1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/ADT/FoldingSet.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/CodeGen/MachineConstantPool.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineMemOperand.h" 22 #include "llvm/CodeGen/MachineModuleInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/PseudoSourceValue.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DebugInfo.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/InlineAsm.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/ModuleSlotTracker.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/MC/MCInstrDesc.h" 37 #include "llvm/MC/MCSymbol.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/MathExtras.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Target/TargetInstrInfo.h" 44 #include "llvm/Target/TargetIntrinsicInfo.h" 45 #include "llvm/Target/TargetMachine.h" 46 #include "llvm/Target/TargetRegisterInfo.h" 47 #include "llvm/Target/TargetSubtargetInfo.h" 48 using namespace llvm; 49 50 static cl::opt<bool> PrintWholeRegMask( 51 "print-whole-regmask", 52 cl::desc("Print the full contents of regmask operands in IR dumps"), 53 cl::init(true), cl::Hidden); 54 55 //===----------------------------------------------------------------------===// 56 // MachineOperand Implementation 57 //===----------------------------------------------------------------------===// 58 59 void MachineOperand::setReg(unsigned Reg) { 60 if (getReg() == Reg) return; // No change. 61 62 // Otherwise, we have to change the register. If this operand is embedded 63 // into a machine function, we need to update the old and new register's 64 // use/def lists. 65 if (MachineInstr *MI = getParent()) 66 if (MachineBasicBlock *MBB = MI->getParent()) 67 if (MachineFunction *MF = MBB->getParent()) { 68 MachineRegisterInfo &MRI = MF->getRegInfo(); 69 MRI.removeRegOperandFromUseList(this); 70 SmallContents.RegNo = Reg; 71 MRI.addRegOperandToUseList(this); 72 return; 73 } 74 75 // Otherwise, just change the register, no problem. :) 76 SmallContents.RegNo = Reg; 77 } 78 79 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 80 const TargetRegisterInfo &TRI) { 81 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 82 if (SubIdx && getSubReg()) 83 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 84 setReg(Reg); 85 if (SubIdx) 86 setSubReg(SubIdx); 87 } 88 89 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 90 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 91 if (getSubReg()) { 92 Reg = TRI.getSubReg(Reg, getSubReg()); 93 // Note that getSubReg() may return 0 if the sub-register doesn't exist. 94 // That won't happen in legal code. 95 setSubReg(0); 96 if (isDef()) 97 setIsUndef(false); 98 } 99 setReg(Reg); 100 } 101 102 /// Change a def to a use, or a use to a def. 103 void MachineOperand::setIsDef(bool Val) { 104 assert(isReg() && "Wrong MachineOperand accessor"); 105 assert((!Val || !isDebug()) && "Marking a debug operation as def"); 106 if (IsDef == Val) 107 return; 108 // MRI may keep uses and defs in different list positions. 109 if (MachineInstr *MI = getParent()) 110 if (MachineBasicBlock *MBB = MI->getParent()) 111 if (MachineFunction *MF = MBB->getParent()) { 112 MachineRegisterInfo &MRI = MF->getRegInfo(); 113 MRI.removeRegOperandFromUseList(this); 114 IsDef = Val; 115 MRI.addRegOperandToUseList(this); 116 return; 117 } 118 IsDef = Val; 119 } 120 121 // If this operand is currently a register operand, and if this is in a 122 // function, deregister the operand from the register's use/def list. 123 void MachineOperand::removeRegFromUses() { 124 if (!isReg() || !isOnRegUseList()) 125 return; 126 127 if (MachineInstr *MI = getParent()) { 128 if (MachineBasicBlock *MBB = MI->getParent()) { 129 if (MachineFunction *MF = MBB->getParent()) 130 MF->getRegInfo().removeRegOperandFromUseList(this); 131 } 132 } 133 } 134 135 /// ChangeToImmediate - Replace this operand with a new immediate operand of 136 /// the specified value. If an operand is known to be an immediate already, 137 /// the setImm method should be used. 138 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 139 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 140 141 removeRegFromUses(); 142 143 OpKind = MO_Immediate; 144 Contents.ImmVal = ImmVal; 145 } 146 147 void MachineOperand::ChangeToFPImmediate(const ConstantFP *FPImm) { 148 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 149 150 removeRegFromUses(); 151 152 OpKind = MO_FPImmediate; 153 Contents.CFP = FPImm; 154 } 155 156 void MachineOperand::ChangeToES(const char *SymName, unsigned char TargetFlags) { 157 assert((!isReg() || !isTied()) && 158 "Cannot change a tied operand into an external symbol"); 159 160 removeRegFromUses(); 161 162 OpKind = MO_ExternalSymbol; 163 Contents.OffsetedInfo.Val.SymbolName = SymName; 164 setOffset(0); // Offset is always 0. 165 setTargetFlags(TargetFlags); 166 } 167 168 void MachineOperand::ChangeToMCSymbol(MCSymbol *Sym) { 169 assert((!isReg() || !isTied()) && 170 "Cannot change a tied operand into an MCSymbol"); 171 172 removeRegFromUses(); 173 174 OpKind = MO_MCSymbol; 175 Contents.Sym = Sym; 176 } 177 178 void MachineOperand::ChangeToFrameIndex(int Idx) { 179 assert((!isReg() || !isTied()) && 180 "Cannot change a tied operand into a FrameIndex"); 181 182 removeRegFromUses(); 183 184 OpKind = MO_FrameIndex; 185 setIndex(Idx); 186 } 187 188 /// ChangeToRegister - Replace this operand with a new register operand of 189 /// the specified value. If an operand is known to be an register already, 190 /// the setReg method should be used. 191 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 192 bool isKill, bool isDead, bool isUndef, 193 bool isDebug) { 194 MachineRegisterInfo *RegInfo = nullptr; 195 if (MachineInstr *MI = getParent()) 196 if (MachineBasicBlock *MBB = MI->getParent()) 197 if (MachineFunction *MF = MBB->getParent()) 198 RegInfo = &MF->getRegInfo(); 199 // If this operand is already a register operand, remove it from the 200 // register's use/def lists. 201 bool WasReg = isReg(); 202 if (RegInfo && WasReg) 203 RegInfo->removeRegOperandFromUseList(this); 204 205 // Change this to a register and set the reg#. 206 OpKind = MO_Register; 207 SmallContents.RegNo = Reg; 208 SubReg_TargetFlags = 0; 209 IsDef = isDef; 210 IsImp = isImp; 211 IsKill = isKill; 212 IsDead = isDead; 213 IsUndef = isUndef; 214 IsInternalRead = false; 215 IsEarlyClobber = false; 216 IsDebug = isDebug; 217 // Ensure isOnRegUseList() returns false. 218 Contents.Reg.Prev = nullptr; 219 // Preserve the tie when the operand was already a register. 220 if (!WasReg) 221 TiedTo = 0; 222 223 // If this operand is embedded in a function, add the operand to the 224 // register's use/def list. 225 if (RegInfo) 226 RegInfo->addRegOperandToUseList(this); 227 } 228 229 /// isIdenticalTo - Return true if this operand is identical to the specified 230 /// operand. Note that this should stay in sync with the hash_value overload 231 /// below. 232 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 233 if (getType() != Other.getType() || 234 getTargetFlags() != Other.getTargetFlags()) 235 return false; 236 237 switch (getType()) { 238 case MachineOperand::MO_Register: 239 return getReg() == Other.getReg() && isDef() == Other.isDef() && 240 getSubReg() == Other.getSubReg(); 241 case MachineOperand::MO_Immediate: 242 return getImm() == Other.getImm(); 243 case MachineOperand::MO_CImmediate: 244 return getCImm() == Other.getCImm(); 245 case MachineOperand::MO_FPImmediate: 246 return getFPImm() == Other.getFPImm(); 247 case MachineOperand::MO_MachineBasicBlock: 248 return getMBB() == Other.getMBB(); 249 case MachineOperand::MO_FrameIndex: 250 return getIndex() == Other.getIndex(); 251 case MachineOperand::MO_ConstantPoolIndex: 252 case MachineOperand::MO_TargetIndex: 253 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 254 case MachineOperand::MO_JumpTableIndex: 255 return getIndex() == Other.getIndex(); 256 case MachineOperand::MO_GlobalAddress: 257 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 258 case MachineOperand::MO_ExternalSymbol: 259 return !strcmp(getSymbolName(), Other.getSymbolName()) && 260 getOffset() == Other.getOffset(); 261 case MachineOperand::MO_BlockAddress: 262 return getBlockAddress() == Other.getBlockAddress() && 263 getOffset() == Other.getOffset(); 264 case MachineOperand::MO_RegisterMask: 265 case MachineOperand::MO_RegisterLiveOut: { 266 // Shallow compare of the two RegMasks 267 const uint32_t *RegMask = getRegMask(); 268 const uint32_t *OtherRegMask = Other.getRegMask(); 269 if (RegMask == OtherRegMask) 270 return true; 271 272 // Calculate the size of the RegMask 273 const MachineFunction *MF = getParent()->getParent()->getParent(); 274 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 275 unsigned RegMaskSize = (TRI->getNumRegs() + 31) / 32; 276 277 // Deep compare of the two RegMasks 278 return std::equal(RegMask, RegMask + RegMaskSize, OtherRegMask); 279 } 280 case MachineOperand::MO_MCSymbol: 281 return getMCSymbol() == Other.getMCSymbol(); 282 case MachineOperand::MO_CFIIndex: 283 return getCFIIndex() == Other.getCFIIndex(); 284 case MachineOperand::MO_Metadata: 285 return getMetadata() == Other.getMetadata(); 286 case MachineOperand::MO_IntrinsicID: 287 return getIntrinsicID() == Other.getIntrinsicID(); 288 case MachineOperand::MO_Predicate: 289 return getPredicate() == Other.getPredicate(); 290 } 291 llvm_unreachable("Invalid machine operand type"); 292 } 293 294 // Note: this must stay exactly in sync with isIdenticalTo above. 295 hash_code llvm::hash_value(const MachineOperand &MO) { 296 switch (MO.getType()) { 297 case MachineOperand::MO_Register: 298 // Register operands don't have target flags. 