567 
568   return MIFlags;
569 }
570 
571 void MachineInstr::copyIRFlags(const Instruction &I) {
572   Flags = copyFlagsFromInstruction(I);
573 }
574 
575 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const {
576   assert(!isBundledWithPred() && "Must be called on bundle header");
577   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
578     if (MII->getDesc().getFlags() & Mask) {
579       if (Type == AnyInBundle)
580         return true;
581     } else {
582       if (Type == AllInBundle && !MII->isBundle())
583         return false;
584     }
585     // This was the last instruction in the bundle.
586     if (!MII->isBundledWithSucc())
587       return Type == AllInBundle;
588   }
589 }
590 
591 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
592                                  MICheckType Check) const {
593   // If opcodes or number of operands are not the same then the two
594   // instructions are obviously not identical.
595   if (Other.getOpcode() != getOpcode() ||
596       Other.getNumOperands() != getNumOperands())
597     return false;
598 
599   if (isBundle()) {
600     // We have passed the test above that both instructions have the same
601     // opcode, so we know that both instructions are bundles here. Let's compare
602     // MIs inside the bundle.
603     assert(Other.isBundle() && "Expected that both instructions are bundles.");
604     MachineBasicBlock::const_instr_iterator I1 = getIterator();
605     MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
606     // Loop until we analysed the last intruction inside at least one of the
607     // bundles.
608     while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
609       ++I1;
610       ++I2;
611       if (!I1->isIdenticalTo(*I2, Check))
612         return false;
613     }
614     // If we've reached the end of just one of the two bundles, but not both,
615     // the instructions are not identical.
616     if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
617       return false;
618   }
619 
620   // Check operands to make sure they match.
621   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
622     const MachineOperand &MO = getOperand(i);
623     const MachineOperand &OMO = Other.getOperand(i);
624     if (!MO.isReg()) {
625       if (!MO.isIdenticalTo(OMO))
626         return false;
627       continue;
628     }
629 
630     // Clients may or may not want to ignore defs when testing for equality.
631     // For example, machine CSE pass only cares about finding common
632     // subexpressions, so it's safe to ignore virtual register defs.
633     if (MO.isDef()) {
634       if (Check == IgnoreDefs)
635         continue;
636       else if (Check == IgnoreVRegDefs) {
637         if (!Register::isVirtualRegister(MO.getReg()) ||
638             !Register::isVirtualRegister(OMO.getReg()))
639           if (!MO.isIdenticalTo(OMO))
640             return false;
641       } else {
642         if (!MO.isIdenticalTo(OMO))
643           return false;
644         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
645           return false;
646       }
647     } else {
648       if (!MO.isIdenticalTo(OMO))
649         return false;
650       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
651         return false;
652     }
653   }
654   // If DebugLoc does not match then two debug instructions are not identical.
655   if (isDebugInstr())
656     if (getDebugLoc() && Other.getDebugLoc() &&
657         getDebugLoc() != Other.getDebugLoc())
658       return false;
659   return true;
660 }
661 
662 const MachineFunction *MachineInstr::getMF() const {
663   return getParent()->getParent();
664 }
665 
666 MachineInstr *MachineInstr::removeFromParent() {
667   assert(getParent() && "Not embedded in a basic block!");
668   return getParent()->remove(this);
669 }
670 
671 MachineInstr *MachineInstr::removeFromBundle() {
672   assert(getParent() && "Not embedded in a basic block!");
673   return getParent()->remove_instr(this);
674 }
675 
676 void MachineInstr::eraseFromParent() {
677   assert(getParent() && "Not embedded in a basic block!");
678   getParent()->erase(this);
679 }
680 
681 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
682   assert(getParent() && "Not embedded in a basic block!");
683   MachineBasicBlock *MBB = getParent();
684   MachineFunction *MF = MBB->getParent();
685   assert(MF && "Not embedded in a function!");
686 
687   MachineInstr *MI = (MachineInstr *)this;
688   MachineRegisterInfo &MRI = MF->getRegInfo();
689 
690   for (const MachineOperand &MO : MI->operands()) {
691     if (!MO.isReg() || !MO.isDef())
692       continue;
693     Register Reg = MO.getReg();
694     if (!Reg.isVirtual())
695       continue;
696     MRI.markUsesInDebugValueAsUndef(Reg);
697   }
698   MI->eraseFromParent();
699 }
700 
701 void MachineInstr::eraseFromBundle() {
702   assert(getParent() && "Not embedded in a basic block!");
703   getParent()->erase_instr(this);
704 }
705 
706 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const {
707   if (!isCall(Type))
708     return false;
709   switch (getOpcode()) {
710   case TargetOpcode::PATCHABLE_EVENT_CALL:
711   case TargetOpcode::PATCHABLE_TYPED_EVENT_CALL:
712   case TargetOpcode::PATCHPOINT:
713   case TargetOpcode::STACKMAP:
714   case TargetOpcode::STATEPOINT:
715     return false;
716   }
717   return true;
718 }
719 
720 bool MachineInstr::shouldUpdateCallSiteInfo() const {
721   if (isBundle())
722     return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle);
723   return isCandidateForCallSiteEntry();
724 }
725 
726 unsigned MachineInstr::getNumExplicitOperands() const {
727   unsigned NumOperands = MCID->getNumOperands();
728   if (!MCID->isVariadic())
729     return NumOperands;
730 
731   for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) {
732     const MachineOperand &MO = getOperand(I);
733     // The operands must always be in the following order:
734     // - explicit reg defs,
735     // - other explicit operands (reg uses, immediates, etc.),
736     // - implicit reg defs
737     // - implicit reg uses
738     if (MO.isReg() && MO.isImplicit())
739       break;
740     ++NumOperands;
741   }
742   return NumOperands;
743 }
744 
745 unsigned MachineInstr::getNumExplicitDefs() const {
746   unsigned NumDefs = MCID->getNumDefs();
747   if (!MCID->isVariadic())
748     return NumDefs;
749 
750   for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) {
751     const MachineOperand &MO = getOperand(I);
752     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
753       break;
754     ++NumDefs;
755   }
756   return NumDefs;
757 }
758 
759 void MachineInstr::bundleWithPred() {
760   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
761   setFlag(BundledPred);
762   MachineBasicBlock::instr_iterator Pred = getIterator();
763   --Pred;
764   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
765   Pred->setFlag(BundledSucc);
766 }
767 
768 void MachineInstr::bundleWithSucc() {
769   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
770   setFlag(BundledSucc);
771   MachineBasicBlock::instr_iterator Succ = getIterator();
772   ++Succ;
773   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
774   Succ->setFlag(BundledPred);
775 }
776 
777 void MachineInstr::unbundleFromPred() {
778   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
779   clearFlag(BundledPred);
780   MachineBasicBlock::instr_iterator Pred = getIterator();
781   --Pred;
782   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
783   Pred->clearFlag(BundledSucc);
784 }
785 
786 void MachineInstr::unbundleFromSucc() {
787   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
788   clearFlag(BundledSucc);
789   MachineBasicBlock::instr_iterator Succ = getIterator();
790   ++Succ;
791   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
792   Succ->clearFlag(BundledPred);
793 }
794 
795 bool MachineInstr::isStackAligningInlineAsm() const {
796   if (isInlineAsm()) {
797     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
798     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
799       return true;
800   }
801   return false;
802 }
803 
804 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
805   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
806   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
807   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
808 }
809 
810 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
811                                        unsigned *GroupNo) const {
812   assert(isInlineAsm() && "Expected an inline asm instruction");
813   assert(OpIdx < getNumOperands() && "OpIdx out of range");
814 
815   // Ignore queries about the initial operands.
