xref: /llvm-project/llvm/lib/CodeGen/MachineInstr.cpp (revision adbf09e8cfd3aa6bb104f45bf5f39e4e8578d2f8)
1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Methods common to all machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/ADT/FoldingSet.h"
16 #include "llvm/ADT/Hashing.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/CodeGen/MachineConstantPool.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineMemOperand.h"
22 #include "llvm/CodeGen/MachineModuleInfo.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/PseudoSourceValue.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DebugInfo.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/InlineAsm.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/ModuleSlotTracker.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/MC/MCInstrDesc.h"
37 #include "llvm/MC/MCSymbol.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Target/TargetInstrInfo.h"
44 #include "llvm/Target/TargetIntrinsicInfo.h"
45 #include "llvm/Target/TargetMachine.h"
46 #include "llvm/Target/TargetRegisterInfo.h"
47 #include "llvm/Target/TargetSubtargetInfo.h"
48 using namespace llvm;
49 
50 static cl::opt<bool> PrintWholeRegMask(
51     "print-whole-regmask",
52     cl::desc("Print the full contents of regmask operands in IR dumps"),
53     cl::init(true), cl::Hidden);
54 
55 //===----------------------------------------------------------------------===//
56 // MachineOperand Implementation
57 //===----------------------------------------------------------------------===//
58 
59 void MachineOperand::setReg(unsigned Reg) {
60   if (getReg() == Reg) return; // No change.
61 
62   // Otherwise, we have to change the register.  If this operand is embedded
63   // into a machine function, we need to update the old and new register's
64   // use/def lists.
65   if (MachineInstr *MI = getParent())
66     if (MachineBasicBlock *MBB = MI->getParent())
67       if (MachineFunction *MF = MBB->getParent()) {
68         MachineRegisterInfo &MRI = MF->getRegInfo();
69         MRI.removeRegOperandFromUseList(this);
70         SmallContents.RegNo = Reg;
71         MRI.addRegOperandToUseList(this);
72         return;
73       }
74 
75   // Otherwise, just change the register, no problem.  :)
76   SmallContents.RegNo = Reg;
77 }
78 
79 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
80                                   const TargetRegisterInfo &TRI) {
81   assert(TargetRegisterInfo::isVirtualRegister(Reg));
82   if (SubIdx && getSubReg())
83     SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
84   setReg(Reg);
85   if (SubIdx)
86     setSubReg(SubIdx);
87 }
88 
89 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
90   assert(TargetRegisterInfo::isPhysicalRegister(Reg));
91   if (getSubReg()) {
92     Reg = TRI.getSubReg(Reg, getSubReg());
93     // Note that getSubReg() may return 0 if the sub-register doesn't exist.
94     // That won't happen in legal code.
95     setSubReg(0);
96     if (isDef())
97       setIsUndef(false);
98   }
99   setReg(Reg);
100 }
101 
102 /// Change a def to a use, or a use to a def.
103 void MachineOperand::setIsDef(bool Val) {
104   assert(isReg() && "Wrong MachineOperand accessor");
105   assert((!Val || !isDebug()) && "Marking a debug operation as def");
106   if (IsDef == Val)
107     return;
108   // MRI may keep uses and defs in different list positions.
109   if (MachineInstr *MI = getParent())
110     if (MachineBasicBlock *MBB = MI->getParent())
111       if (MachineFunction *MF = MBB->getParent()) {
112         MachineRegisterInfo &MRI = MF->getRegInfo();
113         MRI.removeRegOperandFromUseList(this);
114         IsDef = Val;
115         MRI.addRegOperandToUseList(this);
116         return;
117       }
118   IsDef = Val;
119 }
120 
121 // If this operand is currently a register operand, and if this is in a
122 // function, deregister the operand from the register's use/def list.
123 void MachineOperand::removeRegFromUses() {
124   if (!isReg() || !isOnRegUseList())
125     return;
126 
127   if (MachineInstr *MI = getParent()) {
128     if (MachineBasicBlock *MBB = MI->getParent()) {
129       if (MachineFunction *MF = MBB->getParent())
130         MF->getRegInfo().removeRegOperandFromUseList(this);
131     }
132   }
133 }
134 
135 /// ChangeToImmediate - Replace this operand with a new immediate operand of
136 /// the specified value.  If an operand is known to be an immediate already,
137 /// the setImm method should be used.
138 void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
139   assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
140 
141   removeRegFromUses();
142 
143   OpKind = MO_Immediate;
144   Contents.ImmVal = ImmVal;
145 }
146 
147 void MachineOperand::ChangeToFPImmediate(const ConstantFP *FPImm) {
148   assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
149 
150   removeRegFromUses();
151 
152   OpKind = MO_FPImmediate;
153   Contents.CFP = FPImm;
154 }
155 
156 void MachineOperand::ChangeToES(const char *SymName, unsigned char TargetFlags) {
157   assert((!isReg() || !isTied()) &&
158          "Cannot change a tied operand into an external symbol");
159 
160   removeRegFromUses();
161 
162   OpKind = MO_ExternalSymbol;
163   Contents.OffsetedInfo.Val.SymbolName = SymName;
164   setOffset(0); // Offset is always 0.
165   setTargetFlags(TargetFlags);
166 }
167 
168 void MachineOperand::ChangeToMCSymbol(MCSymbol *Sym) {
169   assert((!isReg() || !isTied()) &&
170          "Cannot change a tied operand into an MCSymbol");
171 
172   removeRegFromUses();
173 
174   OpKind = MO_MCSymbol;
175   Contents.Sym = Sym;
176 }
177 
178 /// ChangeToRegister - Replace this operand with a new register operand of
179 /// the specified value.  If an operand is known to be an register already,
180 /// the setReg method should be used.
181 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
182                                       bool isKill, bool isDead, bool isUndef,
183                                       bool isDebug) {
184   MachineRegisterInfo *RegInfo = nullptr;
185   if (MachineInstr *MI = getParent())
186     if (MachineBasicBlock *MBB = MI->getParent())
187       if (MachineFunction *MF = MBB->getParent())
188         RegInfo = &MF->getRegInfo();
189   // If this operand is already a register operand, remove it from the
190   // register's use/def lists.
191   bool WasReg = isReg();
192   if (RegInfo && WasReg)
193     RegInfo->removeRegOperandFromUseList(this);
194 
195   // Change this to a register and set the reg#.
196   OpKind = MO_Register;
197   SmallContents.RegNo = Reg;
198   SubReg_TargetFlags = 0;
199   IsDef = isDef;
200   IsImp = isImp;
201   IsKill = isKill;
202   IsDead = isDead;
203   IsUndef = isUndef;
204   IsInternalRead = false;
205   IsEarlyClobber = false;
206   IsDebug = isDebug;
207   // Ensure isOnRegUseList() returns false.
208   Contents.Reg.Prev = nullptr;
209   // Preserve the tie when the operand was already a register.
210   if (!WasReg)
211     TiedTo = 0;
212 
213   // If this operand is embedded in a function, add the operand to the
214   // register's use/def list.
215   if (RegInfo)
216     RegInfo->addRegOperandToUseList(this);
217 }
218 
219 /// isIdenticalTo - Return true if this operand is identical to the specified
220 /// operand. Note that this should stay in sync with the hash_value overload
221 /// below.
222 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
223   if (getType() != Other.getType() ||
224       getTargetFlags() != Other.getTargetFlags())
225     return false;
226 
227   switch (getType()) {
228   case MachineOperand::MO_Register:
229     return getReg() == Other.getReg() && isDef() == Other.isDef() &&
230            getSubReg() == Other.getSubReg();
231   case MachineOperand::MO_Immediate:
232     return getImm() == Other.getImm();
233   case MachineOperand::MO_CImmediate:
234     return getCImm() == Other.getCImm();
235   case MachineOperand::MO_FPImmediate:
236     return getFPImm() == Other.getFPImm();
237   case MachineOperand::MO_MachineBasicBlock:
238     return getMBB() == Other.getMBB();
239   case MachineOperand::MO_FrameIndex:
240     return getIndex() == Other.getIndex();
241   case MachineOperand::MO_ConstantPoolIndex:
242   case MachineOperand::MO_TargetIndex:
243     return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
244   case MachineOperand::MO_JumpTableIndex:
245     return getIndex() == Other.getIndex();
246   case MachineOperand::MO_GlobalAddress:
247     return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
248   case MachineOperand::MO_ExternalSymbol:
249     return !strcmp(getSymbolName(), Other.getSymbolName()) &&
250            getOffset() == Other.getOffset();
251   case MachineOperand::MO_BlockAddress:
252     return getBlockAddress() == Other.getBlockAddress() &&
253            getOffset() == Other.getOffset();
254   case MachineOperand::MO_RegisterMask:
255   case MachineOperand::MO_RegisterLiveOut:
256     return getRegMask() == Other.getRegMask();
257   case MachineOperand::MO_MCSymbol:
258     return getMCSymbol() == Other.getMCSymbol();
259   case MachineOperand::MO_CFIIndex:
260     return getCFIIndex() == Other.getCFIIndex();
261   case MachineOperand::MO_Metadata:
262     return getMetadata() == Other.getMetadata();
263   case MachineOperand::MO_IntrinsicID:
264     return getIntrinsicID() == Other.getIntrinsicID();
265   case MachineOperand::MO_Predicate:
266     return getPredicate() == Other.getPredicate();
267   }
268   llvm_unreachable("Invalid machine operand type");
269 }
270 
271 // Note: this must stay exactly in sync with isIdenticalTo above.
272 hash_code llvm::hash_value(const MachineOperand &MO) {
273   switch (MO.getType()) {
274   case MachineOperand::MO_Register:
275     // Register operands don't have target flags.
