xref: /llvm-project/llvm/lib/CodeGen/MachineInstr.cpp (revision be841f89d0014b1e0246a4feae941b2f74abd908)
1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Methods common to all machine instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MachineInstr.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/FoldingSet.h"
17 #include "llvm/ADT/Hashing.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallBitVector.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/Loads.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/Config/llvm-config.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DebugInfoMetadata.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/ModuleSlotTracker.h"
53 #include "llvm/IR/Operator.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/MC/MCInstrDesc.h"
57 #include "llvm/MC/MCRegisterInfo.h"
58 #include "llvm/MC/MCSymbol.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/LowLevelTypeImpl.h"
65 #include "llvm/Support/MathExtras.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetIntrinsicInfo.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include <algorithm>
70 #include <cassert>
71 #include <cstddef>
72 #include <cstdint>
73 #include <cstring>
74 #include <iterator>
75 #include <utility>
76 
77 using namespace llvm;
78 
79 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
80   if (const MachineBasicBlock *MBB = MI.getParent())
81     if (const MachineFunction *MF = MBB->getParent())
82       return MF;
83   return nullptr;
84 }
85 
86 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
87 // it.
88 static void tryToGetTargetInfo(const MachineInstr &MI,
89                                const TargetRegisterInfo *&TRI,
90                                const MachineRegisterInfo *&MRI,
91                                const TargetIntrinsicInfo *&IntrinsicInfo,
92                                const TargetInstrInfo *&TII,
93                                const MIRFormatter *&MIRF) {
94 
95   if (const MachineFunction *MF = getMFIfAvailable(MI)) {
96     TRI = MF->getSubtarget().getRegisterInfo();
97     MRI = &MF->getRegInfo();
98     IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
99     TII = MF->getSubtarget().getInstrInfo();
100     MIRF = MF->getTarget().getMIRFormatter();
101   }
102 }
103 
104 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
105   if (MCID->ImplicitDefs)
106     for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
107            ++ImpDefs)
108       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
109   if (MCID->ImplicitUses)
110     for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
111            ++ImpUses)
112       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
113 }
114 
115 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
116 /// implicit operands. It reserves space for the number of operands specified by
117 /// the MCInstrDesc.
118 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
119                            DebugLoc dl, bool NoImp)
120     : MCID(&tid), debugLoc(std::move(dl)) {
121   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
122 
123   // Reserve space for the expected number of operands.
124   if (unsigned NumOps = MCID->getNumOperands() +
125     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
126     CapOperands = OperandCapacity::get(NumOps);
127     Operands = MF.allocateOperandArray(CapOperands);
128   }
129 
130   if (!NoImp)
131     addImplicitDefUseOperands(MF);
132 }
133 
134 /// MachineInstr ctor - Copies MachineInstr arg exactly
135 ///
136 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
137     : MCID(&MI.getDesc()), Info(MI.Info), debugLoc(MI.getDebugLoc()) {
138   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
139 
140   CapOperands = OperandCapacity::get(MI.getNumOperands());
141   Operands = MF.allocateOperandArray(CapOperands);
142 
143   // Copy operands.
144   for (const MachineOperand &MO : MI.operands())
145     addOperand(MF, MO);
146 
147   // Copy all the sensible flags.
148   setFlags(MI.Flags);
149 }
150 
151 /// getRegInfo - If this instruction is embedded into a MachineFunction,
152 /// return the MachineRegisterInfo object for the current function, otherwise
153 /// return null.
154 MachineRegisterInfo *MachineInstr::getRegInfo() {
155   if (MachineBasicBlock *MBB = getParent())
156     return &MBB->getParent()->getRegInfo();
157   return nullptr;
158 }
159 
160 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
161 /// this instruction from their respective use lists.  This requires that the
162 /// operands already be on their use lists.
163 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
164   for (MachineOperand &MO : operands())
165     if (MO.isReg())
166       MRI.removeRegOperandFromUseList(&MO);
167 }
168 
169 /// AddRegOperandsToUseLists - Add all of the register operands in
170 /// this instruction from their respective use lists.  This requires that the
171 /// operands not be on their use lists yet.
172 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
173   for (MachineOperand &MO : operands())
174     if (MO.isReg())
175       MRI.addRegOperandToUseList(&MO);
176 }
177 
178 void MachineInstr::addOperand(const MachineOperand &Op) {
179   MachineBasicBlock *MBB = getParent();
180   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
181   MachineFunction *MF = MBB->getParent();
182   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
183   addOperand(*MF, Op);
184 }
185 
186 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
187 /// ranges. If MRI is non-null also update use-def chains.
188 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
189                          unsigned NumOps, MachineRegisterInfo *MRI) {
190   if (MRI)
191     return MRI->moveOperands(Dst, Src, NumOps);
192 
193   // MachineOperand is a trivially copyable type so we can just use memmove.
194   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
195 }
196 
197 /// addOperand - Add the specified operand to the instruction.  If it is an
198 /// implicit operand, it is added to the end of the operand list.  If it is
199 /// an explicit operand it is added at the end of the explicit operand list
200 /// (before the first implicit operand).
201 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
202   assert(MCID && "Cannot add operands before providing an instr descriptor");
203 
204   // Check if we're adding one of our existing operands.
205   if (&Op >= Operands && &Op < Operands + NumOperands) {
206     // This is unusual: MI->addOperand(MI->getOperand(i)).
207     // If adding Op requires reallocating or moving existing operands around,
208     // the Op reference could go stale. Support it by copying Op.
209     MachineOperand CopyOp(Op);
210     return addOperand(MF, CopyOp);
211   }
212 
213   // Find the insert location for the new operand.  Implicit registers go at
214   // the end, everything else goes before the implicit regs.
215   //
216   // FIXME: Allow mixed explicit and implicit operands on inline asm.
217   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
218   // implicit-defs, but they must not be moved around.  See the FIXME in
219   // InstrEmitter.cpp.
220   unsigned OpNo = getNumOperands();
221   bool isImpReg = Op.isReg() && Op.isImplicit();
222   if (!isImpReg && !isInlineAsm()) {
223     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
224       --OpNo;
225       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
226     }
227   }
228 
229 #ifndef NDEBUG
230   bool isDebugOp = Op.getType() == MachineOperand::MO_Metadata ||
231                    Op.getType() == MachineOperand::MO_MCSymbol;
232   // OpNo now points as the desired insertion point.  Unless this is a variadic
233   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
234   // RegMask operands go between the explicit and implicit operands.
235   assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
236           OpNo < MCID->getNumOperands() || isDebugOp) &&
237          "Trying to add an operand to a machine instr that is already done!");
238 #endif
239 
240   MachineRegisterInfo *MRI = getRegInfo();
241 
242   // Determine if the Operands array needs to be reallocated.
243   // Save the old capacity and operand array.
244   OperandCapacity OldCap = CapOperands;
245   MachineOperand *OldOperands = Operands;
246   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
247     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
248     Operands = MF.allocateOperandArray(CapOperands);
249     // Move the operands before the insertion point.
250     if (OpNo)
251       moveOperands(Operands, OldOperands, OpNo, MRI);
252   }
253 
254   // Move the operands following the insertion point.
255   if (OpNo != NumOperands)
256     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
257                  MRI);
258   ++NumOperands;
259 
260   // Deallocate the old operand array.
261   if (OldOperands != Operands && OldOperands)
262     MF.deallocateOperandArray(OldCap, OldOperands);
263 
264   // Copy Op into place. It still needs to be inserted into the MRI use lists.
265   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
266   NewMO->ParentMI = this;
267 
268   // When adding a register operand, tell MRI about it.
269   if (NewMO->isReg()) {
270     // Ensure isOnRegUseList() returns false, regardless of Op's status.
271     NewMO->Contents.Reg.Prev = nullptr;
272     // Ignore existing ties. This is not a property that can be copied.
273     NewMO->TiedTo = 0;
274     // Add the new operand to MRI, but only for instructions in an MBB.
275     if (MRI)
276       MRI->addRegOperandToUseList(NewMO);
277     // The MCID operand information isn't accurate until we start adding
278     // explicit operands. The implicit operands are added first, then the
279     // explicits are inserted before them.
280     if (!isImpReg) {
281       // Tie uses to defs as indicated in MCInstrDesc.
282       if (NewMO->isUse()) {
283         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
284         if (DefIdx != -1)
285           tieOperands(DefIdx, OpNo);
286       }
287       // If the register operand is flagged as early, mark the operand as such.
288       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
289         NewMO->setIsEarlyClobber(true);
290     }
291   }
292 }
293 
294 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
295 /// fewer operand than it started with.
296 ///
297 void MachineInstr::RemoveOperand(unsigned OpNo) {
298   assert(OpNo < getNumOperands() && "Invalid operand number");
299   untieRegOperand(OpNo);
300 
301 #ifndef NDEBUG
302   // Moving tied operands would break the ties.
303   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
304     if (Operands[i].isReg())
305       assert(!Operands[i].isTied() && "Cannot move tied operands");
306 #endif
307 
308   MachineRegisterInfo *MRI = getRegInfo();
309   if (MRI && Operands[OpNo].isReg())
310     MRI->removeRegOperandFromUseList(Operands + OpNo);
311 
312   // Don't call the MachineOperand destructor. A lot of this code depends on
313   // MachineOperand having a trivial destructor anyway, and adding a call here
314   // wouldn't make it 'destructor-correct'.
