xref: /llvm-project/llvm/lib/CodeGen/MachineInstr.cpp (revision b85b4e5a6f8579c137fecb59a4d75d7bfb111f79)
1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Methods common to all machine instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MachineInstr.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/FoldingSet.h"
17 #include "llvm/ADT/Hashing.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallBitVector.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/Loads.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/Config/llvm-config.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DebugInfoMetadata.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/ModuleSlotTracker.h"
53 #include "llvm/IR/Operator.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/MC/MCInstrDesc.h"
57 #include "llvm/MC/MCRegisterInfo.h"
58 #include "llvm/MC/MCSymbol.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/LowLevelTypeImpl.h"
65 #include "llvm/Support/MathExtras.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetIntrinsicInfo.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include <algorithm>
70 #include <cassert>
71 #include <cstddef>
72 #include <cstdint>
73 #include <cstring>
74 #include <iterator>
75 #include <utility>
76 
77 using namespace llvm;
78 
79 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
80   if (const MachineBasicBlock *MBB = MI.getParent())
81     if (const MachineFunction *MF = MBB->getParent())
82       return MF;
83   return nullptr;
84 }
85 
86 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
87 // it.
88 static void tryToGetTargetInfo(const MachineInstr &MI,
89                                const TargetRegisterInfo *&TRI,
90                                const MachineRegisterInfo *&MRI,
91                                const TargetIntrinsicInfo *&IntrinsicInfo,
92                                const TargetInstrInfo *&TII) {
93 
94   if (const MachineFunction *MF = getMFIfAvailable(MI)) {
95     TRI = MF->getSubtarget().getRegisterInfo();
96     MRI = &MF->getRegInfo();
97     IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
98     TII = MF->getSubtarget().getInstrInfo();
99   }
100 }
101 
102 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
103   if (MCID->ImplicitDefs)
104     for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
105            ++ImpDefs)
106       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
107   if (MCID->ImplicitUses)
108     for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
109            ++ImpUses)
110       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
111 }
112 
113 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
114 /// implicit operands. It reserves space for the number of operands specified by
115 /// the MCInstrDesc.
116 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
117                            DebugLoc dl, bool NoImp)
118     : MCID(&tid), debugLoc(std::move(dl)) {
119   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
120 
121   // Reserve space for the expected number of operands.
122   if (unsigned NumOps = MCID->getNumOperands() +
123     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
124     CapOperands = OperandCapacity::get(NumOps);
125     Operands = MF.allocateOperandArray(CapOperands);
126   }
127 
128   if (!NoImp)
129     addImplicitDefUseOperands(MF);
130 }
131 
132 /// MachineInstr ctor - Copies MachineInstr arg exactly
133 ///
134 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
135     : MCID(&MI.getDesc()), Info(MI.Info), debugLoc(MI.getDebugLoc()) {
136   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
137 
138   CapOperands = OperandCapacity::get(MI.getNumOperands());
139   Operands = MF.allocateOperandArray(CapOperands);
140 
141   // Copy operands.
142   for (const MachineOperand &MO : MI.operands())
143     addOperand(MF, MO);
144 
145   // Copy all the sensible flags.
146   setFlags(MI.Flags);
147 }
148 
149 /// getRegInfo - If this instruction is embedded into a MachineFunction,
150 /// return the MachineRegisterInfo object for the current function, otherwise
151 /// return null.
152 MachineRegisterInfo *MachineInstr::getRegInfo() {
153   if (MachineBasicBlock *MBB = getParent())
154     return &MBB->getParent()->getRegInfo();
155   return nullptr;
156 }
157 
158 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
159 /// this instruction from their respective use lists.  This requires that the
160 /// operands already be on their use lists.
161 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
162   for (MachineOperand &MO : operands())
163     if (MO.isReg())
164       MRI.removeRegOperandFromUseList(&MO);
165 }
166 
167 /// AddRegOperandsToUseLists - Add all of the register operands in
168 /// this instruction from their respective use lists.  This requires that the
169 /// operands not be on their use lists yet.
170 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
171   for (MachineOperand &MO : operands())
172     if (MO.isReg())
173       MRI.addRegOperandToUseList(&MO);
174 }
175 
176 void MachineInstr::addOperand(const MachineOperand &Op) {
177   MachineBasicBlock *MBB = getParent();
178   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
179   MachineFunction *MF = MBB->getParent();
180   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
181   addOperand(*MF, Op);
182 }
183 
184 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
185 /// ranges. If MRI is non-null also update use-def chains.
186 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
187                          unsigned NumOps, MachineRegisterInfo *MRI) {
188   if (MRI)
189     return MRI->moveOperands(Dst, Src, NumOps);
190 
191   // MachineOperand is a trivially copyable type so we can just use memmove.
192   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
193 }
194 
195 /// addOperand - Add the specified operand to the instruction.  If it is an
196 /// implicit operand, it is added to the end of the operand list.  If it is
197 /// an explicit operand it is added at the end of the explicit operand list
198 /// (before the first implicit operand).
199 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
200   assert(MCID && "Cannot add operands before providing an instr descriptor");
201 
202   // Check if we're adding one of our existing operands.
203   if (&Op >= Operands && &Op < Operands + NumOperands) {
204     // This is unusual: MI->addOperand(MI->getOperand(i)).
205     // If adding Op requires reallocating or moving existing operands around,
206     // the Op reference could go stale. Support it by copying Op.
207     MachineOperand CopyOp(Op);
208     return addOperand(MF, CopyOp);
209   }
210 
211   // Find the insert location for the new operand.  Implicit registers go at
212   // the end, everything else goes before the implicit regs.
213   //
214   // FIXME: Allow mixed explicit and implicit operands on inline asm.
215   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
216   // implicit-defs, but they must not be moved around.  See the FIXME in
217   // InstrEmitter.cpp.
218   unsigned OpNo = getNumOperands();
219   bool isImpReg = Op.isReg() && Op.isImplicit();
220   if (!isImpReg && !isInlineAsm()) {
221     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
222       --OpNo;
223       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
224     }
225   }
226 
227 #ifndef NDEBUG
228   bool isDebugOp = Op.getType() == MachineOperand::MO_Metadata ||
229                    Op.getType() == MachineOperand::MO_MCSymbol;
230   // OpNo now points as the desired insertion point.  Unless this is a variadic
231   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
232   // RegMask operands go between the explicit and implicit operands.
233   assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
234           OpNo < MCID->getNumOperands() || isDebugOp) &&
235          "Trying to add an operand to a machine instr that is already done!");
236 #endif
237 
238   MachineRegisterInfo *MRI = getRegInfo();
239 
240   // Determine if the Operands array needs to be reallocated.
241   // Save the old capacity and operand array.
242   OperandCapacity OldCap = CapOperands;
243   MachineOperand *OldOperands = Operands;
244   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
245     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
246     Operands = MF.allocateOperandArray(CapOperands);
247     // Move the operands before the insertion point.
248     if (OpNo)
249       moveOperands(Operands, OldOperands, OpNo, MRI);
250   }
251 
252   // Move the operands following the insertion point.
253   if (OpNo != NumOperands)
254     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
255                  MRI);
256   ++NumOperands;
257 
258   // Deallocate the old operand array.
259   if (OldOperands != Operands && OldOperands)
260     MF.deallocateOperandArray(OldCap, OldOperands);
261 
262   // Copy Op into place. It still needs to be inserted into the MRI use lists.
263   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
264   NewMO->ParentMI = this;
265 
266   // When adding a register operand, tell MRI about it.
267   if (NewMO->isReg()) {
268     // Ensure isOnRegUseList() returns false, regardless of Op's status.
269     NewMO->Contents.Reg.Prev = nullptr;
270     // Ignore existing ties. This is not a property that can be copied.
271     NewMO->TiedTo = 0;
272     // Add the new operand to MRI, but only for instructions in an MBB.
273     if (MRI)
274       MRI->addRegOperandToUseList(NewMO);
275     // The MCID operand information isn't accurate until we start adding
276     // explicit operands. The implicit operands are added first, then the
277     // explicits are inserted before them.
278     if (!isImpReg) {
279       // Tie uses to defs as indicated in MCInstrDesc.
280       if (NewMO->isUse()) {
281         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
282         if (DefIdx != -1)
283           tieOperands(DefIdx, OpNo);
284       }
285       // If the register operand is flagged as early, mark the operand as such.
286       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
287         NewMO->setIsEarlyClobber(true);
288     }
289   }
290 }
291 
292 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
293 /// fewer operand than it started with.
294 ///
295 void MachineInstr::RemoveOperand(unsigned OpNo) {
296   assert(OpNo < getNumOperands() && "Invalid operand number");
297   untieRegOperand(OpNo);
298 
299 #ifndef NDEBUG
300   // Moving tied operands would break the ties.
301   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
302     if (Operands[i].isReg())
303       assert(!Operands[i].isTied() && "Cannot move tied operands");
304 #endif
305 
306   MachineRegisterInfo *MRI = getRegInfo();
307   if (MRI && Operands[OpNo].isReg())
308     MRI->removeRegOperandFromUseList(Operands + OpNo);
309 
310   // Don't call the MachineOperand destructor. A lot of this code depends on
311   // MachineOperand having a trivial destructor anyway, and adding a call here
312   // wouldn't make it 'destructor-correct'.
