1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/FoldingSet.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallBitVector.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/Loads.h" 26 #include "llvm/Analysis/MemoryLocation.h" 27 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 28 #include "llvm/CodeGen/MachineBasicBlock.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineInstrBundle.h" 32 #include "llvm/CodeGen/MachineMemOperand.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/PseudoSourceValue.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/Config/llvm-config.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DebugInfoMetadata.h" 43 #include "llvm/IR/DebugLoc.h" 44 #include "llvm/IR/DerivedTypes.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/ModuleSlotTracker.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/MC/MCInstrDesc.h" 56 #include "llvm/MC/MCRegisterInfo.h" 57 #include "llvm/MC/MCSymbol.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/LowLevelTypeImpl.h" 64 #include "llvm/Support/MathExtras.h" 65 #include "llvm/Support/raw_ostream.h" 66 #include "llvm/Target/TargetIntrinsicInfo.h" 67 #include "llvm/Target/TargetMachine.h" 68 #include <algorithm> 69 #include <cassert> 70 #include <cstddef> 71 #include <cstdint> 72 #include <cstring> 73 #include <iterator> 74 #include <utility> 75 76 using namespace llvm; 77 78 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) { 79 if (const MachineBasicBlock *MBB = MI.getParent()) 80 if (const MachineFunction *MF = MBB->getParent()) 81 return MF; 82 return nullptr; 83 } 84 85 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from 86 // it. 87 static void tryToGetTargetInfo(const MachineInstr &MI, 88 const TargetRegisterInfo *&TRI, 89 const MachineRegisterInfo *&MRI, 90 const TargetIntrinsicInfo *&IntrinsicInfo, 91 const TargetInstrInfo *&TII) { 92 93 if (const MachineFunction *MF = getMFIfAvailable(MI)) { 94 TRI = MF->getSubtarget().getRegisterInfo(); 95 MRI = &MF->getRegInfo(); 96 IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); 97 TII = MF->getSubtarget().getInstrInfo(); 98 } 99 } 100 101 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 102 if (MCID->ImplicitDefs) 103 for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; 104 ++ImpDefs) 105 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 106 if (MCID->ImplicitUses) 107 for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses; 108 ++ImpUses) 109 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 110 } 111 112 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 113 /// implicit operands. It reserves space for the number of operands specified by 114 /// the MCInstrDesc. 115 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, 116 DebugLoc dl, bool NoImp) 117 : MCID(&tid), debugLoc(std::move(dl)) { 118 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 119 120 // Reserve space for the expected number of operands. 121 if (unsigned NumOps = MCID->getNumOperands() + 122 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 123 CapOperands = OperandCapacity::get(NumOps); 124 Operands = MF.allocateOperandArray(CapOperands); 125 } 126 127 if (!NoImp) 128 addImplicitDefUseOperands(MF); 129 } 130 131 /// MachineInstr ctor - Copies MachineInstr arg exactly 132 /// 133 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 134 : MCID(&MI.getDesc()), Info(MI.Info), debugLoc(MI.getDebugLoc()) { 135 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 136 137 CapOperands = OperandCapacity::get(MI.getNumOperands()); 138 Operands = MF.allocateOperandArray(CapOperands); 139 140 // Copy operands. 141 for (const MachineOperand &MO : MI.operands()) 142 addOperand(MF, MO); 143 144 // Copy all the sensible flags. 145 setFlags(MI.Flags); 146 } 147 148 /// getRegInfo - If this instruction is embedded into a MachineFunction, 149 /// return the MachineRegisterInfo object for the current function, otherwise 150 /// return null. 151 MachineRegisterInfo *MachineInstr::getRegInfo() { 152 if (MachineBasicBlock *MBB = getParent()) 153 return &MBB->getParent()->getRegInfo(); 154 return nullptr; 155 } 156 157 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 158 /// this instruction from their respective use lists. This requires that the 159 /// operands already be on their use lists. 160 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 161 for (MachineOperand &MO : operands()) 162 if (MO.isReg()) 163 MRI.removeRegOperandFromUseList(&MO); 164 } 165 166 /// AddRegOperandsToUseLists - Add all of the register operands in 167 /// this instruction from their respective use lists. This requires that the 168 /// operands not be on their use lists yet. 169 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 170 for (MachineOperand &MO : operands()) 171 if (MO.isReg()) 172 MRI.addRegOperandToUseList(&MO); 173 } 174 175 void MachineInstr::addOperand(const MachineOperand &Op) { 176 MachineBasicBlock *MBB = getParent(); 177 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 178 MachineFunction *MF = MBB->getParent(); 179 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 180 addOperand(*MF, Op); 181 } 182 183 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 184 /// ranges. If MRI is non-null also update use-def chains. 185 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 186 unsigned NumOps, MachineRegisterInfo *MRI) { 187 if (MRI) 188 return MRI->moveOperands(Dst, Src, NumOps); 189 190 // MachineOperand is a trivially copyable type so we can just use memmove. 191 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 192 } 193 194 /// addOperand - Add the specified operand to the instruction. If it is an 195 /// implicit operand, it is added to the end of the operand list. If it is 196 /// an explicit operand it is added at the end of the explicit operand list 197 /// (before the first implicit operand). 198 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 199 assert(MCID && "Cannot add operands before providing an instr descriptor"); 200 201 // Check if we're adding one of our existing operands. 202 if (&Op >= Operands && &Op < Operands + NumOperands) { 203 // This is unusual: MI->addOperand(MI->getOperand(i)). 204 // If adding Op requires reallocating or moving existing operands around, 205 // the Op reference could go stale. Support it by copying Op. 206 MachineOperand CopyOp(Op); 207 return addOperand(MF, CopyOp); 208 } 209 210 // Find the insert location for the new operand. Implicit registers go at 211 // the end, everything else goes before the implicit regs. 212 // 213 // FIXME: Allow mixed explicit and implicit operands on inline asm. 214 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 215 // implicit-defs, but they must not be moved around. See the FIXME in 216 // InstrEmitter.cpp. 217 unsigned OpNo = getNumOperands(); 218 bool isImpReg = Op.isReg() && Op.isImplicit(); 219 if (!isImpReg && !isInlineAsm()) { 220 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 221 --OpNo; 222 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 223 } 224 } 225 226 #ifndef NDEBUG 227 bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata; 228 // OpNo now points as the desired insertion point. Unless this is a variadic 229 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 230 // RegMask operands go between the explicit and implicit operands. 231 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 232 OpNo < MCID->getNumOperands() || isMetaDataOp) && 233 "Trying to add an operand to a machine instr that is already done!"); 234 #endif 235 236 MachineRegisterInfo *MRI = getRegInfo(); 237 238 // Determine if the Operands array needs to be reallocated. 239 // Save the old capacity and operand array. 240 OperandCapacity OldCap = CapOperands; 241 MachineOperand *OldOperands = Operands; 242 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 243 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 244 Operands = MF.allocateOperandArray(CapOperands); 245 // Move the operands before the insertion point. 246 if (OpNo) 247 moveOperands(Operands, OldOperands, OpNo, MRI); 248 } 249 250 // Move the operands following the insertion point. 251 if (OpNo != NumOperands) 252 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 253 MRI); 254 ++NumOperands; 255 256 // Deallocate the old operand array. 257 if (OldOperands != Operands && OldOperands) 258 MF.deallocateOperandArray(OldCap, OldOperands); 259 260 // Copy Op into place. It still needs to be inserted into the MRI use lists. 