315 
316   if (unsigned N = NumOperands - 1 - OpNo)
317     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
318   --NumOperands;
319 }
320 
321 void MachineInstr::setExtraInfo(MachineFunction &MF,
322                                 ArrayRef<MachineMemOperand *> MMOs,
323                                 MCSymbol *PreInstrSymbol,
324                                 MCSymbol *PostInstrSymbol,
325                                 MDNode *HeapAllocMarker) {
326   bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
327   bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
328   bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
329   int NumPointers =
330       MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + HasHeapAllocMarker;
331 
332   // Drop all extra info if there is none.
333   if (NumPointers <= 0) {
334     Info.clear();
335     return;
336   }
337 
338   // If more than one pointer, then store out of line. Store heap alloc markers
339   // out of line because PointerSumType cannot hold more than 4 tag types with
340   // 32-bit pointers.
341   // FIXME: Maybe we should make the symbols in the extra info mutable?
342   else if (NumPointers > 1 || HasHeapAllocMarker) {
343     Info.set<EIIK_OutOfLine>(MF.createMIExtraInfo(
344         MMOs, PreInstrSymbol, PostInstrSymbol, HeapAllocMarker));
345     return;
346   }
347 
348   // Otherwise store the single pointer inline.
349   if (HasPreInstrSymbol)
350     Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol);
351   else if (HasPostInstrSymbol)
352     Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol);
353   else
354     Info.set<EIIK_MMO>(MMOs[0]);
355 }
356 
357 void MachineInstr::dropMemRefs(MachineFunction &MF) {
358   if (memoperands_empty())
359     return;
360 
361   setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(),
362                getHeapAllocMarker());
363 }
364 
365 void MachineInstr::setMemRefs(MachineFunction &MF,
366                               ArrayRef<MachineMemOperand *> MMOs) {
367   if (MMOs.empty()) {
368     dropMemRefs(MF);
369     return;
370   }
371 
372   setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(),
373                getHeapAllocMarker());
374 }
375 
376 void MachineInstr::addMemOperand(MachineFunction &MF,
377                                  MachineMemOperand *MO) {
378   SmallVector<MachineMemOperand *, 2> MMOs;
379   MMOs.append(memoperands_begin(), memoperands_end());
380   MMOs.push_back(MO);
381   setMemRefs(MF, MMOs);
382 }
383 
384 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) {
385   if (this == &MI)
386     // Nothing to do for a self-clone!
387     return;
388 
389   assert(&MF == MI.getMF() &&
390          "Invalid machine functions when cloning memory refrences!");
391   // See if we can just steal the extra info already allocated for the
392   // instruction. We can do this whenever the pre- and post-instruction symbols
393   // are the same (including null).
394   if (getPreInstrSymbol() == MI.getPreInstrSymbol() &&
395       getPostInstrSymbol() == MI.getPostInstrSymbol() &&
396       getHeapAllocMarker() == MI.getHeapAllocMarker()) {
397     Info = MI.Info;
398     return;
399   }
400 
401   // Otherwise, fall back on a copy-based clone.
402   setMemRefs(MF, MI.memoperands());
403 }
404 
405 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
406 /// identical.
407 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS,
408                              ArrayRef<MachineMemOperand *> RHS) {
409   if (LHS.size() != RHS.size())
410     return false;
411 
412   auto LHSPointees = make_pointee_range(LHS);
413   auto RHSPointees = make_pointee_range(RHS);
414   return std::equal(LHSPointees.begin(), LHSPointees.end(),
415                     RHSPointees.begin());
416 }
417 
418 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF,
419                                       ArrayRef<const MachineInstr *> MIs) {
420   // Try handling easy numbers of MIs with simpler mechanisms.
421   if (MIs.empty()) {
422     dropMemRefs(MF);
423     return;
424   }
425   if (MIs.size() == 1) {
426     cloneMemRefs(MF, *MIs[0]);
427     return;
428   }
429   // Because an empty memoperands list provides *no* information and must be
430   // handled conservatively (assuming the instruction can do anything), the only
431   // way to merge with it is to drop all other memoperands.
432   if (MIs[0]->memoperands_empty()) {
433     dropMemRefs(MF);
434     return;
435   }
436 
437   // Handle the general case.
438   SmallVector<MachineMemOperand *, 2> MergedMMOs;
439   // Start with the first instruction.
440   assert(&MF == MIs[0]->getMF() &&
441          "Invalid machine functions when cloning memory references!");
442   MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end());
443   // Now walk all the other instructions and accumulate any different MMOs.
444   for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) {
445     assert(&MF == MI.getMF() &&
446            "Invalid machine functions when cloning memory references!");
447 
448     // Skip MIs with identical operands to the first. This is a somewhat
449     // arbitrary hack but will catch common cases without being quadratic.
450     // TODO: We could fully implement merge semantics here if needed.
451     if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands()))
452       continue;
453 
454     // Because an empty memoperands list provides *no* information and must be
455     // handled conservatively (assuming the instruction can do anything), the
456     // only way to merge with it is to drop all other memoperands.
457     if (MI.memoperands_empty()) {
458       dropMemRefs(MF);
459       return;
460     }
461 
462     // Otherwise accumulate these into our temporary buffer of the merged state.
463     MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end());
464   }
465 
466   setMemRefs(MF, MergedMMOs);
467 }
468 
469 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
470   // Do nothing if old and new symbols are the same.
471   if (Symbol == getPreInstrSymbol())
472     return;
473 
474   // If there was only one symbol and we're removing it, just clear info.
475   if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) {
476     Info.clear();
477     return;
478   }
479 
480   setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(),
481                getHeapAllocMarker());
482 }
483 
484 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
485   // Do nothing if old and new symbols are the same.
486   if (Symbol == getPostInstrSymbol())
487     return;
488 
489   // If there was only one symbol and we're removing it, just clear info.
490   if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) {
491     Info.clear();
492     return;
493   }
494 
495   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol,
496                getHeapAllocMarker());
497 }
498 
499 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) {
500   // Do nothing if old and new symbols are the same.
501   if (Marker == getHeapAllocMarker())
502     return;
503 
504   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
505                Marker);
506 }
507 
508 void MachineInstr::cloneInstrSymbols(MachineFunction &MF,
509                                      const MachineInstr &MI) {
510   if (this == &MI)
511     // Nothing to do for a self-clone!
512     return;
513 
514   assert(&MF == MI.getMF() &&
515          "Invalid machine functions when cloning instruction symbols!");
516 
517   setPreInstrSymbol(MF, MI.getPreInstrSymbol());
518   setPostInstrSymbol(MF, MI.getPostInstrSymbol());
519   setHeapAllocMarker(MF, MI.getHeapAllocMarker());
520 }
521 
522 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
523   // For now, the just return the union of the flags. If the flags get more
524   // complicated over time, we might need more logic here.
525   return getFlags() | Other.getFlags();
526 }
527 
528 uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) {
529   uint16_t MIFlags = 0;
530   // Copy the wrapping flags.
531   if (const OverflowingBinaryOperator *OB =
532           dyn_cast<OverflowingBinaryOperator>(&I)) {
533     if (OB->hasNoSignedWrap())
534       MIFlags |= MachineInstr::MIFlag::NoSWrap;
535     if (OB->hasNoUnsignedWrap())
536       MIFlags |= MachineInstr::MIFlag::NoUWrap;
537   }
538 
539   // Copy the exact flag.
540   if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I))
541     if (PE->isExact())
542       MIFlags |= MachineInstr::MIFlag::IsExact;
543 
544   // Copy the fast-math flags.
545   if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) {
546     const FastMathFlags Flags = FP->getFastMathFlags();
547     if (Flags.noNaNs())
548       MIFlags |= MachineInstr::MIFlag::FmNoNans;
549     if (Flags.noInfs())
550       MIFlags |= MachineInstr::MIFlag::FmNoInfs;
551     if (Flags.noSignedZeros())
552       MIFlags |= MachineInstr::MIFlag::FmNsz;
553     if (Flags.allowReciprocal())
554       MIFlags |= MachineInstr::MIFlag::FmArcp;
555     if (Flags.allowContract())
556       MIFlags |= MachineInstr::MIFlag::FmContract;
557     if (Flags.approxFunc())
558       MIFlags |= MachineInstr::MIFlag::FmAfn;
559     if (Flags.allowReassoc())
560       MIFlags |= MachineInstr::MIFlag::FmReassoc;
561   }
562 
563   return MIFlags;
564 }
565 
566 void MachineInstr::copyIRFlags(const Instruction &I) {
567   Flags = copyFlagsFromInstruction(I);
568 }
569 
570 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const {
571   assert(!isBundledWithPred() && "Must be called on bundle header");
572   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
573     if (MII->getDesc().getFlags() & Mask) {
574       if (Type == AnyInBundle)
575         return true;
576     } else {
577       if (Type == AllInBundle && !MII->isBundle())
578         return false;
579     }
580     // This was the last instruction in the bundle.
581     if (!MII->isBundledWithSucc())
582       return Type == AllInBundle;
583   }
584 }
585 
586 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
587                                  MICheckType Check) const {
588   // If opcodes or number of operands are not the same then the two
589   // instructions are obviously not identical.