313 
314   if (unsigned N = NumOperands - 1 - OpNo)
315     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
316   --NumOperands;
317 }
318 
319 void MachineInstr::setExtraInfo(MachineFunction &MF,
320                                 ArrayRef<MachineMemOperand *> MMOs,
321                                 MCSymbol *PreInstrSymbol,
322                                 MCSymbol *PostInstrSymbol,
323                                 MDNode *HeapAllocMarker) {
324   bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
325   bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
326   bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
327   int NumPointers =
328       MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + HasHeapAllocMarker;
329 
330   // Drop all extra info if there is none.
331   if (NumPointers <= 0) {
332     Info.clear();
333     return;
334   }
335 
336   // If more than one pointer, then store out of line.
337   // FIXME: Maybe we should make the symbols in the extra info mutable?
338   else if (NumPointers > 1) {
339     Info.set<EIIK_OutOfLine>(MF.createMIExtraInfo(
340         MMOs, PreInstrSymbol, PostInstrSymbol, HeapAllocMarker));
341     return;
342   }
343 
344   // Otherwise store the single pointer inline.
345   if (HasPreInstrSymbol)
346     Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol);
347   else if (HasPostInstrSymbol)
348     Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol);
349   else if (HasHeapAllocMarker)
350     Info.set<EIIK_HeapAllocMarker>(HeapAllocMarker);
351   else
352     Info.set<EIIK_MMO>(MMOs[0]);
353 }
354 
355 void MachineInstr::dropMemRefs(MachineFunction &MF) {
356   if (memoperands_empty())
357     return;
358 
359   setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(),
360                getHeapAllocMarker());
361 }
362 
363 void MachineInstr::setMemRefs(MachineFunction &MF,
364                               ArrayRef<MachineMemOperand *> MMOs) {
365   if (MMOs.empty()) {
366     dropMemRefs(MF);
367     return;
368   }
369 
370   setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(),
371                getHeapAllocMarker());
372 }
373 
374 void MachineInstr::addMemOperand(MachineFunction &MF,
375                                  MachineMemOperand *MO) {
376   SmallVector<MachineMemOperand *, 2> MMOs;
377   MMOs.append(memoperands_begin(), memoperands_end());
378   MMOs.push_back(MO);
379   setMemRefs(MF, MMOs);
380 }
381 
382 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) {
383   if (this == &MI)
384     // Nothing to do for a self-clone!
385     return;
386 
387   assert(&MF == MI.getMF() &&
388          "Invalid machine functions when cloning memory refrences!");
389   // See if we can just steal the extra info already allocated for the
390   // instruction. We can do this whenever the pre- and post-instruction symbols
391   // are the same (including null).
392   if (getPreInstrSymbol() == MI.getPreInstrSymbol() &&
393       getPostInstrSymbol() == MI.getPostInstrSymbol() &&
394       getHeapAllocMarker() == MI.getHeapAllocMarker()) {
395     Info = MI.Info;
396     return;
397   }
398 
399   // Otherwise, fall back on a copy-based clone.
400   setMemRefs(MF, MI.memoperands());
401 }
402 
403 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
404 /// identical.
405 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS,
406                              ArrayRef<MachineMemOperand *> RHS) {
407   if (LHS.size() != RHS.size())
408     return false;
409 
410   auto LHSPointees = make_pointee_range(LHS);
411   auto RHSPointees = make_pointee_range(RHS);
412   return std::equal(LHSPointees.begin(), LHSPointees.end(),
413                     RHSPointees.begin());
414 }
415 
416 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF,
417                                       ArrayRef<const MachineInstr *> MIs) {
418   // Try handling easy numbers of MIs with simpler mechanisms.
419   if (MIs.empty()) {
420     dropMemRefs(MF);
421     return;
422   }
423   if (MIs.size() == 1) {
424     cloneMemRefs(MF, *MIs[0]);
425     return;
426   }
427   // Because an empty memoperands list provides *no* information and must be
428   // handled conservatively (assuming the instruction can do anything), the only
429   // way to merge with it is to drop all other memoperands.
430   if (MIs[0]->memoperands_empty()) {
431     dropMemRefs(MF);
432     return;
433   }
434 
435   // Handle the general case.
436   SmallVector<MachineMemOperand *, 2> MergedMMOs;
437   // Start with the first instruction.
438   assert(&MF == MIs[0]->getMF() &&
439          "Invalid machine functions when cloning memory references!");
440   MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end());
441   // Now walk all the other instructions and accumulate any different MMOs.
442   for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) {
443     assert(&MF == MI.getMF() &&
444            "Invalid machine functions when cloning memory references!");
445 
446     // Skip MIs with identical operands to the first. This is a somewhat
447     // arbitrary hack but will catch common cases without being quadratic.
448     // TODO: We could fully implement merge semantics here if needed.
449     if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands()))
450       continue;
451 
452     // Because an empty memoperands list provides *no* information and must be
453     // handled conservatively (assuming the instruction can do anything), the
454     // only way to merge with it is to drop all other memoperands.
455     if (MI.memoperands_empty()) {
456       dropMemRefs(MF);
457       return;
458     }
459 
460     // Otherwise accumulate these into our temporary buffer of the merged state.
461     MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end());
462   }
463 
464   setMemRefs(MF, MergedMMOs);
465 }
466 
467 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
468   // Do nothing if old and new symbols are the same.
469   if (Symbol == getPreInstrSymbol())
470     return;
471 
472   // If there was only one symbol and we're removing it, just clear info.
473   if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) {
474     Info.clear();
475     return;
476   }
477 
478   setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(),
479                getHeapAllocMarker());
480 }
481 
482 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
483   // Do nothing if old and new symbols are the same.
484   if (Symbol == getPostInstrSymbol())
485     return;
486 
487   // If there was only one symbol and we're removing it, just clear info.
488   if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) {
489     Info.clear();
490     return;
491   }
492 
493   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol,
494                getHeapAllocMarker());
495 }
496 
497 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) {
498   // Do nothing if old and new symbols are the same.
499   if (Marker == getHeapAllocMarker())
500     return;
501 
502   // If there was only one symbol and we're removing it, just clear info.
503   if (!Marker && Info.is<EIIK_HeapAllocMarker>()) {
504     Info.clear();
505     return;
506   }
507 
508   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
509                Marker);
510 }
511 
512 void MachineInstr::cloneInstrSymbols(MachineFunction &MF,
513                                      const MachineInstr &MI) {
514   if (this == &MI)
515     // Nothing to do for a self-clone!
516     return;
517 
518   assert(&MF == MI.getMF() &&
519          "Invalid machine functions when cloning instruction symbols!");
520 
521   setPreInstrSymbol(MF, MI.getPreInstrSymbol());
522   setPostInstrSymbol(MF, MI.getPostInstrSymbol());
523   setHeapAllocMarker(MF, MI.getHeapAllocMarker());
524 }
525 
526 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
527   // For now, the just return the union of the flags. If the flags get more
528   // complicated over time, we might need more logic here.
529   return getFlags() | Other.getFlags();
530 }
531 
532 uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) {
533   uint16_t MIFlags = 0;
534   // Copy the wrapping flags.
535   if (const OverflowingBinaryOperator *OB =
536           dyn_cast<OverflowingBinaryOperator>(&I)) {
537     if (OB->hasNoSignedWrap())
538       MIFlags |= MachineInstr::MIFlag::NoSWrap;
539     if (OB->hasNoUnsignedWrap())
540       MIFlags |= MachineInstr::MIFlag::NoUWrap;
541   }
542 
543   // Copy the exact flag.
544   if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I))
545     if (PE->isExact())
546       MIFlags |= MachineInstr::MIFlag::IsExact;
547 
548   // Copy the fast-math flags.
549   if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) {
550     const FastMathFlags Flags = FP->getFastMathFlags();
551     if (Flags.noNaNs())
552       MIFlags |= MachineInstr::MIFlag::FmNoNans;
553     if (Flags.noInfs())
554       MIFlags |= MachineInstr::MIFlag::FmNoInfs;
555     if (Flags.noSignedZeros())
556       MIFlags |= MachineInstr::MIFlag::FmNsz;
557     if (Flags.allowReciprocal())
558       MIFlags |= MachineInstr::MIFlag::FmArcp;
559     if (Flags.allowContract())
560       MIFlags |= MachineInstr::MIFlag::FmContract;
561     if (Flags.approxFunc())
562       MIFlags |= MachineInstr::MIFlag::FmAfn;
563     if (Flags.allowReassoc())
564       MIFlags |= MachineInstr::MIFlag::FmReassoc;
565   }
566 
567   return MIFlags;
568 }
569 
570 void MachineInstr::copyIRFlags(const Instruction &I) {
571   Flags = copyFlagsFromInstruction(I);
572 }
573 
574 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const {
575   assert(!isBundledWithPred() && "Must be called on bundle header");
576   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
577     if (MII->getDesc().getFlags() & Mask) {
578       if (Type == AnyInBundle)
579         return true;
580     } else {
581       if (Type == AllInBundle && !MII->isBundle())
582         return false;
583     }
584     // This was the last instruction in the bundle.
