xref: /llvm-project/llvm/lib/CodeGen/MachineInstr.cpp (revision d29fc892226e9a4fbab8580533e5589b50fb0080)
1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Methods common to all machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/FoldingSet.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallBitVector.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/Loads.h"
26 #include "llvm/Analysis/MemoryLocation.h"
27 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/Config/llvm-config.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DebugInfoMetadata.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/ModuleSlotTracker.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/MC/MCInstrDesc.h"
56 #include "llvm/MC/MCRegisterInfo.h"
57 #include "llvm/MC/MCSymbol.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/LowLevelTypeImpl.h"
64 #include "llvm/Support/MathExtras.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include "llvm/Target/TargetIntrinsicInfo.h"
67 #include "llvm/Target/TargetMachine.h"
68 #include <algorithm>
69 #include <cassert>
70 #include <cstddef>
71 #include <cstdint>
72 #include <cstring>
73 #include <iterator>
74 #include <utility>
75 
76 using namespace llvm;
77 
78 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
79   if (const MachineBasicBlock *MBB = MI.getParent())
80     if (const MachineFunction *MF = MBB->getParent())
81       return MF;
82   return nullptr;
83 }
84 
85 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
86 // it.
87 static void tryToGetTargetInfo(const MachineInstr &MI,
88                                const TargetRegisterInfo *&TRI,
89                                const MachineRegisterInfo *&MRI,
90                                const TargetIntrinsicInfo *&IntrinsicInfo,
91                                const TargetInstrInfo *&TII) {
92 
93   if (const MachineFunction *MF = getMFIfAvailable(MI)) {
94     TRI = MF->getSubtarget().getRegisterInfo();
95     MRI = &MF->getRegInfo();
96     IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
97     TII = MF->getSubtarget().getInstrInfo();
98   }
99 }
100 
101 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
102   if (MCID->ImplicitDefs)
103     for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
104            ++ImpDefs)
105       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
106   if (MCID->ImplicitUses)
107     for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
108            ++ImpUses)
109       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
110 }
111 
112 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
113 /// implicit operands. It reserves space for the number of operands specified by
114 /// the MCInstrDesc.
115 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
116                            DebugLoc dl, bool NoImp)
117     : MCID(&tid), debugLoc(std::move(dl)) {
118   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
119 
120   // Reserve space for the expected number of operands.
121   if (unsigned NumOps = MCID->getNumOperands() +
122     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
123     CapOperands = OperandCapacity::get(NumOps);
124     Operands = MF.allocateOperandArray(CapOperands);
125   }
126 
127   if (!NoImp)
128     addImplicitDefUseOperands(MF);
129 }
130 
131 /// MachineInstr ctor - Copies MachineInstr arg exactly
132 ///
133 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
134     : MCID(&MI.getDesc()), NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs),
135       debugLoc(MI.getDebugLoc()) {
136   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
137 
138   CapOperands = OperandCapacity::get(MI.getNumOperands());
139   Operands = MF.allocateOperandArray(CapOperands);
140 
141   // Copy operands.
142   for (const MachineOperand &MO : MI.operands())
143     addOperand(MF, MO);
144 
145   // Copy all the sensible flags.
146   setFlags(MI.Flags);
147 }
148 
149 /// getRegInfo - If this instruction is embedded into a MachineFunction,
150 /// return the MachineRegisterInfo object for the current function, otherwise
151 /// return null.
152 MachineRegisterInfo *MachineInstr::getRegInfo() {
153   if (MachineBasicBlock *MBB = getParent())
154     return &MBB->getParent()->getRegInfo();
155   return nullptr;
156 }
157 
158 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
159 /// this instruction from their respective use lists.  This requires that the
160 /// operands already be on their use lists.
161 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
162   for (MachineOperand &MO : operands())
163     if (MO.isReg())
164       MRI.removeRegOperandFromUseList(&MO);
165 }
166 
167 /// AddRegOperandsToUseLists - Add all of the register operands in
168 /// this instruction from their respective use lists.  This requires that the
169 /// operands not be on their use lists yet.
170 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
171   for (MachineOperand &MO : operands())
172     if (MO.isReg())
173       MRI.addRegOperandToUseList(&MO);
174 }
175 
176 void MachineInstr::addOperand(const MachineOperand &Op) {
177   MachineBasicBlock *MBB = getParent();
178   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
179   MachineFunction *MF = MBB->getParent();
180   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
181   addOperand(*MF, Op);
182 }
183 
184 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
185 /// ranges. If MRI is non-null also update use-def chains.
186 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
187                          unsigned NumOps, MachineRegisterInfo *MRI) {
188   if (MRI)
189     return MRI->moveOperands(Dst, Src, NumOps);
190 
191   // MachineOperand is a trivially copyable type so we can just use memmove.
192   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
193 }
194 
195 /// addOperand - Add the specified operand to the instruction.  If it is an
196 /// implicit operand, it is added to the end of the operand list.  If it is
197 /// an explicit operand it is added at the end of the explicit operand list
198 /// (before the first implicit operand).
199 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
200   assert(MCID && "Cannot add operands before providing an instr descriptor");
201 
202   // Check if we're adding one of our existing operands.
203   if (&Op >= Operands && &Op < Operands + NumOperands) {
204     // This is unusual: MI->addOperand(MI->getOperand(i)).
205     // If adding Op requires reallocating or moving existing operands around,
206     // the Op reference could go stale. Support it by copying Op.
207     MachineOperand CopyOp(Op);
208     return addOperand(MF, CopyOp);
209   }
210 
211   // Find the insert location for the new operand.  Implicit registers go at
212   // the end, everything else goes before the implicit regs.
213   //
214   // FIXME: Allow mixed explicit and implicit operands on inline asm.
215   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
216   // implicit-defs, but they must not be moved around.  See the FIXME in
217   // InstrEmitter.cpp.
218   unsigned OpNo = getNumOperands();
219   bool isImpReg = Op.isReg() && Op.isImplicit();
220   if (!isImpReg && !isInlineAsm()) {
221     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
222       --OpNo;
223       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
224     }
225   }
226 
227 #ifndef NDEBUG
228   bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata;
229   // OpNo now points as the desired insertion point.  Unless this is a variadic
230   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
231   // RegMask operands go between the explicit and implicit operands.
232   assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
233           OpNo < MCID->getNumOperands() || isMetaDataOp) &&
234          "Trying to add an operand to a machine instr that is already done!");
235 #endif
236 
237   MachineRegisterInfo *MRI = getRegInfo();
238 
239   // Determine if the Operands array needs to be reallocated.
240   // Save the old capacity and operand array.
241   OperandCapacity OldCap = CapOperands;
242   MachineOperand *OldOperands = Operands;
243   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
244     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
245     Operands = MF.allocateOperandArray(CapOperands);
246     // Move the operands before the insertion point.
247     if (OpNo)
248       moveOperands(Operands, OldOperands, OpNo, MRI);
249   }
250 
251   // Move the operands following the insertion point.
252   if (OpNo != NumOperands)
253     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
254                  MRI);
255   ++NumOperands;
256 
257   // Deallocate the old operand array.
258   if (OldOperands != Operands && OldOperands)
259     MF.deallocateOperandArray(OldCap, OldOperands);
260 
261   // Copy Op into place. It still needs to be inserted into the MRI use lists.
262   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
263   NewMO->ParentMI = this;
264 
265   // When adding a register operand, tell MRI about it.
266   if (NewMO->isReg()) {
267     // Ensure isOnRegUseList() returns false, regardless of Op's status.
268     NewMO->Contents.Reg.Prev = nullptr;
269     // Ignore existing ties. This is not a property that can be copied.
