1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/ADT/FoldingSet.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/CodeGen/MachineConstantPool.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineMemOperand.h" 21 #include "llvm/CodeGen/MachineModuleInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/PseudoSourceValue.h" 24 #include "llvm/DebugInfo.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/InlineAsm.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/Metadata.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/IR/Value.h" 33 #include "llvm/MC/MCInstrDesc.h" 34 #include "llvm/MC/MCSymbol.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Target/TargetInstrInfo.h" 40 #include "llvm/Target/TargetMachine.h" 41 #include "llvm/Target/TargetRegisterInfo.h" 42 using namespace llvm; 43 44 //===----------------------------------------------------------------------===// 45 // MachineOperand Implementation 46 //===----------------------------------------------------------------------===// 47 48 void MachineOperand::setReg(unsigned Reg) { 49 if (getReg() == Reg) return; // No change. 50 51 // Otherwise, we have to change the register. If this operand is embedded 52 // into a machine function, we need to update the old and new register's 53 // use/def lists. 54 if (MachineInstr *MI = getParent()) 55 if (MachineBasicBlock *MBB = MI->getParent()) 56 if (MachineFunction *MF = MBB->getParent()) { 57 MachineRegisterInfo &MRI = MF->getRegInfo(); 58 MRI.removeRegOperandFromUseList(this); 59 SmallContents.RegNo = Reg; 60 MRI.addRegOperandToUseList(this); 61 return; 62 } 63 64 // Otherwise, just change the register, no problem. :) 65 SmallContents.RegNo = Reg; 66 } 67 68 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 69 const TargetRegisterInfo &TRI) { 70 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 71 if (SubIdx && getSubReg()) 72 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 73 setReg(Reg); 74 if (SubIdx) 75 setSubReg(SubIdx); 76 } 77 78 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 79 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 80 if (getSubReg()) { 81 Reg = TRI.getSubReg(Reg, getSubReg()); 82 // Note that getSubReg() may return 0 if the sub-register doesn't exist. 83 // That won't happen in legal code. 84 setSubReg(0); 85 } 86 setReg(Reg); 87 } 88 89 /// Change a def to a use, or a use to a def. 90 void MachineOperand::setIsDef(bool Val) { 91 assert(isReg() && "Wrong MachineOperand accessor"); 92 assert((!Val || !isDebug()) && "Marking a debug operation as def"); 93 if (IsDef == Val) 94 return; 95 // MRI may keep uses and defs in different list positions. 96 if (MachineInstr *MI = getParent()) 97 if (MachineBasicBlock *MBB = MI->getParent()) 98 if (MachineFunction *MF = MBB->getParent()) { 99 MachineRegisterInfo &MRI = MF->getRegInfo(); 100 MRI.removeRegOperandFromUseList(this); 101 IsDef = Val; 102 MRI.addRegOperandToUseList(this); 103 return; 104 } 105 IsDef = Val; 106 } 107 108 /// ChangeToImmediate - Replace this operand with a new immediate operand of 109 /// the specified value. If an operand is known to be an immediate already, 110 /// the setImm method should be used. 111 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 112 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 113 // If this operand is currently a register operand, and if this is in a 114 // function, deregister the operand from the register's use/def list. 115 if (isReg() && isOnRegUseList()) 116 if (MachineInstr *MI = getParent()) 117 if (MachineBasicBlock *MBB = MI->getParent()) 118 if (MachineFunction *MF = MBB->getParent()) 119 MF->getRegInfo().removeRegOperandFromUseList(this); 120 121 OpKind = MO_Immediate; 122 Contents.ImmVal = ImmVal; 123 } 124 125 /// ChangeToRegister - Replace this operand with a new register operand of 126 /// the specified value. If an operand is known to be an register already, 127 /// the setReg method should be used. 128 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 129 bool isKill, bool isDead, bool isUndef, 130 bool isDebug) { 131 MachineRegisterInfo *RegInfo = 0; 132 if (MachineInstr *MI = getParent()) 133 if (MachineBasicBlock *MBB = MI->getParent()) 134 if (MachineFunction *MF = MBB->getParent()) 135 RegInfo = &MF->getRegInfo(); 136 // If this operand is already a register operand, remove it from the 137 // register's use/def lists. 138 bool WasReg = isReg(); 139 if (RegInfo && WasReg) 140 RegInfo->removeRegOperandFromUseList(this); 141 142 // Change this to a register and set the reg#. 143 OpKind = MO_Register; 144 SmallContents.RegNo = Reg; 145 SubReg_TargetFlags = 0; 146 IsDef = isDef; 147 IsImp = isImp; 148 IsKill = isKill; 149 IsDead = isDead; 150 IsUndef = isUndef; 151 IsInternalRead = false; 152 IsEarlyClobber = false; 153 IsDebug = isDebug; 154 // Ensure isOnRegUseList() returns false. 155 Contents.Reg.Prev = 0; 156 // Preserve the tie when the operand was already a register. 157 if (!WasReg) 158 TiedTo = 0; 159 160 // If this operand is embedded in a function, add the operand to the 161 // register's use/def list. 162 if (RegInfo) 163 RegInfo->addRegOperandToUseList(this); 164 } 165 166 /// isIdenticalTo - Return true if this operand is identical to the specified 167 /// operand. Note that this should stay in sync with the hash_value overload 168 /// below. 169 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 170 if (getType() != Other.getType() || 171 getTargetFlags() != Other.getTargetFlags()) 172 return false; 173 174 switch (getType()) { 175 case MachineOperand::MO_Register: 176 return getReg() == Other.getReg() && isDef() == Other.isDef() && 177 getSubReg() == Other.getSubReg(); 178 case MachineOperand::MO_Immediate: 179 return getImm() == Other.getImm(); 180 case MachineOperand::MO_CImmediate: 181 return getCImm() == Other.getCImm(); 182 case MachineOperand::MO_FPImmediate: 183 return getFPImm() == Other.getFPImm(); 184 case MachineOperand::MO_MachineBasicBlock: 185 return getMBB() == Other.getMBB(); 186 case MachineOperand::MO_FrameIndex: 187 return getIndex() == Other.getIndex(); 188 case MachineOperand::MO_ConstantPoolIndex: 189 case MachineOperand::MO_TargetIndex: 190 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 191 case MachineOperand::MO_JumpTableIndex: 192 return getIndex() == Other.getIndex(); 193 case MachineOperand::MO_GlobalAddress: 194 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 195 case MachineOperand::MO_ExternalSymbol: 196 return !strcmp(getSymbolName(), Other.getSymbolName()) && 197 getOffset() == Other.getOffset(); 198 case MachineOperand::MO_BlockAddress: 199 return getBlockAddress() == Other.getBlockAddress() && 200 getOffset() == Other.getOffset(); 201 case MachineOperand::MO_RegisterMask: 202 case MachineOperand::MO_RegisterLiveOut: 203 return getRegMask() == Other.getRegMask(); 204 case MachineOperand::MO_MCSymbol: 205 return getMCSymbol() == Other.getMCSymbol(); 206 case MachineOperand::MO_Metadata: 207 return getMetadata() == Other.getMetadata(); 208 } 209 llvm_unreachable("Invalid machine operand type"); 210 } 211 212 // Note: this must stay exactly in sync with isIdenticalTo above. 213 hash_code llvm::hash_value(const MachineOperand &MO) { 214 switch (MO.getType()) { 215 case MachineOperand::MO_Register: 216 // Register operands don't have target flags. 217 return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef()); 218 case MachineOperand::MO_Immediate: 219 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm()); 220 case MachineOperand::MO_CImmediate: 221 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm()); 222 case MachineOperand::MO_FPImmediate: 223 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm()); 224 case MachineOperand::MO_MachineBasicBlock: 225 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB()); 226 case MachineOperand::MO_FrameIndex: 227 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 228 case MachineOperand::MO_ConstantPoolIndex: 229 case MachineOperand::MO_TargetIndex: 230 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(), 231 MO.getOffset()); 232 case MachineOperand::MO_JumpTableIndex: 233 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 234 case MachineOperand::MO_ExternalSymbol: 235 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(), 236 MO.getSymbolName()); 237 case MachineOperand::MO_GlobalAddress: 238 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(), 239 MO.getOffset()); 240 case MachineOperand::MO_BlockAddress: 241 return hash_combine(MO.getType(), MO.getTargetFlags(), 242 MO.getBlockAddress(), MO.getOffset()); 243 case MachineOperand::MO_RegisterMask: 244 case MachineOperand::MO_RegisterLiveOut: 245 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask()); 246 case MachineOperand::MO_Metadata: 247 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata()); 248 case MachineOperand::MO_MCSymbol: 249 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol()); 250 } 251 llvm_unreachable("Invalid machine operand type"); 252 } 253 254 /// print - Print the specified machine operand. 