1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/Constants.h" 16 #include "llvm/Function.h" 17 #include "llvm/InlineAsm.h" 18 #include "llvm/Metadata.h" 19 #include "llvm/Type.h" 20 #include "llvm/Value.h" 21 #include "llvm/Assembly/Writer.h" 22 #include "llvm/CodeGen/MachineConstantPool.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/PseudoSourceValue.h" 27 #include "llvm/MC/MCSymbol.h" 28 #include "llvm/Target/TargetMachine.h" 29 #include "llvm/Target/TargetInstrInfo.h" 30 #include "llvm/Target/TargetInstrDesc.h" 31 #include "llvm/Target/TargetRegisterInfo.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/DebugInfo.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/LeakDetector.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/ADT/FoldingSet.h" 40 using namespace llvm; 41 42 //===----------------------------------------------------------------------===// 43 // MachineOperand Implementation 44 //===----------------------------------------------------------------------===// 45 46 /// AddRegOperandToRegInfo - Add this register operand to the specified 47 /// MachineRegisterInfo. If it is null, then the next/prev fields should be 48 /// explicitly nulled out. 49 void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) { 50 assert(isReg() && "Can only add reg operand to use lists"); 51 52 // If the reginfo pointer is null, just explicitly null out or next/prev 53 // pointers, to ensure they are not garbage. 54 if (RegInfo == 0) { 55 Contents.Reg.Prev = 0; 56 Contents.Reg.Next = 0; 57 return; 58 } 59 60 // Otherwise, add this operand to the head of the registers use/def list. 61 MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg()); 62 63 // For SSA values, we prefer to keep the definition at the start of the list. 64 // we do this by skipping over the definition if it is at the head of the 65 // list. 66 if (*Head && (*Head)->isDef()) 67 Head = &(*Head)->Contents.Reg.Next; 68 69 Contents.Reg.Next = *Head; 70 if (Contents.Reg.Next) { 71 assert(getReg() == Contents.Reg.Next->getReg() && 72 "Different regs on the same list!"); 73 Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next; 74 } 75 76 Contents.Reg.Prev = Head; 77 *Head = this; 78 } 79 80 /// RemoveRegOperandFromRegInfo - Remove this register operand from the 81 /// MachineRegisterInfo it is linked with. 82 void MachineOperand::RemoveRegOperandFromRegInfo() { 83 assert(isOnRegUseList() && "Reg operand is not on a use list"); 84 // Unlink this from the doubly linked list of operands. 85 MachineOperand *NextOp = Contents.Reg.Next; 86 *Contents.Reg.Prev = NextOp; 87 if (NextOp) { 88 assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!"); 89 NextOp->Contents.Reg.Prev = Contents.Reg.Prev; 90 } 91 Contents.Reg.Prev = 0; 92 Contents.Reg.Next = 0; 93 } 94 95 void MachineOperand::setReg(unsigned Reg) { 96 if (getReg() == Reg) return; // No change. 97 98 // Otherwise, we have to change the register. If this operand is embedded 99 // into a machine function, we need to update the old and new register's 100 // use/def lists. 101 if (MachineInstr *MI = getParent()) 102 if (MachineBasicBlock *MBB = MI->getParent()) 103 if (MachineFunction *MF = MBB->getParent()) { 104 RemoveRegOperandFromRegInfo(); 105 Contents.Reg.RegNo = Reg; 106 AddRegOperandToRegInfo(&MF->getRegInfo()); 107 return; 108 } 109 110 // Otherwise, just change the register, no problem. :) 111 Contents.Reg.RegNo = Reg; 112 } 113 114 /// ChangeToImmediate - Replace this operand with a new immediate operand of 115 /// the specified value. If an operand is known to be an immediate already, 116 /// the setImm method should be used. 117 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 118 // If this operand is currently a register operand, and if this is in a 119 // function, deregister the operand from the register's use/def list. 120 if (isReg() && getParent() && getParent()->getParent() && 121 getParent()->getParent()->getParent()) 122 RemoveRegOperandFromRegInfo(); 123 124 OpKind = MO_Immediate; 125 Contents.ImmVal = ImmVal; 126 } 127 128 /// ChangeToRegister - Replace this operand with a new register operand of 129 /// the specified value. If an operand is known to be an register already, 130 /// the setReg method should be used. 131 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 132 bool isKill, bool isDead, bool isUndef, 133 bool isDebug) { 134 // If this operand is already a register operand, use setReg to update the 135 // register's use/def lists. 136 if (isReg()) { 137 assert(!isEarlyClobber()); 138 setReg(Reg); 139 } else { 140 // Otherwise, change this to a register and set the reg#. 141 OpKind = MO_Register; 142 Contents.Reg.RegNo = Reg; 143 144 // If this operand is embedded in a function, add the operand to the 145 // register's use/def list. 146 if (MachineInstr *MI = getParent()) 147 if (MachineBasicBlock *MBB = MI->getParent()) 148 if (MachineFunction *MF = MBB->getParent()) 149 AddRegOperandToRegInfo(&MF->getRegInfo()); 150 } 151 152 IsDef = isDef; 153 IsImp = isImp; 154 IsKill = isKill; 155 IsDead = isDead; 156 IsUndef = isUndef; 157 IsEarlyClobber = false; 158 IsDebug = isDebug; 159 SubReg = 0; 160 } 161 162 /// isIdenticalTo - Return true if this operand is identical to the specified 163 /// operand. 164 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 165 if (getType() != Other.getType() || 166 getTargetFlags() != Other.getTargetFlags()) 167 return false; 168 169 switch (getType()) { 170 default: llvm_unreachable("Unrecognized operand type"); 171 case MachineOperand::MO_Register: 172 return getReg() == Other.getReg() && isDef() == Other.isDef() && 173 getSubReg() == Other.getSubReg(); 174 case MachineOperand::MO_Immediate: 175 return getImm() == Other.getImm(); 176 case MachineOperand::MO_FPImmediate: 177 return getFPImm() == Other.getFPImm(); 178 case MachineOperand::MO_MachineBasicBlock: 179 return getMBB() == Other.getMBB(); 180 case MachineOperand::MO_FrameIndex: 181 return getIndex() == Other.getIndex(); 182 case MachineOperand::MO_ConstantPoolIndex: 183 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 184 case MachineOperand::MO_JumpTableIndex: 185 return getIndex() == Other.getIndex(); 186 case MachineOperand::MO_GlobalAddress: 187 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 188 case MachineOperand::MO_ExternalSymbol: 189 return !strcmp(getSymbolName(), Other.getSymbolName()) && 190 getOffset() == Other.getOffset(); 191 case MachineOperand::MO_BlockAddress: 192 return getBlockAddress() == Other.getBlockAddress(); 193 case MachineOperand::MO_MCSymbol: 194 return getMCSymbol() == Other.getMCSymbol(); 195 case MachineOperand::MO_Metadata: 196 return getMetadata() == Other.getMetadata(); 197 } 198 } 199 200 /// print - Print the specified machine operand. 