1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Methods common to all machine instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MachineInstr.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/Hashing.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallBitVector.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/MemoryLocation.h" 21 #include "llvm/CodeGen/MachineBasicBlock.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineInstrBundle.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineModuleInfo.h" 28 #include "llvm/CodeGen/MachineOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/PseudoSourceValue.h" 31 #include "llvm/CodeGen/Register.h" 32 #include "llvm/CodeGen/StackMaps.h" 33 #include "llvm/CodeGen/TargetInstrInfo.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/CodeGen/TargetSubtargetInfo.h" 36 #include "llvm/CodeGenTypes/LowLevelType.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/InlineAsm.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/LLVMContext.h" 44 #include "llvm/IR/Metadata.h" 45 #include "llvm/IR/Module.h" 46 #include "llvm/IR/ModuleSlotTracker.h" 47 #include "llvm/IR/Operator.h" 48 #include "llvm/MC/MCInstrDesc.h" 49 #include "llvm/MC/MCRegisterInfo.h" 50 #include "llvm/Support/Casting.h" 51 #include "llvm/Support/Compiler.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/ErrorHandling.h" 54 #include "llvm/Support/FormattedStream.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include "llvm/Target/TargetMachine.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <cstdint> 60 #include <cstring> 61 #include <utility> 62 63 using namespace llvm; 64 65 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) { 66 if (const MachineBasicBlock *MBB = MI.getParent()) 67 if (const MachineFunction *MF = MBB->getParent()) 68 return MF; 69 return nullptr; 70 } 71 72 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from 73 // it. 74 static void tryToGetTargetInfo(const MachineInstr &MI, 75 const TargetRegisterInfo *&TRI, 76 const MachineRegisterInfo *&MRI, 77 const TargetIntrinsicInfo *&IntrinsicInfo, 78 const TargetInstrInfo *&TII) { 79 80 if (const MachineFunction *MF = getMFIfAvailable(MI)) { 81 TRI = MF->getSubtarget().getRegisterInfo(); 82 MRI = &MF->getRegInfo(); 83 IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); 84 TII = MF->getSubtarget().getInstrInfo(); 85 } 86 } 87 88 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 89 for (MCPhysReg ImpDef : MCID->implicit_defs()) 90 addOperand(MF, MachineOperand::CreateReg(ImpDef, true, true)); 91 for (MCPhysReg ImpUse : MCID->implicit_uses()) 92 addOperand(MF, MachineOperand::CreateReg(ImpUse, false, true)); 93 } 94 95 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 96 /// implicit operands. It reserves space for the number of operands specified by 97 /// the MCInstrDesc. 98 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &TID, 99 DebugLoc DL, bool NoImp) 100 : MCID(&TID), NumOperands(0), Flags(0), AsmPrinterFlags(0), 101 DbgLoc(std::move(DL)), DebugInstrNum(0), Opcode(TID.Opcode) { 102 assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor"); 103 104 // Reserve space for the expected number of operands. 105 if (unsigned NumOps = MCID->getNumOperands() + MCID->implicit_defs().size() + 106 MCID->implicit_uses().size()) { 107 CapOperands = OperandCapacity::get(NumOps); 108 Operands = MF.allocateOperandArray(CapOperands); 109 } 110 111 if (!NoImp) 112 addImplicitDefUseOperands(MF); 113 } 114 115 /// MachineInstr ctor - Copies MachineInstr arg exactly. 116 /// Does not copy the number from debug instruction numbering, to preserve 117 /// uniqueness. 118 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 119 : MCID(&MI.getDesc()), NumOperands(0), Flags(0), AsmPrinterFlags(0), 120 Info(MI.Info), DbgLoc(MI.getDebugLoc()), DebugInstrNum(0), 121 Opcode(MI.getOpcode()) { 122 assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor"); 123 124 CapOperands = OperandCapacity::get(MI.getNumOperands()); 125 Operands = MF.allocateOperandArray(CapOperands); 126 127 // Copy operands. 128 for (const MachineOperand &MO : MI.operands()) 129 addOperand(MF, MO); 130 131 // Replicate ties between the operands, which addOperand was not 132 // able to do reliably. 133 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { 134 MachineOperand &NewMO = getOperand(i); 135 const MachineOperand &OrigMO = MI.getOperand(i); 136 NewMO.TiedTo = OrigMO.TiedTo; 137 } 138 139 // Copy all the sensible flags. 140 setFlags(MI.Flags); 141 } 142 143 void MachineInstr::setDesc(const MCInstrDesc &TID) { 144 if (getParent()) 145 getMF()->handleChangeDesc(*this, TID); 146 MCID = &TID; 147 Opcode = TID.Opcode; 148 } 149 150 void MachineInstr::moveBefore(MachineInstr *MovePos) { 151 MovePos->getParent()->splice(MovePos, getParent(), getIterator()); 152 } 153 154 /// getRegInfo - If this instruction is embedded into a MachineFunction, 155 /// return the MachineRegisterInfo object for the current function, otherwise 156 /// return null. 157 MachineRegisterInfo *MachineInstr::getRegInfo() { 158 if (MachineBasicBlock *MBB = getParent()) 159 return &MBB->getParent()->getRegInfo(); 160 return nullptr; 161 } 162 163 const MachineRegisterInfo *MachineInstr::getRegInfo() const { 164 if (const MachineBasicBlock *MBB = getParent()) 165 return &MBB->getParent()->getRegInfo(); 166 return nullptr; 167 } 168 169 void MachineInstr::removeRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 170 for (MachineOperand &MO : operands()) 171 if (MO.isReg()) 172 MRI.removeRegOperandFromUseList(&MO); 173 } 174 175 void MachineInstr::addRegOperandsToUseLists(MachineRegisterInfo &MRI) { 176 for (MachineOperand &MO : operands()) 177 if (MO.isReg()) 178 MRI.addRegOperandToUseList(&MO); 179 } 180 181 void MachineInstr::addOperand(const MachineOperand &Op) { 182 MachineBasicBlock *MBB = getParent(); 183 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 184 MachineFunction *MF = MBB->getParent(); 185 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 186 addOperand(*MF, Op); 187 } 188 189 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 190 /// ranges. If MRI is non-null also update use-def chains. 191 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 192 unsigned NumOps, MachineRegisterInfo *MRI) { 193 if (MRI) 194 return MRI->moveOperands(Dst, Src, NumOps); 195 // MachineOperand is a trivially copyable type so we can just use memmove. 196 assert(Dst && Src && "Unknown operands"); 197 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 198 } 199 200 /// addOperand - Add the specified operand to the instruction. If it is an 201 /// implicit operand, it is added to the end of the operand list. If it is 202 /// an explicit operand it is added at the end of the explicit operand list 203 /// (before the first implicit operand). 204 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 205 assert(isUInt<LLVM_MI_NUMOPERANDS_BITS>(NumOperands + 1) && 206 "Cannot add more operands."); 207 assert(MCID && "Cannot add operands before providing an instr descriptor"); 208 209 // Check if we're adding one of our existing operands. 210 if (&Op >= Operands && &Op < Operands + NumOperands) { 211 // This is unusual: MI->addOperand(MI->getOperand(i)). 212 // If adding Op requires reallocating or moving existing operands around, 213 // the Op reference could go stale. Support it by copying Op. 214 MachineOperand CopyOp(Op); 215 return addOperand(MF, CopyOp); 216 } 217 218 // Find the insert location for the new operand. Implicit registers go at 219 // the end, everything else goes before the implicit regs. 220 // 221 // FIXME: Allow mixed explicit and implicit operands on inline asm. 222 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 223 // implicit-defs, but they must not be moved around. See the FIXME in 224 // InstrEmitter.cpp. 225 unsigned OpNo = getNumOperands(); 226 bool isImpReg = Op.isReg() && Op.isImplicit(); 227 if (!isImpReg && !isInlineAsm()) { 228 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 229 --OpNo; 230 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 231 } 232 } 233 234 // OpNo now points as the desired insertion point. Unless this is a variadic 235 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 236 // RegMask operands go between the explicit and implicit operands. 237 MachineRegisterInfo *MRI = getRegInfo(); 238 239 // Determine if the Operands array needs to be reallocated. 240 // Save the old capacity and operand array. 241 OperandCapacity OldCap = CapOperands; 242 MachineOperand *OldOperands = Operands; 243 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 244 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 245 Operands = MF.allocateOperandArray(CapOperands); 246 // Move the operands before the insertion point. 247 if (OpNo) 248 moveOperands(Operands, OldOperands, OpNo, MRI); 249 } 250 251 // Move the operands following the insertion point. 252 if (OpNo != NumOperands) 253 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 254 MRI); 255 ++NumOperands; 256 257 // Deallocate the old operand array. 258 if (OldOperands != Operands && OldOperands) 259 MF.deallocateOperandArray(OldCap, OldOperands); 260 261 // Copy Op into place. It still needs to be inserted into the MRI use lists. 262 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 263 NewMO->ParentMI = this; 264 265 // When adding a register operand, tell MRI about it. 266 if (NewMO->isReg()) { 267 // Ensure isOnRegUseList() returns false, regardless of Op's status. 268 NewMO->Contents.Reg.Prev = nullptr; 269 // Ignore existing ties. This is not a property that can be copied. 270 NewMO->TiedTo = 0; 271 // Add the new operand to MRI, but only for instructions in an MBB. 272 if (MRI) 273 MRI->addRegOperandToUseList(NewMO); 274 // The MCID operand information isn't accurate until we start adding 275 // explicit operands. The implicit operands are added first, then the 276 // explicits are inserted before them. 277 if (!isImpReg) { 278 // Tie uses to defs as indicated in MCInstrDesc. 279 if (NewMO->isUse()) { 280 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 281 if (DefIdx != -1) 282 tieOperands(DefIdx, OpNo); 283 } 284 // If the register operand is flagged as early, mark the operand as such. 285 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 286 NewMO->setIsEarlyClobber(true); 287 } 288 // Ensure debug instructions set debug flag on register uses. 289 if (NewMO->isUse() && isDebugInstr()) 290 NewMO->setIsDebug(); 291 } 292 } 293 294 void MachineInstr::removeOperand(unsigned OpNo) { 295 assert(OpNo < getNumOperands() && "Invalid operand number"); 296 untieRegOperand(OpNo); 297 298 #ifndef NDEBUG 299 // Moving tied operands would break the ties. 300 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 301 if (Operands[i].isReg()) 302 assert(!Operands[i].isTied() && "Cannot move tied operands"); 303 #endif 304 305 MachineRegisterInfo *MRI = getRegInfo(); 306 if (MRI && Operands[OpNo].isReg()) 307 MRI->removeRegOperandFromUseList(Operands + OpNo); 308 309 // Don't call the MachineOperand destructor. A lot of this code depends on 310 // MachineOperand having a trivial destructor anyway, and adding a call here 311 // wouldn't make it 'destructor-correct'. 