1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/Constants.h" 16 #include "llvm/Function.h" 17 #include "llvm/InlineAsm.h" 18 #include "llvm/Metadata.h" 19 #include "llvm/Type.h" 20 #include "llvm/Value.h" 21 #include "llvm/Assembly/Writer.h" 22 #include "llvm/CodeGen/MachineConstantPool.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/PseudoSourceValue.h" 27 #include "llvm/MC/MCSymbol.h" 28 #include "llvm/Target/TargetMachine.h" 29 #include "llvm/Target/TargetInstrInfo.h" 30 #include "llvm/Target/TargetInstrDesc.h" 31 #include "llvm/Target/TargetRegisterInfo.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/DebugInfo.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/LeakDetector.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/ADT/FoldingSet.h" 40 using namespace llvm; 41 42 //===----------------------------------------------------------------------===// 43 // MachineOperand Implementation 44 //===----------------------------------------------------------------------===// 45 46 /// AddRegOperandToRegInfo - Add this register operand to the specified 47 /// MachineRegisterInfo. If it is null, then the next/prev fields should be 48 /// explicitly nulled out. 49 void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) { 50 assert(isReg() && "Can only add reg operand to use lists"); 51 52 // If the reginfo pointer is null, just explicitly null out or next/prev 53 // pointers, to ensure they are not garbage. 54 if (RegInfo == 0) { 55 Contents.Reg.Prev = 0; 56 Contents.Reg.Next = 0; 57 return; 58 } 59 60 // Otherwise, add this operand to the head of the registers use/def list. 61 MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg()); 62 63 // For SSA values, we prefer to keep the definition at the start of the list. 64 // we do this by skipping over the definition if it is at the head of the 65 // list. 66 if (*Head && (*Head)->isDef()) 67 Head = &(*Head)->Contents.Reg.Next; 68 69 Contents.Reg.Next = *Head; 70 if (Contents.Reg.Next) { 71 assert(getReg() == Contents.Reg.Next->getReg() && 72 "Different regs on the same list!"); 73 Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next; 74 } 75 76 Contents.Reg.Prev = Head; 77 *Head = this; 78 } 79 80 /// RemoveRegOperandFromRegInfo - Remove this register operand from the 81 /// MachineRegisterInfo it is linked with. 82 void MachineOperand::RemoveRegOperandFromRegInfo() { 83 assert(isOnRegUseList() && "Reg operand is not on a use list"); 84 // Unlink this from the doubly linked list of operands. 85 MachineOperand *NextOp = Contents.Reg.Next; 86 *Contents.Reg.Prev = NextOp; 87 if (NextOp) { 88 assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!"); 89 NextOp->Contents.Reg.Prev = Contents.Reg.Prev; 90 } 91 Contents.Reg.Prev = 0; 92 Contents.Reg.Next = 0; 93 } 94 95 void MachineOperand::setReg(unsigned Reg) { 96 if (getReg() == Reg) return; // No change. 97 98 // Otherwise, we have to change the register. If this operand is embedded 99 // into a machine function, we need to update the old and new register's 100 // use/def lists. 101 if (MachineInstr *MI = getParent()) 102 if (MachineBasicBlock *MBB = MI->getParent()) 103 if (MachineFunction *MF = MBB->getParent()) { 104 RemoveRegOperandFromRegInfo(); 105 Contents.Reg.RegNo = Reg; 106 AddRegOperandToRegInfo(&MF->getRegInfo()); 107 return; 108 } 109 110 // Otherwise, just change the register, no problem. :) 111 Contents.Reg.RegNo = Reg; 112 } 113 114 /// ChangeToImmediate - Replace this operand with a new immediate operand of 115 /// the specified value. If an operand is known to be an immediate already, 116 /// the setImm method should be used. 117 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 118 // If this operand is currently a register operand, and if this is in a 119 // function, deregister the operand from the register's use/def list. 120 if (isReg() && getParent() && getParent()->getParent() && 121 getParent()->getParent()->getParent()) 122 RemoveRegOperandFromRegInfo(); 123 124 OpKind = MO_Immediate; 125 Contents.ImmVal = ImmVal; 126 } 127 128 /// ChangeToRegister - Replace this operand with a new register operand of 129 /// the specified value. If an operand is known to be an register already, 130 /// the setReg method should be used. 131 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 132 bool isKill, bool isDead, bool isUndef, 133 bool isDebug) { 134 // If this operand is already a register operand, use setReg to update the 135 // register's use/def lists. 136 if (isReg()) { 137 assert(!isEarlyClobber()); 138 setReg(Reg); 139 } else { 140 // Otherwise, change this to a register and set the reg#. 141 OpKind = MO_Register; 142 Contents.Reg.RegNo = Reg; 143 144 // If this operand is embedded in a function, add the operand to the 145 // register's use/def list. 146 if (MachineInstr *MI = getParent()) 147 if (MachineBasicBlock *MBB = MI->getParent()) 148 if (MachineFunction *MF = MBB->getParent()) 149 AddRegOperandToRegInfo(&MF->getRegInfo()); 150 } 151 152 IsDef = isDef; 153 IsImp = isImp; 154 IsKill = isKill; 155 IsDead = isDead; 156 IsUndef = isUndef; 157 IsEarlyClobber = false; 158 IsDebug = isDebug; 159 SubReg = 0; 160 } 161 162 /// isIdenticalTo - Return true if this operand is identical to the specified 163 /// operand. 164 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 165 if (getType() != Other.getType() || 166 getTargetFlags() != Other.getTargetFlags()) 167 return false; 168 169 switch (getType()) { 170 default: llvm_unreachable("Unrecognized operand type"); 171 case MachineOperand::MO_Register: 172 return getReg() == Other.getReg() && isDef() == Other.isDef() && 173 getSubReg() == Other.getSubReg(); 174 case MachineOperand::MO_Immediate: 175 return getImm() == Other.getImm(); 176 case MachineOperand::MO_FPImmediate: 177 return getFPImm() == Other.getFPImm(); 178 case MachineOperand::MO_MachineBasicBlock: 179 return getMBB() == Other.getMBB(); 180 case MachineOperand::MO_FrameIndex: 181 return getIndex() == Other.getIndex(); 182 case MachineOperand::MO_ConstantPoolIndex: 183 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 184 case MachineOperand::MO_JumpTableIndex: 185 return getIndex() == Other.getIndex(); 186 case MachineOperand::MO_GlobalAddress: 187 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 188 case MachineOperand::MO_ExternalSymbol: 189 return !strcmp(getSymbolName(), Other.getSymbolName()) && 190 getOffset() == Other.getOffset(); 191 case MachineOperand::MO_BlockAddress: 192 return getBlockAddress() == Other.getBlockAddress(); 193 case MachineOperand::MO_MCSymbol: 194 return getMCSymbol() == Other.getMCSymbol(); 195 case MachineOperand::MO_Metadata: 196 return getMetadata() == Other.getMetadata(); 197 } 198 } 199 200 /// print - Print the specified machine operand. 