299 return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef()); 300 case MachineOperand::MO_Immediate: 301 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm()); 302 case MachineOperand::MO_CImmediate: 303 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm()); 304 case MachineOperand::MO_FPImmediate: 305 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm()); 306 case MachineOperand::MO_MachineBasicBlock: 307 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB()); 308 case MachineOperand::MO_FrameIndex: 309 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 310 case MachineOperand::MO_ConstantPoolIndex: 311 case MachineOperand::MO_TargetIndex: 312 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(), 313 MO.getOffset()); 314 case MachineOperand::MO_JumpTableIndex: 315 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 316 case MachineOperand::MO_ExternalSymbol: 317 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(), 318 MO.getSymbolName()); 319 case MachineOperand::MO_GlobalAddress: 320 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(), 321 MO.getOffset()); 322 case MachineOperand::MO_BlockAddress: 323 return hash_combine(MO.getType(), MO.getTargetFlags(), 324 MO.getBlockAddress(), MO.getOffset()); 325 case MachineOperand::MO_RegisterMask: 326 case MachineOperand::MO_RegisterLiveOut: 327 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask()); 328 case MachineOperand::MO_Metadata: 329 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata()); 330 case MachineOperand::MO_MCSymbol: 331 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol()); 332 case MachineOperand::MO_CFIIndex: 333 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex()); 334 case MachineOperand::MO_IntrinsicID: 335 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIntrinsicID()); 336 case MachineOperand::MO_Predicate: 337 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getPredicate()); 338 } 339 llvm_unreachable("Invalid machine operand type"); 340 } 341 342 void MachineOperand::print(raw_ostream &OS, const TargetRegisterInfo *TRI, 343 const TargetIntrinsicInfo *IntrinsicInfo) const { 344 ModuleSlotTracker DummyMST(nullptr); 345 print(OS, DummyMST, TRI, IntrinsicInfo); 346 } 347 348 void MachineOperand::print(raw_ostream &OS, ModuleSlotTracker &MST, 349 const TargetRegisterInfo *TRI, 350 const TargetIntrinsicInfo *IntrinsicInfo) const { 351 switch (getType()) { 352 case MachineOperand::MO_Register: 353 OS << PrintReg(getReg(), TRI, getSubReg()); 354 355 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 356 isInternalRead() || isEarlyClobber() || isTied()) { 357 OS << '<'; 358 bool NeedComma = false; 359 if (isDef()) { 360 if (NeedComma) OS << ','; 361 if (isEarlyClobber()) 362 OS << "earlyclobber,"; 363 if (isImplicit()) 364 OS << "imp-"; 365 OS << "def"; 366 NeedComma = true; 367 // <def,read-undef> only makes sense when getSubReg() is set. 368 // Don't clutter the output otherwise. 369 if (isUndef() && getSubReg()) 370 OS << ",read-undef"; 371 } else if (isImplicit()) { 372 OS << "imp-use"; 373 NeedComma = true; 374 } 375 376 if (isKill()) { 377 if (NeedComma) OS << ','; 378 OS << "kill"; 379 NeedComma = true; 380 } 381 if (isDead()) { 382 if (NeedComma) OS << ','; 383 OS << "dead"; 384 NeedComma = true; 385 } 386 if (isUndef() && isUse()) { 387 if (NeedComma) OS << ','; 388 OS << "undef"; 389 NeedComma = true; 390 } 391 if (isInternalRead()) { 392 if (NeedComma) OS << ','; 393 OS << "internal"; 394 NeedComma = true; 395 } 396 if (isTied()) { 397 if (NeedComma) OS << ','; 398 OS << "tied"; 399 if (TiedTo != 15) 400 OS << unsigned(TiedTo - 1); 401 } 402 OS << '>'; 403 } 404 break; 405 case MachineOperand::MO_Immediate: 406 OS << getImm(); 407 break; 408 case MachineOperand::MO_CImmediate: 409 getCImm()->getValue().print(OS, false); 410 break; 411 case MachineOperand::MO_FPImmediate: 412 if (getFPImm()->getType()->isFloatTy()) { 413 OS << getFPImm()->getValueAPF().convertToFloat(); 414 } else if (getFPImm()->getType()->isHalfTy()) { 415 APFloat APF = getFPImm()->getValueAPF(); 416 bool Unused; 417 APF.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &Unused); 418 OS << "half " << APF.convertToFloat(); 419 } else if (getFPImm()->getType()->isFP128Ty()) { 420 APFloat APF = getFPImm()->getValueAPF(); 421 SmallString<16> Str; 422 getFPImm()->getValueAPF().toString(Str); 423 OS << "quad " << Str; 424 } else { 425 OS << getFPImm()->getValueAPF().convertToDouble(); 426 } 427 break; 428 case MachineOperand::MO_MachineBasicBlock: 429 OS << "<BB#" << getMBB()->getNumber() << ">"; 430 break; 431 case MachineOperand::MO_FrameIndex: 432 OS << "<fi#" << getIndex() << '>'; 433 break; 434 case MachineOperand::MO_ConstantPoolIndex: 435 OS << "<cp#" << getIndex(); 436 if (getOffset()) OS << "+" << getOffset(); 437 OS << '>'; 438 break; 439 case MachineOperand::MO_TargetIndex: 440 OS << "<ti#" << getIndex(); 441 if (getOffset()) OS << "+" << getOffset(); 442 OS << '>'; 443 break; 444 case MachineOperand::MO_JumpTableIndex: 445 OS << "<jt#" << getIndex() << '>'; 446 break; 447 case MachineOperand::MO_GlobalAddress: 448 OS << "<ga:"; 449 getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST); 450 if (getOffset()) OS << "+" << getOffset(); 451 OS << '>'; 452 break; 453 case MachineOperand::MO_ExternalSymbol: 454 OS << "<es:" << getSymbolName(); 455 if (getOffset()) OS << "+" << getOffset(); 456 OS << '>'; 457 break; 458 case MachineOperand::MO_BlockAddress: 459 OS << '<'; 460 getBlockAddress()->printAsOperand(OS, /*PrintType=*/false, MST); 461 if (getOffset()) OS << "+" << getOffset(); 462 OS << '>'; 463 break; 464 case MachineOperand::MO_RegisterMask: { 465 unsigned NumRegsInMask = 0; 466 unsigned NumRegsEmitted = 0; 467 OS << "<regmask"; 468 for (unsigned i = 0; i < TRI->getNumRegs(); ++i) { 469 unsigned MaskWord = i / 32; 470 unsigned MaskBit = i % 32; 471 if (getRegMask()[MaskWord] & (1 << MaskBit)) { 472 if (PrintWholeRegMask || NumRegsEmitted <= 10) { 473 OS << " " << PrintReg(i, TRI); 474 NumRegsEmitted++; 475 } 476 NumRegsInMask++; 477 } 478 } 479 if (NumRegsEmitted != NumRegsInMask) 480 OS << " and " << (NumRegsInMask - NumRegsEmitted) << " more..."; 481 OS << ">"; 482 break; 483 } 484 case MachineOperand::MO_RegisterLiveOut: 485 OS << "<regliveout>"; 486 break; 487 case MachineOperand::MO_Metadata: 488 OS << '<'; 489 getMetadata()->printAsOperand(OS, MST); 490 OS << '>'; 491 break; 492 case MachineOperand::MO_MCSymbol: 493 OS << "<MCSym=" << *getMCSymbol() << '>'; 494 break; 495 case MachineOperand::MO_CFIIndex: 496 OS << "<call frame instruction>"; 497 break; 498 case MachineOperand::MO_IntrinsicID: { 499 Intrinsic::ID ID = getIntrinsicID(); 500 if (ID < Intrinsic::num_intrinsics) 501 OS << "<intrinsic:@" << Intrinsic::getName(ID, None) << '>'; 502 else if (IntrinsicInfo) 503 OS << "<intrinsic:@" << IntrinsicInfo->getName(ID) << '>'; 504 else 505 OS << "<intrinsic:" << ID << '>'; 506 break; 507 } 508 case MachineOperand::MO_Predicate: { 509 auto Pred = static_cast<CmpInst::Predicate>(getPredicate()); 510 OS << '<' << (CmpInst::isIntPredicate(Pred) ? "intpred" : "floatpred") 511 << CmpInst::getPredicateName(Pred) << '>'; 512 break; 513 } 514 } 515 if (unsigned TF = getTargetFlags()) 516 OS << "[TF=" << TF << ']'; 517 } 518 519 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 520 LLVM_DUMP_METHOD void MachineOperand::dump() const { 521 dbgs() << *this << '\n'; 522 } 523 #endif 524 525 //===----------------------------------------------------------------------===// 526 // MachineMemOperand Implementation 527 //===----------------------------------------------------------------------===// 528 529 /// getAddrSpace - Return the LLVM IR address space number that this pointer 530 /// points into. 531 unsigned MachinePointerInfo::getAddrSpace() const { 532 if (V.isNull() || V.is<const PseudoSourceValue*>()) return 0; 533 return cast<PointerType>(V.get<const Value*>()->getType())->getAddressSpace(); 534 } 535 536 /// getConstantPool - Return a MachinePointerInfo record that refers to the 537 /// constant pool. 538 MachinePointerInfo MachinePointerInfo::getConstantPool(MachineFunction &MF) { 539 return MachinePointerInfo(MF.getPSVManager().getConstantPool()); 540 } 541 542 /// getFixedStack - Return a MachinePointerInfo record that refers to the 543 /// the specified FrameIndex. 544 MachinePointerInfo MachinePointerInfo::getFixedStack(MachineFunction &MF, 545 int FI, int64_t Offset) { 546 return MachinePointerInfo(MF.getPSVManager().getFixedStack(FI), Offset); 547 } 548 549 MachinePointerInfo MachinePointerInfo::getJumpTable(MachineFunction &MF) { 550 return MachinePointerInfo(MF.getPSVManager().getJumpTable()); 551 } 552 553 MachinePointerInfo MachinePointerInfo::getGOT(MachineFunction &MF) { 554 return MachinePointerInfo(MF.getPSVManager().getGOT()); 555 } 556 557 MachinePointerInfo MachinePointerInfo::getStack(MachineFunction &MF, 558 int64_t Offset) { 559 return MachinePointerInfo(MF.getPSVManager().getStack(), Offset); 560 } 561 562 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, Flags f, 563 uint64_t s, unsigned int a, 564 const AAMDNodes &AAInfo, 565 const MDNode *Ranges, 566 SynchronizationScope SynchScope, 567 AtomicOrdering Ordering, 568 AtomicOrdering FailureOrdering) 569 : PtrInfo(ptrinfo), Size(s), FlagVals(f), BaseAlignLog2(Log2_32(a) + 1), 570 AAInfo(AAInfo), Ranges(Ranges) { 571 assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() || 572 isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) && 573 "invalid pointer value"); 574 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 575 assert((isLoad() || isStore()) && "Not a load/store!"); 576 577 AtomicInfo.SynchScope = static_cast<unsigned>(SynchScope); 578 assert(getSynchScope() == SynchScope && "Value truncated"); 579 AtomicInfo.Ordering = static_cast<unsigned>(Ordering); 580 assert(getOrdering() == Ordering && "Value truncated"); 581 AtomicInfo.FailureOrdering = static_cast<unsigned>(FailureOrdering); 582 assert(getFailureOrdering() == FailureOrdering && "Value truncated"); 583 } 584 585 /// Profile - Gather unique data for the object. 586 /// 587 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 588 ID.AddInteger(getOffset()); 589 ID.AddInteger(Size); 590 ID.AddPointer(getOpaqueValue()); 591 ID.AddInteger(getFlags()); 592 ID.AddInteger(getBaseAlignment()); 593 } 594 595 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 596 // The Value and Offset may differ due to CSE. But the flags and size 597 // should be the same. 598 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 599 assert(MMO->getSize() == getSize() && "Size mismatch!"); 600 601 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 602 // Update the alignment value. 