590   if (Other.getOpcode() != getOpcode() ||
591       Other.getNumOperands() != getNumOperands())
592     return false;
593 
594   if (isBundle()) {
595     // We have passed the test above that both instructions have the same
596     // opcode, so we know that both instructions are bundles here. Let's compare
597     // MIs inside the bundle.
598     assert(Other.isBundle() && "Expected that both instructions are bundles.");
599     MachineBasicBlock::const_instr_iterator I1 = getIterator();
600     MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
601     // Loop until we analysed the last intruction inside at least one of the
602     // bundles.
603     while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
604       ++I1;
605       ++I2;
606       if (!I1->isIdenticalTo(*I2, Check))
607         return false;
608     }
609     // If we've reached the end of just one of the two bundles, but not both,
610     // the instructions are not identical.
611     if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
612       return false;
613   }
614 
615   // Check operands to make sure they match.
616   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
617     const MachineOperand &MO = getOperand(i);
618     const MachineOperand &OMO = Other.getOperand(i);
619     if (!MO.isReg()) {
620       if (!MO.isIdenticalTo(OMO))
621         return false;
622       continue;
623     }
624 
625     // Clients may or may not want to ignore defs when testing for equality.
626     // For example, machine CSE pass only cares about finding common
627     // subexpressions, so it's safe to ignore virtual register defs.
628     if (MO.isDef()) {
629       if (Check == IgnoreDefs)
630         continue;
631       else if (Check == IgnoreVRegDefs) {
632         if (!Register::isVirtualRegister(MO.getReg()) ||
633             !Register::isVirtualRegister(OMO.getReg()))
634           if (!MO.isIdenticalTo(OMO))
635             return false;
636       } else {
637         if (!MO.isIdenticalTo(OMO))
638           return false;
639         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
640           return false;
641       }
642     } else {
643       if (!MO.isIdenticalTo(OMO))
644         return false;
645       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
646         return false;
647     }
648   }
649   // If DebugLoc does not match then two debug instructions are not identical.
650   if (isDebugInstr())
651     if (getDebugLoc() && Other.getDebugLoc() &&
652         getDebugLoc() != Other.getDebugLoc())
653       return false;
654   return true;
655 }
656 
657 const MachineFunction *MachineInstr::getMF() const {
658   return getParent()->getParent();
659 }
660 
661 MachineInstr *MachineInstr::removeFromParent() {
662   assert(getParent() && "Not embedded in a basic block!");
663   return getParent()->remove(this);
664 }
665 
666 MachineInstr *MachineInstr::removeFromBundle() {
667   assert(getParent() && "Not embedded in a basic block!");
668   return getParent()->remove_instr(this);
669 }
670 
671 void MachineInstr::eraseFromParent() {
672   assert(getParent() && "Not embedded in a basic block!");
673   getParent()->erase(this);
674 }
675 
676 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
677   assert(getParent() && "Not embedded in a basic block!");
678   MachineBasicBlock *MBB = getParent();
679   MachineFunction *MF = MBB->getParent();
680   assert(MF && "Not embedded in a function!");
681 
682   MachineInstr *MI = (MachineInstr *)this;
683   MachineRegisterInfo &MRI = MF->getRegInfo();
684 
685   for (const MachineOperand &MO : MI->operands()) {
686     if (!MO.isReg() || !MO.isDef())
687       continue;
688     Register Reg = MO.getReg();
689     if (!Reg.isVirtual())
690       continue;
691     MRI.markUsesInDebugValueAsUndef(Reg);
692   }
693   MI->eraseFromParent();
694 }
695 
696 void MachineInstr::eraseFromBundle() {
697   assert(getParent() && "Not embedded in a basic block!");
698   getParent()->erase_instr(this);
699 }
700 
701 unsigned MachineInstr::getNumExplicitOperands() const {
702   unsigned NumOperands = MCID->getNumOperands();
703   if (!MCID->isVariadic())
704     return NumOperands;
705 
706   for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) {
707     const MachineOperand &MO = getOperand(I);
708     // The operands must always be in the following order:
709     // - explicit reg defs,
710     // - other explicit operands (reg uses, immediates, etc.),
711     // - implicit reg defs
712     // - implicit reg uses
713     if (MO.isReg() && MO.isImplicit())
714       break;
715     ++NumOperands;
716   }
717   return NumOperands;
718 }
719 
720 unsigned MachineInstr::getNumExplicitDefs() const {
721   unsigned NumDefs = MCID->getNumDefs();
722   if (!MCID->isVariadic())
723     return NumDefs;
724 
725   for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) {
726     const MachineOperand &MO = getOperand(I);
727     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
728       break;
729     ++NumDefs;
730   }
731   return NumDefs;
732 }
733 
734 void MachineInstr::bundleWithPred() {
735   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
736   setFlag(BundledPred);
737   MachineBasicBlock::instr_iterator Pred = getIterator();
738   --Pred;
739   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
740   Pred->setFlag(BundledSucc);
741 }
742 
743 void MachineInstr::bundleWithSucc() {
744   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
745   setFlag(BundledSucc);
746   MachineBasicBlock::instr_iterator Succ = getIterator();
747   ++Succ;
748   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
749   Succ->setFlag(BundledPred);
750 }
751 
752 void MachineInstr::unbundleFromPred() {
753   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
754   clearFlag(BundledPred);
755   MachineBasicBlock::instr_iterator Pred = getIterator();
756   --Pred;
757   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
758   Pred->clearFlag(BundledSucc);
759 }
760 
761 void MachineInstr::unbundleFromSucc() {
762   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
763   clearFlag(BundledSucc);
764   MachineBasicBlock::instr_iterator Succ = getIterator();
765   ++Succ;
766   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
767   Succ->clearFlag(BundledPred);
768 }
769 
770 bool MachineInstr::isStackAligningInlineAsm() const {
771   if (isInlineAsm()) {
772     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
773     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
774       return true;
775   }
776   return false;
777 }
778 
779 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
780   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
781   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
782   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
783 }
784 
785 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
786                                        unsigned *GroupNo) const {
787   assert(isInlineAsm() && "Expected an inline asm instruction");
788   assert(OpIdx < getNumOperands() && "OpIdx out of range");
789 
790   // Ignore queries about the initial operands.
791   if (OpIdx < InlineAsm::MIOp_FirstOperand)
792     return -1;
793 
794   unsigned Group = 0;
795   unsigned NumOps;
796   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
797        i += NumOps) {
798     const MachineOperand &FlagMO = getOperand(i);
799     // If we reach the implicit register operands, stop looking.
800     if (!FlagMO.isImm())
801       return -1;
802     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
803     if (i + NumOps > OpIdx) {
804       if (GroupNo)
805         *GroupNo = Group;
806       return i;
807     }
808     ++Group;
809   }
810   return -1;
811 }
812 
813 const DILabel *MachineInstr::getDebugLabel() const {
814   assert(isDebugLabel() && "not a DBG_LABEL");
815   return cast<DILabel>(getOperand(0).getMetadata());
816 }
817 
818 const DILocalVariable *MachineInstr::getDebugVariable() const {
819   assert(isDebugValue() && "not a DBG_VALUE");
820   return cast<DILocalVariable>(getOperand(2).getMetadata());
821 }
822 
823 const DIExpression *MachineInstr::getDebugExpression() const {
824   assert(isDebugValue() && "not a DBG_VALUE");
825   return cast<DIExpression>(getOperand(3).getMetadata());
826 }
827 
828 bool MachineInstr::isDebugEntryValue() const {
829   return isDebugValue() && getDebugExpression()->isEntryValue();
830 }
831 
832 const TargetRegisterClass*
833 MachineInstr::getRegClassConstraint(unsigned OpIdx,
834                                     const TargetInstrInfo *TII,
835                                     const TargetRegisterInfo *TRI) const {
836   assert(getParent() && "Can't have an MBB reference here!");
837   assert(getMF() && "Can't have an MF reference here!");
838   const MachineFunction &MF = *getMF();
839 
840   // Most opcodes have fixed constraints in their MCInstrDesc.
841   if (!isInlineAsm())
842     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
843 
844   if (!getOperand(OpIdx).isReg())
845     return nullptr;
846 
847   // For tied uses on inline asm, get the constraint from the def.
848   unsigned DefIdx;
849   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
850     OpIdx = DefIdx;
851 
852   // Inline asm stores register class constraints in the flag word.
853   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
854   if (FlagIdx < 0)
855     return nullptr;
856 
857   unsigned Flag = getOperand(FlagIdx).getImm();
858   unsigned RCID;
859   if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
860        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
861        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
862       InlineAsm::hasRegClassConstraint(Flag, RCID))
863     return TRI->getRegClass(RCID);
864 
865   // Assume that all registers in a memory operand are pointers.
866   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
867     return TRI->getPointerRegClass(MF);
868 
869   return nullptr;
870 }
871 
872 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
873     Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
874     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
875   // Check every operands inside the bundle if we have
876   // been asked to.
877   if (ExploreBundle)
878     for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
879          ++OpndIt)
880       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
881           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
882   else
883     // Otherwise, just check the current operands.