276     return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef());
277   case MachineOperand::MO_Immediate:
278     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm());
279   case MachineOperand::MO_CImmediate:
280     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm());
281   case MachineOperand::MO_FPImmediate:
282     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm());
283   case MachineOperand::MO_MachineBasicBlock:
284     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB());
285   case MachineOperand::MO_FrameIndex:
286     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
287   case MachineOperand::MO_ConstantPoolIndex:
288   case MachineOperand::MO_TargetIndex:
289     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(),
290                         MO.getOffset());
291   case MachineOperand::MO_JumpTableIndex:
292     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
293   case MachineOperand::MO_ExternalSymbol:
294     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(),
295                         MO.getSymbolName());
296   case MachineOperand::MO_GlobalAddress:
297     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(),
298                         MO.getOffset());
299   case MachineOperand::MO_BlockAddress:
300     return hash_combine(MO.getType(), MO.getTargetFlags(),
301                         MO.getBlockAddress(), MO.getOffset());
302   case MachineOperand::MO_RegisterMask:
303   case MachineOperand::MO_RegisterLiveOut:
304     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask());
305   case MachineOperand::MO_Metadata:
306     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata());
307   case MachineOperand::MO_MCSymbol:
308     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol());
309   case MachineOperand::MO_CFIIndex:
310     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex());
311   case MachineOperand::MO_IntrinsicID:
312     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIntrinsicID());
313   case MachineOperand::MO_Predicate:
314     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getPredicate());
315   }
316   llvm_unreachable("Invalid machine operand type");
317 }
318 
319 void MachineOperand::print(raw_ostream &OS, const TargetRegisterInfo *TRI,
320                            const TargetIntrinsicInfo *IntrinsicInfo) const {
321   ModuleSlotTracker DummyMST(nullptr);
322   print(OS, DummyMST, TRI, IntrinsicInfo);
323 }
324 
325 void MachineOperand::print(raw_ostream &OS, ModuleSlotTracker &MST,
326                            const TargetRegisterInfo *TRI,
327                            const TargetIntrinsicInfo *IntrinsicInfo) const {
328   switch (getType()) {
329   case MachineOperand::MO_Register:
330     OS << PrintReg(getReg(), TRI, getSubReg());
331 
332     if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
333         isInternalRead() || isEarlyClobber() || isTied()) {
334       OS << '<';
335       bool NeedComma = false;
336       if (isDef()) {
337         if (NeedComma) OS << ',';
338         if (isEarlyClobber())
339           OS << "earlyclobber,";
340         if (isImplicit())
341           OS << "imp-";
342         OS << "def";
343         NeedComma = true;
344         // <def,read-undef> only makes sense when getSubReg() is set.
345         // Don't clutter the output otherwise.
346         if (isUndef() && getSubReg())
347           OS << ",read-undef";
348       } else if (isImplicit()) {
349         OS << "imp-use";
350         NeedComma = true;
351       }
352 
353       if (isKill()) {
354         if (NeedComma) OS << ',';
355         OS << "kill";
356         NeedComma = true;
357       }
358       if (isDead()) {
359         if (NeedComma) OS << ',';
360         OS << "dead";
361         NeedComma = true;
362       }
363       if (isUndef() && isUse()) {
364         if (NeedComma) OS << ',';
365         OS << "undef";
366         NeedComma = true;
367       }
368       if (isInternalRead()) {
369         if (NeedComma) OS << ',';
370         OS << "internal";
371         NeedComma = true;
372       }
373       if (isTied()) {
374         if (NeedComma) OS << ',';
375         OS << "tied";
376         if (TiedTo != 15)
377           OS << unsigned(TiedTo - 1);
378       }
379       OS << '>';
380     }
381     break;
382   case MachineOperand::MO_Immediate:
383     OS << getImm();
384     break;
385   case MachineOperand::MO_CImmediate:
386     getCImm()->getValue().print(OS, false);
387     break;
388   case MachineOperand::MO_FPImmediate:
389     if (getFPImm()->getType()->isFloatTy()) {
390       OS << getFPImm()->getValueAPF().convertToFloat();
391     } else if (getFPImm()->getType()->isHalfTy()) {
392       APFloat APF = getFPImm()->getValueAPF();
393       bool Unused;
394       APF.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &Unused);
395       OS << "half " << APF.convertToFloat();
396     } else {
397       OS << getFPImm()->getValueAPF().convertToDouble();
398     }
399     break;
400   case MachineOperand::MO_MachineBasicBlock:
401     OS << "<BB#" << getMBB()->getNumber() << ">";
402     break;
403   case MachineOperand::MO_FrameIndex:
404     OS << "<fi#" << getIndex() << '>';
405     break;
406   case MachineOperand::MO_ConstantPoolIndex:
407     OS << "<cp#" << getIndex();
408     if (getOffset()) OS << "+" << getOffset();
409     OS << '>';
410     break;
411   case MachineOperand::MO_TargetIndex:
412     OS << "<ti#" << getIndex();
413     if (getOffset()) OS << "+" << getOffset();
414     OS << '>';
415     break;
416   case MachineOperand::MO_JumpTableIndex:
417     OS << "<jt#" << getIndex() << '>';
418     break;
419   case MachineOperand::MO_GlobalAddress:
420     OS << "<ga:";
421     getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST);
422     if (getOffset()) OS << "+" << getOffset();
423     OS << '>';
424     break;
425   case MachineOperand::MO_ExternalSymbol:
426     OS << "<es:" << getSymbolName();
427     if (getOffset()) OS << "+" << getOffset();
428     OS << '>';
429     break;
430   case MachineOperand::MO_BlockAddress:
431     OS << '<';
432     getBlockAddress()->printAsOperand(OS, /*PrintType=*/false, MST);
433     if (getOffset()) OS << "+" << getOffset();
434     OS << '>';
435     break;
436   case MachineOperand::MO_RegisterMask: {
437     unsigned NumRegsInMask = 0;
438     unsigned NumRegsEmitted = 0;
439     OS << "<regmask";
440     for (unsigned i = 0; i < TRI->getNumRegs(); ++i) {
441       unsigned MaskWord = i / 32;
442       unsigned MaskBit = i % 32;
443       if (getRegMask()[MaskWord] & (1 << MaskBit)) {
444         if (PrintWholeRegMask || NumRegsEmitted <= 10) {
445           OS << " " << PrintReg(i, TRI);
446           NumRegsEmitted++;
447         }
448         NumRegsInMask++;
449       }
450     }
451     if (NumRegsEmitted != NumRegsInMask)
452       OS << " and " << (NumRegsInMask - NumRegsEmitted) << " more...";
453     OS << ">";
454     break;
455   }
456   case MachineOperand::MO_RegisterLiveOut:
457     OS << "<regliveout>";
458     break;
459   case MachineOperand::MO_Metadata:
460     OS << '<';
461     getMetadata()->printAsOperand(OS, MST);
462     OS << '>';
463     break;
464   case MachineOperand::MO_MCSymbol:
465     OS << "<MCSym=" << *getMCSymbol() << '>';
466     break;
467   case MachineOperand::MO_CFIIndex:
468     OS << "<call frame instruction>";
469     break;
470   case MachineOperand::MO_IntrinsicID: {
471     Intrinsic::ID ID = getIntrinsicID();
472     if (ID < Intrinsic::num_intrinsics)
473       OS << "<intrinsic:@" << Intrinsic::getName(ID, None) << ')';
474     else if (IntrinsicInfo)
475       OS << "<intrinsic:@" << IntrinsicInfo->getName(ID) << ')';
476     else
477       OS << "<intrinsic:" << ID << '>';
478     break;
479   }
480   case MachineOperand::MO_Predicate: {
481     auto Pred = static_cast<CmpInst::Predicate>(getPredicate());
482     OS << '<' << (CmpInst::isIntPredicate(Pred) ? "intpred" : "floatpred")
483        << CmpInst::getPredicateName(Pred) << '>';
484   }
485   }
486   if (unsigned TF = getTargetFlags())
487     OS << "[TF=" << TF << ']';
488 }
489 
490 //===----------------------------------------------------------------------===//
491 // MachineMemOperand Implementation
492 //===----------------------------------------------------------------------===//
493 
494 /// getAddrSpace - Return the LLVM IR address space number that this pointer
495 /// points into.
496 unsigned MachinePointerInfo::getAddrSpace() const {
497   if (V.isNull() || V.is<const PseudoSourceValue*>()) return 0;
498   return cast<PointerType>(V.get<const Value*>()->getType())->getAddressSpace();
499 }
500 
501 /// getConstantPool - Return a MachinePointerInfo record that refers to the
502 /// constant pool.
503 MachinePointerInfo MachinePointerInfo::getConstantPool(MachineFunction &MF) {
504   return MachinePointerInfo(MF.getPSVManager().getConstantPool());
505 }
506 
507 /// getFixedStack - Return a MachinePointerInfo record that refers to the
508 /// the specified FrameIndex.
509 MachinePointerInfo MachinePointerInfo::getFixedStack(MachineFunction &MF,
510                                                      int FI, int64_t Offset) {
511   return MachinePointerInfo(MF.getPSVManager().getFixedStack(FI), Offset);
512 }
513 
514 MachinePointerInfo MachinePointerInfo::getJumpTable(MachineFunction &MF) {
515   return MachinePointerInfo(MF.getPSVManager().getJumpTable());
516 }
517 
518 MachinePointerInfo MachinePointerInfo::getGOT(MachineFunction &MF) {
519   return MachinePointerInfo(MF.getPSVManager().getGOT());
520 }
521 
522 MachinePointerInfo MachinePointerInfo::getStack(MachineFunction &MF,
523                                                 int64_t Offset) {
524   return MachinePointerInfo(MF.getPSVManager().getStack(), Offset);
525 }
526 
527 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, Flags f,
528                                      uint64_t s, unsigned int a,
529                                      const AAMDNodes &AAInfo,
530                                      const MDNode *Ranges)
531     : PtrInfo(ptrinfo), Size(s), FlagVals(f), BaseAlignLog2(Log2_32(a) + 1),
532       AAInfo(AAInfo), Ranges(Ranges) {
533   assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() ||
534           isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) &&
535          "invalid pointer value");
536   assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
537   assert((isLoad() || isStore()) && "Not a load/store!");
538 }
539 
540 /// Profile - Gather unique data for the object.