603 BaseAlignLog2 = Log2_32(MMO->getBaseAlignment()) + 1; 604 // Also update the base and offset, because the new alignment may 605 // not be applicable with the old ones. 606 PtrInfo = MMO->PtrInfo; 607 } 608 } 609 610 /// getAlignment - Return the minimum known alignment in bytes of the 611 /// actual memory reference. 612 uint64_t MachineMemOperand::getAlignment() const { 613 return MinAlign(getBaseAlignment(), getOffset()); 614 } 615 616 void MachineMemOperand::print(raw_ostream &OS) const { 617 ModuleSlotTracker DummyMST(nullptr); 618 print(OS, DummyMST); 619 } 620 void MachineMemOperand::print(raw_ostream &OS, ModuleSlotTracker &MST) const { 621 assert((isLoad() || isStore()) && 622 "SV has to be a load, store or both."); 623 624 if (isVolatile()) 625 OS << "Volatile "; 626 627 if (isLoad()) 628 OS << "LD"; 629 if (isStore()) 630 OS << "ST"; 631 OS << getSize(); 632 633 // Print the address information. 634 OS << "["; 635 if (const Value *V = getValue()) 636 V->printAsOperand(OS, /*PrintType=*/false, MST); 637 else if (const PseudoSourceValue *PSV = getPseudoValue()) 638 PSV->printCustom(OS); 639 else 640 OS << "<unknown>"; 641 642 unsigned AS = getAddrSpace(); 643 if (AS != 0) 644 OS << "(addrspace=" << AS << ')'; 645 646 // If the alignment of the memory reference itself differs from the alignment 647 // of the base pointer, print the base alignment explicitly, next to the base 648 // pointer. 649 if (getBaseAlignment() != getAlignment()) 650 OS << "(align=" << getBaseAlignment() << ")"; 651 652 if (getOffset() != 0) 653 OS << "+" << getOffset(); 654 OS << "]"; 655 656 // Print the alignment of the reference. 657 if (getBaseAlignment() != getAlignment() || getBaseAlignment() != getSize()) 658 OS << "(align=" << getAlignment() << ")"; 659 660 // Print TBAA info. 661 if (const MDNode *TBAAInfo = getAAInfo().TBAA) { 662 OS << "(tbaa="; 663 if (TBAAInfo->getNumOperands() > 0) 664 TBAAInfo->getOperand(0)->printAsOperand(OS, MST); 665 else 666 OS << "<unknown>"; 667 OS << ")"; 668 } 669 670 // Print AA scope info. 671 if (const MDNode *ScopeInfo = getAAInfo().Scope) { 672 OS << "(alias.scope="; 673 if (ScopeInfo->getNumOperands() > 0) 674 for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) { 675 ScopeInfo->getOperand(i)->printAsOperand(OS, MST); 676 if (i != ie-1) 677 OS << ","; 678 } 679 else 680 OS << "<unknown>"; 681 OS << ")"; 682 } 683 684 // Print AA noalias scope info. 685 if (const MDNode *NoAliasInfo = getAAInfo().NoAlias) { 686 OS << "(noalias="; 687 if (NoAliasInfo->getNumOperands() > 0) 688 for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) { 689 NoAliasInfo->getOperand(i)->printAsOperand(OS, MST); 690 if (i != ie-1) 691 OS << ","; 692 } 693 else 694 OS << "<unknown>"; 695 OS << ")"; 696 } 697 698 if (isNonTemporal()) 699 OS << "(nontemporal)"; 700 if (isDereferenceable()) 701 OS << "(dereferenceable)"; 702 if (isInvariant()) 703 OS << "(invariant)"; 704 } 705 706 //===----------------------------------------------------------------------===// 707 // MachineInstr Implementation 708 //===----------------------------------------------------------------------===// 709 710 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 711 if (MCID->ImplicitDefs) 712 for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; 713 ++ImpDefs) 714 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 715 if (MCID->ImplicitUses) 716 for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses; 717 ++ImpUses) 718 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 719 } 720 721 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 722 /// implicit operands. It reserves space for the number of operands specified by 723 /// the MCInstrDesc. 724 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, 725 DebugLoc dl, bool NoImp) 726 : MCID(&tid), Parent(nullptr), Operands(nullptr), NumOperands(0), Flags(0), 727 AsmPrinterFlags(0), NumMemRefs(0), MemRefs(nullptr), 728 debugLoc(std::move(dl)) { 729 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 730 731 // Reserve space for the expected number of operands. 732 if (unsigned NumOps = MCID->getNumOperands() + 733 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 734 CapOperands = OperandCapacity::get(NumOps); 735 Operands = MF.allocateOperandArray(CapOperands); 736 } 737 738 if (!NoImp) 739 addImplicitDefUseOperands(MF); 740 } 741 742 /// MachineInstr ctor - Copies MachineInstr arg exactly 743 /// 744 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 745 : MCID(&MI.getDesc()), Parent(nullptr), Operands(nullptr), NumOperands(0), 746 Flags(0), AsmPrinterFlags(0), NumMemRefs(MI.NumMemRefs), 747 MemRefs(MI.MemRefs), debugLoc(MI.getDebugLoc()) { 748 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 749 750 CapOperands = OperandCapacity::get(MI.getNumOperands()); 751 Operands = MF.allocateOperandArray(CapOperands); 752 753 // Copy operands. 754 for (const MachineOperand &MO : MI.operands()) 755 addOperand(MF, MO); 756 757 // Copy all the sensible flags. 758 setFlags(MI.Flags); 759 } 760 761 /// getRegInfo - If this instruction is embedded into a MachineFunction, 762 /// return the MachineRegisterInfo object for the current function, otherwise 763 /// return null. 764 MachineRegisterInfo *MachineInstr::getRegInfo() { 765 if (MachineBasicBlock *MBB = getParent()) 766 return &MBB->getParent()->getRegInfo(); 767 return nullptr; 768 } 769 770 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 771 /// this instruction from their respective use lists. This requires that the 772 /// operands already be on their use lists. 773 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 774 for (MachineOperand &MO : operands()) 775 if (MO.isReg()) 776 MRI.removeRegOperandFromUseList(&MO); 777 } 778 779 /// AddRegOperandsToUseLists - Add all of the register operands in 780 /// this instruction from their respective use lists. This requires that the 781 /// operands not be on their use lists yet. 782 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 783 for (MachineOperand &MO : operands()) 784 if (MO.isReg()) 785 MRI.addRegOperandToUseList(&MO); 786 } 787 788 void MachineInstr::addOperand(const MachineOperand &Op) { 789 MachineBasicBlock *MBB = getParent(); 790 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 791 MachineFunction *MF = MBB->getParent(); 792 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 793 addOperand(*MF, Op); 794 } 795 796 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 797 /// ranges. If MRI is non-null also update use-def chains. 798 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 799 unsigned NumOps, MachineRegisterInfo *MRI) { 800 if (MRI) 801 return MRI->moveOperands(Dst, Src, NumOps); 802 803 // MachineOperand is a trivially copyable type so we can just use memmove. 804 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 805 } 806 807 /// addOperand - Add the specified operand to the instruction. If it is an 808 /// implicit operand, it is added to the end of the operand list. If it is 809 /// an explicit operand it is added at the end of the explicit operand list 810 /// (before the first implicit operand). 811 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 812 assert(MCID && "Cannot add operands before providing an instr descriptor"); 813 814 // Check if we're adding one of our existing operands. 815 if (&Op >= Operands && &Op < Operands + NumOperands) { 816 // This is unusual: MI->addOperand(MI->getOperand(i)). 817 // If adding Op requires reallocating or moving existing operands around, 818 // the Op reference could go stale. Support it by copying Op. 819 MachineOperand CopyOp(Op); 820 return addOperand(MF, CopyOp); 821 } 822 823 // Find the insert location for the new operand. Implicit registers go at 824 // the end, everything else goes before the implicit regs. 825 // 826 // FIXME: Allow mixed explicit and implicit operands on inline asm. 827 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 828 // implicit-defs, but they must not be moved around. See the FIXME in 829 // InstrEmitter.cpp. 830 unsigned OpNo = getNumOperands(); 831 bool isImpReg = Op.isReg() && Op.isImplicit(); 832 if (!isImpReg && !isInlineAsm()) { 833 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 834 --OpNo; 835 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 836 } 837 } 838 839 #ifndef NDEBUG 840 bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata; 841 // OpNo now points as the desired insertion point. Unless this is a variadic 842 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 843 // RegMask operands go between the explicit and implicit operands. 844 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 845 OpNo < MCID->getNumOperands() || isMetaDataOp) && 846 "Trying to add an operand to a machine instr that is already done!"); 847 #endif 848 849 MachineRegisterInfo *MRI = getRegInfo(); 850 851 // Determine if the Operands array needs to be reallocated. 852 // Save the old capacity and operand array. 853 OperandCapacity OldCap = CapOperands; 854 MachineOperand *OldOperands = Operands; 855 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 856 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 857 Operands = MF.allocateOperandArray(CapOperands); 858 // Move the operands before the insertion point. 859 if (OpNo) 860 moveOperands(Operands, OldOperands, OpNo, MRI); 861 } 862 863 // Move the operands following the insertion point. 864 if (OpNo != NumOperands) 865 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 866 MRI); 867 ++NumOperands; 868 869 // Deallocate the old operand array. 870 if (OldOperands != Operands && OldOperands) 871 MF.deallocateOperandArray(OldCap, OldOperands); 872 873 // Copy Op into place. It still needs to be inserted into the MRI use lists. 874 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 875 NewMO->ParentMI = this; 876 877 // When adding a register operand, tell MRI about it. 878 if (NewMO->isReg()) { 879 // Ensure isOnRegUseList() returns false, regardless of Op's status. 880 NewMO->Contents.Reg.Prev = nullptr; 881 // Ignore existing ties. This is not a property that can be copied. 