201 /// 202 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const { 203 // If the instruction is embedded into a basic block, we can find the 204 // target info for the instruction. 205 if (!TM) 206 if (const MachineInstr *MI = getParent()) 207 if (const MachineBasicBlock *MBB = MI->getParent()) 208 if (const MachineFunction *MF = MBB->getParent()) 209 TM = &MF->getTarget(); 210 211 switch (getType()) { 212 case MachineOperand::MO_Register: 213 if (getReg() == 0 || TargetRegisterInfo::isVirtualRegister(getReg())) { 214 OS << "%reg" << getReg(); 215 } else { 216 if (TM) 217 OS << "%" << TM->getRegisterInfo()->get(getReg()).Name; 218 else 219 OS << "%physreg" << getReg(); 220 } 221 222 if (getSubReg() != 0) 223 OS << ':' << getSubReg(); 224 225 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 226 isEarlyClobber()) { 227 OS << '<'; 228 bool NeedComma = false; 229 if (isDef()) { 230 if (NeedComma) OS << ','; 231 if (isEarlyClobber()) 232 OS << "earlyclobber,"; 233 if (isImplicit()) 234 OS << "imp-"; 235 OS << "def"; 236 NeedComma = true; 237 } else if (isImplicit()) { 238 OS << "imp-use"; 239 NeedComma = true; 240 } 241 242 if (isKill() || isDead() || isUndef()) { 243 if (NeedComma) OS << ','; 244 if (isKill()) OS << "kill"; 245 if (isDead()) OS << "dead"; 246 if (isUndef()) { 247 if (isKill() || isDead()) 248 OS << ','; 249 OS << "undef"; 250 } 251 } 252 OS << '>'; 253 } 254 break; 255 case MachineOperand::MO_Immediate: 256 OS << getImm(); 257 break; 258 case MachineOperand::MO_FPImmediate: 259 if (getFPImm()->getType()->isFloatTy()) 260 OS << getFPImm()->getValueAPF().convertToFloat(); 261 else 262 OS << getFPImm()->getValueAPF().convertToDouble(); 263 break; 264 case MachineOperand::MO_MachineBasicBlock: 265 OS << "<BB#" << getMBB()->getNumber() << ">"; 266 break; 267 case MachineOperand::MO_FrameIndex: 268 OS << "<fi#" << getIndex() << '>'; 269 break; 270 case MachineOperand::MO_ConstantPoolIndex: 271 OS << "<cp#" << getIndex(); 272 if (getOffset()) OS << "+" << getOffset(); 273 OS << '>'; 274 break; 275 case MachineOperand::MO_JumpTableIndex: 276 OS << "<jt#" << getIndex() << '>'; 277 break; 278 case MachineOperand::MO_GlobalAddress: 279 OS << "<ga:"; 280 WriteAsOperand(OS, getGlobal(), /*PrintType=*/false); 281 if (getOffset()) OS << "+" << getOffset(); 282 OS << '>'; 283 break; 284 case MachineOperand::MO_ExternalSymbol: 285 OS << "<es:" << getSymbolName(); 286 if (getOffset()) OS << "+" << getOffset(); 287 OS << '>'; 288 break; 289 case MachineOperand::MO_BlockAddress: 290 OS << '<'; 291 WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false); 292 OS << '>'; 293 break; 294 case MachineOperand::MO_Metadata: 295 OS << '<'; 296 WriteAsOperand(OS, getMetadata(), /*PrintType=*/false); 297 OS << '>'; 298 break; 299 case MachineOperand::MO_MCSymbol: 300 OS << "<MCSym=" << *getMCSymbol() << '>'; 301 break; 302 default: 303 llvm_unreachable("Unrecognized operand type"); 304 } 305 306 if (unsigned TF = getTargetFlags()) 307 OS << "[TF=" << TF << ']'; 308 } 309 310 //===----------------------------------------------------------------------===// 311 // MachineMemOperand Implementation 312 //===----------------------------------------------------------------------===// 313 314 MachineMemOperand::MachineMemOperand(const Value *v, unsigned int f, 315 int64_t o, uint64_t s, unsigned int a) 316 : Offset(o), Size(s), V(v), 317 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)) { 318 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 319 assert((isLoad() || isStore()) && "Not a load/store!"); 320 } 321 322 /// Profile - Gather unique data for the object. 323 /// 324 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 325 ID.AddInteger(Offset); 326 ID.AddInteger(Size); 327 ID.AddPointer(V); 328 ID.AddInteger(Flags); 329 } 330 331 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 332 // The Value and Offset may differ due to CSE. But the flags and size 333 // should be the same. 334 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 335 assert(MMO->getSize() == getSize() && "Size mismatch!"); 336 337 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 338 // Update the alignment value. 339 Flags = (Flags & ((1 << MOMaxBits) - 1)) | 340 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits); 341 // Also update the base and offset, because the new alignment may 342 // not be applicable with the old ones. 343 V = MMO->getValue(); 344 Offset = MMO->getOffset(); 345 } 346 } 347 348 /// getAlignment - Return the minimum known alignment in bytes of the 349 /// actual memory reference. 350 uint64_t MachineMemOperand::getAlignment() const { 351 return MinAlign(getBaseAlignment(), getOffset()); 352 } 353 354 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) { 355 assert((MMO.isLoad() || MMO.isStore()) && 356 "SV has to be a load, store or both."); 357 358 if (MMO.isVolatile()) 359 OS << "Volatile "; 360 361 if (MMO.isLoad()) 362 OS << "LD"; 363 if (MMO.isStore()) 364 OS << "ST"; 365 OS << MMO.getSize(); 366 367 // Print the address information. 368 OS << "["; 369 if (!MMO.getValue()) 370 OS << "<unknown>"; 371 else 372 WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false); 373 374 // If the alignment of the memory reference itself differs from the alignment 375 // of the base pointer, print the base alignment explicitly, next to the base 376 // pointer. 377 if (MMO.getBaseAlignment() != MMO.getAlignment()) 378 OS << "(align=" << MMO.getBaseAlignment() << ")"; 379 380 if (MMO.getOffset() != 0) 381 OS << "+" << MMO.getOffset(); 382 OS << "]"; 383 384 // Print the alignment of the reference. 