270     NewMO->TiedTo = 0;
271     // Add the new operand to MRI, but only for instructions in an MBB.
272     if (MRI)
273       MRI->addRegOperandToUseList(NewMO);
274     // The MCID operand information isn't accurate until we start adding
275     // explicit operands. The implicit operands are added first, then the
276     // explicits are inserted before them.
277     if (!isImpReg) {
278       // Tie uses to defs as indicated in MCInstrDesc.
279       if (NewMO->isUse()) {
280         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
281         if (DefIdx != -1)
282           tieOperands(DefIdx, OpNo);
283       }
284       // If the register operand is flagged as early, mark the operand as such.
285       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
286         NewMO->setIsEarlyClobber(true);
287     }
288   }
289 }
290 
291 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
292 /// fewer operand than it started with.
293 ///
294 void MachineInstr::RemoveOperand(unsigned OpNo) {
295   assert(OpNo < getNumOperands() && "Invalid operand number");
296   untieRegOperand(OpNo);
297 
298 #ifndef NDEBUG
299   // Moving tied operands would break the ties.
300   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
301     if (Operands[i].isReg())
302       assert(!Operands[i].isTied() && "Cannot move tied operands");
303 #endif
304 
305   MachineRegisterInfo *MRI = getRegInfo();
306   if (MRI && Operands[OpNo].isReg())
307     MRI->removeRegOperandFromUseList(Operands + OpNo);
308 
309   // Don't call the MachineOperand destructor. A lot of this code depends on
310   // MachineOperand having a trivial destructor anyway, and adding a call here
311   // wouldn't make it 'destructor-correct'.
312 
313   if (unsigned N = NumOperands - 1 - OpNo)
314     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
315   --NumOperands;
316 }
317 
318 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
319 /// This function should be used only occasionally. The setMemRefs function
320 /// is the primary method for setting up a MachineInstr's MemRefs list.
321 void MachineInstr::addMemOperand(MachineFunction &MF,
322                                  MachineMemOperand *MO) {
323   mmo_iterator OldMemRefs = MemRefs;
324   unsigned OldNumMemRefs = NumMemRefs;
325 
326   unsigned NewNum = NumMemRefs + 1;
327   mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
328 
329   std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs);
330   NewMemRefs[NewNum - 1] = MO;
331   setMemRefs(NewMemRefs, NewMemRefs + NewNum);
332 }
333 
334 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
335 /// identical.
336 static bool hasIdenticalMMOs(const MachineInstr &MI1, const MachineInstr &MI2) {
337   auto I1 = MI1.memoperands_begin(), E1 = MI1.memoperands_end();
338   auto I2 = MI2.memoperands_begin(), E2 = MI2.memoperands_end();
339   if ((E1 - I1) != (E2 - I2))
340     return false;
341   for (; I1 != E1; ++I1, ++I2) {
342     if (**I1 != **I2)
343       return false;
344   }
345   return true;
346 }
347 
348 std::pair<MachineInstr::mmo_iterator, unsigned>
349 MachineInstr::mergeMemRefsWith(const MachineInstr& Other) {
350 
351   // If either of the incoming memrefs are empty, we must be conservative and
352   // treat this as if we've exhausted our space for memrefs and dropped them.
353   if (memoperands_empty() || Other.memoperands_empty())
354     return std::make_pair(nullptr, 0);
355 
356   // If both instructions have identical memrefs, we don't need to merge them.
357   // Since many instructions have a single memref, and we tend to merge things
358   // like pairs of loads from the same location, this catches a large number of
359   // cases in practice.
360   if (hasIdenticalMMOs(*this, Other))
361     return std::make_pair(MemRefs, NumMemRefs);
362 
363   // TODO: consider uniquing elements within the operand lists to reduce
364   // space usage and fall back to conservative information less often.
365   size_t CombinedNumMemRefs = NumMemRefs + Other.NumMemRefs;
366 
367   // If we don't have enough room to store this many memrefs, be conservative
368   // and drop them.  Otherwise, we'd fail asserts when trying to add them to
369   // the new instruction.
370   if (CombinedNumMemRefs != uint8_t(CombinedNumMemRefs))
371     return std::make_pair(nullptr, 0);
372 
373   MachineFunction *MF = getMF();
374   mmo_iterator MemBegin = MF->allocateMemRefsArray(CombinedNumMemRefs);
375   mmo_iterator MemEnd = std::copy(memoperands_begin(), memoperands_end(),
376                                   MemBegin);
377   MemEnd = std::copy(Other.memoperands_begin(), Other.memoperands_end(),
378                      MemEnd);
379   assert(MemEnd - MemBegin == (ptrdiff_t)CombinedNumMemRefs &&
380          "missing memrefs");
381 
382   return std::make_pair(MemBegin, CombinedNumMemRefs);
383 }
384 
385 uint8_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
386   // For now, the just return the union of the flags. If the flags get more
387   // complicated over time, we might need more logic here.
388   return getFlags() | Other.getFlags();
389 }
390 
391 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const {
392   assert(!isBundledWithPred() && "Must be called on bundle header");
393   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
394     if (MII->getDesc().getFlags() & Mask) {
395       if (Type == AnyInBundle)
396         return true;
397     } else {
398       if (Type == AllInBundle && !MII->isBundle())
399         return false;
400     }
401     // This was the last instruction in the bundle.
402     if (!MII->isBundledWithSucc())
403       return Type == AllInBundle;
404   }
405 }
406 
407 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
408                                  MICheckType Check) const {
409   // If opcodes or number of operands are not the same then the two
410   // instructions are obviously not identical.
411   if (Other.getOpcode() != getOpcode() ||
412       Other.getNumOperands() != getNumOperands())
413     return false;
414 
415   if (isBundle()) {
416     // We have passed the test above that both instructions have the same
417     // opcode, so we know that both instructions are bundles here. Let's compare
418     // MIs inside the bundle.
419     assert(Other.isBundle() && "Expected that both instructions are bundles.");
420     MachineBasicBlock::const_instr_iterator I1 = getIterator();
421     MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
422     // Loop until we analysed the last intruction inside at least one of the
423     // bundles.
424     while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
425       ++I1;
426       ++I2;
427       if (!I1->isIdenticalTo(*I2, Check))
428         return false;
429     }
430     // If we've reached the end of just one of the two bundles, but not both,
431     // the instructions are not identical.
432     if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
433       return false;
434   }
435 
436   // Check operands to make sure they match.
437   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
438     const MachineOperand &MO = getOperand(i);
439     const MachineOperand &OMO = Other.getOperand(i);
440     if (!MO.isReg()) {
441       if (!MO.isIdenticalTo(OMO))
442         return false;
443       continue;
444     }
445 
446     // Clients may or may not want to ignore defs when testing for equality.
447     // For example, machine CSE pass only cares about finding common
448     // subexpressions, so it's safe to ignore virtual register defs.
449     if (MO.isDef()) {
450       if (Check == IgnoreDefs)
451         continue;
452       else if (Check == IgnoreVRegDefs) {
453         if (!TargetRegisterInfo::isVirtualRegister(MO.getReg()) ||
454             !TargetRegisterInfo::isVirtualRegister(OMO.getReg()))
455           if (!MO.isIdenticalTo(OMO))
456             return false;
457       } else {
458         if (!MO.isIdenticalTo(OMO))
459           return false;
460         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
461           return false;
462       }
463     } else {
464       if (!MO.isIdenticalTo(OMO))
465         return false;
466       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
467         return false;
468     }
469   }
470   // If DebugLoc does not match then two dbg.values are not identical.