585     if (!MII->isBundledWithSucc())
586       return Type == AllInBundle;
587   }
588 }
589 
590 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
591                                  MICheckType Check) const {
592   // If opcodes or number of operands are not the same then the two
593   // instructions are obviously not identical.
594   if (Other.getOpcode() != getOpcode() ||
595       Other.getNumOperands() != getNumOperands())
596     return false;
597 
598   if (isBundle()) {
599     // We have passed the test above that both instructions have the same
600     // opcode, so we know that both instructions are bundles here. Let's compare
601     // MIs inside the bundle.
602     assert(Other.isBundle() && "Expected that both instructions are bundles.");
603     MachineBasicBlock::const_instr_iterator I1 = getIterator();
604     MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
605     // Loop until we analysed the last intruction inside at least one of the
606     // bundles.
607     while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
608       ++I1;
609       ++I2;
610       if (!I1->isIdenticalTo(*I2, Check))
611         return false;
612     }
613     // If we've reached the end of just one of the two bundles, but not both,
614     // the instructions are not identical.
615     if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
616       return false;
617   }
618 
619   // Check operands to make sure they match.
620   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
621     const MachineOperand &MO = getOperand(i);
622     const MachineOperand &OMO = Other.getOperand(i);
623     if (!MO.isReg()) {
624       if (!MO.isIdenticalTo(OMO))
625         return false;
626       continue;
627     }
628 
629     // Clients may or may not want to ignore defs when testing for equality.
630     // For example, machine CSE pass only cares about finding common
631     // subexpressions, so it's safe to ignore virtual register defs.
632     if (MO.isDef()) {
633       if (Check == IgnoreDefs)
634         continue;
635       else if (Check == IgnoreVRegDefs) {
636         if (!Register::isVirtualRegister(MO.getReg()) ||
637             !Register::isVirtualRegister(OMO.getReg()))
638           if (!MO.isIdenticalTo(OMO))
639             return false;
640       } else {
641         if (!MO.isIdenticalTo(OMO))
642           return false;
643         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
644           return false;
645       }
646     } else {
647       if (!MO.isIdenticalTo(OMO))
648         return false;
649       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
650         return false;
651     }
652   }
653   // If DebugLoc does not match then two debug instructions are not identical.
654   if (isDebugInstr())
655     if (getDebugLoc() && Other.getDebugLoc() &&
656         getDebugLoc() != Other.getDebugLoc())
657       return false;
658   return true;
659 }
660 
661 const MachineFunction *MachineInstr::getMF() const {
662   return getParent()->getParent();
663 }
664 
665 MachineInstr *MachineInstr::removeFromParent() {
666   assert(getParent() && "Not embedded in a basic block!");
667   return getParent()->remove(this);
668 }
669 
670 MachineInstr *MachineInstr::removeFromBundle() {
671   assert(getParent() && "Not embedded in a basic block!");
672   return getParent()->remove_instr(this);
673 }
674 
675 void MachineInstr::eraseFromParent() {
676   assert(getParent() && "Not embedded in a basic block!");
677   getParent()->erase(this);
678 }
679 
680 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
681   assert(getParent() && "Not embedded in a basic block!");
682   MachineBasicBlock *MBB = getParent();
683   MachineFunction *MF = MBB->getParent();
684   assert(MF && "Not embedded in a function!");
685 
686   MachineInstr *MI = (MachineInstr *)this;
687   MachineRegisterInfo &MRI = MF->getRegInfo();
688 
689   for (const MachineOperand &MO : MI->operands()) {
690     if (!MO.isReg() || !MO.isDef())
691       continue;
692     Register Reg = MO.getReg();
693     if (!Reg.isVirtual())
694       continue;
695     MRI.markUsesInDebugValueAsUndef(Reg);
696   }
697   MI->eraseFromParent();
698 }
699 
700 void MachineInstr::eraseFromBundle() {
701   assert(getParent() && "Not embedded in a basic block!");
702   getParent()->erase_instr(this);
703 }
704 
705 unsigned MachineInstr::getNumExplicitOperands() const {
706   unsigned NumOperands = MCID->getNumOperands();
707   if (!MCID->isVariadic())
708     return NumOperands;
709 
710   for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) {
711     const MachineOperand &MO = getOperand(I);
712     // The operands must always be in the following order:
713     // - explicit reg defs,
714     // - other explicit operands (reg uses, immediates, etc.),
715     // - implicit reg defs
716     // - implicit reg uses
717     if (MO.isReg() && MO.isImplicit())
718       break;
719     ++NumOperands;
720   }
721   return NumOperands;
722 }
723 
724 unsigned MachineInstr::getNumExplicitDefs() const {
725   unsigned NumDefs = MCID->getNumDefs();
726   if (!MCID->isVariadic())
727     return NumDefs;
728 
729   for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) {
730     const MachineOperand &MO = getOperand(I);
731     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
732       break;
733     ++NumDefs;
734   }
735   return NumDefs;
736 }
737 
738 void MachineInstr::bundleWithPred() {
739   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
740   setFlag(BundledPred);
741   MachineBasicBlock::instr_iterator Pred = getIterator();
742   --Pred;
743   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
744   Pred->setFlag(BundledSucc);
745 }
746 
747 void MachineInstr::bundleWithSucc() {
748   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
749   setFlag(BundledSucc);
750   MachineBasicBlock::instr_iterator Succ = getIterator();
751   ++Succ;
752   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
753   Succ->setFlag(BundledPred);
754 }
755 
756 void MachineInstr::unbundleFromPred() {
757   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
758   clearFlag(BundledPred);
759   MachineBasicBlock::instr_iterator Pred = getIterator();
760   --Pred;
761   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
762   Pred->clearFlag(BundledSucc);
763 }
764 
765 void MachineInstr::unbundleFromSucc() {
766   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
767   clearFlag(BundledSucc);
768   MachineBasicBlock::instr_iterator Succ = getIterator();
769   ++Succ;
770   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
771   Succ->clearFlag(BundledPred);
772 }
773 
774 bool MachineInstr::isStackAligningInlineAsm() const {
775   if (isInlineAsm()) {
776     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
777     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
778       return true;
779   }
780   return false;
781 }
782 
783 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
784   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
785   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
786   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
787 }
788 
789 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
790                                        unsigned *GroupNo) const {
791   assert(isInlineAsm() && "Expected an inline asm instruction");
792   assert(OpIdx < getNumOperands() && "OpIdx out of range");
793 
794   // Ignore queries about the initial operands.
795   if (OpIdx < InlineAsm::MIOp_FirstOperand)
796     return -1;
797 
798   unsigned Group = 0;
799   unsigned NumOps;
800   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
801        i += NumOps) {
802     const MachineOperand &FlagMO = getOperand(i);
803     // If we reach the implicit register operands, stop looking.
804     if (!FlagMO.isImm())
805       return -1;
806     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
807     if (i + NumOps > OpIdx) {
808       if (GroupNo)
809         *GroupNo = Group;
810       return i;
811     }
812     ++Group;
813   }
814   return -1;
815 }
816 
817 const DILabel *MachineInstr::getDebugLabel() const {
818   assert(isDebugLabel() && "not a DBG_LABEL");
819   return cast<DILabel>(getOperand(0).getMetadata());
820 }
821 
822 const DILocalVariable *MachineInstr::getDebugVariable() const {
823   assert(isDebugValue() && "not a DBG_VALUE");
824   return cast<DILocalVariable>(getOperand(2).getMetadata());
825 }
826 
827 const DIExpression *MachineInstr::getDebugExpression() const {
828   assert(isDebugValue() && "not a DBG_VALUE");
829   return cast<DIExpression>(getOperand(3).getMetadata());
830 }
831 
832 bool MachineInstr::isDebugEntryValue() const {
833   return isDebugValue() && getDebugExpression()->isEntryValue();
834 }
835 
836 const TargetRegisterClass*
837 MachineInstr::getRegClassConstraint(unsigned OpIdx,
838                                     const TargetInstrInfo *TII,
839                                     const TargetRegisterInfo *TRI) const {
840   assert(getParent() && "Can't have an MBB reference here!");
841   assert(getMF() && "Can't have an MF reference here!");
842   const MachineFunction &MF = *getMF();
843 
844   // Most opcodes have fixed constraints in their MCInstrDesc.
845   if (!isInlineAsm())
846     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
847 
848   if (!getOperand(OpIdx).isReg())
849     return nullptr;
850 
851   // For tied uses on inline asm, get the constraint from the def.
852   unsigned DefIdx;
853   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
854     OpIdx = DefIdx;
855 
856   // Inline asm stores register class constraints in the flag word.
857   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
858   if (FlagIdx < 0)
859     return nullptr;
860 
861   unsigned Flag = getOperand(FlagIdx).getImm();
862   unsigned RCID;
863   if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
864        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
865        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
866       InlineAsm::hasRegClassConstraint(Flag, RCID))
867     return TRI->getRegClass(RCID);
868 
869   // Assume that all registers in a memory operand are pointers.
870   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
871     return TRI->getPointerRegClass(MF);
872 
873   return nullptr;
874 }
875 
876 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
877     Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
878     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
879   // Check every operands inside the bundle if we have
880   // been asked to.
881   if (ExploreBundle)
882     for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
883          ++OpndIt)
884       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
885           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
886   else
887     // Otherwise, just check the current operands.