385 if (MMO.getBaseAlignment() != MMO.getAlignment() || 386 MMO.getBaseAlignment() != MMO.getSize()) 387 OS << "(align=" << MMO.getAlignment() << ")"; 388 389 return OS; 390 } 391 392 //===----------------------------------------------------------------------===// 393 // MachineInstr Implementation 394 //===----------------------------------------------------------------------===// 395 396 /// MachineInstr ctor - This constructor creates a dummy MachineInstr with 397 /// TID NULL and no operands. 398 MachineInstr::MachineInstr() 399 : TID(0), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0), 400 Parent(0) { 401 // Make sure that we get added to a machine basicblock 402 LeakDetector::addGarbageObject(this); 403 } 404 405 void MachineInstr::addImplicitDefUseOperands() { 406 if (TID->ImplicitDefs) 407 for (const unsigned *ImpDefs = TID->ImplicitDefs; *ImpDefs; ++ImpDefs) 408 addOperand(MachineOperand::CreateReg(*ImpDefs, true, true)); 409 if (TID->ImplicitUses) 410 for (const unsigned *ImpUses = TID->ImplicitUses; *ImpUses; ++ImpUses) 411 addOperand(MachineOperand::CreateReg(*ImpUses, false, true)); 412 } 413 414 /// MachineInstr ctor - This constructor create a MachineInstr and add the 415 /// implicit operands. It reserves space for number of operands specified by 416 /// TargetInstrDesc or the numOperands if it is not zero. (for 417 /// instructions with variable number of operands). 418 MachineInstr::MachineInstr(const TargetInstrDesc &tid, bool NoImp) 419 : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0), 420 MemRefs(0), MemRefsEnd(0), Parent(0) { 421 if (!NoImp && TID->getImplicitDefs()) 422 for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs) 423 NumImplicitOps++; 424 if (!NoImp && TID->getImplicitUses()) 425 for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses) 426 NumImplicitOps++; 427 Operands.reserve(NumImplicitOps + TID->getNumOperands()); 428 if (!NoImp) 429 addImplicitDefUseOperands(); 430 // Make sure that we get added to a machine basicblock 431 LeakDetector::addGarbageObject(this); 432 } 433 434 /// MachineInstr ctor - As above, but with a DebugLoc. 435 MachineInstr::MachineInstr(const TargetInstrDesc &tid, const DebugLoc dl, 436 bool NoImp) 437 : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0), 438 Parent(0), debugLoc(dl) { 439 if (!NoImp && TID->getImplicitDefs()) 440 for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs) 441 NumImplicitOps++; 442 if (!NoImp && TID->getImplicitUses()) 443 for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses) 444 NumImplicitOps++; 445 Operands.reserve(NumImplicitOps + TID->getNumOperands()); 446 if (!NoImp) 447 addImplicitDefUseOperands(); 448 // Make sure that we get added to a machine basicblock 449 LeakDetector::addGarbageObject(this); 450 } 451 452 /// MachineInstr ctor - Work exactly the same as the ctor two above, except 453 /// that the MachineInstr is created and added to the end of the specified 454 /// basic block. 455 /// 456 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const TargetInstrDesc &tid) 457 : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0), 458 MemRefs(0), MemRefsEnd(0), Parent(0) { 459 assert(MBB && "Cannot use inserting ctor with null basic block!"); 460 if (TID->ImplicitDefs) 461 for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs) 462 NumImplicitOps++; 463 if (TID->ImplicitUses) 464 for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses) 465 NumImplicitOps++; 466 Operands.reserve(NumImplicitOps + TID->getNumOperands()); 467 addImplicitDefUseOperands(); 468 // Make sure that we get added to a machine basicblock 469 LeakDetector::addGarbageObject(this); 470 MBB->push_back(this); // Add instruction to end of basic block! 471 } 472 473 /// MachineInstr ctor - As above, but with a DebugLoc. 474 /// 475 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl, 476 const TargetInstrDesc &tid) 477 : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0), 478 Parent(0), debugLoc(dl) { 479 assert(MBB && "Cannot use inserting ctor with null basic block!"); 480 if (TID->ImplicitDefs) 481 for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs) 482 NumImplicitOps++; 483 if (TID->ImplicitUses) 484 for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses) 485 NumImplicitOps++; 486 Operands.reserve(NumImplicitOps + TID->getNumOperands()); 487 addImplicitDefUseOperands(); 488 // Make sure that we get added to a machine basicblock 489 LeakDetector::addGarbageObject(this); 490 MBB->push_back(this); // Add instruction to end of basic block! 491 } 492 493 /// MachineInstr ctor - Copies MachineInstr arg exactly 494 /// 495 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 496 : TID(&MI.getDesc()), NumImplicitOps(0), AsmPrinterFlags(0), 497 MemRefs(MI.MemRefs), MemRefsEnd(MI.MemRefsEnd), 498 Parent(0), debugLoc(MI.getDebugLoc()) { 499 Operands.reserve(MI.getNumOperands()); 500 501 // Add operands 502 for (unsigned i = 0; i != MI.getNumOperands(); ++i) 503 addOperand(MI.getOperand(i)); 504 NumImplicitOps = MI.NumImplicitOps; 505 506 // Set parent to null. 507 Parent = 0; 508 509 LeakDetector::addGarbageObject(this); 510 } 511 512 MachineInstr::~MachineInstr() { 513 LeakDetector::removeGarbageObject(this); 514 #ifndef NDEBUG 515 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 516 assert(Operands[i].ParentMI == this && "ParentMI mismatch!"); 517 assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) && 518 "Reg operand def/use list corrupted"); 519 } 520 #endif 521 } 522 523 /// getRegInfo - If this instruction is embedded into a MachineFunction, 524 /// return the MachineRegisterInfo object for the current function, otherwise 525 /// return null. 526 MachineRegisterInfo *MachineInstr::getRegInfo() { 527 if (MachineBasicBlock *MBB = getParent()) 528 return &MBB->getParent()->getRegInfo(); 529 return 0; 530 } 531 532 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 533 /// this instruction from their respective use lists. This requires that the 534 /// operands already be on their use lists. 