816   if (OpIdx < InlineAsm::MIOp_FirstOperand)
817     return -1;
818 
819   unsigned Group = 0;
820   unsigned NumOps;
821   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
822        i += NumOps) {
823     const MachineOperand &FlagMO = getOperand(i);
824     // If we reach the implicit register operands, stop looking.
825     if (!FlagMO.isImm())
826       return -1;
827     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
828     if (i + NumOps > OpIdx) {
829       if (GroupNo)
830         *GroupNo = Group;
831       return i;
832     }
833     ++Group;
834   }
835   return -1;
836 }
837 
838 const DILabel *MachineInstr::getDebugLabel() const {
839   assert(isDebugLabel() && "not a DBG_LABEL");
840   return cast<DILabel>(getOperand(0).getMetadata());
841 }
842 
843 const MachineOperand &MachineInstr::getDebugVariableOp() const {
844   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE");
845   return getOperand(2);
846 }
847 
848 MachineOperand &MachineInstr::getDebugVariableOp() {
849   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE");
850   return getOperand(2);
851 }
852 
853 const DILocalVariable *MachineInstr::getDebugVariable() const {
854   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE");
855   return cast<DILocalVariable>(getOperand(2).getMetadata());
856 }
857 
858 MachineOperand &MachineInstr::getDebugExpressionOp() {
859   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE");
860   return getOperand(3);
861 }
862 
863 const DIExpression *MachineInstr::getDebugExpression() const {
864   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE");
865   return cast<DIExpression>(getOperand(3).getMetadata());
866 }
867 
868 bool MachineInstr::isDebugEntryValue() const {
869   return isDebugValue() && getDebugExpression()->isEntryValue();
870 }
871 
872 const TargetRegisterClass*
873 MachineInstr::getRegClassConstraint(unsigned OpIdx,
874                                     const TargetInstrInfo *TII,
875                                     const TargetRegisterInfo *TRI) const {
876   assert(getParent() && "Can't have an MBB reference here!");
877   assert(getMF() && "Can't have an MF reference here!");
878   const MachineFunction &MF = *getMF();
879 
880   // Most opcodes have fixed constraints in their MCInstrDesc.
881   if (!isInlineAsm())
882     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
883 
884   if (!getOperand(OpIdx).isReg())
885     return nullptr;
886 
887   // For tied uses on inline asm, get the constraint from the def.
888   unsigned DefIdx;
889   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
890     OpIdx = DefIdx;
891 
892   // Inline asm stores register class constraints in the flag word.
893   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
894   if (FlagIdx < 0)
895     return nullptr;
896 
897   unsigned Flag = getOperand(FlagIdx).getImm();
898   unsigned RCID;
899   if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
900        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
901        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
902       InlineAsm::hasRegClassConstraint(Flag, RCID))
903     return TRI->getRegClass(RCID);
904 
905   // Assume that all registers in a memory operand are pointers.
906   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
907     return TRI->getPointerRegClass(MF);
908 
909   return nullptr;
910 }
911 
912 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
913     Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
914     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
915   // Check every operands inside the bundle if we have
916   // been asked to.
917   if (ExploreBundle)
918     for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
919          ++OpndIt)
920       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
921           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
922   else
923     // Otherwise, just check the current operands.
924     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
925       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
926   return CurRC;
927 }
928 
929 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
930     unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
931     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
932   assert(CurRC && "Invalid initial register class");
933   // Check if Reg is constrained by some of its use/def from MI.
934   const MachineOperand &MO = getOperand(OpIdx);
935   if (!MO.isReg() || MO.getReg() != Reg)
936     return CurRC;
937   // If yes, accumulate the constraints through the operand.
938   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
939 }
940 
941 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
942     unsigned OpIdx, const TargetRegisterClass *CurRC,
943     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
944   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
945   const MachineOperand &MO = getOperand(OpIdx);
946   assert(MO.isReg() &&
947          "Cannot get register constraints for non-register operand");
948   assert(CurRC && "Invalid initial register class");
949   if (unsigned SubIdx = MO.getSubReg()) {
950     if (OpRC)
951       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
952     else
953       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
954   } else if (OpRC)
955     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
956   return CurRC;
957 }
958 
959 /// Return the number of instructions inside the MI bundle, not counting the
960 /// header instruction.
961 unsigned MachineInstr::getBundleSize() const {
962   MachineBasicBlock::const_instr_iterator I = getIterator();
963   unsigned Size = 0;
964   while (I->isBundledWithSucc()) {
965     ++Size;
966     ++I;
967   }
968   return Size;
969 }
970 
971 /// Returns true if the MachineInstr has an implicit-use operand of exactly
972 /// the given register (not considering sub/super-registers).
973 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const {
974   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
975     const MachineOperand &MO = getOperand(i);
976     if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
977       return true;
978   }
979   return false;
980 }
981 
982 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
983 /// the specific register or -1 if it is not found. It further tightens
984 /// the search criteria to a use that kills the register if isKill is true.
985 int MachineInstr::findRegisterUseOperandIdx(
986     Register Reg, bool isKill, const TargetRegisterInfo *TRI) const {
987   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
988     const MachineOperand &MO = getOperand(i);
989     if (!MO.isReg() || !MO.isUse())
990       continue;
991     Register MOReg = MO.getReg();
992     if (!MOReg)
993       continue;
994     if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg)))
995       if (!isKill || MO.isKill())
996         return i;
997   }
998   return -1;
999 }
1000 
1001 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1002 /// indicating if this instruction reads or writes Reg. This also considers
1003 /// partial defines.
1004 std::pair<bool,bool>
1005 MachineInstr::readsWritesVirtualRegister(Register Reg,
1006                                          SmallVectorImpl<unsigned> *Ops) const {
1007   bool PartDef = false; // Partial redefine.
1008   bool FullDef = false; // Full define.
1009   bool Use = false;
1010 
1011   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1012     const MachineOperand &MO = getOperand(i);
1013     if (!MO.isReg() || MO.getReg() != Reg)
1014       continue;
1015     if (Ops)
1016       Ops->push_back(i);
1017     if (MO.isUse())
1018       Use |= !MO.isUndef();
1019     else if (MO.getSubReg() && !MO.isUndef())
1020       // A partial def undef doesn't count as reading the register.
1021       PartDef = true;
1022     else
1023       FullDef = true;
1024   }
1025   // A partial redefine uses Reg unless there is also a full define.
1026   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1027 }
1028 
1029 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1030 /// the specified register or -1 if it is not found. If isDead is true, defs
1031 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1032 /// also checks if there is a def of a super-register.