261 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 262 NewMO->ParentMI = this; 263 264 // When adding a register operand, tell MRI about it. 265 if (NewMO->isReg()) { 266 // Ensure isOnRegUseList() returns false, regardless of Op's status. 267 NewMO->Contents.Reg.Prev = nullptr; 268 // Ignore existing ties. This is not a property that can be copied. 269 NewMO->TiedTo = 0; 270 // Add the new operand to MRI, but only for instructions in an MBB. 271 if (MRI) 272 MRI->addRegOperandToUseList(NewMO); 273 // The MCID operand information isn't accurate until we start adding 274 // explicit operands. The implicit operands are added first, then the 275 // explicits are inserted before them. 276 if (!isImpReg) { 277 // Tie uses to defs as indicated in MCInstrDesc. 278 if (NewMO->isUse()) { 279 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 280 if (DefIdx != -1) 281 tieOperands(DefIdx, OpNo); 282 } 283 // If the register operand is flagged as early, mark the operand as such. 284 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 285 NewMO->setIsEarlyClobber(true); 286 } 287 } 288 } 289 290 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 291 /// fewer operand than it started with. 292 /// 293 void MachineInstr::RemoveOperand(unsigned OpNo) { 294 assert(OpNo < getNumOperands() && "Invalid operand number"); 295 untieRegOperand(OpNo); 296 297 #ifndef NDEBUG 298 // Moving tied operands would break the ties. 299 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 300 if (Operands[i].isReg()) 301 assert(!Operands[i].isTied() && "Cannot move tied operands"); 302 #endif 303 304 MachineRegisterInfo *MRI = getRegInfo(); 305 if (MRI && Operands[OpNo].isReg()) 306 MRI->removeRegOperandFromUseList(Operands + OpNo); 307 308 // Don't call the MachineOperand destructor. A lot of this code depends on 309 // MachineOperand having a trivial destructor anyway, and adding a call here 310 // wouldn't make it 'destructor-correct'. 311 312 if (unsigned N = NumOperands - 1 - OpNo) 313 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 314 --NumOperands; 315 } 316 317 void MachineInstr::dropMemRefs(MachineFunction &MF) { 318 if (memoperands_empty()) 319 return; 320 321 // See if we can just drop all of our extra info. 322 if (!getPreInstrSymbol() && !getPostInstrSymbol()) { 323 Info.clear(); 324 return; 325 } 326 if (!getPostInstrSymbol()) { 327 Info.set<EIIK_PreInstrSymbol>(getPreInstrSymbol()); 328 return; 329 } 330 if (!getPreInstrSymbol()) { 331 Info.set<EIIK_PostInstrSymbol>(getPostInstrSymbol()); 332 return; 333 } 334 335 // Otherwise allocate a fresh extra info with just these symbols. 336 Info.set<EIIK_OutOfLine>( 337 MF.createMIExtraInfo({}, getPreInstrSymbol(), getPostInstrSymbol())); 338 } 339 340 void MachineInstr::setMemRefs(MachineFunction &MF, 341 ArrayRef<MachineMemOperand *> MMOs) { 342 if (MMOs.empty()) { 343 dropMemRefs(MF); 344 return; 345 } 346 347 // Try to store a single MMO inline. 348 if (MMOs.size() == 1 && !getPreInstrSymbol() && !getPostInstrSymbol()) { 349 Info.set<EIIK_MMO>(MMOs[0]); 350 return; 351 } 352 353 // Otherwise create an extra info struct with all of our info. 354 Info.set<EIIK_OutOfLine>( 355 MF.createMIExtraInfo(MMOs, getPreInstrSymbol(), getPostInstrSymbol())); 356 } 357 358 void MachineInstr::addMemOperand(MachineFunction &MF, 359 MachineMemOperand *MO) { 360 SmallVector<MachineMemOperand *, 2> MMOs; 361 MMOs.append(memoperands_begin(), memoperands_end()); 362 MMOs.push_back(MO); 363 setMemRefs(MF, MMOs); 364 } 365 366 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) { 367 if (this == &MI) 368 // Nothing to do for a self-clone! 369 return; 370 371 assert(&MF == MI.getMF() && 372 "Invalid machine functions when cloning memory refrences!"); 373 // See if we can just steal the extra info already allocated for the 374 // instruction. We can do this whenever the pre- and post-instruction symbols 375 // are the same (including null). 376 if (getPreInstrSymbol() == MI.getPreInstrSymbol() && 377 getPostInstrSymbol() == MI.getPostInstrSymbol()) { 378 Info = MI.Info; 379 return; 380 } 381 382 // Otherwise, fall back on a copy-based clone. 383 setMemRefs(MF, MI.memoperands()); 384 } 385 386 /// Check to see if the MMOs pointed to by the two MemRefs arrays are 387 /// identical. 388 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS, 389 ArrayRef<MachineMemOperand *> RHS) { 390 if (LHS.size() != RHS.size()) 391 return false; 392 393 auto LHSPointees = make_pointee_range(LHS); 394 auto RHSPointees = make_pointee_range(RHS); 395 return std::equal(LHSPointees.begin(), LHSPointees.end(), 396 RHSPointees.begin()); 397 } 398 399 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF, 400 ArrayRef<const MachineInstr *> MIs) { 401 // Try handling easy numbers of MIs with simpler mechanisms. 402 if (MIs.empty()) { 403 dropMemRefs(MF); 404 return; 405 } 406 if (MIs.size() == 1) { 407 cloneMemRefs(MF, *MIs[0]); 408 return; 409 } 410 // Because an empty memoperands list provides *no* information and must be 411 // handled conservatively (assuming the instruction can do anything), the only 412 // way to merge with it is to drop all other memoperands. 413 if (MIs[0]->memoperands_empty()) { 414 dropMemRefs(MF); 415 return; 416 } 417 418 // Handle the general case. 419 SmallVector<MachineMemOperand *, 2> MergedMMOs; 420 // Start with the first instruction. 421 assert(&MF == MIs[0]->getMF() && 422 "Invalid machine functions when cloning memory references!"); 423 MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end()); 424 // Now walk all the other instructions and accumulate any different MMOs. 425 for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) { 426 assert(&MF == MI.getMF() && 427 "Invalid machine functions when cloning memory references!"); 428 429 // Skip MIs with identical operands to the first. This is a somewhat 430 // arbitrary hack but will catch common cases without being quadratic. 431 // TODO: We could fully implement merge semantics here if needed. 432 if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands())) 433 continue; 434 435 // Because an empty memoperands list provides *no* information and must be 436 // handled conservatively (assuming the instruction can do anything), the 437 // only way to merge with it is to drop all other memoperands. 438 if (MI.memoperands_empty()) { 439 dropMemRefs(MF); 440 return; 441 } 442 443 // Otherwise accumulate these into our temporary buffer of the merged state. 444 MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end()); 445 } 446 447 setMemRefs(MF, MergedMMOs); 448 } 449 450 MCSymbol *MachineInstr::getOrCreatePreInstrTempSymbol(MCContext &MCCtx) { 451 MCSymbol *S = getPreInstrSymbol(); 452 if (S) 453 return S; 454 455 // Create a new temp symbol. 456 S = MCCtx.createTempSymbol(); 457 458 if (!Info) { 459 // If we don't have any other extra info, we can store this inline. 460 Info.set<EIIK_PreInstrSymbol>(S); 461 return S; 462 } 463 464 // Otherwise, allocate a fully set of extra info. 465 Info.set<EIIK_OutOfLine>( 466 getMF()->createMIExtraInfo(memoperands(), S, getPostInstrSymbol())); 467 468 return S; 469 } 470 471 MCSymbol *MachineInstr::getOrCreatePostInstrTempSymbol(MCContext &MCCtx) { 472 MCSymbol *S = getPostInstrSymbol(); 473 if (S) 474 return S; 475 476 // Create a new temp symbol. 477 S = MCCtx.createTempSymbol(); 478 479 if (!Info) { 480 // If we don't have any other extra info, we can store this inline. 481 Info.set<EIIK_PostInstrSymbol>(S); 482 return S; 483 } 484 485 // Otherwise, allocate a fully set of extra info. 486 Info.set<EIIK_OutOfLine>( 487 getMF()->createMIExtraInfo(memoperands(), getPreInstrSymbol(), S)); 488 return S; 489 } 490 491 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const { 492 // For now, the just return the union of the flags. If the flags get more 493 // complicated over time, we might need more logic here. 494 return getFlags() | Other.getFlags(); 495 } 496 497 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { 498 assert(!isBundledWithPred() && "Must be called on bundle header"); 499 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { 500 if (MII->getDesc().getFlags() & Mask) { 501 if (Type == AnyInBundle) 502 return true; 503 } else { 504 if (Type == AllInBundle && !MII->isBundle()) 505 return false; 506 } 507 // This was the last instruction in the bundle. 508 if (!MII->isBundledWithSucc()) 509 return Type == AllInBundle; 510 } 511 } 512 513 bool MachineInstr::isIdenticalTo(const MachineInstr &Other, 514 MICheckType Check) const { 515 // If opcodes or number of operands are not the same then the two 516 // instructions are obviously not identical. 