255 /// 256 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const { 257 // If the instruction is embedded into a basic block, we can find the 258 // target info for the instruction. 259 if (!TM) 260 if (const MachineInstr *MI = getParent()) 261 if (const MachineBasicBlock *MBB = MI->getParent()) 262 if (const MachineFunction *MF = MBB->getParent()) 263 TM = &MF->getTarget(); 264 const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0; 265 266 switch (getType()) { 267 case MachineOperand::MO_Register: 268 OS << PrintReg(getReg(), TRI, getSubReg()); 269 270 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 271 isInternalRead() || isEarlyClobber() || isTied()) { 272 OS << '<'; 273 bool NeedComma = false; 274 if (isDef()) { 275 if (NeedComma) OS << ','; 276 if (isEarlyClobber()) 277 OS << "earlyclobber,"; 278 if (isImplicit()) 279 OS << "imp-"; 280 OS << "def"; 281 NeedComma = true; 282 // <def,read-undef> only makes sense when getSubReg() is set. 283 // Don't clutter the output otherwise. 284 if (isUndef() && getSubReg()) 285 OS << ",read-undef"; 286 } else if (isImplicit()) { 287 OS << "imp-use"; 288 NeedComma = true; 289 } 290 291 if (isKill()) { 292 if (NeedComma) OS << ','; 293 OS << "kill"; 294 NeedComma = true; 295 } 296 if (isDead()) { 297 if (NeedComma) OS << ','; 298 OS << "dead"; 299 NeedComma = true; 300 } 301 if (isUndef() && isUse()) { 302 if (NeedComma) OS << ','; 303 OS << "undef"; 304 NeedComma = true; 305 } 306 if (isInternalRead()) { 307 if (NeedComma) OS << ','; 308 OS << "internal"; 309 NeedComma = true; 310 } 311 if (isTied()) { 312 if (NeedComma) OS << ','; 313 OS << "tied"; 314 if (TiedTo != 15) 315 OS << unsigned(TiedTo - 1); 316 NeedComma = true; 317 } 318 OS << '>'; 319 } 320 break; 321 case MachineOperand::MO_Immediate: 322 OS << getImm(); 323 break; 324 case MachineOperand::MO_CImmediate: 325 getCImm()->getValue().print(OS, false); 326 break; 327 case MachineOperand::MO_FPImmediate: 328 if (getFPImm()->getType()->isFloatTy()) 329 OS << getFPImm()->getValueAPF().convertToFloat(); 330 else 331 OS << getFPImm()->getValueAPF().convertToDouble(); 332 break; 333 case MachineOperand::MO_MachineBasicBlock: 334 OS << "<BB#" << getMBB()->getNumber() << ">"; 335 break; 336 case MachineOperand::MO_FrameIndex: 337 OS << "<fi#" << getIndex() << '>'; 338 break; 339 case MachineOperand::MO_ConstantPoolIndex: 340 OS << "<cp#" << getIndex(); 341 if (getOffset()) OS << "+" << getOffset(); 342 OS << '>'; 343 break; 344 case MachineOperand::MO_TargetIndex: 345 OS << "<ti#" << getIndex(); 346 if (getOffset()) OS << "+" << getOffset(); 347 OS << '>'; 348 break; 349 case MachineOperand::MO_JumpTableIndex: 350 OS << "<jt#" << getIndex() << '>'; 351 break; 352 case MachineOperand::MO_GlobalAddress: 353 OS << "<ga:"; 354 getGlobal()->printAsOperand(OS, /*PrintType=*/false); 355 if (getOffset()) OS << "+" << getOffset(); 356 OS << '>'; 357 break; 358 case MachineOperand::MO_ExternalSymbol: 359 OS << "<es:" << getSymbolName(); 360 if (getOffset()) OS << "+" << getOffset(); 361 OS << '>'; 362 break; 363 case MachineOperand::MO_BlockAddress: 364 OS << '<'; 365 getBlockAddress()->printAsOperand(OS, /*PrintType=*/false); 366 if (getOffset()) OS << "+" << getOffset(); 367 OS << '>'; 368 break; 369 case MachineOperand::MO_RegisterMask: 370 OS << "<regmask>"; 371 break; 372 case MachineOperand::MO_RegisterLiveOut: 373 OS << "<regliveout>"; 374 break; 375 case MachineOperand::MO_Metadata: 376 OS << '<'; 377 getMetadata()->printAsOperand(OS, /*PrintType=*/false); 378 OS << '>'; 379 break; 380 case MachineOperand::MO_MCSymbol: 381 OS << "<MCSym=" << *getMCSymbol() << '>'; 382 break; 383 } 384 385 if (unsigned TF = getTargetFlags()) 386 OS << "[TF=" << TF << ']'; 387 } 388 389 //===----------------------------------------------------------------------===// 390 // MachineMemOperand Implementation 391 //===----------------------------------------------------------------------===// 392 393 /// getAddrSpace - Return the LLVM IR address space number that this pointer 394 /// points into. 395 unsigned MachinePointerInfo::getAddrSpace() const { 396 if (V == 0) return 0; 397 return cast<PointerType>(V->getType())->getAddressSpace(); 398 } 399 400 /// getConstantPool - Return a MachinePointerInfo record that refers to the 401 /// constant pool. 402 MachinePointerInfo MachinePointerInfo::getConstantPool() { 403 return MachinePointerInfo(PseudoSourceValue::getConstantPool()); 404 } 405 406 /// getFixedStack - Return a MachinePointerInfo record that refers to the 407 /// the specified FrameIndex. 408 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) { 409 return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset); 410 } 411 412 MachinePointerInfo MachinePointerInfo::getJumpTable() { 413 return MachinePointerInfo(PseudoSourceValue::getJumpTable()); 414 } 415 416 MachinePointerInfo MachinePointerInfo::getGOT() { 417 return MachinePointerInfo(PseudoSourceValue::getGOT()); 418 } 419 420 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) { 421 return MachinePointerInfo(PseudoSourceValue::getStack(), Offset); 422 } 423 424 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f, 425 uint64_t s, unsigned int a, 426 const MDNode *TBAAInfo, 427 const MDNode *Ranges) 428 : PtrInfo(ptrinfo), Size(s), 429 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)), 430 TBAAInfo(TBAAInfo), Ranges(Ranges) { 431 assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) && 432 "invalid pointer value"); 433 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 434 assert((isLoad() || isStore()) && "Not a load/store!"); 435 } 436 437 /// Profile - Gather unique data for the object. 438 /// 439 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 440 ID.AddInteger(getOffset()); 441 ID.AddInteger(Size); 442 ID.AddPointer(getValue()); 443 ID.AddInteger(Flags); 444 } 445 446 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 447 // The Value and Offset may differ due to CSE. But the flags and size 448 // should be the same. 449 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 450 assert(MMO->getSize() == getSize() && "Size mismatch!"); 451 452 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 453 // Update the alignment value. 454 Flags = (Flags & ((1 << MOMaxBits) - 1)) | 455 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits); 456 // Also update the base and offset, because the new alignment may 457 // not be applicable with the old ones. 458 PtrInfo = MMO->PtrInfo; 459 } 460 } 461 462 /// getAlignment - Return the minimum known alignment in bytes of the 463 /// actual memory reference. 464 uint64_t MachineMemOperand::getAlignment() const { 465 return MinAlign(getBaseAlignment(), getOffset()); 466 } 467 468 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) { 469 assert((MMO.isLoad() || MMO.isStore()) && 470 "SV has to be a load, store or both."); 471 472 if (MMO.isVolatile()) 473 OS << "Volatile "; 474 475 if (MMO.isLoad()) 476 OS << "LD"; 477 if (MMO.isStore()) 478 OS << "ST"; 479 OS << MMO.getSize(); 480 481 // Print the address information. 482 OS << "["; 483 if (!MMO.getValue()) 484 OS << "<unknown>"; 485 else 486 MMO.getValue()->printAsOperand(OS, /*PrintType=*/false); 487 488 unsigned AS = MMO.getAddrSpace(); 489 if (AS != 0) 490 OS << "(addrspace=" << AS << ')'; 491 492 // If the alignment of the memory reference itself differs from the alignment 493 // of the base pointer, print the base alignment explicitly, next to the base 494 // pointer. 