201 /// 202 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const { 203 // If the instruction is embedded into a basic block, we can find the 204 // target info for the instruction. 205 if (!TM) 206 if (const MachineInstr *MI = getParent()) 207 if (const MachineBasicBlock *MBB = MI->getParent()) 208 if (const MachineFunction *MF = MBB->getParent()) 209 TM = &MF->getTarget(); 210 211 switch (getType()) { 212 case MachineOperand::MO_Register: 213 if (getReg() == 0 || TargetRegisterInfo::isVirtualRegister(getReg())) { 214 OS << "%reg" << getReg(); 215 } else { 216 if (TM) 217 OS << "%" << TM->getRegisterInfo()->get(getReg()).Name; 218 else 219 OS << "%physreg" << getReg(); 220 } 221 222 if (getSubReg() != 0) 223 OS << ':' << getSubReg(); 224 225 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 226 isEarlyClobber()) { 227 OS << '<'; 228 bool NeedComma = false; 229 if (isDef()) { 230 if (NeedComma) OS << ','; 231 if (isEarlyClobber()) 232 OS << "earlyclobber,"; 233 if (isImplicit()) 234 OS << "imp-"; 235 OS << "def"; 236 NeedComma = true; 237 } else if (isImplicit()) { 238 OS << "imp-use"; 239 NeedComma = true; 240 } 241 242 if (isKill() || isDead() || isUndef()) { 243 if (NeedComma) OS << ','; 244 if (isKill()) OS << "kill"; 245 if (isDead()) OS << "dead"; 246 if (isUndef()) { 247 if (isKill() || isDead()) 248 OS << ','; 249 OS << "undef"; 250 } 251 } 252 OS << '>'; 253 } 254 break; 255 case MachineOperand::MO_Immediate: 256 OS << getImm(); 257 break; 258 case MachineOperand::MO_FPImmediate: 259 if (getFPImm()->getType()->isFloatTy()) 260 OS << getFPImm()->getValueAPF().convertToFloat(); 261 else 262 OS << getFPImm()->getValueAPF().convertToDouble(); 263 break; 264 case MachineOperand::MO_MachineBasicBlock: 265 OS << "<BB#" << getMBB()->getNumber() << ">"; 266 break; 267 case MachineOperand::MO_FrameIndex: 268 OS << "<fi#" << getIndex() << '>'; 269 break; 270 case MachineOperand::MO_ConstantPoolIndex: 271 OS << "<cp#" << getIndex(); 272 if (getOffset()) OS << "+" << getOffset(); 273 OS << '>'; 274 break; 275 case MachineOperand::MO_JumpTableIndex: 276 OS << "<jt#" << getIndex() << '>'; 277 break; 278 case MachineOperand::MO_GlobalAddress: 279 OS << "<ga:"; 280 WriteAsOperand(OS, getGlobal(), /*PrintType=*/false); 281 if (getOffset()) OS << "+" << getOffset(); 282 OS << '>'; 283 break; 284 case MachineOperand::MO_ExternalSymbol: 285 OS << "<es:" << getSymbolName(); 286 if (getOffset()) OS << "+" << getOffset(); 287 OS << '>'; 288 break; 289 case MachineOperand::MO_BlockAddress: 290 OS << '<'; 291 WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false); 292 OS << '>'; 293 break; 294 case MachineOperand::MO_Metadata: 295 OS << '<'; 296 WriteAsOperand(OS, getMetadata(), /*PrintType=*/false); 297 OS << '>'; 298 break; 299 case MachineOperand::MO_MCSymbol: 300 OS << "<MCSym=" << *getMCSymbol() << '>'; 301 break; 302 default: 303 llvm_unreachable("Unrecognized operand type"); 304 } 305 306 if (unsigned TF = getTargetFlags()) 307 OS << "[TF=" << TF << ']'; 308 } 309 310 //===----------------------------------------------------------------------===// 311 // MachineMemOperand Implementation 312 //===----------------------------------------------------------------------===// 313 314 MachineMemOperand::MachineMemOperand(const Value *v, unsigned int f, 315 int64_t o, uint64_t s, unsigned int a) 316 : Offset(o), Size(s), V(v), 317 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)) { 318 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 319 assert((isLoad() || isStore()) && "Not a load/store!"); 320 } 321 322 /// Profile - Gather unique data for the object. 323 /// 324 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 325 ID.AddInteger(Offset); 326 ID.AddInteger(Size); 327 ID.AddPointer(V); 328 ID.AddInteger(Flags); 329 } 330 331 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 332 // The Value and Offset may differ due to CSE. But the flags and size 333 // should be the same. 334 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 335 assert(MMO->getSize() == getSize() && "Size mismatch!"); 336 337 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 338 // Update the alignment value. 339 Flags = (Flags & ((1 << MOMaxBits) - 1)) | 340 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits); 341 // Also update the base and offset, because the new alignment may 342 // not be applicable with the old ones. 343 V = MMO->getValue(); 344 Offset = MMO->getOffset(); 345 } 346 } 347 348 /// getAlignment - Return the minimum known alignment in bytes of the 349 /// actual memory reference. 350 uint64_t MachineMemOperand::getAlignment() const { 351 return MinAlign(getBaseAlignment(), getOffset()); 352 } 353 354 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) { 355 assert((MMO.isLoad() || MMO.isStore()) && 356 "SV has to be a load, store or both."); 357 358 if (MMO.isVolatile()) 359 OS << "Volatile "; 360 361 if (MMO.isLoad()) 362 OS << "LD"; 363 if (MMO.isStore()) 364 OS << "ST"; 365 OS << MMO.getSize(); 366 367 // Print the address information. 368 OS << "["; 369 if (!MMO.getValue()) 370 OS << "<unknown>"; 371 else 372 WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false); 373 374 // If the alignment of the memory reference itself differs from the alignment 375 // of the base pointer, print the base alignment explicitly, next to the base 376 // pointer. 