541 ///
542 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
543   ID.AddInteger(getOffset());
544   ID.AddInteger(Size);
545   ID.AddPointer(getOpaqueValue());
546   ID.AddInteger(getFlags());
547   ID.AddInteger(getBaseAlignment());
548 }
549 
550 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
551   // The Value and Offset may differ due to CSE. But the flags and size
552   // should be the same.
553   assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
554   assert(MMO->getSize() == getSize() && "Size mismatch!");
555 
556   if (MMO->getBaseAlignment() >= getBaseAlignment()) {
557     // Update the alignment value.
558     BaseAlignLog2 = Log2_32(MMO->getBaseAlignment()) + 1;
559     // Also update the base and offset, because the new alignment may
560     // not be applicable with the old ones.
561     PtrInfo = MMO->PtrInfo;
562   }
563 }
564 
565 /// getAlignment - Return the minimum known alignment in bytes of the
566 /// actual memory reference.
567 uint64_t MachineMemOperand::getAlignment() const {
568   return MinAlign(getBaseAlignment(), getOffset());
569 }
570 
571 void MachineMemOperand::print(raw_ostream &OS) const {
572   ModuleSlotTracker DummyMST(nullptr);
573   print(OS, DummyMST);
574 }
575 void MachineMemOperand::print(raw_ostream &OS, ModuleSlotTracker &MST) const {
576   assert((isLoad() || isStore()) &&
577          "SV has to be a load, store or both.");
578 
579   if (isVolatile())
580     OS << "Volatile ";
581 
582   if (isLoad())
583     OS << "LD";
584   if (isStore())
585     OS << "ST";
586   OS << getSize();
587 
588   // Print the address information.
589   OS << "[";
590   if (const Value *V = getValue())
591     V->printAsOperand(OS, /*PrintType=*/false, MST);
592   else if (const PseudoSourceValue *PSV = getPseudoValue())
593     PSV->printCustom(OS);
594   else
595     OS << "<unknown>";
596 
597   unsigned AS = getAddrSpace();
598   if (AS != 0)
599     OS << "(addrspace=" << AS << ')';
600 
601   // If the alignment of the memory reference itself differs from the alignment
602   // of the base pointer, print the base alignment explicitly, next to the base
603   // pointer.
604   if (getBaseAlignment() != getAlignment())
605     OS << "(align=" << getBaseAlignment() << ")";
606 
607   if (getOffset() != 0)
608     OS << "+" << getOffset();
609   OS << "]";
610 
611   // Print the alignment of the reference.
612   if (getBaseAlignment() != getAlignment() || getBaseAlignment() != getSize())
613     OS << "(align=" << getAlignment() << ")";
614 
615   // Print TBAA info.
616   if (const MDNode *TBAAInfo = getAAInfo().TBAA) {
617     OS << "(tbaa=";
618     if (TBAAInfo->getNumOperands() > 0)
619       TBAAInfo->getOperand(0)->printAsOperand(OS, MST);
620     else
621       OS << "<unknown>";
622     OS << ")";
623   }
624 
625   // Print AA scope info.
626   if (const MDNode *ScopeInfo = getAAInfo().Scope) {
627     OS << "(alias.scope=";
628     if (ScopeInfo->getNumOperands() > 0)
629       for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) {
630         ScopeInfo->getOperand(i)->printAsOperand(OS, MST);
631         if (i != ie-1)
632           OS << ",";
633       }
634     else
635       OS << "<unknown>";
636     OS << ")";
637   }
638 
639   // Print AA noalias scope info.
640   if (const MDNode *NoAliasInfo = getAAInfo().NoAlias) {
641     OS << "(noalias=";
642     if (NoAliasInfo->getNumOperands() > 0)
643       for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) {
644         NoAliasInfo->getOperand(i)->printAsOperand(OS, MST);
645         if (i != ie-1)
646           OS << ",";
647       }
648     else
649       OS << "<unknown>";
650     OS << ")";
651   }
652 
653   if (isNonTemporal())
654     OS << "(nontemporal)";
655   if (isDereferenceable())
656     OS << "(dereferenceable)";
657   if (isInvariant())
658     OS << "(invariant)";
659 }
660 
661 //===----------------------------------------------------------------------===//
662 // MachineInstr Implementation
663 //===----------------------------------------------------------------------===//
664 
665 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
666   if (MCID->ImplicitDefs)
667     for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
668            ++ImpDefs)
669       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
670   if (MCID->ImplicitUses)
671     for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
672            ++ImpUses)
673       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
674 }
675 
676 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
677 /// implicit operands. It reserves space for the number of operands specified by
678 /// the MCInstrDesc.
679 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
680                            DebugLoc dl, bool NoImp)
681     : MCID(&tid), Parent(nullptr), Operands(nullptr), NumOperands(0), Flags(0),
682       AsmPrinterFlags(0), NumMemRefs(0), MemRefs(nullptr),
683       debugLoc(std::move(dl)) {
684   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
685 
686   // Reserve space for the expected number of operands.
687   if (unsigned NumOps = MCID->getNumOperands() +
688     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
689     CapOperands = OperandCapacity::get(NumOps);
690     Operands = MF.allocateOperandArray(CapOperands);
691   }
692 
693   if (!NoImp)
694     addImplicitDefUseOperands(MF);
695 }
696 
697 /// MachineInstr ctor - Copies MachineInstr arg exactly
698 ///
699 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
700     : MCID(&MI.getDesc()), Parent(nullptr), Operands(nullptr), NumOperands(0),
701       Flags(0), AsmPrinterFlags(0), NumMemRefs(MI.NumMemRefs),
702       MemRefs(MI.MemRefs), debugLoc(MI.getDebugLoc()) {
703   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
704 
705   CapOperands = OperandCapacity::get(MI.getNumOperands());
706   Operands = MF.allocateOperandArray(CapOperands);
707 
708   // Copy operands.
709   for (const MachineOperand &MO : MI.operands())
710     addOperand(MF, MO);
711 
712   // Copy all the sensible flags.
713   setFlags(MI.Flags);
714 }
715 
716 /// getRegInfo - If this instruction is embedded into a MachineFunction,
717 /// return the MachineRegisterInfo object for the current function, otherwise
718 /// return null.
719 MachineRegisterInfo *MachineInstr::getRegInfo() {
720   if (MachineBasicBlock *MBB = getParent())
721     return &MBB->getParent()->getRegInfo();
722   return nullptr;
723 }
724 
725 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
726 /// this instruction from their respective use lists.  This requires that the
727 /// operands already be on their use lists.
728 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
729   for (MachineOperand &MO : operands())
730     if (MO.isReg())
731       MRI.removeRegOperandFromUseList(&MO);
732 }
733 
734 /// AddRegOperandsToUseLists - Add all of the register operands in
735 /// this instruction from their respective use lists.  This requires that the
736 /// operands not be on their use lists yet.
737 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
738   for (MachineOperand &MO : operands())
739     if (MO.isReg())
740       MRI.addRegOperandToUseList(&MO);
741 }
742 
743 void MachineInstr::addOperand(const MachineOperand &Op) {
744   MachineBasicBlock *MBB = getParent();
745   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
746   MachineFunction *MF = MBB->getParent();
747   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
748   addOperand(*MF, Op);
749 }
750 
751 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
752 /// ranges. If MRI is non-null also update use-def chains.
753 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
754                          unsigned NumOps, MachineRegisterInfo *MRI) {
755   if (MRI)
756     return MRI->moveOperands(Dst, Src, NumOps);
757 
758   // MachineOperand is a trivially copyable type so we can just use memmove.
759   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
760 }
761 
762 /// addOperand - Add the specified operand to the instruction.  If it is an
763 /// implicit operand, it is added to the end of the operand list.  If it is
764 /// an explicit operand it is added at the end of the explicit operand list
765 /// (before the first implicit operand).
766 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
767   assert(MCID && "Cannot add operands before providing an instr descriptor");
768 
769   // Check if we're adding one of our existing operands.
770   if (&Op >= Operands && &Op < Operands + NumOperands) {
771     // This is unusual: MI->addOperand(MI->getOperand(i)).
772     // If adding Op requires reallocating or moving existing operands around,
773     // the Op reference could go stale. Support it by copying Op.
774     MachineOperand CopyOp(Op);
775     return addOperand(MF, CopyOp);
776   }
777 
778   // Find the insert location for the new operand.  Implicit registers go at
779   // the end, everything else goes before the implicit regs.
780   //
781   // FIXME: Allow mixed explicit and implicit operands on inline asm.
782   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
783   // implicit-defs, but they must not be moved around.  See the FIXME in
784   // InstrEmitter.cpp.
785   unsigned OpNo = getNumOperands();
786   bool isImpReg = Op.isReg() && Op.isImplicit();
787   if (!isImpReg && !isInlineAsm()) {
788     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
789       --OpNo;
790       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
791     }
792   }
793 
794 #ifndef NDEBUG
795   bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata;
796   // OpNo now points as the desired insertion point.  Unless this is a variadic
797   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
798   // RegMask operands go between the explicit and implicit operands.
799   assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
800           OpNo < MCID->getNumOperands() || isMetaDataOp) &&
801          "Trying to add an operand to a machine instr that is already done!");
802 #endif
803 
804   MachineRegisterInfo *MRI = getRegInfo();
805 
806   // Determine if the Operands array needs to be reallocated.
807   // Save the old capacity and operand array.
808   OperandCapacity OldCap = CapOperands;
809   MachineOperand *OldOperands = Operands;
810   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
811     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
812     Operands = MF.allocateOperandArray(CapOperands);
813     // Move the operands before the insertion point.
814     if (OpNo)
815       moveOperands(Operands, OldOperands, OpNo, MRI);
816   }
817 
818   // Move the operands following the insertion point.
819   if (OpNo != NumOperands)
820     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
821                  MRI);
822   ++NumOperands;
823 
824   // Deallocate the old operand array.