535 void MachineInstr::RemoveRegOperandsFromUseLists() { 536 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 537 if (Operands[i].isReg()) 538 Operands[i].RemoveRegOperandFromRegInfo(); 539 } 540 } 541 542 /// AddRegOperandsToUseLists - Add all of the register operands in 543 /// this instruction from their respective use lists. This requires that the 544 /// operands not be on their use lists yet. 545 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) { 546 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 547 if (Operands[i].isReg()) 548 Operands[i].AddRegOperandToRegInfo(&RegInfo); 549 } 550 } 551 552 553 /// addOperand - Add the specified operand to the instruction. If it is an 554 /// implicit operand, it is added to the end of the operand list. If it is 555 /// an explicit operand it is added at the end of the explicit operand list 556 /// (before the first implicit operand). 557 void MachineInstr::addOperand(const MachineOperand &Op) { 558 bool isImpReg = Op.isReg() && Op.isImplicit(); 559 assert((isImpReg || !OperandsComplete()) && 560 "Trying to add an operand to a machine instr that is already done!"); 561 562 MachineRegisterInfo *RegInfo = getRegInfo(); 563 564 // If we are adding the operand to the end of the list, our job is simpler. 565 // This is true most of the time, so this is a reasonable optimization. 566 if (isImpReg || NumImplicitOps == 0) { 567 // We can only do this optimization if we know that the operand list won't 568 // reallocate. 569 if (Operands.empty() || Operands.size()+1 <= Operands.capacity()) { 570 Operands.push_back(Op); 571 572 // Set the parent of the operand. 573 Operands.back().ParentMI = this; 574 575 // If the operand is a register, update the operand's use list. 576 if (Op.isReg()) { 577 Operands.back().AddRegOperandToRegInfo(RegInfo); 578 // If the register operand is flagged as early, mark the operand as such 579 unsigned OpNo = Operands.size() - 1; 580 if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1) 581 Operands[OpNo].setIsEarlyClobber(true); 582 } 583 return; 584 } 585 } 586 587 // Otherwise, we have to insert a real operand before any implicit ones. 588 unsigned OpNo = Operands.size()-NumImplicitOps; 589 590 // If this instruction isn't embedded into a function, then we don't need to 591 // update any operand lists. 592 if (RegInfo == 0) { 593 // Simple insertion, no reginfo update needed for other register operands. 594 Operands.insert(Operands.begin()+OpNo, Op); 595 Operands[OpNo].ParentMI = this; 596 597 // Do explicitly set the reginfo for this operand though, to ensure the 598 // next/prev fields are properly nulled out. 599 if (Operands[OpNo].isReg()) { 600 Operands[OpNo].AddRegOperandToRegInfo(0); 601 // If the register operand is flagged as early, mark the operand as such 602 if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1) 603 Operands[OpNo].setIsEarlyClobber(true); 604 } 605 606 } else if (Operands.size()+1 <= Operands.capacity()) { 607 // Otherwise, we have to remove register operands from their register use 608 // list, add the operand, then add the register operands back to their use 609 // list. This also must handle the case when the operand list reallocates 610 // to somewhere else. 611 612 // If insertion of this operand won't cause reallocation of the operand 613 // list, just remove the implicit operands, add the operand, then re-add all 614 // the rest of the operands. 615 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 616 assert(Operands[i].isReg() && "Should only be an implicit reg!"); 617 Operands[i].RemoveRegOperandFromRegInfo(); 618 } 619 620 // Add the operand. If it is a register, add it to the reg list. 621 Operands.insert(Operands.begin()+OpNo, Op); 622 Operands[OpNo].ParentMI = this; 623 624 if (Operands[OpNo].isReg()) { 625 Operands[OpNo].AddRegOperandToRegInfo(RegInfo); 626 // If the register operand is flagged as early, mark the operand as such 627 if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1) 628 Operands[OpNo].setIsEarlyClobber(true); 629 } 630 631 // Re-add all the implicit ops. 632 for (unsigned i = OpNo+1, e = Operands.size(); i != e; ++i) { 633 assert(Operands[i].isReg() && "Should only be an implicit reg!"); 634 Operands[i].AddRegOperandToRegInfo(RegInfo); 635 } 636 } else { 637 // Otherwise, we will be reallocating the operand list. Remove all reg 638 // operands from their list, then readd them after the operand list is 639 // reallocated. 640 RemoveRegOperandsFromUseLists(); 641 642 Operands.insert(Operands.begin()+OpNo, Op); 643 Operands[OpNo].ParentMI = this; 644 645 // Re-add all the operands. 646 AddRegOperandsToUseLists(*RegInfo); 647 648 // If the register operand is flagged as early, mark the operand as such 649 if (Operands[OpNo].isReg() 650 && TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1) 651 Operands[OpNo].setIsEarlyClobber(true); 652 } 653 } 654 655 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 656 /// fewer operand than it started with. 657 /// 658 void MachineInstr::RemoveOperand(unsigned OpNo) { 659 assert(OpNo < Operands.size() && "Invalid operand number"); 660 661 // Special case removing the last one. 662 if (OpNo == Operands.size()-1) { 663 // If needed, remove from the reg def/use list. 664 if (Operands.back().isReg() && Operands.back().isOnRegUseList()) 665 Operands.back().RemoveRegOperandFromRegInfo(); 666 667 Operands.pop_back(); 668 return; 669 } 670 671 // Otherwise, we are removing an interior operand. If we have reginfo to 672 // update, remove all operands that will be shifted down from their reg lists, 673 // move everything down, then re-add them. 674 MachineRegisterInfo *RegInfo = getRegInfo(); 675 if (RegInfo) { 676 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 677 if (Operands[i].isReg()) 678 Operands[i].RemoveRegOperandFromRegInfo(); 679 } 680 } 681 682 Operands.erase(Operands.begin()+OpNo); 683 684 if (RegInfo) { 685 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 686 if (Operands[i].isReg()) 687 Operands[i].AddRegOperandToRegInfo(RegInfo); 688 } 689 } 690 } 691 692 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 693 /// This function should be used only occasionally. The setMemRefs function 694 /// is the primary method for setting up a MachineInstr's MemRefs list. 695 void MachineInstr::addMemOperand(MachineFunction &MF, 696 MachineMemOperand *MO) { 697 mmo_iterator OldMemRefs = MemRefs; 698 mmo_iterator OldMemRefsEnd = MemRefsEnd; 699 700 size_t NewNum = (MemRefsEnd - MemRefs) + 1; 701 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 702 mmo_iterator NewMemRefsEnd = NewMemRefs + NewNum; 703 704 std::copy(OldMemRefs, OldMemRefsEnd, NewMemRefs); 705 NewMemRefs[NewNum - 1] = MO; 706 707 MemRefs = NewMemRefs; 708 MemRefsEnd = NewMemRefsEnd; 709 } 710 711 bool MachineInstr::isIdenticalTo(const MachineInstr *Other, 712 MICheckType Check) const { 713 // If opcodes or number of operands are not the same then the two 714 // instructions are obviously not identical. 