495 if (MMO.getBaseAlignment() != MMO.getAlignment()) 496 OS << "(align=" << MMO.getBaseAlignment() << ")"; 497 498 if (MMO.getOffset() != 0) 499 OS << "+" << MMO.getOffset(); 500 OS << "]"; 501 502 // Print the alignment of the reference. 503 if (MMO.getBaseAlignment() != MMO.getAlignment() || 504 MMO.getBaseAlignment() != MMO.getSize()) 505 OS << "(align=" << MMO.getAlignment() << ")"; 506 507 // Print TBAA info. 508 if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) { 509 OS << "(tbaa="; 510 if (TBAAInfo->getNumOperands() > 0) 511 TBAAInfo->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 512 else 513 OS << "<unknown>"; 514 OS << ")"; 515 } 516 517 // Print nontemporal info. 518 if (MMO.isNonTemporal()) 519 OS << "(nontemporal)"; 520 521 return OS; 522 } 523 524 //===----------------------------------------------------------------------===// 525 // MachineInstr Implementation 526 //===----------------------------------------------------------------------===// 527 528 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 529 if (MCID->ImplicitDefs) 530 for (const uint16_t *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; ++ImpDefs) 531 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 532 if (MCID->ImplicitUses) 533 for (const uint16_t *ImpUses = MCID->getImplicitUses(); *ImpUses; ++ImpUses) 534 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 535 } 536 537 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 538 /// implicit operands. It reserves space for the number of operands specified by 539 /// the MCInstrDesc. 540 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, 541 const DebugLoc dl, bool NoImp) 542 : MCID(&tid), Parent(0), Operands(0), NumOperands(0), 543 Flags(0), AsmPrinterFlags(0), 544 NumMemRefs(0), MemRefs(0), debugLoc(dl) { 545 // Reserve space for the expected number of operands. 546 if (unsigned NumOps = MCID->getNumOperands() + 547 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 548 CapOperands = OperandCapacity::get(NumOps); 549 Operands = MF.allocateOperandArray(CapOperands); 550 } 551 552 if (!NoImp) 553 addImplicitDefUseOperands(MF); 554 } 555 556 /// MachineInstr ctor - Copies MachineInstr arg exactly 557 /// 558 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 559 : MCID(&MI.getDesc()), Parent(0), Operands(0), NumOperands(0), 560 Flags(0), AsmPrinterFlags(0), 561 NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs), 562 debugLoc(MI.getDebugLoc()) { 563 CapOperands = OperandCapacity::get(MI.getNumOperands()); 564 Operands = MF.allocateOperandArray(CapOperands); 565 566 // Copy operands. 567 for (unsigned i = 0; i != MI.getNumOperands(); ++i) 568 addOperand(MF, MI.getOperand(i)); 569 570 // Copy all the sensible flags. 571 setFlags(MI.Flags); 572 } 573 574 /// getRegInfo - If this instruction is embedded into a MachineFunction, 575 /// return the MachineRegisterInfo object for the current function, otherwise 576 /// return null. 577 MachineRegisterInfo *MachineInstr::getRegInfo() { 578 if (MachineBasicBlock *MBB = getParent()) 579 return &MBB->getParent()->getRegInfo(); 580 return 0; 581 } 582 583 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 584 /// this instruction from their respective use lists. This requires that the 585 /// operands already be on their use lists. 586 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 587 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 588 if (Operands[i].isReg()) 589 MRI.removeRegOperandFromUseList(&Operands[i]); 590 } 591 592 /// AddRegOperandsToUseLists - Add all of the register operands in 593 /// this instruction from their respective use lists. This requires that the 594 /// operands not be on their use lists yet. 595 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 596 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 597 if (Operands[i].isReg()) 598 MRI.addRegOperandToUseList(&Operands[i]); 599 } 600 601 void MachineInstr::addOperand(const MachineOperand &Op) { 602 MachineBasicBlock *MBB = getParent(); 603 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 604 MachineFunction *MF = MBB->getParent(); 605 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 606 addOperand(*MF, Op); 607 } 608 609 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 610 /// ranges. If MRI is non-null also update use-def chains. 611 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 612 unsigned NumOps, MachineRegisterInfo *MRI) { 613 if (MRI) 614 return MRI->moveOperands(Dst, Src, NumOps); 615 616 // Here it would be convenient to call memmove, so that isn't allowed because 617 // MachineOperand has a constructor and so isn't a POD type. 618 if (Dst < Src) 619 for (unsigned i = 0; i != NumOps; ++i) 620 new (Dst + i) MachineOperand(Src[i]); 621 else 622 for (unsigned i = NumOps; i ; --i) 623 new (Dst + i - 1) MachineOperand(Src[i - 1]); 624 } 625 626 /// addOperand - Add the specified operand to the instruction. If it is an 627 /// implicit operand, it is added to the end of the operand list. If it is 628 /// an explicit operand it is added at the end of the explicit operand list 629 /// (before the first implicit operand). 630 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 631 assert(MCID && "Cannot add operands before providing an instr descriptor"); 632 633 // Check if we're adding one of our existing operands. 634 if (&Op >= Operands && &Op < Operands + NumOperands) { 635 // This is unusual: MI->addOperand(MI->getOperand(i)). 636 // If adding Op requires reallocating or moving existing operands around, 637 // the Op reference could go stale. Support it by copying Op. 638 MachineOperand CopyOp(Op); 639 return addOperand(MF, CopyOp); 640 } 641 642 // Find the insert location for the new operand. Implicit registers go at 643 // the end, everything else goes before the implicit regs. 644 // 645 // FIXME: Allow mixed explicit and implicit operands on inline asm. 646 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 647 // implicit-defs, but they must not be moved around. See the FIXME in 648 // InstrEmitter.cpp. 649 unsigned OpNo = getNumOperands(); 650 bool isImpReg = Op.isReg() && Op.isImplicit(); 651 if (!isImpReg && !isInlineAsm()) { 652 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 653 --OpNo; 654 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 655 } 656 } 657 658 #ifndef NDEBUG 659 bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata; 660 // OpNo now points as the desired insertion point. Unless this is a variadic 661 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 662 // RegMask operands go between the explicit and implicit operands. 663 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 664 OpNo < MCID->getNumOperands() || isMetaDataOp) && 665 "Trying to add an operand to a machine instr that is already done!"); 666 #endif 667 668 MachineRegisterInfo *MRI = getRegInfo(); 669 670 // Determine if the Operands array needs to be reallocated. 671 // Save the old capacity and operand array. 672 OperandCapacity OldCap = CapOperands; 673 MachineOperand *OldOperands = Operands; 674 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 675 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 676 Operands = MF.allocateOperandArray(CapOperands); 677 // Move the operands before the insertion point. 678 if (OpNo) 679 moveOperands(Operands, OldOperands, OpNo, MRI); 680 } 681 682 // Move the operands following the insertion point. 683 if (OpNo != NumOperands) 684 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 685 MRI); 686 ++NumOperands; 687 688 // Deallocate the old operand array. 689 if (OldOperands != Operands && OldOperands) 690 MF.deallocateOperandArray(OldCap, OldOperands); 691 692 // Copy Op into place. It still needs to be inserted into the MRI use lists. 693 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 694 NewMO->ParentMI = this; 695 696 // When adding a register operand, tell MRI about it. 697 if (NewMO->isReg()) { 698 // Ensure isOnRegUseList() returns false, regardless of Op's status. 699 NewMO->Contents.Reg.Prev = 0; 700 // Ignore existing ties. This is not a property that can be copied. 