888     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
889       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
890   return CurRC;
891 }
892 
893 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
894     unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
895     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
896   assert(CurRC && "Invalid initial register class");
897   // Check if Reg is constrained by some of its use/def from MI.
898   const MachineOperand &MO = getOperand(OpIdx);
899   if (!MO.isReg() || MO.getReg() != Reg)
900     return CurRC;
901   // If yes, accumulate the constraints through the operand.
902   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
903 }
904 
905 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
906     unsigned OpIdx, const TargetRegisterClass *CurRC,
907     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
908   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
909   const MachineOperand &MO = getOperand(OpIdx);
910   assert(MO.isReg() &&
911          "Cannot get register constraints for non-register operand");
912   assert(CurRC && "Invalid initial register class");
913   if (unsigned SubIdx = MO.getSubReg()) {
914     if (OpRC)
915       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
916     else
917       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
918   } else if (OpRC)
919     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
920   return CurRC;
921 }
922 
923 /// Return the number of instructions inside the MI bundle, not counting the
924 /// header instruction.
925 unsigned MachineInstr::getBundleSize() const {
926   MachineBasicBlock::const_instr_iterator I = getIterator();
927   unsigned Size = 0;
928   while (I->isBundledWithSucc()) {
929     ++Size;
930     ++I;
931   }
932   return Size;
933 }
934 
935 /// Returns true if the MachineInstr has an implicit-use operand of exactly
936 /// the given register (not considering sub/super-registers).
937 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const {
938   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
939     const MachineOperand &MO = getOperand(i);
940     if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
941       return true;
942   }
943   return false;
944 }
945 
946 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
947 /// the specific register or -1 if it is not found. It further tightens
948 /// the search criteria to a use that kills the register if isKill is true.
949 int MachineInstr::findRegisterUseOperandIdx(
950     Register Reg, bool isKill, const TargetRegisterInfo *TRI) const {
951   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
952     const MachineOperand &MO = getOperand(i);
953     if (!MO.isReg() || !MO.isUse())
954       continue;
955     Register MOReg = MO.getReg();
956     if (!MOReg)
957       continue;
958     if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg)))
959       if (!isKill || MO.isKill())
960         return i;
961   }
962   return -1;
963 }
964 
965 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
966 /// indicating if this instruction reads or writes Reg. This also considers
967 /// partial defines.
968 std::pair<bool,bool>
969 MachineInstr::readsWritesVirtualRegister(Register Reg,
970                                          SmallVectorImpl<unsigned> *Ops) const {
971   bool PartDef = false; // Partial redefine.
972   bool FullDef = false; // Full define.
973   bool Use = false;
974 
975   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
976     const MachineOperand &MO = getOperand(i);
977     if (!MO.isReg() || MO.getReg() != Reg)
978       continue;
979     if (Ops)
980       Ops->push_back(i);
981     if (MO.isUse())
982       Use |= !MO.isUndef();
983     else if (MO.getSubReg() && !MO.isUndef())
984       // A partial def undef doesn't count as reading the register.
985       PartDef = true;
986     else
987       FullDef = true;
988   }
989   // A partial redefine uses Reg unless there is also a full define.
990   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
991 }
992 
993 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
994 /// the specified register or -1 if it is not found. If isDead is true, defs
995 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
996 /// also checks if there is a def of a super-register.
997 int
998 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap,
999                                         const TargetRegisterInfo *TRI) const {
1000   bool isPhys = Register::isPhysicalRegister(Reg);
1001   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1002     const MachineOperand &MO = getOperand(i);
1003     // Accept regmask operands when Overlap is set.
1004     // Ignore them when looking for a specific def operand (Overlap == false).
1005     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1006       return i;
1007     if (!MO.isReg() || !MO.isDef())
1008       continue;
1009     Register MOReg = MO.getReg();
1010     bool Found = (MOReg == Reg);
1011     if (!Found && TRI && isPhys && Register::isPhysicalRegister(MOReg)) {
1012       if (Overlap)
1013         Found = TRI->regsOverlap(MOReg, Reg);
1014       else
1015         Found = TRI->isSubRegister(MOReg, Reg);
1016     }
1017     if (Found && (!isDead || MO.isDead()))
1018       return i;
1019   }
1020   return -1;
1021 }
1022 
1023 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1024 /// operand list that is used to represent the predicate. It returns -1 if
1025 /// none is found.
1026 int MachineInstr::findFirstPredOperandIdx() const {
1027   // Don't call MCID.findFirstPredOperandIdx() because this variant
1028   // is sometimes called on an instruction that's not yet complete, and
1029   // so the number of operands is less than the MCID indicates. In
1030   // particular, the PTX target does this.
1031   const MCInstrDesc &MCID = getDesc();
1032   if (MCID.isPredicable()) {
1033     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1034       if (MCID.OpInfo[i].isPredicate())
1035         return i;
1036   }
1037 
1038   return -1;
1039 }
1040 
1041 // MachineOperand::TiedTo is 4 bits wide.
1042 const unsigned TiedMax = 15;
1043 
1044 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1045 ///
1046 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1047 /// field. TiedTo can have these values:
1048 ///
1049 /// 0:              Operand is not tied to anything.
1050 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1051 /// TiedMax:        Tied to an operand >= TiedMax-1.
1052 ///
1053 /// The tied def must be one of the first TiedMax operands on a normal
1054 /// instruction. INLINEASM instructions allow more tied defs.
1055 ///
1056 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1057   MachineOperand &DefMO = getOperand(DefIdx);
1058   MachineOperand &UseMO = getOperand(UseIdx);
1059   assert(DefMO.isDef() && "DefIdx must be a def operand");
1060   assert(UseMO.isUse() && "UseIdx must be a use operand");
1061   assert(!DefMO.isTied() && "Def is already tied to another use");
1062   assert(!UseMO.isTied() && "Use is already tied to another def");
1063 
1064   if (DefIdx < TiedMax)
1065     UseMO.TiedTo = DefIdx + 1;
1066   else {
1067     // Inline asm can use the group descriptors to find tied operands, but on
1068     // normal instruction, the tied def must be within the first TiedMax
1069     // operands.
1070     assert(isInlineAsm() && "DefIdx out of range");
1071     UseMO.TiedTo = TiedMax;
1072   }
1073 
1074   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1075   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1076 }
1077 
1078 /// Given the index of a tied register operand, find the operand it is tied to.
1079 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1080 /// which must exist.
1081 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1082   const MachineOperand &MO = getOperand(OpIdx);
1083   assert(MO.isTied() && "Operand isn't tied");
1084 
1085   // Normally TiedTo is in range.
1086   if (MO.TiedTo < TiedMax)
1087     return MO.TiedTo - 1;
1088 
1089   // Uses on normal instructions can be out of range.
1090   if (!isInlineAsm()) {
1091     // Normal tied defs must be in the 0..TiedMax-1 range.
1092     if (MO.isUse())
1093       return TiedMax - 1;
1094     // MO is a def. Search for the tied use.
1095     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1096       const MachineOperand &UseMO = getOperand(i);
1097       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1098         return i;
1099     }
1100     llvm_unreachable("Can't find tied use");
1101   }
1102 
1103   // Now deal with inline asm by parsing the operand group descriptor flags.
1104   // Find the beginning of each operand group.
1105   SmallVector<unsigned, 8> GroupIdx;
1106   unsigned OpIdxGroup = ~0u;
1107   unsigned NumOps;
1108   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1109        i += NumOps) {
1110     const MachineOperand &FlagMO = getOperand(i);
1111     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1112     unsigned CurGroup = GroupIdx.size();
1113     GroupIdx.push_back(i);
1114     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1115     // OpIdx belongs to this operand group.
1116     if (OpIdx > i && OpIdx < i + NumOps)
1117       OpIdxGroup = CurGroup;
1118     unsigned TiedGroup;
1119     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1120       continue;
1121     // Operands in this group are tied to operands in TiedGroup which must be
1122     // earlier. Find the number of operands between the two groups.
1123     unsigned Delta = i - GroupIdx[TiedGroup];
1124 
1125     // OpIdx is a use tied to TiedGroup.
1126     if (OpIdxGroup == CurGroup)
1127       return OpIdx - Delta;
1128 
1129     // OpIdx is a def tied to this use group.
1130     if (OpIdxGroup == TiedGroup)
1131       return OpIdx + Delta;
1132   }
1133   llvm_unreachable("Invalid tied operand on inline asm");
1134 }
1135 
1136 /// clearKillInfo - Clears kill flags on all operands.
1137 ///
1138 void MachineInstr::clearKillInfo() {
1139   for (MachineOperand &MO : operands()) {
1140     if (MO.isReg() && MO.isUse())
1141       MO.setIsKill(false);
1142   }
1143 }
1144 
1145 void MachineInstr::substituteRegister(Register FromReg, Register ToReg,
1146                                       unsigned SubIdx,
1147                                       const TargetRegisterInfo &RegInfo) {
1148   if (Register::isPhysicalRegister(ToReg)) {
1149     if (SubIdx)
1150       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1151     for (MachineOperand &MO : operands()) {
1152       if (!MO.isReg() || MO.getReg() != FromReg)
1153         continue;
1154       MO.substPhysReg(ToReg, RegInfo);
1155     }
1156   } else {
1157     for (MachineOperand &MO : operands()) {
1158       if (!MO.isReg() || MO.getReg() != FromReg)
1159         continue;
1160       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1161     }
1162   }
1163 }
1164 
1165 /// isSafeToMove - Return true if it is safe to move this instruction. If
1166 /// SawStore is set to true, it means that there is a store (or call) between
1167 /// the instruction's location and its intended destination.