715 if (Other->getOpcode() != getOpcode() || 716 Other->getNumOperands() != getNumOperands()) 717 return false; 718 719 // Check operands to make sure they match. 720 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 721 const MachineOperand &MO = getOperand(i); 722 const MachineOperand &OMO = Other->getOperand(i); 723 // Clients may or may not want to ignore defs when testing for equality. 724 // For example, machine CSE pass only cares about finding common 725 // subexpressions, so it's safe to ignore virtual register defs. 726 if (Check != CheckDefs && MO.isReg() && MO.isDef()) { 727 if (Check == IgnoreDefs) 728 continue; 729 // Check == IgnoreVRegDefs 730 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 731 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 732 if (MO.getReg() != OMO.getReg()) 733 return false; 734 } else if (!MO.isIdenticalTo(OMO)) 735 return false; 736 } 737 return true; 738 } 739 740 /// removeFromParent - This method unlinks 'this' from the containing basic 741 /// block, and returns it, but does not delete it. 742 MachineInstr *MachineInstr::removeFromParent() { 743 assert(getParent() && "Not embedded in a basic block!"); 744 getParent()->remove(this); 745 return this; 746 } 747 748 749 /// eraseFromParent - This method unlinks 'this' from the containing basic 750 /// block, and deletes it. 751 void MachineInstr::eraseFromParent() { 752 assert(getParent() && "Not embedded in a basic block!"); 753 getParent()->erase(this); 754 } 755 756 757 /// OperandComplete - Return true if it's illegal to add a new operand 758 /// 759 bool MachineInstr::OperandsComplete() const { 760 unsigned short NumOperands = TID->getNumOperands(); 761 if (!TID->isVariadic() && getNumOperands()-NumImplicitOps >= NumOperands) 762 return true; // Broken: we have all the operands of this instruction! 763 return false; 764 } 765 766 /// getNumExplicitOperands - Returns the number of non-implicit operands. 767 /// 768 unsigned MachineInstr::getNumExplicitOperands() const { 769 unsigned NumOperands = TID->getNumOperands(); 770 if (!TID->isVariadic()) 771 return NumOperands; 772 773 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 774 const MachineOperand &MO = getOperand(i); 775 if (!MO.isReg() || !MO.isImplicit()) 776 NumOperands++; 777 } 778 return NumOperands; 779 } 780 781 782 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 783 /// the specific register or -1 if it is not found. It further tightens 784 /// the search criteria to a use that kills the register if isKill is true. 785 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, 786 const TargetRegisterInfo *TRI) const { 787 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 788 const MachineOperand &MO = getOperand(i); 789 if (!MO.isReg() || !MO.isUse()) 790 continue; 791 unsigned MOReg = MO.getReg(); 792 if (!MOReg) 793 continue; 794 if (MOReg == Reg || 795 (TRI && 796 TargetRegisterInfo::isPhysicalRegister(MOReg) && 797 TargetRegisterInfo::isPhysicalRegister(Reg) && 798 TRI->isSubRegister(MOReg, Reg))) 799 if (!isKill || MO.isKill()) 800 return i; 801 } 802 return -1; 803 } 804 805 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 806 /// the specified register or -1 if it is not found. If isDead is true, defs 807 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 808 /// also checks if there is a def of a super-register. 809 int MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, 810 const TargetRegisterInfo *TRI) const { 811 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 812 const MachineOperand &MO = getOperand(i); 813 if (!MO.isReg() || !MO.isDef()) 814 continue; 815 unsigned MOReg = MO.getReg(); 816 if (MOReg == Reg || 817 (TRI && 818 TargetRegisterInfo::isPhysicalRegister(MOReg) && 819 TargetRegisterInfo::isPhysicalRegister(Reg) && 820 TRI->isSubRegister(MOReg, Reg))) 821 if (!isDead || MO.isDead()) 822 return i; 823 } 824 return -1; 825 } 826 827 /// findFirstPredOperandIdx() - Find the index of the first operand in the 828 /// operand list that is used to represent the predicate. It returns -1 if 829 /// none is found. 830 int MachineInstr::findFirstPredOperandIdx() const { 831 const TargetInstrDesc &TID = getDesc(); 832 if (TID.isPredicable()) { 833 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 834 if (TID.OpInfo[i].isPredicate()) 835 return i; 836 } 837 838 return -1; 839 } 840 841 /// isRegTiedToUseOperand - Given the index of a register def operand, 842 /// check if the register def is tied to a source operand, due to either 843 /// two-address elimination or inline assembly constraints. Returns the 844 /// first tied use operand index by reference is UseOpIdx is not null. 845 bool MachineInstr:: 846 isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const { 847 if (isInlineAsm()) { 848 assert(DefOpIdx >= 2); 849 const MachineOperand &MO = getOperand(DefOpIdx); 850 if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0) 851 return false; 852 // Determine the actual operand index that corresponds to this index. 