701 NewMO->TiedTo = 0; 702 // Add the new operand to MRI, but only for instructions in an MBB. 703 if (MRI) 704 MRI->addRegOperandToUseList(NewMO); 705 // The MCID operand information isn't accurate until we start adding 706 // explicit operands. The implicit operands are added first, then the 707 // explicits are inserted before them. 708 if (!isImpReg) { 709 // Tie uses to defs as indicated in MCInstrDesc. 710 if (NewMO->isUse()) { 711 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 712 if (DefIdx != -1) 713 tieOperands(DefIdx, OpNo); 714 } 715 // If the register operand is flagged as early, mark the operand as such. 716 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 717 NewMO->setIsEarlyClobber(true); 718 } 719 } 720 } 721 722 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 723 /// fewer operand than it started with. 724 /// 725 void MachineInstr::RemoveOperand(unsigned OpNo) { 726 assert(OpNo < getNumOperands() && "Invalid operand number"); 727 untieRegOperand(OpNo); 728 729 #ifndef NDEBUG 730 // Moving tied operands would break the ties. 731 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 732 if (Operands[i].isReg()) 733 assert(!Operands[i].isTied() && "Cannot move tied operands"); 734 #endif 735 736 MachineRegisterInfo *MRI = getRegInfo(); 737 if (MRI && Operands[OpNo].isReg()) 738 MRI->removeRegOperandFromUseList(Operands + OpNo); 739 740 // Don't call the MachineOperand destructor. A lot of this code depends on 741 // MachineOperand having a trivial destructor anyway, and adding a call here 742 // wouldn't make it 'destructor-correct'. 743 744 if (unsigned N = NumOperands - 1 - OpNo) 745 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 746 --NumOperands; 747 } 748 749 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 750 /// This function should be used only occasionally. The setMemRefs function 751 /// is the primary method for setting up a MachineInstr's MemRefs list. 752 void MachineInstr::addMemOperand(MachineFunction &MF, 753 MachineMemOperand *MO) { 754 mmo_iterator OldMemRefs = MemRefs; 755 unsigned OldNumMemRefs = NumMemRefs; 756 757 unsigned NewNum = NumMemRefs + 1; 758 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 759 760 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs); 761 NewMemRefs[NewNum - 1] = MO; 762 setMemRefs(NewMemRefs, NewMemRefs + NewNum); 763 } 764 765 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { 766 assert(!isBundledWithPred() && "Must be called on bundle header"); 767 for (MachineBasicBlock::const_instr_iterator MII = this;; ++MII) { 768 if (MII->getDesc().getFlags() & Mask) { 769 if (Type == AnyInBundle) 770 return true; 771 } else { 772 if (Type == AllInBundle && !MII->isBundle()) 773 return false; 774 } 775 // This was the last instruction in the bundle. 776 if (!MII->isBundledWithSucc()) 777 return Type == AllInBundle; 778 } 779 } 780 781 bool MachineInstr::isIdenticalTo(const MachineInstr *Other, 782 MICheckType Check) const { 783 // If opcodes or number of operands are not the same then the two 784 // instructions are obviously not identical. 785 if (Other->getOpcode() != getOpcode() || 786 Other->getNumOperands() != getNumOperands()) 787 return false; 788 789 if (isBundle()) { 790 // Both instructions are bundles, compare MIs inside the bundle. 791 MachineBasicBlock::const_instr_iterator I1 = *this; 792 MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end(); 793 MachineBasicBlock::const_instr_iterator I2 = *Other; 794 MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end(); 795 while (++I1 != E1 && I1->isInsideBundle()) { 796 ++I2; 797 if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check)) 798 return false; 799 } 800 } 801 802 // Check operands to make sure they match. 803 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 804 const MachineOperand &MO = getOperand(i); 805 const MachineOperand &OMO = Other->getOperand(i); 806 if (!MO.isReg()) { 807 if (!MO.isIdenticalTo(OMO)) 808 return false; 809 continue; 810 } 811 812 // Clients may or may not want to ignore defs when testing for equality. 813 // For example, machine CSE pass only cares about finding common 814 // subexpressions, so it's safe to ignore virtual register defs. 815 if (MO.isDef()) { 816 if (Check == IgnoreDefs) 817 continue; 818 else if (Check == IgnoreVRegDefs) { 819 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 820 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 821 if (MO.getReg() != OMO.getReg()) 822 return false; 823 } else { 824 if (!MO.isIdenticalTo(OMO)) 825 return false; 826 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 827 return false; 828 } 829 } else { 830 if (!MO.isIdenticalTo(OMO)) 831 return false; 832 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 833 return false; 834 } 835 } 836 // If DebugLoc does not match then two dbg.values are not identical. 837 if (isDebugValue()) 838 if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown() 839 && getDebugLoc() != Other->getDebugLoc()) 840 return false; 841 return true; 842 } 843 844 MachineInstr *MachineInstr::removeFromParent() { 845 assert(getParent() && "Not embedded in a basic block!"); 846 return getParent()->remove(this); 847 } 848 849 MachineInstr *MachineInstr::removeFromBundle() { 850 assert(getParent() && "Not embedded in a basic block!"); 851 return getParent()->remove_instr(this); 852 } 853 854 void MachineInstr::eraseFromParent() { 855 assert(getParent() && "Not embedded in a basic block!"); 856 getParent()->erase(this); 857 } 858 859 void MachineInstr::eraseFromBundle() { 860 assert(getParent() && "Not embedded in a basic block!"); 861 getParent()->erase_instr(this); 862 } 863 864 /// getNumExplicitOperands - Returns the number of non-implicit operands. 865 /// 866 unsigned MachineInstr::getNumExplicitOperands() const { 867 unsigned NumOperands = MCID->getNumOperands(); 868 if (!MCID->isVariadic()) 869 return NumOperands; 870 871 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 872 const MachineOperand &MO = getOperand(i); 873 if (!MO.isReg() || !MO.isImplicit()) 874 NumOperands++; 875 } 876 return NumOperands; 877 } 878 879 void MachineInstr::bundleWithPred() { 880 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 881 setFlag(BundledPred); 882 MachineBasicBlock::instr_iterator Pred = this; 883 --Pred; 884 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 885 Pred->setFlag(BundledSucc); 886 } 887 888 void MachineInstr::bundleWithSucc() { 889 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 890 setFlag(BundledSucc); 891 MachineBasicBlock::instr_iterator Succ = this; 892 ++Succ; 893 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 894 Succ->setFlag(BundledPred); 895 } 896 897 void MachineInstr::unbundleFromPred() { 898 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 899 clearFlag(BundledPred); 900 MachineBasicBlock::instr_iterator Pred = this; 901 --Pred; 902 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 903 Pred->clearFlag(BundledSucc); 904 } 905 906 void MachineInstr::unbundleFromSucc() { 907 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 908 clearFlag(BundledSucc); 909 MachineBasicBlock::instr_iterator Succ = this; 910 ++Succ; 911 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 912 Succ->clearFlag(BundledPred); 913 } 914 915 bool MachineInstr::isStackAligningInlineAsm() const { 916 if (isInlineAsm()) { 917 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 918 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 919 return true; 920 } 921 return false; 922 } 923 924 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 925 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 926 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 927 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 928 } 929 930 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 931 unsigned *GroupNo) const { 932 assert(isInlineAsm() && "Expected an inline asm instruction"); 933 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 934 935 // Ignore queries about the initial operands. 936 if (OpIdx < InlineAsm::MIOp_FirstOperand) 937 return -1; 938 939 unsigned Group = 0; 940 unsigned NumOps; 941 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 942 i += NumOps) { 943 const MachineOperand &FlagMO = getOperand(i); 944 // If we reach the implicit register operands, stop looking. 