882 NewMO->TiedTo = 0; 883 // Add the new operand to MRI, but only for instructions in an MBB. 884 if (MRI) 885 MRI->addRegOperandToUseList(NewMO); 886 // The MCID operand information isn't accurate until we start adding 887 // explicit operands. The implicit operands are added first, then the 888 // explicits are inserted before them. 889 if (!isImpReg) { 890 // Tie uses to defs as indicated in MCInstrDesc. 891 if (NewMO->isUse()) { 892 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 893 if (DefIdx != -1) 894 tieOperands(DefIdx, OpNo); 895 } 896 // If the register operand is flagged as early, mark the operand as such. 897 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 898 NewMO->setIsEarlyClobber(true); 899 } 900 } 901 } 902 903 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 904 /// fewer operand than it started with. 905 /// 906 void MachineInstr::RemoveOperand(unsigned OpNo) { 907 assert(OpNo < getNumOperands() && "Invalid operand number"); 908 untieRegOperand(OpNo); 909 910 #ifndef NDEBUG 911 // Moving tied operands would break the ties. 912 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 913 if (Operands[i].isReg()) 914 assert(!Operands[i].isTied() && "Cannot move tied operands"); 915 #endif 916 917 MachineRegisterInfo *MRI = getRegInfo(); 918 if (MRI && Operands[OpNo].isReg()) 919 MRI->removeRegOperandFromUseList(Operands + OpNo); 920 921 // Don't call the MachineOperand destructor. A lot of this code depends on 922 // MachineOperand having a trivial destructor anyway, and adding a call here 923 // wouldn't make it 'destructor-correct'. 924 925 if (unsigned N = NumOperands - 1 - OpNo) 926 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 927 --NumOperands; 928 } 929 930 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 931 /// This function should be used only occasionally. The setMemRefs function 932 /// is the primary method for setting up a MachineInstr's MemRefs list. 933 void MachineInstr::addMemOperand(MachineFunction &MF, 934 MachineMemOperand *MO) { 935 mmo_iterator OldMemRefs = MemRefs; 936 unsigned OldNumMemRefs = NumMemRefs; 937 938 unsigned NewNum = NumMemRefs + 1; 939 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 940 941 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs); 942 NewMemRefs[NewNum - 1] = MO; 943 setMemRefs(NewMemRefs, NewMemRefs + NewNum); 944 } 945 946 /// Check to see if the MMOs pointed to by the two MemRefs arrays are 947 /// identical. 948 static bool hasIdenticalMMOs(const MachineInstr &MI1, const MachineInstr &MI2) { 949 auto I1 = MI1.memoperands_begin(), E1 = MI1.memoperands_end(); 950 auto I2 = MI2.memoperands_begin(), E2 = MI2.memoperands_end(); 951 if ((E1 - I1) != (E2 - I2)) 952 return false; 953 for (; I1 != E1; ++I1, ++I2) { 954 if (**I1 != **I2) 955 return false; 956 } 957 return true; 958 } 959 960 std::pair<MachineInstr::mmo_iterator, unsigned> 961 MachineInstr::mergeMemRefsWith(const MachineInstr& Other) { 962 963 // If either of the incoming memrefs are empty, we must be conservative and 964 // treat this as if we've exhausted our space for memrefs and dropped them. 965 if (memoperands_empty() || Other.memoperands_empty()) 966 return std::make_pair(nullptr, 0); 967 968 // If both instructions have identical memrefs, we don't need to merge them. 969 // Since many instructions have a single memref, and we tend to merge things 970 // like pairs of loads from the same location, this catches a large number of 971 // cases in practice. 972 if (hasIdenticalMMOs(*this, Other)) 973 return std::make_pair(MemRefs, NumMemRefs); 974 975 // TODO: consider uniquing elements within the operand lists to reduce 976 // space usage and fall back to conservative information less often. 977 size_t CombinedNumMemRefs = NumMemRefs + Other.NumMemRefs; 978 979 // If we don't have enough room to store this many memrefs, be conservative 980 // and drop them. Otherwise, we'd fail asserts when trying to add them to 981 // the new instruction. 982 if (CombinedNumMemRefs != uint8_t(CombinedNumMemRefs)) 983 return std::make_pair(nullptr, 0); 984 985 MachineFunction *MF = getParent()->getParent(); 986 mmo_iterator MemBegin = MF->allocateMemRefsArray(CombinedNumMemRefs); 987 mmo_iterator MemEnd = std::copy(memoperands_begin(), memoperands_end(), 988 MemBegin); 989 MemEnd = std::copy(Other.memoperands_begin(), Other.memoperands_end(), 990 MemEnd); 991 assert(MemEnd - MemBegin == (ptrdiff_t)CombinedNumMemRefs && 992 "missing memrefs"); 993 994 return std::make_pair(MemBegin, CombinedNumMemRefs); 995 } 996 997 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { 998 assert(!isBundledWithPred() && "Must be called on bundle header"); 999 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { 1000 if (MII->getDesc().getFlags() & Mask) { 1001 if (Type == AnyInBundle) 1002 return true; 1003 } else { 1004 if (Type == AllInBundle && !MII->isBundle()) 1005 return false; 1006 } 1007 // This was the last instruction in the bundle. 1008 if (!MII->isBundledWithSucc()) 1009 return Type == AllInBundle; 1010 } 1011 } 1012 1013 bool MachineInstr::isIdenticalTo(const MachineInstr &Other, 1014 MICheckType Check) const { 1015 // If opcodes or number of operands are not the same then the two 1016 // instructions are obviously not identical. 1017 if (Other.getOpcode() != getOpcode() || 1018 Other.getNumOperands() != getNumOperands()) 1019 return false; 1020 1021 if (isBundle()) { 1022 // We have passed the test above that both instructions have the same 1023 // opcode, so we know that both instructions are bundles here. Let's compare 1024 // MIs inside the bundle. 1025 assert(Other.isBundle() && "Expected that both instructions are bundles."); 1026 MachineBasicBlock::const_instr_iterator I1 = getIterator(); 1027 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); 1028 // Loop until we analysed the last intruction inside at least one of the 1029 // bundles. 1030 while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) { 1031 ++I1; 1032 ++I2; 1033 if (!I1->isIdenticalTo(*I2, Check)) 1034 return false; 1035 } 1036 // If we've reached the end of just one of the two bundles, but not both, 1037 // the instructions are not identical. 1038 if (I1->isBundledWithSucc() || I2->isBundledWithSucc()) 1039 return false; 1040 } 1041 1042 // Check operands to make sure they match. 1043 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1044 const MachineOperand &MO = getOperand(i); 1045 const MachineOperand &OMO = Other.getOperand(i); 1046 if (!MO.isReg()) { 1047 if (!MO.isIdenticalTo(OMO)) 1048 return false; 1049 continue; 1050 } 1051 1052 // Clients may or may not want to ignore defs when testing for equality. 1053 // For example, machine CSE pass only cares about finding common 1054 // subexpressions, so it's safe to ignore virtual register defs. 1055 if (MO.isDef()) { 1056 if (Check == IgnoreDefs) 1057 continue; 1058 else if (Check == IgnoreVRegDefs) { 1059 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 1060 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 1061 if (MO.getReg() != OMO.getReg()) 1062 return false; 1063 } else { 1064 if (!MO.isIdenticalTo(OMO)) 1065 return false; 1066 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 1067 return false; 1068 } 1069 } else { 1070 if (!MO.isIdenticalTo(OMO)) 1071 return false; 1072 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 1073 return false; 1074 } 1075 } 1076 // If DebugLoc does not match then two dbg.values are not identical. 1077 if (isDebugValue()) 1078 if (getDebugLoc() && Other.getDebugLoc() && 1079 getDebugLoc() != Other.getDebugLoc()) 1080 return false; 1081 return true; 1082 } 1083 1084 MachineInstr *MachineInstr::removeFromParent() { 1085 assert(getParent() && "Not embedded in a basic block!"); 1086 return getParent()->remove(this); 1087 } 1088 1089 MachineInstr *MachineInstr::removeFromBundle() { 1090 assert(getParent() && "Not embedded in a basic block!"); 1091 return getParent()->remove_instr(this); 1092 } 1093 1094 void MachineInstr::eraseFromParent() { 1095 assert(getParent() && "Not embedded in a basic block!"); 1096 getParent()->erase(this); 1097 } 1098 1099 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() { 1100 assert(getParent() && "Not embedded in a basic block!"); 1101 MachineBasicBlock *MBB = getParent(); 1102 MachineFunction *MF = MBB->getParent(); 1103 assert(MF && "Not embedded in a function!"); 1104 1105 MachineInstr *MI = (MachineInstr *)this; 1106 MachineRegisterInfo &MRI = MF->getRegInfo(); 1107 1108 for (const MachineOperand &MO : MI->operands()) { 1109 if (!MO.isReg() || !MO.isDef()) 1110 continue; 1111 unsigned Reg = MO.getReg(); 1112 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1113 continue; 1114 MRI.markUsesInDebugValueAsUndef(Reg); 1115 } 1116 MI->eraseFromParent(); 1117 } 1118 1119 void MachineInstr::eraseFromBundle() { 1120 assert(getParent() && "Not embedded in a basic block!"); 1121 getParent()->erase_instr(this); 1122 } 1123 1124 /// getNumExplicitOperands - Returns the number of non-implicit operands. 1125 /// 1126 unsigned MachineInstr::getNumExplicitOperands() const { 1127 unsigned NumOperands = MCID->getNumOperands(); 1128 if (!MCID->isVariadic()) 1129 return NumOperands; 1130 1131 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 1132 const MachineOperand &MO = getOperand(i); 1133 if (!MO.isReg() || !MO.isImplicit()) 1134 NumOperands++; 1135 } 1136 return NumOperands; 1137 } 1138 1139 void MachineInstr::bundleWithPred() { 1140 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 1141 setFlag(BundledPred); 1142 MachineBasicBlock::instr_iterator Pred = getIterator(); 1143 --Pred; 1144 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 1145 Pred->setFlag(BundledSucc); 1146 } 1147 1148 void MachineInstr::bundleWithSucc() { 1149 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 1150 setFlag(BundledSucc); 1151 MachineBasicBlock::instr_iterator Succ = getIterator(); 1152 ++Succ; 1153 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 1154 Succ->setFlag(BundledPred); 1155 } 1156 1157 void MachineInstr::unbundleFromPred() { 1158 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 1159 clearFlag(BundledPred); 1160 MachineBasicBlock::instr_iterator Pred = getIterator(); 1161 --Pred; 1162 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 1163 Pred->clearFlag(BundledSucc); 1164 } 1165 1166 void MachineInstr::unbundleFromSucc() { 1167 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 1168 clearFlag(BundledSucc); 1169 MachineBasicBlock::instr_iterator Succ = getIterator(); 1170 ++Succ; 1171 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 1172 Succ->clearFlag(BundledPred); 1173 } 1174 1175 bool MachineInstr::isStackAligningInlineAsm() const { 1176 if (isInlineAsm()) { 1177 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1178 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1179 return true; 1180 } 1181 return false; 1182 } 1183 1184 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 1185 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 1186 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1187 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 1188 } 1189 1190 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 1191 unsigned *GroupNo) const { 1192 assert(isInlineAsm() && "Expected an inline asm instruction"); 1193 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 1194 1195 // Ignore queries about the initial operands. 