884     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
885       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
886   return CurRC;
887 }
888 
889 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
890     unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
891     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
892   assert(CurRC && "Invalid initial register class");
893   // Check if Reg is constrained by some of its use/def from MI.
894   const MachineOperand &MO = getOperand(OpIdx);
895   if (!MO.isReg() || MO.getReg() != Reg)
896     return CurRC;
897   // If yes, accumulate the constraints through the operand.
898   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
899 }
900 
901 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
902     unsigned OpIdx, const TargetRegisterClass *CurRC,
903     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
904   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
905   const MachineOperand &MO = getOperand(OpIdx);
906   assert(MO.isReg() &&
907          "Cannot get register constraints for non-register operand");
908   assert(CurRC && "Invalid initial register class");
909   if (unsigned SubIdx = MO.getSubReg()) {
910     if (OpRC)
911       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
912     else
913       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
914   } else if (OpRC)
915     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
916   return CurRC;
917 }
918 
919 /// Return the number of instructions inside the MI bundle, not counting the
920 /// header instruction.
921 unsigned MachineInstr::getBundleSize() const {
922   MachineBasicBlock::const_instr_iterator I = getIterator();
923   unsigned Size = 0;
924   while (I->isBundledWithSucc()) {
925     ++Size;
926     ++I;
927   }
928   return Size;
929 }
930 
931 /// Returns true if the MachineInstr has an implicit-use operand of exactly
932 /// the given register (not considering sub/super-registers).
933 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const {
934   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
935     const MachineOperand &MO = getOperand(i);
936     if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
937       return true;
938   }
939   return false;
940 }
941 
942 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
943 /// the specific register or -1 if it is not found. It further tightens
944 /// the search criteria to a use that kills the register if isKill is true.
945 int MachineInstr::findRegisterUseOperandIdx(
946     Register Reg, bool isKill, const TargetRegisterInfo *TRI) const {
947   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
948     const MachineOperand &MO = getOperand(i);
949     if (!MO.isReg() || !MO.isUse())
950       continue;
951     Register MOReg = MO.getReg();
952     if (!MOReg)
953       continue;
954     if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg)))
955       if (!isKill || MO.isKill())
956         return i;
957   }
958   return -1;
959 }
960 
961 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
962 /// indicating if this instruction reads or writes Reg. This also considers
963 /// partial defines.
964 std::pair<bool,bool>
965 MachineInstr::readsWritesVirtualRegister(Register Reg,
966                                          SmallVectorImpl<unsigned> *Ops) const {
967   bool PartDef = false; // Partial redefine.
968   bool FullDef = false; // Full define.
969   bool Use = false;
970 
971   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
972     const MachineOperand &MO = getOperand(i);
973     if (!MO.isReg() || MO.getReg() != Reg)
974       continue;
975     if (Ops)
976       Ops->push_back(i);
977     if (MO.isUse())
978       Use |= !MO.isUndef();
979     else if (MO.getSubReg() && !MO.isUndef())
980       // A partial def undef doesn't count as reading the register.
981       PartDef = true;
982     else
983       FullDef = true;
984   }
985   // A partial redefine uses Reg unless there is also a full define.
986   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
987 }
988 
989 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
990 /// the specified register or -1 if it is not found. If isDead is true, defs
991 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
992 /// also checks if there is a def of a super-register.
993 int
994 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap,
995                                         const TargetRegisterInfo *TRI) const {
996   bool isPhys = Register::isPhysicalRegister(Reg);
997   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
998     const MachineOperand &MO = getOperand(i);
999     // Accept regmask operands when Overlap is set.
1000     // Ignore them when looking for a specific def operand (Overlap == false).
1001     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1002       return i;
1003     if (!MO.isReg() || !MO.isDef())
1004       continue;
1005     Register MOReg = MO.getReg();
1006     bool Found = (MOReg == Reg);
1007     if (!Found && TRI && isPhys && Register::isPhysicalRegister(MOReg)) {
1008       if (Overlap)
1009         Found = TRI->regsOverlap(MOReg, Reg);
1010       else
1011         Found = TRI->isSubRegister(MOReg, Reg);
1012     }
1013     if (Found && (!isDead || MO.isDead()))
1014       return i;
1015   }
1016   return -1;
1017 }
1018 
1019 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1020 /// operand list that is used to represent the predicate. It returns -1 if
1021 /// none is found.
1022 int MachineInstr::findFirstPredOperandIdx() const {
1023   // Don't call MCID.findFirstPredOperandIdx() because this variant
1024   // is sometimes called on an instruction that's not yet complete, and
1025   // so the number of operands is less than the MCID indicates. In
1026   // particular, the PTX target does this.
1027   const MCInstrDesc &MCID = getDesc();
1028   if (MCID.isPredicable()) {
1029     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1030       if (MCID.OpInfo[i].isPredicate())
1031         return i;
1032   }
1033 
1034   return -1;
1035 }
1036 
1037 // MachineOperand::TiedTo is 4 bits wide.
1038 const unsigned TiedMax = 15;
1039 
1040 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1041 ///
1042 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1043 /// field. TiedTo can have these values:
1044 ///
1045 /// 0:              Operand is not tied to anything.
1046 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1047 /// TiedMax:        Tied to an operand >= TiedMax-1.
1048 ///
1049 /// The tied def must be one of the first TiedMax operands on a normal
1050 /// instruction. INLINEASM instructions allow more tied defs.
1051 ///
1052 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1053   MachineOperand &DefMO = getOperand(DefIdx);
1054   MachineOperand &UseMO = getOperand(UseIdx);
1055   assert(DefMO.isDef() && "DefIdx must be a def operand");
1056   assert(UseMO.isUse() && "UseIdx must be a use operand");
1057   assert(!DefMO.isTied() && "Def is already tied to another use");
1058   assert(!UseMO.isTied() && "Use is already tied to another def");
1059 
1060   if (DefIdx < TiedMax)
1061     UseMO.TiedTo = DefIdx + 1;
1062   else {
1063     // Inline asm can use the group descriptors to find tied operands, but on
1064     // normal instruction, the tied def must be within the first TiedMax
1065     // operands.
1066     assert(isInlineAsm() && "DefIdx out of range");
1067     UseMO.TiedTo = TiedMax;
1068   }
1069 
1070   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1071   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1072 }
1073 
1074 /// Given the index of a tied register operand, find the operand it is tied to.
1075 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1076 /// which must exist.
1077 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1078   const MachineOperand &MO = getOperand(OpIdx);
1079   assert(MO.isTied() && "Operand isn't tied");
1080 
1081   // Normally TiedTo is in range.
1082   if (MO.TiedTo < TiedMax)
1083     return MO.TiedTo - 1;
1084 
1085   // Uses on normal instructions can be out of range.
1086   if (!isInlineAsm()) {
1087     // Normal tied defs must be in the 0..TiedMax-1 range.
1088     if (MO.isUse())
1089       return TiedMax - 1;
1090     // MO is a def. Search for the tied use.
1091     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1092       const MachineOperand &UseMO = getOperand(i);
1093       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1094         return i;
1095     }
1096     llvm_unreachable("Can't find tied use");
1097   }
1098 
1099   // Now deal with inline asm by parsing the operand group descriptor flags.
1100   // Find the beginning of each operand group.
1101   SmallVector<unsigned, 8> GroupIdx;
1102   unsigned OpIdxGroup = ~0u;
1103   unsigned NumOps;
1104   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1105        i += NumOps) {
1106     const MachineOperand &FlagMO = getOperand(i);
1107     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1108     unsigned CurGroup = GroupIdx.size();
1109     GroupIdx.push_back(i);
1110     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1111     // OpIdx belongs to this operand group.
1112     if (OpIdx > i && OpIdx < i + NumOps)
1113       OpIdxGroup = CurGroup;
1114     unsigned TiedGroup;
1115     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1116       continue;
1117     // Operands in this group are tied to operands in TiedGroup which must be
1118     // earlier. Find the number of operands between the two groups.
1119     unsigned Delta = i - GroupIdx[TiedGroup];
1120 
1121     // OpIdx is a use tied to TiedGroup.
1122     if (OpIdxGroup == CurGroup)
1123       return OpIdx - Delta;
1124 
1125     // OpIdx is a def tied to this use group.
1126     if (OpIdxGroup == TiedGroup)
1127       return OpIdx + Delta;
1128   }
1129   llvm_unreachable("Invalid tied operand on inline asm");
1130 }
1131 
1132 /// clearKillInfo - Clears kill flags on all operands.
1133 ///
1134 void MachineInstr::clearKillInfo() {
1135   for (MachineOperand &MO : operands()) {
1136     if (MO.isReg() && MO.isUse())
1137       MO.setIsKill(false);
1138   }
1139 }
1140 
1141 void MachineInstr::substituteRegister(Register FromReg, Register ToReg,
1142                                       unsigned SubIdx,
1143                                       const TargetRegisterInfo &RegInfo) {
1144   if (Register::isPhysicalRegister(ToReg)) {
1145     if (SubIdx)
1146       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1147     for (MachineOperand &MO : operands()) {
1148       if (!MO.isReg() || MO.getReg() != FromReg)
1149         continue;
1150       MO.substPhysReg(ToReg, RegInfo);
1151     }
1152   } else {
1153     for (MachineOperand &MO : operands()) {
1154       if (!MO.isReg() || MO.getReg() != FromReg)
1155         continue;
1156       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1157     }
1158   }
1159 }
1160 
1161 /// isSafeToMove - Return true if it is safe to move this instruction. If
1162 /// SawStore is set to true, it means that there is a store (or call) between
1163 /// the instruction's location and its intended destination.