853 unsigned DefNo = 0; 854 unsigned DefPart = 0; 855 for (unsigned i = 1, e = getNumOperands(); i < e; ) { 856 const MachineOperand &FMO = getOperand(i); 857 // After the normal asm operands there may be additional imp-def regs. 858 if (!FMO.isImm()) 859 return false; 860 // Skip over this def. 861 unsigned NumOps = InlineAsm::getNumOperandRegisters(FMO.getImm()); 862 unsigned PrevDef = i + 1; 863 i = PrevDef + NumOps; 864 if (i > DefOpIdx) { 865 DefPart = DefOpIdx - PrevDef; 866 break; 867 } 868 ++DefNo; 869 } 870 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 871 const MachineOperand &FMO = getOperand(i); 872 if (!FMO.isImm()) 873 continue; 874 if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse()) 875 continue; 876 unsigned Idx; 877 if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) && 878 Idx == DefNo) { 879 if (UseOpIdx) 880 *UseOpIdx = (unsigned)i + 1 + DefPart; 881 return true; 882 } 883 } 884 return false; 885 } 886 887 assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!"); 888 const TargetInstrDesc &TID = getDesc(); 889 for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) { 890 const MachineOperand &MO = getOperand(i); 891 if (MO.isReg() && MO.isUse() && 892 TID.getOperandConstraint(i, TOI::TIED_TO) == (int)DefOpIdx) { 893 if (UseOpIdx) 894 *UseOpIdx = (unsigned)i; 895 return true; 896 } 897 } 898 return false; 899 } 900 901 /// isRegTiedToDefOperand - Return true if the operand of the specified index 902 /// is a register use and it is tied to an def operand. It also returns the def 903 /// operand index by reference. 904 bool MachineInstr:: 905 isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const { 906 if (isInlineAsm()) { 907 const MachineOperand &MO = getOperand(UseOpIdx); 908 if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0) 909 return false; 910 911 // Find the flag operand corresponding to UseOpIdx 912 unsigned FlagIdx, NumOps=0; 913 for (FlagIdx = 1; FlagIdx < UseOpIdx; FlagIdx += NumOps+1) { 914 const MachineOperand &UFMO = getOperand(FlagIdx); 915 // After the normal asm operands there may be additional imp-def regs. 916 if (!UFMO.isImm()) 917 return false; 918 NumOps = InlineAsm::getNumOperandRegisters(UFMO.getImm()); 919 assert(NumOps < getNumOperands() && "Invalid inline asm flag"); 920 if (UseOpIdx < FlagIdx+NumOps+1) 921 break; 922 } 923 if (FlagIdx >= UseOpIdx) 924 return false; 925 const MachineOperand &UFMO = getOperand(FlagIdx); 926 unsigned DefNo; 927 if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) { 928 if (!DefOpIdx) 929 return true; 930 931 unsigned DefIdx = 1; 932 // Remember to adjust the index. First operand is asm string, then there 933 // is a flag for each. 934 while (DefNo) { 935 const MachineOperand &FMO = getOperand(DefIdx); 936 assert(FMO.isImm()); 937 // Skip over this def. 938 DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1; 939 --DefNo; 940 } 941 *DefOpIdx = DefIdx + UseOpIdx - FlagIdx; 942 return true; 943 } 944 return false; 945 } 946 947 const TargetInstrDesc &TID = getDesc(); 948 if (UseOpIdx >= TID.getNumOperands()) 949 return false; 950 const MachineOperand &MO = getOperand(UseOpIdx); 951 if (!MO.isReg() || !MO.isUse()) 952 return false; 953 int DefIdx = TID.getOperandConstraint(UseOpIdx, TOI::TIED_TO); 954 if (DefIdx == -1) 955 return false; 956 if (DefOpIdx) 957 *DefOpIdx = (unsigned)DefIdx; 958 return true; 959 } 960 961 /// copyKillDeadInfo - Copies kill / dead operand properties from MI. 962 /// 963 void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) { 964 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 965 const MachineOperand &MO = MI->getOperand(i); 966 if (!MO.isReg() || (!MO.isKill() && !MO.isDead())) 967 continue; 968 for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) { 969 MachineOperand &MOp = getOperand(j); 970 if (!MOp.isIdenticalTo(MO)) 971 continue; 972 if (MO.isKill()) 973 MOp.setIsKill(); 974 else 975 MOp.setIsDead(); 976 break; 977 } 978 } 979 } 980 981 /// copyPredicates - Copies predicate operand(s) from MI. 982 void MachineInstr::copyPredicates(const MachineInstr *MI) { 983 const TargetInstrDesc &TID = MI->getDesc(); 984 if (!TID.isPredicable()) 985 return; 986 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 987 if (TID.OpInfo[i].isPredicate()) { 988 // Predicated operands must be last operands. 989 addOperand(MI->getOperand(i)); 990 } 991 } 992 } 993 994 /// isSafeToMove - Return true if it is safe to move this instruction. If 995 /// SawStore is set to true, it means that there is a store (or call) between 996 /// the instruction's location and its intended destination. 997 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII, 998 AliasAnalysis *AA, 999 bool &SawStore) const { 1000 // Ignore stuff that we obviously can't move. 1001 if (TID->mayStore() || TID->isCall()) { 1002 SawStore = true; 1003 return false; 1004 } 1005 if (TID->isTerminator() || TID->hasUnmodeledSideEffects()) 1006 return false; 1007 1008 // See if this instruction does a load. If so, we have to guarantee that the 1009 // loaded value doesn't change between the load and the its intended 1010 // destination. The check for isInvariantLoad gives the targe the chance to 1011 // classify the load as always returning a constant, e.g. a constant pool 1012 // load. 1013 if (TID->mayLoad() && !isInvariantLoad(AA)) 1014 // Otherwise, this is a real load. If there is a store between the load and 1015 // end of block, or if the load is volatile, we can't move it. 1016 return !SawStore && !hasVolatileMemoryRef(); 1017 1018 return true; 1019 } 1020 1021 /// isSafeToReMat - Return true if it's safe to rematerialize the specified 1022 /// instruction which defined the specified register instead of copying it. 1023 bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII, 1024 AliasAnalysis *AA, 1025 unsigned DstReg) const { 1026 bool SawStore = false; 1027 if (!TII->isTriviallyReMaterializable(this, AA) || 1028 !isSafeToMove(TII, AA, SawStore)) 1029 return false; 1030 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1031 const MachineOperand &MO = getOperand(i); 1032 if (!MO.isReg()) 1033 continue; 1034 // FIXME: For now, do not remat any instruction with register operands. 1035 // Later on, we can loosen the restriction is the register operands have 1036 // not been modified between the def and use. Note, this is different from 1037 // MachineSink because the code is no longer in two-address form (at least 1038 // partially). 