312 313 if (unsigned N = NumOperands - 1 - OpNo) 314 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 315 --NumOperands; 316 } 317 318 void MachineInstr::setExtraInfo(MachineFunction &MF, 319 ArrayRef<MachineMemOperand *> MMOs, 320 MCSymbol *PreInstrSymbol, 321 MCSymbol *PostInstrSymbol, 322 MDNode *HeapAllocMarker, MDNode *PCSections, 323 uint32_t CFIType, MDNode *MMRAs) { 324 bool HasPreInstrSymbol = PreInstrSymbol != nullptr; 325 bool HasPostInstrSymbol = PostInstrSymbol != nullptr; 326 bool HasHeapAllocMarker = HeapAllocMarker != nullptr; 327 bool HasPCSections = PCSections != nullptr; 328 bool HasCFIType = CFIType != 0; 329 bool HasMMRAs = MMRAs != nullptr; 330 int NumPointers = MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + 331 HasHeapAllocMarker + HasPCSections + HasCFIType + HasMMRAs; 332 333 // Drop all extra info if there is none. 334 if (NumPointers <= 0) { 335 Info.clear(); 336 return; 337 } 338 339 // If more than one pointer, then store out of line. Store heap alloc markers 340 // out of line because PointerSumType cannot hold more than 4 tag types with 341 // 32-bit pointers. 342 // FIXME: Maybe we should make the symbols in the extra info mutable? 343 else if (NumPointers > 1 || HasMMRAs || HasHeapAllocMarker || HasPCSections || 344 HasCFIType) { 345 Info.set<EIIK_OutOfLine>( 346 MF.createMIExtraInfo(MMOs, PreInstrSymbol, PostInstrSymbol, 347 HeapAllocMarker, PCSections, CFIType, MMRAs)); 348 return; 349 } 350 351 // Otherwise store the single pointer inline. 352 if (HasPreInstrSymbol) 353 Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol); 354 else if (HasPostInstrSymbol) 355 Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol); 356 else 357 Info.set<EIIK_MMO>(MMOs[0]); 358 } 359 360 void MachineInstr::dropMemRefs(MachineFunction &MF) { 361 if (memoperands_empty()) 362 return; 363 364 setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(), 365 getHeapAllocMarker(), getPCSections(), getCFIType(), 366 getMMRAMetadata()); 367 } 368 369 void MachineInstr::setMemRefs(MachineFunction &MF, 370 ArrayRef<MachineMemOperand *> MMOs) { 371 if (MMOs.empty()) { 372 dropMemRefs(MF); 373 return; 374 } 375 376 setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(), 377 getHeapAllocMarker(), getPCSections(), getCFIType(), 378 getMMRAMetadata()); 379 } 380 381 void MachineInstr::addMemOperand(MachineFunction &MF, 382 MachineMemOperand *MO) { 383 SmallVector<MachineMemOperand *, 2> MMOs; 384 MMOs.append(memoperands_begin(), memoperands_end()); 385 MMOs.push_back(MO); 386 setMemRefs(MF, MMOs); 387 } 388 389 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) { 390 if (this == &MI) 391 // Nothing to do for a self-clone! 392 return; 393 394 assert(&MF == MI.getMF() && 395 "Invalid machine functions when cloning memory refrences!"); 396 // See if we can just steal the extra info already allocated for the 397 // instruction. We can do this whenever the pre- and post-instruction symbols 398 // are the same (including null). 399 if (getPreInstrSymbol() == MI.getPreInstrSymbol() && 400 getPostInstrSymbol() == MI.getPostInstrSymbol() && 401 getHeapAllocMarker() == MI.getHeapAllocMarker() && 402 getPCSections() == MI.getPCSections() && getMMRAMetadata() && 403 MI.getMMRAMetadata()) { 404 Info = MI.Info; 405 return; 406 } 407 408 // Otherwise, fall back on a copy-based clone. 409 setMemRefs(MF, MI.memoperands()); 410 } 411 412 /// Check to see if the MMOs pointed to by the two MemRefs arrays are 413 /// identical. 414 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS, 415 ArrayRef<MachineMemOperand *> RHS) { 416 if (LHS.size() != RHS.size()) 417 return false; 418 419 auto LHSPointees = make_pointee_range(LHS); 420 auto RHSPointees = make_pointee_range(RHS); 421 return std::equal(LHSPointees.begin(), LHSPointees.end(), 422 RHSPointees.begin()); 423 } 424 425 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF, 426 ArrayRef<const MachineInstr *> MIs) { 427 // Try handling easy numbers of MIs with simpler mechanisms. 428 if (MIs.empty()) { 429 dropMemRefs(MF); 430 return; 431 } 432 if (MIs.size() == 1) { 433 cloneMemRefs(MF, *MIs[0]); 434 return; 435 } 436 // Because an empty memoperands list provides *no* information and must be 437 // handled conservatively (assuming the instruction can do anything), the only 438 // way to merge with it is to drop all other memoperands. 439 if (MIs[0]->memoperands_empty()) { 440 dropMemRefs(MF); 441 return; 442 } 443 444 // Handle the general case. 445 SmallVector<MachineMemOperand *, 2> MergedMMOs; 446 // Start with the first instruction. 447 assert(&MF == MIs[0]->getMF() && 448 "Invalid machine functions when cloning memory references!"); 449 MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end()); 450 // Now walk all the other instructions and accumulate any different MMOs. 451 for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) { 452 assert(&MF == MI.getMF() && 453 "Invalid machine functions when cloning memory references!"); 454 455 // Skip MIs with identical operands to the first. This is a somewhat 456 // arbitrary hack but will catch common cases without being quadratic. 457 // TODO: We could fully implement merge semantics here if needed. 458 if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands())) 459 continue; 460 461 // Because an empty memoperands list provides *no* information and must be 462 // handled conservatively (assuming the instruction can do anything), the 463 // only way to merge with it is to drop all other memoperands. 464 if (MI.memoperands_empty()) { 465 dropMemRefs(MF); 466 return; 467 } 468 469 // Otherwise accumulate these into our temporary buffer of the merged state. 470 MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end()); 471 } 472 473 setMemRefs(MF, MergedMMOs); 474 } 475 476 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 477 // Do nothing if old and new symbols are the same. 478 if (Symbol == getPreInstrSymbol()) 479 return; 480 481 // If there was only one symbol and we're removing it, just clear info. 482 if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) { 483 Info.clear(); 484 return; 485 } 486 487 setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(), 488 getHeapAllocMarker(), getPCSections(), getCFIType(), 489 getMMRAMetadata()); 490 } 491 492 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 493 // Do nothing if old and new symbols are the same. 494 if (Symbol == getPostInstrSymbol()) 495 return; 496 497 // If there was only one symbol and we're removing it, just clear info. 498 if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) { 499 Info.clear(); 500 return; 501 } 502 503 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol, 504 getHeapAllocMarker(), getPCSections(), getCFIType(), 505 getMMRAMetadata()); 506 } 507 508 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) { 509 // Do nothing if old and new symbols are the same. 510 if (Marker == getHeapAllocMarker()) 511 return; 512 513 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 514 Marker, getPCSections(), getCFIType(), getMMRAMetadata()); 515 } 516 517 void MachineInstr::setPCSections(MachineFunction &MF, MDNode *PCSections) { 518 // Do nothing if old and new symbols are the same. 519 if (PCSections == getPCSections()) 520 return; 521 522 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 523 getHeapAllocMarker(), PCSections, getCFIType(), 524 getMMRAMetadata()); 525 } 526 527 void MachineInstr::setCFIType(MachineFunction &MF, uint32_t Type) { 528 // Do nothing if old and new types are the same. 529 if (Type == getCFIType()) 530 return; 531 532 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 533 getHeapAllocMarker(), getPCSections(), Type, getMMRAMetadata()); 534 } 535 536 void MachineInstr::setMMRAMetadata(MachineFunction &MF, MDNode *MMRAs) { 537 // Do nothing if old and new symbols are the same. 538 if (MMRAs == getMMRAMetadata()) 539 return; 540 541 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 542 getHeapAllocMarker(), getPCSections(), getCFIType(), MMRAs); 543 } 544 545 void MachineInstr::cloneInstrSymbols(MachineFunction &MF, 546 const MachineInstr &MI) { 547 if (this == &MI) 548 // Nothing to do for a self-clone! 549 return; 550 551 assert(&MF == MI.getMF() && 552 "Invalid machine functions when cloning instruction symbols!"); 553 554 setPreInstrSymbol(MF, MI.getPreInstrSymbol()); 555 setPostInstrSymbol(MF, MI.getPostInstrSymbol()); 556 setHeapAllocMarker(MF, MI.getHeapAllocMarker()); 557 setPCSections(MF, MI.getPCSections()); 558 setMMRAMetadata(MF, MI.getMMRAMetadata()); 559 } 560 561 uint32_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const { 562 // For now, the just return the union of the flags. If the flags get more 563 // complicated over time, we might need more logic here. 564 return getFlags() | Other.getFlags(); 565 } 566 567 uint32_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) { 568 uint32_t MIFlags = 0; 569 // Copy the wrapping flags. 570 if (const OverflowingBinaryOperator *OB = 571 dyn_cast<OverflowingBinaryOperator>(&I)) { 572 if (OB->hasNoSignedWrap()) 573 MIFlags |= MachineInstr::MIFlag::NoSWrap; 574 if (OB->hasNoUnsignedWrap()) 575 MIFlags |= MachineInstr::MIFlag::NoUWrap; 576 } else if (const TruncInst *TI = dyn_cast<TruncInst>(&I)) { 577 if (TI->hasNoSignedWrap()) 578 MIFlags |= MachineInstr::MIFlag::NoSWrap; 579 if (TI->hasNoUnsignedWrap()) 580 MIFlags |= MachineInstr::MIFlag::NoUWrap; 581 } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) { 582 if (GEP->hasNoUnsignedSignedWrap()) 583 MIFlags |= MachineInstr::MIFlag::NoUSWrap; 584 if (GEP->hasNoUnsignedWrap()) 585 MIFlags |= MachineInstr::MIFlag::NoUWrap; 586 } 587 588 // Copy the nonneg flag. 589 if (const PossiblyNonNegInst *PNI = dyn_cast<PossiblyNonNegInst>(&I)) { 590 if (PNI->hasNonNeg()) 591 MIFlags |= MachineInstr::MIFlag::NonNeg; 592 // Copy the disjoint flag. 593 } else if (const PossiblyDisjointInst *PD = 594 dyn_cast<PossiblyDisjointInst>(&I)) { 595 if (PD->isDisjoint()) 596 MIFlags |= MachineInstr::MIFlag::Disjoint; 597 } 598 599 // Copy the samesign flag. 600 if (const ICmpInst *ICmp = dyn_cast<ICmpInst>(&I)) 601 if (ICmp->hasSameSign()) 602 MIFlags |= MachineInstr::MIFlag::SameSign; 603 604 // Copy the exact flag. 605 if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I)) 606 if (PE->isExact()) 607 MIFlags |= MachineInstr::MIFlag::IsExact; 608 609 // Copy the fast-math flags. 610 if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) { 611 const FastMathFlags Flags = FP->getFastMathFlags(); 612 if (Flags.noNaNs()) 613 MIFlags |= MachineInstr::MIFlag::FmNoNans; 614 if (Flags.noInfs()) 615 MIFlags |= MachineInstr::MIFlag::FmNoInfs; 616 if (Flags.noSignedZeros()) 617 MIFlags |= MachineInstr::MIFlag::FmNsz; 618 if (Flags.allowReciprocal()) 619 MIFlags |= MachineInstr::MIFlag::FmArcp; 620 if (Flags.allowContract()) 621 MIFlags |= MachineInstr::MIFlag::FmContract; 622 if (Flags.approxFunc()) 623 MIFlags |= MachineInstr::MIFlag::FmAfn; 624 if (Flags.allowReassoc()) 625 MIFlags |= MachineInstr::MIFlag::FmReassoc; 626 } 627 628 if (I.getMetadata(LLVMContext::MD_unpredictable)) 629 MIFlags |= MachineInstr::MIFlag::Unpredictable; 630 631 return MIFlags; 632 } 633 634 void MachineInstr::copyIRFlags(const Instruction &I) { 635 Flags = copyFlagsFromInstruction(I); 636 } 637 638 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const { 639 assert(!isBundledWithPred() && "Must be called on bundle header"); 640 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { 641 if (MII->getDesc().getFlags() & Mask) { 642 if (Type == AnyInBundle) 643 return true; 644 } else { 645 if (Type == AllInBundle && !MII->isBundle()) 646 return false; 647 } 648 // This was the last instruction in the bundle. 