945 if (!FlagMO.isImm()) 946 return -1; 947 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 948 if (i + NumOps > OpIdx) { 949 if (GroupNo) 950 *GroupNo = Group; 951 return i; 952 } 953 ++Group; 954 } 955 return -1; 956 } 957 958 const TargetRegisterClass* 959 MachineInstr::getRegClassConstraint(unsigned OpIdx, 960 const TargetInstrInfo *TII, 961 const TargetRegisterInfo *TRI) const { 962 assert(getParent() && "Can't have an MBB reference here!"); 963 assert(getParent()->getParent() && "Can't have an MF reference here!"); 964 const MachineFunction &MF = *getParent()->getParent(); 965 966 // Most opcodes have fixed constraints in their MCInstrDesc. 967 if (!isInlineAsm()) 968 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 969 970 if (!getOperand(OpIdx).isReg()) 971 return NULL; 972 973 // For tied uses on inline asm, get the constraint from the def. 974 unsigned DefIdx; 975 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 976 OpIdx = DefIdx; 977 978 // Inline asm stores register class constraints in the flag word. 979 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 980 if (FlagIdx < 0) 981 return NULL; 982 983 unsigned Flag = getOperand(FlagIdx).getImm(); 984 unsigned RCID; 985 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) 986 return TRI->getRegClass(RCID); 987 988 // Assume that all registers in a memory operand are pointers. 989 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 990 return TRI->getPointerRegClass(MF); 991 992 return NULL; 993 } 994 995 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 996 unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 997 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 998 // Check every operands inside the bundle if we have 999 // been asked to. 1000 if (ExploreBundle) 1001 for (ConstMIBundleOperands OpndIt(this); OpndIt.isValid() && CurRC; 1002 ++OpndIt) 1003 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 1004 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 1005 else 1006 // Otherwise, just check the current operands. 1007 for (ConstMIOperands OpndIt(this); OpndIt.isValid() && CurRC; ++OpndIt) 1008 CurRC = getRegClassConstraintEffectForVRegImpl(OpndIt.getOperandNo(), Reg, 1009 CurRC, TII, TRI); 1010 return CurRC; 1011 } 1012 1013 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 1014 unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC, 1015 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1016 assert(CurRC && "Invalid initial register class"); 1017 // Check if Reg is constrained by some of its use/def from MI. 1018 const MachineOperand &MO = getOperand(OpIdx); 1019 if (!MO.isReg() || MO.getReg() != Reg) 1020 return CurRC; 1021 // If yes, accumulate the constraints through the operand. 1022 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 1023 } 1024 1025 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 1026 unsigned OpIdx, const TargetRegisterClass *CurRC, 1027 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1028 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 1029 const MachineOperand &MO = getOperand(OpIdx); 1030 assert(MO.isReg() && 1031 "Cannot get register constraints for non-register operand"); 1032 assert(CurRC && "Invalid initial register class"); 1033 if (unsigned SubIdx = MO.getSubReg()) { 1034 if (OpRC) 1035 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 1036 else 1037 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 1038 } else if (OpRC) 1039 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 1040 return CurRC; 1041 } 1042 1043 /// Return the number of instructions inside the MI bundle, not counting the 1044 /// header instruction. 1045 unsigned MachineInstr::getBundleSize() const { 1046 MachineBasicBlock::const_instr_iterator I = this; 1047 unsigned Size = 0; 1048 while (I->isBundledWithSucc()) 1049 ++Size, ++I; 1050 return Size; 1051 } 1052 1053 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 1054 /// the specific register or -1 if it is not found. It further tightens 1055 /// the search criteria to a use that kills the register if isKill is true. 1056 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, 1057 const TargetRegisterInfo *TRI) const { 1058 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1059 const MachineOperand &MO = getOperand(i); 1060 if (!MO.isReg() || !MO.isUse()) 1061 continue; 1062 unsigned MOReg = MO.getReg(); 1063 if (!MOReg) 1064 continue; 1065 if (MOReg == Reg || 1066 (TRI && 1067 TargetRegisterInfo::isPhysicalRegister(MOReg) && 1068 TargetRegisterInfo::isPhysicalRegister(Reg) && 1069 TRI->isSubRegister(MOReg, Reg))) 1070 if (!isKill || MO.isKill()) 1071 return i; 1072 } 1073 return -1; 1074 } 1075 1076 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1077 /// indicating if this instruction reads or writes Reg. This also considers 1078 /// partial defines. 1079 std::pair<bool,bool> 1080 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 1081 SmallVectorImpl<unsigned> *Ops) const { 1082 bool PartDef = false; // Partial redefine. 1083 bool FullDef = false; // Full define. 1084 bool Use = false; 1085 1086 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1087 const MachineOperand &MO = getOperand(i); 1088 if (!MO.isReg() || MO.getReg() != Reg) 1089 continue; 1090 if (Ops) 1091 Ops->push_back(i); 1092 if (MO.isUse()) 1093 Use |= !MO.isUndef(); 1094 else if (MO.getSubReg() && !MO.isUndef()) 1095 // A partial <def,undef> doesn't count as reading the register. 1096 PartDef = true; 1097 else 1098 FullDef = true; 1099 } 1100 // A partial redefine uses Reg unless there is also a full define. 1101 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1102 } 1103 1104 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1105 /// the specified register or -1 if it is not found. If isDead is true, defs 1106 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1107 /// also checks if there is a def of a super-register. 1108 int 1109 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 1110 const TargetRegisterInfo *TRI) const { 1111 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 1112 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1113 const MachineOperand &MO = getOperand(i); 1114 // Accept regmask operands when Overlap is set. 1115 // Ignore them when looking for a specific def operand (Overlap == false). 1116 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1117 return i; 1118 if (!MO.isReg() || !MO.isDef()) 1119 continue; 1120 unsigned MOReg = MO.getReg(); 1121 bool Found = (MOReg == Reg); 1122 if (!Found && TRI && isPhys && 1123 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1124 if (Overlap) 1125 Found = TRI->regsOverlap(MOReg, Reg); 1126 else 1127 Found = TRI->isSubRegister(MOReg, Reg); 1128 } 1129 if (Found && (!isDead || MO.isDead())) 1130 return i; 1131 } 1132 return -1; 1133 } 1134 1135 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1136 /// operand list that is used to represent the predicate. It returns -1 if 1137 /// none is found. 1138 int MachineInstr::findFirstPredOperandIdx() const { 1139 // Don't call MCID.findFirstPredOperandIdx() because this variant 1140 // is sometimes called on an instruction that's not yet complete, and 1141 // so the number of operands is less than the MCID indicates. In 1142 // particular, the PTX target does this. 1143 const MCInstrDesc &MCID = getDesc(); 1144 if (MCID.isPredicable()) { 1145 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1146 if (MCID.OpInfo[i].isPredicate()) 1147 return i; 1148 } 1149 1150 return -1; 1151 } 1152 1153 // MachineOperand::TiedTo is 4 bits wide. 1154 const unsigned TiedMax = 15; 1155 1156 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1157 /// 1158 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1159 /// field. TiedTo can have these values: 1160 /// 1161 /// 0: Operand is not tied to anything. 1162 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1163 /// TiedMax: Tied to an operand >= TiedMax-1. 