471   if (isDebugValue())
472     if (getDebugLoc() && Other.getDebugLoc() &&
473         getDebugLoc() != Other.getDebugLoc())
474       return false;
475   return true;
476 }
477 
478 const MachineFunction *MachineInstr::getMF() const {
479   return getParent()->getParent();
480 }
481 
482 MachineInstr *MachineInstr::removeFromParent() {
483   assert(getParent() && "Not embedded in a basic block!");
484   return getParent()->remove(this);
485 }
486 
487 MachineInstr *MachineInstr::removeFromBundle() {
488   assert(getParent() && "Not embedded in a basic block!");
489   return getParent()->remove_instr(this);
490 }
491 
492 void MachineInstr::eraseFromParent() {
493   assert(getParent() && "Not embedded in a basic block!");
494   getParent()->erase(this);
495 }
496 
497 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
498   assert(getParent() && "Not embedded in a basic block!");
499   MachineBasicBlock *MBB = getParent();
500   MachineFunction *MF = MBB->getParent();
501   assert(MF && "Not embedded in a function!");
502 
503   MachineInstr *MI = (MachineInstr *)this;
504   MachineRegisterInfo &MRI = MF->getRegInfo();
505 
506   for (const MachineOperand &MO : MI->operands()) {
507     if (!MO.isReg() || !MO.isDef())
508       continue;
509     unsigned Reg = MO.getReg();
510     if (!TargetRegisterInfo::isVirtualRegister(Reg))
511       continue;
512     MRI.markUsesInDebugValueAsUndef(Reg);
513   }
514   MI->eraseFromParent();
515 }
516 
517 void MachineInstr::eraseFromBundle() {
518   assert(getParent() && "Not embedded in a basic block!");
519   getParent()->erase_instr(this);
520 }
521 
522 /// getNumExplicitOperands - Returns the number of non-implicit operands.
523 ///
524 unsigned MachineInstr::getNumExplicitOperands() const {
525   unsigned NumOperands = MCID->getNumOperands();
526   if (!MCID->isVariadic())
527     return NumOperands;
528 
529   for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
530     const MachineOperand &MO = getOperand(i);
531     if (!MO.isReg() || !MO.isImplicit())
532       NumOperands++;
533   }
534   return NumOperands;
535 }
536 
537 void MachineInstr::bundleWithPred() {
538   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
539   setFlag(BundledPred);
540   MachineBasicBlock::instr_iterator Pred = getIterator();
541   --Pred;
542   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
543   Pred->setFlag(BundledSucc);
544 }
545 
546 void MachineInstr::bundleWithSucc() {
547   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
548   setFlag(BundledSucc);
549   MachineBasicBlock::instr_iterator Succ = getIterator();
550   ++Succ;
551   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
552   Succ->setFlag(BundledPred);
553 }
554 
555 void MachineInstr::unbundleFromPred() {
556   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
557   clearFlag(BundledPred);
558   MachineBasicBlock::instr_iterator Pred = getIterator();
559   --Pred;
560   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
561   Pred->clearFlag(BundledSucc);
562 }
563 
564 void MachineInstr::unbundleFromSucc() {
565   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
566   clearFlag(BundledSucc);
567   MachineBasicBlock::instr_iterator Succ = getIterator();
568   ++Succ;
569   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
570   Succ->clearFlag(BundledPred);
571 }
572 
573 bool MachineInstr::isStackAligningInlineAsm() const {
574   if (isInlineAsm()) {
575     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
576     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
577       return true;
578   }
579   return false;
580 }
581 
582 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
583   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
584   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
585   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
586 }
587 
588 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
589                                        unsigned *GroupNo) const {
590   assert(isInlineAsm() && "Expected an inline asm instruction");
591   assert(OpIdx < getNumOperands() && "OpIdx out of range");
592 
593   // Ignore queries about the initial operands.
594   if (OpIdx < InlineAsm::MIOp_FirstOperand)
595     return -1;
596 
597   unsigned Group = 0;
598   unsigned NumOps;
599   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
600        i += NumOps) {
601     const MachineOperand &FlagMO = getOperand(i);
602     // If we reach the implicit register operands, stop looking.
603     if (!FlagMO.isImm())
604       return -1;
605     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
606     if (i + NumOps > OpIdx) {
607       if (GroupNo)
608         *GroupNo = Group;
609       return i;
610     }
611     ++Group;
612   }
613   return -1;
614 }
615 
616 const DILocalVariable *MachineInstr::getDebugVariable() const {
617   assert(isDebugValue() && "not a DBG_VALUE");
618   return cast<DILocalVariable>(getOperand(2).getMetadata());
619 }
620 
621 const DIExpression *MachineInstr::getDebugExpression() const {
622   assert(isDebugValue() && "not a DBG_VALUE");
623   return cast<DIExpression>(getOperand(3).getMetadata());
624 }
625 
626 const TargetRegisterClass*
627 MachineInstr::getRegClassConstraint(unsigned OpIdx,
628                                     const TargetInstrInfo *TII,
629                                     const TargetRegisterInfo *TRI) const {
630   assert(getParent() && "Can't have an MBB reference here!");
631   assert(getMF() && "Can't have an MF reference here!");
632   const MachineFunction &MF = *getMF();
633 
634   // Most opcodes have fixed constraints in their MCInstrDesc.
635   if (!isInlineAsm())
636     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
637 
638   if (!getOperand(OpIdx).isReg())
639     return nullptr;
640 
641   // For tied uses on inline asm, get the constraint from the def.
642   unsigned DefIdx;
643   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
644     OpIdx = DefIdx;
645 
646   // Inline asm stores register class constraints in the flag word.
647   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
648   if (FlagIdx < 0)
649     return nullptr;
650 
651   unsigned Flag = getOperand(FlagIdx).getImm();
652   unsigned RCID;
653   if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
654        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
655        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
656       InlineAsm::hasRegClassConstraint(Flag, RCID))
657     return TRI->getRegClass(RCID);
658 
659   // Assume that all registers in a memory operand are pointers.
660   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
661     return TRI->getPointerRegClass(MF);
662 
663   return nullptr;
664 }
665 
666 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
667     unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
668     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
669   // Check every operands inside the bundle if we have
670   // been asked to.
671   if (ExploreBundle)
672     for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
673          ++OpndIt)
674       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
675           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
676   else
677     // Otherwise, just check the current operands.
678     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
679       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
680   return CurRC;
681 }
682 
683 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
684     unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
685     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
686   assert(CurRC && "Invalid initial register class");
687   // Check if Reg is constrained by some of its use/def from MI.
688   const MachineOperand &MO = getOperand(OpIdx);
689   if (!MO.isReg() || MO.getReg() != Reg)
690     return CurRC;
691   // If yes, accumulate the constraints through the operand.
692   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
693 }
694 
695 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
696     unsigned OpIdx, const TargetRegisterClass *CurRC,
697     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
698   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
699   const MachineOperand &MO = getOperand(OpIdx);
700   assert(MO.isReg() &&
701          "Cannot get register constraints for non-register operand");
702   assert(CurRC && "Invalid initial register class");
703   if (unsigned SubIdx = MO.getSubReg()) {
704     if (OpRC)
705       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
706     else
707       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
708   } else if (OpRC)
709     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
710   return CurRC;
711 }
712 
713 /// Return the number of instructions inside the MI bundle, not counting the
714 /// header instruction.
715 unsigned MachineInstr::getBundleSize() const {
716   MachineBasicBlock::const_instr_iterator I = getIterator();
717   unsigned Size = 0;
718   while (I->isBundledWithSucc()) {
719     ++Size;
720     ++I;
721   }
722   return Size;
723 }
724 
725 /// Returns true if the MachineInstr has an implicit-use operand of exactly
726 /// the given register (not considering sub/super-registers).