1196 if (OpIdx < InlineAsm::MIOp_FirstOperand) 1197 return -1; 1198 1199 unsigned Group = 0; 1200 unsigned NumOps; 1201 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1202 i += NumOps) { 1203 const MachineOperand &FlagMO = getOperand(i); 1204 // If we reach the implicit register operands, stop looking. 1205 if (!FlagMO.isImm()) 1206 return -1; 1207 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1208 if (i + NumOps > OpIdx) { 1209 if (GroupNo) 1210 *GroupNo = Group; 1211 return i; 1212 } 1213 ++Group; 1214 } 1215 return -1; 1216 } 1217 1218 const DILocalVariable *MachineInstr::getDebugVariable() const { 1219 assert(isDebugValue() && "not a DBG_VALUE"); 1220 return cast<DILocalVariable>(getOperand(2).getMetadata()); 1221 } 1222 1223 const DIExpression *MachineInstr::getDebugExpression() const { 1224 assert(isDebugValue() && "not a DBG_VALUE"); 1225 return cast<DIExpression>(getOperand(3).getMetadata()); 1226 } 1227 1228 const TargetRegisterClass* 1229 MachineInstr::getRegClassConstraint(unsigned OpIdx, 1230 const TargetInstrInfo *TII, 1231 const TargetRegisterInfo *TRI) const { 1232 assert(getParent() && "Can't have an MBB reference here!"); 1233 assert(getParent()->getParent() && "Can't have an MF reference here!"); 1234 const MachineFunction &MF = *getParent()->getParent(); 1235 1236 // Most opcodes have fixed constraints in their MCInstrDesc. 1237 if (!isInlineAsm()) 1238 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 1239 1240 if (!getOperand(OpIdx).isReg()) 1241 return nullptr; 1242 1243 // For tied uses on inline asm, get the constraint from the def. 1244 unsigned DefIdx; 1245 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 1246 OpIdx = DefIdx; 1247 1248 // Inline asm stores register class constraints in the flag word. 1249 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 1250 if (FlagIdx < 0) 1251 return nullptr; 1252 1253 unsigned Flag = getOperand(FlagIdx).getImm(); 1254 unsigned RCID; 1255 if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse || 1256 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef || 1257 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) && 1258 InlineAsm::hasRegClassConstraint(Flag, RCID)) 1259 return TRI->getRegClass(RCID); 1260 1261 // Assume that all registers in a memory operand are pointers. 1262 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 1263 return TRI->getPointerRegClass(MF); 1264 1265 return nullptr; 1266 } 1267 1268 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 1269 unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 1270 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 1271 // Check every operands inside the bundle if we have 1272 // been asked to. 1273 if (ExploreBundle) 1274 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; 1275 ++OpndIt) 1276 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 1277 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 1278 else 1279 // Otherwise, just check the current operands. 1280 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 1281 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 1282 return CurRC; 1283 } 1284 1285 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 1286 unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC, 1287 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1288 assert(CurRC && "Invalid initial register class"); 1289 // Check if Reg is constrained by some of its use/def from MI. 1290 const MachineOperand &MO = getOperand(OpIdx); 1291 if (!MO.isReg() || MO.getReg() != Reg) 1292 return CurRC; 1293 // If yes, accumulate the constraints through the operand. 1294 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 1295 } 1296 1297 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 1298 unsigned OpIdx, const TargetRegisterClass *CurRC, 1299 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1300 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 1301 const MachineOperand &MO = getOperand(OpIdx); 1302 assert(MO.isReg() && 1303 "Cannot get register constraints for non-register operand"); 1304 assert(CurRC && "Invalid initial register class"); 1305 if (unsigned SubIdx = MO.getSubReg()) { 1306 if (OpRC) 1307 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 1308 else 1309 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 1310 } else if (OpRC) 1311 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 1312 return CurRC; 1313 } 1314 1315 /// Return the number of instructions inside the MI bundle, not counting the 1316 /// header instruction. 1317 unsigned MachineInstr::getBundleSize() const { 1318 MachineBasicBlock::const_instr_iterator I = getIterator(); 1319 unsigned Size = 0; 1320 while (I->isBundledWithSucc()) { 1321 ++Size; 1322 ++I; 1323 } 1324 return Size; 1325 } 1326 1327 /// Returns true if the MachineInstr has an implicit-use operand of exactly 1328 /// the given register (not considering sub/super-registers). 1329 bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const { 1330 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1331 const MachineOperand &MO = getOperand(i); 1332 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) 1333 return true; 1334 } 1335 return false; 1336 } 1337 1338 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 1339 /// the specific register or -1 if it is not found. It further tightens 1340 /// the search criteria to a use that kills the register if isKill is true. 1341 int MachineInstr::findRegisterUseOperandIdx( 1342 unsigned Reg, bool isKill, const TargetRegisterInfo *TRI) const { 1343 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1344 const MachineOperand &MO = getOperand(i); 1345 if (!MO.isReg() || !MO.isUse()) 1346 continue; 1347 unsigned MOReg = MO.getReg(); 1348 if (!MOReg) 1349 continue; 1350 if (MOReg == Reg || (TRI && TargetRegisterInfo::isPhysicalRegister(MOReg) && 1351 TargetRegisterInfo::isPhysicalRegister(Reg) && 1352 TRI->isSubRegister(MOReg, Reg))) 1353 if (!isKill || MO.isKill()) 1354 return i; 1355 } 1356 return -1; 1357 } 1358 1359 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1360 /// indicating if this instruction reads or writes Reg. This also considers 1361 /// partial defines. 1362 std::pair<bool,bool> 1363 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 1364 SmallVectorImpl<unsigned> *Ops) const { 1365 bool PartDef = false; // Partial redefine. 1366 bool FullDef = false; // Full define. 1367 bool Use = false; 1368 1369 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1370 const MachineOperand &MO = getOperand(i); 1371 if (!MO.isReg() || MO.getReg() != Reg) 1372 continue; 1373 if (Ops) 1374 Ops->push_back(i); 1375 if (MO.isUse()) 1376 Use |= !MO.isUndef(); 1377 else if (MO.getSubReg() && !MO.isUndef()) 1378 // A partial <def,undef> doesn't count as reading the register. 1379 PartDef = true; 1380 else 1381 FullDef = true; 1382 } 1383 // A partial redefine uses Reg unless there is also a full define. 1384 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1385 } 1386 1387 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1388 /// the specified register or -1 if it is not found. If isDead is true, defs 1389 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1390 /// also checks if there is a def of a super-register. 1391 int 1392 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 1393 const TargetRegisterInfo *TRI) const { 1394 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 1395 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1396 const MachineOperand &MO = getOperand(i); 1397 // Accept regmask operands when Overlap is set. 1398 // Ignore them when looking for a specific def operand (Overlap == false). 1399 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1400 return i; 1401 if (!MO.isReg() || !MO.isDef()) 1402 continue; 1403 unsigned MOReg = MO.getReg(); 1404 bool Found = (MOReg == Reg); 1405 if (!Found && TRI && isPhys && 1406 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1407 if (Overlap) 1408 Found = TRI->regsOverlap(MOReg, Reg); 1409 else 1410 Found = TRI->isSubRegister(MOReg, Reg); 1411 } 1412 if (Found && (!isDead || MO.isDead())) 1413 return i; 1414 } 1415 return -1; 1416 } 1417 1418 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1419 /// operand list that is used to represent the predicate. It returns -1 if 1420 /// none is found. 1421 int MachineInstr::findFirstPredOperandIdx() const { 1422 // Don't call MCID.findFirstPredOperandIdx() because this variant 1423 // is sometimes called on an instruction that's not yet complete, and 1424 // so the number of operands is less than the MCID indicates. In 1425 // particular, the PTX target does this. 1426 const MCInstrDesc &MCID = getDesc(); 1427 if (MCID.isPredicable()) { 1428 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1429 if (MCID.OpInfo[i].isPredicate()) 1430 return i; 1431 } 1432 1433 return -1; 1434 } 1435 1436 // MachineOperand::TiedTo is 4 bits wide. 1437 const unsigned TiedMax = 15; 1438 1439 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1440 /// 1441 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1442 /// field. TiedTo can have these values: 1443 /// 1444 /// 0: Operand is not tied to anything. 