377 if (MMO.getBaseAlignment() != MMO.getAlignment()) 378 OS << "(align=" << MMO.getBaseAlignment() << ")"; 379 380 if (MMO.getOffset() != 0) 381 OS << "+" << MMO.getOffset(); 382 OS << "]"; 383 384 // Print the alignment of the reference. 385 if (MMO.getBaseAlignment() != MMO.getAlignment() || 386 MMO.getBaseAlignment() != MMO.getSize()) 387 OS << "(align=" << MMO.getAlignment() << ")"; 388 389 return OS; 390 } 391 392 //===----------------------------------------------------------------------===// 393 // MachineInstr Implementation 394 //===----------------------------------------------------------------------===// 395 396 /// MachineInstr ctor - This constructor creates a dummy MachineInstr with 397 /// TID NULL and no operands. 398 MachineInstr::MachineInstr() 399 : TID(0), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0), 400 Parent(0) { 401 // Make sure that we get added to a machine basicblock 402 LeakDetector::addGarbageObject(this); 403 } 404 405 void MachineInstr::addImplicitDefUseOperands() { 406 if (TID->ImplicitDefs) 407 for (const unsigned *ImpDefs = TID->ImplicitDefs; *ImpDefs; ++ImpDefs) 408 addOperand(MachineOperand::CreateReg(*ImpDefs, true, true)); 409 if (TID->ImplicitUses) 410 for (const unsigned *ImpUses = TID->ImplicitUses; *ImpUses; ++ImpUses) 411 addOperand(MachineOperand::CreateReg(*ImpUses, false, true)); 412 } 413 414 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 415 /// implicit operands. It reserves space for the number of operands specified by 416 /// the TargetInstrDesc. 417 MachineInstr::MachineInstr(const TargetInstrDesc &tid, bool NoImp) 418 : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0), 419 MemRefs(0), MemRefsEnd(0), Parent(0) { 420 if (!NoImp) 421 NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses(); 422 Operands.reserve(NumImplicitOps + TID->getNumOperands()); 423 if (!NoImp) 424 addImplicitDefUseOperands(); 425 // Make sure that we get added to a machine basicblock 426 LeakDetector::addGarbageObject(this); 427 } 428 429 /// MachineInstr ctor - As above, but with a DebugLoc. 430 MachineInstr::MachineInstr(const TargetInstrDesc &tid, const DebugLoc dl, 431 bool NoImp) 432 : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0), 433 Parent(0), debugLoc(dl) { 434 if (!NoImp) 435 NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses(); 436 Operands.reserve(NumImplicitOps + TID->getNumOperands()); 437 if (!NoImp) 438 addImplicitDefUseOperands(); 439 // Make sure that we get added to a machine basicblock 440 LeakDetector::addGarbageObject(this); 441 } 442 443 /// MachineInstr ctor - Work exactly the same as the ctor two above, except 444 /// that the MachineInstr is created and added to the end of the specified 445 /// basic block. 446 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const TargetInstrDesc &tid) 447 : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0), 448 MemRefs(0), MemRefsEnd(0), Parent(0) { 449 assert(MBB && "Cannot use inserting ctor with null basic block!"); 450 NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses(); 451 Operands.reserve(NumImplicitOps + TID->getNumOperands()); 452 addImplicitDefUseOperands(); 453 // Make sure that we get added to a machine basicblock 454 LeakDetector::addGarbageObject(this); 455 MBB->push_back(this); // Add instruction to end of basic block! 456 } 457 458 /// MachineInstr ctor - As above, but with a DebugLoc. 459 /// 460 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl, 461 const TargetInstrDesc &tid) 462 : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0), 463 Parent(0), debugLoc(dl) { 464 assert(MBB && "Cannot use inserting ctor with null basic block!"); 465 NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses(); 466 Operands.reserve(NumImplicitOps + TID->getNumOperands()); 467 addImplicitDefUseOperands(); 468 // Make sure that we get added to a machine basicblock 469 LeakDetector::addGarbageObject(this); 470 MBB->push_back(this); // Add instruction to end of basic block! 471 } 472 473 /// MachineInstr ctor - Copies MachineInstr arg exactly 474 /// 475 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 476 : TID(&MI.getDesc()), NumImplicitOps(0), AsmPrinterFlags(0), 477 MemRefs(MI.MemRefs), MemRefsEnd(MI.MemRefsEnd), 478 Parent(0), debugLoc(MI.getDebugLoc()) { 479 Operands.reserve(MI.getNumOperands()); 480 481 // Add operands 482 for (unsigned i = 0; i != MI.getNumOperands(); ++i) 483 addOperand(MI.getOperand(i)); 484 NumImplicitOps = MI.NumImplicitOps; 485 486 // Set parent to null. 487 Parent = 0; 488 489 LeakDetector::addGarbageObject(this); 490 } 491 492 MachineInstr::~MachineInstr() { 493 LeakDetector::removeGarbageObject(this); 494 #ifndef NDEBUG 495 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 496 assert(Operands[i].ParentMI == this && "ParentMI mismatch!"); 497 assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) && 498 "Reg operand def/use list corrupted"); 499 } 500 #endif 501 } 502 503 /// getRegInfo - If this instruction is embedded into a MachineFunction, 504 /// return the MachineRegisterInfo object for the current function, otherwise 505 /// return null. 506 MachineRegisterInfo *MachineInstr::getRegInfo() { 507 if (MachineBasicBlock *MBB = getParent()) 508 return &MBB->getParent()->getRegInfo(); 509 return 0; 510 } 511 512 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 513 /// this instruction from their respective use lists. This requires that the 514 /// operands already be on their use lists. 515 void MachineInstr::RemoveRegOperandsFromUseLists() { 516 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 517 if (Operands[i].isReg()) 518 Operands[i].RemoveRegOperandFromRegInfo(); 519 } 520 } 521 522 /// AddRegOperandsToUseLists - Add all of the register operands in 523 /// this instruction from their respective use lists. This requires that the 524 /// operands not be on their use lists yet. 525 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) { 526 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 527 if (Operands[i].isReg()) 528 Operands[i].AddRegOperandToRegInfo(&RegInfo); 529 } 530 } 531 532 533 /// addOperand - Add the specified operand to the instruction. If it is an 534 /// implicit operand, it is added to the end of the operand list. If it is 535 /// an explicit operand it is added at the end of the explicit operand list 536 /// (before the first implicit operand). 