1168 bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const {
1169   // Ignore stuff that we obviously can't move.
1170   //
1171   // Treat volatile loads as stores. This is not strictly necessary for
1172   // volatiles, but it is required for atomic loads. It is not allowed to move
1173   // a load across an atomic load with Ordering > Monotonic.
1174   if (mayStore() || isCall() || isPHI() ||
1175       (mayLoad() && hasOrderedMemoryRef())) {
1176     SawStore = true;
1177     return false;
1178   }
1179 
1180   if (isPosition() || isDebugInstr() || isTerminator() ||
1181       mayRaiseFPException() || hasUnmodeledSideEffects())
1182     return false;
1183 
1184   // See if this instruction does a load.  If so, we have to guarantee that the
1185   // loaded value doesn't change between the load and the its intended
1186   // destination. The check for isInvariantLoad gives the targe the chance to
1187   // classify the load as always returning a constant, e.g. a constant pool
1188   // load.
1189   if (mayLoad() && !isDereferenceableInvariantLoad(AA))
1190     // Otherwise, this is a real load.  If there is a store between the load and
1191     // end of block, we can't move it.
1192     return !SawStore;
1193 
1194   return true;
1195 }
1196 
1197 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other,
1198                             bool UseTBAA) const {
1199   const MachineFunction *MF = getMF();
1200   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1201   const MachineFrameInfo &MFI = MF->getFrameInfo();
1202 
1203   // If neither instruction stores to memory, they can't alias in any
1204   // meaningful way, even if they read from the same address.
1205   if (!mayStore() && !Other.mayStore())
1206     return false;
1207 
1208   // Let the target decide if memory accesses cannot possibly overlap.
1209   if (TII->areMemAccessesTriviallyDisjoint(*this, Other))
1210     return false;
1211 
1212   // FIXME: Need to handle multiple memory operands to support all targets.
1213   if (!hasOneMemOperand() || !Other.hasOneMemOperand())
1214     return true;
1215 
1216   MachineMemOperand *MMOa = *memoperands_begin();
1217   MachineMemOperand *MMOb = *Other.memoperands_begin();
1218 
1219   // The following interface to AA is fashioned after DAGCombiner::isAlias
1220   // and operates with MachineMemOperand offset with some important
1221   // assumptions:
1222   //   - LLVM fundamentally assumes flat address spaces.
1223   //   - MachineOperand offset can *only* result from legalization and
1224   //     cannot affect queries other than the trivial case of overlap
1225   //     checking.
1226   //   - These offsets never wrap and never step outside
1227   //     of allocated objects.
1228   //   - There should never be any negative offsets here.
1229   //
1230   // FIXME: Modify API to hide this math from "user"
1231   // Even before we go to AA we can reason locally about some
1232   // memory objects. It can save compile time, and possibly catch some
1233   // corner cases not currently covered.
1234 
1235   int64_t OffsetA = MMOa->getOffset();
1236   int64_t OffsetB = MMOb->getOffset();
1237   int64_t MinOffset = std::min(OffsetA, OffsetB);
1238 
1239   uint64_t WidthA = MMOa->getSize();
1240   uint64_t WidthB = MMOb->getSize();
1241   bool KnownWidthA = WidthA != MemoryLocation::UnknownSize;
1242   bool KnownWidthB = WidthB != MemoryLocation::UnknownSize;
1243 
1244   const Value *ValA = MMOa->getValue();
1245   const Value *ValB = MMOb->getValue();
1246   bool SameVal = (ValA && ValB && (ValA == ValB));
1247   if (!SameVal) {
1248     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1249     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1250     if (PSVa && ValB && !PSVa->mayAlias(&MFI))
1251       return false;
1252     if (PSVb && ValA && !PSVb->mayAlias(&MFI))
1253       return false;
1254     if (PSVa && PSVb && (PSVa == PSVb))
1255       SameVal = true;
1256   }
1257 
1258   if (SameVal) {
1259     if (!KnownWidthA || !KnownWidthB)
1260       return true;
1261     int64_t MaxOffset = std::max(OffsetA, OffsetB);
1262     int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
1263     return (MinOffset + LowWidth > MaxOffset);
1264   }
1265 
1266   if (!AA)
1267     return true;
1268 
1269   if (!ValA || !ValB)
1270     return true;
1271 
1272   assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
1273   assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
1274 
1275   int64_t OverlapA = KnownWidthA ? WidthA + OffsetA - MinOffset
1276                                  : MemoryLocation::UnknownSize;
1277   int64_t OverlapB = KnownWidthB ? WidthB + OffsetB - MinOffset
1278                                  : MemoryLocation::UnknownSize;
1279 
1280   AliasResult AAResult = AA->alias(
1281       MemoryLocation(ValA, OverlapA,
1282                      UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1283       MemoryLocation(ValB, OverlapB,
1284                      UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1285 
1286   return (AAResult != NoAlias);
1287 }
1288 
1289 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1290 /// or volatile memory reference, or if the information describing the memory
1291 /// reference is not available. Return false if it is known to have no ordered
1292 /// memory references.
1293 bool MachineInstr::hasOrderedMemoryRef() const {
1294   // An instruction known never to access memory won't have a volatile access.
1295   if (!mayStore() &&
1296       !mayLoad() &&
1297       !isCall() &&
1298       !hasUnmodeledSideEffects())
1299     return false;
1300 
1301   // Otherwise, if the instruction has no memory reference information,
1302   // conservatively assume it wasn't preserved.
1303   if (memoperands_empty())
1304     return true;
1305 
1306   // Check if any of our memory operands are ordered.
1307   return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1308     return !MMO->isUnordered();
1309   });
1310 }
1311 
1312 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1313 /// trap and is loading from a location whose value is invariant across a run of
1314 /// this function.
1315 bool MachineInstr::isDereferenceableInvariantLoad(AAResults *AA) const {
1316   // If the instruction doesn't load at all, it isn't an invariant load.
1317   if (!mayLoad())
1318     return false;
1319 
1320   // If the instruction has lost its memoperands, conservatively assume that
1321   // it may not be an invariant load.
1322   if (memoperands_empty())
1323     return false;
1324 
1325   const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1326 
1327   for (MachineMemOperand *MMO : memoperands()) {
1328     if (!MMO->isUnordered())
1329       // If the memory operand has ordering side effects, we can't move the
1330       // instruction.  Such an instruction is technically an invariant load,
1331       // but the caller code would need updated to expect that.
1332       return false;
1333     if (MMO->isStore()) return false;
1334     if (MMO->isInvariant() && MMO->isDereferenceable())
1335       continue;
1336 
1337     // A load from a constant PseudoSourceValue is invariant.
1338     if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1339       if (PSV->isConstant(&MFI))
1340         continue;
1341 
1342     if (const Value *V = MMO->getValue()) {
1343       // If we have an AliasAnalysis, ask it whether the memory is constant.
1344       if (AA &&
1345           AA->pointsToConstantMemory(
1346               MemoryLocation(V, MMO->getSize(), MMO->getAAInfo())))
1347         continue;
1348     }
1349 
1350     // Otherwise assume conservatively.
1351     return false;
1352   }
1353 
1354   // Everything checks out.
1355   return true;
1356 }
1357 
1358 /// isConstantValuePHI - If the specified instruction is a PHI that always
1359 /// merges together the same virtual register, return the register, otherwise
1360 /// return 0.
1361 unsigned MachineInstr::isConstantValuePHI() const {
1362   if (!isPHI())
1363     return 0;
1364   assert(getNumOperands() >= 3 &&
1365          "It's illegal to have a PHI without source operands");
1366 
1367   Register Reg = getOperand(1).getReg();
1368   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1369     if (getOperand(i).getReg() != Reg)
1370       return 0;
1371   return Reg;
1372 }
1373 
1374 bool MachineInstr::hasUnmodeledSideEffects() const {
1375   if (hasProperty(MCID::UnmodeledSideEffects))
1376     return true;
1377   if (isInlineAsm()) {
1378     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1379     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1380       return true;
1381   }
1382 
1383   return false;
1384 }
1385 
1386 bool MachineInstr::isLoadFoldBarrier() const {
1387   return mayStore() || isCall() || hasUnmodeledSideEffects();
1388 }
1389 
1390 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1391 ///
1392 bool MachineInstr::allDefsAreDead() const {
1393   for (const MachineOperand &MO : operands()) {
1394     if (!MO.isReg() || MO.isUse())
1395       continue;
1396     if (!MO.isDead())
1397       return false;
1398   }
1399   return true;
1400 }
1401 
1402 /// copyImplicitOps - Copy implicit register operands from specified
1403 /// instruction to this instruction.
