xref: /llvm-project/llvm/lib/CodeGen/MachineInstr.cpp (revision cd070cdc94ef5f2da3d3a9724c4fcde778fcd163)
1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Methods common to all machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/FoldingSet.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallBitVector.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/Loads.h"
26 #include "llvm/Analysis/MemoryLocation.h"
27 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/Config/llvm-config.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DebugInfoMetadata.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/ModuleSlotTracker.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/MC/MCInstrDesc.h"
56 #include "llvm/MC/MCRegisterInfo.h"
57 #include "llvm/MC/MCSymbol.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/LowLevelTypeImpl.h"
64 #include "llvm/Support/MathExtras.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include "llvm/Target/TargetIntrinsicInfo.h"
67 #include "llvm/Target/TargetMachine.h"
68 #include <algorithm>
69 #include <cassert>
70 #include <cstddef>
71 #include <cstdint>
72 #include <cstring>
73 #include <iterator>
74 #include <utility>
75 
76 using namespace llvm;
77 
78 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
79   if (const MachineBasicBlock *MBB = MI.getParent())
80     if (const MachineFunction *MF = MBB->getParent())
81       return MF;
82   return nullptr;
83 }
84 
85 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
86 // it.
87 static void tryToGetTargetInfo(const MachineInstr &MI,
88                                const TargetRegisterInfo *&TRI,
89                                const MachineRegisterInfo *&MRI,
90                                const TargetIntrinsicInfo *&IntrinsicInfo,
91                                const TargetInstrInfo *&TII) {
92 
93   if (const MachineFunction *MF = getMFIfAvailable(MI)) {
94     TRI = MF->getSubtarget().getRegisterInfo();
95     MRI = &MF->getRegInfo();
96     IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
97     TII = MF->getSubtarget().getInstrInfo();
98   }
99 }
100 
101 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
102   if (MCID->ImplicitDefs)
103     for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
104            ++ImpDefs)
105       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
106   if (MCID->ImplicitUses)
107     for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
108            ++ImpUses)
109       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
110 }
111 
112 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
113 /// implicit operands. It reserves space for the number of operands specified by
114 /// the MCInstrDesc.
115 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
116                            DebugLoc dl, bool NoImp)
117     : MCID(&tid), debugLoc(std::move(dl)) {
118   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
119 
120   // Reserve space for the expected number of operands.
121   if (unsigned NumOps = MCID->getNumOperands() +
122     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
123     CapOperands = OperandCapacity::get(NumOps);
124     Operands = MF.allocateOperandArray(CapOperands);
125   }
126 
127   if (!NoImp)
128     addImplicitDefUseOperands(MF);
129 }
130 
131 /// MachineInstr ctor - Copies MachineInstr arg exactly
132 ///
133 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
134     : MCID(&MI.getDesc()), NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs),
135       debugLoc(MI.getDebugLoc()) {
136   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
137 
138   CapOperands = OperandCapacity::get(MI.getNumOperands());
139   Operands = MF.allocateOperandArray(CapOperands);
140 
141   // Copy operands.
142   for (const MachineOperand &MO : MI.operands())
143     addOperand(MF, MO);
144 
145   // Copy all the sensible flags.
146   setFlags(MI.Flags);
147 }
148 
149 /// getRegInfo - If this instruction is embedded into a MachineFunction,
150 /// return the MachineRegisterInfo object for the current function, otherwise
151 /// return null.
152 MachineRegisterInfo *MachineInstr::getRegInfo() {
153   if (MachineBasicBlock *MBB = getParent())
154     return &MBB->getParent()->getRegInfo();
155   return nullptr;
156 }
157 
158 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
159 /// this instruction from their respective use lists.  This requires that the
160 /// operands already be on their use lists.
161 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
162   for (MachineOperand &MO : operands())
163     if (MO.isReg())
164       MRI.removeRegOperandFromUseList(&MO);
165 }
166 
167 /// AddRegOperandsToUseLists - Add all of the register operands in
168 /// this instruction from their respective use lists.  This requires that the
169 /// operands not be on their use lists yet.
170 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
171   for (MachineOperand &MO : operands())
172     if (MO.isReg())
173       MRI.addRegOperandToUseList(&MO);
174 }
175 
176 void MachineInstr::addOperand(const MachineOperand &Op) {
177   MachineBasicBlock *MBB = getParent();
178   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
179   MachineFunction *MF = MBB->getParent();
180   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
181   addOperand(*MF, Op);
182 }
183 
184 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
185 /// ranges. If MRI is non-null also update use-def chains.
186 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
187                          unsigned NumOps, MachineRegisterInfo *MRI) {
188   if (MRI)
189     return MRI->moveOperands(Dst, Src, NumOps);
190 
191   // MachineOperand is a trivially copyable type so we can just use memmove.
192   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
193 }
194 
195 /// addOperand - Add the specified operand to the instruction.  If it is an
196 /// implicit operand, it is added to the end of the operand list.  If it is
197 /// an explicit operand it is added at the end of the explicit operand list
198 /// (before the first implicit operand).
199 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
200   assert(MCID && "Cannot add operands before providing an instr descriptor");
201 
202   // Check if we're adding one of our existing operands.
203   if (&Op >= Operands && &Op < Operands + NumOperands) {
204     // This is unusual: MI->addOperand(MI->getOperand(i)).
205     // If adding Op requires reallocating or moving existing operands around,
206     // the Op reference could go stale. Support it by copying Op.
207     MachineOperand CopyOp(Op);
208     return addOperand(MF, CopyOp);
209   }
210 
211   // Find the insert location for the new operand.  Implicit registers go at
212   // the end, everything else goes before the implicit regs.
213   //
214   // FIXME: Allow mixed explicit and implicit operands on inline asm.
215   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
216   // implicit-defs, but they must not be moved around.  See the FIXME in
217   // InstrEmitter.cpp.
218   unsigned OpNo = getNumOperands();
219   bool isImpReg = Op.isReg() && Op.isImplicit();
220   if (!isImpReg && !isInlineAsm()) {
221     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
222       --OpNo;
223       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
224     }
225   }
226 
227 #ifndef NDEBUG
228   bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata;
229   // OpNo now points as the desired insertion point.  Unless this is a variadic
230   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
231   // RegMask operands go between the explicit and implicit operands.
232   assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
233           OpNo < MCID->getNumOperands() || isMetaDataOp) &&
234          "Trying to add an operand to a machine instr that is already done!");
235 #endif
236 
237   MachineRegisterInfo *MRI = getRegInfo();
238 
239   // Determine if the Operands array needs to be reallocated.
240   // Save the old capacity and operand array.
241   OperandCapacity OldCap = CapOperands;
242   MachineOperand *OldOperands = Operands;
243   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
244     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
245     Operands = MF.allocateOperandArray(CapOperands);
246     // Move the operands before the insertion point.
247     if (OpNo)
248       moveOperands(Operands, OldOperands, OpNo, MRI);
249   }
250 
251   // Move the operands following the insertion point.
252   if (OpNo != NumOperands)
253     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
254                  MRI);
255   ++NumOperands;
256 
257   // Deallocate the old operand array.
258   if (OldOperands != Operands && OldOperands)
259     MF.deallocateOperandArray(OldCap, OldOperands);
260 
261   // Copy Op into place. It still needs to be inserted into the MRI use lists.
262   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
263   NewMO->ParentMI = this;
264 
265   // When adding a register operand, tell MRI about it.
266   if (NewMO->isReg()) {
267     // Ensure isOnRegUseList() returns false, regardless of Op's status.
268     NewMO->Contents.Reg.Prev = nullptr;
269     // Ignore existing ties. This is not a property that can be copied.
270     NewMO->TiedTo = 0;
271     // Add the new operand to MRI, but only for instructions in an MBB.