1033 int
1034 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap,
1035                                         const TargetRegisterInfo *TRI) const {
1036   bool isPhys = Register::isPhysicalRegister(Reg);
1037   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1038     const MachineOperand &MO = getOperand(i);
1039     // Accept regmask operands when Overlap is set.
1040     // Ignore them when looking for a specific def operand (Overlap == false).
1041     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1042       return i;
1043     if (!MO.isReg() || !MO.isDef())
1044       continue;
1045     Register MOReg = MO.getReg();
1046     bool Found = (MOReg == Reg);
1047     if (!Found && TRI && isPhys && Register::isPhysicalRegister(MOReg)) {
1048       if (Overlap)
1049         Found = TRI->regsOverlap(MOReg, Reg);
1050       else
1051         Found = TRI->isSubRegister(MOReg, Reg);
1052     }
1053     if (Found && (!isDead || MO.isDead()))
1054       return i;
1055   }
1056   return -1;
1057 }
1058 
1059 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1060 /// operand list that is used to represent the predicate. It returns -1 if
1061 /// none is found.
1062 int MachineInstr::findFirstPredOperandIdx() const {
1063   // Don't call MCID.findFirstPredOperandIdx() because this variant
1064   // is sometimes called on an instruction that's not yet complete, and
1065   // so the number of operands is less than the MCID indicates. In
1066   // particular, the PTX target does this.
1067   const MCInstrDesc &MCID = getDesc();
1068   if (MCID.isPredicable()) {
1069     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1070       if (MCID.OpInfo[i].isPredicate())
1071         return i;
1072   }
1073 
1074   return -1;
1075 }
1076 
1077 // MachineOperand::TiedTo is 4 bits wide.
1078 const unsigned TiedMax = 15;
1079 
1080 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1081 ///
1082 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1083 /// field. TiedTo can have these values:
1084 ///
1085 /// 0:              Operand is not tied to anything.
1086 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1087 /// TiedMax:        Tied to an operand >= TiedMax-1.
1088 ///
1089 /// The tied def must be one of the first TiedMax operands on a normal
1090 /// instruction. INLINEASM instructions allow more tied defs.
1091 ///
1092 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1093   MachineOperand &DefMO = getOperand(DefIdx);
1094   MachineOperand &UseMO = getOperand(UseIdx);
1095   assert(DefMO.isDef() && "DefIdx must be a def operand");
1096   assert(UseMO.isUse() && "UseIdx must be a use operand");
1097   assert(!DefMO.isTied() && "Def is already tied to another use");
1098   assert(!UseMO.isTied() && "Use is already tied to another def");
1099 
1100   if (DefIdx < TiedMax)
1101     UseMO.TiedTo = DefIdx + 1;
1102   else {
1103     // Inline asm can use the group descriptors to find tied operands, but on
1104     // normal instruction, the tied def must be within the first TiedMax
1105     // operands.
1106     assert(isInlineAsm() && "DefIdx out of range");
1107     UseMO.TiedTo = TiedMax;
1108   }
1109 
1110   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1111   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1112 }
1113 
1114 /// Given the index of a tied register operand, find the operand it is tied to.
1115 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1116 /// which must exist.
1117 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1118   const MachineOperand &MO = getOperand(OpIdx);
1119   assert(MO.isTied() && "Operand isn't tied");
1120 
1121   // Normally TiedTo is in range.
1122   if (MO.TiedTo < TiedMax)
1123     return MO.TiedTo - 1;
1124 
1125   // Uses on normal instructions can be out of range.
1126   if (!isInlineAsm()) {
1127     // Normal tied defs must be in the 0..TiedMax-1 range.
1128     if (MO.isUse())
1129       return TiedMax - 1;
1130     // MO is a def. Search for the tied use.
1131     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1132       const MachineOperand &UseMO = getOperand(i);
1133       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1134         return i;
1135     }
1136     llvm_unreachable("Can't find tied use");
1137   }
1138 
1139   // Now deal with inline asm by parsing the operand group descriptor flags.
1140   // Find the beginning of each operand group.
1141   SmallVector<unsigned, 8> GroupIdx;
1142   unsigned OpIdxGroup = ~0u;
1143   unsigned NumOps;
1144   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1145        i += NumOps) {
1146     const MachineOperand &FlagMO = getOperand(i);
1147     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1148     unsigned CurGroup = GroupIdx.size();
1149     GroupIdx.push_back(i);
1150     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1151     // OpIdx belongs to this operand group.
1152     if (OpIdx > i && OpIdx < i + NumOps)
1153       OpIdxGroup = CurGroup;
1154     unsigned TiedGroup;
1155     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1156       continue;
1157     // Operands in this group are tied to operands in TiedGroup which must be
1158     // earlier. Find the number of operands between the two groups.
1159     unsigned Delta = i - GroupIdx[TiedGroup];
1160 
1161     // OpIdx is a use tied to TiedGroup.
1162     if (OpIdxGroup == CurGroup)
1163       return OpIdx - Delta;
1164 
1165     // OpIdx is a def tied to this use group.
1166     if (OpIdxGroup == TiedGroup)
1167       return OpIdx + Delta;
1168   }
1169   llvm_unreachable("Invalid tied operand on inline asm");
1170 }
1171 
1172 /// clearKillInfo - Clears kill flags on all operands.
1173 ///
1174 void MachineInstr::clearKillInfo() {
1175   for (MachineOperand &MO : operands()) {
1176     if (MO.isReg() && MO.isUse())
1177       MO.setIsKill(false);
1178   }
1179 }
1180 
1181 void MachineInstr::substituteRegister(Register FromReg, Register ToReg,
1182                                       unsigned SubIdx,
1183                                       const TargetRegisterInfo &RegInfo) {
1184   if (Register::isPhysicalRegister(ToReg)) {
1185     if (SubIdx)
1186       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1187     for (MachineOperand &MO : operands()) {
1188       if (!MO.isReg() || MO.getReg() != FromReg)
1189         continue;
1190       MO.substPhysReg(ToReg, RegInfo);
1191     }
1192   } else {
1193     for (MachineOperand &MO : operands()) {
1194       if (!MO.isReg() || MO.getReg() != FromReg)
1195         continue;
1196       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1197     }
1198   }
1199 }
1200 
1201 /// isSafeToMove - Return true if it is safe to move this instruction. If
1202 /// SawStore is set to true, it means that there is a store (or call) between
1203 /// the instruction's location and its intended destination.
1204 bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const {
1205   // Ignore stuff that we obviously can't move.
1206   //
1207   // Treat volatile loads as stores. This is not strictly necessary for
1208   // volatiles, but it is required for atomic loads. It is not allowed to move
1209   // a load across an atomic load with Ordering > Monotonic.
1210   if (mayStore() || isCall() || isPHI() ||
1211       (mayLoad() && hasOrderedMemoryRef())) {
1212     SawStore = true;
1213     return false;
1214   }
1215 
1216   if (isPosition() || isDebugInstr() || isTerminator() ||
1217       mayRaiseFPException() || hasUnmodeledSideEffects())
1218     return false;
1219 
1220   // See if this instruction does a load.  If so, we have to guarantee that the
1221   // loaded value doesn't change between the load and the its intended
1222   // destination. The check for isInvariantLoad gives the target the chance to
1223   // classify the load as always returning a constant, e.g. a constant pool
1224   // load.