537 void MachineInstr::addOperand(const MachineOperand &Op) { 538 bool isImpReg = Op.isReg() && Op.isImplicit(); 539 assert((isImpReg || !OperandsComplete()) && 540 "Trying to add an operand to a machine instr that is already done!"); 541 542 MachineRegisterInfo *RegInfo = getRegInfo(); 543 544 // If we are adding the operand to the end of the list, our job is simpler. 545 // This is true most of the time, so this is a reasonable optimization. 546 if (isImpReg || NumImplicitOps == 0) { 547 // We can only do this optimization if we know that the operand list won't 548 // reallocate. 549 if (Operands.empty() || Operands.size()+1 <= Operands.capacity()) { 550 Operands.push_back(Op); 551 552 // Set the parent of the operand. 553 Operands.back().ParentMI = this; 554 555 // If the operand is a register, update the operand's use list. 556 if (Op.isReg()) { 557 Operands.back().AddRegOperandToRegInfo(RegInfo); 558 // If the register operand is flagged as early, mark the operand as such 559 unsigned OpNo = Operands.size() - 1; 560 if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1) 561 Operands[OpNo].setIsEarlyClobber(true); 562 } 563 return; 564 } 565 } 566 567 // Otherwise, we have to insert a real operand before any implicit ones. 568 unsigned OpNo = Operands.size()-NumImplicitOps; 569 570 // If this instruction isn't embedded into a function, then we don't need to 571 // update any operand lists. 572 if (RegInfo == 0) { 573 // Simple insertion, no reginfo update needed for other register operands. 574 Operands.insert(Operands.begin()+OpNo, Op); 575 Operands[OpNo].ParentMI = this; 576 577 // Do explicitly set the reginfo for this operand though, to ensure the 578 // next/prev fields are properly nulled out. 579 if (Operands[OpNo].isReg()) { 580 Operands[OpNo].AddRegOperandToRegInfo(0); 581 // If the register operand is flagged as early, mark the operand as such 582 if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1) 583 Operands[OpNo].setIsEarlyClobber(true); 584 } 585 586 } else if (Operands.size()+1 <= Operands.capacity()) { 587 // Otherwise, we have to remove register operands from their register use 588 // list, add the operand, then add the register operands back to their use 589 // list. This also must handle the case when the operand list reallocates 590 // to somewhere else. 591 592 // If insertion of this operand won't cause reallocation of the operand 593 // list, just remove the implicit operands, add the operand, then re-add all 594 // the rest of the operands. 595 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 596 assert(Operands[i].isReg() && "Should only be an implicit reg!"); 597 Operands[i].RemoveRegOperandFromRegInfo(); 598 } 599 600 // Add the operand. If it is a register, add it to the reg list. 601 Operands.insert(Operands.begin()+OpNo, Op); 602 Operands[OpNo].ParentMI = this; 603 604 if (Operands[OpNo].isReg()) { 605 Operands[OpNo].AddRegOperandToRegInfo(RegInfo); 606 // If the register operand is flagged as early, mark the operand as such 607 if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1) 608 Operands[OpNo].setIsEarlyClobber(true); 609 } 610 611 // Re-add all the implicit ops. 612 for (unsigned i = OpNo+1, e = Operands.size(); i != e; ++i) { 613 assert(Operands[i].isReg() && "Should only be an implicit reg!"); 614 Operands[i].AddRegOperandToRegInfo(RegInfo); 615 } 616 } else { 617 // Otherwise, we will be reallocating the operand list. Remove all reg 618 // operands from their list, then readd them after the operand list is 619 // reallocated. 620 RemoveRegOperandsFromUseLists(); 621 622 Operands.insert(Operands.begin()+OpNo, Op); 623 Operands[OpNo].ParentMI = this; 624 625 // Re-add all the operands. 626 AddRegOperandsToUseLists(*RegInfo); 627 628 // If the register operand is flagged as early, mark the operand as such 629 if (Operands[OpNo].isReg() 630 && TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1) 631 Operands[OpNo].setIsEarlyClobber(true); 632 } 633 } 634 635 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 636 /// fewer operand than it started with. 637 /// 638 void MachineInstr::RemoveOperand(unsigned OpNo) { 639 assert(OpNo < Operands.size() && "Invalid operand number"); 640 641 // Special case removing the last one. 642 if (OpNo == Operands.size()-1) { 643 // If needed, remove from the reg def/use list. 644 if (Operands.back().isReg() && Operands.back().isOnRegUseList()) 645 Operands.back().RemoveRegOperandFromRegInfo(); 646 647 Operands.pop_back(); 648 return; 649 } 650 651 // Otherwise, we are removing an interior operand. If we have reginfo to 652 // update, remove all operands that will be shifted down from their reg lists, 653 // move everything down, then re-add them. 654 MachineRegisterInfo *RegInfo = getRegInfo(); 655 if (RegInfo) { 656 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 657 if (Operands[i].isReg()) 658 Operands[i].RemoveRegOperandFromRegInfo(); 659 } 660 } 661 662 Operands.erase(Operands.begin()+OpNo); 663 664 if (RegInfo) { 665 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 666 if (Operands[i].isReg()) 667 Operands[i].AddRegOperandToRegInfo(RegInfo); 668 } 669 } 670 } 671 672 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 673 /// This function should be used only occasionally. The setMemRefs function 674 /// is the primary method for setting up a MachineInstr's MemRefs list. 675 void MachineInstr::addMemOperand(MachineFunction &MF, 676 MachineMemOperand *MO) { 677 mmo_iterator OldMemRefs = MemRefs; 678 mmo_iterator OldMemRefsEnd = MemRefsEnd; 679 680 size_t NewNum = (MemRefsEnd - MemRefs) + 1; 681 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 682 mmo_iterator NewMemRefsEnd = NewMemRefs + NewNum; 683 684 std::copy(OldMemRefs, OldMemRefsEnd, NewMemRefs); 685 NewMemRefs[NewNum - 1] = MO; 686 687 MemRefs = NewMemRefs; 688 MemRefsEnd = NewMemRefsEnd; 689 } 690 691 bool MachineInstr::isIdenticalTo(const MachineInstr *Other, 692 MICheckType Check) const { 693 // If opcodes or number of operands are not the same then the two 694 // instructions are obviously not identical. 