272     if (MRI)
273       MRI->addRegOperandToUseList(NewMO);
274     // The MCID operand information isn't accurate until we start adding
275     // explicit operands. The implicit operands are added first, then the
276     // explicits are inserted before them.
277     if (!isImpReg) {
278       // Tie uses to defs as indicated in MCInstrDesc.
279       if (NewMO->isUse()) {
280         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
281         if (DefIdx != -1)
282           tieOperands(DefIdx, OpNo);
283       }
284       // If the register operand is flagged as early, mark the operand as such.
285       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
286         NewMO->setIsEarlyClobber(true);
287     }
288   }
289 }
290 
291 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
292 /// fewer operand than it started with.
293 ///
294 void MachineInstr::RemoveOperand(unsigned OpNo) {
295   assert(OpNo < getNumOperands() && "Invalid operand number");
296   untieRegOperand(OpNo);
297 
298 #ifndef NDEBUG
299   // Moving tied operands would break the ties.
300   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
301     if (Operands[i].isReg())
302       assert(!Operands[i].isTied() && "Cannot move tied operands");
303 #endif
304 
305   MachineRegisterInfo *MRI = getRegInfo();
306   if (MRI && Operands[OpNo].isReg())
307     MRI->removeRegOperandFromUseList(Operands + OpNo);
308 
309   // Don't call the MachineOperand destructor. A lot of this code depends on
310   // MachineOperand having a trivial destructor anyway, and adding a call here
311   // wouldn't make it 'destructor-correct'.
312 
313   if (unsigned N = NumOperands - 1 - OpNo)
314     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
315   --NumOperands;
316 }
317 
318 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
319 /// This function should be used only occasionally. The setMemRefs function
320 /// is the primary method for setting up a MachineInstr's MemRefs list.
321 void MachineInstr::addMemOperand(MachineFunction &MF,
322                                  MachineMemOperand *MO) {
323   mmo_iterator OldMemRefs = MemRefs;
324   unsigned OldNumMemRefs = NumMemRefs;
325 
326   unsigned NewNum = NumMemRefs + 1;
327   mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
328 
329   std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs);
330   NewMemRefs[NewNum - 1] = MO;
331   setMemRefs(NewMemRefs, NewMemRefs + NewNum);
332 }
333 
334 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
335 /// identical.
336 static bool hasIdenticalMMOs(const MachineInstr &MI1, const MachineInstr &MI2) {
337   auto I1 = MI1.memoperands_begin(), E1 = MI1.memoperands_end();
338   auto I2 = MI2.memoperands_begin(), E2 = MI2.memoperands_end();
339   if ((E1 - I1) != (E2 - I2))
340     return false;
341   for (; I1 != E1; ++I1, ++I2) {
342     if (**I1 != **I2)
343       return false;
344   }
345   return true;
346 }
347 
348 std::pair<MachineInstr::mmo_iterator, unsigned>
349 MachineInstr::mergeMemRefsWith(const MachineInstr& Other) {
350 
351   // If either of the incoming memrefs are empty, we must be conservative and
352   // treat this as if we've exhausted our space for memrefs and dropped them.
353   if (memoperands_empty() || Other.memoperands_empty())
354     return std::make_pair(nullptr, 0);
355 
356   // If both instructions have identical memrefs, we don't need to merge them.
357   // Since many instructions have a single memref, and we tend to merge things
358   // like pairs of loads from the same location, this catches a large number of
359   // cases in practice.
360   if (hasIdenticalMMOs(*this, Other))
361     return std::make_pair(MemRefs, NumMemRefs);
362 
363   // TODO: consider uniquing elements within the operand lists to reduce
364   // space usage and fall back to conservative information less often.
365   size_t CombinedNumMemRefs = NumMemRefs + Other.NumMemRefs;
366 
367   // If we don't have enough room to store this many memrefs, be conservative
368   // and drop them.  Otherwise, we'd fail asserts when trying to add them to
369   // the new instruction.
370   if (CombinedNumMemRefs != uint8_t(CombinedNumMemRefs))
371     return std::make_pair(nullptr, 0);
372 
373   MachineFunction *MF = getMF();
374   mmo_iterator MemBegin = MF->allocateMemRefsArray(CombinedNumMemRefs);
375   mmo_iterator MemEnd = std::copy(memoperands_begin(), memoperands_end(),
376                                   MemBegin);
377   MemEnd = std::copy(Other.memoperands_begin(), Other.memoperands_end(),
378                      MemEnd);
379   assert(MemEnd - MemBegin == (ptrdiff_t)CombinedNumMemRefs &&
380          "missing memrefs");
381 
382   return std::make_pair(MemBegin, CombinedNumMemRefs);
383 }
384 
385 uint8_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
386   // For now, the just return the union of the flags. If the flags get more
387   // complicated over time, we might need more logic here.
388   return getFlags() | Other.getFlags();
389 }
390 
391 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const {
392   assert(!isBundledWithPred() && "Must be called on bundle header");
393   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
394     if (MII->getDesc().getFlags() & Mask) {
395       if (Type == AnyInBundle)
396         return true;
397     } else {
398       if (Type == AllInBundle && !MII->isBundle())
399         return false;
400     }
401     // This was the last instruction in the bundle.
402     if (!MII->isBundledWithSucc())
403       return Type == AllInBundle;
404   }
405 }
406 
407 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
408                                  MICheckType Check) const {
409   // If opcodes or number of operands are not the same then the two
410   // instructions are obviously not identical.
411   if (Other.getOpcode() != getOpcode() ||
412       Other.getNumOperands() != getNumOperands())
413     return false;
414 
415   if (isBundle()) {
416     // We have passed the test above that both instructions have the same
417     // opcode, so we know that both instructions are bundles here. Let's compare
418     // MIs inside the bundle.
419     assert(Other.isBundle() && "Expected that both instructions are bundles.");
420     MachineBasicBlock::const_instr_iterator I1 = getIterator();
421     MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
422     // Loop until we analysed the last intruction inside at least one of the
423     // bundles.
424     while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
425       ++I1;
426       ++I2;
427       if (!I1->isIdenticalTo(*I2, Check))
428         return false;
429     }
430     // If we've reached the end of just one of the two bundles, but not both,
431     // the instructions are not identical.
432     if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
433       return false;
434   }
435 
436   // Check operands to make sure they match.
437   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
438     const MachineOperand &MO = getOperand(i);
439     const MachineOperand &OMO = Other.getOperand(i);
440     if (!MO.isReg()) {
441       if (!MO.isIdenticalTo(OMO))
442         return false;
443       continue;
444     }
445 
446     // Clients may or may not want to ignore defs when testing for equality.
447     // For example, machine CSE pass only cares about finding common
448     // subexpressions, so it's safe to ignore virtual register defs.
449     if (MO.isDef()) {
450       if (Check == IgnoreDefs)
451         continue;
452       else if (Check == IgnoreVRegDefs) {
453         if (!TargetRegisterInfo::isVirtualRegister(MO.getReg()) ||
454             !TargetRegisterInfo::isVirtualRegister(OMO.getReg()))
455           if (!MO.isIdenticalTo(OMO))
456             return false;
457       } else {
458         if (!MO.isIdenticalTo(OMO))
459           return false;
460         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
461           return false;
462       }
463     } else {
464       if (!MO.isIdenticalTo(OMO))
465         return false;
466       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
467         return false;
468     }
469   }
470   // If DebugLoc does not match then two dbg.values are not identical.