649 if (!MII->isBundledWithSucc()) 650 return Type == AllInBundle; 651 } 652 } 653 654 bool MachineInstr::isIdenticalTo(const MachineInstr &Other, 655 MICheckType Check) const { 656 // If opcodes or number of operands are not the same then the two 657 // instructions are obviously not identical. 658 if (Other.getOpcode() != getOpcode() || 659 Other.getNumOperands() != getNumOperands()) 660 return false; 661 662 if (isBundle()) { 663 // We have passed the test above that both instructions have the same 664 // opcode, so we know that both instructions are bundles here. Let's compare 665 // MIs inside the bundle. 666 assert(Other.isBundle() && "Expected that both instructions are bundles."); 667 MachineBasicBlock::const_instr_iterator I1 = getIterator(); 668 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); 669 // Loop until we analysed the last intruction inside at least one of the 670 // bundles. 671 while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) { 672 ++I1; 673 ++I2; 674 if (!I1->isIdenticalTo(*I2, Check)) 675 return false; 676 } 677 // If we've reached the end of just one of the two bundles, but not both, 678 // the instructions are not identical. 679 if (I1->isBundledWithSucc() || I2->isBundledWithSucc()) 680 return false; 681 } 682 683 // Check operands to make sure they match. 684 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 685 const MachineOperand &MO = getOperand(i); 686 const MachineOperand &OMO = Other.getOperand(i); 687 if (!MO.isReg()) { 688 if (!MO.isIdenticalTo(OMO)) 689 return false; 690 continue; 691 } 692 693 // Clients may or may not want to ignore defs when testing for equality. 694 // For example, machine CSE pass only cares about finding common 695 // subexpressions, so it's safe to ignore virtual register defs. 696 if (MO.isDef()) { 697 if (Check == IgnoreDefs) 698 continue; 699 else if (Check == IgnoreVRegDefs) { 700 if (!MO.getReg().isVirtual() || !OMO.getReg().isVirtual()) 701 if (!MO.isIdenticalTo(OMO)) 702 return false; 703 } else { 704 if (!MO.isIdenticalTo(OMO)) 705 return false; 706 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 707 return false; 708 } 709 } else { 710 if (!MO.isIdenticalTo(OMO)) 711 return false; 712 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 713 return false; 714 } 715 } 716 // If DebugLoc does not match then two debug instructions are not identical. 717 if (isDebugInstr()) 718 if (getDebugLoc() && Other.getDebugLoc() && 719 getDebugLoc() != Other.getDebugLoc()) 720 return false; 721 // If pre- or post-instruction symbols do not match then the two instructions 722 // are not identical. 723 if (getPreInstrSymbol() != Other.getPreInstrSymbol() || 724 getPostInstrSymbol() != Other.getPostInstrSymbol()) 725 return false; 726 // Call instructions with different CFI types are not identical. 727 if (isCall() && getCFIType() != Other.getCFIType()) 728 return false; 729 730 return true; 731 } 732 733 bool MachineInstr::isEquivalentDbgInstr(const MachineInstr &Other) const { 734 if (!isDebugValueLike() || !Other.isDebugValueLike()) 735 return false; 736 if (getDebugLoc() != Other.getDebugLoc()) 737 return false; 738 if (getDebugVariable() != Other.getDebugVariable()) 739 return false; 740 if (getNumDebugOperands() != Other.getNumDebugOperands()) 741 return false; 742 for (unsigned OpIdx = 0; OpIdx < getNumDebugOperands(); ++OpIdx) 743 if (!getDebugOperand(OpIdx).isIdenticalTo(Other.getDebugOperand(OpIdx))) 744 return false; 745 if (!DIExpression::isEqualExpression( 746 getDebugExpression(), isIndirectDebugValue(), 747 Other.getDebugExpression(), Other.isIndirectDebugValue())) 748 return false; 749 return true; 750 } 751 752 const MachineFunction *MachineInstr::getMF() const { 753 return getParent()->getParent(); 754 } 755 756 MachineInstr *MachineInstr::removeFromParent() { 757 assert(getParent() && "Not embedded in a basic block!"); 758 return getParent()->remove(this); 759 } 760 761 MachineInstr *MachineInstr::removeFromBundle() { 762 assert(getParent() && "Not embedded in a basic block!"); 763 return getParent()->remove_instr(this); 764 } 765 766 void MachineInstr::eraseFromParent() { 767 assert(getParent() && "Not embedded in a basic block!"); 768 getParent()->erase(this); 769 } 770 771 void MachineInstr::eraseFromBundle() { 772 assert(getParent() && "Not embedded in a basic block!"); 773 getParent()->erase_instr(this); 774 } 775 776 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const { 777 if (!isCall(Type)) 778 return false; 779 switch (getOpcode()) { 780 case TargetOpcode::PATCHPOINT: 781 case TargetOpcode::STACKMAP: 782 case TargetOpcode::STATEPOINT: 783 case TargetOpcode::FENTRY_CALL: 784 return false; 785 } 786 return true; 787 } 788 789 bool MachineInstr::shouldUpdateCallSiteInfo() const { 790 if (isBundle()) 791 return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle); 792 return isCandidateForCallSiteEntry(); 793 } 794 795 unsigned MachineInstr::getNumExplicitOperands() const { 796 unsigned NumOperands = MCID->getNumOperands(); 797 if (!MCID->isVariadic()) 798 return NumOperands; 799 800 for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) { 801 const MachineOperand &MO = getOperand(I); 802 // The operands must always be in the following order: 803 // - explicit reg defs, 804 // - other explicit operands (reg uses, immediates, etc.), 805 // - implicit reg defs 806 // - implicit reg uses 807 if (MO.isReg() && MO.isImplicit()) 808 break; 809 ++NumOperands; 810 } 811 return NumOperands; 812 } 813 814 unsigned MachineInstr::getNumExplicitDefs() const { 815 unsigned NumDefs = MCID->getNumDefs(); 816 if (!MCID->isVariadic()) 817 return NumDefs; 818 819 for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) { 820 const MachineOperand &MO = getOperand(I); 821 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 822 break; 823 ++NumDefs; 824 } 825 return NumDefs; 826 } 827 828 void MachineInstr::bundleWithPred() { 829 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 830 setFlag(BundledPred); 831 MachineBasicBlock::instr_iterator Pred = getIterator(); 832 --Pred; 833 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 834 Pred->setFlag(BundledSucc); 835 } 836 837 void MachineInstr::bundleWithSucc() { 838 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 839 setFlag(BundledSucc); 840 MachineBasicBlock::instr_iterator Succ = getIterator(); 841 ++Succ; 842 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 843 Succ->setFlag(BundledPred); 844 } 845 846 void MachineInstr::unbundleFromPred() { 847 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 848 clearFlag(BundledPred); 849 MachineBasicBlock::instr_iterator Pred = getIterator(); 850 --Pred; 851 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 852 Pred->clearFlag(BundledSucc); 853 } 854 855 void MachineInstr::unbundleFromSucc() { 856 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 857 clearFlag(BundledSucc); 858 MachineBasicBlock::instr_iterator Succ = getIterator(); 859 ++Succ; 860 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 861 Succ->clearFlag(BundledPred); 862 } 863 864 bool MachineInstr::isStackAligningInlineAsm() const { 865 if (isInlineAsm()) { 866 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 867 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 868 return true; 869 } 870 return false; 871 } 872 873 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 874 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 875 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 876 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 877 } 878 879 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 880 unsigned *GroupNo) const { 881 assert(isInlineAsm() && "Expected an inline asm instruction"); 882 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 883 884 // Ignore queries about the initial operands. 885 if (OpIdx < InlineAsm::MIOp_FirstOperand) 886 return -1; 887 888 unsigned Group = 0; 889 unsigned NumOps; 890 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 891 i += NumOps) { 892 const MachineOperand &FlagMO = getOperand(i); 893 // If we reach the implicit register operands, stop looking. 894 if (!FlagMO.isImm()) 895 return -1; 896 const InlineAsm::Flag F(FlagMO.getImm()); 897 NumOps = 1 + F.getNumOperandRegisters(); 898 if (i + NumOps > OpIdx) { 899 if (GroupNo) 900 *GroupNo = Group; 901 return i; 902 } 903 ++Group; 904 } 905 return -1; 906 } 907 908 const DILabel *MachineInstr::getDebugLabel() const { 909 assert(isDebugLabel() && "not a DBG_LABEL"); 910 return cast<DILabel>(getOperand(0).getMetadata()); 911 } 912 913 const MachineOperand &MachineInstr::getDebugVariableOp() const { 914 assert((isDebugValueLike()) && "not a DBG_VALUE*"); 915 unsigned VariableOp = isNonListDebugValue() ? 2 : 0; 916 return getOperand(VariableOp); 917 } 918 919 MachineOperand &MachineInstr::getDebugVariableOp() { 920 assert((isDebugValueLike()) && "not a DBG_VALUE*"); 921 unsigned VariableOp = isNonListDebugValue() ? 2 : 0; 922 return getOperand(VariableOp); 923 } 924 925 const DILocalVariable *MachineInstr::getDebugVariable() const { 926 return cast<DILocalVariable>(getDebugVariableOp().getMetadata()); 927 } 928 929 const MachineOperand &MachineInstr::getDebugExpressionOp() const { 930 assert((isDebugValueLike()) && "not a DBG_VALUE*"); 931 unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1; 932 return getOperand(ExpressionOp); 933 } 934 935 MachineOperand &MachineInstr::getDebugExpressionOp() { 936 assert((isDebugValueLike()) && "not a DBG_VALUE*"); 937 unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1; 938 return getOperand(ExpressionOp); 939 } 940 941 const DIExpression *MachineInstr::getDebugExpression() const { 942 return cast<DIExpression>(getDebugExpressionOp().getMetadata()); 943 } 944 945 bool MachineInstr::isDebugEntryValue() const { 946 return isDebugValue() && getDebugExpression()->isEntryValue(); 947 } 948 949 const TargetRegisterClass* 950 MachineInstr::getRegClassConstraint(unsigned OpIdx, 951 const TargetInstrInfo *TII, 952 const TargetRegisterInfo *TRI) const { 953 assert(getParent() && "Can't have an MBB reference here!"); 954 assert(getMF() && "Can't have an MF reference here!"); 955 const MachineFunction &MF = *getMF(); 956 957 // Most opcodes have fixed constraints in their MCInstrDesc. 958 if (!isInlineAsm()) 959 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 960 961 if (!getOperand(OpIdx).isReg()) 962 return nullptr; 963 964 // For tied uses on inline asm, get the constraint from the def. 965 unsigned DefIdx; 966 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 967 OpIdx = DefIdx; 968 969 // Inline asm stores register class constraints in the flag word. 970 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 971 if (FlagIdx < 0) 972 return nullptr; 973 974 const InlineAsm::Flag F(getOperand(FlagIdx).getImm()); 975 unsigned RCID; 976 if ((F.isRegUseKind() || F.isRegDefKind() || F.isRegDefEarlyClobberKind()) && 977 F.hasRegClassConstraint(RCID)) 978 return TRI->getRegClass(RCID); 979 980 // Assume that all registers in a memory operand are pointers. 981 if (F.isMemKind()) 982 return TRI->getPointerRegClass(MF); 983 984 return nullptr; 985 } 986 987 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 988 Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 989 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 990 // Check every operands inside the bundle if we have 991 // been asked to. 992 if (ExploreBundle) 993 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; 994 ++OpndIt) 995 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 996 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 997 else 998 // Otherwise, just check the current operands. 