1225   if (mayLoad() && !isDereferenceableInvariantLoad(AA))
1226     // Otherwise, this is a real load.  If there is a store between the load and
1227     // end of block, we can't move it.
1228     return !SawStore;
1229 
1230   return true;
1231 }
1232 
1233 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other,
1234                             bool UseTBAA) const {
1235   const MachineFunction *MF = getMF();
1236   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1237   const MachineFrameInfo &MFI = MF->getFrameInfo();
1238 
1239   // If neither instruction stores to memory, they can't alias in any
1240   // meaningful way, even if they read from the same address.
1241   if (!mayStore() && !Other.mayStore())
1242     return false;
1243 
1244   // Both instructions must be memory operations to be able to alias.
1245   if (!mayLoadOrStore() || !Other.mayLoadOrStore())
1246     return false;
1247 
1248   // Let the target decide if memory accesses cannot possibly overlap.
1249   if (TII->areMemAccessesTriviallyDisjoint(*this, Other))
1250     return false;
1251 
1252   // FIXME: Need to handle multiple memory operands to support all targets.
1253   if (!hasOneMemOperand() || !Other.hasOneMemOperand())
1254     return true;
1255 
1256   MachineMemOperand *MMOa = *memoperands_begin();
1257   MachineMemOperand *MMOb = *Other.memoperands_begin();
1258 
1259   // The following interface to AA is fashioned after DAGCombiner::isAlias
1260   // and operates with MachineMemOperand offset with some important
1261   // assumptions:
1262   //   - LLVM fundamentally assumes flat address spaces.
1263   //   - MachineOperand offset can *only* result from legalization and
1264   //     cannot affect queries other than the trivial case of overlap
1265   //     checking.
1266   //   - These offsets never wrap and never step outside
1267   //     of allocated objects.
1268   //   - There should never be any negative offsets here.
1269   //
1270   // FIXME: Modify API to hide this math from "user"
1271   // Even before we go to AA we can reason locally about some
1272   // memory objects. It can save compile time, and possibly catch some
1273   // corner cases not currently covered.
1274 
1275   int64_t OffsetA = MMOa->getOffset();
1276   int64_t OffsetB = MMOb->getOffset();
1277   int64_t MinOffset = std::min(OffsetA, OffsetB);
1278 
1279   uint64_t WidthA = MMOa->getSize();
1280   uint64_t WidthB = MMOb->getSize();
1281   bool KnownWidthA = WidthA != MemoryLocation::UnknownSize;
1282   bool KnownWidthB = WidthB != MemoryLocation::UnknownSize;
1283 
1284   const Value *ValA = MMOa->getValue();
1285   const Value *ValB = MMOb->getValue();
1286   bool SameVal = (ValA && ValB && (ValA == ValB));
1287   if (!SameVal) {
1288     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1289     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1290     if (PSVa && ValB && !PSVa->mayAlias(&MFI))
1291       return false;
1292     if (PSVb && ValA && !PSVb->mayAlias(&MFI))
1293       return false;
1294     if (PSVa && PSVb && (PSVa == PSVb))
1295       SameVal = true;
1296   }
1297 
1298   if (SameVal) {
1299     if (!KnownWidthA || !KnownWidthB)
1300       return true;
1301     int64_t MaxOffset = std::max(OffsetA, OffsetB);
1302     int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
1303     return (MinOffset + LowWidth > MaxOffset);
1304   }
1305 
1306   if (!AA)
1307     return true;
1308 
1309   if (!ValA || !ValB)
1310     return true;
1311 
1312   assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
1313   assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
1314 
1315   int64_t OverlapA = KnownWidthA ? WidthA + OffsetA - MinOffset
1316                                  : MemoryLocation::UnknownSize;
1317   int64_t OverlapB = KnownWidthB ? WidthB + OffsetB - MinOffset
1318                                  : MemoryLocation::UnknownSize;
1319 
1320   AliasResult AAResult = AA->alias(
1321       MemoryLocation(ValA, OverlapA,
1322                      UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1323       MemoryLocation(ValB, OverlapB,
1324                      UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1325 
1326   return (AAResult != NoAlias);
1327 }
1328 
1329 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1330 /// or volatile memory reference, or if the information describing the memory
1331 /// reference is not available. Return false if it is known to have no ordered
1332 /// memory references.
1333 bool MachineInstr::hasOrderedMemoryRef() const {
1334   // An instruction known never to access memory won't have a volatile access.
1335   if (!mayStore() &&
1336       !mayLoad() &&
1337       !isCall() &&
1338       !hasUnmodeledSideEffects())
1339     return false;
1340 
1341   // Otherwise, if the instruction has no memory reference information,
1342   // conservatively assume it wasn't preserved.
1343   if (memoperands_empty())
1344     return true;
1345 
1346   // Check if any of our memory operands are ordered.
1347   return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1348     return !MMO->isUnordered();
1349   });
1350 }
1351 
1352 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1353 /// trap and is loading from a location whose value is invariant across a run of
1354 /// this function.
1355 bool MachineInstr::isDereferenceableInvariantLoad(AAResults *AA) const {
1356   // If the instruction doesn't load at all, it isn't an invariant load.
1357   if (!mayLoad())
1358     return false;
1359 
1360   // If the instruction has lost its memoperands, conservatively assume that
1361   // it may not be an invariant load.
1362   if (memoperands_empty())
1363     return false;
1364 
1365   const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1366 
1367   for (MachineMemOperand *MMO : memoperands()) {
1368     if (!MMO->isUnordered())
1369       // If the memory operand has ordering side effects, we can't move the
1370       // instruction.  Such an instruction is technically an invariant load,
1371       // but the caller code would need updated to expect that.
1372       return false;
1373     if (MMO->isStore()) return false;
1374     if (MMO->isInvariant() && MMO->isDereferenceable())
1375       continue;
1376 
1377     // A load from a constant PseudoSourceValue is invariant.
1378     if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1379       if (PSV->isConstant(&MFI))
1380         continue;
1381 
1382     if (const Value *V = MMO->getValue()) {
1383       // If we have an AliasAnalysis, ask it whether the memory is constant.
1384       if (AA &&
1385           AA->pointsToConstantMemory(
1386               MemoryLocation(V, MMO->getSize(), MMO->getAAInfo())))
1387         continue;
1388     }
1389 
1390     // Otherwise assume conservatively.
1391     return false;
1392   }
1393 
1394   // Everything checks out.
1395   return true;
1396 }
1397 
1398 /// isConstantValuePHI - If the specified instruction is a PHI that always
1399 /// merges together the same virtual register, return the register, otherwise
1400 /// return 0.