727 bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const {
728   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
729     const MachineOperand &MO = getOperand(i);
730     if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
731       return true;
732   }
733   return false;
734 }
735 
736 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
737 /// the specific register or -1 if it is not found. It further tightens
738 /// the search criteria to a use that kills the register if isKill is true.
739 int MachineInstr::findRegisterUseOperandIdx(
740     unsigned Reg, bool isKill, const TargetRegisterInfo *TRI) const {
741   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
742     const MachineOperand &MO = getOperand(i);
743     if (!MO.isReg() || !MO.isUse())
744       continue;
745     unsigned MOReg = MO.getReg();
746     if (!MOReg)
747       continue;
748     if (MOReg == Reg || (TRI && TargetRegisterInfo::isPhysicalRegister(MOReg) &&
749                          TargetRegisterInfo::isPhysicalRegister(Reg) &&
750                          TRI->isSubRegister(MOReg, Reg)))
751       if (!isKill || MO.isKill())
752         return i;
753   }
754   return -1;
755 }
756 
757 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
758 /// indicating if this instruction reads or writes Reg. This also considers
759 /// partial defines.
760 std::pair<bool,bool>
761 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
762                                          SmallVectorImpl<unsigned> *Ops) const {
763   bool PartDef = false; // Partial redefine.
764   bool FullDef = false; // Full define.
765   bool Use = false;
766 
767   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
768     const MachineOperand &MO = getOperand(i);
769     if (!MO.isReg() || MO.getReg() != Reg)
770       continue;
771     if (Ops)
772       Ops->push_back(i);
773     if (MO.isUse())
774       Use |= !MO.isUndef();
775     else if (MO.getSubReg() && !MO.isUndef())
776       // A partial def undef doesn't count as reading the register.
777       PartDef = true;
778     else
779       FullDef = true;
780   }
781   // A partial redefine uses Reg unless there is also a full define.
782   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
783 }
784 
785 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
786 /// the specified register or -1 if it is not found. If isDead is true, defs
787 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
788 /// also checks if there is a def of a super-register.
789 int
790 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
791                                         const TargetRegisterInfo *TRI) const {
792   bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
793   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
794     const MachineOperand &MO = getOperand(i);
795     // Accept regmask operands when Overlap is set.
796     // Ignore them when looking for a specific def operand (Overlap == false).
797     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
798       return i;
799     if (!MO.isReg() || !MO.isDef())
800       continue;
801     unsigned MOReg = MO.getReg();
802     bool Found = (MOReg == Reg);
803     if (!Found && TRI && isPhys &&
804         TargetRegisterInfo::isPhysicalRegister(MOReg)) {
805       if (Overlap)
806         Found = TRI->regsOverlap(MOReg, Reg);
807       else
808         Found = TRI->isSubRegister(MOReg, Reg);
809     }
810     if (Found && (!isDead || MO.isDead()))
811       return i;
812   }
813   return -1;
814 }
815 
816 /// findFirstPredOperandIdx() - Find the index of the first operand in the
817 /// operand list that is used to represent the predicate. It returns -1 if
818 /// none is found.
819 int MachineInstr::findFirstPredOperandIdx() const {
820   // Don't call MCID.findFirstPredOperandIdx() because this variant
821   // is sometimes called on an instruction that's not yet complete, and
822   // so the number of operands is less than the MCID indicates. In
823   // particular, the PTX target does this.
824   const MCInstrDesc &MCID = getDesc();
825   if (MCID.isPredicable()) {
826     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
827       if (MCID.OpInfo[i].isPredicate())
828         return i;
829   }
830 
831   return -1;
832 }
833 
834 // MachineOperand::TiedTo is 4 bits wide.
835 const unsigned TiedMax = 15;
836 
837 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
838 ///
839 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
840 /// field. TiedTo can have these values:
841 ///
842 /// 0:              Operand is not tied to anything.
843 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
844 /// TiedMax:        Tied to an operand >= TiedMax-1.
845 ///
846 /// The tied def must be one of the first TiedMax operands on a normal
847 /// instruction. INLINEASM instructions allow more tied defs.
848 ///
849 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
850   MachineOperand &DefMO = getOperand(DefIdx);
851   MachineOperand &UseMO = getOperand(UseIdx);
852   assert(DefMO.isDef() && "DefIdx must be a def operand");
853   assert(UseMO.isUse() && "UseIdx must be a use operand");
854   assert(!DefMO.isTied() && "Def is already tied to another use");
855   assert(!UseMO.isTied() && "Use is already tied to another def");
856 
857   if (DefIdx < TiedMax)
858     UseMO.TiedTo = DefIdx + 1;
859   else {
860     // Inline asm can use the group descriptors to find tied operands, but on
861     // normal instruction, the tied def must be within the first TiedMax
862     // operands.
863     assert(isInlineAsm() && "DefIdx out of range");
864     UseMO.TiedTo = TiedMax;
865   }
866 
867   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
868   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
869 }
870 
871 /// Given the index of a tied register operand, find the operand it is tied to.
872 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
873 /// which must exist.
874 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
875   const MachineOperand &MO = getOperand(OpIdx);
876   assert(MO.isTied() && "Operand isn't tied");
877 
878   // Normally TiedTo is in range.
879   if (MO.TiedTo < TiedMax)
880     return MO.TiedTo - 1;
881 
882   // Uses on normal instructions can be out of range.
883   if (!isInlineAsm()) {
884     // Normal tied defs must be in the 0..TiedMax-1 range.
885     if (MO.isUse())
886       return TiedMax - 1;
887     // MO is a def. Search for the tied use.
888     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
889       const MachineOperand &UseMO = getOperand(i);
890       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
891         return i;
892     }
893     llvm_unreachable("Can't find tied use");
894   }
895 
896   // Now deal with inline asm by parsing the operand group descriptor flags.
897   // Find the beginning of each operand group.
898   SmallVector<unsigned, 8> GroupIdx;
899   unsigned OpIdxGroup = ~0u;
900   unsigned NumOps;
901   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
902        i += NumOps) {
903     const MachineOperand &FlagMO = getOperand(i);
904     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
905     unsigned CurGroup = GroupIdx.size();
906     GroupIdx.push_back(i);
907     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
908     // OpIdx belongs to this operand group.
909     if (OpIdx > i && OpIdx < i + NumOps)
910       OpIdxGroup = CurGroup;
911     unsigned TiedGroup;
912     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
913       continue;
914     // Operands in this group are tied to operands in TiedGroup which must be
915     // earlier. Find the number of operands between the two groups.
916     unsigned Delta = i - GroupIdx[TiedGroup];
917 
918     // OpIdx is a use tied to TiedGroup.
919     if (OpIdxGroup == CurGroup)
920       return OpIdx - Delta;
921 
922     // OpIdx is a def tied to this use group.
923     if (OpIdxGroup == TiedGroup)
924       return OpIdx + Delta;
925   }
926   llvm_unreachable("Invalid tied operand on inline asm");
927 }
928 
929 /// clearKillInfo - Clears kill flags on all operands.
930 ///
931 void MachineInstr::clearKillInfo() {
932   for (MachineOperand &MO : operands()) {
933     if (MO.isReg() && MO.isUse())
934       MO.setIsKill(false);
935   }
936 }
937 
938 void MachineInstr::substituteRegister(unsigned FromReg, unsigned ToReg,
939                                       unsigned SubIdx,
940                                       const TargetRegisterInfo &RegInfo) {
941   if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
942     if (SubIdx)
943       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
944     for (MachineOperand &MO : operands()) {
945       if (!MO.isReg() || MO.getReg() != FromReg)
946         continue;
947       MO.substPhysReg(ToReg, RegInfo);
948     }
949   } else {
950     for (MachineOperand &MO : operands()) {
951       if (!MO.isReg() || MO.getReg() != FromReg)
952         continue;
953       MO.substVirtReg(ToReg, SubIdx, RegInfo);
954     }
955   }
956 }
957 
958 /// isSafeToMove - Return true if it is safe to move this instruction. If
959 /// SawStore is set to true, it means that there is a store (or call) between
960 /// the instruction's location and its intended destination.