471   if (isDebugValue())
472     if (getDebugLoc() && Other.getDebugLoc() &&
473         getDebugLoc() != Other.getDebugLoc())
474       return false;
475   return true;
476 }
477 
478 const MachineFunction *MachineInstr::getMF() const {
479   return getParent()->getParent();
480 }
481 
482 MachineInstr *MachineInstr::removeFromParent() {
483   assert(getParent() && "Not embedded in a basic block!");
484   return getParent()->remove(this);
485 }
486 
487 MachineInstr *MachineInstr::removeFromBundle() {
488   assert(getParent() && "Not embedded in a basic block!");
489   return getParent()->remove_instr(this);
490 }
491 
492 void MachineInstr::eraseFromParent() {
493   assert(getParent() && "Not embedded in a basic block!");
494   getParent()->erase(this);
495 }
496 
497 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
498   assert(getParent() && "Not embedded in a basic block!");
499   MachineBasicBlock *MBB = getParent();
500   MachineFunction *MF = MBB->getParent();
501   assert(MF && "Not embedded in a function!");
502 
503   MachineInstr *MI = (MachineInstr *)this;
504   MachineRegisterInfo &MRI = MF->getRegInfo();
505 
506   for (const MachineOperand &MO : MI->operands()) {
507     if (!MO.isReg() || !MO.isDef())
508       continue;
509     unsigned Reg = MO.getReg();
510     if (!TargetRegisterInfo::isVirtualRegister(Reg))
511       continue;
512     MRI.markUsesInDebugValueAsUndef(Reg);
513   }
514   MI->eraseFromParent();
515 }
516 
517 void MachineInstr::eraseFromBundle() {
518   assert(getParent() && "Not embedded in a basic block!");
519   getParent()->erase_instr(this);
520 }
521 
522 /// getNumExplicitOperands - Returns the number of non-implicit operands.
523 ///
524 unsigned MachineInstr::getNumExplicitOperands() const {
525   unsigned NumOperands = MCID->getNumOperands();
526   if (!MCID->isVariadic())
527     return NumOperands;
528 
529   for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
530     const MachineOperand &MO = getOperand(i);
531     if (!MO.isReg() || !MO.isImplicit())
532       NumOperands++;
533   }
534   return NumOperands;
535 }
536 
537 void MachineInstr::bundleWithPred() {
538   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
539   setFlag(BundledPred);
540   MachineBasicBlock::instr_iterator Pred = getIterator();
541   --Pred;
542   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
543   Pred->setFlag(BundledSucc);
544 }
545 
546 void MachineInstr::bundleWithSucc() {
547   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
548   setFlag(BundledSucc);
549   MachineBasicBlock::instr_iterator Succ = getIterator();
550   ++Succ;
551   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
552   Succ->setFlag(BundledPred);
553 }
554 
555 void MachineInstr::unbundleFromPred() {
556   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
557   clearFlag(BundledPred);
558   MachineBasicBlock::instr_iterator Pred = getIterator();
559   --Pred;
560   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
561   Pred->clearFlag(BundledSucc);
562 }
563 
564 void MachineInstr::unbundleFromSucc() {
565   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
566   clearFlag(BundledSucc);
567   MachineBasicBlock::instr_iterator Succ = getIterator();
568   ++Succ;
569   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
570   Succ->clearFlag(BundledPred);
571 }
572 
573 bool MachineInstr::isStackAligningInlineAsm() const {
574   if (isInlineAsm()) {
575     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
576     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
577       return true;
578   }
579   return false;
580 }
581 
582 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
583   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
584   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
585   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
586 }
587 
588 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
589                                        unsigned *GroupNo) const {
590   assert(isInlineAsm() && "Expected an inline asm instruction");
591   assert(OpIdx < getNumOperands() && "OpIdx out of range");
592 
593   // Ignore queries about the initial operands.
594   if (OpIdx < InlineAsm::MIOp_FirstOperand)
595     return -1;
596 
597   unsigned Group = 0;
598   unsigned NumOps;
599   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
600        i += NumOps) {
601     const MachineOperand &FlagMO = getOperand(i);
602     // If we reach the implicit register operands, stop looking.
603     if (!FlagMO.isImm())
604       return -1;
605     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
606     if (i + NumOps > OpIdx) {
607       if (GroupNo)
608         *GroupNo = Group;
609       return i;
610     }
611     ++Group;
612   }
613   return -1;
614 }
615 
616 const DILabel *MachineInstr::getDebugLabel() const {
617   assert(isDebugLabel() && "not a DBG_LABEL");
618   return cast<DILabel>(getOperand(0).getMetadata());
619 }
620 
621 const DILocalVariable *MachineInstr::getDebugVariable() const {
622   assert(isDebugValue() && "not a DBG_VALUE");
623   return cast<DILocalVariable>(getOperand(2).getMetadata());
624 }
625 
626 const DIExpression *MachineInstr::getDebugExpression() const {
627   assert(isDebugValue() && "not a DBG_VALUE");
628   return cast<DIExpression>(getOperand(3).getMetadata());
629 }
630 
631 const TargetRegisterClass*
632 MachineInstr::getRegClassConstraint(unsigned OpIdx,
633                                     const TargetInstrInfo *TII,
634                                     const TargetRegisterInfo *TRI) const {
635   assert(getParent() && "Can't have an MBB reference here!");
636   assert(getMF() && "Can't have an MF reference here!");
637   const MachineFunction &MF = *getMF();
638 
639   // Most opcodes have fixed constraints in their MCInstrDesc.
640   if (!isInlineAsm())
641     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
642 
643   if (!getOperand(OpIdx).isReg())
644     return nullptr;
645 
646   // For tied uses on inline asm, get the constraint from the def.
647   unsigned DefIdx;
648   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
649     OpIdx = DefIdx;
650 
651   // Inline asm stores register class constraints in the flag word.
652   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
653   if (FlagIdx < 0)
654     return nullptr;
655 
656   unsigned Flag = getOperand(FlagIdx).getImm();
657   unsigned RCID;
658   if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
659        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
660        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
661       InlineAsm::hasRegClassConstraint(Flag, RCID))
662     return TRI->getRegClass(RCID);
663 
664   // Assume that all registers in a memory operand are pointers.
665   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
666     return TRI->getPointerRegClass(MF);
667 
668   return nullptr;
669 }
670 
671 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
672     unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
673     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
674   // Check every operands inside the bundle if we have
675   // been asked to.
676   if (ExploreBundle)
677     for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
678          ++OpndIt)
679       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
680           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
681   else
682     // Otherwise, just check the current operands.
683     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
684       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
685   return CurRC;
686 }
687 
688 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
689     unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
690     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
691   assert(CurRC && "Invalid initial register class");
692   // Check if Reg is constrained by some of its use/def from MI.
693   const MachineOperand &MO = getOperand(OpIdx);
694   if (!MO.isReg() || MO.getReg() != Reg)
695     return CurRC;
696   // If yes, accumulate the constraints through the operand.
697   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
698 }
699 
700 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
701     unsigned OpIdx, const TargetRegisterClass *CurRC,
702     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
703   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
704   const MachineOperand &MO = getOperand(OpIdx);
705   assert(MO.isReg() &&
706          "Cannot get register constraints for non-register operand");
707   assert(CurRC && "Invalid initial register class");
708   if (unsigned SubIdx = MO.getSubReg()) {
709     if (OpRC)
710       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
711     else
712       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
713   } else if (OpRC)
714     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
715   return CurRC;
716 }
717 
718 /// Return the number of instructions inside the MI bundle, not counting the
719 /// header instruction.
720 unsigned MachineInstr::getBundleSize() const {
721   MachineBasicBlock::const_instr_iterator I = getIterator();
722   unsigned Size = 0;
723   while (I->isBundledWithSucc()) {
724     ++Size;
725     ++I;
726   }
727   return Size;
728 }
729 
730 /// Returns true if the MachineInstr has an implicit-use operand of exactly
731 /// the given register (not considering sub/super-registers).