1039 if (MO.isUse()) 1040 return false; 1041 else if (!MO.isDead() && MO.getReg() != DstReg) 1042 return false; 1043 } 1044 return true; 1045 } 1046 1047 /// hasVolatileMemoryRef - Return true if this instruction may have a 1048 /// volatile memory reference, or if the information describing the 1049 /// memory reference is not available. Return false if it is known to 1050 /// have no volatile memory references. 1051 bool MachineInstr::hasVolatileMemoryRef() const { 1052 // An instruction known never to access memory won't have a volatile access. 1053 if (!TID->mayStore() && 1054 !TID->mayLoad() && 1055 !TID->isCall() && 1056 !TID->hasUnmodeledSideEffects()) 1057 return false; 1058 1059 // Otherwise, if the instruction has no memory reference information, 1060 // conservatively assume it wasn't preserved. 1061 if (memoperands_empty()) 1062 return true; 1063 1064 // Check the memory reference information for volatile references. 1065 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I) 1066 if ((*I)->isVolatile()) 1067 return true; 1068 1069 return false; 1070 } 1071 1072 /// isInvariantLoad - Return true if this instruction is loading from a 1073 /// location whose value is invariant across the function. For example, 1074 /// loading a value from the constant pool or from the argument area 1075 /// of a function if it does not change. This should only return true of 1076 /// *all* loads the instruction does are invariant (if it does multiple loads). 1077 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const { 1078 // If the instruction doesn't load at all, it isn't an invariant load. 1079 if (!TID->mayLoad()) 1080 return false; 1081 1082 // If the instruction has lost its memoperands, conservatively assume that 1083 // it may not be an invariant load. 1084 if (memoperands_empty()) 1085 return false; 1086 1087 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo(); 1088 1089 for (mmo_iterator I = memoperands_begin(), 1090 E = memoperands_end(); I != E; ++I) { 1091 if ((*I)->isVolatile()) return false; 1092 if ((*I)->isStore()) return false; 1093 1094 if (const Value *V = (*I)->getValue()) { 1095 // A load from a constant PseudoSourceValue is invariant. 1096 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) 1097 if (PSV->isConstant(MFI)) 1098 continue; 1099 // If we have an AliasAnalysis, ask it whether the memory is constant. 1100 if (AA && AA->pointsToConstantMemory(V)) 1101 continue; 1102 } 1103 1104 // Otherwise assume conservatively. 1105 return false; 1106 } 1107 1108 // Everything checks out. 1109 return true; 1110 } 1111 1112 /// isConstantValuePHI - If the specified instruction is a PHI that always 1113 /// merges together the same virtual register, return the register, otherwise 1114 /// return 0. 1115 unsigned MachineInstr::isConstantValuePHI() const { 1116 if (!isPHI()) 1117 return 0; 1118 assert(getNumOperands() >= 3 && 1119 "It's illegal to have a PHI without source operands"); 1120 1121 unsigned Reg = getOperand(1).getReg(); 1122 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1123 if (getOperand(i).getReg() != Reg) 1124 return 0; 1125 return Reg; 1126 } 1127 1128 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1129 /// 1130 bool MachineInstr::allDefsAreDead() const { 1131 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { 1132 const MachineOperand &MO = getOperand(i); 1133 if (!MO.isReg() || MO.isUse()) 1134 continue; 1135 if (!MO.isDead()) 1136 return false; 1137 } 1138 return true; 1139 } 1140 1141 void MachineInstr::dump() const { 1142 dbgs() << " " << *this; 1143 } 1144 1145 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const { 1146 // We can be a bit tidier if we know the TargetMachine and/or MachineFunction. 1147 const MachineFunction *MF = 0; 1148 if (const MachineBasicBlock *MBB = getParent()) { 1149 MF = MBB->getParent(); 1150 if (!TM && MF) 1151 TM = &MF->getTarget(); 1152 } 1153 1154 // Print explicitly defined operands on the left of an assignment syntax. 1155 unsigned StartOp = 0, e = getNumOperands(); 1156 for (; StartOp < e && getOperand(StartOp).isReg() && 1157 getOperand(StartOp).isDef() && 1158 !getOperand(StartOp).isImplicit(); 1159 ++StartOp) { 1160 if (StartOp != 0) OS << ", "; 1161 getOperand(StartOp).print(OS, TM); 1162 } 1163 1164 if (StartOp != 0) 1165 OS << " = "; 1166 1167 // Print the opcode name. 1168 OS << getDesc().getName(); 1169 1170 // Print the rest of the operands. 1171 bool OmittedAnyCallClobbers = false; 1172 bool FirstOp = true; 1173 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1174 const MachineOperand &MO = getOperand(i); 1175 1176 // Omit call-clobbered registers which aren't used anywhere. This makes 1177 // call instructions much less noisy on targets where calls clobber lots 1178 // of registers. Don't rely on MO.isDead() because we may be called before 1179 // LiveVariables is run, or we may be looking at a non-allocatable reg. 1180 if (MF && getDesc().isCall() && 1181 MO.isReg() && MO.isImplicit() && MO.isDef()) { 1182 unsigned Reg = MO.getReg(); 1183 if (Reg != 0 && TargetRegisterInfo::isPhysicalRegister(Reg)) { 1184 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1185 if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) { 1186 bool HasAliasLive = false; 1187 for (const unsigned *Alias = TM->getRegisterInfo()->getAliasSet(Reg); 1188 unsigned AliasReg = *Alias; ++Alias) 1189 if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) { 1190 HasAliasLive = true; 1191 break; 1192 } 1193 if (!HasAliasLive) { 1194 OmittedAnyCallClobbers = true; 1195 continue; 1196 } 1197 } 1198 } 1199 } 1200 1201 if (FirstOp) FirstOp = false; else OS << ","; 1202 OS << " "; 1203 if (i < getDesc().NumOperands) { 1204 const TargetOperandInfo &TOI = getDesc().OpInfo[i]; 1205 if (TOI.isPredicate()) 1206 OS << "pred:"; 1207 if (TOI.isOptionalDef()) 1208 OS << "opt:"; 1209 } 1210 MO.print(OS, TM); 1211 } 1212 1213 // Briefly indicate whether any call clobbers were omitted. 