1164 bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const {
1165   // Ignore stuff that we obviously can't move.
1166   //
1167   // Treat volatile loads as stores. This is not strictly necessary for
1168   // volatiles, but it is required for atomic loads. It is not allowed to move
1169   // a load across an atomic load with Ordering > Monotonic.
1170   if (mayStore() || isCall() || isPHI() ||
1171       (mayLoad() && hasOrderedMemoryRef())) {
1172     SawStore = true;
1173     return false;
1174   }
1175 
1176   if (isPosition() || isDebugInstr() || isTerminator() ||
1177       mayRaiseFPException() || hasUnmodeledSideEffects())
1178     return false;
1179 
1180   // See if this instruction does a load.  If so, we have to guarantee that the
1181   // loaded value doesn't change between the load and the its intended
1182   // destination. The check for isInvariantLoad gives the targe the chance to
1183   // classify the load as always returning a constant, e.g. a constant pool
1184   // load.
1185   if (mayLoad() && !isDereferenceableInvariantLoad(AA))
1186     // Otherwise, this is a real load.  If there is a store between the load and
1187     // end of block, we can't move it.
1188     return !SawStore;
1189 
1190   return true;
1191 }
1192 
1193 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other,
1194                             bool UseTBAA) const {
1195   const MachineFunction *MF = getMF();
1196   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1197   const MachineFrameInfo &MFI = MF->getFrameInfo();
1198 
1199   // If neither instruction stores to memory, they can't alias in any
1200   // meaningful way, even if they read from the same address.
1201   if (!mayStore() && !Other.mayStore())
1202     return false;
1203 
1204   // Let the target decide if memory accesses cannot possibly overlap.
1205   if (TII->areMemAccessesTriviallyDisjoint(*this, Other))
1206     return false;
1207 
1208   // FIXME: Need to handle multiple memory operands to support all targets.
1209   if (!hasOneMemOperand() || !Other.hasOneMemOperand())
1210     return true;
1211 
1212   MachineMemOperand *MMOa = *memoperands_begin();
1213   MachineMemOperand *MMOb = *Other.memoperands_begin();
1214 
1215   // The following interface to AA is fashioned after DAGCombiner::isAlias
1216   // and operates with MachineMemOperand offset with some important
1217   // assumptions:
1218   //   - LLVM fundamentally assumes flat address spaces.
1219   //   - MachineOperand offset can *only* result from legalization and
1220   //     cannot affect queries other than the trivial case of overlap
1221   //     checking.
1222   //   - These offsets never wrap and never step outside
1223   //     of allocated objects.
1224   //   - There should never be any negative offsets here.
1225   //
1226   // FIXME: Modify API to hide this math from "user"
1227   // Even before we go to AA we can reason locally about some
1228   // memory objects. It can save compile time, and possibly catch some
1229   // corner cases not currently covered.
1230 
1231   int64_t OffsetA = MMOa->getOffset();
1232   int64_t OffsetB = MMOb->getOffset();
1233   int64_t MinOffset = std::min(OffsetA, OffsetB);
1234 
1235   uint64_t WidthA = MMOa->getSize();
1236   uint64_t WidthB = MMOb->getSize();
1237   bool KnownWidthA = WidthA != MemoryLocation::UnknownSize;
1238   bool KnownWidthB = WidthB != MemoryLocation::UnknownSize;
1239 
1240   const Value *ValA = MMOa->getValue();
1241   const Value *ValB = MMOb->getValue();
1242   bool SameVal = (ValA && ValB && (ValA == ValB));
1243   if (!SameVal) {
1244     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1245     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1246     if (PSVa && ValB && !PSVa->mayAlias(&MFI))
1247       return false;
1248     if (PSVb && ValA && !PSVb->mayAlias(&MFI))
1249       return false;
1250     if (PSVa && PSVb && (PSVa == PSVb))
1251       SameVal = true;
1252   }
1253 
1254   if (SameVal) {
1255     if (!KnownWidthA || !KnownWidthB)
1256       return true;
1257     int64_t MaxOffset = std::max(OffsetA, OffsetB);
1258     int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
1259     return (MinOffset + LowWidth > MaxOffset);
1260   }
1261 
1262   if (!AA)
1263     return true;
1264 
1265   if (!ValA || !ValB)
1266     return true;
1267 
1268   assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
1269   assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
1270 
1271   int64_t OverlapA = KnownWidthA ? WidthA + OffsetA - MinOffset
1272                                  : MemoryLocation::UnknownSize;
1273   int64_t OverlapB = KnownWidthB ? WidthB + OffsetB - MinOffset
1274                                  : MemoryLocation::UnknownSize;
1275 
1276   AliasResult AAResult = AA->alias(
1277       MemoryLocation(ValA, OverlapA,
1278                      UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1279       MemoryLocation(ValB, OverlapB,
1280                      UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1281 
1282   return (AAResult != NoAlias);
1283 }
1284 
1285 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1286 /// or volatile memory reference, or if the information describing the memory
1287 /// reference is not available. Return false if it is known to have no ordered
1288 /// memory references.
1289 bool MachineInstr::hasOrderedMemoryRef() const {
1290   // An instruction known never to access memory won't have a volatile access.
1291   if (!mayStore() &&
1292       !mayLoad() &&
1293       !isCall() &&
1294       !hasUnmodeledSideEffects())
1295     return false;
1296 
1297   // Otherwise, if the instruction has no memory reference information,
1298   // conservatively assume it wasn't preserved.
1299   if (memoperands_empty())
1300     return true;
1301 
1302   // Check if any of our memory operands are ordered.
1303   return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1304     return !MMO->isUnordered();
1305   });
1306 }
1307 
1308 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1309 /// trap and is loading from a location whose value is invariant across a run of
1310 /// this function.
1311 bool MachineInstr::isDereferenceableInvariantLoad(AAResults *AA) const {
1312   // If the instruction doesn't load at all, it isn't an invariant load.
1313   if (!mayLoad())
1314     return false;
1315 
1316   // If the instruction has lost its memoperands, conservatively assume that
1317   // it may not be an invariant load.
1318   if (memoperands_empty())
1319     return false;
1320 
1321   const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1322 
1323   for (MachineMemOperand *MMO : memoperands()) {
1324     if (!MMO->isUnordered())
1325       // If the memory operand has ordering side effects, we can't move the
1326       // instruction.  Such an instruction is technically an invariant load,
1327       // but the caller code would need updated to expect that.
1328       return false;
1329     if (MMO->isStore()) return false;
1330     if (MMO->isInvariant() && MMO->isDereferenceable())
1331       continue;
1332 
1333     // A load from a constant PseudoSourceValue is invariant.
1334     if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1335       if (PSV->isConstant(&MFI))
1336         continue;
1337 
1338     if (const Value *V = MMO->getValue()) {
1339       // If we have an AliasAnalysis, ask it whether the memory is constant.
1340       if (AA &&
1341           AA->pointsToConstantMemory(
1342               MemoryLocation(V, MMO->getSize(), MMO->getAAInfo())))
1343         continue;
1344     }
1345 
1346     // Otherwise assume conservatively.
1347     return false;
1348   }
1349 
1350   // Everything checks out.
1351   return true;
1352 }
1353 
1354 /// isConstantValuePHI - If the specified instruction is a PHI that always
1355 /// merges together the same virtual register, return the register, otherwise
1356 /// return 0.
1357 unsigned MachineInstr::isConstantValuePHI() const {
1358   if (!isPHI())
1359     return 0;
1360   assert(getNumOperands() >= 3 &&
1361          "It's illegal to have a PHI without source operands");
1362 
1363   Register Reg = getOperand(1).getReg();
1364   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1365     if (getOperand(i).getReg() != Reg)
1366       return 0;
1367   return Reg;
1368 }
1369 
1370 bool MachineInstr::hasUnmodeledSideEffects() const {
1371   if (hasProperty(MCID::UnmodeledSideEffects))
1372     return true;
1373   if (isInlineAsm()) {
1374     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1375     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1376       return true;
1377   }
1378 
1379   return false;
1380 }
1381 
1382 bool MachineInstr::isLoadFoldBarrier() const {
1383   return mayStore() || isCall() || hasUnmodeledSideEffects();
1384 }
1385 
1386 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1387 ///
1388 bool MachineInstr::allDefsAreDead() const {
1389   for (const MachineOperand &MO : operands()) {
1390     if (!MO.isReg() || MO.isUse())
1391       continue;
1392     if (!MO.isDead())
1393       return false;
1394   }
1395   return true;
1396 }
1397 
1398 /// copyImplicitOps - Copy implicit register operands from specified
1399 /// instruction to this instruction.