961 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const {
962   // Ignore stuff that we obviously can't move.
963   //
964   // Treat volatile loads as stores. This is not strictly necessary for
965   // volatiles, but it is required for atomic loads. It is not allowed to move
966   // a load across an atomic load with Ordering > Monotonic.
967   if (mayStore() || isCall() || isPHI() ||
968       (mayLoad() && hasOrderedMemoryRef())) {
969     SawStore = true;
970     return false;
971   }
972 
973   if (isPosition() || isDebugValue() || isTerminator() ||
974       hasUnmodeledSideEffects())
975     return false;
976 
977   // See if this instruction does a load.  If so, we have to guarantee that the
978   // loaded value doesn't change between the load and the its intended
979   // destination. The check for isInvariantLoad gives the targe the chance to
980   // classify the load as always returning a constant, e.g. a constant pool
981   // load.
982   if (mayLoad() && !isDereferenceableInvariantLoad(AA))
983     // Otherwise, this is a real load.  If there is a store between the load and
984     // end of block, we can't move it.
985     return !SawStore;
986 
987   return true;
988 }
989 
990 bool MachineInstr::mayAlias(AliasAnalysis *AA, MachineInstr &Other,
991                             bool UseTBAA) {
992   const MachineFunction *MF = getMF();
993   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
994   const MachineFrameInfo &MFI = MF->getFrameInfo();
995 
996   // If neither instruction stores to memory, they can't alias in any
997   // meaningful way, even if they read from the same address.
998   if (!mayStore() && !Other.mayStore())
999     return false;
1000 
1001   // Let the target decide if memory accesses cannot possibly overlap.
1002   if (TII->areMemAccessesTriviallyDisjoint(*this, Other, AA))
1003     return false;
1004 
1005   // FIXME: Need to handle multiple memory operands to support all targets.
1006   if (!hasOneMemOperand() || !Other.hasOneMemOperand())
1007     return true;
1008 
1009   MachineMemOperand *MMOa = *memoperands_begin();
1010   MachineMemOperand *MMOb = *Other.memoperands_begin();
1011 
1012   // The following interface to AA is fashioned after DAGCombiner::isAlias
1013   // and operates with MachineMemOperand offset with some important
1014   // assumptions:
1015   //   - LLVM fundamentally assumes flat address spaces.
1016   //   - MachineOperand offset can *only* result from legalization and
1017   //     cannot affect queries other than the trivial case of overlap
1018   //     checking.
1019   //   - These offsets never wrap and never step outside
1020   //     of allocated objects.
1021   //   - There should never be any negative offsets here.
1022   //
1023   // FIXME: Modify API to hide this math from "user"
1024   // Even before we go to AA we can reason locally about some
1025   // memory objects. It can save compile time, and possibly catch some
1026   // corner cases not currently covered.
1027 
1028   int64_t OffsetA = MMOa->getOffset();
1029   int64_t OffsetB = MMOb->getOffset();
1030 
1031   int64_t MinOffset = std::min(OffsetA, OffsetB);
1032   int64_t WidthA = MMOa->getSize();
1033   int64_t WidthB = MMOb->getSize();
1034   const Value *ValA = MMOa->getValue();
1035   const Value *ValB = MMOb->getValue();
1036   bool SameVal = (ValA && ValB && (ValA == ValB));
1037   if (!SameVal) {
1038     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1039     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1040     if (PSVa && ValB && !PSVa->mayAlias(&MFI))
1041       return false;
1042     if (PSVb && ValA && !PSVb->mayAlias(&MFI))
1043       return false;
1044     if (PSVa && PSVb && (PSVa == PSVb))
1045       SameVal = true;
1046   }
1047 
1048   if (SameVal) {
1049     int64_t MaxOffset = std::max(OffsetA, OffsetB);
1050     int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
1051     return (MinOffset + LowWidth > MaxOffset);
1052   }
1053 
1054   if (!AA)
1055     return true;
1056 
1057   if (!ValA || !ValB)
1058     return true;
1059 
1060   assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
1061   assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
1062 
1063   int64_t Overlapa = WidthA + OffsetA - MinOffset;
1064   int64_t Overlapb = WidthB + OffsetB - MinOffset;
1065 
1066   AliasResult AAResult = AA->alias(
1067       MemoryLocation(ValA, Overlapa,
1068                      UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1069       MemoryLocation(ValB, Overlapb,
1070                      UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1071 
1072   return (AAResult != NoAlias);
1073 }
1074 
1075 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1076 /// or volatile memory reference, or if the information describing the memory
1077 /// reference is not available. Return false if it is known to have no ordered
1078 /// memory references.
1079 bool MachineInstr::hasOrderedMemoryRef() const {
1080   // An instruction known never to access memory won't have a volatile access.
1081   if (!mayStore() &&
1082       !mayLoad() &&
1083       !isCall() &&
1084       !hasUnmodeledSideEffects())
1085     return false;
1086 
1087   // Otherwise, if the instruction has no memory reference information,
1088   // conservatively assume it wasn't preserved.
1089   if (memoperands_empty())
1090     return true;
1091 
1092   // Check if any of our memory operands are ordered.
1093   return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1094     return !MMO->isUnordered();
1095   });
1096 }
1097 
1098 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1099 /// trap and is loading from a location whose value is invariant across a run of
1100 /// this function.
1101 bool MachineInstr::isDereferenceableInvariantLoad(AliasAnalysis *AA) const {
1102   // If the instruction doesn't load at all, it isn't an invariant load.
1103   if (!mayLoad())
1104     return false;
1105 
1106   // If the instruction has lost its memoperands, conservatively assume that
1107   // it may not be an invariant load.
1108   if (memoperands_empty())
1109     return false;
1110 
1111   const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1112 
1113   for (MachineMemOperand *MMO : memoperands()) {
1114     if (MMO->isVolatile()) return false;
1115     if (MMO->isStore()) return false;
1116     if (MMO->isInvariant() && MMO->isDereferenceable())
1117       continue;
1118 
1119     // A load from a constant PseudoSourceValue is invariant.
1120     if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1121       if (PSV->isConstant(&MFI))
1122         continue;
1123 
1124     if (const Value *V = MMO->getValue()) {
1125       // If we have an AliasAnalysis, ask it whether the memory is constant.
1126       if (AA &&
1127           AA->pointsToConstantMemory(
1128               MemoryLocation(V, MMO->getSize(), MMO->getAAInfo())))
1129         continue;
1130     }
1131 
1132     // Otherwise assume conservatively.
1133     return false;
1134   }
1135 
1136   // Everything checks out.
1137   return true;
1138 }
1139 
1140 /// isConstantValuePHI - If the specified instruction is a PHI that always
1141 /// merges together the same virtual register, return the register, otherwise
1142 /// return 0.