517 if (Other.getOpcode() != getOpcode() || 518 Other.getNumOperands() != getNumOperands()) 519 return false; 520 521 if (isBundle()) { 522 // We have passed the test above that both instructions have the same 523 // opcode, so we know that both instructions are bundles here. Let's compare 524 // MIs inside the bundle. 525 assert(Other.isBundle() && "Expected that both instructions are bundles."); 526 MachineBasicBlock::const_instr_iterator I1 = getIterator(); 527 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); 528 // Loop until we analysed the last intruction inside at least one of the 529 // bundles. 530 while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) { 531 ++I1; 532 ++I2; 533 if (!I1->isIdenticalTo(*I2, Check)) 534 return false; 535 } 536 // If we've reached the end of just one of the two bundles, but not both, 537 // the instructions are not identical. 538 if (I1->isBundledWithSucc() || I2->isBundledWithSucc()) 539 return false; 540 } 541 542 // Check operands to make sure they match. 543 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 544 const MachineOperand &MO = getOperand(i); 545 const MachineOperand &OMO = Other.getOperand(i); 546 if (!MO.isReg()) { 547 if (!MO.isIdenticalTo(OMO)) 548 return false; 549 continue; 550 } 551 552 // Clients may or may not want to ignore defs when testing for equality. 553 // For example, machine CSE pass only cares about finding common 554 // subexpressions, so it's safe to ignore virtual register defs. 555 if (MO.isDef()) { 556 if (Check == IgnoreDefs) 557 continue; 558 else if (Check == IgnoreVRegDefs) { 559 if (!TargetRegisterInfo::isVirtualRegister(MO.getReg()) || 560 !TargetRegisterInfo::isVirtualRegister(OMO.getReg())) 561 if (!MO.isIdenticalTo(OMO)) 562 return false; 563 } else { 564 if (!MO.isIdenticalTo(OMO)) 565 return false; 566 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 567 return false; 568 } 569 } else { 570 if (!MO.isIdenticalTo(OMO)) 571 return false; 572 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 573 return false; 574 } 575 } 576 // If DebugLoc does not match then two debug instructions are not identical. 577 if (isDebugInstr()) 578 if (getDebugLoc() && Other.getDebugLoc() && 579 getDebugLoc() != Other.getDebugLoc()) 580 return false; 581 return true; 582 } 583 584 const MachineFunction *MachineInstr::getMF() const { 585 return getParent()->getParent(); 586 } 587 588 MachineInstr *MachineInstr::removeFromParent() { 589 assert(getParent() && "Not embedded in a basic block!"); 590 return getParent()->remove(this); 591 } 592 593 MachineInstr *MachineInstr::removeFromBundle() { 594 assert(getParent() && "Not embedded in a basic block!"); 595 return getParent()->remove_instr(this); 596 } 597 598 void MachineInstr::eraseFromParent() { 599 assert(getParent() && "Not embedded in a basic block!"); 600 getParent()->erase(this); 601 } 602 603 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() { 604 assert(getParent() && "Not embedded in a basic block!"); 605 MachineBasicBlock *MBB = getParent(); 606 MachineFunction *MF = MBB->getParent(); 607 assert(MF && "Not embedded in a function!"); 608 609 MachineInstr *MI = (MachineInstr *)this; 610 MachineRegisterInfo &MRI = MF->getRegInfo(); 611 612 for (const MachineOperand &MO : MI->operands()) { 613 if (!MO.isReg() || !MO.isDef()) 614 continue; 615 unsigned Reg = MO.getReg(); 616 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 617 continue; 618 MRI.markUsesInDebugValueAsUndef(Reg); 619 } 620 MI->eraseFromParent(); 621 } 622 623 void MachineInstr::eraseFromBundle() { 624 assert(getParent() && "Not embedded in a basic block!"); 625 getParent()->erase_instr(this); 626 } 627 628 unsigned MachineInstr::getNumExplicitOperands() const { 629 unsigned NumOperands = MCID->getNumOperands(); 630 if (!MCID->isVariadic()) 631 return NumOperands; 632 633 for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) { 634 const MachineOperand &MO = getOperand(I); 635 // The operands must always be in the following order: 636 // - explicit reg defs, 637 // - other explicit operands (reg uses, immediates, etc.), 638 // - implicit reg defs 639 // - implicit reg uses 640 if (MO.isReg() && MO.isImplicit()) 641 break; 642 ++NumOperands; 643 } 644 return NumOperands; 645 } 646 647 unsigned MachineInstr::getNumExplicitDefs() const { 648 unsigned NumDefs = MCID->getNumDefs(); 649 if (!MCID->isVariadic()) 650 return NumDefs; 651 652 for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) { 653 const MachineOperand &MO = getOperand(I); 654 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 655 break; 656 ++NumDefs; 657 } 658 return NumDefs; 659 } 660 661 void MachineInstr::bundleWithPred() { 662 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 663 setFlag(BundledPred); 664 MachineBasicBlock::instr_iterator Pred = getIterator(); 665 --Pred; 666 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 667 Pred->setFlag(BundledSucc); 668 } 669 670 void MachineInstr::bundleWithSucc() { 671 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 672 setFlag(BundledSucc); 673 MachineBasicBlock::instr_iterator Succ = getIterator(); 674 ++Succ; 675 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 676 Succ->setFlag(BundledPred); 677 } 678 679 void MachineInstr::unbundleFromPred() { 680 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 681 clearFlag(BundledPred); 682 MachineBasicBlock::instr_iterator Pred = getIterator(); 683 --Pred; 684 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 685 Pred->clearFlag(BundledSucc); 686 } 687 688 void MachineInstr::unbundleFromSucc() { 689 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 690 clearFlag(BundledSucc); 691 MachineBasicBlock::instr_iterator Succ = getIterator(); 692 ++Succ; 693 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 694 Succ->clearFlag(BundledPred); 695 } 696 697 bool MachineInstr::isStackAligningInlineAsm() const { 698 if (isInlineAsm()) { 699 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 700 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 701 return true; 702 } 703 return false; 704 } 705 706 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 707 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 708 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 709 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 710 } 711 712 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 713 unsigned *GroupNo) const { 714 assert(isInlineAsm() && "Expected an inline asm instruction"); 715 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 716 717 // Ignore queries about the initial operands. 718 if (OpIdx < InlineAsm::MIOp_FirstOperand) 719 return -1; 720 721 unsigned Group = 0; 722 unsigned NumOps; 723 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 724 i += NumOps) { 725 const MachineOperand &FlagMO = getOperand(i); 726 // If we reach the implicit register operands, stop looking. 727 if (!FlagMO.isImm()) 728 return -1; 729 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 730 if (i + NumOps > OpIdx) { 731 if (GroupNo) 732 *GroupNo = Group; 733 return i; 734 } 735 ++Group; 736 } 737 return -1; 738 } 739 740 const DILabel *MachineInstr::getDebugLabel() const { 741 assert(isDebugLabel() && "not a DBG_LABEL"); 742 return cast<DILabel>(getOperand(0).getMetadata()); 743 } 744 745 const DILocalVariable *MachineInstr::getDebugVariable() const { 746 assert(isDebugValue() && "not a DBG_VALUE"); 747 return cast<DILocalVariable>(getOperand(2).getMetadata()); 748 } 749 750 const DIExpression *MachineInstr::getDebugExpression() const { 751 assert(isDebugValue() && "not a DBG_VALUE"); 752 return cast<DIExpression>(getOperand(3).getMetadata()); 753 } 754 755 const TargetRegisterClass* 756 MachineInstr::getRegClassConstraint(unsigned OpIdx, 757 const TargetInstrInfo *TII, 758 const TargetRegisterInfo *TRI) const { 759 assert(getParent() && "Can't have an MBB reference here!"); 760 assert(getMF() && "Can't have an MF reference here!"); 761 const MachineFunction &MF = *getMF(); 762 763 // Most opcodes have fixed constraints in their MCInstrDesc. 