999 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 1000 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 1001 return CurRC; 1002 } 1003 1004 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 1005 unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC, 1006 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1007 assert(CurRC && "Invalid initial register class"); 1008 // Check if Reg is constrained by some of its use/def from MI. 1009 const MachineOperand &MO = getOperand(OpIdx); 1010 if (!MO.isReg() || MO.getReg() != Reg) 1011 return CurRC; 1012 // If yes, accumulate the constraints through the operand. 1013 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 1014 } 1015 1016 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 1017 unsigned OpIdx, const TargetRegisterClass *CurRC, 1018 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1019 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 1020 const MachineOperand &MO = getOperand(OpIdx); 1021 assert(MO.isReg() && 1022 "Cannot get register constraints for non-register operand"); 1023 assert(CurRC && "Invalid initial register class"); 1024 if (unsigned SubIdx = MO.getSubReg()) { 1025 if (OpRC) 1026 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 1027 else 1028 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 1029 } else if (OpRC) 1030 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 1031 return CurRC; 1032 } 1033 1034 /// Return the number of instructions inside the MI bundle, not counting the 1035 /// header instruction. 1036 unsigned MachineInstr::getBundleSize() const { 1037 MachineBasicBlock::const_instr_iterator I = getIterator(); 1038 unsigned Size = 0; 1039 while (I->isBundledWithSucc()) { 1040 ++Size; 1041 ++I; 1042 } 1043 return Size; 1044 } 1045 1046 /// Returns true if the MachineInstr has an implicit-use operand of exactly 1047 /// the given register (not considering sub/super-registers). 1048 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const { 1049 for (const MachineOperand &MO : implicit_operands()) { 1050 if (MO.isReg() && MO.isUse() && MO.getReg() == Reg) 1051 return true; 1052 } 1053 return false; 1054 } 1055 1056 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 1057 /// the specific register or -1 if it is not found. It further tightens 1058 /// the search criteria to a use that kills the register if isKill is true. 1059 int MachineInstr::findRegisterUseOperandIdx(Register Reg, 1060 const TargetRegisterInfo *TRI, 1061 bool isKill) const { 1062 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1063 const MachineOperand &MO = getOperand(i); 1064 if (!MO.isReg() || !MO.isUse()) 1065 continue; 1066 Register MOReg = MO.getReg(); 1067 if (!MOReg) 1068 continue; 1069 if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg))) 1070 if (!isKill || MO.isKill()) 1071 return i; 1072 } 1073 return -1; 1074 } 1075 1076 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1077 /// indicating if this instruction reads or writes Reg. This also considers 1078 /// partial defines. 1079 std::pair<bool,bool> 1080 MachineInstr::readsWritesVirtualRegister(Register Reg, 1081 SmallVectorImpl<unsigned> *Ops) const { 1082 bool PartDef = false; // Partial redefine. 1083 bool FullDef = false; // Full define. 1084 bool Use = false; 1085 1086 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1087 const MachineOperand &MO = getOperand(i); 1088 if (!MO.isReg() || MO.getReg() != Reg) 1089 continue; 1090 if (Ops) 1091 Ops->push_back(i); 1092 if (MO.isUse()) 1093 Use |= !MO.isUndef(); 1094 else if (MO.getSubReg() && !MO.isUndef()) 1095 // A partial def undef doesn't count as reading the register. 1096 PartDef = true; 1097 else 1098 FullDef = true; 1099 } 1100 // A partial redefine uses Reg unless there is also a full define. 1101 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1102 } 1103 1104 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1105 /// the specified register or -1 if it is not found. If isDead is true, defs 1106 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1107 /// also checks if there is a def of a super-register. 1108 int MachineInstr::findRegisterDefOperandIdx(Register Reg, 1109 const TargetRegisterInfo *TRI, 1110 bool isDead, bool Overlap) const { 1111 bool isPhys = Reg.isPhysical(); 1112 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1113 const MachineOperand &MO = getOperand(i); 1114 // Accept regmask operands when Overlap is set. 1115 // Ignore them when looking for a specific def operand (Overlap == false). 1116 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1117 return i; 1118 if (!MO.isReg() || !MO.isDef()) 1119 continue; 1120 Register MOReg = MO.getReg(); 1121 bool Found = (MOReg == Reg); 1122 if (!Found && TRI && isPhys && MOReg.isPhysical()) { 1123 if (Overlap) 1124 Found = TRI->regsOverlap(MOReg, Reg); 1125 else 1126 Found = TRI->isSubRegister(MOReg, Reg); 1127 } 1128 if (Found && (!isDead || MO.isDead())) 1129 return i; 1130 } 1131 return -1; 1132 } 1133 1134 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1135 /// operand list that is used to represent the predicate. It returns -1 if 1136 /// none is found. 1137 int MachineInstr::findFirstPredOperandIdx() const { 1138 // Don't call MCID.findFirstPredOperandIdx() because this variant 1139 // is sometimes called on an instruction that's not yet complete, and 1140 // so the number of operands is less than the MCID indicates. In 1141 // particular, the PTX target does this. 1142 const MCInstrDesc &MCID = getDesc(); 1143 if (MCID.isPredicable()) { 1144 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1145 if (MCID.operands()[i].isPredicate()) 1146 return i; 1147 } 1148 1149 return -1; 1150 } 1151 1152 // MachineOperand::TiedTo is 4 bits wide. 1153 const unsigned TiedMax = 15; 1154 1155 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1156 /// 1157 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1158 /// field. TiedTo can have these values: 1159 /// 1160 /// 0: Operand is not tied to anything. 1161 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1162 /// TiedMax: Tied to an operand >= TiedMax-1. 1163 /// 1164 /// The tied def must be one of the first TiedMax operands on a normal 1165 /// instruction. INLINEASM instructions allow more tied defs. 1166 /// 1167 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1168 MachineOperand &DefMO = getOperand(DefIdx); 1169 MachineOperand &UseMO = getOperand(UseIdx); 1170 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1171 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1172 assert(!DefMO.isTied() && "Def is already tied to another use"); 1173 assert(!UseMO.isTied() && "Use is already tied to another def"); 1174 1175 if (DefIdx < TiedMax) 1176 UseMO.TiedTo = DefIdx + 1; 1177 else { 1178 // Inline asm can use the group descriptors to find tied operands, 1179 // statepoint tied operands are trivial to match (1-1 reg def with reg use), 1180 // but on normal instruction, the tied def must be within the first TiedMax 1181 // operands. 1182 assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) && 1183 "DefIdx out of range"); 1184 UseMO.TiedTo = TiedMax; 1185 } 1186 1187 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1188 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1189 } 1190 1191 /// Given the index of a tied register operand, find the operand it is tied to. 1192 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1193 /// which must exist. 1194 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1195 const MachineOperand &MO = getOperand(OpIdx); 1196 assert(MO.isTied() && "Operand isn't tied"); 1197 1198 // Normally TiedTo is in range. 1199 if (MO.TiedTo < TiedMax) 1200 return MO.TiedTo - 1; 1201 1202 // Uses on normal instructions can be out of range. 1203 if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) { 1204 // Normal tied defs must be in the 0..TiedMax-1 range. 1205 if (MO.isUse()) 1206 return TiedMax - 1; 1207 // MO is a def. Search for the tied use. 1208 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1209 const MachineOperand &UseMO = getOperand(i); 1210 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1211 return i; 1212 } 1213 llvm_unreachable("Can't find tied use"); 1214 } 1215 1216 if (getOpcode() == TargetOpcode::STATEPOINT) { 1217 // In STATEPOINT defs correspond 1-1 to GC pointer operands passed 1218 // on registers. 1219 StatepointOpers SO(this); 1220 unsigned CurUseIdx = SO.getFirstGCPtrIdx(); 1221 assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied"); 1222 unsigned NumDefs = getNumDefs(); 1223 for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) { 1224 while (!getOperand(CurUseIdx).isReg()) 1225 CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx); 1226 if (OpIdx == CurDefIdx) 1227 return CurUseIdx; 1228 if (OpIdx == CurUseIdx) 1229 return CurDefIdx; 1230 CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx); 1231 } 1232 llvm_unreachable("Can't find tied use"); 1233 } 1234 1235 // Now deal with inline asm by parsing the operand group descriptor flags. 1236 // Find the beginning of each operand group. 1237 SmallVector<unsigned, 8> GroupIdx; 1238 unsigned OpIdxGroup = ~0u; 1239 unsigned NumOps; 1240 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1241 i += NumOps) { 1242 const MachineOperand &FlagMO = getOperand(i); 1243 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1244 unsigned CurGroup = GroupIdx.size(); 1245 GroupIdx.push_back(i); 1246 const InlineAsm::Flag F(FlagMO.getImm()); 1247 NumOps = 1 + F.getNumOperandRegisters(); 1248 // OpIdx belongs to this operand group. 1249 if (OpIdx > i && OpIdx < i + NumOps) 1250 OpIdxGroup = CurGroup; 1251 unsigned TiedGroup; 1252 if (!F.isUseOperandTiedToDef(TiedGroup)) 1253 continue; 1254 // Operands in this group are tied to operands in TiedGroup which must be 1255 // earlier. Find the number of operands between the two groups. 1256 unsigned Delta = i - GroupIdx[TiedGroup]; 1257 1258 // OpIdx is a use tied to TiedGroup. 1259 if (OpIdxGroup == CurGroup) 1260 return OpIdx - Delta; 1261 1262 // OpIdx is a def tied to this use group. 1263 if (OpIdxGroup == TiedGroup) 1264 return OpIdx + Delta; 1265 } 1266 llvm_unreachable("Invalid tied operand on inline asm"); 1267 } 1268 1269 /// clearKillInfo - Clears kill flags on all operands. 1270 /// 1271 void MachineInstr::clearKillInfo() { 1272 for (MachineOperand &MO : operands()) { 1273 if (MO.isReg() && MO.isUse()) 1274 MO.setIsKill(false); 1275 } 1276 } 1277 1278 void MachineInstr::substituteRegister(Register FromReg, Register ToReg, 1279 unsigned SubIdx, 1280 const TargetRegisterInfo &RegInfo) { 1281 if (ToReg.isPhysical()) { 1282 if (SubIdx) 1283 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1284 for (MachineOperand &MO : operands()) { 1285 if (!MO.isReg() || MO.getReg() != FromReg) 1286 continue; 1287 MO.substPhysReg(ToReg, RegInfo); 1288 } 1289 } else { 1290 for (MachineOperand &MO : operands()) { 1291 if (!MO.isReg() || MO.getReg() != FromReg) 1292 continue; 1293 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1294 } 1295 } 1296 } 1297 1298 /// isSafeToMove - Return true if it is safe to move this instruction. If 1299 /// SawStore is set to true, it means that there is a store (or call) between 1300 /// the instruction's location and its intended destination. 