1143 unsigned MachineInstr::isConstantValuePHI() const {
1144   if (!isPHI())
1145     return 0;
1146   assert(getNumOperands() >= 3 &&
1147          "It's illegal to have a PHI without source operands");
1148 
1149   unsigned Reg = getOperand(1).getReg();
1150   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1151     if (getOperand(i).getReg() != Reg)
1152       return 0;
1153   return Reg;
1154 }
1155 
1156 bool MachineInstr::hasUnmodeledSideEffects() const {
1157   if (hasProperty(MCID::UnmodeledSideEffects))
1158     return true;
1159   if (isInlineAsm()) {
1160     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1161     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1162       return true;
1163   }
1164 
1165   return false;
1166 }
1167 
1168 bool MachineInstr::isLoadFoldBarrier() const {
1169   return mayStore() || isCall() || hasUnmodeledSideEffects();
1170 }
1171 
1172 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1173 ///
1174 bool MachineInstr::allDefsAreDead() const {
1175   for (const MachineOperand &MO : operands()) {
1176     if (!MO.isReg() || MO.isUse())
1177       continue;
1178     if (!MO.isDead())
1179       return false;
1180   }
1181   return true;
1182 }
1183 
1184 /// copyImplicitOps - Copy implicit register operands from specified
1185 /// instruction to this instruction.
1186 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1187                                    const MachineInstr &MI) {
1188   for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands();
1189        i != e; ++i) {
1190     const MachineOperand &MO = MI.getOperand(i);
1191     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1192       addOperand(MF, MO);
1193   }
1194 }
1195 
1196 bool MachineInstr::hasComplexRegisterTies() const {
1197   const MCInstrDesc &MCID = getDesc();
1198   for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
1199     const auto &Operand = getOperand(I);
1200     if (!Operand.isReg() || Operand.isDef())
1201       // Ignore the defined registers as MCID marks only the uses as tied.
1202       continue;
1203     int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
1204     int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
1205     if (ExpectedTiedIdx != TiedIdx)
1206       return true;
1207   }
1208   return false;
1209 }
1210 
1211 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1212                                  const MachineRegisterInfo &MRI) const {
1213   const MachineOperand &Op = getOperand(OpIdx);
1214   if (!Op.isReg())
1215     return LLT{};
1216 
1217   if (isVariadic() || OpIdx >= getNumExplicitOperands())
1218     return MRI.getType(Op.getReg());
1219 
1220   auto &OpInfo = getDesc().OpInfo[OpIdx];
1221   if (!OpInfo.isGenericType())
1222     return MRI.getType(Op.getReg());
1223 
1224   if (PrintedTypes[OpInfo.getGenericTypeIndex()])
1225     return LLT{};
1226 
1227   LLT TypeToPrint = MRI.getType(Op.getReg());
1228   // Don't mark the type index printed if it wasn't actually printed: maybe
1229   // another operand with the same type index has an actual type attached:
1230   if (TypeToPrint.isValid())
1231     PrintedTypes.set(OpInfo.getGenericTypeIndex());
1232   return TypeToPrint;
1233 }
1234 
1235 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1236 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1237   dbgs() << "  ";
1238   print(dbgs());
1239 }
1240 #endif
1241 
1242 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
1243                          bool SkipDebugLoc, bool AddNewLine,
1244                          const TargetInstrInfo *TII) const {
1245   const Module *M = nullptr;
1246   const Function *F = nullptr;
1247   if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1248     F = &MF->getFunction();
1249     M = F->getParent();
1250     if (!TII)
1251       TII = MF->getSubtarget().getInstrInfo();
1252   }
1253 
1254   ModuleSlotTracker MST(M);
1255   if (F)
1256     MST.incorporateFunction(*F);
1257   print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, TII);
1258 }
1259 
1260 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1261                          bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
1262                          bool AddNewLine, const TargetInstrInfo *TII) const {
1263   // We can be a bit tidier if we know the MachineFunction.
1264   const MachineFunction *MF = nullptr;
1265   const TargetRegisterInfo *TRI = nullptr;
1266   const MachineRegisterInfo *MRI = nullptr;
1267   const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1268   tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
1269 
1270   if (isCFIInstruction())
1271     assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1272 
1273   SmallBitVector PrintedTypes(8);
1274   bool ShouldPrintRegisterTies = hasComplexRegisterTies();
1275   auto getTiedOperandIdx = [&](unsigned OpIdx) {
1276     if (!ShouldPrintRegisterTies)
1277       return 0U;
1278     const MachineOperand &MO = getOperand(OpIdx);
1279     if (MO.isReg() && MO.isTied() && !MO.isDef())
1280       return findTiedOperandIdx(OpIdx);
1281     return 0U;
1282   };
1283   unsigned StartOp = 0;
1284   unsigned e = getNumOperands();
1285 
1286   // Print explicitly defined operands on the left of an assignment syntax.
1287   while (StartOp < e) {
1288     const MachineOperand &MO = getOperand(StartOp);
1289     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
1290       break;
1291 
1292     if (StartOp != 0)
1293       OS << ", ";
1294 
1295     LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
1296     unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
1297     MO.print(OS, MST, TypeToPrint, /*PrintDef=*/false, IsStandalone,
1298              ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1299     ++StartOp;
1300   }
1301 
1302   if (StartOp != 0)
1303     OS << " = ";
1304 
1305   if (getFlag(MachineInstr::FrameSetup))
1306     OS << "frame-setup ";
1307   if (getFlag(MachineInstr::FrameDestroy))
1308     OS << "frame-destroy ";
1309   if (getFlag(MachineInstr::FmNoNans))
1310     OS << "nnan ";
1311   if (getFlag(MachineInstr::FmNoInfs))
1312     OS << "ninf ";
1313   if (getFlag(MachineInstr::FmNsz))
1314     OS << "nsz ";
1315   if (getFlag(MachineInstr::FmArcp))
1316     OS << "arcp ";
1317   if (getFlag(MachineInstr::FmContract))
1318     OS << "contract ";
1319   if (getFlag(MachineInstr::FmAfn))
1320     OS << "afn ";
1321   if (getFlag(MachineInstr::FmReassoc))
1322     OS << "reassoc ";
1323 
1324   // Print the opcode name.
1325   if (TII)
1326     OS << TII->getName(getOpcode());
1327   else
1328     OS << "UNKNOWN";
1329 
1330   if (SkipOpers)
1331     return;
1332 
1333   // Print the rest of the operands.
1334   bool FirstOp = true;
1335   unsigned AsmDescOp = ~0u;
1336   unsigned AsmOpCount = 0;
1337 
1338   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1339     // Print asm string.
1340     OS << " ";
1341     const unsigned OpIdx = InlineAsm::MIOp_AsmString;
1342     LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
1343     unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
1344     getOperand(OpIdx).print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
1345                             ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1346                             IntrinsicInfo);
1347 
1348     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1349     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1350     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1351       OS << " [sideeffect]";
1352     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1353       OS << " [mayload]";
1354     if (ExtraInfo & InlineAsm::Extra_MayStore)
1355       OS << " [maystore]";
1356     if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1357       OS << " [isconvergent]";
1358     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1359       OS << " [alignstack]";
1360     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1361       OS << " [attdialect]";
1362     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1363       OS << " [inteldialect]";
1364 
1365     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1366     FirstOp = false;
1367   }
1368 
1369   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1370     const MachineOperand &MO = getOperand(i);
1371 
1372     if (FirstOp) FirstOp = false; else OS << ",";
1373     OS << " ";
1374 
1375     if (isDebugValue() && MO.isMetadata()) {
1376       // Pretty print DBG_VALUE instructions.
1377       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1378       if (DIV && !DIV->getName().empty())
1379         OS << "!\"" << DIV->getName() << '\"';
1380       else {
1381         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1382         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1383         MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
1384                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1385       }
1386     } else if (i == AsmDescOp && MO.isImm()) {
1387       // Pretty print the inline asm operand descriptor.