1404 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1405                                    const MachineInstr &MI) {
1406   for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands();
1407        i != e; ++i) {
1408     const MachineOperand &MO = MI.getOperand(i);
1409     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1410       addOperand(MF, MO);
1411   }
1412 }
1413 
1414 bool MachineInstr::hasComplexRegisterTies() const {
1415   const MCInstrDesc &MCID = getDesc();
1416   for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
1417     const auto &Operand = getOperand(I);
1418     if (!Operand.isReg() || Operand.isDef())
1419       // Ignore the defined registers as MCID marks only the uses as tied.
1420       continue;
1421     int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
1422     int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
1423     if (ExpectedTiedIdx != TiedIdx)
1424       return true;
1425   }
1426   return false;
1427 }
1428 
1429 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1430                                  const MachineRegisterInfo &MRI) const {
1431   const MachineOperand &Op = getOperand(OpIdx);
1432   if (!Op.isReg())
1433     return LLT{};
1434 
1435   if (isVariadic() || OpIdx >= getNumExplicitOperands())
1436     return MRI.getType(Op.getReg());
1437 
1438   auto &OpInfo = getDesc().OpInfo[OpIdx];
1439   if (!OpInfo.isGenericType())
1440     return MRI.getType(Op.getReg());
1441 
1442   if (PrintedTypes[OpInfo.getGenericTypeIndex()])
1443     return LLT{};
1444 
1445   LLT TypeToPrint = MRI.getType(Op.getReg());
1446   // Don't mark the type index printed if it wasn't actually printed: maybe
1447   // another operand with the same type index has an actual type attached:
1448   if (TypeToPrint.isValid())
1449     PrintedTypes.set(OpInfo.getGenericTypeIndex());
1450   return TypeToPrint;
1451 }
1452 
1453 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1454 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1455   dbgs() << "  ";
1456   print(dbgs());
1457 }
1458 #endif
1459 
1460 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
1461                          bool SkipDebugLoc, bool AddNewLine,
1462                          const TargetInstrInfo *TII) const {
1463   const Module *M = nullptr;
1464   const Function *F = nullptr;
1465   if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1466     F = &MF->getFunction();
1467     M = F->getParent();
1468     if (!TII)
1469       TII = MF->getSubtarget().getInstrInfo();
1470   }
1471 
1472   ModuleSlotTracker MST(M);
1473   if (F)
1474     MST.incorporateFunction(*F);
1475   print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII);
1476 }
1477 
1478 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1479                          bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
1480                          bool AddNewLine, const TargetInstrInfo *TII) const {
1481   // We can be a bit tidier if we know the MachineFunction.
1482   const MachineFunction *MF = nullptr;
1483   const TargetRegisterInfo *TRI = nullptr;
1484   const MachineRegisterInfo *MRI = nullptr;
1485   const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1486   tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
1487 
1488   if (isCFIInstruction())
1489     assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1490 
1491   SmallBitVector PrintedTypes(8);
1492   bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies();
1493   auto getTiedOperandIdx = [&](unsigned OpIdx) {
1494     if (!ShouldPrintRegisterTies)
1495       return 0U;
1496     const MachineOperand &MO = getOperand(OpIdx);
1497     if (MO.isReg() && MO.isTied() && !MO.isDef())
1498       return findTiedOperandIdx(OpIdx);
1499     return 0U;
1500   };
1501   unsigned StartOp = 0;
1502   unsigned e = getNumOperands();
1503 
1504   // Print explicitly defined operands on the left of an assignment syntax.
1505   while (StartOp < e) {
1506     const MachineOperand &MO = getOperand(StartOp);
1507     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
1508       break;
1509 
1510     if (StartOp != 0)
1511       OS << ", ";
1512 
1513     LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
1514     unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
1515     MO.print(OS, MST, TypeToPrint, /*PrintDef=*/false, IsStandalone,
1516              ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1517     ++StartOp;
1518   }
1519 
1520   if (StartOp != 0)
1521     OS << " = ";
1522 
1523   if (getFlag(MachineInstr::FrameSetup))
1524     OS << "frame-setup ";
1525   if (getFlag(MachineInstr::FrameDestroy))
1526     OS << "frame-destroy ";
1527   if (getFlag(MachineInstr::FmNoNans))
1528     OS << "nnan ";
1529   if (getFlag(MachineInstr::FmNoInfs))
1530     OS << "ninf ";
1531   if (getFlag(MachineInstr::FmNsz))
1532     OS << "nsz ";
1533   if (getFlag(MachineInstr::FmArcp))
1534     OS << "arcp ";
1535   if (getFlag(MachineInstr::FmContract))
1536     OS << "contract ";
1537   if (getFlag(MachineInstr::FmAfn))
1538     OS << "afn ";
1539   if (getFlag(MachineInstr::FmReassoc))
1540     OS << "reassoc ";
1541   if (getFlag(MachineInstr::NoUWrap))
1542     OS << "nuw ";
1543   if (getFlag(MachineInstr::NoSWrap))
1544     OS << "nsw ";
1545   if (getFlag(MachineInstr::IsExact))
1546     OS << "exact ";
1547   if (getFlag(MachineInstr::FPExcept))
1548     OS << "fpexcept ";
1549 
1550   // Print the opcode name.
1551   if (TII)
1552     OS << TII->getName(getOpcode());
1553   else
1554     OS << "UNKNOWN";
1555 
1556   if (SkipOpers)
1557     return;
1558 
1559   // Print the rest of the operands.
1560   bool FirstOp = true;
1561   unsigned AsmDescOp = ~0u;
1562   unsigned AsmOpCount = 0;
1563 
1564   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1565     // Print asm string.
1566     OS << " ";
1567     const unsigned OpIdx = InlineAsm::MIOp_AsmString;
1568     LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
1569     unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
1570     getOperand(OpIdx).print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
1571                             ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1572                             IntrinsicInfo);
1573 
1574     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1575     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1576     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1577       OS << " [sideeffect]";
1578     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1579       OS << " [mayload]";
1580     if (ExtraInfo & InlineAsm::Extra_MayStore)
1581       OS << " [maystore]";
1582     if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1583       OS << " [isconvergent]";
1584     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1585       OS << " [alignstack]";
1586     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1587       OS << " [attdialect]";
1588     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1589       OS << " [inteldialect]";
1590 
1591     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1592     FirstOp = false;
1593   }
1594 
1595   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1596     const MachineOperand &MO = getOperand(i);
1597 
1598     if (FirstOp) FirstOp = false; else OS << ",";
1599     OS << " ";
1600 
1601     if (isDebugValue() && MO.isMetadata()) {
1602       // Pretty print DBG_VALUE instructions.
1603       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1604       if (DIV && !DIV->getName().empty())
1605         OS << "!\"" << DIV->getName() << '\"';
1606       else {
1607         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1608         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1609         MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
1610                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1611       }
1612     } else if (isDebugLabel() && MO.isMetadata()) {
1613       // Pretty print DBG_LABEL instructions.
1614       auto *DIL = dyn_cast<DILabel>(MO.getMetadata());
1615       if (DIL && !DIL->getName().empty())
1616         OS << "\"" << DIL->getName() << '\"';
1617       else {
1618         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1619         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1620         MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
1621                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1622       }
1623     } else if (i == AsmDescOp && MO.isImm()) {
1624       // Pretty print the inline asm operand descriptor.
1625       OS << '$' << AsmOpCount++;
1626       unsigned Flag = MO.getImm();
1627       switch (InlineAsm::getKind(Flag)) {
1628       case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break;
1629       case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break;
1630       case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1631       case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break;
1632       case InlineAsm::Kind_Imm:                OS << ":[imm"; break;
1633       case InlineAsm::Kind_Mem:                OS << ":[mem"; break;
1634       default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1635       }
1636 
1637       unsigned RCID = 0;
1638       if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1639           InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1640         if (TRI) {
1641           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1642         } else
1643           OS << ":RC" << RCID;
1644       }
1645 
1646       if (InlineAsm::isMemKind(Flag)) {
1647         unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1648         switch (MCID) {
1649         case InlineAsm::Constraint_es: OS << ":es"; break;
1650         case InlineAsm::Constraint_i:  OS << ":i"; break;
1651         case InlineAsm::Constraint_m:  OS << ":m"; break;
1652         case InlineAsm::Constraint_o:  OS << ":o"; break;
1653         case InlineAsm::Constraint_v:  OS << ":v"; break;
1654         case InlineAsm::Constraint_Q:  OS << ":Q"; break;
1655         case InlineAsm::Constraint_R:  OS << ":R"; break;
1656         case InlineAsm::Constraint_S:  OS << ":S"; break;
1657         case InlineAsm::Constraint_T:  OS << ":T"; break;
1658         case InlineAsm::Constraint_Um: OS << ":Um"; break;
1659         case InlineAsm::Constraint_Un: OS << ":Un"; break;
1660         case InlineAsm::Constraint_Uq: OS << ":Uq"; break;
1661         case InlineAsm::Constraint_Us: OS << ":Us"; break;
1662         case InlineAsm::Constraint_Ut: OS << ":Ut"; break;
1663         case InlineAsm::Constraint_Uv: OS << ":Uv"; break;
1664         case InlineAsm::Constraint_Uy: OS << ":Uy"; break;
1665         case InlineAsm::Constraint_X:  OS << ":X"; break;
1666         case InlineAsm::Constraint_Z:  OS << ":Z"; break;
1667         case InlineAsm::Constraint_ZC: OS << ":ZC"; break;
1668         case InlineAsm::Constraint_Zy: OS << ":Zy"; break;
1669         default: OS << ":?"; break;
1670         }
1671       }
1672 
1673       unsigned TiedTo = 0;
1674       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1675         OS << " tiedto:$" << TiedTo;
1676 
1677       OS << ']';
1678 
1679       // Compute the index of the next operand descriptor.