1445 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1446 /// TiedMax: Tied to an operand >= TiedMax-1. 1447 /// 1448 /// The tied def must be one of the first TiedMax operands on a normal 1449 /// instruction. INLINEASM instructions allow more tied defs. 1450 /// 1451 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1452 MachineOperand &DefMO = getOperand(DefIdx); 1453 MachineOperand &UseMO = getOperand(UseIdx); 1454 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1455 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1456 assert(!DefMO.isTied() && "Def is already tied to another use"); 1457 assert(!UseMO.isTied() && "Use is already tied to another def"); 1458 1459 if (DefIdx < TiedMax) 1460 UseMO.TiedTo = DefIdx + 1; 1461 else { 1462 // Inline asm can use the group descriptors to find tied operands, but on 1463 // normal instruction, the tied def must be within the first TiedMax 1464 // operands. 1465 assert(isInlineAsm() && "DefIdx out of range"); 1466 UseMO.TiedTo = TiedMax; 1467 } 1468 1469 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1470 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1471 } 1472 1473 /// Given the index of a tied register operand, find the operand it is tied to. 1474 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1475 /// which must exist. 1476 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1477 const MachineOperand &MO = getOperand(OpIdx); 1478 assert(MO.isTied() && "Operand isn't tied"); 1479 1480 // Normally TiedTo is in range. 1481 if (MO.TiedTo < TiedMax) 1482 return MO.TiedTo - 1; 1483 1484 // Uses on normal instructions can be out of range. 1485 if (!isInlineAsm()) { 1486 // Normal tied defs must be in the 0..TiedMax-1 range. 1487 if (MO.isUse()) 1488 return TiedMax - 1; 1489 // MO is a def. Search for the tied use. 1490 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1491 const MachineOperand &UseMO = getOperand(i); 1492 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1493 return i; 1494 } 1495 llvm_unreachable("Can't find tied use"); 1496 } 1497 1498 // Now deal with inline asm by parsing the operand group descriptor flags. 1499 // Find the beginning of each operand group. 1500 SmallVector<unsigned, 8> GroupIdx; 1501 unsigned OpIdxGroup = ~0u; 1502 unsigned NumOps; 1503 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1504 i += NumOps) { 1505 const MachineOperand &FlagMO = getOperand(i); 1506 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1507 unsigned CurGroup = GroupIdx.size(); 1508 GroupIdx.push_back(i); 1509 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1510 // OpIdx belongs to this operand group. 1511 if (OpIdx > i && OpIdx < i + NumOps) 1512 OpIdxGroup = CurGroup; 1513 unsigned TiedGroup; 1514 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1515 continue; 1516 // Operands in this group are tied to operands in TiedGroup which must be 1517 // earlier. Find the number of operands between the two groups. 1518 unsigned Delta = i - GroupIdx[TiedGroup]; 1519 1520 // OpIdx is a use tied to TiedGroup. 1521 if (OpIdxGroup == CurGroup) 1522 return OpIdx - Delta; 1523 1524 // OpIdx is a def tied to this use group. 1525 if (OpIdxGroup == TiedGroup) 1526 return OpIdx + Delta; 1527 } 1528 llvm_unreachable("Invalid tied operand on inline asm"); 1529 } 1530 1531 /// clearKillInfo - Clears kill flags on all operands. 1532 /// 1533 void MachineInstr::clearKillInfo() { 1534 for (MachineOperand &MO : operands()) { 1535 if (MO.isReg() && MO.isUse()) 1536 MO.setIsKill(false); 1537 } 1538 } 1539 1540 void MachineInstr::substituteRegister(unsigned FromReg, 1541 unsigned ToReg, 1542 unsigned SubIdx, 1543 const TargetRegisterInfo &RegInfo) { 1544 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1545 if (SubIdx) 1546 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1547 for (MachineOperand &MO : operands()) { 1548 if (!MO.isReg() || MO.getReg() != FromReg) 1549 continue; 1550 MO.substPhysReg(ToReg, RegInfo); 1551 } 1552 } else { 1553 for (MachineOperand &MO : operands()) { 1554 if (!MO.isReg() || MO.getReg() != FromReg) 1555 continue; 1556 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1557 } 1558 } 1559 } 1560 1561 /// isSafeToMove - Return true if it is safe to move this instruction. If 1562 /// SawStore is set to true, it means that there is a store (or call) between 1563 /// the instruction's location and its intended destination. 1564 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const { 1565 // Ignore stuff that we obviously can't move. 1566 // 1567 // Treat volatile loads as stores. This is not strictly necessary for 1568 // volatiles, but it is required for atomic loads. It is not allowed to move 1569 // a load across an atomic load with Ordering > Monotonic. 1570 if (mayStore() || isCall() || 1571 (mayLoad() && hasOrderedMemoryRef())) { 1572 SawStore = true; 1573 return false; 1574 } 1575 1576 if (isPosition() || isDebugValue() || isTerminator() || 1577 hasUnmodeledSideEffects()) 1578 return false; 1579 1580 // See if this instruction does a load. If so, we have to guarantee that the 1581 // loaded value doesn't change between the load and the its intended 1582 // destination. The check for isInvariantLoad gives the targe the chance to 1583 // classify the load as always returning a constant, e.g. a constant pool 1584 // load. 1585 if (mayLoad() && !isDereferenceableInvariantLoad(AA)) 1586 // Otherwise, this is a real load. If there is a store between the load and 1587 // end of block, we can't move it. 1588 return !SawStore; 1589 1590 return true; 1591 } 1592 1593 bool MachineInstr::mayAlias(AliasAnalysis *AA, MachineInstr &Other, 1594 bool UseTBAA) { 1595 const MachineFunction *MF = getParent()->getParent(); 1596 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1597 1598 // If neither instruction stores to memory, they can't alias in any 1599 // meaningful way, even if they read from the same address. 1600 if (!mayStore() && !Other.mayStore()) 1601 return false; 1602 1603 // Let the target decide if memory accesses cannot possibly overlap. 1604 if (TII->areMemAccessesTriviallyDisjoint(*this, Other, AA)) 1605 return false; 1606 1607 if (!AA) 1608 return true; 1609 1610 // FIXME: Need to handle multiple memory operands to support all targets. 1611 if (!hasOneMemOperand() || !Other.hasOneMemOperand()) 1612 return true; 1613 1614 MachineMemOperand *MMOa = *memoperands_begin(); 1615 MachineMemOperand *MMOb = *Other.memoperands_begin(); 1616 1617 if (!MMOa->getValue() || !MMOb->getValue()) 1618 return true; 1619 1620 // The following interface to AA is fashioned after DAGCombiner::isAlias 1621 // and operates with MachineMemOperand offset with some important 1622 // assumptions: 1623 // - LLVM fundamentally assumes flat address spaces. 1624 // - MachineOperand offset can *only* result from legalization and 1625 // cannot affect queries other than the trivial case of overlap 1626 // checking. 1627 // - These offsets never wrap and never step outside 1628 // of allocated objects. 1629 // - There should never be any negative offsets here. 1630 // 1631 // FIXME: Modify API to hide this math from "user" 1632 // FIXME: Even before we go to AA we can reason locally about some 1633 // memory objects. It can save compile time, and possibly catch some 1634 // corner cases not currently covered. 1635 1636 assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset"); 1637 assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset"); 1638 1639 int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset()); 1640 int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset; 1641 int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset; 1642 1643 AliasResult AAResult = 1644 AA->alias(MemoryLocation(MMOa->getValue(), Overlapa, 1645 UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 1646 MemoryLocation(MMOb->getValue(), Overlapb, 1647 UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 1648 1649 return (AAResult != NoAlias); 1650 } 1651 1652 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1653 /// or volatile memory reference, or if the information describing the memory 1654 /// reference is not available. Return false if it is known to have no ordered 1655 /// memory references. 1656 bool MachineInstr::hasOrderedMemoryRef() const { 1657 // An instruction known never to access memory won't have a volatile access. 1658 if (!mayStore() && 1659 !mayLoad() && 1660 !isCall() && 1661 !hasUnmodeledSideEffects()) 1662 return false; 1663 1664 // Otherwise, if the instruction has no memory reference information, 1665 // conservatively assume it wasn't preserved. 1666 if (memoperands_empty()) 1667 return true; 1668 1669 // Check if any of our memory operands are ordered. 1670 return any_of(memoperands(), [](const MachineMemOperand *MMO) { 1671 return !MMO->isUnordered(); 1672 }); 1673 } 1674 1675 /// isDereferenceableInvariantLoad - Return true if this instruction will never 1676 /// trap and is loading from a location whose value is invariant across a run of 1677 /// this function. 1678 bool MachineInstr::isDereferenceableInvariantLoad(AliasAnalysis *AA) const { 1679 // If the instruction doesn't load at all, it isn't an invariant load. 1680 if (!mayLoad()) 1681 return false; 1682 1683 // If the instruction has lost its memoperands, conservatively assume that 1684 // it may not be an invariant load. 1685 if (memoperands_empty()) 1686 return false; 1687 1688 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); 1689 1690 for (MachineMemOperand *MMO : memoperands()) { 1691 if (MMO->isVolatile()) return false; 1692 if (MMO->isStore()) return false; 1693 if (MMO->isInvariant() && MMO->isDereferenceable()) 1694 continue; 1695 1696 // A load from a constant PseudoSourceValue is invariant. 1697 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) 1698 if (PSV->isConstant(&MFI)) 1699 continue; 1700 1701 if (const Value *V = MMO->getValue()) { 1702 // If we have an AliasAnalysis, ask it whether the memory is constant. 1703 if (AA && 1704 AA->pointsToConstantMemory( 1705 MemoryLocation(V, MMO->getSize(), MMO->getAAInfo()))) 1706 continue; 1707 } 1708 1709 // Otherwise assume conservatively. 