695 if (Other->getOpcode() != getOpcode() || 696 Other->getNumOperands() != getNumOperands()) 697 return false; 698 699 // Check operands to make sure they match. 700 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 701 const MachineOperand &MO = getOperand(i); 702 const MachineOperand &OMO = Other->getOperand(i); 703 // Clients may or may not want to ignore defs when testing for equality. 704 // For example, machine CSE pass only cares about finding common 705 // subexpressions, so it's safe to ignore virtual register defs. 706 if (Check != CheckDefs && MO.isReg() && MO.isDef()) { 707 if (Check == IgnoreDefs) 708 continue; 709 // Check == IgnoreVRegDefs 710 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 711 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 712 if (MO.getReg() != OMO.getReg()) 713 return false; 714 } else if (!MO.isIdenticalTo(OMO)) 715 return false; 716 } 717 return true; 718 } 719 720 /// removeFromParent - This method unlinks 'this' from the containing basic 721 /// block, and returns it, but does not delete it. 722 MachineInstr *MachineInstr::removeFromParent() { 723 assert(getParent() && "Not embedded in a basic block!"); 724 getParent()->remove(this); 725 return this; 726 } 727 728 729 /// eraseFromParent - This method unlinks 'this' from the containing basic 730 /// block, and deletes it. 731 void MachineInstr::eraseFromParent() { 732 assert(getParent() && "Not embedded in a basic block!"); 733 getParent()->erase(this); 734 } 735 736 737 /// OperandComplete - Return true if it's illegal to add a new operand 738 /// 739 bool MachineInstr::OperandsComplete() const { 740 unsigned short NumOperands = TID->getNumOperands(); 741 if (!TID->isVariadic() && getNumOperands()-NumImplicitOps >= NumOperands) 742 return true; // Broken: we have all the operands of this instruction! 743 return false; 744 } 745 746 /// getNumExplicitOperands - Returns the number of non-implicit operands. 747 /// 748 unsigned MachineInstr::getNumExplicitOperands() const { 749 unsigned NumOperands = TID->getNumOperands(); 750 if (!TID->isVariadic()) 751 return NumOperands; 752 753 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 754 const MachineOperand &MO = getOperand(i); 755 if (!MO.isReg() || !MO.isImplicit()) 756 NumOperands++; 757 } 758 return NumOperands; 759 } 760 761 762 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 763 /// the specific register or -1 if it is not found. It further tightens 764 /// the search criteria to a use that kills the register if isKill is true. 765 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, 766 const TargetRegisterInfo *TRI) const { 767 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 768 const MachineOperand &MO = getOperand(i); 769 if (!MO.isReg() || !MO.isUse()) 770 continue; 771 unsigned MOReg = MO.getReg(); 772 if (!MOReg) 773 continue; 774 if (MOReg == Reg || 775 (TRI && 776 TargetRegisterInfo::isPhysicalRegister(MOReg) && 777 TargetRegisterInfo::isPhysicalRegister(Reg) && 778 TRI->isSubRegister(MOReg, Reg))) 779 if (!isKill || MO.isKill()) 780 return i; 781 } 782 return -1; 783 } 784 785 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 786 /// the specified register or -1 if it is not found. If isDead is true, defs 787 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 788 /// also checks if there is a def of a super-register. 789 int MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, 790 const TargetRegisterInfo *TRI) const { 791 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 792 const MachineOperand &MO = getOperand(i); 793 if (!MO.isReg() || !MO.isDef()) 794 continue; 795 unsigned MOReg = MO.getReg(); 796 if (MOReg == Reg || 797 (TRI && 798 TargetRegisterInfo::isPhysicalRegister(MOReg) && 799 TargetRegisterInfo::isPhysicalRegister(Reg) && 800 TRI->isSubRegister(MOReg, Reg))) 801 if (!isDead || MO.isDead()) 802 return i; 803 } 804 return -1; 805 } 806 807 /// findFirstPredOperandIdx() - Find the index of the first operand in the 808 /// operand list that is used to represent the predicate. It returns -1 if 809 /// none is found. 810 int MachineInstr::findFirstPredOperandIdx() const { 811 const TargetInstrDesc &TID = getDesc(); 812 if (TID.isPredicable()) { 813 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 814 if (TID.OpInfo[i].isPredicate()) 815 return i; 816 } 817 818 return -1; 819 } 820 821 /// isRegTiedToUseOperand - Given the index of a register def operand, 822 /// check if the register def is tied to a source operand, due to either 823 /// two-address elimination or inline assembly constraints. Returns the 824 /// first tied use operand index by reference is UseOpIdx is not null. 825 bool MachineInstr:: 826 isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const { 827 if (isInlineAsm()) { 828 assert(DefOpIdx >= 2); 829 const MachineOperand &MO = getOperand(DefOpIdx); 830 if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0) 831 return false; 832 // Determine the actual operand index that corresponds to this index. 833 unsigned DefNo = 0; 834 unsigned DefPart = 0; 835 for (unsigned i = 1, e = getNumOperands(); i < e; ) { 836 const MachineOperand &FMO = getOperand(i); 837 // After the normal asm operands there may be additional imp-def regs. 838 if (!FMO.isImm()) 839 return false; 840 // Skip over this def. 841 unsigned NumOps = InlineAsm::getNumOperandRegisters(FMO.getImm()); 842 unsigned PrevDef = i + 1; 843 i = PrevDef + NumOps; 844 if (i > DefOpIdx) { 845 DefPart = DefOpIdx - PrevDef; 846 break; 847 } 848 ++DefNo; 849 } 850 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 851 const MachineOperand &FMO = getOperand(i); 852 if (!FMO.isImm()) 853 continue; 854 if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse()) 855 continue; 856 unsigned Idx; 857 if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) && 858 Idx == DefNo) { 859 if (UseOpIdx) 860 *UseOpIdx = (unsigned)i + 1 + DefPart; 861 return true; 862 } 863 } 864 return false; 865 } 866 867 assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!"); 868 const TargetInstrDesc &TID = getDesc(); 869 for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) { 870 const MachineOperand &MO = getOperand(i); 871 if (MO.isReg() && MO.isUse() && 872 TID.getOperandConstraint(i, TOI::TIED_TO) == (int)DefOpIdx) { 873 if (UseOpIdx) 874 *UseOpIdx = (unsigned)i; 875 return true; 876 } 877 } 878 return false; 879 } 880 881 /// isRegTiedToDefOperand - Return true if the operand of the specified index 882 /// is a register use and it is tied to an def operand. It also returns the def 883 /// operand index by reference. 