1164 /// 1165 /// The tied def must be one of the first TiedMax operands on a normal 1166 /// instruction. INLINEASM instructions allow more tied defs. 1167 /// 1168 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1169 MachineOperand &DefMO = getOperand(DefIdx); 1170 MachineOperand &UseMO = getOperand(UseIdx); 1171 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1172 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1173 assert(!DefMO.isTied() && "Def is already tied to another use"); 1174 assert(!UseMO.isTied() && "Use is already tied to another def"); 1175 1176 if (DefIdx < TiedMax) 1177 UseMO.TiedTo = DefIdx + 1; 1178 else { 1179 // Inline asm can use the group descriptors to find tied operands, but on 1180 // normal instruction, the tied def must be within the first TiedMax 1181 // operands. 1182 assert(isInlineAsm() && "DefIdx out of range"); 1183 UseMO.TiedTo = TiedMax; 1184 } 1185 1186 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1187 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1188 } 1189 1190 /// Given the index of a tied register operand, find the operand it is tied to. 1191 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1192 /// which must exist. 1193 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1194 const MachineOperand &MO = getOperand(OpIdx); 1195 assert(MO.isTied() && "Operand isn't tied"); 1196 1197 // Normally TiedTo is in range. 1198 if (MO.TiedTo < TiedMax) 1199 return MO.TiedTo - 1; 1200 1201 // Uses on normal instructions can be out of range. 1202 if (!isInlineAsm()) { 1203 // Normal tied defs must be in the 0..TiedMax-1 range. 1204 if (MO.isUse()) 1205 return TiedMax - 1; 1206 // MO is a def. Search for the tied use. 1207 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1208 const MachineOperand &UseMO = getOperand(i); 1209 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1210 return i; 1211 } 1212 llvm_unreachable("Can't find tied use"); 1213 } 1214 1215 // Now deal with inline asm by parsing the operand group descriptor flags. 1216 // Find the beginning of each operand group. 1217 SmallVector<unsigned, 8> GroupIdx; 1218 unsigned OpIdxGroup = ~0u; 1219 unsigned NumOps; 1220 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1221 i += NumOps) { 1222 const MachineOperand &FlagMO = getOperand(i); 1223 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1224 unsigned CurGroup = GroupIdx.size(); 1225 GroupIdx.push_back(i); 1226 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1227 // OpIdx belongs to this operand group. 1228 if (OpIdx > i && OpIdx < i + NumOps) 1229 OpIdxGroup = CurGroup; 1230 unsigned TiedGroup; 1231 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1232 continue; 1233 // Operands in this group are tied to operands in TiedGroup which must be 1234 // earlier. Find the number of operands between the two groups. 1235 unsigned Delta = i - GroupIdx[TiedGroup]; 1236 1237 // OpIdx is a use tied to TiedGroup. 1238 if (OpIdxGroup == CurGroup) 1239 return OpIdx - Delta; 1240 1241 // OpIdx is a def tied to this use group. 1242 if (OpIdxGroup == TiedGroup) 1243 return OpIdx + Delta; 1244 } 1245 llvm_unreachable("Invalid tied operand on inline asm"); 1246 } 1247 1248 /// clearKillInfo - Clears kill flags on all operands. 1249 /// 1250 void MachineInstr::clearKillInfo() { 1251 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1252 MachineOperand &MO = getOperand(i); 1253 if (MO.isReg() && MO.isUse()) 1254 MO.setIsKill(false); 1255 } 1256 } 1257 1258 void MachineInstr::substituteRegister(unsigned FromReg, 1259 unsigned ToReg, 1260 unsigned SubIdx, 1261 const TargetRegisterInfo &RegInfo) { 1262 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1263 if (SubIdx) 1264 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1265 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1266 MachineOperand &MO = getOperand(i); 1267 if (!MO.isReg() || MO.getReg() != FromReg) 1268 continue; 1269 MO.substPhysReg(ToReg, RegInfo); 1270 } 1271 } else { 1272 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1273 MachineOperand &MO = getOperand(i); 1274 if (!MO.isReg() || MO.getReg() != FromReg) 1275 continue; 1276 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1277 } 1278 } 1279 } 1280 1281 /// isSafeToMove - Return true if it is safe to move this instruction. If 1282 /// SawStore is set to true, it means that there is a store (or call) between 1283 /// the instruction's location and its intended destination. 1284 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII, 1285 AliasAnalysis *AA, 1286 bool &SawStore) const { 1287 // Ignore stuff that we obviously can't move. 1288 // 1289 // Treat volatile loads as stores. This is not strictly necessary for 1290 // volatiles, but it is required for atomic loads. It is not allowed to move 1291 // a load across an atomic load with Ordering > Monotonic. 1292 if (mayStore() || isCall() || 1293 (mayLoad() && hasOrderedMemoryRef())) { 1294 SawStore = true; 1295 return false; 1296 } 1297 1298 if (isLabel() || isDebugValue() || 1299 isTerminator() || hasUnmodeledSideEffects()) 1300 return false; 1301 1302 // See if this instruction does a load. If so, we have to guarantee that the 1303 // loaded value doesn't change between the load and the its intended 1304 // destination. The check for isInvariantLoad gives the targe the chance to 1305 // classify the load as always returning a constant, e.g. a constant pool 1306 // load. 1307 if (mayLoad() && !isInvariantLoad(AA)) 1308 // Otherwise, this is a real load. If there is a store between the load and 1309 // end of block, we can't move it. 1310 return !SawStore; 1311 1312 return true; 1313 } 1314 1315 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1316 /// or volatile memory reference, or if the information describing the memory 1317 /// reference is not available. Return false if it is known to have no ordered 1318 /// memory references. 1319 bool MachineInstr::hasOrderedMemoryRef() const { 1320 // An instruction known never to access memory won't have a volatile access. 1321 if (!mayStore() && 1322 !mayLoad() && 1323 !isCall() && 1324 !hasUnmodeledSideEffects()) 1325 return false; 1326 1327 // Otherwise, if the instruction has no memory reference information, 1328 // conservatively assume it wasn't preserved. 1329 if (memoperands_empty()) 1330 return true; 1331 1332 // Check the memory reference information for ordered references. 1333 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I) 1334 if (!(*I)->isUnordered()) 1335 return true; 1336 1337 return false; 1338 } 1339 1340 /// isInvariantLoad - Return true if this instruction is loading from a 1341 /// location whose value is invariant across the function. For example, 1342 /// loading a value from the constant pool or from the argument area 1343 /// of a function if it does not change. This should only return true of 1344 /// *all* loads the instruction does are invariant (if it does multiple loads). 1345 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const { 1346 // If the instruction doesn't load at all, it isn't an invariant load. 1347 if (!mayLoad()) 1348 return false; 1349 1350 // If the instruction has lost its memoperands, conservatively assume that 1351 // it may not be an invariant load. 1352 if (memoperands_empty()) 1353 return false; 1354 1355 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo(); 1356 1357 for (mmo_iterator I = memoperands_begin(), 1358 E = memoperands_end(); I != E; ++I) { 1359 if ((*I)->isVolatile()) return false; 1360 if ((*I)->isStore()) return false; 1361 if ((*I)->isInvariant()) return true; 1362 1363 if (const Value *V = (*I)->getValue()) { 1364 // A load from a constant PseudoSourceValue is invariant. 1365 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) 1366 if (PSV->isConstant(MFI)) 1367 continue; 1368 // If we have an AliasAnalysis, ask it whether the memory is constant. 1369 if (AA && AA->pointsToConstantMemory( 1370 AliasAnalysis::Location(V, (*I)->getSize(), 1371 (*I)->getTBAAInfo()))) 1372 continue; 1373 } 1374 1375 // Otherwise assume conservatively. 1376 return false; 1377 } 1378 1379 // Everything checks out. 1380 return true; 1381 } 1382 1383 /// isConstantValuePHI - If the specified instruction is a PHI that always 1384 /// merges together the same virtual register, return the register, otherwise 1385 /// return 0. 