825   if (OldOperands != Operands && OldOperands)
826     MF.deallocateOperandArray(OldCap, OldOperands);
827 
828   // Copy Op into place. It still needs to be inserted into the MRI use lists.
829   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
830   NewMO->ParentMI = this;
831 
832   // When adding a register operand, tell MRI about it.
833   if (NewMO->isReg()) {
834     // Ensure isOnRegUseList() returns false, regardless of Op's status.
835     NewMO->Contents.Reg.Prev = nullptr;
836     // Ignore existing ties. This is not a property that can be copied.
837     NewMO->TiedTo = 0;
838     // Add the new operand to MRI, but only for instructions in an MBB.
839     if (MRI)
840       MRI->addRegOperandToUseList(NewMO);
841     // The MCID operand information isn't accurate until we start adding
842     // explicit operands. The implicit operands are added first, then the
843     // explicits are inserted before them.
844     if (!isImpReg) {
845       // Tie uses to defs as indicated in MCInstrDesc.
846       if (NewMO->isUse()) {
847         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
848         if (DefIdx != -1)
849           tieOperands(DefIdx, OpNo);
850       }
851       // If the register operand is flagged as early, mark the operand as such.
852       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
853         NewMO->setIsEarlyClobber(true);
854     }
855   }
856 }
857 
858 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
859 /// fewer operand than it started with.
860 ///
861 void MachineInstr::RemoveOperand(unsigned OpNo) {
862   assert(OpNo < getNumOperands() && "Invalid operand number");
863   untieRegOperand(OpNo);
864 
865 #ifndef NDEBUG
866   // Moving tied operands would break the ties.
867   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
868     if (Operands[i].isReg())
869       assert(!Operands[i].isTied() && "Cannot move tied operands");
870 #endif
871 
872   MachineRegisterInfo *MRI = getRegInfo();
873   if (MRI && Operands[OpNo].isReg())
874     MRI->removeRegOperandFromUseList(Operands + OpNo);
875 
876   // Don't call the MachineOperand destructor. A lot of this code depends on
877   // MachineOperand having a trivial destructor anyway, and adding a call here
878   // wouldn't make it 'destructor-correct'.
879 
880   if (unsigned N = NumOperands - 1 - OpNo)
881     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
882   --NumOperands;
883 }
884 
885 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
886 /// This function should be used only occasionally. The setMemRefs function
887 /// is the primary method for setting up a MachineInstr's MemRefs list.
888 void MachineInstr::addMemOperand(MachineFunction &MF,
889                                  MachineMemOperand *MO) {
890   mmo_iterator OldMemRefs = MemRefs;
891   unsigned OldNumMemRefs = NumMemRefs;
892 
893   unsigned NewNum = NumMemRefs + 1;
894   mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
895 
896   std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs);
897   NewMemRefs[NewNum - 1] = MO;
898   setMemRefs(NewMemRefs, NewMemRefs + NewNum);
899 }
900 
901 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
902 /// identical.
903 static bool hasIdenticalMMOs(const MachineInstr &MI1, const MachineInstr &MI2) {
904   auto I1 = MI1.memoperands_begin(), E1 = MI1.memoperands_end();
905   auto I2 = MI2.memoperands_begin(), E2 = MI2.memoperands_end();
906   if ((E1 - I1) != (E2 - I2))
907     return false;
908   for (; I1 != E1; ++I1, ++I2) {
909     if (**I1 != **I2)
910       return false;
911   }
912   return true;
913 }
914 
915 std::pair<MachineInstr::mmo_iterator, unsigned>
916 MachineInstr::mergeMemRefsWith(const MachineInstr& Other) {
917 
918   // If either of the incoming memrefs are empty, we must be conservative and
919   // treat this as if we've exhausted our space for memrefs and dropped them.
920   if (memoperands_empty() || Other.memoperands_empty())
921     return std::make_pair(nullptr, 0);
922 
923   // If both instructions have identical memrefs, we don't need to merge them.
924   // Since many instructions have a single memref, and we tend to merge things
925   // like pairs of loads from the same location, this catches a large number of
926   // cases in practice.
927   if (hasIdenticalMMOs(*this, Other))
928     return std::make_pair(MemRefs, NumMemRefs);
929 
930   // TODO: consider uniquing elements within the operand lists to reduce
931   // space usage and fall back to conservative information less often.
932   size_t CombinedNumMemRefs = NumMemRefs + Other.NumMemRefs;
933 
934   // If we don't have enough room to store this many memrefs, be conservative
935   // and drop them.  Otherwise, we'd fail asserts when trying to add them to
936   // the new instruction.
937   if (CombinedNumMemRefs != uint8_t(CombinedNumMemRefs))
938     return std::make_pair(nullptr, 0);
939 
940   MachineFunction *MF = getParent()->getParent();
941   mmo_iterator MemBegin = MF->allocateMemRefsArray(CombinedNumMemRefs);
942   mmo_iterator MemEnd = std::copy(memoperands_begin(), memoperands_end(),
943                                   MemBegin);
944   MemEnd = std::copy(Other.memoperands_begin(), Other.memoperands_end(),
945                      MemEnd);
946   assert(MemEnd - MemBegin == (ptrdiff_t)CombinedNumMemRefs &&
947          "missing memrefs");
948 
949   return std::make_pair(MemBegin, CombinedNumMemRefs);
950 }
951 
952 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const {
953   assert(!isBundledWithPred() && "Must be called on bundle header");
954   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
955     if (MII->getDesc().getFlags() & Mask) {
956       if (Type == AnyInBundle)
957         return true;
958     } else {
959       if (Type == AllInBundle && !MII->isBundle())
960         return false;
961     }
962     // This was the last instruction in the bundle.
963     if (!MII->isBundledWithSucc())
964       return Type == AllInBundle;
965   }
966 }
967 
968 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
969                                  MICheckType Check) const {
970   // If opcodes or number of operands are not the same then the two
971   // instructions are obviously not identical.
972   if (Other.getOpcode() != getOpcode() ||
973       Other.getNumOperands() != getNumOperands())
974     return false;
975 
976   if (isBundle()) {
977     // Both instructions are bundles, compare MIs inside the bundle.
978     MachineBasicBlock::const_instr_iterator I1 = getIterator();
979     MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end();
980     MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
981     MachineBasicBlock::const_instr_iterator E2 = Other.getParent()->instr_end();
982     while (++I1 != E1 && I1->isInsideBundle()) {
983       ++I2;
984       if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(*I2, Check))
985         return false;
986     }
987   }
988 
989   // Check operands to make sure they match.
990   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
991     const MachineOperand &MO = getOperand(i);
992     const MachineOperand &OMO = Other.getOperand(i);
993     if (!MO.isReg()) {
994       if (!MO.isIdenticalTo(OMO))
995         return false;
996       continue;
997     }
998 
999     // Clients may or may not want to ignore defs when testing for equality.
1000     // For example, machine CSE pass only cares about finding common
1001     // subexpressions, so it's safe to ignore virtual register defs.
1002     if (MO.isDef()) {
1003       if (Check == IgnoreDefs)
1004         continue;
1005       else if (Check == IgnoreVRegDefs) {
1006         if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
1007             TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
1008           if (MO.getReg() != OMO.getReg())
1009             return false;
1010       } else {
1011         if (!MO.isIdenticalTo(OMO))
1012           return false;
1013         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
1014           return false;
1015       }
1016     } else {
1017       if (!MO.isIdenticalTo(OMO))
1018         return false;
1019       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
1020         return false;
1021     }
1022   }
1023   // If DebugLoc does not match then two dbg.values are not identical.
1024   if (isDebugValue())
1025     if (getDebugLoc() && Other.getDebugLoc() &&
1026         getDebugLoc() != Other.getDebugLoc())
1027       return false;
1028   return true;
1029 }
1030 
1031 MachineInstr *MachineInstr::removeFromParent() {
1032   assert(getParent() && "Not embedded in a basic block!");
1033   return getParent()->remove(this);
1034 }
1035 
1036 MachineInstr *MachineInstr::removeFromBundle() {
1037   assert(getParent() && "Not embedded in a basic block!");
1038   return getParent()->remove_instr(this);
1039 }
1040 
1041 void MachineInstr::eraseFromParent() {
1042   assert(getParent() && "Not embedded in a basic block!");
1043   getParent()->erase(this);
1044 }
1045 
1046 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
1047   assert(getParent() && "Not embedded in a basic block!");
1048   MachineBasicBlock *MBB = getParent();
1049   MachineFunction *MF = MBB->getParent();
1050   assert(MF && "Not embedded in a function!");
1051 
1052   MachineInstr *MI = (MachineInstr *)this;
1053   MachineRegisterInfo &MRI = MF->getRegInfo();
1054 
1055   for (const MachineOperand &MO : MI->operands()) {
1056     if (!MO.isReg() || !MO.isDef())
1057       continue;
1058     unsigned Reg = MO.getReg();
1059     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1060       continue;
1061     MRI.markUsesInDebugValueAsUndef(Reg);
1062   }
1063   MI->eraseFromParent();
1064 }
1065 
1066 void MachineInstr::eraseFromBundle() {
1067   assert(getParent() && "Not embedded in a basic block!");
1068   getParent()->erase_instr(this);
1069 }
1070 
1071 /// getNumExplicitOperands - Returns the number of non-implicit operands.