1301 bool MachineInstr::isSafeToMove(bool &SawStore) const { 1302 // Ignore stuff that we obviously can't move. 1303 // 1304 // Treat volatile loads as stores. This is not strictly necessary for 1305 // volatiles, but it is required for atomic loads. It is not allowed to move 1306 // a load across an atomic load with Ordering > Monotonic. 1307 if (mayStore() || isCall() || isPHI() || 1308 (mayLoad() && hasOrderedMemoryRef())) { 1309 SawStore = true; 1310 return false; 1311 } 1312 1313 if (isPosition() || isDebugInstr() || isTerminator() || 1314 mayRaiseFPException() || hasUnmodeledSideEffects() || 1315 isJumpTableDebugInfo()) 1316 return false; 1317 1318 // See if this instruction does a load. If so, we have to guarantee that the 1319 // loaded value doesn't change between the load and the its intended 1320 // destination. The check for isInvariantLoad gives the target the chance to 1321 // classify the load as always returning a constant, e.g. a constant pool 1322 // load. 1323 if (mayLoad() && !isDereferenceableInvariantLoad()) 1324 // Otherwise, this is a real load. If there is a store between the load and 1325 // end of block, we can't move it. 1326 return !SawStore; 1327 1328 return true; 1329 } 1330 1331 bool MachineInstr::wouldBeTriviallyDead() const { 1332 // Don't delete frame allocation labels. 1333 // FIXME: Why is LOCAL_ESCAPE not considered in MachineInstr::isLabel? 1334 if (getOpcode() == TargetOpcode::LOCAL_ESCAPE) 1335 return false; 1336 1337 // Don't delete FAKE_USE. 1338 // FIXME: Why is FAKE_USE not considered in MachineInstr::isPosition? 1339 if (isFakeUse()) 1340 return false; 1341 1342 // LIFETIME markers should be preserved. 1343 // FIXME: Why are LIFETIME markers not considered in MachineInstr::isPosition? 1344 if (isLifetimeMarker()) 1345 return false; 1346 1347 // If we can move an instruction, we can remove it. Otherwise, it has 1348 // a side-effect of some sort. 1349 bool SawStore = false; 1350 return isPHI() || isSafeToMove(SawStore); 1351 } 1352 1353 static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, AAResults *AA, 1354 bool UseTBAA, const MachineMemOperand *MMOa, 1355 const MachineMemOperand *MMOb) { 1356 // The following interface to AA is fashioned after DAGCombiner::isAlias and 1357 // operates with MachineMemOperand offset with some important assumptions: 1358 // - LLVM fundamentally assumes flat address spaces. 1359 // - MachineOperand offset can *only* result from legalization and cannot 1360 // affect queries other than the trivial case of overlap checking. 1361 // - These offsets never wrap and never step outside of allocated objects. 1362 // - There should never be any negative offsets here. 1363 // 1364 // FIXME: Modify API to hide this math from "user" 1365 // Even before we go to AA we can reason locally about some memory objects. It 1366 // can save compile time, and possibly catch some corner cases not currently 1367 // covered. 1368 1369 int64_t OffsetA = MMOa->getOffset(); 1370 int64_t OffsetB = MMOb->getOffset(); 1371 int64_t MinOffset = std::min(OffsetA, OffsetB); 1372 1373 LocationSize WidthA = MMOa->getSize(); 1374 LocationSize WidthB = MMOb->getSize(); 1375 bool KnownWidthA = WidthA.hasValue(); 1376 bool KnownWidthB = WidthB.hasValue(); 1377 bool BothMMONonScalable = !WidthA.isScalable() && !WidthB.isScalable(); 1378 1379 const Value *ValA = MMOa->getValue(); 1380 const Value *ValB = MMOb->getValue(); 1381 bool SameVal = (ValA && ValB && (ValA == ValB)); 1382 if (!SameVal) { 1383 const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); 1384 const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); 1385 if (PSVa && ValB && !PSVa->mayAlias(&MFI)) 1386 return false; 1387 if (PSVb && ValA && !PSVb->mayAlias(&MFI)) 1388 return false; 1389 if (PSVa && PSVb && (PSVa == PSVb)) 1390 SameVal = true; 1391 } 1392 1393 if (SameVal && BothMMONonScalable) { 1394 if (!KnownWidthA || !KnownWidthB) 1395 return true; 1396 int64_t MaxOffset = std::max(OffsetA, OffsetB); 1397 int64_t LowWidth = (MinOffset == OffsetA) 1398 ? WidthA.getValue().getKnownMinValue() 1399 : WidthB.getValue().getKnownMinValue(); 1400 return (MinOffset + LowWidth > MaxOffset); 1401 } 1402 1403 if (!AA) 1404 return true; 1405 1406 if (!ValA || !ValB) 1407 return true; 1408 1409 assert((OffsetA >= 0) && "Negative MachineMemOperand offset"); 1410 assert((OffsetB >= 0) && "Negative MachineMemOperand offset"); 1411 1412 // If Scalable Location Size has non-zero offset, Width + Offset does not work 1413 // at the moment 1414 if ((WidthA.isScalable() && OffsetA > 0) || 1415 (WidthB.isScalable() && OffsetB > 0)) 1416 return true; 1417 1418 int64_t OverlapA = 1419 KnownWidthA ? WidthA.getValue().getKnownMinValue() + OffsetA - MinOffset 1420 : MemoryLocation::UnknownSize; 1421 int64_t OverlapB = 1422 KnownWidthB ? WidthB.getValue().getKnownMinValue() + OffsetB - MinOffset 1423 : MemoryLocation::UnknownSize; 1424 1425 LocationSize LocA = (WidthA.isScalable() || !KnownWidthA) 1426 ? WidthA 1427 : LocationSize::precise(OverlapA); 1428 LocationSize LocB = (WidthB.isScalable() || !KnownWidthB) 1429 ? WidthB 1430 : LocationSize::precise(OverlapB); 1431 1432 return !AA->isNoAlias( 1433 MemoryLocation(ValA, LocA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 1434 MemoryLocation(ValB, LocB, UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 1435 } 1436 1437 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other, 1438 bool UseTBAA) const { 1439 const MachineFunction *MF = getMF(); 1440 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1441 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1442 1443 // Exclude call instruction which may alter the memory but can not be handled 1444 // by this function. 1445 if (isCall() || Other.isCall()) 1446 return true; 1447 1448 // If neither instruction stores to memory, they can't alias in any 1449 // meaningful way, even if they read from the same address. 1450 if (!mayStore() && !Other.mayStore()) 1451 return false; 1452 1453 // Both instructions must be memory operations to be able to alias. 1454 if (!mayLoadOrStore() || !Other.mayLoadOrStore()) 1455 return false; 1456 1457 // Let the target decide if memory accesses cannot possibly overlap. 1458 if (TII->areMemAccessesTriviallyDisjoint(*this, Other)) 1459 return false; 1460 1461 // Memory operations without memory operands may access anything. Be 1462 // conservative and assume `MayAlias`. 1463 if (memoperands_empty() || Other.memoperands_empty()) 1464 return true; 1465 1466 // Skip if there are too many memory operands. 1467 auto NumChecks = getNumMemOperands() * Other.getNumMemOperands(); 1468 if (NumChecks > TII->getMemOperandAACheckLimit()) 1469 return true; 1470 1471 // Check each pair of memory operands from both instructions, which can't 1472 // alias only if all pairs won't alias. 1473 for (auto *MMOa : memoperands()) 1474 for (auto *MMOb : Other.memoperands()) 1475 if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb)) 1476 return true; 1477 1478 return false; 1479 } 1480 1481 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1482 /// or volatile memory reference, or if the information describing the memory 1483 /// reference is not available. Return false if it is known to have no ordered 1484 /// memory references. 1485 bool MachineInstr::hasOrderedMemoryRef() const { 1486 // An instruction known never to access memory won't have a volatile access. 1487 if (!mayStore() && 1488 !mayLoad() && 1489 !isCall() && 1490 !hasUnmodeledSideEffects()) 1491 return false; 1492 1493 // Otherwise, if the instruction has no memory reference information, 1494 // conservatively assume it wasn't preserved. 1495 if (memoperands_empty()) 1496 return true; 1497 1498 // Check if any of our memory operands are ordered. 1499 return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) { 1500 return !MMO->isUnordered(); 1501 }); 1502 } 1503 1504 /// isDereferenceableInvariantLoad - Return true if this instruction will never 1505 /// trap and is loading from a location whose value is invariant across a run of 1506 /// this function. 1507 bool MachineInstr::isDereferenceableInvariantLoad() const { 1508 // If the instruction doesn't load at all, it isn't an invariant load. 1509 if (!mayLoad()) 1510 return false; 1511 1512 // If the instruction has lost its memoperands, conservatively assume that 1513 // it may not be an invariant load. 1514 if (memoperands_empty()) 1515 return false; 1516 1517 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); 1518 1519 for (MachineMemOperand *MMO : memoperands()) { 1520 if (!MMO->isUnordered()) 1521 // If the memory operand has ordering side effects, we can't move the 1522 // instruction. Such an instruction is technically an invariant load, 1523 // but the caller code would need updated to expect that. 1524 return false; 1525 if (MMO->isStore()) return false; 1526 if (MMO->isInvariant() && MMO->isDereferenceable()) 1527 continue; 1528 1529 // A load from a constant PseudoSourceValue is invariant. 1530 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) { 1531 if (PSV->isConstant(&MFI)) 1532 continue; 1533 } 1534 1535 // Otherwise assume conservatively. 1536 return false; 1537 } 1538 1539 // Everything checks out. 1540 return true; 1541 } 1542 1543 Register MachineInstr::isConstantValuePHI() const { 1544 if (!isPHI()) 1545 return {}; 1546 assert(getNumOperands() >= 3 && 1547 "It's illegal to have a PHI without source operands"); 1548 1549 Register Reg = getOperand(1).getReg(); 1550 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1551 if (getOperand(i).getReg() != Reg) 1552 return {}; 1553 return Reg; 1554 } 1555 1556 bool MachineInstr::hasUnmodeledSideEffects() const { 1557 if (hasProperty(MCID::UnmodeledSideEffects)) 1558 return true; 1559 if (isInlineAsm()) { 1560 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1561 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1562 return true; 1563 } 1564 1565 return false; 1566 } 1567 1568 bool MachineInstr::isLoadFoldBarrier() const { 1569 return mayStore() || isCall() || 1570 (hasUnmodeledSideEffects() && !isPseudoProbe()); 1571 } 1572 1573 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1574 /// 1575 bool MachineInstr::allDefsAreDead() const { 1576 for (const MachineOperand &MO : operands()) { 1577 if (!MO.isReg() || MO.isUse()) 1578 continue; 1579 if (!MO.isDead()) 1580 return false; 1581 } 1582 return true; 1583 } 1584 1585 bool MachineInstr::allImplicitDefsAreDead() const { 1586 for (const MachineOperand &MO : implicit_operands()) { 1587 if (!MO.isReg() || MO.isUse()) 1588 continue; 1589 if (!MO.isDead()) 1590 return false; 1591 } 1592 return true; 1593 } 1594 1595 /// copyImplicitOps - Copy implicit register operands from specified 1596 /// instruction to this instruction. 