1401 unsigned MachineInstr::isConstantValuePHI() const {
1402   if (!isPHI())
1403     return 0;
1404   assert(getNumOperands() >= 3 &&
1405          "It's illegal to have a PHI without source operands");
1406 
1407   Register Reg = getOperand(1).getReg();
1408   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1409     if (getOperand(i).getReg() != Reg)
1410       return 0;
1411   return Reg;
1412 }
1413 
1414 bool MachineInstr::hasUnmodeledSideEffects() const {
1415   if (hasProperty(MCID::UnmodeledSideEffects))
1416     return true;
1417   if (isInlineAsm()) {
1418     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1419     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1420       return true;
1421   }
1422 
1423   return false;
1424 }
1425 
1426 bool MachineInstr::isLoadFoldBarrier() const {
1427   return mayStore() || isCall() || hasUnmodeledSideEffects();
1428 }
1429 
1430 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1431 ///
1432 bool MachineInstr::allDefsAreDead() const {
1433   for (const MachineOperand &MO : operands()) {
1434     if (!MO.isReg() || MO.isUse())
1435       continue;
1436     if (!MO.isDead())
1437       return false;
1438   }
1439   return true;
1440 }
1441 
1442 /// copyImplicitOps - Copy implicit register operands from specified
1443 /// instruction to this instruction.
1444 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1445                                    const MachineInstr &MI) {
1446   for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands();
1447        i != e; ++i) {
1448     const MachineOperand &MO = MI.getOperand(i);
1449     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1450       addOperand(MF, MO);
1451   }
1452 }
1453 
1454 bool MachineInstr::hasComplexRegisterTies() const {
1455   const MCInstrDesc &MCID = getDesc();
1456   for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
1457     const auto &Operand = getOperand(I);
1458     if (!Operand.isReg() || Operand.isDef())
1459       // Ignore the defined registers as MCID marks only the uses as tied.
1460       continue;
1461     int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
1462     int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
1463     if (ExpectedTiedIdx != TiedIdx)
1464       return true;
1465   }
1466   return false;
1467 }
1468 
1469 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1470                                  const MachineRegisterInfo &MRI) const {
1471   const MachineOperand &Op = getOperand(OpIdx);
1472   if (!Op.isReg())
1473     return LLT{};
1474 
1475   if (isVariadic() || OpIdx >= getNumExplicitOperands())
1476     return MRI.getType(Op.getReg());
1477 
1478   auto &OpInfo = getDesc().OpInfo[OpIdx];
1479   if (!OpInfo.isGenericType())
1480     return MRI.getType(Op.getReg());
1481 
1482   if (PrintedTypes[OpInfo.getGenericTypeIndex()])
1483     return LLT{};
1484 
1485   LLT TypeToPrint = MRI.getType(Op.getReg());
1486   // Don't mark the type index printed if it wasn't actually printed: maybe
1487   // another operand with the same type index has an actual type attached:
1488   if (TypeToPrint.isValid())
1489     PrintedTypes.set(OpInfo.getGenericTypeIndex());
1490   return TypeToPrint;
1491 }
1492 
1493 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1494 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1495   dbgs() << "  ";
1496   print(dbgs());
1497 }
1498 
1499 LLVM_DUMP_METHOD void MachineInstr::dumprImpl(
1500     const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
1501     SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const {
1502   if (Depth >= MaxDepth)
1503     return;
1504   if (!AlreadySeenInstrs.insert(this).second)
1505     return;
1506   // PadToColumn always inserts at least one space.
1507   // Don't mess up the alignment if we don't want any space.
1508   if (Depth)
1509     fdbgs().PadToColumn(Depth * 2);
1510   print(fdbgs());
1511   for (const MachineOperand &MO : operands()) {
1512     if (!MO.isReg() || MO.isDef())
1513       continue;
1514     Register Reg = MO.getReg();
1515     if (Reg.isPhysical())
1516       continue;
1517     const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg);
1518     if (NewMI == nullptr)
1519       continue;
1520     NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs);
1521   }
1522 }
1523 
1524 LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI,
1525                                           unsigned MaxDepth) const {
1526   SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs;
1527   dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs);
1528 }
1529 #endif
1530 
1531 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
1532                          bool SkipDebugLoc, bool AddNewLine,
1533                          const TargetInstrInfo *TII) const {
1534   const Module *M = nullptr;
1535   const Function *F = nullptr;
1536   if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1537     F = &MF->getFunction();
1538     M = F->getParent();
1539     if (!TII)
1540       TII = MF->getSubtarget().getInstrInfo();
1541   }
1542 
1543   ModuleSlotTracker MST(M);
1544   if (F)
1545     MST.incorporateFunction(*F);
1546   print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII);
1547 }
1548 
1549 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1550                          bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
1551                          bool AddNewLine, const TargetInstrInfo *TII) const {
1552   // We can be a bit tidier if we know the MachineFunction.
1553   const TargetRegisterInfo *TRI = nullptr;
1554   const MachineRegisterInfo *MRI = nullptr;
1555   const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1556   tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
1557 
1558   if (isCFIInstruction())
1559     assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1560 
1561   SmallBitVector PrintedTypes(8);
1562   bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies();
1563   auto getTiedOperandIdx = [&](unsigned OpIdx) {
1564     if (!ShouldPrintRegisterTies)
1565       return 0U;
1566     const MachineOperand &MO = getOperand(OpIdx);
1567     if (MO.isReg() && MO.isTied() && !MO.isDef())
1568       return findTiedOperandIdx(OpIdx);
1569     return 0U;
1570   };
1571   unsigned StartOp = 0;
1572   unsigned e = getNumOperands();
1573 
1574   // Print explicitly defined operands on the left of an assignment syntax.
1575   while (StartOp < e) {
1576     const MachineOperand &MO = getOperand(StartOp);
1577     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
1578       break;
1579 
1580     if (StartOp != 0)
1581       OS << ", ";
1582 
1583     LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
1584     unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
1585     MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone,
1586              ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1587     ++StartOp;
1588   }
1589 
1590   if (StartOp != 0)
1591     OS << " = ";
1592 
1593   if (getFlag(MachineInstr::FrameSetup))
1594     OS << "frame-setup ";
1595   if (getFlag(MachineInstr::FrameDestroy))
1596     OS << "frame-destroy ";
1597   if (getFlag(MachineInstr::FmNoNans))
1598     OS << "nnan ";
1599   if (getFlag(MachineInstr::FmNoInfs))
1600     OS << "ninf ";
1601   if (getFlag(MachineInstr::FmNsz))
1602     OS << "nsz ";
1603   if (getFlag(MachineInstr::FmArcp))
1604     OS << "arcp ";
1605   if (getFlag(MachineInstr::FmContract))
1606     OS << "contract ";
1607   if (getFlag(MachineInstr::FmAfn))
1608     OS << "afn ";
1609   if (getFlag(MachineInstr::FmReassoc))
1610     OS << "reassoc ";
1611   if (getFlag(MachineInstr::NoUWrap))
1612     OS << "nuw ";
1613   if (getFlag(MachineInstr::NoSWrap))
1614     OS << "nsw ";
1615   if (getFlag(MachineInstr::IsExact))
1616     OS << "exact ";
1617   if (getFlag(MachineInstr::NoFPExcept))
1618     OS << "nofpexcept ";
1619   if (getFlag(MachineInstr::NoMerge))
1620     OS << "nomerge ";
1621 
1622   // Print the opcode name.