1072 ///
1073 unsigned MachineInstr::getNumExplicitOperands() const {
1074   unsigned NumOperands = MCID->getNumOperands();
1075   if (!MCID->isVariadic())
1076     return NumOperands;
1077 
1078   for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
1079     const MachineOperand &MO = getOperand(i);
1080     if (!MO.isReg() || !MO.isImplicit())
1081       NumOperands++;
1082   }
1083   return NumOperands;
1084 }
1085 
1086 void MachineInstr::bundleWithPred() {
1087   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
1088   setFlag(BundledPred);
1089   MachineBasicBlock::instr_iterator Pred = getIterator();
1090   --Pred;
1091   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
1092   Pred->setFlag(BundledSucc);
1093 }
1094 
1095 void MachineInstr::bundleWithSucc() {
1096   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
1097   setFlag(BundledSucc);
1098   MachineBasicBlock::instr_iterator Succ = getIterator();
1099   ++Succ;
1100   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
1101   Succ->setFlag(BundledPred);
1102 }
1103 
1104 void MachineInstr::unbundleFromPred() {
1105   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
1106   clearFlag(BundledPred);
1107   MachineBasicBlock::instr_iterator Pred = getIterator();
1108   --Pred;
1109   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
1110   Pred->clearFlag(BundledSucc);
1111 }
1112 
1113 void MachineInstr::unbundleFromSucc() {
1114   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
1115   clearFlag(BundledSucc);
1116   MachineBasicBlock::instr_iterator Succ = getIterator();
1117   ++Succ;
1118   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
1119   Succ->clearFlag(BundledPred);
1120 }
1121 
1122 bool MachineInstr::isStackAligningInlineAsm() const {
1123   if (isInlineAsm()) {
1124     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1125     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1126       return true;
1127   }
1128   return false;
1129 }
1130 
1131 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
1132   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
1133   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1134   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
1135 }
1136 
1137 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
1138                                        unsigned *GroupNo) const {
1139   assert(isInlineAsm() && "Expected an inline asm instruction");
1140   assert(OpIdx < getNumOperands() && "OpIdx out of range");
1141 
1142   // Ignore queries about the initial operands.
1143   if (OpIdx < InlineAsm::MIOp_FirstOperand)
1144     return -1;
1145 
1146   unsigned Group = 0;
1147   unsigned NumOps;
1148   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1149        i += NumOps) {
1150     const MachineOperand &FlagMO = getOperand(i);
1151     // If we reach the implicit register operands, stop looking.
1152     if (!FlagMO.isImm())
1153       return -1;
1154     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1155     if (i + NumOps > OpIdx) {
1156       if (GroupNo)
1157         *GroupNo = Group;
1158       return i;
1159     }
1160     ++Group;
1161   }
1162   return -1;
1163 }
1164 
1165 const DILocalVariable *MachineInstr::getDebugVariable() const {
1166   assert(isDebugValue() && "not a DBG_VALUE");
1167   return cast<DILocalVariable>(getOperand(2).getMetadata());
1168 }
1169 
1170 const DIExpression *MachineInstr::getDebugExpression() const {
1171   assert(isDebugValue() && "not a DBG_VALUE");
1172   return cast<DIExpression>(getOperand(3).getMetadata());
1173 }
1174 
1175 const TargetRegisterClass*
1176 MachineInstr::getRegClassConstraint(unsigned OpIdx,
1177                                     const TargetInstrInfo *TII,
1178                                     const TargetRegisterInfo *TRI) const {
1179   assert(getParent() && "Can't have an MBB reference here!");
1180   assert(getParent()->getParent() && "Can't have an MF reference here!");
1181   const MachineFunction &MF = *getParent()->getParent();
1182 
1183   // Most opcodes have fixed constraints in their MCInstrDesc.
1184   if (!isInlineAsm())
1185     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
1186 
1187   if (!getOperand(OpIdx).isReg())
1188     return nullptr;
1189 
1190   // For tied uses on inline asm, get the constraint from the def.
1191   unsigned DefIdx;
1192   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
1193     OpIdx = DefIdx;
1194 
1195   // Inline asm stores register class constraints in the flag word.
1196   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
1197   if (FlagIdx < 0)
1198     return nullptr;
1199 
1200   unsigned Flag = getOperand(FlagIdx).getImm();
1201   unsigned RCID;
1202   if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
1203        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
1204        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
1205       InlineAsm::hasRegClassConstraint(Flag, RCID))
1206     return TRI->getRegClass(RCID);
1207 
1208   // Assume that all registers in a memory operand are pointers.
1209   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
1210     return TRI->getPointerRegClass(MF);
1211 
1212   return nullptr;
1213 }
1214 
1215 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
1216     unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
1217     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
1218   // Check every operands inside the bundle if we have
1219   // been asked to.
1220   if (ExploreBundle)
1221     for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
1222          ++OpndIt)
1223       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
1224           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
1225   else
1226     // Otherwise, just check the current operands.
1227     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
1228       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
1229   return CurRC;
1230 }
1231 
1232 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
1233     unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
1234     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
1235   assert(CurRC && "Invalid initial register class");
1236   // Check if Reg is constrained by some of its use/def from MI.
1237   const MachineOperand &MO = getOperand(OpIdx);
1238   if (!MO.isReg() || MO.getReg() != Reg)
1239     return CurRC;
1240   // If yes, accumulate the constraints through the operand.
1241   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
1242 }
1243 
1244 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
1245     unsigned OpIdx, const TargetRegisterClass *CurRC,
1246     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
1247   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
1248   const MachineOperand &MO = getOperand(OpIdx);
1249   assert(MO.isReg() &&
1250          "Cannot get register constraints for non-register operand");
1251   assert(CurRC && "Invalid initial register class");
1252   if (unsigned SubIdx = MO.getSubReg()) {
1253     if (OpRC)
1254       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
1255     else
1256       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
1257   } else if (OpRC)
1258     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
1259   return CurRC;
1260 }
1261 
1262 /// Return the number of instructions inside the MI bundle, not counting the
1263 /// header instruction.
1264 unsigned MachineInstr::getBundleSize() const {
1265   MachineBasicBlock::const_instr_iterator I = getIterator();
1266   unsigned Size = 0;
1267   while (I->isBundledWithSucc()) {
1268     ++Size;
1269     ++I;
1270   }
1271   return Size;
1272 }
1273 
1274 /// Returns true if the MachineInstr has an implicit-use operand of exactly
1275 /// the given register (not considering sub/super-registers).
1276 bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const {
1277   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1278     const MachineOperand &MO = getOperand(i);
1279     if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
1280       return true;
1281   }
1282   return false;
1283 }
1284 
1285 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
1286 /// the specific register or -1 if it is not found. It further tightens
1287 /// the search criteria to a use that kills the register if isKill is true.
1288 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
1289                                           const TargetRegisterInfo *TRI) const {
1290   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1291     const MachineOperand &MO = getOperand(i);
1292     if (!MO.isReg() || !MO.isUse())
1293       continue;
1294     unsigned MOReg = MO.getReg();
1295     if (!MOReg)
1296       continue;
1297     if (MOReg == Reg ||
1298         (TRI &&
1299          TargetRegisterInfo::isPhysicalRegister(MOReg) &&
1300          TargetRegisterInfo::isPhysicalRegister(Reg) &&
1301          TRI->isSubRegister(MOReg, Reg)))
1302       if (!isKill || MO.isKill())
1303         return i;
1304   }
1305   return -1;
1306 }
1307 
1308 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1309 /// indicating if this instruction reads or writes Reg. This also considers
1310 /// partial defines.
1311 std::pair<bool,bool>
1312 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
1313                                          SmallVectorImpl<unsigned> *Ops) const {
1314   bool PartDef = false; // Partial redefine.
1315   bool FullDef = false; // Full define.
1316   bool Use = false;
1317 
1318   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1319     const MachineOperand &MO = getOperand(i);
1320     if (!MO.isReg() || MO.getReg() != Reg)
1321       continue;
1322     if (Ops)
1323       Ops->push_back(i);
1324     if (MO.isUse())
1325       Use |= !MO.isUndef();
1326     else if (MO.getSubReg() && !MO.isUndef())
1327       // A partial <def,undef> doesn't count as reading the register.
1328       PartDef = true;
1329     else
1330       FullDef = true;
1331   }
1332   // A partial redefine uses Reg unless there is also a full define.
1333   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1334 }
1335 
1336 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1337 /// the specified register or -1 if it is not found. If isDead is true, defs
1338 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1339 /// also checks if there is a def of a super-register.
1340 int
1341 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
1342                                         const TargetRegisterInfo *TRI) const {
1343   bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
1344   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1345     const MachineOperand &MO = getOperand(i);
1346     // Accept regmask operands when Overlap is set.
1347     // Ignore them when looking for a specific def operand (Overlap == false).
1348     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1349       return i;
1350     if (!MO.isReg() || !MO.isDef())
1351       continue;
1352     unsigned MOReg = MO.getReg();
1353     bool Found = (MOReg == Reg);
1354     if (!Found && TRI && isPhys &&
1355         TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1356       if (Overlap)
1357         Found = TRI->regsOverlap(MOReg, Reg);
1358       else
1359         Found = TRI->isSubRegister(MOReg, Reg);
1360     }
1361     if (Found && (!isDead || MO.isDead()))
1362       return i;
1363   }
1364   return -1;
1365 }
1366 
1367 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1368 /// operand list that is used to represent the predicate. It returns -1 if
1369 /// none is found.
1370 int MachineInstr::findFirstPredOperandIdx() const {
1371   // Don't call MCID.findFirstPredOperandIdx() because this variant
1372   // is sometimes called on an instruction that's not yet complete, and
1373   // so the number of operands is less than the MCID indicates. In
1374   // particular, the PTX target does this.
1375   const MCInstrDesc &MCID = getDesc();
1376   if (MCID.isPredicable()) {
1377     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1378       if (MCID.OpInfo[i].isPredicate())
1379         return i;
1380   }
1381 
1382   return -1;
1383 }
1384 
1385 // MachineOperand::TiedTo is 4 bits wide.
1386 const unsigned TiedMax = 15;
1387 
1388 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1389 ///
1390 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1391 /// field. TiedTo can have these values:
1392 ///
1393 /// 0:              Operand is not tied to anything.
1394 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1395 /// TiedMax:        Tied to an operand >= TiedMax-1.
1396 ///
1397 /// The tied def must be one of the first TiedMax operands on a normal
1398 /// instruction. INLINEASM instructions allow more tied defs.