1400 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1401                                    const MachineInstr &MI) {
1402   for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands();
1403        i != e; ++i) {
1404     const MachineOperand &MO = MI.getOperand(i);
1405     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1406       addOperand(MF, MO);
1407   }
1408 }
1409 
1410 bool MachineInstr::hasComplexRegisterTies() const {
1411   const MCInstrDesc &MCID = getDesc();
1412   for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
1413     const auto &Operand = getOperand(I);
1414     if (!Operand.isReg() || Operand.isDef())
1415       // Ignore the defined registers as MCID marks only the uses as tied.
1416       continue;
1417     int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
1418     int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
1419     if (ExpectedTiedIdx != TiedIdx)
1420       return true;
1421   }
1422   return false;
1423 }
1424 
1425 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1426                                  const MachineRegisterInfo &MRI) const {
1427   const MachineOperand &Op = getOperand(OpIdx);
1428   if (!Op.isReg())
1429     return LLT{};
1430 
1431   if (isVariadic() || OpIdx >= getNumExplicitOperands())
1432     return MRI.getType(Op.getReg());
1433 
1434   auto &OpInfo = getDesc().OpInfo[OpIdx];
1435   if (!OpInfo.isGenericType())
1436     return MRI.getType(Op.getReg());
1437 
1438   if (PrintedTypes[OpInfo.getGenericTypeIndex()])
1439     return LLT{};
1440 
1441   LLT TypeToPrint = MRI.getType(Op.getReg());
1442   // Don't mark the type index printed if it wasn't actually printed: maybe
1443   // another operand with the same type index has an actual type attached:
1444   if (TypeToPrint.isValid())
1445     PrintedTypes.set(OpInfo.getGenericTypeIndex());
1446   return TypeToPrint;
1447 }
1448 
1449 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1450 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1451   dbgs() << "  ";
1452   print(dbgs());
1453 }
1454 #endif
1455 
1456 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
1457                          bool SkipDebugLoc, bool AddNewLine,
1458                          const TargetInstrInfo *TII) const {
1459   const Module *M = nullptr;
1460   const Function *F = nullptr;
1461   if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1462     F = &MF->getFunction();
1463     M = F->getParent();
1464     if (!TII)
1465       TII = MF->getSubtarget().getInstrInfo();
1466   }
1467 
1468   ModuleSlotTracker MST(M);
1469   if (F)
1470     MST.incorporateFunction(*F);
1471   print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII);
1472 }
1473 
1474 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1475                          bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
1476                          bool AddNewLine, const TargetInstrInfo *TII) const {
1477   // We can be a bit tidier if we know the MachineFunction.
1478   const MachineFunction *MF = nullptr;
1479   const TargetRegisterInfo *TRI = nullptr;
1480   const MachineRegisterInfo *MRI = nullptr;
1481   const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1482   const MIRFormatter *MIRF = nullptr;
1483   tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII, MIRF);
1484 
1485   if (isCFIInstruction())
1486     assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1487 
1488   SmallBitVector PrintedTypes(8);
1489   bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies();
1490   auto getTiedOperandIdx = [&](unsigned OpIdx) {
1491     if (!ShouldPrintRegisterTies)
1492       return 0U;
1493     const MachineOperand &MO = getOperand(OpIdx);
1494     if (MO.isReg() && MO.isTied() && !MO.isDef())
1495       return findTiedOperandIdx(OpIdx);
1496     return 0U;
1497   };
1498   unsigned StartOp = 0;
1499   unsigned e = getNumOperands();
1500 
1501   // Print explicitly defined operands on the left of an assignment syntax.
1502   while (StartOp < e) {
1503     const MachineOperand &MO = getOperand(StartOp);
1504     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
1505       break;
1506 
1507     if (StartOp != 0)
1508       OS << ", ";
1509 
1510     LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
1511     unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
1512     MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone,
1513              ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1514     ++StartOp;
1515   }
1516 
1517   if (StartOp != 0)
1518     OS << " = ";
1519 
1520   if (getFlag(MachineInstr::FrameSetup))
1521     OS << "frame-setup ";
1522   if (getFlag(MachineInstr::FrameDestroy))
1523     OS << "frame-destroy ";
1524   if (getFlag(MachineInstr::FmNoNans))
1525     OS << "nnan ";
1526   if (getFlag(MachineInstr::FmNoInfs))
1527     OS << "ninf ";
1528   if (getFlag(MachineInstr::FmNsz))
1529     OS << "nsz ";
1530   if (getFlag(MachineInstr::FmArcp))
1531     OS << "arcp ";
1532   if (getFlag(MachineInstr::FmContract))
1533     OS << "contract ";
1534   if (getFlag(MachineInstr::FmAfn))
1535     OS << "afn ";
1536   if (getFlag(MachineInstr::FmReassoc))
1537     OS << "reassoc ";
1538   if (getFlag(MachineInstr::NoUWrap))
1539     OS << "nuw ";
1540   if (getFlag(MachineInstr::NoSWrap))
1541     OS << "nsw ";
1542   if (getFlag(MachineInstr::IsExact))
1543     OS << "exact ";
1544   if (getFlag(MachineInstr::FPExcept))
1545     OS << "fpexcept ";
1546 
1547   // Print the opcode name.
1548   if (TII)
1549     OS << TII->getName(getOpcode());
1550   else
1551     OS << "UNKNOWN";
1552 
1553   if (SkipOpers)
1554     return;
1555 
1556   // Print the rest of the operands.
1557   bool FirstOp = true;
1558   unsigned AsmDescOp = ~0u;
1559   unsigned AsmOpCount = 0;
1560 
1561   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1562     // Print asm string.
1563     OS << " ";
1564     const unsigned OpIdx = InlineAsm::MIOp_AsmString;
1565     LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
1566     unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
1567     getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone,
1568                             ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1569                             IntrinsicInfo);
1570 
1571     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1572     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1573     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1574       OS << " [sideeffect]";
1575     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1576       OS << " [mayload]";
1577     if (ExtraInfo & InlineAsm::Extra_MayStore)
1578       OS << " [maystore]";
1579     if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1580       OS << " [isconvergent]";
1581     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1582       OS << " [alignstack]";
1583     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1584       OS << " [attdialect]";
1585     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1586       OS << " [inteldialect]";
1587 
1588     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1589     FirstOp = false;
1590   }
1591 
1592   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1593     const MachineOperand &MO = getOperand(i);
1594 
1595     if (FirstOp) FirstOp = false; else OS << ",";
1596     OS << " ";
1597 
1598     if (isDebugValue() && MO.isMetadata()) {
1599       // Pretty print DBG_VALUE instructions.
1600       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1601       if (DIV && !DIV->getName().empty())
1602         OS << "!\"" << DIV->getName() << '\"';
1603       else {
1604         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1605         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1606         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1607                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1608       }
1609     } else if (isDebugLabel() && MO.isMetadata()) {
1610       // Pretty print DBG_LABEL instructions.
1611       auto *DIL = dyn_cast<DILabel>(MO.getMetadata());
1612       if (DIL && !DIL->getName().empty())
1613         OS << "\"" << DIL->getName() << '\"';
1614       else {
1615         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1616         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1617         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1618                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1619       }
1620     } else if (i == AsmDescOp && MO.isImm()) {
1621       // Pretty print the inline asm operand descriptor.
1622       OS << '$' << AsmOpCount++;
1623       unsigned Flag = MO.getImm();
1624       switch (InlineAsm::getKind(Flag)) {
1625       case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break;
1626       case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break;
1627       case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1628       case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break;
1629       case InlineAsm::Kind_Imm:                OS << ":[imm"; break;
1630       case InlineAsm::Kind_Mem:                OS << ":[mem"; break;
1631       default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1632       }
1633 
1634       unsigned RCID = 0;
1635       if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1636           InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1637         if (TRI) {
1638           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1639         } else
1640           OS << ":RC" << RCID;
1641       }
1642 
1643       if (InlineAsm::isMemKind(Flag)) {
1644         unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1645         switch (MCID) {
1646         case InlineAsm::Constraint_es: OS << ":es"; break;
1647         case InlineAsm::Constraint_i:  OS << ":i"; break;
1648         case InlineAsm::Constraint_m:  OS << ":m"; break;
1649         case InlineAsm::Constraint_o:  OS << ":o"; break;
1650         case InlineAsm::Constraint_v:  OS << ":v"; break;
1651         case InlineAsm::Constraint_Q:  OS << ":Q"; break;
1652         case InlineAsm::Constraint_R:  OS << ":R"; break;
1653         case InlineAsm::Constraint_S:  OS << ":S"; break;
1654         case InlineAsm::Constraint_T:  OS << ":T"; break;
1655         case InlineAsm::Constraint_Um: OS << ":Um"; break;
1656         case InlineAsm::Constraint_Un: OS << ":Un"; break;
1657         case InlineAsm::Constraint_Uq: OS << ":Uq"; break;
1658         case InlineAsm::Constraint_Us: OS << ":Us"; break;
1659         case InlineAsm::Constraint_Ut: OS << ":Ut"; break;
1660         case InlineAsm::Constraint_Uv: OS << ":Uv"; break;
1661         case InlineAsm::Constraint_Uy: OS << ":Uy"; break;
1662         case InlineAsm::Constraint_X:  OS << ":X"; break;
1663         case InlineAsm::Constraint_Z:  OS << ":Z"; break;
1664         case InlineAsm::Constraint_ZC: OS << ":ZC"; break;
1665         case InlineAsm::Constraint_Zy: OS << ":Zy"; break;
1666         default: OS << ":?"; break;
1667         }
1668       }
1669 
1670       unsigned TiedTo = 0;
1671       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1672         OS << " tiedto:$" << TiedTo;
1673 
1674       OS << ']';
1675 
1676       // Compute the index of the next operand descriptor.