732 bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const {
733   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
734     const MachineOperand &MO = getOperand(i);
735     if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
736       return true;
737   }
738   return false;
739 }
740 
741 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
742 /// the specific register or -1 if it is not found. It further tightens
743 /// the search criteria to a use that kills the register if isKill is true.
744 int MachineInstr::findRegisterUseOperandIdx(
745     unsigned Reg, bool isKill, const TargetRegisterInfo *TRI) const {
746   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
747     const MachineOperand &MO = getOperand(i);
748     if (!MO.isReg() || !MO.isUse())
749       continue;
750     unsigned MOReg = MO.getReg();
751     if (!MOReg)
752       continue;
753     if (MOReg == Reg || (TRI && TargetRegisterInfo::isPhysicalRegister(MOReg) &&
754                          TargetRegisterInfo::isPhysicalRegister(Reg) &&
755                          TRI->isSubRegister(MOReg, Reg)))
756       if (!isKill || MO.isKill())
757         return i;
758   }
759   return -1;
760 }
761 
762 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
763 /// indicating if this instruction reads or writes Reg. This also considers
764 /// partial defines.
765 std::pair<bool,bool>
766 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
767                                          SmallVectorImpl<unsigned> *Ops) const {
768   bool PartDef = false; // Partial redefine.
769   bool FullDef = false; // Full define.
770   bool Use = false;
771 
772   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
773     const MachineOperand &MO = getOperand(i);
774     if (!MO.isReg() || MO.getReg() != Reg)
775       continue;
776     if (Ops)
777       Ops->push_back(i);
778     if (MO.isUse())
779       Use |= !MO.isUndef();
780     else if (MO.getSubReg() && !MO.isUndef())
781       // A partial def undef doesn't count as reading the register.
782       PartDef = true;
783     else
784       FullDef = true;
785   }
786   // A partial redefine uses Reg unless there is also a full define.
787   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
788 }
789 
790 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
791 /// the specified register or -1 if it is not found. If isDead is true, defs
792 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
793 /// also checks if there is a def of a super-register.
794 int
795 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
796                                         const TargetRegisterInfo *TRI) const {
797   bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
798   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
799     const MachineOperand &MO = getOperand(i);
800     // Accept regmask operands when Overlap is set.
801     // Ignore them when looking for a specific def operand (Overlap == false).
802     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
803       return i;
804     if (!MO.isReg() || !MO.isDef())
805       continue;
806     unsigned MOReg = MO.getReg();
807     bool Found = (MOReg == Reg);
808     if (!Found && TRI && isPhys &&
809         TargetRegisterInfo::isPhysicalRegister(MOReg)) {
810       if (Overlap)
811         Found = TRI->regsOverlap(MOReg, Reg);
812       else
813         Found = TRI->isSubRegister(MOReg, Reg);
814     }
815     if (Found && (!isDead || MO.isDead()))
816       return i;
817   }
818   return -1;
819 }
820 
821 /// findFirstPredOperandIdx() - Find the index of the first operand in the
822 /// operand list that is used to represent the predicate. It returns -1 if
823 /// none is found.
824 int MachineInstr::findFirstPredOperandIdx() const {
825   // Don't call MCID.findFirstPredOperandIdx() because this variant
826   // is sometimes called on an instruction that's not yet complete, and
827   // so the number of operands is less than the MCID indicates. In
828   // particular, the PTX target does this.
829   const MCInstrDesc &MCID = getDesc();
830   if (MCID.isPredicable()) {
831     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
832       if (MCID.OpInfo[i].isPredicate())
833         return i;
834   }
835 
836   return -1;
837 }
838 
839 // MachineOperand::TiedTo is 4 bits wide.
840 const unsigned TiedMax = 15;
841 
842 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
843 ///
844 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
845 /// field. TiedTo can have these values:
846 ///
847 /// 0:              Operand is not tied to anything.
848 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
849 /// TiedMax:        Tied to an operand >= TiedMax-1.
850 ///
851 /// The tied def must be one of the first TiedMax operands on a normal
852 /// instruction. INLINEASM instructions allow more tied defs.
853 ///
854 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
855   MachineOperand &DefMO = getOperand(DefIdx);
856   MachineOperand &UseMO = getOperand(UseIdx);
857   assert(DefMO.isDef() && "DefIdx must be a def operand");
858   assert(UseMO.isUse() && "UseIdx must be a use operand");
859   assert(!DefMO.isTied() && "Def is already tied to another use");
860   assert(!UseMO.isTied() && "Use is already tied to another def");
861 
862   if (DefIdx < TiedMax)
863     UseMO.TiedTo = DefIdx + 1;
864   else {
865     // Inline asm can use the group descriptors to find tied operands, but on
866     // normal instruction, the tied def must be within the first TiedMax
867     // operands.
868     assert(isInlineAsm() && "DefIdx out of range");
869     UseMO.TiedTo = TiedMax;
870   }
871 
872   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
873   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
874 }
875 
876 /// Given the index of a tied register operand, find the operand it is tied to.
877 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
878 /// which must exist.
879 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
880   const MachineOperand &MO = getOperand(OpIdx);
881   assert(MO.isTied() && "Operand isn't tied");
882 
883   // Normally TiedTo is in range.
884   if (MO.TiedTo < TiedMax)
885     return MO.TiedTo - 1;
886 
887   // Uses on normal instructions can be out of range.
888   if (!isInlineAsm()) {
889     // Normal tied defs must be in the 0..TiedMax-1 range.
890     if (MO.isUse())
891       return TiedMax - 1;
892     // MO is a def. Search for the tied use.
893     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
894       const MachineOperand &UseMO = getOperand(i);
895       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
896         return i;
897     }
898     llvm_unreachable("Can't find tied use");
899   }
900 
901   // Now deal with inline asm by parsing the operand group descriptor flags.
902   // Find the beginning of each operand group.
903   SmallVector<unsigned, 8> GroupIdx;
904   unsigned OpIdxGroup = ~0u;
905   unsigned NumOps;
906   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
907        i += NumOps) {
908     const MachineOperand &FlagMO = getOperand(i);
909     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
910     unsigned CurGroup = GroupIdx.size();
911     GroupIdx.push_back(i);
912     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
913     // OpIdx belongs to this operand group.
914     if (OpIdx > i && OpIdx < i + NumOps)
915       OpIdxGroup = CurGroup;
916     unsigned TiedGroup;
917     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
918       continue;
919     // Operands in this group are tied to operands in TiedGroup which must be
920     // earlier. Find the number of operands between the two groups.
921     unsigned Delta = i - GroupIdx[TiedGroup];
922 
923     // OpIdx is a use tied to TiedGroup.
924     if (OpIdxGroup == CurGroup)
925       return OpIdx - Delta;
926 
927     // OpIdx is a def tied to this use group.
928     if (OpIdxGroup == TiedGroup)
929       return OpIdx + Delta;
930   }
931   llvm_unreachable("Invalid tied operand on inline asm");
932 }
933 
934 /// clearKillInfo - Clears kill flags on all operands.
935 ///
936 void MachineInstr::clearKillInfo() {
937   for (MachineOperand &MO : operands()) {
938     if (MO.isReg() && MO.isUse())
939       MO.setIsKill(false);
940   }
941 }
942 
943 void MachineInstr::substituteRegister(unsigned FromReg, unsigned ToReg,
944                                       unsigned SubIdx,
945                                       const TargetRegisterInfo &RegInfo) {
946   if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
947     if (SubIdx)
948       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
949     for (MachineOperand &MO : operands()) {
950       if (!MO.isReg() || MO.getReg() != FromReg)
951         continue;
952       MO.substPhysReg(ToReg, RegInfo);
953     }
954   } else {
955     for (MachineOperand &MO : operands()) {
956       if (!MO.isReg() || MO.getReg() != FromReg)
957         continue;
958       MO.substVirtReg(ToReg, SubIdx, RegInfo);
959     }
960   }
961 }
962 
963 /// isSafeToMove - Return true if it is safe to move this instruction. If
964 /// SawStore is set to true, it means that there is a store (or call) between
965 /// the instruction's location and its intended destination.