1399 ///
1400 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1401   MachineOperand &DefMO = getOperand(DefIdx);
1402   MachineOperand &UseMO = getOperand(UseIdx);
1403   assert(DefMO.isDef() && "DefIdx must be a def operand");
1404   assert(UseMO.isUse() && "UseIdx must be a use operand");
1405   assert(!DefMO.isTied() && "Def is already tied to another use");
1406   assert(!UseMO.isTied() && "Use is already tied to another def");
1407 
1408   if (DefIdx < TiedMax)
1409     UseMO.TiedTo = DefIdx + 1;
1410   else {
1411     // Inline asm can use the group descriptors to find tied operands, but on
1412     // normal instruction, the tied def must be within the first TiedMax
1413     // operands.
1414     assert(isInlineAsm() && "DefIdx out of range");
1415     UseMO.TiedTo = TiedMax;
1416   }
1417 
1418   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1419   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1420 }
1421 
1422 /// Given the index of a tied register operand, find the operand it is tied to.
1423 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1424 /// which must exist.
1425 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1426   const MachineOperand &MO = getOperand(OpIdx);
1427   assert(MO.isTied() && "Operand isn't tied");
1428 
1429   // Normally TiedTo is in range.
1430   if (MO.TiedTo < TiedMax)
1431     return MO.TiedTo - 1;
1432 
1433   // Uses on normal instructions can be out of range.
1434   if (!isInlineAsm()) {
1435     // Normal tied defs must be in the 0..TiedMax-1 range.
1436     if (MO.isUse())
1437       return TiedMax - 1;
1438     // MO is a def. Search for the tied use.
1439     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1440       const MachineOperand &UseMO = getOperand(i);
1441       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1442         return i;
1443     }
1444     llvm_unreachable("Can't find tied use");
1445   }
1446 
1447   // Now deal with inline asm by parsing the operand group descriptor flags.
1448   // Find the beginning of each operand group.
1449   SmallVector<unsigned, 8> GroupIdx;
1450   unsigned OpIdxGroup = ~0u;
1451   unsigned NumOps;
1452   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1453        i += NumOps) {
1454     const MachineOperand &FlagMO = getOperand(i);
1455     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1456     unsigned CurGroup = GroupIdx.size();
1457     GroupIdx.push_back(i);
1458     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1459     // OpIdx belongs to this operand group.
1460     if (OpIdx > i && OpIdx < i + NumOps)
1461       OpIdxGroup = CurGroup;
1462     unsigned TiedGroup;
1463     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1464       continue;
1465     // Operands in this group are tied to operands in TiedGroup which must be
1466     // earlier. Find the number of operands between the two groups.
1467     unsigned Delta = i - GroupIdx[TiedGroup];
1468 
1469     // OpIdx is a use tied to TiedGroup.
1470     if (OpIdxGroup == CurGroup)
1471       return OpIdx - Delta;
1472 
1473     // OpIdx is a def tied to this use group.
1474     if (OpIdxGroup == TiedGroup)
1475       return OpIdx + Delta;
1476   }
1477   llvm_unreachable("Invalid tied operand on inline asm");
1478 }
1479 
1480 /// clearKillInfo - Clears kill flags on all operands.
1481 ///
1482 void MachineInstr::clearKillInfo() {
1483   for (MachineOperand &MO : operands()) {
1484     if (MO.isReg() && MO.isUse())
1485       MO.setIsKill(false);
1486   }
1487 }
1488 
1489 void MachineInstr::substituteRegister(unsigned FromReg,
1490                                       unsigned ToReg,
1491                                       unsigned SubIdx,
1492                                       const TargetRegisterInfo &RegInfo) {
1493   if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
1494     if (SubIdx)
1495       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1496     for (MachineOperand &MO : operands()) {
1497       if (!MO.isReg() || MO.getReg() != FromReg)
1498         continue;
1499       MO.substPhysReg(ToReg, RegInfo);
1500     }
1501   } else {
1502     for (MachineOperand &MO : operands()) {
1503       if (!MO.isReg() || MO.getReg() != FromReg)
1504         continue;
1505       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1506     }
1507   }
1508 }
1509 
1510 /// isSafeToMove - Return true if it is safe to move this instruction. If
1511 /// SawStore is set to true, it means that there is a store (or call) between
1512 /// the instruction's location and its intended destination.
1513 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const {
1514   // Ignore stuff that we obviously can't move.
1515   //
1516   // Treat volatile loads as stores. This is not strictly necessary for
1517   // volatiles, but it is required for atomic loads. It is not allowed to move
1518   // a load across an atomic load with Ordering > Monotonic.
1519   if (mayStore() || isCall() ||
1520       (mayLoad() && hasOrderedMemoryRef())) {
1521     SawStore = true;
1522     return false;
1523   }
1524 
1525   if (isPosition() || isDebugValue() || isTerminator() ||
1526       hasUnmodeledSideEffects())
1527     return false;
1528 
1529   // See if this instruction does a load.  If so, we have to guarantee that the
1530   // loaded value doesn't change between the load and the its intended
1531   // destination. The check for isInvariantLoad gives the targe the chance to
1532   // classify the load as always returning a constant, e.g. a constant pool
1533   // load.
1534   if (mayLoad() && !isDereferenceableInvariantLoad(AA))
1535     // Otherwise, this is a real load.  If there is a store between the load and
1536     // end of block, we can't move it.
1537     return !SawStore;
1538 
1539   return true;
1540 }
1541 
1542 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1543 /// or volatile memory reference, or if the information describing the memory
1544 /// reference is not available. Return false if it is known to have no ordered
1545 /// memory references.
1546 bool MachineInstr::hasOrderedMemoryRef() const {
1547   // An instruction known never to access memory won't have a volatile access.
1548   if (!mayStore() &&
1549       !mayLoad() &&
1550       !isCall() &&
1551       !hasUnmodeledSideEffects())
1552     return false;
1553 
1554   // Otherwise, if the instruction has no memory reference information,
1555   // conservatively assume it wasn't preserved.
1556   if (memoperands_empty())
1557     return true;
1558 
1559   // Check if any of our memory operands are ordered.
1560   return any_of(memoperands(), [](const MachineMemOperand *MMO) {
1561     return !MMO->isUnordered();
1562   });
1563 }
1564 
1565 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1566 /// trap and is loading from a location whose value is invariant across a run of
1567 /// this function.
1568 bool MachineInstr::isDereferenceableInvariantLoad(AliasAnalysis *AA) const {
1569   // If the instruction doesn't load at all, it isn't an invariant load.
1570   if (!mayLoad())
1571     return false;
1572 
1573   // If the instruction has lost its memoperands, conservatively assume that
1574   // it may not be an invariant load.
1575   if (memoperands_empty())
1576     return false;
1577 
1578   const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1579 
1580   for (MachineMemOperand *MMO : memoperands()) {
1581     if (MMO->isVolatile()) return false;
1582     if (MMO->isStore()) return false;
1583     if (MMO->isInvariant() && MMO->isDereferenceable())
1584       continue;
1585 
1586     // A load from a constant PseudoSourceValue is invariant.
1587     if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1588       if (PSV->isConstant(&MFI))
1589         continue;
1590 
1591     if (const Value *V = MMO->getValue()) {
1592       // If we have an AliasAnalysis, ask it whether the memory is constant.
1593       if (AA &&
1594           AA->pointsToConstantMemory(
1595               MemoryLocation(V, MMO->getSize(), MMO->getAAInfo())))
1596         continue;
1597     }
1598 
1599     // Otherwise assume conservatively.
1600     return false;
1601   }
1602 
1603   // Everything checks out.
1604   return true;
1605 }
1606 
1607 /// isConstantValuePHI - If the specified instruction is a PHI that always
1608 /// merges together the same virtual register, return the register, otherwise
1609 /// return 0.
1610 unsigned MachineInstr::isConstantValuePHI() const {
1611   if (!isPHI())
1612     return 0;
1613   assert(getNumOperands() >= 3 &&
1614          "It's illegal to have a PHI without source operands");
1615 
1616   unsigned Reg = getOperand(1).getReg();
1617   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1618     if (getOperand(i).getReg() != Reg)
1619       return 0;
1620   return Reg;
1621 }
1622 
1623 bool MachineInstr::hasUnmodeledSideEffects() const {
1624   if (hasProperty(MCID::UnmodeledSideEffects))
1625     return true;
1626   if (isInlineAsm()) {
1627     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1628     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1629       return true;
1630   }
1631 
1632   return false;
1633 }
1634 
1635 bool MachineInstr::isLoadFoldBarrier() const {
1636   return mayStore() || isCall() || hasUnmodeledSideEffects();
1637 }
1638 
1639 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1640 ///
1641 bool MachineInstr::allDefsAreDead() const {
1642   for (const MachineOperand &MO : operands()) {
1643     if (!MO.isReg() || MO.isUse())
1644       continue;
1645     if (!MO.isDead())
1646       return false;
1647   }
1648   return true;
1649 }
1650 
1651 /// copyImplicitOps - Copy implicit register operands from specified
1652 /// instruction to this instruction.
1653 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1654                                    const MachineInstr &MI) {
1655   for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands();
1656        i != e; ++i) {
1657     const MachineOperand &MO = MI.getOperand(i);
1658     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1659       addOperand(MF, MO);
1660   }
1661 }
1662 
1663 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1664 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1665   dbgs() << "  " << *this;
1666 #endif
1667 }
1668 
1669 void MachineInstr::print(raw_ostream &OS, bool SkipOpers) const {
1670   const Module *M = nullptr;
1671   if (const MachineBasicBlock *MBB = getParent())
1672     if (const MachineFunction *MF = MBB->getParent())
1673       M = MF->getFunction()->getParent();
1674 
1675   ModuleSlotTracker MST(M);
1676   print(OS, MST, SkipOpers);
1677 }
1678 
1679 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1680                          bool SkipOpers) const {
1681   // We can be a bit tidier if we know the MachineFunction.