1680       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1681     } else {
1682       LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1683       unsigned TiedOperandIdx = getTiedOperandIdx(i);
1684       if (MO.isImm() && isOperandSubregIdx(i))
1685         MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
1686       else
1687         MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
1688                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1689     }
1690   }
1691 
1692   // Print any optional symbols attached to this instruction as-if they were
1693   // operands.
1694   if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) {
1695     if (!FirstOp) {
1696       FirstOp = false;
1697       OS << ',';
1698     }
1699     OS << " pre-instr-symbol ";
1700     MachineOperand::printSymbol(OS, *PreInstrSymbol);
1701   }
1702   if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) {
1703     if (!FirstOp) {
1704       FirstOp = false;
1705       OS << ',';
1706     }
1707     OS << " post-instr-symbol ";
1708     MachineOperand::printSymbol(OS, *PostInstrSymbol);
1709   }
1710   if (MDNode *HeapAllocMarker = getHeapAllocMarker()) {
1711     if (!FirstOp) {
1712       FirstOp = false;
1713       OS << ',';
1714     }
1715     OS << " heap-alloc-marker";
1716   }
1717 
1718   if (!SkipDebugLoc) {
1719     if (const DebugLoc &DL = getDebugLoc()) {
1720       if (!FirstOp)
1721         OS << ',';
1722       OS << " debug-location ";
1723       DL->printAsOperand(OS, MST);
1724     }
1725   }
1726 
1727   if (!memoperands_empty()) {
1728     SmallVector<StringRef, 0> SSNs;
1729     const LLVMContext *Context = nullptr;
1730     std::unique_ptr<LLVMContext> CtxPtr;
1731     const MachineFrameInfo *MFI = nullptr;
1732     if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1733       MFI = &MF->getFrameInfo();
1734       Context = &MF->getFunction().getContext();
1735     } else {
1736       CtxPtr = std::make_unique<LLVMContext>();
1737       Context = CtxPtr.get();
1738     }
1739 
1740     OS << " :: ";
1741     bool NeedComma = false;
1742     for (const MachineMemOperand *Op : memoperands()) {
1743       if (NeedComma)
1744         OS << ", ";
1745       Op->print(OS, MST, SSNs, *Context, MFI, TII);
1746       NeedComma = true;
1747     }
1748   }
1749 
1750   if (SkipDebugLoc)
1751     return;
1752 
1753   bool HaveSemi = false;
1754 
1755   // Print debug location information.
1756   if (const DebugLoc &DL = getDebugLoc()) {
1757     if (!HaveSemi) {
1758       OS << ';';
1759       HaveSemi = true;
1760     }
1761     OS << ' ';
1762     DL.print(OS);
1763   }
1764 
1765   // Print extra comments for DEBUG_VALUE.
1766   if (isDebugValue() && getOperand(e - 2).isMetadata()) {
1767     if (!HaveSemi) {
1768       OS << ";";
1769       HaveSemi = true;
1770     }
1771     auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata());
1772     OS << " line no:" <<  DV->getLine();
1773     if (auto *InlinedAt = debugLoc->getInlinedAt()) {
1774       DebugLoc InlinedAtDL(InlinedAt);
1775       if (InlinedAtDL && MF) {
1776         OS << " inlined @[ ";
1777         InlinedAtDL.print(OS);
1778         OS << " ]";
1779       }
1780     }
1781     if (isIndirectDebugValue())
1782       OS << " indirect";
1783   }
1784   // TODO: DBG_LABEL
1785 
1786   if (AddNewLine)
1787     OS << '\n';
1788 }
1789 
1790 bool MachineInstr::addRegisterKilled(Register IncomingReg,
1791                                      const TargetRegisterInfo *RegInfo,
1792                                      bool AddIfNotFound) {
1793   bool isPhysReg = Register::isPhysicalRegister(IncomingReg);
1794   bool hasAliases = isPhysReg &&
1795     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1796   bool Found = false;
1797   SmallVector<unsigned,4> DeadOps;
1798   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1799     MachineOperand &MO = getOperand(i);
1800     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1801       continue;
1802 
1803     // DEBUG_VALUE nodes do not contribute to code generation and should
1804     // always be ignored. Failure to do so may result in trying to modify
1805     // KILL flags on DEBUG_VALUE nodes.
1806     if (MO.isDebug())
1807       continue;
1808 
1809     Register Reg = MO.getReg();
1810     if (!Reg)
1811       continue;
1812 
1813     if (Reg == IncomingReg) {
1814       if (!Found) {
1815         if (MO.isKill())
1816           // The register is already marked kill.
1817           return true;
1818         if (isPhysReg && isRegTiedToDefOperand(i))
1819           // Two-address uses of physregs must not be marked kill.
1820           return true;
1821         MO.setIsKill();
1822         Found = true;
1823       }
1824     } else if (hasAliases && MO.isKill() && Register::isPhysicalRegister(Reg)) {
1825       // A super-register kill already exists.
1826       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1827         return true;
1828       if (RegInfo->isSubRegister(IncomingReg, Reg))
1829         DeadOps.push_back(i);
1830     }
1831   }
1832 
1833   // Trim unneeded kill operands.
1834   while (!DeadOps.empty()) {
1835     unsigned OpIdx = DeadOps.back();
1836     if (getOperand(OpIdx).isImplicit() &&
1837         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1838       RemoveOperand(OpIdx);
1839     else
1840       getOperand(OpIdx).setIsKill(false);
1841     DeadOps.pop_back();
1842   }
1843 
1844   // If not found, this means an alias of one of the operands is killed. Add a
1845   // new implicit operand if required.
1846   if (!Found && AddIfNotFound) {
1847     addOperand(MachineOperand::CreateReg(IncomingReg,
1848                                          false /*IsDef*/,
1849                                          true  /*IsImp*/,
1850                                          true  /*IsKill*/));
1851     return true;
1852   }
1853   return Found;
1854 }
1855 
1856 void MachineInstr::clearRegisterKills(Register Reg,
1857                                       const TargetRegisterInfo *RegInfo) {
1858   if (!Register::isPhysicalRegister(Reg))
1859     RegInfo = nullptr;
1860   for (MachineOperand &MO : operands()) {
1861     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1862       continue;
1863     Register OpReg = MO.getReg();
1864     if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
1865       MO.setIsKill(false);
1866   }
1867 }
1868 
1869 bool MachineInstr::addRegisterDead(Register Reg,
1870                                    const TargetRegisterInfo *RegInfo,
1871                                    bool AddIfNotFound) {
1872   bool isPhysReg = Register::isPhysicalRegister(Reg);
1873   bool hasAliases = isPhysReg &&
1874     MCRegAliasIterator(Reg, RegInfo, false).isValid();
1875   bool Found = false;
1876   SmallVector<unsigned,4> DeadOps;
1877   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1878     MachineOperand &MO = getOperand(i);
1879     if (!MO.isReg() || !MO.isDef())
1880       continue;
1881     Register MOReg = MO.getReg();
1882     if (!MOReg)
1883       continue;
1884 
1885     if (MOReg == Reg) {
1886       MO.setIsDead();
1887       Found = true;
1888     } else if (hasAliases && MO.isDead() &&
1889                Register::isPhysicalRegister(MOReg)) {
1890       // There exists a super-register that's marked dead.
1891       if (RegInfo->isSuperRegister(Reg, MOReg))
1892         return true;
1893       if (RegInfo->isSubRegister(Reg, MOReg))
1894         DeadOps.push_back(i);
1895     }
1896   }
1897 
1898   // Trim unneeded dead operands.
1899   while (!DeadOps.empty()) {
1900     unsigned OpIdx = DeadOps.back();
1901     if (getOperand(OpIdx).isImplicit() &&
1902         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1903       RemoveOperand(OpIdx);
1904     else
1905       getOperand(OpIdx).setIsDead(false);
1906     DeadOps.pop_back();
1907   }
1908 
1909   // If not found, this means an alias of one of the operands is dead. Add a
1910   // new implicit operand if required.