1710 return false; 1711 } 1712 1713 // Everything checks out. 1714 return true; 1715 } 1716 1717 /// isConstantValuePHI - If the specified instruction is a PHI that always 1718 /// merges together the same virtual register, return the register, otherwise 1719 /// return 0. 1720 unsigned MachineInstr::isConstantValuePHI() const { 1721 if (!isPHI()) 1722 return 0; 1723 assert(getNumOperands() >= 3 && 1724 "It's illegal to have a PHI without source operands"); 1725 1726 unsigned Reg = getOperand(1).getReg(); 1727 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1728 if (getOperand(i).getReg() != Reg) 1729 return 0; 1730 return Reg; 1731 } 1732 1733 bool MachineInstr::hasUnmodeledSideEffects() const { 1734 if (hasProperty(MCID::UnmodeledSideEffects)) 1735 return true; 1736 if (isInlineAsm()) { 1737 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1738 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1739 return true; 1740 } 1741 1742 return false; 1743 } 1744 1745 bool MachineInstr::isLoadFoldBarrier() const { 1746 return mayStore() || isCall() || hasUnmodeledSideEffects(); 1747 } 1748 1749 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1750 /// 1751 bool MachineInstr::allDefsAreDead() const { 1752 for (const MachineOperand &MO : operands()) { 1753 if (!MO.isReg() || MO.isUse()) 1754 continue; 1755 if (!MO.isDead()) 1756 return false; 1757 } 1758 return true; 1759 } 1760 1761 /// copyImplicitOps - Copy implicit register operands from specified 1762 /// instruction to this instruction. 1763 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1764 const MachineInstr &MI) { 1765 for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands(); 1766 i != e; ++i) { 1767 const MachineOperand &MO = MI.getOperand(i); 1768 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1769 addOperand(MF, MO); 1770 } 1771 } 1772 1773 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1774 LLVM_DUMP_METHOD void MachineInstr::dump() const { 1775 dbgs() << " "; 1776 print(dbgs()); 1777 } 1778 #endif 1779 1780 void MachineInstr::print(raw_ostream &OS, bool SkipOpers, bool SkipDebugLoc, 1781 const TargetInstrInfo *TII) const { 1782 const Module *M = nullptr; 1783 if (const MachineBasicBlock *MBB = getParent()) 1784 if (const MachineFunction *MF = MBB->getParent()) 1785 M = MF->getFunction()->getParent(); 1786 1787 ModuleSlotTracker MST(M); 1788 print(OS, MST, SkipOpers, SkipDebugLoc, TII); 1789 } 1790 1791 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1792 bool SkipOpers, bool SkipDebugLoc, 1793 const TargetInstrInfo *TII) const { 1794 // We can be a bit tidier if we know the MachineFunction. 1795 const MachineFunction *MF = nullptr; 1796 const TargetRegisterInfo *TRI = nullptr; 1797 const MachineRegisterInfo *MRI = nullptr; 1798 const TargetIntrinsicInfo *IntrinsicInfo = nullptr; 1799 1800 if (const MachineBasicBlock *MBB = getParent()) { 1801 MF = MBB->getParent(); 1802 if (MF) { 1803 MRI = &MF->getRegInfo(); 1804 TRI = MF->getSubtarget().getRegisterInfo(); 1805 if (!TII) 1806 TII = MF->getSubtarget().getInstrInfo(); 1807 IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); 1808 } 1809 } 1810 1811 // Save a list of virtual registers. 1812 SmallVector<unsigned, 8> VirtRegs; 1813 1814 // Print explicitly defined operands on the left of an assignment syntax. 1815 unsigned StartOp = 0, e = getNumOperands(); 1816 for (; StartOp < e && getOperand(StartOp).isReg() && 1817 getOperand(StartOp).isDef() && 1818 !getOperand(StartOp).isImplicit(); 1819 ++StartOp) { 1820 if (StartOp != 0) OS << ", "; 1821 getOperand(StartOp).print(OS, MST, TRI, IntrinsicInfo); 1822 unsigned Reg = getOperand(StartOp).getReg(); 1823 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1824 VirtRegs.push_back(Reg); 1825 LLT Ty = MRI ? MRI->getType(Reg) : LLT{}; 1826 if (Ty.isValid()) 1827 OS << '(' << Ty << ')'; 1828 } 1829 } 1830 1831 if (StartOp != 0) 1832 OS << " = "; 1833 1834 // Print the opcode name. 1835 if (TII) 1836 OS << TII->getName(getOpcode()); 1837 else 1838 OS << "UNKNOWN"; 1839 1840 if (SkipOpers) 1841 return; 1842 1843 // Print the rest of the operands. 1844 bool FirstOp = true; 1845 unsigned AsmDescOp = ~0u; 1846 unsigned AsmOpCount = 0; 1847 1848 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1849 // Print asm string. 1850 OS << " "; 1851 getOperand(InlineAsm::MIOp_AsmString).print(OS, MST, TRI); 1852 1853 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1854 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1855 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1856 OS << " [sideeffect]"; 1857 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1858 OS << " [mayload]"; 1859 if (ExtraInfo & InlineAsm::Extra_MayStore) 1860 OS << " [maystore]"; 1861 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 1862 OS << " [isconvergent]"; 1863 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1864 OS << " [alignstack]"; 1865 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1866 OS << " [attdialect]"; 1867 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1868 OS << " [inteldialect]"; 1869 1870 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1871 FirstOp = false; 1872 } 1873 1874 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1875 const MachineOperand &MO = getOperand(i); 1876 1877 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1878 VirtRegs.push_back(MO.getReg()); 1879 1880 if (FirstOp) FirstOp = false; else OS << ","; 1881 OS << " "; 1882 if (i < getDesc().NumOperands) { 1883 const MCOperandInfo &MCOI = getDesc().OpInfo[i]; 1884 if (MCOI.isPredicate()) 1885 OS << "pred:"; 1886 if (MCOI.isOptionalDef()) 1887 OS << "opt:"; 1888 } 1889 if (isDebugValue() && MO.isMetadata()) { 1890 // Pretty print DBG_VALUE instructions. 1891 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1892 if (DIV && !DIV->getName().empty()) 1893 OS << "!\"" << DIV->getName() << '\"'; 1894 else 1895 MO.print(OS, MST, TRI); 1896 } else if (TRI && (isInsertSubreg() || isRegSequence() || 1897 (isSubregToReg() && i == 3)) && MO.isImm()) { 1898 OS << TRI->getSubRegIndexName(MO.getImm()); 1899 } else if (i == AsmDescOp && MO.isImm()) { 1900 // Pretty print the inline asm operand descriptor. 1901 OS << '$' << AsmOpCount++; 1902 unsigned Flag = MO.getImm(); 1903 switch (InlineAsm::getKind(Flag)) { 1904 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1905 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1906 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1907 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1908 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1909 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1910 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1911 } 1912 1913 unsigned RCID = 0; 1914 if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) && 1915 InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1916 if (TRI) { 1917 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1918 } else 1919 OS << ":RC" << RCID; 1920 } 1921 1922 if (InlineAsm::isMemKind(Flag)) { 1923 unsigned MCID = InlineAsm::getMemoryConstraintID(Flag); 1924 switch (MCID) { 1925 case InlineAsm::Constraint_es: OS << ":es"; break; 1926 case InlineAsm::Constraint_i: OS << ":i"; break; 1927 case InlineAsm::Constraint_m: OS << ":m"; break; 1928 case InlineAsm::Constraint_o: OS << ":o"; break; 1929 case InlineAsm::Constraint_v: OS << ":v"; break; 1930 case InlineAsm::Constraint_Q: OS << ":Q"; break; 1931 case InlineAsm::Constraint_R: OS << ":R"; break; 1932 case InlineAsm::Constraint_S: OS << ":S"; break; 1933 case InlineAsm::Constraint_T: OS << ":T"; break; 1934 case InlineAsm::Constraint_Um: OS << ":Um"; break; 1935 case InlineAsm::Constraint_Un: OS << ":Un"; break; 1936 case InlineAsm::Constraint_Uq: OS << ":Uq"; break; 1937 case InlineAsm::Constraint_Us: OS << ":Us"; break; 1938 case InlineAsm::Constraint_Ut: OS << ":Ut"; break; 1939 case InlineAsm::Constraint_Uv: OS << ":Uv"; break; 1940 case InlineAsm::Constraint_Uy: OS << ":Uy"; break; 1941 case InlineAsm::Constraint_X: OS << ":X"; break; 1942 case InlineAsm::Constraint_Z: OS << ":Z"; break; 1943 case InlineAsm::Constraint_ZC: OS << ":ZC"; break; 1944 case InlineAsm::Constraint_Zy: OS << ":Zy"; break; 1945 default: OS << ":?"; break; 1946 } 1947 } 1948 1949 unsigned TiedTo = 0; 1950 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1951 OS << " tiedto:$" << TiedTo; 1952 1953 OS << ']'; 1954 1955 // Compute the index of the next operand descriptor. 1956 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1957 } else 1958 MO.print(OS, MST, TRI); 1959 } 1960 1961 bool HaveSemi = false; 1962 const unsigned PrintableFlags = FrameSetup | FrameDestroy; 1963 if (Flags & PrintableFlags) { 1964 if (!HaveSemi) { 1965 OS << ";"; 1966 HaveSemi = true; 1967 } 1968 OS << " flags: "; 1969 1970 if (Flags & FrameSetup) 1971 OS << "FrameSetup"; 1972 1973 if (Flags & FrameDestroy) 1974 OS << "FrameDestroy"; 1975 } 1976 1977 if (!memoperands_empty()) { 1978 if (!HaveSemi) { 1979 OS << ";"; 1980 HaveSemi = true; 1981 } 1982 1983 OS << " mem:"; 1984 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 1985 i != e; ++i) { 1986 (*i)->print(OS, MST); 1987 if (std::next(i) != e) 1988 OS << " "; 1989 } 1990 } 1991 1992 // Print the regclass of any virtual registers encountered. 1993 if (MRI && !VirtRegs.empty()) { 1994 if (!HaveSemi) { 1995 OS << ";"; 1996 HaveSemi = true; 1997 } 1998 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 1999 const RegClassOrRegBank &RC = MRI->getRegClassOrRegBank(VirtRegs[i]); 2000 if (!RC) 2001 continue; 2002 // Generic virtual registers do not have register classes. 2003 if (RC.is<const RegisterBank *>()) 2004 OS << " " << RC.get<const RegisterBank *>()->getName(); 2005 else 2006 OS << " " 2007 << TRI->getRegClassName(RC.get<const TargetRegisterClass *>()); 2008 OS << ':' << PrintReg(VirtRegs[i]); 2009 for (unsigned j = i+1; j != VirtRegs.size();) { 2010 if (MRI->getRegClassOrRegBank(VirtRegs[j]) != RC) { 2011 ++j; 2012 continue; 2013 } 2014 if (VirtRegs[i] != VirtRegs[j]) 2015 OS << "," << PrintReg(VirtRegs[j]); 2016 VirtRegs.erase(VirtRegs.begin()+j); 2017 } 2018 } 2019 } 2020 2021 // Print debug location information. 