1682   const MachineFunction *MF = nullptr;
1683   const TargetRegisterInfo *TRI = nullptr;
1684   const MachineRegisterInfo *MRI = nullptr;
1685   const TargetInstrInfo *TII = nullptr;
1686   const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1687 
1688   if (const MachineBasicBlock *MBB = getParent()) {
1689     MF = MBB->getParent();
1690     if (MF) {
1691       MRI = &MF->getRegInfo();
1692       TRI = MF->getSubtarget().getRegisterInfo();
1693       TII = MF->getSubtarget().getInstrInfo();
1694       IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
1695     }
1696   }
1697 
1698   // Save a list of virtual registers.
1699   SmallVector<unsigned, 8> VirtRegs;
1700 
1701   // Print explicitly defined operands on the left of an assignment syntax.
1702   unsigned StartOp = 0, e = getNumOperands();
1703   for (; StartOp < e && getOperand(StartOp).isReg() &&
1704          getOperand(StartOp).isDef() &&
1705          !getOperand(StartOp).isImplicit();
1706        ++StartOp) {
1707     if (StartOp != 0) OS << ", ";
1708     getOperand(StartOp).print(OS, MST, TRI, IntrinsicInfo);
1709     unsigned Reg = getOperand(StartOp).getReg();
1710     if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1711       VirtRegs.push_back(Reg);
1712       LLT Ty = MRI ? MRI->getType(Reg) : LLT{};
1713       if (Ty.isValid())
1714         OS << '(' << Ty << ')';
1715     }
1716   }
1717 
1718   if (StartOp != 0)
1719     OS << " = ";
1720 
1721   // Print the opcode name.
1722   if (TII)
1723     OS << TII->getName(getOpcode());
1724   else
1725     OS << "UNKNOWN";
1726 
1727   if (SkipOpers)
1728     return;
1729 
1730   // Print the rest of the operands.
1731   bool OmittedAnyCallClobbers = false;
1732   bool FirstOp = true;
1733   unsigned AsmDescOp = ~0u;
1734   unsigned AsmOpCount = 0;
1735 
1736   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1737     // Print asm string.
1738     OS << " ";
1739     getOperand(InlineAsm::MIOp_AsmString).print(OS, MST, TRI);
1740 
1741     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1742     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1743     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1744       OS << " [sideeffect]";
1745     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1746       OS << " [mayload]";
1747     if (ExtraInfo & InlineAsm::Extra_MayStore)
1748       OS << " [maystore]";
1749     if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1750       OS << " [isconvergent]";
1751     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1752       OS << " [alignstack]";
1753     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1754       OS << " [attdialect]";
1755     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1756       OS << " [inteldialect]";
1757 
1758     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1759     FirstOp = false;
1760   }
1761 
1762   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1763     const MachineOperand &MO = getOperand(i);
1764 
1765     if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1766       VirtRegs.push_back(MO.getReg());
1767 
1768     // Omit call-clobbered registers which aren't used anywhere. This makes
1769     // call instructions much less noisy on targets where calls clobber lots
1770     // of registers. Don't rely on MO.isDead() because we may be called before
1771     // LiveVariables is run, or we may be looking at a non-allocatable reg.
1772     if (MRI && isCall() &&
1773         MO.isReg() && MO.isImplicit() && MO.isDef()) {
1774       unsigned Reg = MO.getReg();
1775       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1776         if (MRI->use_empty(Reg)) {
1777           bool HasAliasLive = false;
1778           for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
1779             unsigned AliasReg = *AI;
1780             if (!MRI->use_empty(AliasReg)) {
1781               HasAliasLive = true;
1782               break;
1783             }
1784           }
1785           if (!HasAliasLive) {
1786             OmittedAnyCallClobbers = true;
1787             continue;
1788           }
1789         }
1790       }
1791     }
1792 
1793     if (FirstOp) FirstOp = false; else OS << ",";
1794     OS << " ";
1795     if (i < getDesc().NumOperands) {
1796       const MCOperandInfo &MCOI = getDesc().OpInfo[i];
1797       if (MCOI.isPredicate())
1798         OS << "pred:";
1799       if (MCOI.isOptionalDef())
1800         OS << "opt:";
1801     }
1802     if (isDebugValue() && MO.isMetadata()) {
1803       // Pretty print DBG_VALUE instructions.
1804       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1805       if (DIV && !DIV->getName().empty())
1806         OS << "!\"" << DIV->getName() << '\"';
1807       else
1808         MO.print(OS, MST, TRI);
1809     } else if (TRI && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
1810       OS << TRI->getSubRegIndexName(MO.getImm());
1811     } else if (i == AsmDescOp && MO.isImm()) {
1812       // Pretty print the inline asm operand descriptor.
1813       OS << '$' << AsmOpCount++;
1814       unsigned Flag = MO.getImm();
1815       switch (InlineAsm::getKind(Flag)) {
1816       case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break;
1817       case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break;
1818       case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1819       case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break;
1820       case InlineAsm::Kind_Imm:                OS << ":[imm"; break;
1821       case InlineAsm::Kind_Mem:                OS << ":[mem"; break;
1822       default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1823       }
1824 
1825       unsigned RCID = 0;
1826       if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1827           InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1828         if (TRI) {
1829           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1830         } else
1831           OS << ":RC" << RCID;
1832       }
1833 
1834       if (InlineAsm::isMemKind(Flag)) {
1835         unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1836         switch (MCID) {
1837         case InlineAsm::Constraint_es: OS << ":es"; break;
1838         case InlineAsm::Constraint_i:  OS << ":i"; break;
1839         case InlineAsm::Constraint_m:  OS << ":m"; break;
1840         case InlineAsm::Constraint_o:  OS << ":o"; break;
1841         case InlineAsm::Constraint_v:  OS << ":v"; break;
1842         case InlineAsm::Constraint_Q:  OS << ":Q"; break;
1843         case InlineAsm::Constraint_R:  OS << ":R"; break;
1844         case InlineAsm::Constraint_S:  OS << ":S"; break;
1845         case InlineAsm::Constraint_T:  OS << ":T"; break;
1846         case InlineAsm::Constraint_Um: OS << ":Um"; break;
1847         case InlineAsm::Constraint_Un: OS << ":Un"; break;
1848         case InlineAsm::Constraint_Uq: OS << ":Uq"; break;
1849         case InlineAsm::Constraint_Us: OS << ":Us"; break;
1850         case InlineAsm::Constraint_Ut: OS << ":Ut"; break;
1851         case InlineAsm::Constraint_Uv: OS << ":Uv"; break;
1852         case InlineAsm::Constraint_Uy: OS << ":Uy"; break;
1853         case InlineAsm::Constraint_X:  OS << ":X"; break;
1854         case InlineAsm::Constraint_Z:  OS << ":Z"; break;
1855         case InlineAsm::Constraint_ZC: OS << ":ZC"; break;
1856         case InlineAsm::Constraint_Zy: OS << ":Zy"; break;
1857         default: OS << ":?"; break;
1858         }
1859       }
1860 
1861       unsigned TiedTo = 0;
1862       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1863         OS << " tiedto:$" << TiedTo;
1864 
1865       OS << ']';
1866 
1867       // Compute the index of the next operand descriptor.
1868       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1869     } else
1870       MO.print(OS, MST, TRI);
1871   }
1872 
1873   // Briefly indicate whether any call clobbers were omitted.
1874   if (OmittedAnyCallClobbers) {
1875     if (!FirstOp) OS << ",";
1876     OS << " ...";
1877   }
1878 
1879   bool HaveSemi = false;
1880   const unsigned PrintableFlags = FrameSetup | FrameDestroy;
1881   if (Flags & PrintableFlags) {
1882     if (!HaveSemi) {
1883       OS << ";";
1884       HaveSemi = true;
1885     }
1886     OS << " flags: ";
1887 
1888     if (Flags & FrameSetup)
1889       OS << "FrameSetup";
1890 
1891     if (Flags & FrameDestroy)
1892       OS << "FrameDestroy";
1893   }
1894 
1895   if (!memoperands_empty()) {
1896     if (!HaveSemi) {
1897       OS << ";";
1898       HaveSemi = true;
1899     }
1900 
1901     OS << " mem:";
1902     for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
1903          i != e; ++i) {
1904       (*i)->print(OS, MST);
1905       if (std::next(i) != e)
1906         OS << " ";
1907     }
1908   }
1909 
1910   // Print the regclass of any virtual registers encountered.
1911   if (MRI && !VirtRegs.empty()) {
1912     if (!HaveSemi) {
1913       OS << ";";
1914       HaveSemi = true;
1915     }
1916     for (unsigned i = 0; i != VirtRegs.size(); ++i) {
1917       const RegClassOrRegBank &RC = MRI->getRegClassOrRegBank(VirtRegs[i]);
1918       if (!RC)
1919         continue;
1920       // Generic virtual registers do not have register classes.
1921       if (RC.is<const RegisterBank *>())
1922         OS << " " << RC.get<const RegisterBank *>()->getName();
1923       else
1924         OS << " "
1925            << TRI->getRegClassName(RC.get<const TargetRegisterClass *>());
1926       OS << ':' << PrintReg(VirtRegs[i]);
1927       for (unsigned j = i+1; j != VirtRegs.size();) {
1928         if (MRI->getRegClassOrRegBank(VirtRegs[j]) != RC) {
1929           ++j;
1930           continue;
1931         }
1932         if (VirtRegs[i] != VirtRegs[j])
1933           OS << "," << PrintReg(VirtRegs[j]);
1934         VirtRegs.erase(VirtRegs.begin()+j);
1935       }
1936     }
1937   }
1938 
1939   // Print debug location information.