966 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const {
967   // Ignore stuff that we obviously can't move.
968   //
969   // Treat volatile loads as stores. This is not strictly necessary for
970   // volatiles, but it is required for atomic loads. It is not allowed to move
971   // a load across an atomic load with Ordering > Monotonic.
972   if (mayStore() || isCall() || isPHI() ||
973       (mayLoad() && hasOrderedMemoryRef())) {
974     SawStore = true;
975     return false;
976   }
977 
978   if (isPosition() || isDebugValue() || isTerminator() ||
979       hasUnmodeledSideEffects())
980     return false;
981 
982   // See if this instruction does a load.  If so, we have to guarantee that the
983   // loaded value doesn't change between the load and the its intended
984   // destination. The check for isInvariantLoad gives the targe the chance to
985   // classify the load as always returning a constant, e.g. a constant pool
986   // load.
987   if (mayLoad() && !isDereferenceableInvariantLoad(AA))
988     // Otherwise, this is a real load.  If there is a store between the load and
989     // end of block, we can't move it.
990     return !SawStore;
991 
992   return true;
993 }
994 
995 bool MachineInstr::mayAlias(AliasAnalysis *AA, MachineInstr &Other,
996                             bool UseTBAA) {
997   const MachineFunction *MF = getMF();
998   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
999   const MachineFrameInfo &MFI = MF->getFrameInfo();
1000 
1001   // If neither instruction stores to memory, they can't alias in any
1002   // meaningful way, even if they read from the same address.
1003   if (!mayStore() && !Other.mayStore())
1004     return false;
1005 
1006   // Let the target decide if memory accesses cannot possibly overlap.
1007   if (TII->areMemAccessesTriviallyDisjoint(*this, Other, AA))
1008     return false;
1009 
1010   // FIXME: Need to handle multiple memory operands to support all targets.
1011   if (!hasOneMemOperand() || !Other.hasOneMemOperand())
1012     return true;
1013 
1014   MachineMemOperand *MMOa = *memoperands_begin();
1015   MachineMemOperand *MMOb = *Other.memoperands_begin();
1016 
1017   // The following interface to AA is fashioned after DAGCombiner::isAlias
1018   // and operates with MachineMemOperand offset with some important
1019   // assumptions:
1020   //   - LLVM fundamentally assumes flat address spaces.
1021   //   - MachineOperand offset can *only* result from legalization and
1022   //     cannot affect queries other than the trivial case of overlap
1023   //     checking.
1024   //   - These offsets never wrap and never step outside
1025   //     of allocated objects.
1026   //   - There should never be any negative offsets here.
1027   //
1028   // FIXME: Modify API to hide this math from "user"
1029   // Even before we go to AA we can reason locally about some
1030   // memory objects. It can save compile time, and possibly catch some
1031   // corner cases not currently covered.
1032 
1033   int64_t OffsetA = MMOa->getOffset();
1034   int64_t OffsetB = MMOb->getOffset();
1035 
1036   int64_t MinOffset = std::min(OffsetA, OffsetB);
1037   int64_t WidthA = MMOa->getSize();
1038   int64_t WidthB = MMOb->getSize();
1039   const Value *ValA = MMOa->getValue();
1040   const Value *ValB = MMOb->getValue();
1041   bool SameVal = (ValA && ValB && (ValA == ValB));
1042   if (!SameVal) {
1043     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1044     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1045     if (PSVa && ValB && !PSVa->mayAlias(&MFI))
1046       return false;
1047     if (PSVb && ValA && !PSVb->mayAlias(&MFI))
1048       return false;
1049     if (PSVa && PSVb && (PSVa == PSVb))
1050       SameVal = true;
1051   }
1052 
1053   if (SameVal) {
1054     int64_t MaxOffset = std::max(OffsetA, OffsetB);
1055     int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
1056     return (MinOffset + LowWidth > MaxOffset);
1057   }
1058 
1059   if (!AA)
1060     return true;
1061 
1062   if (!ValA || !ValB)
1063     return true;
1064 
1065   assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
1066   assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
1067 
1068   int64_t Overlapa = WidthA + OffsetA - MinOffset;
1069   int64_t Overlapb = WidthB + OffsetB - MinOffset;
1070 
1071   AliasResult AAResult = AA->alias(
1072       MemoryLocation(ValA, Overlapa,
1073                      UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1074       MemoryLocation(ValB, Overlapb,
1075                      UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1076 
1077   return (AAResult != NoAlias);
1078 }
1079 
1080 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1081 /// or volatile memory reference, or if the information describing the memory
1082 /// reference is not available. Return false if it is known to have no ordered
1083 /// memory references.
1084 bool MachineInstr::hasOrderedMemoryRef() const {
1085   // An instruction known never to access memory won't have a volatile access.
1086   if (!mayStore() &&
1087       !mayLoad() &&
1088       !isCall() &&
1089       !hasUnmodeledSideEffects())
1090     return false;
1091 
1092   // Otherwise, if the instruction has no memory reference information,
1093   // conservatively assume it wasn't preserved.
1094   if (memoperands_empty())
1095     return true;
1096 
1097   // Check if any of our memory operands are ordered.
1098   return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1099     return !MMO->isUnordered();
1100   });
1101 }
1102 
1103 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1104 /// trap and is loading from a location whose value is invariant across a run of
1105 /// this function.
1106 bool MachineInstr::isDereferenceableInvariantLoad(AliasAnalysis *AA) const {
1107   // If the instruction doesn't load at all, it isn't an invariant load.
1108   if (!mayLoad())
1109     return false;
1110 
1111   // If the instruction has lost its memoperands, conservatively assume that
1112   // it may not be an invariant load.
1113   if (memoperands_empty())
1114     return false;
1115 
1116   const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1117 
1118   for (MachineMemOperand *MMO : memoperands()) {
1119     if (MMO->isVolatile()) return false;
1120     if (MMO->isStore()) return false;
1121     if (MMO->isInvariant() && MMO->isDereferenceable())
1122       continue;
1123 
1124     // A load from a constant PseudoSourceValue is invariant.
1125     if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1126       if (PSV->isConstant(&MFI))
1127         continue;
1128 
1129     if (const Value *V = MMO->getValue()) {
1130       // If we have an AliasAnalysis, ask it whether the memory is constant.
1131       if (AA &&
1132           AA->pointsToConstantMemory(
1133               MemoryLocation(V, MMO->getSize(), MMO->getAAInfo())))
1134         continue;
1135     }
1136 
1137     // Otherwise assume conservatively.
1138     return false;
1139   }
1140 
1141   // Everything checks out.
1142   return true;
1143 }
1144 
1145 /// isConstantValuePHI - If the specified instruction is a PHI that always
1146 /// merges together the same virtual register, return the register, otherwise
1147 /// return 0.
1148 unsigned MachineInstr::isConstantValuePHI() const {
1149   if (!isPHI())
1150     return 0;
1151   assert(getNumOperands() >= 3 &&
1152          "It's illegal to have a PHI without source operands");
1153 
1154   unsigned Reg = getOperand(1).getReg();
1155   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1156     if (getOperand(i).getReg() != Reg)
1157       return 0;
1158   return Reg;
1159 }
1160 
1161 bool MachineInstr::hasUnmodeledSideEffects() const {
1162   if (hasProperty(MCID::UnmodeledSideEffects))
1163     return true;
1164   if (isInlineAsm()) {
1165     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1166     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1167       return true;
1168   }
1169 
1170   return false;
1171 }
1172 
1173 bool MachineInstr::isLoadFoldBarrier() const {
1174   return mayStore() || isCall() || hasUnmodeledSideEffects();
1175 }
1176 
1177 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1178 ///
1179 bool MachineInstr::allDefsAreDead() const {
1180   for (const MachineOperand &MO : operands()) {
1181     if (!MO.isReg() || MO.isUse())
1182       continue;
1183     if (!MO.isDead())
1184       return false;
1185   }
1186   return true;
1187 }
1188 
1189 /// copyImplicitOps - Copy implicit register operands from specified
1190 /// instruction to this instruction.