1214 if (OmittedAnyCallClobbers) { 1215 if (!FirstOp) OS << ","; 1216 OS << " ..."; 1217 } 1218 1219 bool HaveSemi = false; 1220 if (!memoperands_empty()) { 1221 if (!HaveSemi) OS << ";"; HaveSemi = true; 1222 1223 OS << " mem:"; 1224 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 1225 i != e; ++i) { 1226 OS << **i; 1227 if (next(i) != e) 1228 OS << " "; 1229 } 1230 } 1231 1232 if (!debugLoc.isUnknown() && MF) { 1233 if (!HaveSemi) OS << ";"; 1234 1235 // TODO: print InlinedAtLoc information 1236 1237 DIScope Scope(debugLoc.getScope(MF->getFunction()->getContext())); 1238 OS << " dbg:"; 1239 // Omit the directory, since it's usually long and uninteresting. 1240 if (Scope.Verify()) 1241 OS << Scope.getFilename(); 1242 else 1243 OS << "<unknown>"; 1244 OS << ':' << debugLoc.getLine(); 1245 if (debugLoc.getCol() != 0) 1246 OS << ':' << debugLoc.getCol(); 1247 } 1248 1249 OS << "\n"; 1250 } 1251 1252 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 1253 const TargetRegisterInfo *RegInfo, 1254 bool AddIfNotFound) { 1255 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1256 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg); 1257 bool Found = false; 1258 SmallVector<unsigned,4> DeadOps; 1259 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1260 MachineOperand &MO = getOperand(i); 1261 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1262 continue; 1263 unsigned Reg = MO.getReg(); 1264 if (!Reg) 1265 continue; 1266 1267 if (Reg == IncomingReg) { 1268 if (!Found) { 1269 if (MO.isKill()) 1270 // The register is already marked kill. 1271 return true; 1272 if (isPhysReg && isRegTiedToDefOperand(i)) 1273 // Two-address uses of physregs must not be marked kill. 1274 return true; 1275 MO.setIsKill(); 1276 Found = true; 1277 } 1278 } else if (hasAliases && MO.isKill() && 1279 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1280 // A super-register kill already exists. 1281 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1282 return true; 1283 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1284 DeadOps.push_back(i); 1285 } 1286 } 1287 1288 // Trim unneeded kill operands. 1289 while (!DeadOps.empty()) { 1290 unsigned OpIdx = DeadOps.back(); 1291 if (getOperand(OpIdx).isImplicit()) 1292 RemoveOperand(OpIdx); 1293 else 1294 getOperand(OpIdx).setIsKill(false); 1295 DeadOps.pop_back(); 1296 } 1297 1298 // If not found, this means an alias of one of the operands is killed. Add a 1299 // new implicit operand if required. 1300 if (!Found && AddIfNotFound) { 1301 addOperand(MachineOperand::CreateReg(IncomingReg, 1302 false /*IsDef*/, 1303 true /*IsImp*/, 1304 true /*IsKill*/)); 1305 return true; 1306 } 1307 return Found; 1308 } 1309 1310 bool MachineInstr::addRegisterDead(unsigned IncomingReg, 1311 const TargetRegisterInfo *RegInfo, 1312 bool AddIfNotFound) { 1313 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1314 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg); 1315 bool Found = false; 1316 SmallVector<unsigned,4> DeadOps; 1317 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1318 MachineOperand &MO = getOperand(i); 1319 if (!MO.isReg() || !MO.isDef()) 1320 continue; 1321 unsigned Reg = MO.getReg(); 1322 if (!Reg) 1323 continue; 1324 1325 if (Reg == IncomingReg) { 1326 if (!Found) { 1327 if (MO.isDead()) 1328 // The register is already marked dead. 1329 return true; 1330 MO.setIsDead(); 1331 Found = true; 1332 } 1333 } else if (hasAliases && MO.isDead() && 1334 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1335 // There exists a super-register that's marked dead. 1336 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1337 return true; 1338 if (RegInfo->getSubRegisters(IncomingReg) && 1339 RegInfo->getSuperRegisters(Reg) && 1340 RegInfo->isSubRegister(IncomingReg, Reg)) 1341 DeadOps.push_back(i); 1342 } 1343 } 1344 1345 // Trim unneeded dead operands. 1346 while (!DeadOps.empty()) { 1347 unsigned OpIdx = DeadOps.back(); 1348 if (getOperand(OpIdx).isImplicit()) 1349 RemoveOperand(OpIdx); 1350 else 1351 getOperand(OpIdx).setIsDead(false); 1352 DeadOps.pop_back(); 1353 } 1354 1355 // If not found, this means an alias of one of the operands is dead. Add a 1356 // new implicit operand if required. 1357 if (Found || !AddIfNotFound) 1358 return Found; 1359 1360 addOperand(MachineOperand::CreateReg(IncomingReg, 1361 true /*IsDef*/, 1362 true /*IsImp*/, 1363 false /*IsKill*/, 1364 true /*IsDead*/)); 1365 return true; 1366 } 1367 1368 void MachineInstr::addRegisterDefined(unsigned IncomingReg, 1369 const TargetRegisterInfo *RegInfo) { 1370 MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo); 1371 if (!MO || MO->getSubReg()) 1372 addOperand(MachineOperand::CreateReg(IncomingReg, 1373 true /*IsDef*/, 1374 true /*IsImp*/)); 1375 } 1376 1377 unsigned 1378 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 1379 unsigned Hash = MI->getOpcode() * 37; 1380 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1381 const MachineOperand &MO = MI->getOperand(i); 1382 uint64_t Key = (uint64_t)MO.getType() << 32; 1383 switch (MO.getType()) { 1384 default: break; 1385 case MachineOperand::MO_Register: 1386 if (MO.isDef() && MO.getReg() && 1387 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1388 continue; // Skip virtual register defs. 1389 Key |= MO.getReg(); 1390 break; 1391 case MachineOperand::MO_Immediate: 1392 Key |= MO.getImm(); 1393 break; 1394 case MachineOperand::MO_FrameIndex: 1395 case MachineOperand::MO_ConstantPoolIndex: 1396 case MachineOperand::MO_JumpTableIndex: 1397 Key |= MO.getIndex(); 1398 break; 1399 case MachineOperand::MO_MachineBasicBlock: 1400 Key |= DenseMapInfo<void*>::getHashValue(MO.getMBB()); 1401 break; 1402 case MachineOperand::MO_GlobalAddress: 1403 Key |= DenseMapInfo<void*>::getHashValue(MO.getGlobal()); 1404 break; 1405 case MachineOperand::MO_BlockAddress: 1406 Key |= DenseMapInfo<void*>::getHashValue(MO.getBlockAddress()); 1407 break; 1408 case MachineOperand::MO_MCSymbol: 1409 Key |= DenseMapInfo<void*>::getHashValue(MO.getMCSymbol()); 1410 break; 1411 } 1412 Key += ~(Key << 32); 1413 Key ^= (Key >> 22); 1414 Key += ~(Key << 13); 1415 Key ^= (Key >> 8); 1416 Key += (Key << 3); 1417 Key ^= (Key >> 15); 1418 Key += ~(Key << 27); 1419 Key ^= (Key >> 31); 1420 Hash = (unsigned)Key + Hash * 37; 1421 } 1422 return Hash; 1423 } 1424