2022 if (isDebugValue() && getOperand(e - 2).isMetadata()) { 2023 if (!HaveSemi) 2024 OS << ";"; 2025 auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata()); 2026 OS << " line no:" << DV->getLine(); 2027 if (auto *InlinedAt = debugLoc->getInlinedAt()) { 2028 DebugLoc InlinedAtDL(InlinedAt); 2029 if (InlinedAtDL && MF) { 2030 OS << " inlined @[ "; 2031 InlinedAtDL.print(OS); 2032 OS << " ]"; 2033 } 2034 } 2035 if (isIndirectDebugValue()) 2036 OS << " indirect"; 2037 } else if (SkipDebugLoc) { 2038 return; 2039 } else if (debugLoc && MF) { 2040 if (!HaveSemi) 2041 OS << ";"; 2042 OS << " dbg:"; 2043 debugLoc.print(OS); 2044 } 2045 2046 OS << '\n'; 2047 } 2048 2049 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 2050 const TargetRegisterInfo *RegInfo, 2051 bool AddIfNotFound) { 2052 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 2053 bool hasAliases = isPhysReg && 2054 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 2055 bool Found = false; 2056 SmallVector<unsigned,4> DeadOps; 2057 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 2058 MachineOperand &MO = getOperand(i); 2059 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 2060 continue; 2061 2062 // DEBUG_VALUE nodes do not contribute to code generation and should 2063 // always be ignored. Failure to do so may result in trying to modify 2064 // KILL flags on DEBUG_VALUE nodes. 2065 if (MO.isDebug()) 2066 continue; 2067 2068 unsigned Reg = MO.getReg(); 2069 if (!Reg) 2070 continue; 2071 2072 if (Reg == IncomingReg) { 2073 if (!Found) { 2074 if (MO.isKill()) 2075 // The register is already marked kill. 2076 return true; 2077 if (isPhysReg && isRegTiedToDefOperand(i)) 2078 // Two-address uses of physregs must not be marked kill. 2079 return true; 2080 MO.setIsKill(); 2081 Found = true; 2082 } 2083 } else if (hasAliases && MO.isKill() && 2084 TargetRegisterInfo::isPhysicalRegister(Reg)) { 2085 // A super-register kill already exists. 2086 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 2087 return true; 2088 if (RegInfo->isSubRegister(IncomingReg, Reg)) 2089 DeadOps.push_back(i); 2090 } 2091 } 2092 2093 // Trim unneeded kill operands. 2094 while (!DeadOps.empty()) { 2095 unsigned OpIdx = DeadOps.back(); 2096 if (getOperand(OpIdx).isImplicit()) 2097 RemoveOperand(OpIdx); 2098 else 2099 getOperand(OpIdx).setIsKill(false); 2100 DeadOps.pop_back(); 2101 } 2102 2103 // If not found, this means an alias of one of the operands is killed. Add a 2104 // new implicit operand if required. 2105 if (!Found && AddIfNotFound) { 2106 addOperand(MachineOperand::CreateReg(IncomingReg, 2107 false /*IsDef*/, 2108 true /*IsImp*/, 2109 true /*IsKill*/)); 2110 return true; 2111 } 2112 return Found; 2113 } 2114 2115 void MachineInstr::clearRegisterKills(unsigned Reg, 2116 const TargetRegisterInfo *RegInfo) { 2117 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 2118 RegInfo = nullptr; 2119 for (MachineOperand &MO : operands()) { 2120 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 2121 continue; 2122 unsigned OpReg = MO.getReg(); 2123 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) 2124 MO.setIsKill(false); 2125 } 2126 } 2127 2128 bool MachineInstr::addRegisterDead(unsigned Reg, 2129 const TargetRegisterInfo *RegInfo, 2130 bool AddIfNotFound) { 2131 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg); 2132 bool hasAliases = isPhysReg && 2133 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 2134 bool Found = false; 2135 SmallVector<unsigned,4> DeadOps; 2136 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 2137 MachineOperand &MO = getOperand(i); 2138 if (!MO.isReg() || !MO.isDef()) 2139 continue; 2140 unsigned MOReg = MO.getReg(); 2141 if (!MOReg) 2142 continue; 2143 2144 if (MOReg == Reg) { 2145 MO.setIsDead(); 2146 Found = true; 2147 } else if (hasAliases && MO.isDead() && 2148 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 2149 // There exists a super-register that's marked dead. 2150 if (RegInfo->isSuperRegister(Reg, MOReg)) 2151 return true; 2152 if (RegInfo->isSubRegister(Reg, MOReg)) 2153 DeadOps.push_back(i); 2154 } 2155 } 2156 2157 // Trim unneeded dead operands. 2158 while (!DeadOps.empty()) { 2159 unsigned OpIdx = DeadOps.back(); 2160 if (getOperand(OpIdx).isImplicit()) 2161 RemoveOperand(OpIdx); 2162 else 2163 getOperand(OpIdx).setIsDead(false); 2164 DeadOps.pop_back(); 2165 } 2166 2167 // If not found, this means an alias of one of the operands is dead. Add a 2168 // new implicit operand if required. 2169 if (Found || !AddIfNotFound) 2170 return Found; 2171 2172 addOperand(MachineOperand::CreateReg(Reg, 2173 true /*IsDef*/, 2174 true /*IsImp*/, 2175 false /*IsKill*/, 2176 true /*IsDead*/)); 2177 return true; 2178 } 2179 2180 void MachineInstr::clearRegisterDeads(unsigned Reg) { 2181 for (MachineOperand &MO : operands()) { 2182 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) 2183 continue; 2184 MO.setIsDead(false); 2185 } 2186 } 2187 2188 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) { 2189 for (MachineOperand &MO : operands()) { 2190 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) 2191 continue; 2192 MO.setIsUndef(IsUndef); 2193 } 2194 } 2195 2196 void MachineInstr::addRegisterDefined(unsigned Reg, 2197 const TargetRegisterInfo *RegInfo) { 2198 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 2199 MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo); 2200 if (MO) 2201 return; 2202 } else { 2203 for (const MachineOperand &MO : operands()) { 2204 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 2205 MO.getSubReg() == 0) 2206 return; 2207 } 2208 } 2209 addOperand(MachineOperand::CreateReg(Reg, 2210 true /*IsDef*/, 2211 true /*IsImp*/)); 2212 } 2213 2214 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 2215 const TargetRegisterInfo &TRI) { 2216 bool HasRegMask = false; 2217 for (MachineOperand &MO : operands()) { 2218 if (MO.isRegMask()) { 2219 HasRegMask = true; 2220 continue; 2221 } 2222 if (!MO.isReg() || !MO.isDef()) continue; 2223 unsigned Reg = MO.getReg(); 2224 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 2225 // If there are no uses, including partial uses, the def is dead. 2226 if (none_of(UsedRegs, 2227 [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); })) 2228 MO.setIsDead(); 2229 } 2230 2231 // This is a call with a register mask operand. 2232 // Mask clobbers are always dead, so add defs for the non-dead defines. 2233 if (HasRegMask) 2234 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 2235 I != E; ++I) 2236 addRegisterDefined(*I, &TRI); 2237 } 2238 2239 unsigned 2240 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 2241 // Build up a buffer of hash code components. 2242 SmallVector<size_t, 8> HashComponents; 2243 HashComponents.reserve(MI->getNumOperands() + 1); 2244 HashComponents.push_back(MI->getOpcode()); 2245 for (const MachineOperand &MO : MI->operands()) { 2246 if (MO.isReg() && MO.isDef() && 2247 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 2248 continue; // Skip virtual register defs. 2249 2250 HashComponents.push_back(hash_value(MO)); 2251 } 2252 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 2253 } 2254 2255 void MachineInstr::emitError(StringRef Msg) const { 2256 // Find the source location cookie. 2257 unsigned LocCookie = 0; 2258 const MDNode *LocMD = nullptr; 2259 for (unsigned i = getNumOperands(); i != 0; --i) { 2260 if (getOperand(i-1).isMetadata() && 2261 (LocMD = getOperand(i-1).getMetadata()) && 2262 LocMD->getNumOperands() != 0) { 2263 if (const ConstantInt *CI = 2264 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 2265 LocCookie = CI->getZExtValue(); 2266 break; 2267 } 2268 } 2269 } 2270 2271 if (const MachineBasicBlock *MBB = getParent()) 2272 if (const MachineFunction *MF = MBB->getParent()) 2273 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 2274 report_fatal_error(Msg); 2275 } 2276 2277 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2278 const MCInstrDesc &MCID, bool IsIndirect, 2279 unsigned Reg, unsigned Offset, 2280 const MDNode *Variable, const MDNode *Expr) { 2281 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2282 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2283 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2284 "Expected inlined-at fields to agree"); 2285 if (IsIndirect) 2286 return BuildMI(MF, DL, MCID) 2287 .addReg(Reg, RegState::Debug) 2288 .addImm(Offset) 2289 .addMetadata(Variable) 2290 .addMetadata(Expr); 2291 else { 2292 assert(Offset == 0 && "A direct address cannot have an offset."); 2293 return BuildMI(MF, DL, MCID) 2294 .addReg(Reg, RegState::Debug) 2295 .addReg(0U, RegState::Debug) 2296 .addMetadata(Variable) 2297 .addMetadata(Expr); 2298 } 2299 } 2300 2301 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2302 MachineBasicBlock::iterator I, 2303 const DebugLoc &DL, const MCInstrDesc &MCID, 2304 bool IsIndirect, unsigned Reg, 2305 unsigned Offset, const MDNode *Variable, 2306 const MDNode *Expr) { 2307 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2308 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2309 MachineFunction &MF = *BB.getParent(); 2310 MachineInstr *MI = 2311 BuildMI(MF, DL, MCID, IsIndirect, Reg, Offset, Variable, Expr); 2312 BB.insert(I, MI); 2313 return MachineInstrBuilder(MF, MI); 2314 } 2315 2316 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB, 2317 MachineBasicBlock::iterator I, 2318 const MachineInstr &Orig, 2319 int FrameIndex) { 2320 const MDNode *Var = Orig.getDebugVariable(); 2321 const auto *Expr = cast_or_null<DIExpression>(Orig.getDebugExpression()); 2322 bool IsIndirect = Orig.isIndirectDebugValue(); 2323 uint64_t Offset = IsIndirect ? Orig.getOperand(1).getImm() : 0; 2324 DebugLoc DL = Orig.getDebugLoc(); 2325 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 2326 "Expected inlined-at fields to agree"); 2327 // If the DBG_VALUE already was a memory location, add an extra 2328 // DW_OP_deref. Otherwise just turning this from a register into a 2329 // memory/indirect location is sufficient. 2330 if (IsIndirect) 2331 Expr = DIExpression::prepend(Expr, DIExpression::WithDeref); 2332 return BuildMI(BB, I, DL, Orig.getDesc()) 2333 .addFrameIndex(FrameIndex) 2334 .addImm(Offset) 2335 .addMetadata(Var) 2336 .addMetadata(Expr); 2337 } 2338