1911   if (Found || !AddIfNotFound)
1912     return Found;
1913 
1914   addOperand(MachineOperand::CreateReg(Reg,
1915                                        true  /*IsDef*/,
1916                                        true  /*IsImp*/,
1917                                        false /*IsKill*/,
1918                                        true  /*IsDead*/));
1919   return true;
1920 }
1921 
1922 void MachineInstr::clearRegisterDeads(Register Reg) {
1923   for (MachineOperand &MO : operands()) {
1924     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
1925       continue;
1926     MO.setIsDead(false);
1927   }
1928 }
1929 
1930 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) {
1931   for (MachineOperand &MO : operands()) {
1932     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
1933       continue;
1934     MO.setIsUndef(IsUndef);
1935   }
1936 }
1937 
1938 void MachineInstr::addRegisterDefined(Register Reg,
1939                                       const TargetRegisterInfo *RegInfo) {
1940   if (Register::isPhysicalRegister(Reg)) {
1941     MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo);
1942     if (MO)
1943       return;
1944   } else {
1945     for (const MachineOperand &MO : operands()) {
1946       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
1947           MO.getSubReg() == 0)
1948         return;
1949     }
1950   }
1951   addOperand(MachineOperand::CreateReg(Reg,
1952                                        true  /*IsDef*/,
1953                                        true  /*IsImp*/));
1954 }
1955 
1956 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
1957                                          const TargetRegisterInfo &TRI) {
1958   bool HasRegMask = false;
1959   for (MachineOperand &MO : operands()) {
1960     if (MO.isRegMask()) {
1961       HasRegMask = true;
1962       continue;
1963     }
1964     if (!MO.isReg() || !MO.isDef()) continue;
1965     Register Reg = MO.getReg();
1966     if (!Reg.isPhysical())
1967       continue;
1968     // If there are no uses, including partial uses, the def is dead.
1969     if (llvm::none_of(UsedRegs,
1970                       [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); }))
1971       MO.setIsDead();
1972   }
1973 
1974   // This is a call with a register mask operand.
1975   // Mask clobbers are always dead, so add defs for the non-dead defines.
1976   if (HasRegMask)
1977     for (ArrayRef<Register>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
1978          I != E; ++I)
1979       addRegisterDefined(*I, &TRI);
1980 }
1981 
1982 unsigned
1983 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1984   // Build up a buffer of hash code components.
1985   SmallVector<size_t, 8> HashComponents;
1986   HashComponents.reserve(MI->getNumOperands() + 1);
1987   HashComponents.push_back(MI->getOpcode());
1988   for (const MachineOperand &MO : MI->operands()) {
1989     if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg()))
1990       continue;  // Skip virtual register defs.
1991 
1992     HashComponents.push_back(hash_value(MO));
1993   }
1994   return hash_combine_range(HashComponents.begin(), HashComponents.end());
1995 }
1996 
1997 void MachineInstr::emitError(StringRef Msg) const {
1998   // Find the source location cookie.
1999   unsigned LocCookie = 0;
2000   const MDNode *LocMD = nullptr;
2001   for (unsigned i = getNumOperands(); i != 0; --i) {
2002     if (getOperand(i-1).isMetadata() &&
2003         (LocMD = getOperand(i-1).getMetadata()) &&
2004         LocMD->getNumOperands() != 0) {
2005       if (const ConstantInt *CI =
2006               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
2007         LocCookie = CI->getZExtValue();
2008         break;
2009       }
2010     }
2011   }
2012 
2013   if (const MachineBasicBlock *MBB = getParent())
2014     if (const MachineFunction *MF = MBB->getParent())
2015       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2016   report_fatal_error(Msg);
2017 }
2018 
2019 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2020                                   const MCInstrDesc &MCID, bool IsIndirect,
2021                                   Register Reg, const MDNode *Variable,
2022                                   const MDNode *Expr) {
2023   assert(isa<DILocalVariable>(Variable) && "not a variable");
2024   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2025   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2026          "Expected inlined-at fields to agree");
2027   auto MIB = BuildMI(MF, DL, MCID).addReg(Reg, RegState::Debug);
2028   if (IsIndirect)
2029     MIB.addImm(0U);
2030   else
2031     MIB.addReg(0U, RegState::Debug);
2032   return MIB.addMetadata(Variable).addMetadata(Expr);
2033 }
2034 
2035 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2036                                   const MCInstrDesc &MCID, bool IsIndirect,
2037                                   MachineOperand &MO, const MDNode *Variable,
2038                                   const MDNode *Expr) {
2039   assert(isa<DILocalVariable>(Variable) && "not a variable");
2040   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2041   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2042          "Expected inlined-at fields to agree");
2043   if (MO.isReg())
2044     return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr);
2045 
2046   auto MIB = BuildMI(MF, DL, MCID).add(MO);
2047   if (IsIndirect)
2048     MIB.addImm(0U);
2049   else
2050     MIB.addReg(0U, RegState::Debug);
2051   return MIB.addMetadata(Variable).addMetadata(Expr);
2052  }
2053 
2054 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2055                                   MachineBasicBlock::iterator I,
2056                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2057                                   bool IsIndirect, Register Reg,
2058                                   const MDNode *Variable, const MDNode *Expr) {
2059   MachineFunction &MF = *BB.getParent();
2060   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
2061   BB.insert(I, MI);
2062   return MachineInstrBuilder(MF, MI);
2063 }
2064 
2065 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2066                                   MachineBasicBlock::iterator I,
2067                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2068                                   bool IsIndirect, MachineOperand &MO,
2069                                   const MDNode *Variable, const MDNode *Expr) {
2070   MachineFunction &MF = *BB.getParent();
2071   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr);
2072   BB.insert(I, MI);
2073   return MachineInstrBuilder(MF, *MI);
2074 }
2075 
2076 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2077 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
2078 static const DIExpression *computeExprForSpill(const MachineInstr &MI) {
2079   assert(MI.getOperand(0).isReg() && "can't spill non-register");
2080   assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
2081          "Expected inlined-at fields to agree");
2082 
2083   const DIExpression *Expr = MI.getDebugExpression();
2084   if (MI.isIndirectDebugValue()) {
2085     assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
2086     Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
2087   }
2088   return Expr;
2089 }
2090 
2091 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
2092                                           MachineBasicBlock::iterator I,
2093                                           const MachineInstr &Orig,
2094                                           int FrameIndex) {
2095   const DIExpression *Expr = computeExprForSpill(Orig);
2096   return BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc())
2097       .addFrameIndex(FrameIndex)
2098       .addImm(0U)
2099       .addMetadata(Orig.getDebugVariable())
2100       .addMetadata(Expr);
2101 }
2102 
2103 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex) {
2104   const DIExpression *Expr = computeExprForSpill(Orig);
2105   Orig.getOperand(0).ChangeToFrameIndex(FrameIndex);
2106   Orig.getOperand(1).ChangeToImmediate(0U);
2107   Orig.getOperand(3).setMetadata(Expr);
2108 }
2109 
2110 void MachineInstr::collectDebugValues(
2111                                 SmallVectorImpl<MachineInstr *> &DbgValues) {
2112   MachineInstr &MI = *this;
2113   if (!MI.getOperand(0).isReg())
2114     return;
2115 
2116   MachineBasicBlock::iterator DI = MI; ++DI;
2117   for (MachineBasicBlock::iterator DE = MI.getParent()->end();
2118        DI != DE; ++DI) {
2119     if (!DI->isDebugValue())
2120       return;
2121     if (DI->getOperand(0).isReg() &&
2122         DI->getOperand(0).getReg() == MI.getOperand(0).getReg())
2123       DbgValues.push_back(&*DI);
2124   }
2125 }
2126 
2127 void MachineInstr::changeDebugValuesDefReg(Register Reg) {
2128   // Collect matching debug values.
2129   SmallVector<MachineInstr *, 2> DbgValues;
2130 
2131   if (!getOperand(0).isReg())
2132     return;
2133 
2134   unsigned DefReg = getOperand(0).getReg();
2135   auto *MRI = getRegInfo();
2136   for (auto &MO : MRI->use_operands(DefReg)) {
2137     auto *DI = MO.getParent();
2138     if (!DI->isDebugValue())
2139       continue;
2140     if (DI->getOperand(0).isReg() &&
2141         DI->getOperand(0).getReg() == DefReg){
2142       DbgValues.push_back(DI);
2143     }
2144   }
2145 
2146   // Propagate Reg to debug value instructions.
2147   for (auto *DBI : DbgValues)
2148     DBI->getOperand(0).setReg(Reg);
2149 }
2150 
2151 using MMOList = SmallVector<const MachineMemOperand *, 2>;
2152 
2153 static unsigned getSpillSlotSize(MMOList &Accesses,
2154                                  const MachineFrameInfo &MFI) {
2155   unsigned Size = 0;
2156   for (auto A : Accesses)
2157     if (MFI.isSpillSlotObjectIndex(
2158             cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
2159                 ->getFrameIndex()))
2160       Size += A->getSize();
2161   return Size;
2162 }
2163 
2164 Optional<unsigned>
2165 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const {
2166   int FI;
2167   if (TII->isStoreToStackSlotPostFE(*this, FI)) {
2168     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2169     if (MFI.isSpillSlotObjectIndex(FI))
2170       return (*memoperands_begin())->getSize();
2171   }
2172   return None;
2173 }
2174 
2175 Optional<unsigned>
2176 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const {
2177   MMOList Accesses;
2178   if (TII->hasStoreToStackSlot(*this, Accesses))
2179     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2180   return None;
2181 }
2182 
2183 Optional<unsigned>
2184 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const {
2185   int FI;
2186   if (TII->isLoadFromStackSlotPostFE(*this, FI)) {
2187     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2188     if (MFI.isSpillSlotObjectIndex(FI))
2189       return (*memoperands_begin())->getSize();
2190   }
2191   return None;
2192 }
2193 
2194 Optional<unsigned>
2195 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const {
2196   MMOList Accesses;
2197   if (TII->hasLoadFromStackSlot(*this, Accesses))
2198     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2199   return None;
2200 }
2201