764 if (!isInlineAsm()) 765 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 766 767 if (!getOperand(OpIdx).isReg()) 768 return nullptr; 769 770 // For tied uses on inline asm, get the constraint from the def. 771 unsigned DefIdx; 772 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 773 OpIdx = DefIdx; 774 775 // Inline asm stores register class constraints in the flag word. 776 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 777 if (FlagIdx < 0) 778 return nullptr; 779 780 unsigned Flag = getOperand(FlagIdx).getImm(); 781 unsigned RCID; 782 if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse || 783 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef || 784 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) && 785 InlineAsm::hasRegClassConstraint(Flag, RCID)) 786 return TRI->getRegClass(RCID); 787 788 // Assume that all registers in a memory operand are pointers. 789 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 790 return TRI->getPointerRegClass(MF); 791 792 return nullptr; 793 } 794 795 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 796 unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 797 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 798 // Check every operands inside the bundle if we have 799 // been asked to. 800 if (ExploreBundle) 801 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; 802 ++OpndIt) 803 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 804 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 805 else 806 // Otherwise, just check the current operands. 807 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 808 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 809 return CurRC; 810 } 811 812 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 813 unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC, 814 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 815 assert(CurRC && "Invalid initial register class"); 816 // Check if Reg is constrained by some of its use/def from MI. 817 const MachineOperand &MO = getOperand(OpIdx); 818 if (!MO.isReg() || MO.getReg() != Reg) 819 return CurRC; 820 // If yes, accumulate the constraints through the operand. 821 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 822 } 823 824 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 825 unsigned OpIdx, const TargetRegisterClass *CurRC, 826 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 827 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 828 const MachineOperand &MO = getOperand(OpIdx); 829 assert(MO.isReg() && 830 "Cannot get register constraints for non-register operand"); 831 assert(CurRC && "Invalid initial register class"); 832 if (unsigned SubIdx = MO.getSubReg()) { 833 if (OpRC) 834 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 835 else 836 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 837 } else if (OpRC) 838 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 839 return CurRC; 840 } 841 842 /// Return the number of instructions inside the MI bundle, not counting the 843 /// header instruction. 844 unsigned MachineInstr::getBundleSize() const { 845 MachineBasicBlock::const_instr_iterator I = getIterator(); 846 unsigned Size = 0; 847 while (I->isBundledWithSucc()) { 848 ++Size; 849 ++I; 850 } 851 return Size; 852 } 853 854 /// Returns true if the MachineInstr has an implicit-use operand of exactly 855 /// the given register (not considering sub/super-registers). 856 bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const { 857 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 858 const MachineOperand &MO = getOperand(i); 859 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) 860 return true; 861 } 862 return false; 863 } 864 865 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 866 /// the specific register or -1 if it is not found. It further tightens 867 /// the search criteria to a use that kills the register if isKill is true. 868 int MachineInstr::findRegisterUseOperandIdx( 869 unsigned Reg, bool isKill, const TargetRegisterInfo *TRI) const { 870 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 871 const MachineOperand &MO = getOperand(i); 872 if (!MO.isReg() || !MO.isUse()) 873 continue; 874 unsigned MOReg = MO.getReg(); 875 if (!MOReg) 876 continue; 877 if (MOReg == Reg || (TRI && TargetRegisterInfo::isPhysicalRegister(MOReg) && 878 TargetRegisterInfo::isPhysicalRegister(Reg) && 879 TRI->isSubRegister(MOReg, Reg))) 880 if (!isKill || MO.isKill()) 881 return i; 882 } 883 return -1; 884 } 885 886 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 887 /// indicating if this instruction reads or writes Reg. This also considers 888 /// partial defines. 889 std::pair<bool,bool> 890 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 891 SmallVectorImpl<unsigned> *Ops) const { 892 bool PartDef = false; // Partial redefine. 893 bool FullDef = false; // Full define. 894 bool Use = false; 895 896 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 897 const MachineOperand &MO = getOperand(i); 898 if (!MO.isReg() || MO.getReg() != Reg) 899 continue; 900 if (Ops) 901 Ops->push_back(i); 902 if (MO.isUse()) 903 Use |= !MO.isUndef(); 904 else if (MO.getSubReg() && !MO.isUndef()) 905 // A partial def undef doesn't count as reading the register. 906 PartDef = true; 907 else 908 FullDef = true; 909 } 910 // A partial redefine uses Reg unless there is also a full define. 911 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 912 } 913 914 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 915 /// the specified register or -1 if it is not found. If isDead is true, defs 916 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 917 /// also checks if there is a def of a super-register. 918 int 919 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 920 const TargetRegisterInfo *TRI) const { 921 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 922 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 923 const MachineOperand &MO = getOperand(i); 924 // Accept regmask operands when Overlap is set. 925 // Ignore them when looking for a specific def operand (Overlap == false). 926 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 927 return i; 928 if (!MO.isReg() || !MO.isDef()) 929 continue; 930 unsigned MOReg = MO.getReg(); 931 bool Found = (MOReg == Reg); 932 if (!Found && TRI && isPhys && 933 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 934 if (Overlap) 935 Found = TRI->regsOverlap(MOReg, Reg); 936 else 937 Found = TRI->isSubRegister(MOReg, Reg); 938 } 939 if (Found && (!isDead || MO.isDead())) 940 return i; 941 } 942 return -1; 943 } 944 945 /// findFirstPredOperandIdx() - Find the index of the first operand in the 946 /// operand list that is used to represent the predicate. It returns -1 if 947 /// none is found. 948 int MachineInstr::findFirstPredOperandIdx() const { 949 // Don't call MCID.findFirstPredOperandIdx() because this variant 950 // is sometimes called on an instruction that's not yet complete, and 951 // so the number of operands is less than the MCID indicates. In 952 // particular, the PTX target does this. 953 const MCInstrDesc &MCID = getDesc(); 954 if (MCID.isPredicable()) { 955 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 956 if (MCID.OpInfo[i].isPredicate()) 957 return i; 958 } 959 960 return -1; 961 } 962 963 // MachineOperand::TiedTo is 4 bits wide. 964 const unsigned TiedMax = 15; 965 966 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 967 /// 968 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 969 /// field. TiedTo can have these values: 970 /// 971 /// 0: Operand is not tied to anything. 972 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 973 /// TiedMax: Tied to an operand >= TiedMax-1. 974 /// 975 /// The tied def must be one of the first TiedMax operands on a normal 976 /// instruction. INLINEASM instructions allow more tied defs. 977 /// 978 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 979 MachineOperand &DefMO = getOperand(DefIdx); 980 MachineOperand &UseMO = getOperand(UseIdx); 981 assert(DefMO.isDef() && "DefIdx must be a def operand"); 982 assert(UseMO.isUse() && "UseIdx must be a use operand"); 983 assert(!DefMO.isTied() && "Def is already tied to another use"); 984 assert(!UseMO.isTied() && "Use is already tied to another def"); 985 986 if (DefIdx < TiedMax) 987 UseMO.TiedTo = DefIdx + 1; 988 else { 989 // Inline asm can use the group descriptors to find tied operands, but on 990 // normal instruction, the tied def must be within the first TiedMax 991 // operands. 992 assert(isInlineAsm() && "DefIdx out of range"); 993 UseMO.TiedTo = TiedMax; 994 } 995 996 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 997 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 998 } 999 1000 /// Given the index of a tied register operand, find the operand it is tied to. 1001 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1002 /// which must exist. 