1597 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1598 const MachineInstr &MI) { 1599 for (const MachineOperand &MO : 1600 llvm::drop_begin(MI.operands(), MI.getDesc().getNumOperands())) 1601 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1602 addOperand(MF, MO); 1603 } 1604 1605 bool MachineInstr::hasComplexRegisterTies() const { 1606 const MCInstrDesc &MCID = getDesc(); 1607 if (MCID.Opcode == TargetOpcode::STATEPOINT) 1608 return true; 1609 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 1610 const auto &Operand = getOperand(I); 1611 if (!Operand.isReg() || Operand.isDef()) 1612 // Ignore the defined registers as MCID marks only the uses as tied. 1613 continue; 1614 int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO); 1615 int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1; 1616 if (ExpectedTiedIdx != TiedIdx) 1617 return true; 1618 } 1619 return false; 1620 } 1621 1622 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, 1623 const MachineRegisterInfo &MRI) const { 1624 const MachineOperand &Op = getOperand(OpIdx); 1625 if (!Op.isReg()) 1626 return LLT{}; 1627 1628 if (isVariadic() || OpIdx >= getNumExplicitOperands()) 1629 return MRI.getType(Op.getReg()); 1630 1631 auto &OpInfo = getDesc().operands()[OpIdx]; 1632 if (!OpInfo.isGenericType()) 1633 return MRI.getType(Op.getReg()); 1634 1635 if (PrintedTypes[OpInfo.getGenericTypeIndex()]) 1636 return LLT{}; 1637 1638 LLT TypeToPrint = MRI.getType(Op.getReg()); 1639 // Don't mark the type index printed if it wasn't actually printed: maybe 1640 // another operand with the same type index has an actual type attached: 1641 if (TypeToPrint.isValid()) 1642 PrintedTypes.set(OpInfo.getGenericTypeIndex()); 1643 return TypeToPrint; 1644 } 1645 1646 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1647 LLVM_DUMP_METHOD void MachineInstr::dump() const { 1648 dbgs() << " "; 1649 print(dbgs()); 1650 } 1651 1652 LLVM_DUMP_METHOD void MachineInstr::dumprImpl( 1653 const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth, 1654 SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const { 1655 if (Depth >= MaxDepth) 1656 return; 1657 if (!AlreadySeenInstrs.insert(this).second) 1658 return; 1659 // PadToColumn always inserts at least one space. 1660 // Don't mess up the alignment if we don't want any space. 1661 if (Depth) 1662 fdbgs().PadToColumn(Depth * 2); 1663 print(fdbgs()); 1664 for (const MachineOperand &MO : operands()) { 1665 if (!MO.isReg() || MO.isDef()) 1666 continue; 1667 Register Reg = MO.getReg(); 1668 if (Reg.isPhysical()) 1669 continue; 1670 const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg); 1671 if (NewMI == nullptr) 1672 continue; 1673 NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs); 1674 } 1675 } 1676 1677 LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI, 1678 unsigned MaxDepth) const { 1679 SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs; 1680 dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs); 1681 } 1682 #endif 1683 1684 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers, 1685 bool SkipDebugLoc, bool AddNewLine, 1686 const TargetInstrInfo *TII) const { 1687 const Module *M = nullptr; 1688 const Function *F = nullptr; 1689 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1690 F = &MF->getFunction(); 1691 M = F->getParent(); 1692 if (!TII) 1693 TII = MF->getSubtarget().getInstrInfo(); 1694 } 1695 1696 ModuleSlotTracker MST(M); 1697 if (F) 1698 MST.incorporateFunction(*F); 1699 print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII); 1700 } 1701 1702 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1703 bool IsStandalone, bool SkipOpers, bool SkipDebugLoc, 1704 bool AddNewLine, const TargetInstrInfo *TII) const { 1705 // We can be a bit tidier if we know the MachineFunction. 1706 const TargetRegisterInfo *TRI = nullptr; 1707 const MachineRegisterInfo *MRI = nullptr; 1708 const TargetIntrinsicInfo *IntrinsicInfo = nullptr; 1709 tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII); 1710 1711 if (isCFIInstruction()) 1712 assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction"); 1713 1714 SmallBitVector PrintedTypes(8); 1715 bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies(); 1716 auto getTiedOperandIdx = [&](unsigned OpIdx) { 1717 if (!ShouldPrintRegisterTies) 1718 return 0U; 1719 const MachineOperand &MO = getOperand(OpIdx); 1720 if (MO.isReg() && MO.isTied() && !MO.isDef()) 1721 return findTiedOperandIdx(OpIdx); 1722 return 0U; 1723 }; 1724 unsigned StartOp = 0; 1725 unsigned e = getNumOperands(); 1726 1727 // Print explicitly defined operands on the left of an assignment syntax. 1728 while (StartOp < e) { 1729 const MachineOperand &MO = getOperand(StartOp); 1730 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 1731 break; 1732 1733 if (StartOp != 0) 1734 OS << ", "; 1735 1736 LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{}; 1737 unsigned TiedOperandIdx = getTiedOperandIdx(StartOp); 1738 MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone, 1739 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1740 ++StartOp; 1741 } 1742 1743 if (StartOp != 0) 1744 OS << " = "; 1745 1746 if (getFlag(MachineInstr::FrameSetup)) 1747 OS << "frame-setup "; 1748 if (getFlag(MachineInstr::FrameDestroy)) 1749 OS << "frame-destroy "; 1750 if (getFlag(MachineInstr::FmNoNans)) 1751 OS << "nnan "; 1752 if (getFlag(MachineInstr::FmNoInfs)) 1753 OS << "ninf "; 1754 if (getFlag(MachineInstr::FmNsz)) 1755 OS << "nsz "; 1756 if (getFlag(MachineInstr::FmArcp)) 1757 OS << "arcp "; 1758 if (getFlag(MachineInstr::FmContract)) 1759 OS << "contract "; 1760 if (getFlag(MachineInstr::FmAfn)) 1761 OS << "afn "; 1762 if (getFlag(MachineInstr::FmReassoc)) 1763 OS << "reassoc "; 1764 if (getFlag(MachineInstr::NoUWrap)) 1765 OS << "nuw "; 1766 if (getFlag(MachineInstr::NoSWrap)) 1767 OS << "nsw "; 1768 if (getFlag(MachineInstr::IsExact)) 1769 OS << "exact "; 1770 if (getFlag(MachineInstr::NoFPExcept)) 1771 OS << "nofpexcept "; 1772 if (getFlag(MachineInstr::NoMerge)) 1773 OS << "nomerge "; 1774 if (getFlag(MachineInstr::NonNeg)) 1775 OS << "nneg "; 1776 if (getFlag(MachineInstr::Disjoint)) 1777 OS << "disjoint "; 1778 if (getFlag(MachineInstr::SameSign)) 1779 OS << "samesign "; 1780 1781 // Print the opcode name. 1782 if (TII) 1783 OS << TII->getName(getOpcode()); 1784 else 1785 OS << "UNKNOWN"; 1786 1787 if (SkipOpers) 1788 return; 1789 1790 // Print the rest of the operands. 1791 bool FirstOp = true; 1792 unsigned AsmDescOp = ~0u; 1793 unsigned AsmOpCount = 0; 1794 1795 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1796 // Print asm string. 1797 OS << " "; 1798 const unsigned OpIdx = InlineAsm::MIOp_AsmString; 1799 LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{}; 1800 unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx); 1801 getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone, 1802 ShouldPrintRegisterTies, TiedOperandIdx, TRI, 1803 IntrinsicInfo); 1804 1805 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1806 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1807 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1808 OS << " [sideeffect]"; 1809 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1810 OS << " [mayload]"; 1811 if (ExtraInfo & InlineAsm::Extra_MayStore) 1812 OS << " [maystore]"; 1813 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 1814 OS << " [isconvergent]"; 1815 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1816 OS << " [alignstack]"; 1817 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1818 OS << " [attdialect]"; 1819 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1820 OS << " [inteldialect]"; 1821 1822 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1823 FirstOp = false; 1824 } 1825 1826 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1827 const MachineOperand &MO = getOperand(i); 1828 1829 if (FirstOp) FirstOp = false; else OS << ","; 1830 OS << " "; 1831 1832 if (isDebugValueLike() && MO.isMetadata()) { 1833 // Pretty print DBG_VALUE* instructions. 1834 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1835 if (DIV && !DIV->getName().empty()) 1836 OS << "!\"" << DIV->getName() << '\"'; 1837 else { 1838 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1839 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1840 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1841 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1842 } 1843 } else if (isDebugLabel() && MO.isMetadata()) { 1844 // Pretty print DBG_LABEL instructions. 1845 auto *DIL = dyn_cast<DILabel>(MO.getMetadata()); 1846 if (DIL && !DIL->getName().empty()) 1847 OS << "\"" << DIL->getName() << '\"'; 1848 else { 1849 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1850 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1851 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1852 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1853 } 1854 } else if (i == AsmDescOp && MO.isImm()) { 1855 // Pretty print the inline asm operand descriptor. 1856 OS << '$' << AsmOpCount++; 1857 unsigned Flag = MO.getImm(); 1858 const InlineAsm::Flag F(Flag); 1859 OS << ":["; 1860 OS << F.getKindName(); 1861 1862 unsigned RCID; 1863 if (!F.isImmKind() && !F.isMemKind() && F.hasRegClassConstraint(RCID)) { 1864 if (TRI) { 1865 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1866 } else 1867 OS << ":RC" << RCID; 1868 } 1869 1870 if (F.isMemKind()) { 1871 const InlineAsm::ConstraintCode MCID = F.getMemoryConstraintID(); 1872 OS << ":" << InlineAsm::getMemConstraintName(MCID); 1873 } 1874 1875 unsigned TiedTo; 1876 if (F.isUseOperandTiedToDef(TiedTo)) 1877 OS << " tiedto:$" << TiedTo; 1878 1879 if ((F.isRegDefKind() || F.isRegDefEarlyClobberKind() || 1880 F.isRegUseKind()) && 1881 F.getRegMayBeFolded()) { 1882 OS << " foldable"; 1883 } 1884 1885 OS << ']'; 1886 1887 // Compute the index of the next operand descriptor. 1888 AsmDescOp += 1 + F.getNumOperandRegisters(); 1889 } else { 1890 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1891 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1892 if (MO.isImm() && isOperandSubregIdx(i)) 1893 MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI); 1894 else 1895 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1896 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1897 } 1898 } 1899 1900 // Print any optional symbols attached to this instruction as-if they were 1901 // operands. 1902 if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) { 1903 if (!FirstOp) { 1904 FirstOp = false; 1905 OS << ','; 1906 } 1907 OS << " pre-instr-symbol "; 1908 MachineOperand::printSymbol(OS, *PreInstrSymbol); 1909 } 1910 if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) { 1911 if (!FirstOp) { 1912 FirstOp = false; 1913 OS << ','; 1914 } 1915 OS << " post-instr-symbol "; 1916 MachineOperand::printSymbol(OS, *PostInstrSymbol); 1917 } 1918 if (MDNode *HeapAllocMarker = getHeapAllocMarker()) { 1919 if (!FirstOp) { 1920 FirstOp = false; 1921 OS << ','; 1922 } 1923 OS << " heap-alloc-marker "; 1924 HeapAllocMarker->printAsOperand(OS, MST); 1925 } 1926 if (MDNode *PCSections = getPCSections()) { 1927 if (!FirstOp) { 1928 FirstOp = false; 1929 OS << ','; 1930 } 1931 OS << " pcsections "; 1932 PCSections->printAsOperand(OS, MST); 1933 } 1934 if (MDNode *MMRA = getMMRAMetadata()) { 1935 if (!FirstOp) { 1936 FirstOp = false; 1937 OS << ','; 1938 } 1939 OS << " mmra "; 1940 MMRA->printAsOperand(OS, MST); 1941 } 1942 if (uint32_t CFIType = getCFIType()) { 1943 if (!FirstOp) 1944 OS << ','; 1945 OS << " cfi-type " << CFIType; 1946 } 1947 1948 if (DebugInstrNum) { 1949 if (!FirstOp) 1950 OS << ","; 1951 OS << " debug-instr-number " << DebugInstrNum; 1952 } 1953 1954 if (!SkipDebugLoc) { 1955 if (const DebugLoc &DL = getDebugLoc()) { 1956 if (!FirstOp) 1957 OS << ','; 1958 OS << " debug-location "; 1959 DL->printAsOperand(OS, MST); 1960 } 1961 } 1962 1963 if (!memoperands_empty()) { 1964 SmallVector<StringRef, 0> SSNs; 1965 const LLVMContext *Context = nullptr; 1966 std::unique_ptr<LLVMContext> CtxPtr; 1967 const MachineFrameInfo *MFI = nullptr; 1968 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1969 MFI = &MF->getFrameInfo(); 1970 Context = &MF->getFunction().getContext(); 1971 } else { 1972 CtxPtr = std::make_unique<LLVMContext>(); 1973 Context = CtxPtr.get(); 1974 } 1975 1976 OS << " :: "; 1977 bool NeedComma = false; 1978 for (const MachineMemOperand *Op : memoperands()) { 1979 if (NeedComma) 1980 OS << ", "; 1981 Op->print(OS, MST, SSNs, *Context, MFI, TII); 1982 NeedComma = true; 1983 } 1984 } 1985 1986 if (SkipDebugLoc) 1987 return; 1988 1989 bool HaveSemi = false; 1990 1991 // Print debug location information. 