1623   if (TII)
1624     OS << TII->getName(getOpcode());
1625   else
1626     OS << "UNKNOWN";
1627 
1628   if (SkipOpers)
1629     return;
1630 
1631   // Print the rest of the operands.
1632   bool FirstOp = true;
1633   unsigned AsmDescOp = ~0u;
1634   unsigned AsmOpCount = 0;
1635 
1636   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1637     // Print asm string.
1638     OS << " ";
1639     const unsigned OpIdx = InlineAsm::MIOp_AsmString;
1640     LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
1641     unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
1642     getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone,
1643                             ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1644                             IntrinsicInfo);
1645 
1646     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1647     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1648     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1649       OS << " [sideeffect]";
1650     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1651       OS << " [mayload]";
1652     if (ExtraInfo & InlineAsm::Extra_MayStore)
1653       OS << " [maystore]";
1654     if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1655       OS << " [isconvergent]";
1656     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1657       OS << " [alignstack]";
1658     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1659       OS << " [attdialect]";
1660     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1661       OS << " [inteldialect]";
1662 
1663     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1664     FirstOp = false;
1665   }
1666 
1667   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1668     const MachineOperand &MO = getOperand(i);
1669 
1670     if (FirstOp) FirstOp = false; else OS << ",";
1671     OS << " ";
1672 
1673     if (isDebugValue() && MO.isMetadata()) {
1674       // Pretty print DBG_VALUE instructions.
1675       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1676       if (DIV && !DIV->getName().empty())
1677         OS << "!\"" << DIV->getName() << '\"';
1678       else {
1679         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1680         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1681         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1682                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1683       }
1684     } else if (isDebugLabel() && MO.isMetadata()) {
1685       // Pretty print DBG_LABEL instructions.
1686       auto *DIL = dyn_cast<DILabel>(MO.getMetadata());
1687       if (DIL && !DIL->getName().empty())
1688         OS << "\"" << DIL->getName() << '\"';
1689       else {
1690         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1691         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1692         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1693                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1694       }
1695     } else if (i == AsmDescOp && MO.isImm()) {
1696       // Pretty print the inline asm operand descriptor.
1697       OS << '$' << AsmOpCount++;
1698       unsigned Flag = MO.getImm();
1699       OS << ":[";
1700       OS << InlineAsm::getKindName(InlineAsm::getKind(Flag));
1701 
1702       unsigned RCID = 0;
1703       if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1704           InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1705         if (TRI) {
1706           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1707         } else
1708           OS << ":RC" << RCID;
1709       }
1710 
1711       if (InlineAsm::isMemKind(Flag)) {
1712         unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1713         OS << ":" << InlineAsm::getMemConstraintName(MCID);
1714       }
1715 
1716       unsigned TiedTo = 0;
1717       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1718         OS << " tiedto:$" << TiedTo;
1719 
1720       OS << ']';
1721 
1722       // Compute the index of the next operand descriptor.
1723       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1724     } else {
1725       LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1726       unsigned TiedOperandIdx = getTiedOperandIdx(i);
1727       if (MO.isImm() && isOperandSubregIdx(i))
1728         MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
1729       else
1730         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1731                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1732     }
1733   }
1734 
1735   // Print any optional symbols attached to this instruction as-if they were
1736   // operands.
1737   if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) {
1738     if (!FirstOp) {
1739       FirstOp = false;
1740       OS << ',';
1741     }
1742     OS << " pre-instr-symbol ";
1743     MachineOperand::printSymbol(OS, *PreInstrSymbol);
1744   }
1745   if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) {
1746     if (!FirstOp) {
1747       FirstOp = false;
1748       OS << ',';
1749     }
1750     OS << " post-instr-symbol ";
1751     MachineOperand::printSymbol(OS, *PostInstrSymbol);
1752   }
1753   if (MDNode *HeapAllocMarker = getHeapAllocMarker()) {
1754     if (!FirstOp) {
1755       FirstOp = false;
1756       OS << ',';
1757     }
1758     OS << " heap-alloc-marker ";
1759     HeapAllocMarker->printAsOperand(OS, MST);
1760   }
1761 
1762   if (DebugInstrNum) {
1763     if (!FirstOp)
1764       OS << ",";
1765     OS << " debug-instr-number " << DebugInstrNum;
1766   }
1767 
1768   if (!SkipDebugLoc) {
1769     if (const DebugLoc &DL = getDebugLoc()) {
1770       if (!FirstOp)
1771         OS << ',';
1772       OS << " debug-location ";
1773       DL->printAsOperand(OS, MST);
1774     }
1775   }
1776 
1777   if (!memoperands_empty()) {
1778     SmallVector<StringRef, 0> SSNs;
1779     const LLVMContext *Context = nullptr;
1780     std::unique_ptr<LLVMContext> CtxPtr;
1781     const MachineFrameInfo *MFI = nullptr;
1782     if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1783       MFI = &MF->getFrameInfo();
1784       Context = &MF->getFunction().getContext();
1785     } else {
1786       CtxPtr = std::make_unique<LLVMContext>();
1787       Context = CtxPtr.get();
1788     }
1789 
1790     OS << " :: ";
1791     bool NeedComma = false;
1792     for (const MachineMemOperand *Op : memoperands()) {
1793       if (NeedComma)
1794         OS << ", ";
1795       Op->print(OS, MST, SSNs, *Context, MFI, TII);
1796       NeedComma = true;
1797     }
1798   }
1799 
1800   if (SkipDebugLoc)
1801     return;
1802 
1803   bool HaveSemi = false;
1804 
1805   // Print debug location information.
1806   if (const DebugLoc &DL = getDebugLoc()) {
1807     if (!HaveSemi) {
1808       OS << ';';
1809       HaveSemi = true;
1810     }
1811     OS << ' ';
1812     DL.print(OS);
1813   }
1814 
1815   // Print extra comments for DEBUG_VALUE.
1816   if (isDebugValue() && getDebugVariableOp().isMetadata()) {
1817     if (!HaveSemi) {
1818       OS << ";";
1819       HaveSemi = true;
1820     }
1821     auto *DV = getDebugVariable();
1822     OS << " line no:" <<  DV->getLine();
1823     if (isIndirectDebugValue())
1824       OS << " indirect";
1825   }
1826   // TODO: DBG_LABEL
1827 
1828   if (AddNewLine)
1829     OS << '\n';
1830 }
1831 
1832 bool MachineInstr::addRegisterKilled(Register IncomingReg,
1833                                      const TargetRegisterInfo *RegInfo,
1834                                      bool AddIfNotFound) {
1835   bool isPhysReg = Register::isPhysicalRegister(IncomingReg);
1836   bool hasAliases = isPhysReg &&
1837     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1838   bool Found = false;
1839   SmallVector<unsigned,4> DeadOps;
1840   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1841     MachineOperand &MO = getOperand(i);
1842     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1843       continue;
1844 
1845     // DEBUG_VALUE nodes do not contribute to code generation and should
1846     // always be ignored. Failure to do so may result in trying to modify
1847     // KILL flags on DEBUG_VALUE nodes.