1003 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1004 const MachineOperand &MO = getOperand(OpIdx); 1005 assert(MO.isTied() && "Operand isn't tied"); 1006 1007 // Normally TiedTo is in range. 1008 if (MO.TiedTo < TiedMax) 1009 return MO.TiedTo - 1; 1010 1011 // Uses on normal instructions can be out of range. 1012 if (!isInlineAsm()) { 1013 // Normal tied defs must be in the 0..TiedMax-1 range. 1014 if (MO.isUse()) 1015 return TiedMax - 1; 1016 // MO is a def. Search for the tied use. 1017 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1018 const MachineOperand &UseMO = getOperand(i); 1019 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1020 return i; 1021 } 1022 llvm_unreachable("Can't find tied use"); 1023 } 1024 1025 // Now deal with inline asm by parsing the operand group descriptor flags. 1026 // Find the beginning of each operand group. 1027 SmallVector<unsigned, 8> GroupIdx; 1028 unsigned OpIdxGroup = ~0u; 1029 unsigned NumOps; 1030 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1031 i += NumOps) { 1032 const MachineOperand &FlagMO = getOperand(i); 1033 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1034 unsigned CurGroup = GroupIdx.size(); 1035 GroupIdx.push_back(i); 1036 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1037 // OpIdx belongs to this operand group. 1038 if (OpIdx > i && OpIdx < i + NumOps) 1039 OpIdxGroup = CurGroup; 1040 unsigned TiedGroup; 1041 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1042 continue; 1043 // Operands in this group are tied to operands in TiedGroup which must be 1044 // earlier. Find the number of operands between the two groups. 1045 unsigned Delta = i - GroupIdx[TiedGroup]; 1046 1047 // OpIdx is a use tied to TiedGroup. 1048 if (OpIdxGroup == CurGroup) 1049 return OpIdx - Delta; 1050 1051 // OpIdx is a def tied to this use group. 1052 if (OpIdxGroup == TiedGroup) 1053 return OpIdx + Delta; 1054 } 1055 llvm_unreachable("Invalid tied operand on inline asm"); 1056 } 1057 1058 /// clearKillInfo - Clears kill flags on all operands. 1059 /// 1060 void MachineInstr::clearKillInfo() { 1061 for (MachineOperand &MO : operands()) { 1062 if (MO.isReg() && MO.isUse()) 1063 MO.setIsKill(false); 1064 } 1065 } 1066 1067 void MachineInstr::substituteRegister(unsigned FromReg, unsigned ToReg, 1068 unsigned SubIdx, 1069 const TargetRegisterInfo &RegInfo) { 1070 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1071 if (SubIdx) 1072 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1073 for (MachineOperand &MO : operands()) { 1074 if (!MO.isReg() || MO.getReg() != FromReg) 1075 continue; 1076 MO.substPhysReg(ToReg, RegInfo); 1077 } 1078 } else { 1079 for (MachineOperand &MO : operands()) { 1080 if (!MO.isReg() || MO.getReg() != FromReg) 1081 continue; 1082 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1083 } 1084 } 1085 } 1086 1087 /// isSafeToMove - Return true if it is safe to move this instruction. If 1088 /// SawStore is set to true, it means that there is a store (or call) between 1089 /// the instruction's location and its intended destination. 1090 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const { 1091 // Ignore stuff that we obviously can't move. 1092 // 1093 // Treat volatile loads as stores. This is not strictly necessary for 1094 // volatiles, but it is required for atomic loads. It is not allowed to move 1095 // a load across an atomic load with Ordering > Monotonic. 1096 if (mayStore() || isCall() || isPHI() || 1097 (mayLoad() && hasOrderedMemoryRef())) { 1098 SawStore = true; 1099 return false; 1100 } 1101 1102 if (isPosition() || isDebugInstr() || isTerminator() || 1103 hasUnmodeledSideEffects()) 1104 return false; 1105 1106 // See if this instruction does a load. If so, we have to guarantee that the 1107 // loaded value doesn't change between the load and the its intended 1108 // destination. The check for isInvariantLoad gives the targe the chance to 1109 // classify the load as always returning a constant, e.g. a constant pool 1110 // load. 1111 if (mayLoad() && !isDereferenceableInvariantLoad(AA)) 1112 // Otherwise, this is a real load. If there is a store between the load and 1113 // end of block, we can't move it. 1114 return !SawStore; 1115 1116 return true; 1117 } 1118 1119 bool MachineInstr::mayAlias(AliasAnalysis *AA, MachineInstr &Other, 1120 bool UseTBAA) { 1121 const MachineFunction *MF = getMF(); 1122 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1123 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1124 1125 // If neither instruction stores to memory, they can't alias in any 1126 // meaningful way, even if they read from the same address. 1127 if (!mayStore() && !Other.mayStore()) 1128 return false; 1129 1130 // Let the target decide if memory accesses cannot possibly overlap. 1131 if (TII->areMemAccessesTriviallyDisjoint(*this, Other, AA)) 1132 return false; 1133 1134 // FIXME: Need to handle multiple memory operands to support all targets. 1135 if (!hasOneMemOperand() || !Other.hasOneMemOperand()) 1136 return true; 1137 1138 MachineMemOperand *MMOa = *memoperands_begin(); 1139 MachineMemOperand *MMOb = *Other.memoperands_begin(); 1140 1141 // The following interface to AA is fashioned after DAGCombiner::isAlias 1142 // and operates with MachineMemOperand offset with some important 1143 // assumptions: 1144 // - LLVM fundamentally assumes flat address spaces. 1145 // - MachineOperand offset can *only* result from legalization and 1146 // cannot affect queries other than the trivial case of overlap 1147 // checking. 1148 // - These offsets never wrap and never step outside 1149 // of allocated objects. 1150 // - There should never be any negative offsets here. 1151 // 1152 // FIXME: Modify API to hide this math from "user" 1153 // Even before we go to AA we can reason locally about some 1154 // memory objects. It can save compile time, and possibly catch some 1155 // corner cases not currently covered. 1156 1157 int64_t OffsetA = MMOa->getOffset(); 1158 int64_t OffsetB = MMOb->getOffset(); 1159 1160 int64_t MinOffset = std::min(OffsetA, OffsetB); 1161 int64_t WidthA = MMOa->getSize(); 1162 int64_t WidthB = MMOb->getSize(); 1163 const Value *ValA = MMOa->getValue(); 1164 const Value *ValB = MMOb->getValue(); 1165 bool SameVal = (ValA && ValB && (ValA == ValB)); 1166 if (!SameVal) { 1167 const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); 1168 const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); 1169 if (PSVa && ValB && !PSVa->mayAlias(&MFI)) 1170 return false; 1171 if (PSVb && ValA && !PSVb->mayAlias(&MFI)) 1172 return false; 1173 if (PSVa && PSVb && (PSVa == PSVb)) 1174 SameVal = true; 1175 } 1176 1177 if (SameVal) { 1178 int64_t MaxOffset = std::max(OffsetA, OffsetB); 1179 int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB; 1180 return (MinOffset + LowWidth > MaxOffset); 1181 } 1182 1183 if (!AA) 1184 return true; 1185 1186 if (!ValA || !ValB) 1187 return true; 1188 1189 assert((OffsetA >= 0) && "Negative MachineMemOperand offset"); 1190 assert((OffsetB >= 0) && "Negative MachineMemOperand offset"); 1191 1192 int64_t Overlapa = WidthA + OffsetA - MinOffset; 1193 int64_t Overlapb = WidthB + OffsetB - MinOffset; 1194 1195 AliasResult AAResult = AA->alias( 1196 MemoryLocation(ValA, Overlapa, 1197 UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 1198 MemoryLocation(ValB, Overlapb, 1199 UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 1200 1201 return (AAResult != NoAlias); 1202 } 1203 1204 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1205 /// or volatile memory reference, or if the information describing the memory 1206 /// reference is not available. Return false if it is known to have no ordered 1207 /// memory references. 1208 bool MachineInstr::hasOrderedMemoryRef() const { 1209 // An instruction known never to access memory won't have a volatile access. 1210 if (!mayStore() && 1211 !mayLoad() && 1212 !isCall() && 1213 !hasUnmodeledSideEffects()) 1214 return false; 1215 1216 // Otherwise, if the instruction has no memory reference information, 1217 // conservatively assume it wasn't preserved. 1218 if (memoperands_empty()) 1219 return true; 1220 1221 // Check if any of our memory operands are ordered. 