1677       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1678     } else {
1679       LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1680       unsigned TiedOperandIdx = getTiedOperandIdx(i);
1681       if (MO.isImm() && isOperandSubregIdx(i))
1682         MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
1683       else
1684         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1685                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1686     }
1687   }
1688 
1689   // Print any optional symbols attached to this instruction as-if they were
1690   // operands.
1691   if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) {
1692     if (!FirstOp) {
1693       FirstOp = false;
1694       OS << ',';
1695     }
1696     OS << " pre-instr-symbol ";
1697     MachineOperand::printSymbol(OS, *PreInstrSymbol);
1698   }
1699   if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) {
1700     if (!FirstOp) {
1701       FirstOp = false;
1702       OS << ',';
1703     }
1704     OS << " post-instr-symbol ";
1705     MachineOperand::printSymbol(OS, *PostInstrSymbol);
1706   }
1707   if (MDNode *HeapAllocMarker = getHeapAllocMarker()) {
1708     if (!FirstOp) {
1709       FirstOp = false;
1710       OS << ',';
1711     }
1712     OS << " heap-alloc-marker ";
1713     HeapAllocMarker->printAsOperand(OS, MST);
1714   }
1715 
1716   if (!SkipDebugLoc) {
1717     if (const DebugLoc &DL = getDebugLoc()) {
1718       if (!FirstOp)
1719         OS << ',';
1720       OS << " debug-location ";
1721       DL->printAsOperand(OS, MST);
1722     }
1723   }
1724 
1725   if (!memoperands_empty()) {
1726     SmallVector<StringRef, 0> SSNs;
1727     const LLVMContext *Context = nullptr;
1728     std::unique_ptr<LLVMContext> CtxPtr;
1729     const MachineFrameInfo *MFI = nullptr;
1730     if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1731       MFI = &MF->getFrameInfo();
1732       Context = &MF->getFunction().getContext();
1733     } else {
1734       CtxPtr = std::make_unique<LLVMContext>();
1735       Context = CtxPtr.get();
1736     }
1737 
1738     OS << " :: ";
1739     bool NeedComma = false;
1740     for (const MachineMemOperand *Op : memoperands()) {
1741       if (NeedComma)
1742         OS << ", ";
1743       Op->print(OS, MST, SSNs, *Context, MFI, TII, MIRF);
1744       NeedComma = true;
1745     }
1746   }
1747 
1748   if (SkipDebugLoc)
1749     return;
1750 
1751   bool HaveSemi = false;
1752 
1753   // Print debug location information.
1754   if (const DebugLoc &DL = getDebugLoc()) {
1755     if (!HaveSemi) {
1756       OS << ';';
1757       HaveSemi = true;
1758     }
1759     OS << ' ';
1760     DL.print(OS);
1761   }
1762 
1763   // Print extra comments for DEBUG_VALUE.
1764   if (isDebugValue() && getOperand(e - 2).isMetadata()) {
1765     if (!HaveSemi) {
1766       OS << ";";
1767       HaveSemi = true;
1768     }
1769     auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata());
1770     OS << " line no:" <<  DV->getLine();
1771     if (auto *InlinedAt = debugLoc->getInlinedAt()) {
1772       DebugLoc InlinedAtDL(InlinedAt);
1773       if (InlinedAtDL && MF) {
1774         OS << " inlined @[ ";
1775         InlinedAtDL.print(OS);
1776         OS << " ]";
1777       }
1778     }
1779     if (isIndirectDebugValue())
1780       OS << " indirect";
1781   }
1782   // TODO: DBG_LABEL
1783 
1784   if (AddNewLine)
1785     OS << '\n';
1786 }
1787 
1788 bool MachineInstr::addRegisterKilled(Register IncomingReg,
1789                                      const TargetRegisterInfo *RegInfo,
1790                                      bool AddIfNotFound) {
1791   bool isPhysReg = Register::isPhysicalRegister(IncomingReg);
1792   bool hasAliases = isPhysReg &&
1793     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1794   bool Found = false;
1795   SmallVector<unsigned,4> DeadOps;
1796   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1797     MachineOperand &MO = getOperand(i);
1798     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1799       continue;
1800 
1801     // DEBUG_VALUE nodes do not contribute to code generation and should
1802     // always be ignored. Failure to do so may result in trying to modify
1803     // KILL flags on DEBUG_VALUE nodes.
1804     if (MO.isDebug())
1805       continue;
1806 
1807     Register Reg = MO.getReg();
1808     if (!Reg)
1809       continue;
1810 
1811     if (Reg == IncomingReg) {
1812       if (!Found) {
1813         if (MO.isKill())
1814           // The register is already marked kill.
1815           return true;
1816         if (isPhysReg && isRegTiedToDefOperand(i))
1817           // Two-address uses of physregs must not be marked kill.
1818           return true;
1819         MO.setIsKill();
1820         Found = true;
1821       }
1822     } else if (hasAliases && MO.isKill() && Register::isPhysicalRegister(Reg)) {
1823       // A super-register kill already exists.
1824       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1825         return true;
1826       if (RegInfo->isSubRegister(IncomingReg, Reg))
1827         DeadOps.push_back(i);
1828     }
1829   }
1830 
1831   // Trim unneeded kill operands.
1832   while (!DeadOps.empty()) {
1833     unsigned OpIdx = DeadOps.back();
1834     if (getOperand(OpIdx).isImplicit() &&
1835         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1836       RemoveOperand(OpIdx);
1837     else
1838       getOperand(OpIdx).setIsKill(false);
1839     DeadOps.pop_back();
1840   }
1841 
1842   // If not found, this means an alias of one of the operands is killed. Add a
1843   // new implicit operand if required.
1844   if (!Found && AddIfNotFound) {
1845     addOperand(MachineOperand::CreateReg(IncomingReg,
1846                                          false /*IsDef*/,
1847                                          true  /*IsImp*/,
1848                                          true  /*IsKill*/));
1849     return true;
1850   }
1851   return Found;
1852 }
1853 
1854 void MachineInstr::clearRegisterKills(Register Reg,
1855                                       const TargetRegisterInfo *RegInfo) {
1856   if (!Register::isPhysicalRegister(Reg))
1857     RegInfo = nullptr;
1858   for (MachineOperand &MO : operands()) {
1859     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1860       continue;
1861     Register OpReg = MO.getReg();
1862     if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
1863       MO.setIsKill(false);
1864   }
1865 }
1866 
1867 bool MachineInstr::addRegisterDead(Register Reg,
1868                                    const TargetRegisterInfo *RegInfo,
1869                                    bool AddIfNotFound) {
1870   bool isPhysReg = Register::isPhysicalRegister(Reg);
1871   bool hasAliases = isPhysReg &&
1872     MCRegAliasIterator(Reg, RegInfo, false).isValid();
1873   bool Found = false;
1874   SmallVector<unsigned,4> DeadOps;
1875   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1876     MachineOperand &MO = getOperand(i);
1877     if (!MO.isReg() || !MO.isDef())
1878       continue;
1879     Register MOReg = MO.getReg();
1880     if (!MOReg)
1881       continue;
1882 
1883     if (MOReg == Reg) {
1884       MO.setIsDead();
1885       Found = true;
1886     } else if (hasAliases && MO.isDead() &&
1887                Register::isPhysicalRegister(MOReg)) {
1888       // There exists a super-register that's marked dead.
1889       if (RegInfo->isSuperRegister(Reg, MOReg))
1890         return true;
1891       if (RegInfo->isSubRegister(Reg, MOReg))
1892         DeadOps.push_back(i);
1893     }
1894   }
1895 
1896   // Trim unneeded dead operands.
1897   while (!DeadOps.empty()) {
1898     unsigned OpIdx = DeadOps.back();
1899     if (getOperand(OpIdx).isImplicit() &&
1900         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1901       RemoveOperand(OpIdx);
1902     else
1903       getOperand(OpIdx).setIsDead(false);
1904     DeadOps.pop_back();
1905   }
1906 
1907   // If not found, this means an alias of one of the operands is dead. Add a
1908   // new implicit operand if required.