1992 if (const DebugLoc &DL = getDebugLoc()) { 1993 if (!HaveSemi) { 1994 OS << ';'; 1995 HaveSemi = true; 1996 } 1997 OS << ' '; 1998 DL.print(OS); 1999 } 2000 2001 // Print extra comments for DEBUG_VALUE and friends if they are well-formed. 2002 if ((isNonListDebugValue() && getNumOperands() >= 4) || 2003 (isDebugValueList() && getNumOperands() >= 2) || 2004 (isDebugRef() && getNumOperands() >= 3)) { 2005 if (getDebugVariableOp().isMetadata()) { 2006 if (!HaveSemi) { 2007 OS << ";"; 2008 HaveSemi = true; 2009 } 2010 auto *DV = getDebugVariable(); 2011 OS << " line no:" << DV->getLine(); 2012 if (isIndirectDebugValue()) 2013 OS << " indirect"; 2014 } 2015 } 2016 // TODO: DBG_LABEL 2017 2018 if (AddNewLine) 2019 OS << '\n'; 2020 } 2021 2022 bool MachineInstr::addRegisterKilled(Register IncomingReg, 2023 const TargetRegisterInfo *RegInfo, 2024 bool AddIfNotFound) { 2025 bool isPhysReg = IncomingReg.isPhysical(); 2026 bool hasAliases = isPhysReg && 2027 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 2028 bool Found = false; 2029 SmallVector<unsigned,4> DeadOps; 2030 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 2031 MachineOperand &MO = getOperand(i); 2032 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 2033 continue; 2034 2035 // DEBUG_VALUE nodes do not contribute to code generation and should 2036 // always be ignored. Failure to do so may result in trying to modify 2037 // KILL flags on DEBUG_VALUE nodes. 2038 if (MO.isDebug()) 2039 continue; 2040 2041 Register Reg = MO.getReg(); 2042 if (!Reg) 2043 continue; 2044 2045 if (Reg == IncomingReg) { 2046 if (!Found) { 2047 if (MO.isKill()) 2048 // The register is already marked kill. 2049 return true; 2050 if (isPhysReg && isRegTiedToDefOperand(i)) 2051 // Two-address uses of physregs must not be marked kill. 2052 return true; 2053 MO.setIsKill(); 2054 Found = true; 2055 } 2056 } else if (hasAliases && MO.isKill() && Reg.isPhysical()) { 2057 // A super-register kill already exists. 2058 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 2059 return true; 2060 if (RegInfo->isSubRegister(IncomingReg, Reg)) 2061 DeadOps.push_back(i); 2062 } 2063 } 2064 2065 // Trim unneeded kill operands. 2066 while (!DeadOps.empty()) { 2067 unsigned OpIdx = DeadOps.back(); 2068 if (getOperand(OpIdx).isImplicit() && 2069 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 2070 removeOperand(OpIdx); 2071 else 2072 getOperand(OpIdx).setIsKill(false); 2073 DeadOps.pop_back(); 2074 } 2075 2076 // If not found, this means an alias of one of the operands is killed. Add a 2077 // new implicit operand if required. 2078 if (!Found && AddIfNotFound) { 2079 addOperand(MachineOperand::CreateReg(IncomingReg, 2080 false /*IsDef*/, 2081 true /*IsImp*/, 2082 true /*IsKill*/)); 2083 return true; 2084 } 2085 return Found; 2086 } 2087 2088 void MachineInstr::clearRegisterKills(Register Reg, 2089 const TargetRegisterInfo *RegInfo) { 2090 if (!Reg.isPhysical()) 2091 RegInfo = nullptr; 2092 for (MachineOperand &MO : operands()) { 2093 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 2094 continue; 2095 Register OpReg = MO.getReg(); 2096 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) 2097 MO.setIsKill(false); 2098 } 2099 } 2100 2101 bool MachineInstr::addRegisterDead(Register Reg, 2102 const TargetRegisterInfo *RegInfo, 2103 bool AddIfNotFound) { 2104 bool isPhysReg = Reg.isPhysical(); 2105 bool hasAliases = isPhysReg && 2106 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 2107 bool Found = false; 2108 SmallVector<unsigned,4> DeadOps; 2109 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 2110 MachineOperand &MO = getOperand(i); 2111 if (!MO.isReg() || !MO.isDef()) 2112 continue; 2113 Register MOReg = MO.getReg(); 2114 if (!MOReg) 2115 continue; 2116 2117 if (MOReg == Reg) { 2118 MO.setIsDead(); 2119 Found = true; 2120 } else if (hasAliases && MO.isDead() && MOReg.isPhysical()) { 2121 // There exists a super-register that's marked dead. 2122 if (RegInfo->isSuperRegister(Reg, MOReg)) 2123 return true; 2124 if (RegInfo->isSubRegister(Reg, MOReg)) 2125 DeadOps.push_back(i); 2126 } 2127 } 2128 2129 // Trim unneeded dead operands. 2130 while (!DeadOps.empty()) { 2131 unsigned OpIdx = DeadOps.back(); 2132 if (getOperand(OpIdx).isImplicit() && 2133 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 2134 removeOperand(OpIdx); 2135 else 2136 getOperand(OpIdx).setIsDead(false); 2137 DeadOps.pop_back(); 2138 } 2139 2140 // If not found, this means an alias of one of the operands is dead. Add a 2141 // new implicit operand if required. 2142 if (Found || !AddIfNotFound) 2143 return Found; 2144 2145 addOperand(MachineOperand::CreateReg(Reg, 2146 true /*IsDef*/, 2147 true /*IsImp*/, 2148 false /*IsKill*/, 2149 true /*IsDead*/)); 2150 return true; 2151 } 2152 2153 void MachineInstr::clearRegisterDeads(Register Reg) { 2154 for (MachineOperand &MO : all_defs()) 2155 if (MO.getReg() == Reg) 2156 MO.setIsDead(false); 2157 } 2158 2159 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) { 2160 for (MachineOperand &MO : all_defs()) 2161 if (MO.getReg() == Reg && MO.getSubReg() != 0) 2162 MO.setIsUndef(IsUndef); 2163 } 2164 2165 void MachineInstr::addRegisterDefined(Register Reg, 2166 const TargetRegisterInfo *RegInfo) { 2167 if (Reg.isPhysical()) { 2168 MachineOperand *MO = findRegisterDefOperand(Reg, RegInfo, false, false); 2169 if (MO) 2170 return; 2171 } else { 2172 for (const MachineOperand &MO : all_defs()) { 2173 if (MO.getReg() == Reg && MO.getSubReg() == 0) 2174 return; 2175 } 2176 } 2177 addOperand(MachineOperand::CreateReg(Reg, 2178 true /*IsDef*/, 2179 true /*IsImp*/)); 2180 } 2181 2182 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs, 2183 const TargetRegisterInfo &TRI) { 2184 bool HasRegMask = false; 2185 for (MachineOperand &MO : operands()) { 2186 if (MO.isRegMask()) { 2187 HasRegMask = true; 2188 continue; 2189 } 2190 if (!MO.isReg() || !MO.isDef()) continue; 2191 Register Reg = MO.getReg(); 2192 if (!Reg.isPhysical()) 2193 continue; 2194 // If there are no uses, including partial uses, the def is dead. 2195 if (llvm::none_of(UsedRegs, 2196 [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); })) 2197 MO.setIsDead(); 2198 } 2199 2200 // This is a call with a register mask operand. 2201 // Mask clobbers are always dead, so add defs for the non-dead defines. 2202 if (HasRegMask) 2203 for (const Register &UsedReg : UsedRegs) 2204 addRegisterDefined(UsedReg, &TRI); 2205 } 2206 2207 unsigned 2208 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 2209 // Build up a buffer of hash code components. 2210 SmallVector<size_t, 16> HashComponents; 2211 HashComponents.reserve(MI->getNumOperands() + 1); 2212 HashComponents.push_back(MI->getOpcode()); 2213 for (const MachineOperand &MO : MI->operands()) { 2214 if (MO.isReg() && MO.isDef() && MO.getReg().isVirtual()) 2215 continue; // Skip virtual register defs. 2216 2217 HashComponents.push_back(hash_value(MO)); 2218 } 2219 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 2220 } 2221 2222 void MachineInstr::emitError(StringRef Msg) const { 2223 // Find the source location cookie. 2224 uint64_t LocCookie = 0; 2225 const MDNode *LocMD = nullptr; 2226 for (unsigned i = getNumOperands(); i != 0; --i) { 2227 if (getOperand(i-1).isMetadata() && 2228 (LocMD = getOperand(i-1).getMetadata()) && 2229 LocMD->getNumOperands() != 0) { 2230 if (const ConstantInt *CI = 2231 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 2232 LocCookie = CI->getZExtValue(); 2233 break; 2234 } 2235 } 2236 } 2237 2238 if (const MachineBasicBlock *MBB = getParent()) 2239 if (const MachineFunction *MF = MBB->getParent()) 2240 return MF->getFunction().getContext().emitError(LocCookie, Msg); 2241 report_fatal_error(Msg); 2242 } 2243 2244 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2245 const MCInstrDesc &MCID, bool IsIndirect, 2246 Register Reg, const MDNode *Variable, 2247 const MDNode *Expr) { 2248 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2249 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2250 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2251 "Expected inlined-at fields to agree"); 2252 auto MIB = BuildMI(MF, DL, MCID).addReg(Reg); 2253 if (IsIndirect) 2254 MIB.addImm(0U); 2255 else 2256 MIB.addReg(0U); 2257 return MIB.addMetadata(Variable).addMetadata(Expr); 2258 } 2259 2260 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2261 const MCInstrDesc &MCID, bool IsIndirect, 2262 ArrayRef<MachineOperand> DebugOps, 2263 const MDNode *Variable, const MDNode *Expr) { 2264 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2265 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2266 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2267 "Expected inlined-at fields to agree"); 2268 if (MCID.Opcode == TargetOpcode::DBG_VALUE) { 2269 assert(DebugOps.size() == 1 && 2270 "DBG_VALUE must contain exactly one debug operand"); 2271 MachineOperand DebugOp = DebugOps[0]; 2272 if (DebugOp.isReg()) 2273 return BuildMI(MF, DL, MCID, IsIndirect, DebugOp.getReg(), Variable, 2274 Expr); 2275 2276 auto MIB = BuildMI(MF, DL, MCID).add(DebugOp); 2277 if (IsIndirect) 2278 MIB.addImm(0U); 2279 else 2280 MIB.addReg(0U); 2281 return MIB.addMetadata(Variable).addMetadata(Expr); 2282 } 2283 2284 auto MIB = BuildMI(MF, DL, MCID); 2285 MIB.addMetadata(Variable).addMetadata(Expr); 2286 for (const MachineOperand &DebugOp : DebugOps) 2287 if (DebugOp.isReg()) 2288 MIB.addReg(DebugOp.getReg()); 2289 else 2290 MIB.add(DebugOp); 2291 return MIB; 2292 } 2293 2294 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2295 MachineBasicBlock::iterator I, 2296 const DebugLoc &DL, const MCInstrDesc &MCID, 2297 bool IsIndirect, Register Reg, 2298 const MDNode *Variable, const MDNode *Expr) { 2299 MachineFunction &MF = *BB.getParent(); 2300 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr); 2301 BB.insert(I, MI); 2302 return MachineInstrBuilder(MF, MI); 2303 } 2304 2305 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2306 MachineBasicBlock::iterator I, 2307 const DebugLoc &DL, const MCInstrDesc &MCID, 2308 bool IsIndirect, 2309 ArrayRef<MachineOperand> DebugOps, 2310 const MDNode *Variable, const MDNode *Expr) { 2311 MachineFunction &MF = *BB.getParent(); 2312 MachineInstr *MI = 2313 BuildMI(MF, DL, MCID, IsIndirect, DebugOps, Variable, Expr); 2314 BB.insert(I, MI); 2315 return MachineInstrBuilder(MF, *MI); 2316 } 2317 2318 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot. 2319 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE. 2320 static const DIExpression *computeExprForSpill( 2321 const MachineInstr &MI, 2322 const SmallVectorImpl<const MachineOperand *> &SpilledOperands) { 2323 assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) && 2324 "Expected inlined-at fields to agree"); 2325 2326 const DIExpression *Expr = MI.getDebugExpression(); 2327 if (MI.isIndirectDebugValue()) { 2328 assert(MI.getDebugOffset().getImm() == 0 && 2329 "DBG_VALUE with nonzero offset"); 2330 Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore); 2331 } else if (MI.isDebugValueList()) { 2332 // We will replace the spilled register with a frame index, so 2333 // immediately deref all references to the spilled register. 