1191 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1192                                    const MachineInstr &MI) {
1193   for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands();
1194        i != e; ++i) {
1195     const MachineOperand &MO = MI.getOperand(i);
1196     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1197       addOperand(MF, MO);
1198   }
1199 }
1200 
1201 bool MachineInstr::hasComplexRegisterTies() const {
1202   const MCInstrDesc &MCID = getDesc();
1203   for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
1204     const auto &Operand = getOperand(I);
1205     if (!Operand.isReg() || Operand.isDef())
1206       // Ignore the defined registers as MCID marks only the uses as tied.
1207       continue;
1208     int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
1209     int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
1210     if (ExpectedTiedIdx != TiedIdx)
1211       return true;
1212   }
1213   return false;
1214 }
1215 
1216 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1217                                  const MachineRegisterInfo &MRI) const {
1218   const MachineOperand &Op = getOperand(OpIdx);
1219   if (!Op.isReg())
1220     return LLT{};
1221 
1222   if (isVariadic() || OpIdx >= getNumExplicitOperands())
1223     return MRI.getType(Op.getReg());
1224 
1225   auto &OpInfo = getDesc().OpInfo[OpIdx];
1226   if (!OpInfo.isGenericType())
1227     return MRI.getType(Op.getReg());
1228 
1229   if (PrintedTypes[OpInfo.getGenericTypeIndex()])
1230     return LLT{};
1231 
1232   LLT TypeToPrint = MRI.getType(Op.getReg());
1233   // Don't mark the type index printed if it wasn't actually printed: maybe
1234   // another operand with the same type index has an actual type attached:
1235   if (TypeToPrint.isValid())
1236     PrintedTypes.set(OpInfo.getGenericTypeIndex());
1237   return TypeToPrint;
1238 }
1239 
1240 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1241 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1242   dbgs() << "  ";
1243   print(dbgs());
1244 }
1245 #endif
1246 
1247 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
1248                          bool SkipDebugLoc, bool AddNewLine,
1249                          const TargetInstrInfo *TII) const {
1250   const Module *M = nullptr;
1251   const Function *F = nullptr;
1252   if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1253     F = &MF->getFunction();
1254     M = F->getParent();
1255     if (!TII)
1256       TII = MF->getSubtarget().getInstrInfo();
1257   }
1258 
1259   ModuleSlotTracker MST(M);
1260   if (F)
1261     MST.incorporateFunction(*F);
1262   print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, TII);
1263 }
1264 
1265 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1266                          bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
1267                          bool AddNewLine, const TargetInstrInfo *TII) const {
1268   // We can be a bit tidier if we know the MachineFunction.
1269   const MachineFunction *MF = nullptr;
1270   const TargetRegisterInfo *TRI = nullptr;
1271   const MachineRegisterInfo *MRI = nullptr;
1272   const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1273   tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
1274 
1275   if (isCFIInstruction())
1276     assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1277 
1278   SmallBitVector PrintedTypes(8);
1279   bool ShouldPrintRegisterTies = hasComplexRegisterTies();
1280   auto getTiedOperandIdx = [&](unsigned OpIdx) {
1281     if (!ShouldPrintRegisterTies)
1282       return 0U;
1283     const MachineOperand &MO = getOperand(OpIdx);
1284     if (MO.isReg() && MO.isTied() && !MO.isDef())
1285       return findTiedOperandIdx(OpIdx);
1286     return 0U;
1287   };
1288   unsigned StartOp = 0;
1289   unsigned e = getNumOperands();
1290 
1291   // Print explicitly defined operands on the left of an assignment syntax.
1292   while (StartOp < e) {
1293     const MachineOperand &MO = getOperand(StartOp);
1294     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
1295       break;
1296 
1297     if (StartOp != 0)
1298       OS << ", ";
1299 
1300     LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
1301     unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
1302     MO.print(OS, MST, TypeToPrint, /*PrintDef=*/false, IsStandalone,
1303              ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1304     ++StartOp;
1305   }
1306 
1307   if (StartOp != 0)
1308     OS << " = ";
1309 
1310   if (getFlag(MachineInstr::FrameSetup))
1311     OS << "frame-setup ";
1312   if (getFlag(MachineInstr::FrameDestroy))
1313     OS << "frame-destroy ";
1314   if (getFlag(MachineInstr::FmNoNans))
1315     OS << "nnan ";
1316   if (getFlag(MachineInstr::FmNoInfs))
1317     OS << "ninf ";
1318   if (getFlag(MachineInstr::FmNsz))
1319     OS << "nsz ";
1320   if (getFlag(MachineInstr::FmArcp))
1321     OS << "arcp ";
1322   if (getFlag(MachineInstr::FmContract))
1323     OS << "contract ";
1324   if (getFlag(MachineInstr::FmAfn))
1325     OS << "afn ";
1326   if (getFlag(MachineInstr::FmReassoc))
1327     OS << "reassoc ";
1328 
1329   // Print the opcode name.
1330   if (TII)
1331     OS << TII->getName(getOpcode());
1332   else
1333     OS << "UNKNOWN";
1334 
1335   if (SkipOpers)
1336     return;
1337 
1338   // Print the rest of the operands.
1339   bool FirstOp = true;
1340   unsigned AsmDescOp = ~0u;
1341   unsigned AsmOpCount = 0;
1342 
1343   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1344     // Print asm string.
1345     OS << " ";
1346     const unsigned OpIdx = InlineAsm::MIOp_AsmString;
1347     LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
1348     unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
1349     getOperand(OpIdx).print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
1350                             ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1351                             IntrinsicInfo);
1352 
1353     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1354     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1355     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1356       OS << " [sideeffect]";
1357     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1358       OS << " [mayload]";
1359     if (ExtraInfo & InlineAsm::Extra_MayStore)
1360       OS << " [maystore]";
1361     if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1362       OS << " [isconvergent]";
1363     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1364       OS << " [alignstack]";
1365     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1366       OS << " [attdialect]";
1367     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1368       OS << " [inteldialect]";
1369 
1370     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1371     FirstOp = false;
1372   }
1373 
1374   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1375     const MachineOperand &MO = getOperand(i);
1376 
1377     if (FirstOp) FirstOp = false; else OS << ",";
1378     OS << " ";
1379 
1380     if (isDebugValue() && MO.isMetadata()) {
1381       // Pretty print DBG_VALUE instructions.
1382       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1383       if (DIV && !DIV->getName().empty())
1384         OS << "!\"" << DIV->getName() << '\"';
1385       else {
1386         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1387         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1388         MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
1389                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1390       }
1391     } else if (isDebugLabel() && MO.isMetadata()) {
1392       // Pretty print DBG_LABEL instructions.
1393       auto *DIL = dyn_cast<DILabel>(MO.getMetadata());
1394       if (DIL && !DIL->getName().empty())
1395         OS << "\"" << DIL->getName() << '\"';
1396       else {
1397         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1398         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1399         MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
1400                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1401       }
1402     } else if (i == AsmDescOp && MO.isImm()) {
1403       // Pretty print the inline asm operand descriptor.