1222 return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) { 1223 return !MMO->isUnordered(); 1224 }); 1225 } 1226 1227 /// isDereferenceableInvariantLoad - Return true if this instruction will never 1228 /// trap and is loading from a location whose value is invariant across a run of 1229 /// this function. 1230 bool MachineInstr::isDereferenceableInvariantLoad(AliasAnalysis *AA) const { 1231 // If the instruction doesn't load at all, it isn't an invariant load. 1232 if (!mayLoad()) 1233 return false; 1234 1235 // If the instruction has lost its memoperands, conservatively assume that 1236 // it may not be an invariant load. 1237 if (memoperands_empty()) 1238 return false; 1239 1240 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); 1241 1242 for (MachineMemOperand *MMO : memoperands()) { 1243 if (MMO->isVolatile()) return false; 1244 if (MMO->isStore()) return false; 1245 if (MMO->isInvariant() && MMO->isDereferenceable()) 1246 continue; 1247 1248 // A load from a constant PseudoSourceValue is invariant. 1249 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) 1250 if (PSV->isConstant(&MFI)) 1251 continue; 1252 1253 if (const Value *V = MMO->getValue()) { 1254 // If we have an AliasAnalysis, ask it whether the memory is constant. 1255 if (AA && 1256 AA->pointsToConstantMemory( 1257 MemoryLocation(V, MMO->getSize(), MMO->getAAInfo()))) 1258 continue; 1259 } 1260 1261 // Otherwise assume conservatively. 1262 return false; 1263 } 1264 1265 // Everything checks out. 1266 return true; 1267 } 1268 1269 /// isConstantValuePHI - If the specified instruction is a PHI that always 1270 /// merges together the same virtual register, return the register, otherwise 1271 /// return 0. 1272 unsigned MachineInstr::isConstantValuePHI() const { 1273 if (!isPHI()) 1274 return 0; 1275 assert(getNumOperands() >= 3 && 1276 "It's illegal to have a PHI without source operands"); 1277 1278 unsigned Reg = getOperand(1).getReg(); 1279 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1280 if (getOperand(i).getReg() != Reg) 1281 return 0; 1282 return Reg; 1283 } 1284 1285 bool MachineInstr::hasUnmodeledSideEffects() const { 1286 if (hasProperty(MCID::UnmodeledSideEffects)) 1287 return true; 1288 if (isInlineAsm()) { 1289 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1290 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1291 return true; 1292 } 1293 1294 return false; 1295 } 1296 1297 bool MachineInstr::isLoadFoldBarrier() const { 1298 return mayStore() || isCall() || hasUnmodeledSideEffects(); 1299 } 1300 1301 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1302 /// 1303 bool MachineInstr::allDefsAreDead() const { 1304 for (const MachineOperand &MO : operands()) { 1305 if (!MO.isReg() || MO.isUse()) 1306 continue; 1307 if (!MO.isDead()) 1308 return false; 1309 } 1310 return true; 1311 } 1312 1313 /// copyImplicitOps - Copy implicit register operands from specified 1314 /// instruction to this instruction. 1315 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1316 const MachineInstr &MI) { 1317 for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands(); 1318 i != e; ++i) { 1319 const MachineOperand &MO = MI.getOperand(i); 1320 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1321 addOperand(MF, MO); 1322 } 1323 } 1324 1325 bool MachineInstr::hasComplexRegisterTies() const { 1326 const MCInstrDesc &MCID = getDesc(); 1327 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 1328 const auto &Operand = getOperand(I); 1329 if (!Operand.isReg() || Operand.isDef()) 1330 // Ignore the defined registers as MCID marks only the uses as tied. 1331 continue; 1332 int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO); 1333 int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1; 1334 if (ExpectedTiedIdx != TiedIdx) 1335 return true; 1336 } 1337 return false; 1338 } 1339 1340 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, 1341 const MachineRegisterInfo &MRI) const { 1342 const MachineOperand &Op = getOperand(OpIdx); 1343 if (!Op.isReg()) 1344 return LLT{}; 1345 1346 if (isVariadic() || OpIdx >= getNumExplicitOperands()) 1347 return MRI.getType(Op.getReg()); 1348 1349 auto &OpInfo = getDesc().OpInfo[OpIdx]; 1350 if (!OpInfo.isGenericType()) 1351 return MRI.getType(Op.getReg()); 1352 1353 if (PrintedTypes[OpInfo.getGenericTypeIndex()]) 1354 return LLT{}; 1355 1356 LLT TypeToPrint = MRI.getType(Op.getReg()); 1357 // Don't mark the type index printed if it wasn't actually printed: maybe 1358 // another operand with the same type index has an actual type attached: 1359 if (TypeToPrint.isValid()) 1360 PrintedTypes.set(OpInfo.getGenericTypeIndex()); 1361 return TypeToPrint; 1362 } 1363 1364 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1365 LLVM_DUMP_METHOD void MachineInstr::dump() const { 1366 dbgs() << " "; 1367 print(dbgs()); 1368 } 1369 #endif 1370 1371 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers, 1372 bool SkipDebugLoc, bool AddNewLine, 1373 const TargetInstrInfo *TII) const { 1374 const Module *M = nullptr; 1375 const Function *F = nullptr; 1376 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1377 F = &MF->getFunction(); 1378 M = F->getParent(); 1379 if (!TII) 1380 TII = MF->getSubtarget().getInstrInfo(); 1381 } 1382 1383 ModuleSlotTracker MST(M); 1384 if (F) 1385 MST.incorporateFunction(*F); 1386 print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, TII); 1387 } 1388 1389 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1390 bool IsStandalone, bool SkipOpers, bool SkipDebugLoc, 1391 bool AddNewLine, const TargetInstrInfo *TII) const { 1392 // We can be a bit tidier if we know the MachineFunction. 1393 const MachineFunction *MF = nullptr; 1394 const TargetRegisterInfo *TRI = nullptr; 1395 const MachineRegisterInfo *MRI = nullptr; 1396 const TargetIntrinsicInfo *IntrinsicInfo = nullptr; 1397 tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII); 1398 1399 if (isCFIInstruction()) 1400 assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction"); 1401 1402 SmallBitVector PrintedTypes(8); 1403 bool ShouldPrintRegisterTies = hasComplexRegisterTies(); 1404 auto getTiedOperandIdx = [&](unsigned OpIdx) { 1405 if (!ShouldPrintRegisterTies) 1406 return 0U; 1407 const MachineOperand &MO = getOperand(OpIdx); 1408 if (MO.isReg() && MO.isTied() && !MO.isDef()) 1409 return findTiedOperandIdx(OpIdx); 1410 return 0U; 1411 }; 1412 unsigned StartOp = 0; 1413 unsigned e = getNumOperands(); 1414 1415 // Print explicitly defined operands on the left of an assignment syntax. 1416 while (StartOp < e) { 1417 const MachineOperand &MO = getOperand(StartOp); 1418 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 1419 break; 1420 1421 if (StartOp != 0) 1422 OS << ", "; 1423 1424 LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{}; 1425 unsigned TiedOperandIdx = getTiedOperandIdx(StartOp); 1426 MO.print(OS, MST, TypeToPrint, /*PrintDef=*/false, IsStandalone, 1427 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1428 ++StartOp; 1429 } 1430 1431 if (StartOp != 0) 1432 OS << " = "; 1433 1434 if (getFlag(MachineInstr::FrameSetup)) 1435 OS << "frame-setup "; 1436 if (getFlag(MachineInstr::FrameDestroy)) 1437 OS << "frame-destroy "; 1438 if (getFlag(MachineInstr::FmNoNans)) 1439 OS << "nnan "; 1440 if (getFlag(MachineInstr::FmNoInfs)) 1441 OS << "ninf "; 1442 if (getFlag(MachineInstr::FmNsz)) 1443 OS << "nsz "; 1444 if (getFlag(MachineInstr::FmArcp)) 1445 OS << "arcp "; 1446 if (getFlag(MachineInstr::FmContract)) 1447 OS << "contract "; 1448 if (getFlag(MachineInstr::FmAfn)) 1449 OS << "afn "; 1450 if (getFlag(MachineInstr::FmReassoc)) 1451 OS << "reassoc "; 1452 1453 // Print the opcode name. 1454 if (TII) 1455 OS << TII->getName(getOpcode()); 1456 else 1457 OS << "UNKNOWN"; 1458 1459 if (SkipOpers) 1460 return; 1461 1462 // Print the rest of the operands. 1463 bool FirstOp = true; 1464 unsigned AsmDescOp = ~0u; 1465 unsigned AsmOpCount = 0; 1466 1467 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1468 // Print asm string. 