2334 std::array<uint64_t, 1> Ops{{dwarf::DW_OP_deref}}; 2335 for (const MachineOperand *Op : SpilledOperands) { 2336 unsigned OpIdx = MI.getDebugOperandIndex(Op); 2337 Expr = DIExpression::appendOpsToArg(Expr, Ops, OpIdx); 2338 } 2339 } 2340 return Expr; 2341 } 2342 static const DIExpression *computeExprForSpill(const MachineInstr &MI, 2343 Register SpillReg) { 2344 assert(MI.hasDebugOperandForReg(SpillReg) && "Spill Reg is not used in MI."); 2345 SmallVector<const MachineOperand *> SpillOperands; 2346 for (const MachineOperand &Op : MI.getDebugOperandsForReg(SpillReg)) 2347 SpillOperands.push_back(&Op); 2348 return computeExprForSpill(MI, SpillOperands); 2349 } 2350 2351 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB, 2352 MachineBasicBlock::iterator I, 2353 const MachineInstr &Orig, 2354 int FrameIndex, Register SpillReg) { 2355 assert(!Orig.isDebugRef() && 2356 "DBG_INSTR_REF should not reference a virtual register."); 2357 const DIExpression *Expr = computeExprForSpill(Orig, SpillReg); 2358 MachineInstrBuilder NewMI = 2359 BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()); 2360 // Non-Variadic Operands: Location, Offset, Variable, Expression 2361 // Variadic Operands: Variable, Expression, Locations... 2362 if (Orig.isNonListDebugValue()) 2363 NewMI.addFrameIndex(FrameIndex).addImm(0U); 2364 NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr); 2365 if (Orig.isDebugValueList()) { 2366 for (const MachineOperand &Op : Orig.debug_operands()) 2367 if (Op.isReg() && Op.getReg() == SpillReg) 2368 NewMI.addFrameIndex(FrameIndex); 2369 else 2370 NewMI.add(MachineOperand(Op)); 2371 } 2372 return NewMI; 2373 } 2374 MachineInstr *llvm::buildDbgValueForSpill( 2375 MachineBasicBlock &BB, MachineBasicBlock::iterator I, 2376 const MachineInstr &Orig, int FrameIndex, 2377 const SmallVectorImpl<const MachineOperand *> &SpilledOperands) { 2378 const DIExpression *Expr = computeExprForSpill(Orig, SpilledOperands); 2379 MachineInstrBuilder NewMI = 2380 BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()); 2381 // Non-Variadic Operands: Location, Offset, Variable, Expression 2382 // Variadic Operands: Variable, Expression, Locations... 2383 if (Orig.isNonListDebugValue()) 2384 NewMI.addFrameIndex(FrameIndex).addImm(0U); 2385 NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr); 2386 if (Orig.isDebugValueList()) { 2387 for (const MachineOperand &Op : Orig.debug_operands()) 2388 if (is_contained(SpilledOperands, &Op)) 2389 NewMI.addFrameIndex(FrameIndex); 2390 else 2391 NewMI.add(MachineOperand(Op)); 2392 } 2393 return NewMI; 2394 } 2395 2396 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex, 2397 Register Reg) { 2398 const DIExpression *Expr = computeExprForSpill(Orig, Reg); 2399 if (Orig.isNonListDebugValue()) 2400 Orig.getDebugOffset().ChangeToImmediate(0U); 2401 for (MachineOperand &Op : Orig.getDebugOperandsForReg(Reg)) 2402 Op.ChangeToFrameIndex(FrameIndex); 2403 Orig.getDebugExpressionOp().setMetadata(Expr); 2404 } 2405 2406 void MachineInstr::collectDebugValues( 2407 SmallVectorImpl<MachineInstr *> &DbgValues) { 2408 MachineInstr &MI = *this; 2409 if (!MI.getOperand(0).isReg()) 2410 return; 2411 2412 MachineBasicBlock::iterator DI = MI; ++DI; 2413 for (MachineBasicBlock::iterator DE = MI.getParent()->end(); 2414 DI != DE; ++DI) { 2415 if (!DI->isDebugValue()) 2416 return; 2417 if (DI->hasDebugOperandForReg(MI.getOperand(0).getReg())) 2418 DbgValues.push_back(&*DI); 2419 } 2420 } 2421 2422 void MachineInstr::changeDebugValuesDefReg(Register Reg) { 2423 // Collect matching debug values. 2424 SmallVector<MachineInstr *, 2> DbgValues; 2425 2426 if (!getOperand(0).isReg()) 2427 return; 2428 2429 Register DefReg = getOperand(0).getReg(); 2430 auto *MRI = getRegInfo(); 2431 for (auto &MO : MRI->use_operands(DefReg)) { 2432 auto *DI = MO.getParent(); 2433 if (!DI->isDebugValue()) 2434 continue; 2435 if (DI->hasDebugOperandForReg(DefReg)) { 2436 DbgValues.push_back(DI); 2437 } 2438 } 2439 2440 // Propagate Reg to debug value instructions. 2441 for (auto *DBI : DbgValues) 2442 for (MachineOperand &Op : DBI->getDebugOperandsForReg(DefReg)) 2443 Op.setReg(Reg); 2444 } 2445 2446 using MMOList = SmallVector<const MachineMemOperand *, 2>; 2447 2448 static LocationSize getSpillSlotSize(const MMOList &Accesses, 2449 const MachineFrameInfo &MFI) { 2450 uint64_t Size = 0; 2451 for (const auto *A : Accesses) { 2452 if (MFI.isSpillSlotObjectIndex( 2453 cast<FixedStackPseudoSourceValue>(A->getPseudoValue()) 2454 ->getFrameIndex())) { 2455 LocationSize S = A->getSize(); 2456 if (!S.hasValue()) 2457 return LocationSize::beforeOrAfterPointer(); 2458 Size += S.getValue(); 2459 } 2460 } 2461 return Size; 2462 } 2463 2464 std::optional<LocationSize> 2465 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const { 2466 int FI; 2467 if (TII->isStoreToStackSlotPostFE(*this, FI)) { 2468 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2469 if (MFI.isSpillSlotObjectIndex(FI)) 2470 return (*memoperands_begin())->getSize(); 2471 } 2472 return std::nullopt; 2473 } 2474 2475 std::optional<LocationSize> 2476 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const { 2477 MMOList Accesses; 2478 if (TII->hasStoreToStackSlot(*this, Accesses)) 2479 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2480 return std::nullopt; 2481 } 2482 2483 std::optional<LocationSize> 2484 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const { 2485 int FI; 2486 if (TII->isLoadFromStackSlotPostFE(*this, FI)) { 2487 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2488 if (MFI.isSpillSlotObjectIndex(FI)) 2489 return (*memoperands_begin())->getSize(); 2490 } 2491 return std::nullopt; 2492 } 2493 2494 std::optional<LocationSize> 2495 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const { 2496 MMOList Accesses; 2497 if (TII->hasLoadFromStackSlot(*this, Accesses)) 2498 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2499 return std::nullopt; 2500 } 2501 2502 unsigned MachineInstr::getDebugInstrNum() { 2503 if (DebugInstrNum == 0) 2504 DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum(); 2505 return DebugInstrNum; 2506 } 2507 2508 unsigned MachineInstr::getDebugInstrNum(MachineFunction &MF) { 2509 if (DebugInstrNum == 0) 2510 DebugInstrNum = MF.getNewDebugInstrNum(); 2511 return DebugInstrNum; 2512 } 2513 2514 std::tuple<LLT, LLT> MachineInstr::getFirst2LLTs() const { 2515 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()), 2516 getRegInfo()->getType(getOperand(1).getReg())); 2517 } 2518 2519 std::tuple<LLT, LLT, LLT> MachineInstr::getFirst3LLTs() const { 2520 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()), 2521 getRegInfo()->getType(getOperand(1).getReg()), 2522 getRegInfo()->getType(getOperand(2).getReg())); 2523 } 2524 2525 std::tuple<LLT, LLT, LLT, LLT> MachineInstr::getFirst4LLTs() const { 2526 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()), 2527 getRegInfo()->getType(getOperand(1).getReg()), 2528 getRegInfo()->getType(getOperand(2).getReg()), 2529 getRegInfo()->getType(getOperand(3).getReg())); 2530 } 2531 2532 std::tuple<LLT, LLT, LLT, LLT, LLT> MachineInstr::getFirst5LLTs() const { 2533 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()), 2534 getRegInfo()->getType(getOperand(1).getReg()), 2535 getRegInfo()->getType(getOperand(2).getReg()), 2536 getRegInfo()->getType(getOperand(3).getReg()), 2537 getRegInfo()->getType(getOperand(4).getReg())); 2538 } 2539 2540 std::tuple<Register, LLT, Register, LLT> 2541 MachineInstr::getFirst2RegLLTs() const { 2542 Register Reg0 = getOperand(0).getReg(); 2543 Register Reg1 = getOperand(1).getReg(); 2544 return std::tuple(Reg0, getRegInfo()->getType(Reg0), Reg1, 2545 getRegInfo()->getType(Reg1)); 2546 } 2547 2548 std::tuple<Register, LLT, Register, LLT, Register, LLT> 2549 MachineInstr::getFirst3RegLLTs() const { 2550 Register Reg0 = getOperand(0).getReg(); 2551 Register Reg1 = getOperand(1).getReg(); 2552 Register Reg2 = getOperand(2).getReg(); 2553 return std::tuple(Reg0, getRegInfo()->getType(Reg0), Reg1, 2554 getRegInfo()->getType(Reg1), Reg2, 2555 getRegInfo()->getType(Reg2)); 2556 } 2557 2558 std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT> 2559 MachineInstr::getFirst4RegLLTs() const { 2560 Register Reg0 = getOperand(0).getReg(); 2561 Register Reg1 = getOperand(1).getReg(); 2562 Register Reg2 = getOperand(2).getReg(); 2563 Register Reg3 = getOperand(3).getReg(); 2564 return std::tuple( 2565 Reg0, getRegInfo()->getType(Reg0), Reg1, getRegInfo()->getType(Reg1), 2566 Reg2, getRegInfo()->getType(Reg2), Reg3, getRegInfo()->getType(Reg3)); 2567 } 2568 2569 std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT, Register, 2570 LLT> 2571 MachineInstr::getFirst5RegLLTs() const { 2572 Register Reg0 = getOperand(0).getReg(); 2573 Register Reg1 = getOperand(1).getReg(); 2574 Register Reg2 = getOperand(2).getReg(); 2575 Register Reg3 = getOperand(3).getReg(); 2576 Register Reg4 = getOperand(4).getReg(); 2577 return std::tuple( 2578 Reg0, getRegInfo()->getType(Reg0), Reg1, getRegInfo()->getType(Reg1), 2579 Reg2, getRegInfo()->getType(Reg2), Reg3, getRegInfo()->getType(Reg3), 2580 Reg4, getRegInfo()->getType(Reg4)); 2581 } 2582 2583 void MachineInstr::insert(mop_iterator InsertBefore, 2584 ArrayRef<MachineOperand> Ops) { 2585 assert(InsertBefore != nullptr && "invalid iterator"); 2586 assert(InsertBefore->getParent() == this && 2587 "iterator points to operand of other inst"); 2588 if (Ops.empty()) 2589 return; 2590 2591 // Do one pass to untie operands. 2592 SmallDenseMap<unsigned, unsigned> TiedOpIndices; 2593 for (const MachineOperand &MO : operands()) { 2594 if (MO.isReg() && MO.isTied()) { 2595 unsigned OpNo = getOperandNo(&MO); 2596 unsigned TiedTo = findTiedOperandIdx(OpNo); 2597 TiedOpIndices[OpNo] = TiedTo; 2598 untieRegOperand(OpNo); 2599 } 2600 } 2601 2602 unsigned OpIdx = getOperandNo(InsertBefore); 2603 unsigned NumOperands = getNumOperands(); 2604 unsigned OpsToMove = NumOperands - OpIdx; 2605 2606 SmallVector<MachineOperand> MovingOps; 2607 MovingOps.reserve(OpsToMove); 2608 2609 for (unsigned I = 0; I < OpsToMove; ++I) { 2610 MovingOps.emplace_back(getOperand(OpIdx)); 2611 removeOperand(OpIdx); 2612 } 2613 for (const MachineOperand &MO : Ops) 2614 addOperand(MO); 2615 for (const MachineOperand &OpMoved : MovingOps) 2616 addOperand(OpMoved); 2617 2618 // Re-tie operands. 2619 for (auto [Tie1, Tie2] : TiedOpIndices) { 2620 if (Tie1 >= OpIdx) 2621 Tie1 += Ops.size(); 2622 if (Tie2 >= OpIdx) 2623 Tie2 += Ops.size(); 2624 tieOperands(Tie1, Tie2); 2625 } 2626 } 2627 2628 bool MachineInstr::mayFoldInlineAsmRegOp(unsigned OpId) const { 2629 assert(OpId && "expected non-zero operand id"); 2630 assert(isInlineAsm() && "should only be used on inline asm"); 2631 2632 if (!getOperand(OpId).isReg()) 2633 return false; 2634 2635 const MachineOperand &MD = getOperand(OpId - 1); 2636 if (!MD.isImm()) 2637 return false; 2638 2639 InlineAsm::Flag F(MD.getImm()); 2640 if (F.isRegUseKind() || F.isRegDefKind() || F.isRegDefEarlyClobberKind()) 2641 return F.getRegMayBeFolded(); 2642 return false; 2643 } 2644