1386 unsigned MachineInstr::isConstantValuePHI() const { 1387 if (!isPHI()) 1388 return 0; 1389 assert(getNumOperands() >= 3 && 1390 "It's illegal to have a PHI without source operands"); 1391 1392 unsigned Reg = getOperand(1).getReg(); 1393 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1394 if (getOperand(i).getReg() != Reg) 1395 return 0; 1396 return Reg; 1397 } 1398 1399 bool MachineInstr::hasUnmodeledSideEffects() const { 1400 if (hasProperty(MCID::UnmodeledSideEffects)) 1401 return true; 1402 if (isInlineAsm()) { 1403 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1404 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1405 return true; 1406 } 1407 1408 return false; 1409 } 1410 1411 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1412 /// 1413 bool MachineInstr::allDefsAreDead() const { 1414 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { 1415 const MachineOperand &MO = getOperand(i); 1416 if (!MO.isReg() || MO.isUse()) 1417 continue; 1418 if (!MO.isDead()) 1419 return false; 1420 } 1421 return true; 1422 } 1423 1424 /// copyImplicitOps - Copy implicit register operands from specified 1425 /// instruction to this instruction. 1426 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1427 const MachineInstr *MI) { 1428 for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands(); 1429 i != e; ++i) { 1430 const MachineOperand &MO = MI->getOperand(i); 1431 if (MO.isReg() && MO.isImplicit()) 1432 addOperand(MF, MO); 1433 } 1434 } 1435 1436 void MachineInstr::dump() const { 1437 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1438 dbgs() << " " << *this; 1439 #endif 1440 } 1441 1442 static void printDebugLoc(DebugLoc DL, const MachineFunction *MF, 1443 raw_ostream &CommentOS) { 1444 const LLVMContext &Ctx = MF->getFunction()->getContext(); 1445 if (!DL.isUnknown()) { // Print source line info. 1446 DIScope Scope(DL.getScope(Ctx)); 1447 assert((!Scope || Scope.isScope()) && 1448 "Scope of a DebugLoc should be null or a DIScope."); 1449 // Omit the directory, because it's likely to be long and uninteresting. 1450 if (Scope) 1451 CommentOS << Scope.getFilename(); 1452 else 1453 CommentOS << "<unknown>"; 1454 CommentOS << ':' << DL.getLine(); 1455 if (DL.getCol() != 0) 1456 CommentOS << ':' << DL.getCol(); 1457 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx)); 1458 if (!InlinedAtDL.isUnknown()) { 1459 CommentOS << " @[ "; 1460 printDebugLoc(InlinedAtDL, MF, CommentOS); 1461 CommentOS << " ]"; 1462 } 1463 } 1464 } 1465 1466 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM, 1467 bool SkipOpers) const { 1468 // We can be a bit tidier if we know the TargetMachine and/or MachineFunction. 1469 const MachineFunction *MF = 0; 1470 const MachineRegisterInfo *MRI = 0; 1471 if (const MachineBasicBlock *MBB = getParent()) { 1472 MF = MBB->getParent(); 1473 if (!TM && MF) 1474 TM = &MF->getTarget(); 1475 if (MF) 1476 MRI = &MF->getRegInfo(); 1477 } 1478 1479 // Save a list of virtual registers. 1480 SmallVector<unsigned, 8> VirtRegs; 1481 1482 // Print explicitly defined operands on the left of an assignment syntax. 1483 unsigned StartOp = 0, e = getNumOperands(); 1484 for (; StartOp < e && getOperand(StartOp).isReg() && 1485 getOperand(StartOp).isDef() && 1486 !getOperand(StartOp).isImplicit(); 1487 ++StartOp) { 1488 if (StartOp != 0) OS << ", "; 1489 getOperand(StartOp).print(OS, TM); 1490 unsigned Reg = getOperand(StartOp).getReg(); 1491 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1492 VirtRegs.push_back(Reg); 1493 } 1494 1495 if (StartOp != 0) 1496 OS << " = "; 1497 1498 // Print the opcode name. 1499 if (TM && TM->getInstrInfo()) 1500 OS << TM->getInstrInfo()->getName(getOpcode()); 1501 else 1502 OS << "UNKNOWN"; 1503 1504 if (SkipOpers) 1505 return; 1506 1507 // Print the rest of the operands. 1508 bool OmittedAnyCallClobbers = false; 1509 bool FirstOp = true; 1510 unsigned AsmDescOp = ~0u; 1511 unsigned AsmOpCount = 0; 1512 1513 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1514 // Print asm string. 1515 OS << " "; 1516 getOperand(InlineAsm::MIOp_AsmString).print(OS, TM); 1517 1518 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1519 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1520 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1521 OS << " [sideeffect]"; 1522 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1523 OS << " [mayload]"; 1524 if (ExtraInfo & InlineAsm::Extra_MayStore) 1525 OS << " [maystore]"; 1526 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1527 OS << " [alignstack]"; 1528 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1529 OS << " [attdialect]"; 1530 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1531 OS << " [inteldialect]"; 1532 1533 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1534 FirstOp = false; 1535 } 1536 1537 1538 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1539 const MachineOperand &MO = getOperand(i); 1540 1541 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1542 VirtRegs.push_back(MO.getReg()); 1543 1544 // Omit call-clobbered registers which aren't used anywhere. This makes 1545 // call instructions much less noisy on targets where calls clobber lots 1546 // of registers. Don't rely on MO.isDead() because we may be called before 1547 // LiveVariables is run, or we may be looking at a non-allocatable reg. 1548 if (MF && isCall() && 1549 MO.isReg() && MO.isImplicit() && MO.isDef()) { 1550 unsigned Reg = MO.getReg(); 1551 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1552 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1553 if (MRI.use_empty(Reg)) { 1554 bool HasAliasLive = false; 1555 for (MCRegAliasIterator AI(Reg, TM->getRegisterInfo(), true); 1556 AI.isValid(); ++AI) { 1557 unsigned AliasReg = *AI; 1558 if (!MRI.use_empty(AliasReg)) { 1559 HasAliasLive = true; 1560 break; 1561 } 1562 } 1563 if (!HasAliasLive) { 1564 OmittedAnyCallClobbers = true; 1565 continue; 1566 } 1567 } 1568 } 1569 } 1570 1571 if (FirstOp) FirstOp = false; else OS << ","; 1572 OS << " "; 1573 if (i < getDesc().NumOperands) { 1574 const MCOperandInfo &MCOI = getDesc().OpInfo[i]; 1575 if (MCOI.isPredicate()) 1576 OS << "pred:"; 1577 if (MCOI.isOptionalDef()) 1578 OS << "opt:"; 1579 } 1580 if (isDebugValue() && MO.isMetadata()) { 1581 // Pretty print DBG_VALUE instructions. 1582 const MDNode *MD = MO.getMetadata(); 1583 if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2))) 1584 OS << "!\"" << MDS->getString() << '\"'; 1585 else 1586 MO.print(OS, TM); 1587 } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) { 1588 OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm()); 1589 } else if (i == AsmDescOp && MO.isImm()) { 1590 // Pretty print the inline asm operand descriptor. 1591 OS << '$' << AsmOpCount++; 1592 unsigned Flag = MO.getImm(); 1593 switch (InlineAsm::getKind(Flag)) { 1594 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1595 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1596 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1597 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1598 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1599 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1600 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1601 } 1602 1603 unsigned RCID = 0; 1604 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1605 if (TM) 1606 OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName(); 1607 else 1608 OS << ":RC" << RCID; 1609 } 1610 1611 unsigned TiedTo = 0; 1612 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1613 OS << " tiedto:$" << TiedTo; 1614 1615 OS << ']'; 1616 1617 // Compute the index of the next operand descriptor. 1618 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1619 } else 1620 MO.print(OS, TM); 1621 } 1622 1623 // Briefly indicate whether any call clobbers were omitted. 1624 if (OmittedAnyCallClobbers) { 1625 if (!FirstOp) OS << ","; 1626 OS << " ..."; 1627 } 1628 1629 bool HaveSemi = false; 1630 const unsigned PrintableFlags = FrameSetup; 1631 if (Flags & PrintableFlags) { 1632 if (!HaveSemi) OS << ";"; HaveSemi = true; 1633 OS << " flags: "; 1634 1635 if (Flags & FrameSetup) 1636 OS << "FrameSetup"; 1637 } 1638 1639 if (!memoperands_empty()) { 1640 if (!HaveSemi) OS << ";"; HaveSemi = true; 1641 1642 OS << " mem:"; 1643 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 1644 i != e; ++i) { 1645 OS << **i; 1646 if (std::next(i) != e) 1647 OS << " "; 1648 } 1649 } 1650 1651 // Print the regclass of any virtual registers encountered. 