1404       OS << '$' << AsmOpCount++;
1405       unsigned Flag = MO.getImm();
1406       switch (InlineAsm::getKind(Flag)) {
1407       case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break;
1408       case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break;
1409       case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1410       case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break;
1411       case InlineAsm::Kind_Imm:                OS << ":[imm"; break;
1412       case InlineAsm::Kind_Mem:                OS << ":[mem"; break;
1413       default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1414       }
1415 
1416       unsigned RCID = 0;
1417       if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1418           InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1419         if (TRI) {
1420           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1421         } else
1422           OS << ":RC" << RCID;
1423       }
1424 
1425       if (InlineAsm::isMemKind(Flag)) {
1426         unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1427         switch (MCID) {
1428         case InlineAsm::Constraint_es: OS << ":es"; break;
1429         case InlineAsm::Constraint_i:  OS << ":i"; break;
1430         case InlineAsm::Constraint_m:  OS << ":m"; break;
1431         case InlineAsm::Constraint_o:  OS << ":o"; break;
1432         case InlineAsm::Constraint_v:  OS << ":v"; break;
1433         case InlineAsm::Constraint_Q:  OS << ":Q"; break;
1434         case InlineAsm::Constraint_R:  OS << ":R"; break;
1435         case InlineAsm::Constraint_S:  OS << ":S"; break;
1436         case InlineAsm::Constraint_T:  OS << ":T"; break;
1437         case InlineAsm::Constraint_Um: OS << ":Um"; break;
1438         case InlineAsm::Constraint_Un: OS << ":Un"; break;
1439         case InlineAsm::Constraint_Uq: OS << ":Uq"; break;
1440         case InlineAsm::Constraint_Us: OS << ":Us"; break;
1441         case InlineAsm::Constraint_Ut: OS << ":Ut"; break;
1442         case InlineAsm::Constraint_Uv: OS << ":Uv"; break;
1443         case InlineAsm::Constraint_Uy: OS << ":Uy"; break;
1444         case InlineAsm::Constraint_X:  OS << ":X"; break;
1445         case InlineAsm::Constraint_Z:  OS << ":Z"; break;
1446         case InlineAsm::Constraint_ZC: OS << ":ZC"; break;
1447         case InlineAsm::Constraint_Zy: OS << ":Zy"; break;
1448         default: OS << ":?"; break;
1449         }
1450       }
1451 
1452       unsigned TiedTo = 0;
1453       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1454         OS << " tiedto:$" << TiedTo;
1455 
1456       OS << ']';
1457 
1458       // Compute the index of the next operand descriptor.
1459       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1460     } else {
1461       LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1462       unsigned TiedOperandIdx = getTiedOperandIdx(i);
1463       if (MO.isImm() && isOperandSubregIdx(i))
1464         MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
1465       else
1466         MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
1467                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1468     }
1469   }
1470 
1471   if (!SkipDebugLoc) {
1472     if (const DebugLoc &DL = getDebugLoc()) {
1473       if (!FirstOp)
1474         OS << ',';
1475       OS << " debug-location ";
1476       DL->printAsOperand(OS, MST);
1477     }
1478   }
1479 
1480   if (!memoperands_empty()) {
1481     SmallVector<StringRef, 0> SSNs;
1482     const LLVMContext *Context = nullptr;
1483     std::unique_ptr<LLVMContext> CtxPtr;
1484     const MachineFrameInfo *MFI = nullptr;
1485     if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1486       MFI = &MF->getFrameInfo();
1487       Context = &MF->getFunction().getContext();
1488     } else {
1489       CtxPtr = llvm::make_unique<LLVMContext>();
1490       Context = CtxPtr.get();
1491     }
1492 
1493     OS << " :: ";
1494     bool NeedComma = false;
1495     for (const MachineMemOperand *Op : memoperands()) {
1496       if (NeedComma)
1497         OS << ", ";
1498       Op->print(OS, MST, SSNs, *Context, MFI, TII);
1499       NeedComma = true;
1500     }
1501   }
1502 
1503   if (SkipDebugLoc)
1504     return;
1505 
1506   bool HaveSemi = false;
1507 
1508   // Print debug location information.
1509   if (const DebugLoc &DL = getDebugLoc()) {
1510     if (!HaveSemi) {
1511       OS << ';';
1512       HaveSemi = true;
1513     }
1514     OS << ' ';
1515     DL.print(OS);
1516   }
1517 
1518   // Print extra comments for DEBUG_VALUE.
1519   if (isDebugValue() && getOperand(e - 2).isMetadata()) {
1520     if (!HaveSemi) {
1521       OS << ";";
1522       HaveSemi = true;
1523     }
1524     auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata());
1525     OS << " line no:" <<  DV->getLine();
1526     if (auto *InlinedAt = debugLoc->getInlinedAt()) {
1527       DebugLoc InlinedAtDL(InlinedAt);
1528       if (InlinedAtDL && MF) {
1529         OS << " inlined @[ ";
1530         InlinedAtDL.print(OS);
1531         OS << " ]";
1532       }
1533     }
1534     if (isIndirectDebugValue())
1535       OS << " indirect";
1536   }
1537 
1538   if (AddNewLine)
1539     OS << '\n';
1540 }
1541 
1542 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1543                                      const TargetRegisterInfo *RegInfo,
1544                                      bool AddIfNotFound) {
1545   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1546   bool hasAliases = isPhysReg &&
1547     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1548   bool Found = false;
1549   SmallVector<unsigned,4> DeadOps;
1550   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1551     MachineOperand &MO = getOperand(i);
1552     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1553       continue;
1554 
1555     // DEBUG_VALUE nodes do not contribute to code generation and should
1556     // always be ignored. Failure to do so may result in trying to modify
1557     // KILL flags on DEBUG_VALUE nodes.
1558     if (MO.isDebug())
1559       continue;
1560 
1561     unsigned Reg = MO.getReg();
1562     if (!Reg)
1563       continue;
1564 
1565     if (Reg == IncomingReg) {
1566       if (!Found) {
1567         if (MO.isKill())
1568           // The register is already marked kill.
1569           return true;
1570         if (isPhysReg && isRegTiedToDefOperand(i))
1571           // Two-address uses of physregs must not be marked kill.
1572           return true;
1573         MO.setIsKill();
1574         Found = true;
1575       }
1576     } else if (hasAliases && MO.isKill() &&
1577                TargetRegisterInfo::isPhysicalRegister(Reg)) {
1578       // A super-register kill already exists.
1579       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1580         return true;
1581       if (RegInfo->isSubRegister(IncomingReg, Reg))
1582         DeadOps.push_back(i);
1583     }
1584   }
1585 
1586   // Trim unneeded kill operands.
1587   while (!DeadOps.empty()) {
1588     unsigned OpIdx = DeadOps.back();
1589     if (getOperand(OpIdx).isImplicit())
1590       RemoveOperand(OpIdx);
1591     else
1592       getOperand(OpIdx).setIsKill(false);
1593     DeadOps.pop_back();
1594   }
1595 
1596   // If not found, this means an alias of one of the operands is killed. Add a
1597   // new implicit operand if required.
1598   if (!Found && AddIfNotFound) {
1599     addOperand(MachineOperand::CreateReg(IncomingReg,
1600                                          false /*IsDef*/,
1601                                          true  /*IsImp*/,
1602                                          true  /*IsKill*/));
1603     return true;
1604   }
1605   return Found;
1606 }
1607 
1608 void MachineInstr::clearRegisterKills(unsigned Reg,
1609                                       const TargetRegisterInfo *RegInfo) {
1610   if (!TargetRegisterInfo::isPhysicalRegister(Reg))
1611     RegInfo = nullptr;
1612   for (MachineOperand &MO : operands()) {
1613     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1614       continue;
1615     unsigned OpReg = MO.getReg();
1616     if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
1617       MO.setIsKill(false);
1618   }
1619 }
1620 
1621 bool MachineInstr::addRegisterDead(unsigned Reg,
1622                                    const TargetRegisterInfo *RegInfo,
1623                                    bool AddIfNotFound) {
1624   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg);
1625   bool hasAliases = isPhysReg &&
1626     MCRegAliasIterator(Reg, RegInfo, false).isValid();
1627   bool Found = false;
1628   SmallVector<unsigned,4> DeadOps;
1629   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1630     MachineOperand &MO = getOperand(i);
1631     if (!MO.isReg() || !MO.isDef())
1632       continue;
1633     unsigned MOReg = MO.getReg();
1634     if (!MOReg)
1635       continue;
1636 
1637     if (MOReg == Reg) {
1638       MO.setIsDead();
1639       Found = true;
1640     } else if (hasAliases && MO.isDead() &&
1641                TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1642       // There exists a super-register that's marked dead.