1388       OS << '$' << AsmOpCount++;
1389       unsigned Flag = MO.getImm();
1390       switch (InlineAsm::getKind(Flag)) {
1391       case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break;
1392       case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break;
1393       case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1394       case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break;
1395       case InlineAsm::Kind_Imm:                OS << ":[imm"; break;
1396       case InlineAsm::Kind_Mem:                OS << ":[mem"; break;
1397       default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1398       }
1399 
1400       unsigned RCID = 0;
1401       if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1402           InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1403         if (TRI) {
1404           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1405         } else
1406           OS << ":RC" << RCID;
1407       }
1408 
1409       if (InlineAsm::isMemKind(Flag)) {
1410         unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1411         switch (MCID) {
1412         case InlineAsm::Constraint_es: OS << ":es"; break;
1413         case InlineAsm::Constraint_i:  OS << ":i"; break;
1414         case InlineAsm::Constraint_m:  OS << ":m"; break;
1415         case InlineAsm::Constraint_o:  OS << ":o"; break;
1416         case InlineAsm::Constraint_v:  OS << ":v"; break;
1417         case InlineAsm::Constraint_Q:  OS << ":Q"; break;
1418         case InlineAsm::Constraint_R:  OS << ":R"; break;
1419         case InlineAsm::Constraint_S:  OS << ":S"; break;
1420         case InlineAsm::Constraint_T:  OS << ":T"; break;
1421         case InlineAsm::Constraint_Um: OS << ":Um"; break;
1422         case InlineAsm::Constraint_Un: OS << ":Un"; break;
1423         case InlineAsm::Constraint_Uq: OS << ":Uq"; break;
1424         case InlineAsm::Constraint_Us: OS << ":Us"; break;
1425         case InlineAsm::Constraint_Ut: OS << ":Ut"; break;
1426         case InlineAsm::Constraint_Uv: OS << ":Uv"; break;
1427         case InlineAsm::Constraint_Uy: OS << ":Uy"; break;
1428         case InlineAsm::Constraint_X:  OS << ":X"; break;
1429         case InlineAsm::Constraint_Z:  OS << ":Z"; break;
1430         case InlineAsm::Constraint_ZC: OS << ":ZC"; break;
1431         case InlineAsm::Constraint_Zy: OS << ":Zy"; break;
1432         default: OS << ":?"; break;
1433         }
1434       }
1435 
1436       unsigned TiedTo = 0;
1437       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1438         OS << " tiedto:$" << TiedTo;
1439 
1440       OS << ']';
1441 
1442       // Compute the index of the next operand descriptor.
1443       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1444     } else {
1445       LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1446       unsigned TiedOperandIdx = getTiedOperandIdx(i);
1447       if (MO.isImm() && isOperandSubregIdx(i))
1448         MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
1449       else
1450         MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
1451                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1452     }
1453   }
1454 
1455   if (!SkipDebugLoc) {
1456     if (const DebugLoc &DL = getDebugLoc()) {
1457       if (!FirstOp)
1458         OS << ',';
1459       OS << " debug-location ";
1460       DL->printAsOperand(OS, MST);
1461     }
1462   }
1463 
1464   if (!memoperands_empty()) {
1465     SmallVector<StringRef, 0> SSNs;
1466     const LLVMContext *Context = nullptr;
1467     std::unique_ptr<LLVMContext> CtxPtr;
1468     const MachineFrameInfo *MFI = nullptr;
1469     if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1470       MFI = &MF->getFrameInfo();
1471       Context = &MF->getFunction().getContext();
1472     } else {
1473       CtxPtr = llvm::make_unique<LLVMContext>();
1474       Context = CtxPtr.get();
1475     }
1476 
1477     OS << " :: ";
1478     bool NeedComma = false;
1479     for (const MachineMemOperand *Op : memoperands()) {
1480       if (NeedComma)
1481         OS << ", ";
1482       Op->print(OS, MST, SSNs, *Context, MFI, TII);
1483       NeedComma = true;
1484     }
1485   }
1486 
1487   if (SkipDebugLoc)
1488     return;
1489 
1490   bool HaveSemi = false;
1491 
1492   // Print debug location information.
1493   if (const DebugLoc &DL = getDebugLoc()) {
1494     if (!HaveSemi) {
1495       OS << ';';
1496       HaveSemi = true;
1497     }
1498     OS << ' ';
1499     DL.print(OS);
1500   }
1501 
1502   // Print extra comments for DEBUG_VALUE.
1503   if (isDebugValue() && getOperand(e - 2).isMetadata()) {
1504     if (!HaveSemi) {
1505       OS << ";";
1506       HaveSemi = true;
1507     }
1508     auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata());
1509     OS << " line no:" <<  DV->getLine();
1510     if (auto *InlinedAt = debugLoc->getInlinedAt()) {
1511       DebugLoc InlinedAtDL(InlinedAt);
1512       if (InlinedAtDL && MF) {
1513         OS << " inlined @[ ";
1514         InlinedAtDL.print(OS);
1515         OS << " ]";
1516       }
1517     }
1518     if (isIndirectDebugValue())
1519       OS << " indirect";
1520   }
1521 
1522   if (AddNewLine)
1523     OS << '\n';
1524 }
1525 
1526 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1527                                      const TargetRegisterInfo *RegInfo,
1528                                      bool AddIfNotFound) {
1529   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1530   bool hasAliases = isPhysReg &&
1531     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1532   bool Found = false;
1533   SmallVector<unsigned,4> DeadOps;
1534   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1535     MachineOperand &MO = getOperand(i);
1536     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1537       continue;
1538 
1539     // DEBUG_VALUE nodes do not contribute to code generation and should
1540     // always be ignored. Failure to do so may result in trying to modify
1541     // KILL flags on DEBUG_VALUE nodes.
1542     if (MO.isDebug())
1543       continue;
1544 
1545     unsigned Reg = MO.getReg();
1546     if (!Reg)
1547       continue;
1548 
1549     if (Reg == IncomingReg) {
1550       if (!Found) {
1551         if (MO.isKill())
1552           // The register is already marked kill.
1553           return true;
1554         if (isPhysReg && isRegTiedToDefOperand(i))
1555           // Two-address uses of physregs must not be marked kill.
1556           return true;
1557         MO.setIsKill();
1558         Found = true;
1559       }
1560     } else if (hasAliases && MO.isKill() &&
1561                TargetRegisterInfo::isPhysicalRegister(Reg)) {
1562       // A super-register kill already exists.
1563       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1564         return true;
1565       if (RegInfo->isSubRegister(IncomingReg, Reg))
1566         DeadOps.push_back(i);
1567     }
1568   }
1569 
1570   // Trim unneeded kill operands.
1571   while (!DeadOps.empty()) {
1572     unsigned OpIdx = DeadOps.back();
1573     if (getOperand(OpIdx).isImplicit())
1574       RemoveOperand(OpIdx);
1575     else
1576       getOperand(OpIdx).setIsKill(false);
1577     DeadOps.pop_back();
1578   }
1579 
1580   // If not found, this means an alias of one of the operands is killed. Add a
1581   // new implicit operand if required.
1582   if (!Found && AddIfNotFound) {
1583     addOperand(MachineOperand::CreateReg(IncomingReg,
1584                                          false /*IsDef*/,
1585                                          true  /*IsImp*/,
1586                                          true  /*IsKill*/));
1587     return true;
1588   }
1589   return Found;
1590 }
1591 
1592 void MachineInstr::clearRegisterKills(unsigned Reg,
1593                                       const TargetRegisterInfo *RegInfo) {
1594   if (!TargetRegisterInfo::isPhysicalRegister(Reg))
1595     RegInfo = nullptr;
1596   for (MachineOperand &MO : operands()) {
1597     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1598       continue;
1599     unsigned OpReg = MO.getReg();
1600     if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
1601       MO.setIsKill(false);
1602   }
1603 }
1604 
1605 bool MachineInstr::addRegisterDead(unsigned Reg,
1606                                    const TargetRegisterInfo *RegInfo,
1607                                    bool AddIfNotFound) {
1608   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg);
1609   bool hasAliases = isPhysReg &&
1610     MCRegAliasIterator(Reg, RegInfo, false).isValid();
1611   bool Found = false;
1612   SmallVector<unsigned,4> DeadOps;
1613   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1614     MachineOperand &MO = getOperand(i);
1615     if (!MO.isReg() || !MO.isDef())
1616       continue;
1617     unsigned MOReg = MO.getReg();
1618     if (!MOReg)
1619       continue;
1620 
1621     if (MOReg == Reg) {
1622       MO.setIsDead();
1623       Found = true;
1624     } else if (hasAliases && MO.isDead() &&
1625                TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1626       // There exists a super-register that's marked dead.