1469 OS << " "; 1470 const unsigned OpIdx = InlineAsm::MIOp_AsmString; 1471 LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{}; 1472 unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx); 1473 getOperand(OpIdx).print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone, 1474 ShouldPrintRegisterTies, TiedOperandIdx, TRI, 1475 IntrinsicInfo); 1476 1477 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1478 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1479 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1480 OS << " [sideeffect]"; 1481 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1482 OS << " [mayload]"; 1483 if (ExtraInfo & InlineAsm::Extra_MayStore) 1484 OS << " [maystore]"; 1485 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 1486 OS << " [isconvergent]"; 1487 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1488 OS << " [alignstack]"; 1489 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1490 OS << " [attdialect]"; 1491 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1492 OS << " [inteldialect]"; 1493 1494 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1495 FirstOp = false; 1496 } 1497 1498 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1499 const MachineOperand &MO = getOperand(i); 1500 1501 if (FirstOp) FirstOp = false; else OS << ","; 1502 OS << " "; 1503 1504 if (isDebugValue() && MO.isMetadata()) { 1505 // Pretty print DBG_VALUE instructions. 1506 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1507 if (DIV && !DIV->getName().empty()) 1508 OS << "!\"" << DIV->getName() << '\"'; 1509 else { 1510 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1511 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1512 MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone, 1513 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1514 } 1515 } else if (isDebugLabel() && MO.isMetadata()) { 1516 // Pretty print DBG_LABEL instructions. 1517 auto *DIL = dyn_cast<DILabel>(MO.getMetadata()); 1518 if (DIL && !DIL->getName().empty()) 1519 OS << "\"" << DIL->getName() << '\"'; 1520 else { 1521 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1522 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1523 MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone, 1524 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1525 } 1526 } else if (i == AsmDescOp && MO.isImm()) { 1527 // Pretty print the inline asm operand descriptor. 1528 OS << '$' << AsmOpCount++; 1529 unsigned Flag = MO.getImm(); 1530 switch (InlineAsm::getKind(Flag)) { 1531 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1532 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1533 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1534 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1535 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1536 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1537 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1538 } 1539 1540 unsigned RCID = 0; 1541 if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) && 1542 InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1543 if (TRI) { 1544 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1545 } else 1546 OS << ":RC" << RCID; 1547 } 1548 1549 if (InlineAsm::isMemKind(Flag)) { 1550 unsigned MCID = InlineAsm::getMemoryConstraintID(Flag); 1551 switch (MCID) { 1552 case InlineAsm::Constraint_es: OS << ":es"; break; 1553 case InlineAsm::Constraint_i: OS << ":i"; break; 1554 case InlineAsm::Constraint_m: OS << ":m"; break; 1555 case InlineAsm::Constraint_o: OS << ":o"; break; 1556 case InlineAsm::Constraint_v: OS << ":v"; break; 1557 case InlineAsm::Constraint_Q: OS << ":Q"; break; 1558 case InlineAsm::Constraint_R: OS << ":R"; break; 1559 case InlineAsm::Constraint_S: OS << ":S"; break; 1560 case InlineAsm::Constraint_T: OS << ":T"; break; 1561 case InlineAsm::Constraint_Um: OS << ":Um"; break; 1562 case InlineAsm::Constraint_Un: OS << ":Un"; break; 1563 case InlineAsm::Constraint_Uq: OS << ":Uq"; break; 1564 case InlineAsm::Constraint_Us: OS << ":Us"; break; 1565 case InlineAsm::Constraint_Ut: OS << ":Ut"; break; 1566 case InlineAsm::Constraint_Uv: OS << ":Uv"; break; 1567 case InlineAsm::Constraint_Uy: OS << ":Uy"; break; 1568 case InlineAsm::Constraint_X: OS << ":X"; break; 1569 case InlineAsm::Constraint_Z: OS << ":Z"; break; 1570 case InlineAsm::Constraint_ZC: OS << ":ZC"; break; 1571 case InlineAsm::Constraint_Zy: OS << ":Zy"; break; 1572 default: OS << ":?"; break; 1573 } 1574 } 1575 1576 unsigned TiedTo = 0; 1577 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1578 OS << " tiedto:$" << TiedTo; 1579 1580 OS << ']'; 1581 1582 // Compute the index of the next operand descriptor. 1583 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1584 } else { 1585 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1586 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1587 if (MO.isImm() && isOperandSubregIdx(i)) 1588 MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI); 1589 else 1590 MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone, 1591 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1592 } 1593 } 1594 1595 if (!SkipDebugLoc) { 1596 if (const DebugLoc &DL = getDebugLoc()) { 1597 if (!FirstOp) 1598 OS << ','; 1599 OS << " debug-location "; 1600 DL->printAsOperand(OS, MST); 1601 } 1602 } 1603 1604 if (!memoperands_empty()) { 1605 SmallVector<StringRef, 0> SSNs; 1606 const LLVMContext *Context = nullptr; 1607 std::unique_ptr<LLVMContext> CtxPtr; 1608 const MachineFrameInfo *MFI = nullptr; 1609 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1610 MFI = &MF->getFrameInfo(); 1611 Context = &MF->getFunction().getContext(); 1612 } else { 1613 CtxPtr = llvm::make_unique<LLVMContext>(); 1614 Context = CtxPtr.get(); 1615 } 1616 1617 OS << " :: "; 1618 bool NeedComma = false; 1619 for (const MachineMemOperand *Op : memoperands()) { 1620 if (NeedComma) 1621 OS << ", "; 1622 Op->print(OS, MST, SSNs, *Context, MFI, TII); 1623 NeedComma = true; 1624 } 1625 } 1626 1627 if (SkipDebugLoc) 1628 return; 1629 1630 bool HaveSemi = false; 1631 1632 // Print debug location information. 1633 if (const DebugLoc &DL = getDebugLoc()) { 1634 if (!HaveSemi) { 1635 OS << ';'; 1636 HaveSemi = true; 1637 } 1638 OS << ' '; 1639 DL.print(OS); 1640 } 1641 1642 // Print extra comments for DEBUG_VALUE. 1643 if (isDebugValue() && getOperand(e - 2).isMetadata()) { 1644 if (!HaveSemi) { 1645 OS << ";"; 1646 HaveSemi = true; 1647 } 1648 auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata()); 1649 OS << " line no:" << DV->getLine(); 1650 if (auto *InlinedAt = debugLoc->getInlinedAt()) { 1651 DebugLoc InlinedAtDL(InlinedAt); 1652 if (InlinedAtDL && MF) { 1653 OS << " inlined @[ "; 1654 InlinedAtDL.print(OS); 1655 OS << " ]"; 1656 } 1657 } 1658 if (isIndirectDebugValue()) 1659 OS << " indirect"; 1660 } 1661 // TODO: DBG_LABEL 1662 1663 if (AddNewLine) 1664 OS << '\n'; 1665 } 1666 1667 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 1668 const TargetRegisterInfo *RegInfo, 1669 bool AddIfNotFound) { 1670 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1671 bool hasAliases = isPhysReg && 1672 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1673 bool Found = false; 1674 SmallVector<unsigned,4> DeadOps; 1675 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1676 MachineOperand &MO = getOperand(i); 1677 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1678 continue; 1679 1680 // DEBUG_VALUE nodes do not contribute to code generation and should 1681 // always be ignored. Failure to do so may result in trying to modify 1682 // KILL flags on DEBUG_VALUE nodes. 1683 if (MO.isDebug()) 1684 continue; 1685 1686 unsigned Reg = MO.getReg(); 1687 if (!Reg) 1688 continue; 1689 1690 if (Reg == IncomingReg) { 1691 if (!Found) { 1692 if (MO.isKill()) 1693 // The register is already marked kill. 1694 return true; 1695 if (isPhysReg && isRegTiedToDefOperand(i)) 1696 // Two-address uses of physregs must not be marked kill. 1697 return true; 1698 MO.setIsKill(); 1699 Found = true; 1700 } 1701 } else if (hasAliases && MO.isKill() && 1702 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1703 // A super-register kill already exists. 1704 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1705 return true; 1706 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1707 DeadOps.push_back(i); 1708 } 1709 } 1710 1711 // Trim unneeded kill operands. 1712 while (!DeadOps.empty()) { 1713 unsigned OpIdx = DeadOps.back(); 1714 if (getOperand(OpIdx).isImplicit()) 1715 RemoveOperand(OpIdx); 1716 else 1717 getOperand(OpIdx).setIsKill(false); 1718 DeadOps.pop_back(); 1719 } 1720 1721 // If not found, this means an alias of one of the operands is killed. Add a 1722 // new implicit operand if required. 