1909   if (Found || !AddIfNotFound)
1910     return Found;
1911 
1912   addOperand(MachineOperand::CreateReg(Reg,
1913                                        true  /*IsDef*/,
1914                                        true  /*IsImp*/,
1915                                        false /*IsKill*/,
1916                                        true  /*IsDead*/));
1917   return true;
1918 }
1919 
1920 void MachineInstr::clearRegisterDeads(Register Reg) {
1921   for (MachineOperand &MO : operands()) {
1922     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
1923       continue;
1924     MO.setIsDead(false);
1925   }
1926 }
1927 
1928 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) {
1929   for (MachineOperand &MO : operands()) {
1930     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
1931       continue;
1932     MO.setIsUndef(IsUndef);
1933   }
1934 }
1935 
1936 void MachineInstr::addRegisterDefined(Register Reg,
1937                                       const TargetRegisterInfo *RegInfo) {
1938   if (Register::isPhysicalRegister(Reg)) {
1939     MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo);
1940     if (MO)
1941       return;
1942   } else {
1943     for (const MachineOperand &MO : operands()) {
1944       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
1945           MO.getSubReg() == 0)
1946         return;
1947     }
1948   }
1949   addOperand(MachineOperand::CreateReg(Reg,
1950                                        true  /*IsDef*/,
1951                                        true  /*IsImp*/));
1952 }
1953 
1954 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
1955                                          const TargetRegisterInfo &TRI) {
1956   bool HasRegMask = false;
1957   for (MachineOperand &MO : operands()) {
1958     if (MO.isRegMask()) {
1959       HasRegMask = true;
1960       continue;
1961     }
1962     if (!MO.isReg() || !MO.isDef()) continue;
1963     Register Reg = MO.getReg();
1964     if (!Reg.isPhysical())
1965       continue;
1966     // If there are no uses, including partial uses, the def is dead.
1967     if (llvm::none_of(UsedRegs,
1968                       [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); }))
1969       MO.setIsDead();
1970   }
1971 
1972   // This is a call with a register mask operand.
1973   // Mask clobbers are always dead, so add defs for the non-dead defines.
1974   if (HasRegMask)
1975     for (ArrayRef<Register>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
1976          I != E; ++I)
1977       addRegisterDefined(*I, &TRI);
1978 }
1979 
1980 unsigned
1981 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1982   // Build up a buffer of hash code components.
1983   SmallVector<size_t, 16> HashComponents;
1984   HashComponents.reserve(MI->getNumOperands() + 1);
1985   HashComponents.push_back(MI->getOpcode());
1986   for (const MachineOperand &MO : MI->operands()) {
1987     if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg()))
1988       continue;  // Skip virtual register defs.
1989 
1990     HashComponents.push_back(hash_value(MO));
1991   }
1992   return hash_combine_range(HashComponents.begin(), HashComponents.end());
1993 }
1994 
1995 void MachineInstr::emitError(StringRef Msg) const {
1996   // Find the source location cookie.
1997   unsigned LocCookie = 0;
1998   const MDNode *LocMD = nullptr;
1999   for (unsigned i = getNumOperands(); i != 0; --i) {
2000     if (getOperand(i-1).isMetadata() &&
2001         (LocMD = getOperand(i-1).getMetadata()) &&
2002         LocMD->getNumOperands() != 0) {
2003       if (const ConstantInt *CI =
2004               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
2005         LocCookie = CI->getZExtValue();
2006         break;
2007       }
2008     }
2009   }
2010 
2011   if (const MachineBasicBlock *MBB = getParent())
2012     if (const MachineFunction *MF = MBB->getParent())
2013       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2014   report_fatal_error(Msg);
2015 }
2016 
2017 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2018                                   const MCInstrDesc &MCID, bool IsIndirect,
2019                                   Register Reg, const MDNode *Variable,
2020                                   const MDNode *Expr) {
2021   assert(isa<DILocalVariable>(Variable) && "not a variable");
2022   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2023   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2024          "Expected inlined-at fields to agree");
2025   auto MIB = BuildMI(MF, DL, MCID).addReg(Reg, RegState::Debug);
2026   if (IsIndirect)
2027     MIB.addImm(0U);
2028   else
2029     MIB.addReg(0U, RegState::Debug);
2030   return MIB.addMetadata(Variable).addMetadata(Expr);
2031 }
2032 
2033 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2034                                   const MCInstrDesc &MCID, bool IsIndirect,
2035                                   MachineOperand &MO, const MDNode *Variable,
2036                                   const MDNode *Expr) {
2037   assert(isa<DILocalVariable>(Variable) && "not a variable");
2038   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2039   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2040          "Expected inlined-at fields to agree");
2041   if (MO.isReg())
2042     return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr);
2043 
2044   auto MIB = BuildMI(MF, DL, MCID).add(MO);
2045   if (IsIndirect)
2046     MIB.addImm(0U);
2047   else
2048     MIB.addReg(0U, RegState::Debug);
2049   return MIB.addMetadata(Variable).addMetadata(Expr);
2050  }
2051 
2052 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2053                                   MachineBasicBlock::iterator I,
2054                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2055                                   bool IsIndirect, Register Reg,
2056                                   const MDNode *Variable, const MDNode *Expr) {
2057   MachineFunction &MF = *BB.getParent();
2058   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
2059   BB.insert(I, MI);
2060   return MachineInstrBuilder(MF, MI);
2061 }
2062 
2063 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2064                                   MachineBasicBlock::iterator I,
2065                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2066                                   bool IsIndirect, MachineOperand &MO,
2067                                   const MDNode *Variable, const MDNode *Expr) {
2068   MachineFunction &MF = *BB.getParent();
2069   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr);
2070   BB.insert(I, MI);
2071   return MachineInstrBuilder(MF, *MI);
2072 }
2073 
2074 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2075 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
2076 static const DIExpression *computeExprForSpill(const MachineInstr &MI) {
2077   assert(MI.getOperand(0).isReg() && "can't spill non-register");
2078   assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
2079          "Expected inlined-at fields to agree");
2080 
2081   const DIExpression *Expr = MI.getDebugExpression();
2082   if (MI.isIndirectDebugValue()) {
2083     assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
2084     Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
2085   }
2086   return Expr;
2087 }
2088 
2089 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
2090                                           MachineBasicBlock::iterator I,
2091                                           const MachineInstr &Orig,
2092                                           int FrameIndex) {
2093   const DIExpression *Expr = computeExprForSpill(Orig);
2094   return BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc())
2095       .addFrameIndex(FrameIndex)
2096       .addImm(0U)
2097       .addMetadata(Orig.getDebugVariable())
2098       .addMetadata(Expr);
2099 }
2100 
2101 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex) {
2102   const DIExpression *Expr = computeExprForSpill(Orig);
2103   Orig.getOperand(0).ChangeToFrameIndex(FrameIndex);
2104   Orig.getOperand(1).ChangeToImmediate(0U);
2105   Orig.getOperand(3).setMetadata(Expr);
2106 }
2107 
2108 void MachineInstr::collectDebugValues(
2109                                 SmallVectorImpl<MachineInstr *> &DbgValues) {
2110   MachineInstr &MI = *this;
2111   if (!MI.getOperand(0).isReg())
2112     return;
2113 
2114   MachineBasicBlock::iterator DI = MI; ++DI;
2115   for (MachineBasicBlock::iterator DE = MI.getParent()->end();
2116        DI != DE; ++DI) {
2117     if (!DI->isDebugValue())
2118       return;
2119     if (DI->getOperand(0).isReg() &&
2120         DI->getOperand(0).getReg() == MI.getOperand(0).getReg())
2121       DbgValues.push_back(&*DI);
2122   }
2123 }
2124 
2125 void MachineInstr::changeDebugValuesDefReg(Register Reg) {
2126   // Collect matching debug values.
2127   SmallVector<MachineInstr *, 2> DbgValues;
2128 
2129   if (!getOperand(0).isReg())
2130     return;
2131 
2132   unsigned DefReg = getOperand(0).getReg();
2133   auto *MRI = getRegInfo();
2134   for (auto &MO : MRI->use_operands(DefReg)) {
2135     auto *DI = MO.getParent();
2136     if (!DI->isDebugValue())
2137       continue;
2138     if (DI->getOperand(0).isReg() &&
2139         DI->getOperand(0).getReg() == DefReg){
2140       DbgValues.push_back(DI);
2141     }
2142   }
2143 
2144   // Propagate Reg to debug value instructions.
2145   for (auto *DBI : DbgValues)
2146     DBI->getOperand(0).setReg(Reg);
2147 }
2148 
2149 using MMOList = SmallVector<const MachineMemOperand *, 2>;
2150 
2151 static unsigned getSpillSlotSize(MMOList &Accesses,
2152                                  const MachineFrameInfo &MFI) {
2153   unsigned Size = 0;
2154   for (auto A : Accesses)
2155     if (MFI.isSpillSlotObjectIndex(
2156             cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
2157                 ->getFrameIndex()))
2158       Size += A->getSize();
2159   return Size;
2160 }
2161 
2162 Optional<unsigned>
2163 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const {
2164   int FI;
2165   if (TII->isStoreToStackSlotPostFE(*this, FI)) {
2166     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2167     if (MFI.isSpillSlotObjectIndex(FI))
2168       return (*memoperands_begin())->getSize();
2169   }
2170   return None;
2171 }
2172 
2173 Optional<unsigned>
2174 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const {
2175   MMOList Accesses;
2176   if (TII->hasStoreToStackSlot(*this, Accesses))
2177     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2178   return None;
2179 }
2180 
2181 Optional<unsigned>
2182 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const {
2183   int FI;
2184   if (TII->isLoadFromStackSlotPostFE(*this, FI)) {
2185     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2186     if (MFI.isSpillSlotObjectIndex(FI))
2187       return (*memoperands_begin())->getSize();
2188   }
2189   return None;
2190 }
2191 
2192 Optional<unsigned>
2193 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const {
2194   MMOList Accesses;
2195   if (TII->hasLoadFromStackSlot(*this, Accesses))
2196     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2197   return None;
2198 }
2199