1940   if (isDebugValue() && getOperand(e - 2).isMetadata()) {
1941     if (!HaveSemi)
1942       OS << ";";
1943     auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata());
1944     OS << " line no:" <<  DV->getLine();
1945     if (auto *InlinedAt = debugLoc->getInlinedAt()) {
1946       DebugLoc InlinedAtDL(InlinedAt);
1947       if (InlinedAtDL && MF) {
1948         OS << " inlined @[ ";
1949         InlinedAtDL.print(OS);
1950         OS << " ]";
1951       }
1952     }
1953     if (isIndirectDebugValue())
1954       OS << " indirect";
1955   } else if (debugLoc && MF) {
1956     if (!HaveSemi)
1957       OS << ";";
1958     OS << " dbg:";
1959     debugLoc.print(OS);
1960   }
1961 
1962   OS << '\n';
1963 }
1964 
1965 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1966                                      const TargetRegisterInfo *RegInfo,
1967                                      bool AddIfNotFound) {
1968   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1969   bool hasAliases = isPhysReg &&
1970     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1971   bool Found = false;
1972   SmallVector<unsigned,4> DeadOps;
1973   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1974     MachineOperand &MO = getOperand(i);
1975     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1976       continue;
1977 
1978     // DEBUG_VALUE nodes do not contribute to code generation and should
1979     // always be ignored. Failure to do so may result in trying to modify
1980     // KILL flags on DEBUG_VALUE nodes.
1981     if (MO.isDebug())
1982       continue;
1983 
1984     unsigned Reg = MO.getReg();
1985     if (!Reg)
1986       continue;
1987 
1988     if (Reg == IncomingReg) {
1989       if (!Found) {
1990         if (MO.isKill())
1991           // The register is already marked kill.
1992           return true;
1993         if (isPhysReg && isRegTiedToDefOperand(i))
1994           // Two-address uses of physregs must not be marked kill.
1995           return true;
1996         MO.setIsKill();
1997         Found = true;
1998       }
1999     } else if (hasAliases && MO.isKill() &&
2000                TargetRegisterInfo::isPhysicalRegister(Reg)) {
2001       // A super-register kill already exists.
2002       if (RegInfo->isSuperRegister(IncomingReg, Reg))
2003         return true;
2004       if (RegInfo->isSubRegister(IncomingReg, Reg))
2005         DeadOps.push_back(i);
2006     }
2007   }
2008 
2009   // Trim unneeded kill operands.
2010   while (!DeadOps.empty()) {
2011     unsigned OpIdx = DeadOps.back();
2012     if (getOperand(OpIdx).isImplicit())
2013       RemoveOperand(OpIdx);
2014     else
2015       getOperand(OpIdx).setIsKill(false);
2016     DeadOps.pop_back();
2017   }
2018 
2019   // If not found, this means an alias of one of the operands is killed. Add a
2020   // new implicit operand if required.
2021   if (!Found && AddIfNotFound) {
2022     addOperand(MachineOperand::CreateReg(IncomingReg,
2023                                          false /*IsDef*/,
2024                                          true  /*IsImp*/,
2025                                          true  /*IsKill*/));
2026     return true;
2027   }
2028   return Found;
2029 }
2030 
2031 void MachineInstr::clearRegisterKills(unsigned Reg,
2032                                       const TargetRegisterInfo *RegInfo) {
2033   if (!TargetRegisterInfo::isPhysicalRegister(Reg))
2034     RegInfo = nullptr;
2035   for (MachineOperand &MO : operands()) {
2036     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
2037       continue;
2038     unsigned OpReg = MO.getReg();
2039     if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
2040       MO.setIsKill(false);
2041   }
2042 }
2043 
2044 bool MachineInstr::addRegisterDead(unsigned Reg,
2045                                    const TargetRegisterInfo *RegInfo,
2046                                    bool AddIfNotFound) {
2047   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg);
2048   bool hasAliases = isPhysReg &&
2049     MCRegAliasIterator(Reg, RegInfo, false).isValid();
2050   bool Found = false;
2051   SmallVector<unsigned,4> DeadOps;
2052   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2053     MachineOperand &MO = getOperand(i);
2054     if (!MO.isReg() || !MO.isDef())
2055       continue;
2056     unsigned MOReg = MO.getReg();
2057     if (!MOReg)
2058       continue;
2059 
2060     if (MOReg == Reg) {
2061       MO.setIsDead();
2062       Found = true;
2063     } else if (hasAliases && MO.isDead() &&
2064                TargetRegisterInfo::isPhysicalRegister(MOReg)) {
2065       // There exists a super-register that's marked dead.
2066       if (RegInfo->isSuperRegister(Reg, MOReg))
2067         return true;
2068       if (RegInfo->isSubRegister(Reg, MOReg))
2069         DeadOps.push_back(i);
2070     }
2071   }
2072 
2073   // Trim unneeded dead operands.
2074   while (!DeadOps.empty()) {
2075     unsigned OpIdx = DeadOps.back();
2076     if (getOperand(OpIdx).isImplicit())
2077       RemoveOperand(OpIdx);
2078     else
2079       getOperand(OpIdx).setIsDead(false);
2080     DeadOps.pop_back();
2081   }
2082 
2083   // If not found, this means an alias of one of the operands is dead. Add a
2084   // new implicit operand if required.
2085   if (Found || !AddIfNotFound)
2086     return Found;
2087 
2088   addOperand(MachineOperand::CreateReg(Reg,
2089                                        true  /*IsDef*/,
2090                                        true  /*IsImp*/,
2091                                        false /*IsKill*/,
2092                                        true  /*IsDead*/));
2093   return true;
2094 }
2095 
2096 void MachineInstr::clearRegisterDeads(unsigned Reg) {
2097   for (MachineOperand &MO : operands()) {
2098     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
2099       continue;
2100     MO.setIsDead(false);
2101   }
2102 }
2103 
2104 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) {
2105   for (MachineOperand &MO : operands()) {
2106     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
2107       continue;
2108     MO.setIsUndef(IsUndef);
2109   }
2110 }
2111 
2112 void MachineInstr::addRegisterDefined(unsigned Reg,
2113                                       const TargetRegisterInfo *RegInfo) {
2114   if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
2115     MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo);
2116     if (MO)
2117       return;
2118   } else {
2119     for (const MachineOperand &MO : operands()) {
2120       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
2121           MO.getSubReg() == 0)
2122         return;
2123     }
2124   }
2125   addOperand(MachineOperand::CreateReg(Reg,
2126                                        true  /*IsDef*/,
2127                                        true  /*IsImp*/));
2128 }
2129 
2130 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
2131                                          const TargetRegisterInfo &TRI) {
2132   bool HasRegMask = false;
2133   for (MachineOperand &MO : operands()) {
2134     if (MO.isRegMask()) {
2135       HasRegMask = true;
2136       continue;
2137     }
2138     if (!MO.isReg() || !MO.isDef()) continue;
2139     unsigned Reg = MO.getReg();
2140     if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
2141     // If there are no uses, including partial uses, the def is dead.
2142     if (none_of(UsedRegs,
2143                 [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); }))
2144       MO.setIsDead();
2145   }
2146 
2147   // This is a call with a register mask operand.
2148   // Mask clobbers are always dead, so add defs for the non-dead defines.
2149   if (HasRegMask)
2150     for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
2151          I != E; ++I)
2152       addRegisterDefined(*I, &TRI);
2153 }
2154 
2155 unsigned
2156 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
2157   // Build up a buffer of hash code components.
2158   SmallVector<size_t, 8> HashComponents;
2159   HashComponents.reserve(MI->getNumOperands() + 1);
2160   HashComponents.push_back(MI->getOpcode());
2161   for (const MachineOperand &MO : MI->operands()) {
2162     if (MO.isReg() && MO.isDef() &&
2163         TargetRegisterInfo::isVirtualRegister(MO.getReg()))
2164       continue;  // Skip virtual register defs.
2165 
2166     HashComponents.push_back(hash_value(MO));
2167   }
2168   return hash_combine_range(HashComponents.begin(), HashComponents.end());
2169 }
2170 
2171 void MachineInstr::emitError(StringRef Msg) const {
2172   // Find the source location cookie.
2173   unsigned LocCookie = 0;
2174   const MDNode *LocMD = nullptr;
2175   for (unsigned i = getNumOperands(); i != 0; --i) {
2176     if (getOperand(i-1).isMetadata() &&
2177         (LocMD = getOperand(i-1).getMetadata()) &&
2178         LocMD->getNumOperands() != 0) {
2179       if (const ConstantInt *CI =
2180               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
2181         LocCookie = CI->getZExtValue();
2182         break;
2183       }
2184     }
2185   }
2186 
2187   if (const MachineBasicBlock *MBB = getParent())
2188     if (const MachineFunction *MF = MBB->getParent())
2189       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2190   report_fatal_error(Msg);
2191 }
2192 
2193 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2194                                   const MCInstrDesc &MCID, bool IsIndirect,
2195                                   unsigned Reg, unsigned Offset,
2196                                   const MDNode *Variable, const MDNode *Expr) {
2197   assert(isa<DILocalVariable>(Variable) && "not a variable");
2198   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2199   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2200          "Expected inlined-at fields to agree");
2201   if (IsIndirect)
2202     return BuildMI(MF, DL, MCID)
2203         .addReg(Reg, RegState::Debug)
2204         .addImm(Offset)
2205         .addMetadata(Variable)
2206         .addMetadata(Expr);
2207   else {
2208     assert(Offset == 0 && "A direct address cannot have an offset.");
2209     return BuildMI(MF, DL, MCID)
2210         .addReg(Reg, RegState::Debug)
2211         .addReg(0U, RegState::Debug)
2212         .addMetadata(Variable)
2213         .addMetadata(Expr);
2214   }
2215 }
2216 
2217 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2218                                   MachineBasicBlock::iterator I,
2219                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2220                                   bool IsIndirect, unsigned Reg,
2221                                   unsigned Offset, const MDNode *Variable,
2222                                   const MDNode *Expr) {
2223   assert(isa<DILocalVariable>(Variable) && "not a variable");
2224   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2225   MachineFunction &MF = *BB.getParent();
2226   MachineInstr *MI =
2227       BuildMI(MF, DL, MCID, IsIndirect, Reg, Offset, Variable, Expr);
2228   BB.insert(I, MI);
2229   return MachineInstrBuilder(MF, MI);
2230 }
2231