1848     if (MO.isDebug())
1849       continue;
1850 
1851     Register Reg = MO.getReg();
1852     if (!Reg)
1853       continue;
1854 
1855     if (Reg == IncomingReg) {
1856       if (!Found) {
1857         if (MO.isKill())
1858           // The register is already marked kill.
1859           return true;
1860         if (isPhysReg && isRegTiedToDefOperand(i))
1861           // Two-address uses of physregs must not be marked kill.
1862           return true;
1863         MO.setIsKill();
1864         Found = true;
1865       }
1866     } else if (hasAliases && MO.isKill() && Register::isPhysicalRegister(Reg)) {
1867       // A super-register kill already exists.
1868       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1869         return true;
1870       if (RegInfo->isSubRegister(IncomingReg, Reg))
1871         DeadOps.push_back(i);
1872     }
1873   }
1874 
1875   // Trim unneeded kill operands.
1876   while (!DeadOps.empty()) {
1877     unsigned OpIdx = DeadOps.back();
1878     if (getOperand(OpIdx).isImplicit() &&
1879         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1880       RemoveOperand(OpIdx);
1881     else
1882       getOperand(OpIdx).setIsKill(false);
1883     DeadOps.pop_back();
1884   }
1885 
1886   // If not found, this means an alias of one of the operands is killed. Add a
1887   // new implicit operand if required.
1888   if (!Found && AddIfNotFound) {
1889     addOperand(MachineOperand::CreateReg(IncomingReg,
1890                                          false /*IsDef*/,
1891                                          true  /*IsImp*/,
1892                                          true  /*IsKill*/));
1893     return true;
1894   }
1895   return Found;
1896 }
1897 
1898 void MachineInstr::clearRegisterKills(Register Reg,
1899                                       const TargetRegisterInfo *RegInfo) {
1900   if (!Register::isPhysicalRegister(Reg))
1901     RegInfo = nullptr;
1902   for (MachineOperand &MO : operands()) {
1903     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1904       continue;
1905     Register OpReg = MO.getReg();
1906     if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
1907       MO.setIsKill(false);
1908   }
1909 }
1910 
1911 bool MachineInstr::addRegisterDead(Register Reg,
1912                                    const TargetRegisterInfo *RegInfo,
1913                                    bool AddIfNotFound) {
1914   bool isPhysReg = Register::isPhysicalRegister(Reg);
1915   bool hasAliases = isPhysReg &&
1916     MCRegAliasIterator(Reg, RegInfo, false).isValid();
1917   bool Found = false;
1918   SmallVector<unsigned,4> DeadOps;
1919   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1920     MachineOperand &MO = getOperand(i);
1921     if (!MO.isReg() || !MO.isDef())
1922       continue;
1923     Register MOReg = MO.getReg();
1924     if (!MOReg)
1925       continue;
1926 
1927     if (MOReg == Reg) {
1928       MO.setIsDead();
1929       Found = true;
1930     } else if (hasAliases && MO.isDead() &&
1931                Register::isPhysicalRegister(MOReg)) {
1932       // There exists a super-register that's marked dead.
1933       if (RegInfo->isSuperRegister(Reg, MOReg))
1934         return true;
1935       if (RegInfo->isSubRegister(Reg, MOReg))
1936         DeadOps.push_back(i);
1937     }
1938   }
1939 
1940   // Trim unneeded dead operands.
1941   while (!DeadOps.empty()) {
1942     unsigned OpIdx = DeadOps.back();
1943     if (getOperand(OpIdx).isImplicit() &&
1944         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1945       RemoveOperand(OpIdx);
1946     else
1947       getOperand(OpIdx).setIsDead(false);
1948     DeadOps.pop_back();
1949   }
1950 
1951   // If not found, this means an alias of one of the operands is dead. Add a
1952   // new implicit operand if required.
1953   if (Found || !AddIfNotFound)
1954     return Found;
1955 
1956   addOperand(MachineOperand::CreateReg(Reg,
1957                                        true  /*IsDef*/,
1958                                        true  /*IsImp*/,
1959                                        false /*IsKill*/,
1960                                        true  /*IsDead*/));
1961   return true;
1962 }
1963 
1964 void MachineInstr::clearRegisterDeads(Register Reg) {
1965   for (MachineOperand &MO : operands()) {
1966     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
1967       continue;
1968     MO.setIsDead(false);
1969   }
1970 }
1971 
1972 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) {
1973   for (MachineOperand &MO : operands()) {
1974     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
1975       continue;
1976     MO.setIsUndef(IsUndef);
1977   }
1978 }
1979 
1980 void MachineInstr::addRegisterDefined(Register Reg,
1981                                       const TargetRegisterInfo *RegInfo) {
1982   if (Register::isPhysicalRegister(Reg)) {
1983     MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo);
1984     if (MO)
1985       return;
1986   } else {
1987     for (const MachineOperand &MO : operands()) {
1988       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
1989           MO.getSubReg() == 0)
1990         return;
1991     }
1992   }
1993   addOperand(MachineOperand::CreateReg(Reg,
1994                                        true  /*IsDef*/,
1995                                        true  /*IsImp*/));
1996 }
1997 
1998 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
1999                                          const TargetRegisterInfo &TRI) {
2000   bool HasRegMask = false;
2001   for (MachineOperand &MO : operands()) {
2002     if (MO.isRegMask()) {
2003       HasRegMask = true;
2004       continue;
2005     }
2006     if (!MO.isReg() || !MO.isDef()) continue;
2007     Register Reg = MO.getReg();
2008     if (!Reg.isPhysical())
2009       continue;
2010     // If there are no uses, including partial uses, the def is dead.
2011     if (llvm::none_of(UsedRegs,
2012                       [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); }))
2013       MO.setIsDead();
2014   }
2015 
2016   // This is a call with a register mask operand.
2017   // Mask clobbers are always dead, so add defs for the non-dead defines.
2018   if (HasRegMask)
2019     for (ArrayRef<Register>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
2020          I != E; ++I)
2021       addRegisterDefined(*I, &TRI);
2022 }
2023 
2024 unsigned
2025 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
2026   // Build up a buffer of hash code components.
2027   SmallVector<size_t, 16> HashComponents;
2028   HashComponents.reserve(MI->getNumOperands() + 1);
2029   HashComponents.push_back(MI->getOpcode());
2030   for (const MachineOperand &MO : MI->operands()) {
2031     if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg()))
2032       continue;  // Skip virtual register defs.
2033 
2034     HashComponents.push_back(hash_value(MO));
2035   }
2036   return hash_combine_range(HashComponents.begin(), HashComponents.end());
2037 }
2038 
2039 void MachineInstr::emitError(StringRef Msg) const {
2040   // Find the source location cookie.