884 bool MachineInstr:: 885 isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const { 886 if (isInlineAsm()) { 887 const MachineOperand &MO = getOperand(UseOpIdx); 888 if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0) 889 return false; 890 891 // Find the flag operand corresponding to UseOpIdx 892 unsigned FlagIdx, NumOps=0; 893 for (FlagIdx = 1; FlagIdx < UseOpIdx; FlagIdx += NumOps+1) { 894 const MachineOperand &UFMO = getOperand(FlagIdx); 895 // After the normal asm operands there may be additional imp-def regs. 896 if (!UFMO.isImm()) 897 return false; 898 NumOps = InlineAsm::getNumOperandRegisters(UFMO.getImm()); 899 assert(NumOps < getNumOperands() && "Invalid inline asm flag"); 900 if (UseOpIdx < FlagIdx+NumOps+1) 901 break; 902 } 903 if (FlagIdx >= UseOpIdx) 904 return false; 905 const MachineOperand &UFMO = getOperand(FlagIdx); 906 unsigned DefNo; 907 if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) { 908 if (!DefOpIdx) 909 return true; 910 911 unsigned DefIdx = 1; 912 // Remember to adjust the index. First operand is asm string, then there 913 // is a flag for each. 914 while (DefNo) { 915 const MachineOperand &FMO = getOperand(DefIdx); 916 assert(FMO.isImm()); 917 // Skip over this def. 918 DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1; 919 --DefNo; 920 } 921 *DefOpIdx = DefIdx + UseOpIdx - FlagIdx; 922 return true; 923 } 924 return false; 925 } 926 927 const TargetInstrDesc &TID = getDesc(); 928 if (UseOpIdx >= TID.getNumOperands()) 929 return false; 930 const MachineOperand &MO = getOperand(UseOpIdx); 931 if (!MO.isReg() || !MO.isUse()) 932 return false; 933 int DefIdx = TID.getOperandConstraint(UseOpIdx, TOI::TIED_TO); 934 if (DefIdx == -1) 935 return false; 936 if (DefOpIdx) 937 *DefOpIdx = (unsigned)DefIdx; 938 return true; 939 } 940 941 /// clearKillInfo - Clears kill flags on all operands. 942 /// 943 void MachineInstr::clearKillInfo() { 944 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 945 MachineOperand &MO = getOperand(i); 946 if (MO.isReg() && MO.isUse()) 947 MO.setIsKill(false); 948 } 949 } 950 951 /// copyKillDeadInfo - Copies kill / dead operand properties from MI. 952 /// 953 void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) { 954 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 955 const MachineOperand &MO = MI->getOperand(i); 956 if (!MO.isReg() || (!MO.isKill() && !MO.isDead())) 957 continue; 958 for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) { 959 MachineOperand &MOp = getOperand(j); 960 if (!MOp.isIdenticalTo(MO)) 961 continue; 962 if (MO.isKill()) 963 MOp.setIsKill(); 964 else 965 MOp.setIsDead(); 966 break; 967 } 968 } 969 } 970 971 /// copyPredicates - Copies predicate operand(s) from MI. 972 void MachineInstr::copyPredicates(const MachineInstr *MI) { 973 const TargetInstrDesc &TID = MI->getDesc(); 974 if (!TID.isPredicable()) 975 return; 976 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 977 if (TID.OpInfo[i].isPredicate()) { 978 // Predicated operands must be last operands. 979 addOperand(MI->getOperand(i)); 980 } 981 } 982 } 983 984 /// isSafeToMove - Return true if it is safe to move this instruction. If 985 /// SawStore is set to true, it means that there is a store (or call) between 986 /// the instruction's location and its intended destination. 987 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII, 988 AliasAnalysis *AA, 989 bool &SawStore) const { 990 // Ignore stuff that we obviously can't move. 991 if (TID->mayStore() || TID->isCall()) { 992 SawStore = true; 993 return false; 994 } 995 if (TID->isTerminator() || TID->hasUnmodeledSideEffects()) 996 return false; 997 998 // See if this instruction does a load. If so, we have to guarantee that the 999 // loaded value doesn't change between the load and the its intended 1000 // destination. The check for isInvariantLoad gives the targe the chance to 1001 // classify the load as always returning a constant, e.g. a constant pool 1002 // load. 1003 if (TID->mayLoad() && !isInvariantLoad(AA)) 1004 // Otherwise, this is a real load. If there is a store between the load and 1005 // end of block, or if the load is volatile, we can't move it. 1006 return !SawStore && !hasVolatileMemoryRef(); 1007 1008 return true; 1009 } 1010 1011 /// isSafeToReMat - Return true if it's safe to rematerialize the specified 1012 /// instruction which defined the specified register instead of copying it. 1013 bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII, 1014 AliasAnalysis *AA, 1015 unsigned DstReg) const { 1016 bool SawStore = false; 1017 if (!TII->isTriviallyReMaterializable(this, AA) || 1018 !isSafeToMove(TII, AA, SawStore)) 1019 return false; 1020 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1021 const MachineOperand &MO = getOperand(i); 1022 if (!MO.isReg()) 1023 continue; 1024 // FIXME: For now, do not remat any instruction with register operands. 1025 // Later on, we can loosen the restriction is the register operands have 1026 // not been modified between the def and use. Note, this is different from 1027 // MachineSink because the code is no longer in two-address form (at least 1028 // partially). 1029 if (MO.isUse()) 1030 return false; 1031 else if (!MO.isDead() && MO.getReg() != DstReg) 1032 return false; 1033 } 1034 return true; 1035 } 1036 1037 /// hasVolatileMemoryRef - Return true if this instruction may have a 1038 /// volatile memory reference, or if the information describing the 1039 /// memory reference is not available. Return false if it is known to 1040 /// have no volatile memory references. 