1643       if (RegInfo->isSuperRegister(Reg, MOReg))
1644         return true;
1645       if (RegInfo->isSubRegister(Reg, MOReg))
1646         DeadOps.push_back(i);
1647     }
1648   }
1649 
1650   // Trim unneeded dead operands.
1651   while (!DeadOps.empty()) {
1652     unsigned OpIdx = DeadOps.back();
1653     if (getOperand(OpIdx).isImplicit())
1654       RemoveOperand(OpIdx);
1655     else
1656       getOperand(OpIdx).setIsDead(false);
1657     DeadOps.pop_back();
1658   }
1659 
1660   // If not found, this means an alias of one of the operands is dead. Add a
1661   // new implicit operand if required.
1662   if (Found || !AddIfNotFound)
1663     return Found;
1664 
1665   addOperand(MachineOperand::CreateReg(Reg,
1666                                        true  /*IsDef*/,
1667                                        true  /*IsImp*/,
1668                                        false /*IsKill*/,
1669                                        true  /*IsDead*/));
1670   return true;
1671 }
1672 
1673 void MachineInstr::clearRegisterDeads(unsigned Reg) {
1674   for (MachineOperand &MO : operands()) {
1675     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
1676       continue;
1677     MO.setIsDead(false);
1678   }
1679 }
1680 
1681 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) {
1682   for (MachineOperand &MO : operands()) {
1683     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
1684       continue;
1685     MO.setIsUndef(IsUndef);
1686   }
1687 }
1688 
1689 void MachineInstr::addRegisterDefined(unsigned Reg,
1690                                       const TargetRegisterInfo *RegInfo) {
1691   if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1692     MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo);
1693     if (MO)
1694       return;
1695   } else {
1696     for (const MachineOperand &MO : operands()) {
1697       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
1698           MO.getSubReg() == 0)
1699         return;
1700     }
1701   }
1702   addOperand(MachineOperand::CreateReg(Reg,
1703                                        true  /*IsDef*/,
1704                                        true  /*IsImp*/));
1705 }
1706 
1707 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
1708                                          const TargetRegisterInfo &TRI) {
1709   bool HasRegMask = false;
1710   for (MachineOperand &MO : operands()) {
1711     if (MO.isRegMask()) {
1712       HasRegMask = true;
1713       continue;
1714     }
1715     if (!MO.isReg() || !MO.isDef()) continue;
1716     unsigned Reg = MO.getReg();
1717     if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
1718     // If there are no uses, including partial uses, the def is dead.
1719     if (llvm::none_of(UsedRegs,
1720                       [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); }))
1721       MO.setIsDead();
1722   }
1723 
1724   // This is a call with a register mask operand.
1725   // Mask clobbers are always dead, so add defs for the non-dead defines.
1726   if (HasRegMask)
1727     for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
1728          I != E; ++I)
1729       addRegisterDefined(*I, &TRI);
1730 }
1731 
1732 unsigned
1733 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1734   // Build up a buffer of hash code components.
1735   SmallVector<size_t, 8> HashComponents;
1736   HashComponents.reserve(MI->getNumOperands() + 1);
1737   HashComponents.push_back(MI->getOpcode());
1738   for (const MachineOperand &MO : MI->operands()) {
1739     if (MO.isReg() && MO.isDef() &&
1740         TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1741       continue;  // Skip virtual register defs.
1742 
1743     HashComponents.push_back(hash_value(MO));
1744   }
1745   return hash_combine_range(HashComponents.begin(), HashComponents.end());
1746 }
1747 
1748 void MachineInstr::emitError(StringRef Msg) const {
1749   // Find the source location cookie.
1750   unsigned LocCookie = 0;
1751   const MDNode *LocMD = nullptr;
1752   for (unsigned i = getNumOperands(); i != 0; --i) {
1753     if (getOperand(i-1).isMetadata() &&
1754         (LocMD = getOperand(i-1).getMetadata()) &&
1755         LocMD->getNumOperands() != 0) {
1756       if (const ConstantInt *CI =
1757               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
1758         LocCookie = CI->getZExtValue();
1759         break;
1760       }
1761     }
1762   }
1763 
1764   if (const MachineBasicBlock *MBB = getParent())
1765     if (const MachineFunction *MF = MBB->getParent())
1766       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
1767   report_fatal_error(Msg);
1768 }
1769 
1770 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
1771                                   const MCInstrDesc &MCID, bool IsIndirect,
1772                                   unsigned Reg, const MDNode *Variable,
1773                                   const MDNode *Expr) {
1774   assert(isa<DILocalVariable>(Variable) && "not a variable");
1775   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
1776   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
1777          "Expected inlined-at fields to agree");
1778   if (IsIndirect)
1779     return BuildMI(MF, DL, MCID)
1780         .addReg(Reg, RegState::Debug)
1781         .addImm(0U)
1782         .addMetadata(Variable)
1783         .addMetadata(Expr);
1784   else
1785     return BuildMI(MF, DL, MCID)
1786         .addReg(Reg, RegState::Debug)
1787         .addReg(0U, RegState::Debug)
1788         .addMetadata(Variable)
1789         .addMetadata(Expr);
1790 }
1791 
1792 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
1793                                   MachineBasicBlock::iterator I,
1794                                   const DebugLoc &DL, const MCInstrDesc &MCID,
1795                                   bool IsIndirect, unsigned Reg,
1796                                   const MDNode *Variable, const MDNode *Expr) {
1797   assert(isa<DILocalVariable>(Variable) && "not a variable");
1798   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
1799   MachineFunction &MF = *BB.getParent();
1800   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
1801   BB.insert(I, MI);
1802   return MachineInstrBuilder(MF, MI);
1803 }
1804 
1805 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
1806 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
1807 static const DIExpression *computeExprForSpill(const MachineInstr &MI) {
1808   assert(MI.getOperand(0).isReg() && "can't spill non-register");
1809   assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
1810          "Expected inlined-at fields to agree");
1811 
1812   const DIExpression *Expr = MI.getDebugExpression();
1813   if (MI.isIndirectDebugValue()) {
1814     assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
1815     Expr = DIExpression::prepend(Expr, DIExpression::WithDeref);
1816   }
1817   return Expr;
1818 }
1819 
1820 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
1821                                           MachineBasicBlock::iterator I,
1822                                           const MachineInstr &Orig,
1823                                           int FrameIndex) {
1824   const DIExpression *Expr = computeExprForSpill(Orig);
1825   return BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc())
1826       .addFrameIndex(FrameIndex)
1827       .addImm(0U)
1828       .addMetadata(Orig.getDebugVariable())
1829       .addMetadata(Expr);
1830 }
1831 
1832 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex) {
1833   const DIExpression *Expr = computeExprForSpill(Orig);
1834   Orig.getOperand(0).ChangeToFrameIndex(FrameIndex);
1835   Orig.getOperand(1).ChangeToImmediate(0U);
1836   Orig.getOperand(3).setMetadata(Expr);
1837 }
1838