1627       if (RegInfo->isSuperRegister(Reg, MOReg))
1628         return true;
1629       if (RegInfo->isSubRegister(Reg, MOReg))
1630         DeadOps.push_back(i);
1631     }
1632   }
1633 
1634   // Trim unneeded dead operands.
1635   while (!DeadOps.empty()) {
1636     unsigned OpIdx = DeadOps.back();
1637     if (getOperand(OpIdx).isImplicit())
1638       RemoveOperand(OpIdx);
1639     else
1640       getOperand(OpIdx).setIsDead(false);
1641     DeadOps.pop_back();
1642   }
1643 
1644   // If not found, this means an alias of one of the operands is dead. Add a
1645   // new implicit operand if required.
1646   if (Found || !AddIfNotFound)
1647     return Found;
1648 
1649   addOperand(MachineOperand::CreateReg(Reg,
1650                                        true  /*IsDef*/,
1651                                        true  /*IsImp*/,
1652                                        false /*IsKill*/,
1653                                        true  /*IsDead*/));
1654   return true;
1655 }
1656 
1657 void MachineInstr::clearRegisterDeads(unsigned Reg) {
1658   for (MachineOperand &MO : operands()) {
1659     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
1660       continue;
1661     MO.setIsDead(false);
1662   }
1663 }
1664 
1665 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) {
1666   for (MachineOperand &MO : operands()) {
1667     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
1668       continue;
1669     MO.setIsUndef(IsUndef);
1670   }
1671 }
1672 
1673 void MachineInstr::addRegisterDefined(unsigned Reg,
1674                                       const TargetRegisterInfo *RegInfo) {
1675   if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1676     MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo);
1677     if (MO)
1678       return;
1679   } else {
1680     for (const MachineOperand &MO : operands()) {
1681       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
1682           MO.getSubReg() == 0)
1683         return;
1684     }
1685   }
1686   addOperand(MachineOperand::CreateReg(Reg,
1687                                        true  /*IsDef*/,
1688                                        true  /*IsImp*/));
1689 }
1690 
1691 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
1692                                          const TargetRegisterInfo &TRI) {
1693   bool HasRegMask = false;
1694   for (MachineOperand &MO : operands()) {
1695     if (MO.isRegMask()) {
1696       HasRegMask = true;
1697       continue;
1698     }
1699     if (!MO.isReg() || !MO.isDef()) continue;
1700     unsigned Reg = MO.getReg();
1701     if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
1702     // If there are no uses, including partial uses, the def is dead.
1703     if (llvm::none_of(UsedRegs,
1704                       [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); }))
1705       MO.setIsDead();
1706   }
1707 
1708   // This is a call with a register mask operand.
1709   // Mask clobbers are always dead, so add defs for the non-dead defines.
1710   if (HasRegMask)
1711     for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
1712          I != E; ++I)
1713       addRegisterDefined(*I, &TRI);
1714 }
1715 
1716 unsigned
1717 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1718   // Build up a buffer of hash code components.
1719   SmallVector<size_t, 8> HashComponents;
1720   HashComponents.reserve(MI->getNumOperands() + 1);
1721   HashComponents.push_back(MI->getOpcode());
1722   for (const MachineOperand &MO : MI->operands()) {
1723     if (MO.isReg() && MO.isDef() &&
1724         TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1725       continue;  // Skip virtual register defs.
1726 
1727     HashComponents.push_back(hash_value(MO));
1728   }
1729   return hash_combine_range(HashComponents.begin(), HashComponents.end());
1730 }
1731 
1732 void MachineInstr::emitError(StringRef Msg) const {
1733   // Find the source location cookie.
1734   unsigned LocCookie = 0;
1735   const MDNode *LocMD = nullptr;
1736   for (unsigned i = getNumOperands(); i != 0; --i) {
1737     if (getOperand(i-1).isMetadata() &&
1738         (LocMD = getOperand(i-1).getMetadata()) &&
1739         LocMD->getNumOperands() != 0) {
1740       if (const ConstantInt *CI =
1741               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
1742         LocCookie = CI->getZExtValue();
1743         break;
1744       }
1745     }
1746   }
1747 
1748   if (const MachineBasicBlock *MBB = getParent())
1749     if (const MachineFunction *MF = MBB->getParent())
1750       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
1751   report_fatal_error(Msg);
1752 }
1753 
1754 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
1755                                   const MCInstrDesc &MCID, bool IsIndirect,
1756                                   unsigned Reg, const MDNode *Variable,
1757                                   const MDNode *Expr) {
1758   assert(isa<DILocalVariable>(Variable) && "not a variable");
1759   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
1760   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
1761          "Expected inlined-at fields to agree");
1762   if (IsIndirect)
1763     return BuildMI(MF, DL, MCID)
1764         .addReg(Reg, RegState::Debug)
1765         .addImm(0U)
1766         .addMetadata(Variable)
1767         .addMetadata(Expr);
1768   else
1769     return BuildMI(MF, DL, MCID)
1770         .addReg(Reg, RegState::Debug)
1771         .addReg(0U, RegState::Debug)
1772         .addMetadata(Variable)
1773         .addMetadata(Expr);
1774 }
1775 
1776 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
1777                                   MachineBasicBlock::iterator I,
1778                                   const DebugLoc &DL, const MCInstrDesc &MCID,
1779                                   bool IsIndirect, unsigned Reg,
1780                                   const MDNode *Variable, const MDNode *Expr) {
1781   assert(isa<DILocalVariable>(Variable) && "not a variable");
1782   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
1783   MachineFunction &MF = *BB.getParent();
1784   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
1785   BB.insert(I, MI);
1786   return MachineInstrBuilder(MF, MI);
1787 }
1788 
1789 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
1790 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
1791 static const DIExpression *computeExprForSpill(const MachineInstr &MI) {
1792   assert(MI.getOperand(0).isReg() && "can't spill non-register");
1793   assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
1794          "Expected inlined-at fields to agree");
1795 
1796   const DIExpression *Expr = MI.getDebugExpression();
1797   if (MI.isIndirectDebugValue()) {
1798     assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
1799     Expr = DIExpression::prepend(Expr, DIExpression::WithDeref);
1800   }
1801   return Expr;
1802 }
1803 
1804 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
1805                                           MachineBasicBlock::iterator I,
1806                                           const MachineInstr &Orig,
1807                                           int FrameIndex) {
1808   const DIExpression *Expr = computeExprForSpill(Orig);
1809   return BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc())
1810       .addFrameIndex(FrameIndex)
1811       .addImm(0U)
1812       .addMetadata(Orig.getDebugVariable())
1813       .addMetadata(Expr);
1814 }
1815 
1816 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex) {
1817   const DIExpression *Expr = computeExprForSpill(Orig);
1818   Orig.getOperand(0).ChangeToFrameIndex(FrameIndex);
1819   Orig.getOperand(1).ChangeToImmediate(0U);
1820   Orig.getOperand(3).setMetadata(Expr);
1821 }
1822