1041 bool MachineInstr::hasVolatileMemoryRef() const { 1042 // An instruction known never to access memory won't have a volatile access. 1043 if (!TID->mayStore() && 1044 !TID->mayLoad() && 1045 !TID->isCall() && 1046 !TID->hasUnmodeledSideEffects()) 1047 return false; 1048 1049 // Otherwise, if the instruction has no memory reference information, 1050 // conservatively assume it wasn't preserved. 1051 if (memoperands_empty()) 1052 return true; 1053 1054 // Check the memory reference information for volatile references. 1055 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I) 1056 if ((*I)->isVolatile()) 1057 return true; 1058 1059 return false; 1060 } 1061 1062 /// isInvariantLoad - Return true if this instruction is loading from a 1063 /// location whose value is invariant across the function. For example, 1064 /// loading a value from the constant pool or from the argument area 1065 /// of a function if it does not change. This should only return true of 1066 /// *all* loads the instruction does are invariant (if it does multiple loads). 1067 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const { 1068 // If the instruction doesn't load at all, it isn't an invariant load. 1069 if (!TID->mayLoad()) 1070 return false; 1071 1072 // If the instruction has lost its memoperands, conservatively assume that 1073 // it may not be an invariant load. 1074 if (memoperands_empty()) 1075 return false; 1076 1077 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo(); 1078 1079 for (mmo_iterator I = memoperands_begin(), 1080 E = memoperands_end(); I != E; ++I) { 1081 if ((*I)->isVolatile()) return false; 1082 if ((*I)->isStore()) return false; 1083 1084 if (const Value *V = (*I)->getValue()) { 1085 // A load from a constant PseudoSourceValue is invariant. 1086 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) 1087 if (PSV->isConstant(MFI)) 1088 continue; 1089 // If we have an AliasAnalysis, ask it whether the memory is constant. 1090 if (AA && AA->pointsToConstantMemory(V)) 1091 continue; 1092 } 1093 1094 // Otherwise assume conservatively. 1095 return false; 1096 } 1097 1098 // Everything checks out. 1099 return true; 1100 } 1101 1102 /// isConstantValuePHI - If the specified instruction is a PHI that always 1103 /// merges together the same virtual register, return the register, otherwise 1104 /// return 0. 1105 unsigned MachineInstr::isConstantValuePHI() const { 1106 if (!isPHI()) 1107 return 0; 1108 assert(getNumOperands() >= 3 && 1109 "It's illegal to have a PHI without source operands"); 1110 1111 unsigned Reg = getOperand(1).getReg(); 1112 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1113 if (getOperand(i).getReg() != Reg) 1114 return 0; 1115 return Reg; 1116 } 1117 1118 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1119 /// 1120 bool MachineInstr::allDefsAreDead() const { 1121 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { 1122 const MachineOperand &MO = getOperand(i); 1123 if (!MO.isReg() || MO.isUse()) 1124 continue; 1125 if (!MO.isDead()) 1126 return false; 1127 } 1128 return true; 1129 } 1130 1131 void MachineInstr::dump() const { 1132 dbgs() << " " << *this; 1133 } 1134 1135 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const { 1136 // We can be a bit tidier if we know the TargetMachine and/or MachineFunction. 1137 const MachineFunction *MF = 0; 1138 if (const MachineBasicBlock *MBB = getParent()) { 1139 MF = MBB->getParent(); 1140 if (!TM && MF) 1141 TM = &MF->getTarget(); 1142 } 1143 1144 // Print explicitly defined operands on the left of an assignment syntax. 1145 unsigned StartOp = 0, e = getNumOperands(); 1146 for (; StartOp < e && getOperand(StartOp).isReg() && 1147 getOperand(StartOp).isDef() && 1148 !getOperand(StartOp).isImplicit(); 1149 ++StartOp) { 1150 if (StartOp != 0) OS << ", "; 1151 getOperand(StartOp).print(OS, TM); 1152 } 1153 1154 if (StartOp != 0) 1155 OS << " = "; 1156 1157 // Print the opcode name. 1158 OS << getDesc().getName(); 1159 1160 // Print the rest of the operands. 1161 bool OmittedAnyCallClobbers = false; 1162 bool FirstOp = true; 1163 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1164 const MachineOperand &MO = getOperand(i); 1165 1166 // Omit call-clobbered registers which aren't used anywhere. This makes 1167 // call instructions much less noisy on targets where calls clobber lots 1168 // of registers. Don't rely on MO.isDead() because we may be called before 1169 // LiveVariables is run, or we may be looking at a non-allocatable reg. 1170 if (MF && getDesc().isCall() && 1171 MO.isReg() && MO.isImplicit() && MO.isDef()) { 1172 unsigned Reg = MO.getReg(); 1173 if (Reg != 0 && TargetRegisterInfo::isPhysicalRegister(Reg)) { 1174 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1175 if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) { 1176 bool HasAliasLive = false; 1177 for (const unsigned *Alias = TM->getRegisterInfo()->getAliasSet(Reg); 1178 unsigned AliasReg = *Alias; ++Alias) 1179 if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) { 1180 HasAliasLive = true; 1181 break; 1182 } 1183 if (!HasAliasLive) { 1184 OmittedAnyCallClobbers = true; 1185 continue; 1186 } 1187 } 1188 } 1189 } 1190 1191 if (FirstOp) FirstOp = false; else OS << ","; 1192 OS << " "; 1193 if (i < getDesc().NumOperands) { 1194 const TargetOperandInfo &TOI = getDesc().OpInfo[i]; 1195 if (TOI.isPredicate()) 1196 OS << "pred:"; 1197 if (TOI.isOptionalDef()) 1198 OS << "opt:"; 1199 } 1200 if (isDebugValue() && MO.isMetadata()) { 1201 // Pretty print DBG_VALUE instructions. 1202 const MDNode *MD = MO.getMetadata(); 1203 if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2))) 1204 OS << "!\"" << MDS->getString() << '\"'; 1205 else 1206 MO.print(OS, TM); 1207 } else 1208 MO.print(OS, TM); 1209 } 1210 1211 // Briefly indicate whether any call clobbers were omitted. 