2041   unsigned LocCookie = 0;
2042   const MDNode *LocMD = nullptr;
2043   for (unsigned i = getNumOperands(); i != 0; --i) {
2044     if (getOperand(i-1).isMetadata() &&
2045         (LocMD = getOperand(i-1).getMetadata()) &&
2046         LocMD->getNumOperands() != 0) {
2047       if (const ConstantInt *CI =
2048               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
2049         LocCookie = CI->getZExtValue();
2050         break;
2051       }
2052     }
2053   }
2054 
2055   if (const MachineBasicBlock *MBB = getParent())
2056     if (const MachineFunction *MF = MBB->getParent())
2057       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2058   report_fatal_error(Msg);
2059 }
2060 
2061 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2062                                   const MCInstrDesc &MCID, bool IsIndirect,
2063                                   Register Reg, const MDNode *Variable,
2064                                   const MDNode *Expr) {
2065   assert(isa<DILocalVariable>(Variable) && "not a variable");
2066   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2067   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2068          "Expected inlined-at fields to agree");
2069   auto MIB = BuildMI(MF, DL, MCID).addReg(Reg, RegState::Debug);
2070   if (IsIndirect)
2071     MIB.addImm(0U);
2072   else
2073     MIB.addReg(0U, RegState::Debug);
2074   return MIB.addMetadata(Variable).addMetadata(Expr);
2075 }
2076 
2077 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2078                                   const MCInstrDesc &MCID, bool IsIndirect,
2079                                   MachineOperand &MO, const MDNode *Variable,
2080                                   const MDNode *Expr) {
2081   assert(isa<DILocalVariable>(Variable) && "not a variable");
2082   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2083   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2084          "Expected inlined-at fields to agree");
2085   if (MO.isReg())
2086     return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr);
2087 
2088   auto MIB = BuildMI(MF, DL, MCID).add(MO);
2089   if (IsIndirect)
2090     MIB.addImm(0U);
2091   else
2092     MIB.addReg(0U, RegState::Debug);
2093   return MIB.addMetadata(Variable).addMetadata(Expr);
2094  }
2095 
2096 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2097                                   MachineBasicBlock::iterator I,
2098                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2099                                   bool IsIndirect, Register Reg,
2100                                   const MDNode *Variable, const MDNode *Expr) {
2101   MachineFunction &MF = *BB.getParent();
2102   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
2103   BB.insert(I, MI);
2104   return MachineInstrBuilder(MF, MI);
2105 }
2106 
2107 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2108                                   MachineBasicBlock::iterator I,
2109                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2110                                   bool IsIndirect, MachineOperand &MO,
2111                                   const MDNode *Variable, const MDNode *Expr) {
2112   MachineFunction &MF = *BB.getParent();
2113   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr);
2114   BB.insert(I, MI);
2115   return MachineInstrBuilder(MF, *MI);
2116 }
2117 
2118 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2119 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
2120 static const DIExpression *computeExprForSpill(const MachineInstr &MI) {
2121   assert(MI.getOperand(0).isReg() && "can't spill non-register");
2122   assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
2123          "Expected inlined-at fields to agree");
2124 
2125   const DIExpression *Expr = MI.getDebugExpression();
2126   if (MI.isIndirectDebugValue()) {
2127     assert(MI.getDebugOffset().getImm() == 0 &&
2128            "DBG_VALUE with nonzero offset");
2129     Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
2130   }
2131   return Expr;
2132 }
2133 
2134 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
2135                                           MachineBasicBlock::iterator I,
2136                                           const MachineInstr &Orig,
2137                                           int FrameIndex) {
2138   const DIExpression *Expr = computeExprForSpill(Orig);
2139   return BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc())
2140       .addFrameIndex(FrameIndex)
2141       .addImm(0U)
2142       .addMetadata(Orig.getDebugVariable())
2143       .addMetadata(Expr);
2144 }
2145 
2146 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex) {
2147   const DIExpression *Expr = computeExprForSpill(Orig);
2148   Orig.getDebugOperand(0).ChangeToFrameIndex(FrameIndex);
2149   Orig.getDebugOffset().ChangeToImmediate(0U);
2150   Orig.getDebugExpressionOp().setMetadata(Expr);
2151 }
2152 
2153 void MachineInstr::collectDebugValues(
2154                                 SmallVectorImpl<MachineInstr *> &DbgValues) {
2155   MachineInstr &MI = *this;
2156   if (!MI.getOperand(0).isReg())
2157     return;
2158 
2159   MachineBasicBlock::iterator DI = MI; ++DI;
2160   for (MachineBasicBlock::iterator DE = MI.getParent()->end();
2161        DI != DE; ++DI) {
2162     if (!DI->isDebugValue())
2163       return;
2164     if (DI->getDebugOperandForReg(MI.getOperand(0).getReg()))
2165       DbgValues.push_back(&*DI);
2166   }
2167 }
2168 
2169 void MachineInstr::changeDebugValuesDefReg(Register Reg) {
2170   // Collect matching debug values.
2171   SmallVector<MachineInstr *, 2> DbgValues;
2172 
2173   if (!getOperand(0).isReg())
2174     return;
2175 
2176   Register DefReg = getOperand(0).getReg();
2177   auto *MRI = getRegInfo();
2178   for (auto &MO : MRI->use_operands(DefReg)) {
2179     auto *DI = MO.getParent();
2180     if (!DI->isDebugValue())
2181       continue;
2182     if (DI->getDebugOperandForReg(DefReg)) {
2183       DbgValues.push_back(DI);
2184     }
2185   }
2186 
2187   // Propagate Reg to debug value instructions.
2188   for (auto *DBI : DbgValues)
2189     DBI->getDebugOperandForReg(DefReg)->setReg(Reg);
2190 }
2191 
2192 using MMOList = SmallVector<const MachineMemOperand *, 2>;
2193 
2194 static unsigned getSpillSlotSize(const MMOList &Accesses,
2195                                  const MachineFrameInfo &MFI) {
2196   unsigned Size = 0;
2197   for (auto A : Accesses)
2198     if (MFI.isSpillSlotObjectIndex(
2199             cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
2200                 ->getFrameIndex()))
2201       Size += A->getSize();
2202   return Size;
2203 }
2204 
2205 Optional<unsigned>
2206 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const {
2207   int FI;
2208   if (TII->isStoreToStackSlotPostFE(*this, FI)) {
2209     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2210     if (MFI.isSpillSlotObjectIndex(FI))
2211       return (*memoperands_begin())->getSize();
2212   }
2213   return None;
2214 }
2215 
2216 Optional<unsigned>
2217 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const {
2218   MMOList Accesses;
2219   if (TII->hasStoreToStackSlot(*this, Accesses))
2220     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2221   return None;
2222 }
2223 
2224 Optional<unsigned>
2225 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const {
2226   int FI;
2227   if (TII->isLoadFromStackSlotPostFE(*this, FI)) {
2228     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2229     if (MFI.isSpillSlotObjectIndex(FI))
2230       return (*memoperands_begin())->getSize();
2231   }
2232   return None;
2233 }
2234 
2235 Optional<unsigned>
2236 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const {
2237   MMOList Accesses;
2238   if (TII->hasLoadFromStackSlot(*this, Accesses))
2239     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2240   return None;
2241 }
2242 
2243 unsigned MachineInstr::getDebugInstrNum() {
2244   if (DebugInstrNum == 0)
2245     DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum();
2246   return DebugInstrNum;
2247 }
2248