1652 if (MRI && !VirtRegs.empty()) { 1653 if (!HaveSemi) OS << ";"; HaveSemi = true; 1654 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 1655 const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]); 1656 OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]); 1657 for (unsigned j = i+1; j != VirtRegs.size();) { 1658 if (MRI->getRegClass(VirtRegs[j]) != RC) { 1659 ++j; 1660 continue; 1661 } 1662 if (VirtRegs[i] != VirtRegs[j]) 1663 OS << "," << PrintReg(VirtRegs[j]); 1664 VirtRegs.erase(VirtRegs.begin()+j); 1665 } 1666 } 1667 } 1668 1669 // Print debug location information. 1670 if (isDebugValue() && getOperand(e - 1).isMetadata()) { 1671 if (!HaveSemi) OS << ";"; HaveSemi = true; 1672 DIVariable DV(getOperand(e - 1).getMetadata()); 1673 OS << " line no:" << DV.getLineNumber(); 1674 if (MDNode *InlinedAt = DV.getInlinedAt()) { 1675 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt); 1676 if (!InlinedAtDL.isUnknown()) { 1677 OS << " inlined @[ "; 1678 printDebugLoc(InlinedAtDL, MF, OS); 1679 OS << " ]"; 1680 } 1681 } 1682 } else if (!debugLoc.isUnknown() && MF) { 1683 if (!HaveSemi) OS << ";"; HaveSemi = true; 1684 OS << " dbg:"; 1685 printDebugLoc(debugLoc, MF, OS); 1686 } 1687 1688 OS << '\n'; 1689 } 1690 1691 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 1692 const TargetRegisterInfo *RegInfo, 1693 bool AddIfNotFound) { 1694 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1695 bool hasAliases = isPhysReg && 1696 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1697 bool Found = false; 1698 SmallVector<unsigned,4> DeadOps; 1699 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1700 MachineOperand &MO = getOperand(i); 1701 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1702 continue; 1703 unsigned Reg = MO.getReg(); 1704 if (!Reg) 1705 continue; 1706 1707 if (Reg == IncomingReg) { 1708 if (!Found) { 1709 if (MO.isKill()) 1710 // The register is already marked kill. 1711 return true; 1712 if (isPhysReg && isRegTiedToDefOperand(i)) 1713 // Two-address uses of physregs must not be marked kill. 1714 return true; 1715 MO.setIsKill(); 1716 Found = true; 1717 } 1718 } else if (hasAliases && MO.isKill() && 1719 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1720 // A super-register kill already exists. 1721 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1722 return true; 1723 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1724 DeadOps.push_back(i); 1725 } 1726 } 1727 1728 // Trim unneeded kill operands. 1729 while (!DeadOps.empty()) { 1730 unsigned OpIdx = DeadOps.back(); 1731 if (getOperand(OpIdx).isImplicit()) 1732 RemoveOperand(OpIdx); 1733 else 1734 getOperand(OpIdx).setIsKill(false); 1735 DeadOps.pop_back(); 1736 } 1737 1738 // If not found, this means an alias of one of the operands is killed. Add a 1739 // new implicit operand if required. 1740 if (!Found && AddIfNotFound) { 1741 addOperand(MachineOperand::CreateReg(IncomingReg, 1742 false /*IsDef*/, 1743 true /*IsImp*/, 1744 true /*IsKill*/)); 1745 return true; 1746 } 1747 return Found; 1748 } 1749 1750 void MachineInstr::clearRegisterKills(unsigned Reg, 1751 const TargetRegisterInfo *RegInfo) { 1752 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 1753 RegInfo = 0; 1754 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1755 MachineOperand &MO = getOperand(i); 1756 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1757 continue; 1758 unsigned OpReg = MO.getReg(); 1759 if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg))) 1760 MO.setIsKill(false); 1761 } 1762 } 1763 1764 bool MachineInstr::addRegisterDead(unsigned Reg, 1765 const TargetRegisterInfo *RegInfo, 1766 bool AddIfNotFound) { 1767 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg); 1768 bool hasAliases = isPhysReg && 1769 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 1770 bool Found = false; 1771 SmallVector<unsigned,4> DeadOps; 1772 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1773 MachineOperand &MO = getOperand(i); 1774 if (!MO.isReg() || !MO.isDef()) 1775 continue; 1776 unsigned MOReg = MO.getReg(); 1777 if (!MOReg) 1778 continue; 1779 1780 if (MOReg == Reg) { 1781 MO.setIsDead(); 1782 Found = true; 1783 } else if (hasAliases && MO.isDead() && 1784 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1785 // There exists a super-register that's marked dead. 1786 if (RegInfo->isSuperRegister(Reg, MOReg)) 1787 return true; 1788 if (RegInfo->isSubRegister(Reg, MOReg)) 1789 DeadOps.push_back(i); 1790 } 1791 } 1792 1793 // Trim unneeded dead operands. 1794 while (!DeadOps.empty()) { 1795 unsigned OpIdx = DeadOps.back(); 1796 if (getOperand(OpIdx).isImplicit()) 1797 RemoveOperand(OpIdx); 1798 else 1799 getOperand(OpIdx).setIsDead(false); 1800 DeadOps.pop_back(); 1801 } 1802 1803 // If not found, this means an alias of one of the operands is dead. Add a 1804 // new implicit operand if required. 1805 if (Found || !AddIfNotFound) 1806 return Found; 1807 1808 addOperand(MachineOperand::CreateReg(Reg, 1809 true /*IsDef*/, 1810 true /*IsImp*/, 1811 false /*IsKill*/, 1812 true /*IsDead*/)); 1813 return true; 1814 } 1815 1816 void MachineInstr::addRegisterDefined(unsigned Reg, 1817 const TargetRegisterInfo *RegInfo) { 1818 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1819 MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo); 1820 if (MO) 1821 return; 1822 } else { 1823 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1824 const MachineOperand &MO = getOperand(i); 1825 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 1826 MO.getSubReg() == 0) 1827 return; 1828 } 1829 } 1830 addOperand(MachineOperand::CreateReg(Reg, 1831 true /*IsDef*/, 1832 true /*IsImp*/)); 1833 } 1834 1835 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 1836 const TargetRegisterInfo &TRI) { 1837 bool HasRegMask = false; 1838 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1839 MachineOperand &MO = getOperand(i); 1840 if (MO.isRegMask()) { 1841 HasRegMask = true; 1842 continue; 1843 } 1844 if (!MO.isReg() || !MO.isDef()) continue; 1845 unsigned Reg = MO.getReg(); 1846 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 1847 bool Dead = true; 1848 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1849 I != E; ++I) 1850 if (TRI.regsOverlap(*I, Reg)) { 1851 Dead = false; 1852 break; 1853 } 1854 // If there are no uses, including partial uses, the def is dead. 1855 if (Dead) MO.setIsDead(); 1856 } 1857 1858 // This is a call with a register mask operand. 1859 // Mask clobbers are always dead, so add defs for the non-dead defines. 1860 if (HasRegMask) 1861 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1862 I != E; ++I) 1863 addRegisterDefined(*I, &TRI); 1864 } 1865 1866 unsigned 1867 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 1868 // Build up a buffer of hash code components. 1869 SmallVector<size_t, 8> HashComponents; 1870 HashComponents.reserve(MI->getNumOperands() + 1); 1871 HashComponents.push_back(MI->getOpcode()); 1872 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1873 const MachineOperand &MO = MI->getOperand(i); 1874 if (MO.isReg() && MO.isDef() && 1875 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1876 continue; // Skip virtual register defs. 1877 1878 HashComponents.push_back(hash_value(MO)); 1879 } 1880 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 1881 } 1882 1883 void MachineInstr::emitError(StringRef Msg) const { 1884 // Find the source location cookie. 1885 unsigned LocCookie = 0; 1886 const MDNode *LocMD = 0; 1887 for (unsigned i = getNumOperands(); i != 0; --i) { 1888 if (getOperand(i-1).isMetadata() && 1889 (LocMD = getOperand(i-1).getMetadata()) && 1890 LocMD->getNumOperands() != 0) { 1891 if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) { 1892 LocCookie = CI->getZExtValue(); 1893 break; 1894 } 1895 } 1896 } 1897 1898 if (const MachineBasicBlock *MBB = getParent()) 1899 if (const MachineFunction *MF = MBB->getParent()) 1900 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 1901 report_fatal_error(Msg); 1902 } 1903