1723 if (!Found && AddIfNotFound) { 1724 addOperand(MachineOperand::CreateReg(IncomingReg, 1725 false /*IsDef*/, 1726 true /*IsImp*/, 1727 true /*IsKill*/)); 1728 return true; 1729 } 1730 return Found; 1731 } 1732 1733 void MachineInstr::clearRegisterKills(unsigned Reg, 1734 const TargetRegisterInfo *RegInfo) { 1735 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 1736 RegInfo = nullptr; 1737 for (MachineOperand &MO : operands()) { 1738 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1739 continue; 1740 unsigned OpReg = MO.getReg(); 1741 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) 1742 MO.setIsKill(false); 1743 } 1744 } 1745 1746 bool MachineInstr::addRegisterDead(unsigned Reg, 1747 const TargetRegisterInfo *RegInfo, 1748 bool AddIfNotFound) { 1749 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg); 1750 bool hasAliases = isPhysReg && 1751 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 1752 bool Found = false; 1753 SmallVector<unsigned,4> DeadOps; 1754 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1755 MachineOperand &MO = getOperand(i); 1756 if (!MO.isReg() || !MO.isDef()) 1757 continue; 1758 unsigned MOReg = MO.getReg(); 1759 if (!MOReg) 1760 continue; 1761 1762 if (MOReg == Reg) { 1763 MO.setIsDead(); 1764 Found = true; 1765 } else if (hasAliases && MO.isDead() && 1766 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1767 // There exists a super-register that's marked dead. 1768 if (RegInfo->isSuperRegister(Reg, MOReg)) 1769 return true; 1770 if (RegInfo->isSubRegister(Reg, MOReg)) 1771 DeadOps.push_back(i); 1772 } 1773 } 1774 1775 // Trim unneeded dead operands. 1776 while (!DeadOps.empty()) { 1777 unsigned OpIdx = DeadOps.back(); 1778 if (getOperand(OpIdx).isImplicit()) 1779 RemoveOperand(OpIdx); 1780 else 1781 getOperand(OpIdx).setIsDead(false); 1782 DeadOps.pop_back(); 1783 } 1784 1785 // If not found, this means an alias of one of the operands is dead. Add a 1786 // new implicit operand if required. 1787 if (Found || !AddIfNotFound) 1788 return Found; 1789 1790 addOperand(MachineOperand::CreateReg(Reg, 1791 true /*IsDef*/, 1792 true /*IsImp*/, 1793 false /*IsKill*/, 1794 true /*IsDead*/)); 1795 return true; 1796 } 1797 1798 void MachineInstr::clearRegisterDeads(unsigned Reg) { 1799 for (MachineOperand &MO : operands()) { 1800 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) 1801 continue; 1802 MO.setIsDead(false); 1803 } 1804 } 1805 1806 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) { 1807 for (MachineOperand &MO : operands()) { 1808 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) 1809 continue; 1810 MO.setIsUndef(IsUndef); 1811 } 1812 } 1813 1814 void MachineInstr::addRegisterDefined(unsigned Reg, 1815 const TargetRegisterInfo *RegInfo) { 1816 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1817 MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo); 1818 if (MO) 1819 return; 1820 } else { 1821 for (const MachineOperand &MO : operands()) { 1822 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 1823 MO.getSubReg() == 0) 1824 return; 1825 } 1826 } 1827 addOperand(MachineOperand::CreateReg(Reg, 1828 true /*IsDef*/, 1829 true /*IsImp*/)); 1830 } 1831 1832 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 1833 const TargetRegisterInfo &TRI) { 1834 bool HasRegMask = false; 1835 for (MachineOperand &MO : operands()) { 1836 if (MO.isRegMask()) { 1837 HasRegMask = true; 1838 continue; 1839 } 1840 if (!MO.isReg() || !MO.isDef()) continue; 1841 unsigned Reg = MO.getReg(); 1842 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 1843 // If there are no uses, including partial uses, the def is dead. 1844 if (llvm::none_of(UsedRegs, 1845 [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); })) 1846 MO.setIsDead(); 1847 } 1848 1849 // This is a call with a register mask operand. 1850 // Mask clobbers are always dead, so add defs for the non-dead defines. 1851 if (HasRegMask) 1852 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1853 I != E; ++I) 1854 addRegisterDefined(*I, &TRI); 1855 } 1856 1857 unsigned 1858 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 1859 // Build up a buffer of hash code components. 1860 SmallVector<size_t, 8> HashComponents; 1861 HashComponents.reserve(MI->getNumOperands() + 1); 1862 HashComponents.push_back(MI->getOpcode()); 1863 for (const MachineOperand &MO : MI->operands()) { 1864 if (MO.isReg() && MO.isDef() && 1865 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1866 continue; // Skip virtual register defs. 1867 1868 HashComponents.push_back(hash_value(MO)); 1869 } 1870 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 1871 } 1872 1873 void MachineInstr::emitError(StringRef Msg) const { 1874 // Find the source location cookie. 1875 unsigned LocCookie = 0; 1876 const MDNode *LocMD = nullptr; 1877 for (unsigned i = getNumOperands(); i != 0; --i) { 1878 if (getOperand(i-1).isMetadata() && 1879 (LocMD = getOperand(i-1).getMetadata()) && 1880 LocMD->getNumOperands() != 0) { 1881 if (const ConstantInt *CI = 1882 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 1883 LocCookie = CI->getZExtValue(); 1884 break; 1885 } 1886 } 1887 } 1888 1889 if (const MachineBasicBlock *MBB = getParent()) 1890 if (const MachineFunction *MF = MBB->getParent()) 1891 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 1892 report_fatal_error(Msg); 1893 } 1894 1895 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 1896 const MCInstrDesc &MCID, bool IsIndirect, 1897 unsigned Reg, const MDNode *Variable, 1898 const MDNode *Expr) { 1899 assert(isa<DILocalVariable>(Variable) && "not a variable"); 1900 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 1901 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 1902 "Expected inlined-at fields to agree"); 1903 auto MIB = BuildMI(MF, DL, MCID).addReg(Reg, RegState::Debug); 1904 if (IsIndirect) 1905 MIB.addImm(0U); 1906 else 1907 MIB.addReg(0U, RegState::Debug); 1908 return MIB.addMetadata(Variable).addMetadata(Expr); 1909 } 1910 1911 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 1912 const MCInstrDesc &MCID, bool IsIndirect, 1913 MachineOperand &MO, const MDNode *Variable, 1914 const MDNode *Expr) { 1915 assert(isa<DILocalVariable>(Variable) && "not a variable"); 1916 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 1917 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 1918 "Expected inlined-at fields to agree"); 1919 if (MO.isReg()) 1920 return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr); 1921 1922 auto MIB = BuildMI(MF, DL, MCID).add(MO); 1923 if (IsIndirect) 1924 MIB.addImm(0U); 1925 else 1926 MIB.addReg(0U, RegState::Debug); 1927 return MIB.addMetadata(Variable).addMetadata(Expr); 1928 } 1929 1930 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 1931 MachineBasicBlock::iterator I, 1932 const DebugLoc &DL, const MCInstrDesc &MCID, 1933 bool IsIndirect, unsigned Reg, 1934 const MDNode *Variable, const MDNode *Expr) { 1935 MachineFunction &MF = *BB.getParent(); 1936 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr); 1937 BB.insert(I, MI); 1938 return MachineInstrBuilder(MF, MI); 1939 } 1940 1941 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 1942 MachineBasicBlock::iterator I, 1943 const DebugLoc &DL, const MCInstrDesc &MCID, 1944 bool IsIndirect, MachineOperand &MO, 1945 const MDNode *Variable, const MDNode *Expr) { 1946 MachineFunction &MF = *BB.getParent(); 1947 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr); 1948 BB.insert(I, MI); 1949 return MachineInstrBuilder(MF, *MI); 1950 } 1951 1952 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot. 1953 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE. 1954 static const DIExpression *computeExprForSpill(const MachineInstr &MI) { 1955 assert(MI.getOperand(0).isReg() && "can't spill non-register"); 1956 assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) && 1957 "Expected inlined-at fields to agree"); 1958 1959 const DIExpression *Expr = MI.getDebugExpression(); 1960 if (MI.isIndirectDebugValue()) { 1961 assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset"); 1962 Expr = DIExpression::prepend(Expr, DIExpression::WithDeref); 1963 } 1964 return Expr; 1965 } 1966 1967 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB, 1968 MachineBasicBlock::iterator I, 1969 const MachineInstr &Orig, 1970 int FrameIndex) { 1971 const DIExpression *Expr = computeExprForSpill(Orig); 1972 return BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()) 1973 .addFrameIndex(FrameIndex) 1974 .addImm(0U) 1975 .addMetadata(Orig.getDebugVariable()) 1976 .addMetadata(Expr); 1977 } 1978 1979 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex) { 1980 const DIExpression *Expr = computeExprForSpill(Orig); 1981 Orig.getOperand(0).ChangeToFrameIndex(FrameIndex); 1982 Orig.getOperand(1).ChangeToImmediate(0U); 1983 Orig.getOperand(3).setMetadata(Expr); 1984 } 1985