1212 if (OmittedAnyCallClobbers) { 1213 if (!FirstOp) OS << ","; 1214 OS << " ..."; 1215 } 1216 1217 bool HaveSemi = false; 1218 if (!memoperands_empty()) { 1219 if (!HaveSemi) OS << ";"; HaveSemi = true; 1220 1221 OS << " mem:"; 1222 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 1223 i != e; ++i) { 1224 OS << **i; 1225 if (next(i) != e) 1226 OS << " "; 1227 } 1228 } 1229 1230 if (!debugLoc.isUnknown() && MF) { 1231 if (!HaveSemi) OS << ";"; 1232 1233 // TODO: print InlinedAtLoc information 1234 1235 DIScope Scope(debugLoc.getScope(MF->getFunction()->getContext())); 1236 OS << " dbg:"; 1237 // Omit the directory, since it's usually long and uninteresting. 1238 if (Scope.Verify()) 1239 OS << Scope.getFilename(); 1240 else 1241 OS << "<unknown>"; 1242 OS << ':' << debugLoc.getLine(); 1243 if (debugLoc.getCol() != 0) 1244 OS << ':' << debugLoc.getCol(); 1245 } 1246 1247 OS << "\n"; 1248 } 1249 1250 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 1251 const TargetRegisterInfo *RegInfo, 1252 bool AddIfNotFound) { 1253 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1254 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg); 1255 bool Found = false; 1256 SmallVector<unsigned,4> DeadOps; 1257 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1258 MachineOperand &MO = getOperand(i); 1259 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1260 continue; 1261 unsigned Reg = MO.getReg(); 1262 if (!Reg) 1263 continue; 1264 1265 if (Reg == IncomingReg) { 1266 if (!Found) { 1267 if (MO.isKill()) 1268 // The register is already marked kill. 1269 return true; 1270 if (isPhysReg && isRegTiedToDefOperand(i)) 1271 // Two-address uses of physregs must not be marked kill. 1272 return true; 1273 MO.setIsKill(); 1274 Found = true; 1275 } 1276 } else if (hasAliases && MO.isKill() && 1277 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1278 // A super-register kill already exists. 1279 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1280 return true; 1281 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1282 DeadOps.push_back(i); 1283 } 1284 } 1285 1286 // Trim unneeded kill operands. 1287 while (!DeadOps.empty()) { 1288 unsigned OpIdx = DeadOps.back(); 1289 if (getOperand(OpIdx).isImplicit()) 1290 RemoveOperand(OpIdx); 1291 else 1292 getOperand(OpIdx).setIsKill(false); 1293 DeadOps.pop_back(); 1294 } 1295 1296 // If not found, this means an alias of one of the operands is killed. Add a 1297 // new implicit operand if required. 1298 if (!Found && AddIfNotFound) { 1299 addOperand(MachineOperand::CreateReg(IncomingReg, 1300 false /*IsDef*/, 1301 true /*IsImp*/, 1302 true /*IsKill*/)); 1303 return true; 1304 } 1305 return Found; 1306 } 1307 1308 bool MachineInstr::addRegisterDead(unsigned IncomingReg, 1309 const TargetRegisterInfo *RegInfo, 1310 bool AddIfNotFound) { 1311 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1312 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg); 1313 bool Found = false; 1314 SmallVector<unsigned,4> DeadOps; 1315 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1316 MachineOperand &MO = getOperand(i); 1317 if (!MO.isReg() || !MO.isDef()) 1318 continue; 1319 unsigned Reg = MO.getReg(); 1320 if (!Reg) 1321 continue; 1322 1323 if (Reg == IncomingReg) { 1324 if (!Found) { 1325 if (MO.isDead()) 1326 // The register is already marked dead. 1327 return true; 1328 MO.setIsDead(); 1329 Found = true; 1330 } 1331 } else if (hasAliases && MO.isDead() && 1332 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1333 // There exists a super-register that's marked dead. 1334 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1335 return true; 1336 if (RegInfo->getSubRegisters(IncomingReg) && 1337 RegInfo->getSuperRegisters(Reg) && 1338 RegInfo->isSubRegister(IncomingReg, Reg)) 1339 DeadOps.push_back(i); 1340 } 1341 } 1342 1343 // Trim unneeded dead operands. 1344 while (!DeadOps.empty()) { 1345 unsigned OpIdx = DeadOps.back(); 1346 if (getOperand(OpIdx).isImplicit()) 1347 RemoveOperand(OpIdx); 1348 else 1349 getOperand(OpIdx).setIsDead(false); 1350 DeadOps.pop_back(); 1351 } 1352 1353 // If not found, this means an alias of one of the operands is dead. Add a 1354 // new implicit operand if required. 1355 if (Found || !AddIfNotFound) 1356 return Found; 1357 1358 addOperand(MachineOperand::CreateReg(IncomingReg, 1359 true /*IsDef*/, 1360 true /*IsImp*/, 1361 false /*IsKill*/, 1362 true /*IsDead*/)); 1363 return true; 1364 } 1365 1366 void MachineInstr::addRegisterDefined(unsigned IncomingReg, 1367 const TargetRegisterInfo *RegInfo) { 1368 MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo); 1369 if (!MO || MO->getSubReg()) 1370 addOperand(MachineOperand::CreateReg(IncomingReg, 1371 true /*IsDef*/, 1372 true /*IsImp*/)); 1373 } 1374 1375 unsigned 1376 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 1377 unsigned Hash = MI->getOpcode() * 37; 1378 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1379 const MachineOperand &MO = MI->getOperand(i); 1380 uint64_t Key = (uint64_t)MO.getType() << 32; 1381 switch (MO.getType()) { 1382 default: break; 1383 case MachineOperand::MO_Register: 1384 if (MO.isDef() && MO.getReg() && 1385 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1386 continue; // Skip virtual register defs. 1387 Key |= MO.getReg(); 1388 break; 1389 case MachineOperand::MO_Immediate: 1390 Key |= MO.getImm(); 1391 break; 1392 case MachineOperand::MO_FrameIndex: 1393 case MachineOperand::MO_ConstantPoolIndex: 1394 case MachineOperand::MO_JumpTableIndex: 1395 Key |= MO.getIndex(); 1396 break; 1397 case MachineOperand::MO_MachineBasicBlock: 1398 Key |= DenseMapInfo<void*>::getHashValue(MO.getMBB()); 1399 break; 1400 case MachineOperand::MO_GlobalAddress: 1401 Key |= DenseMapInfo<void*>::getHashValue(MO.getGlobal()); 1402 break; 1403 case MachineOperand::MO_BlockAddress: 1404 Key |= DenseMapInfo<void*>::getHashValue(MO.getBlockAddress()); 1405 break; 1406 case MachineOperand::MO_MCSymbol: 1407 Key |= DenseMapInfo<void*>::getHashValue(MO.getMCSymbol()); 1408 break; 1409 } 1410 Key += ~(Key << 32); 1411 Key ^= (Key >> 22); 1412 Key += ~(Key << 13); 1413 Key ^= (Key >> 8); 1414 Key += (Key << 3); 1415 Key ^= (Key >> 15); 1416 Key += ~(Key << 27); 1417 Key ^= (Key >> 31); 1418 Hash = (unsigned)Key + Hash * 37; 1419 } 1420 return Hash; 1421 } 1422