1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/ADT/FoldingSet.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/CodeGen/MachineConstantPool.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineMemOperand.h" 22 #include "llvm/CodeGen/MachineModuleInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/PseudoSourceValue.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DebugInfo.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/InlineAsm.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/ModuleSlotTracker.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/MC/MCInstrDesc.h" 37 #include "llvm/MC/MCSymbol.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/MathExtras.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Target/TargetInstrInfo.h" 44 #include "llvm/Target/TargetIntrinsicInfo.h" 45 #include "llvm/Target/TargetMachine.h" 46 #include "llvm/Target/TargetRegisterInfo.h" 47 #include "llvm/Target/TargetSubtargetInfo.h" 48 using namespace llvm; 49 50 static cl::opt<bool> PrintWholeRegMask( 51 "print-whole-regmask", 52 cl::desc("Print the full contents of regmask operands in IR dumps"), 53 cl::init(true), cl::Hidden); 54 55 //===----------------------------------------------------------------------===// 56 // MachineOperand Implementation 57 //===----------------------------------------------------------------------===// 58 59 void MachineOperand::setReg(unsigned Reg) { 60 if (getReg() == Reg) return; // No change. 61 62 // Otherwise, we have to change the register. If this operand is embedded 63 // into a machine function, we need to update the old and new register's 64 // use/def lists. 65 if (MachineInstr *MI = getParent()) 66 if (MachineBasicBlock *MBB = MI->getParent()) 67 if (MachineFunction *MF = MBB->getParent()) { 68 MachineRegisterInfo &MRI = MF->getRegInfo(); 69 MRI.removeRegOperandFromUseList(this); 70 SmallContents.RegNo = Reg; 71 MRI.addRegOperandToUseList(this); 72 return; 73 } 74 75 // Otherwise, just change the register, no problem. :) 76 SmallContents.RegNo = Reg; 77 } 78 79 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 80 const TargetRegisterInfo &TRI) { 81 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 82 if (SubIdx && getSubReg()) 83 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 84 setReg(Reg); 85 if (SubIdx) 86 setSubReg(SubIdx); 87 } 88 89 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 90 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 91 if (getSubReg()) { 92 Reg = TRI.getSubReg(Reg, getSubReg()); 93 // Note that getSubReg() may return 0 if the sub-register doesn't exist. 94 // That won't happen in legal code. 95 setSubReg(0); 96 if (isDef()) 97 setIsUndef(false); 98 } 99 setReg(Reg); 100 } 101 102 /// Change a def to a use, or a use to a def. 103 void MachineOperand::setIsDef(bool Val) { 104 assert(isReg() && "Wrong MachineOperand accessor"); 105 assert((!Val || !isDebug()) && "Marking a debug operation as def"); 106 if (IsDef == Val) 107 return; 108 // MRI may keep uses and defs in different list positions. 109 if (MachineInstr *MI = getParent()) 110 if (MachineBasicBlock *MBB = MI->getParent()) 111 if (MachineFunction *MF = MBB->getParent()) { 112 MachineRegisterInfo &MRI = MF->getRegInfo(); 113 MRI.removeRegOperandFromUseList(this); 114 IsDef = Val; 115 MRI.addRegOperandToUseList(this); 116 return; 117 } 118 IsDef = Val; 119 } 120 121 // If this operand is currently a register operand, and if this is in a 122 // function, deregister the operand from the register's use/def list. 123 void MachineOperand::removeRegFromUses() { 124 if (!isReg() || !isOnRegUseList()) 125 return; 126 127 if (MachineInstr *MI = getParent()) { 128 if (MachineBasicBlock *MBB = MI->getParent()) { 129 if (MachineFunction *MF = MBB->getParent()) 130 MF->getRegInfo().removeRegOperandFromUseList(this); 131 } 132 } 133 } 134 135 /// ChangeToImmediate - Replace this operand with a new immediate operand of 136 /// the specified value. If an operand is known to be an immediate already, 137 /// the setImm method should be used. 138 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 139 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 140 141 removeRegFromUses(); 142 143 OpKind = MO_Immediate; 144 Contents.ImmVal = ImmVal; 145 } 146 147 void MachineOperand::ChangeToFPImmediate(const ConstantFP *FPImm) { 148 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 149 150 removeRegFromUses(); 151 152 OpKind = MO_FPImmediate; 153 Contents.CFP = FPImm; 154 } 155 156 void MachineOperand::ChangeToES(const char *SymName, unsigned char TargetFlags) { 157 assert((!isReg() || !isTied()) && 158 "Cannot change a tied operand into an external symbol"); 159 160 removeRegFromUses(); 161 162 OpKind = MO_ExternalSymbol; 163 Contents.OffsetedInfo.Val.SymbolName = SymName; 164 setOffset(0); // Offset is always 0. 165 setTargetFlags(TargetFlags); 166 } 167 168 void MachineOperand::ChangeToMCSymbol(MCSymbol *Sym) { 169 assert((!isReg() || !isTied()) && 170 "Cannot change a tied operand into an MCSymbol"); 171 172 removeRegFromUses(); 173 174 OpKind = MO_MCSymbol; 175 Contents.Sym = Sym; 176 } 177 178 /// ChangeToRegister - Replace this operand with a new register operand of 179 /// the specified value. If an operand is known to be an register already, 180 /// the setReg method should be used. 181 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 182 bool isKill, bool isDead, bool isUndef, 183 bool isDebug) { 184 MachineRegisterInfo *RegInfo = nullptr; 185 if (MachineInstr *MI = getParent()) 186 if (MachineBasicBlock *MBB = MI->getParent()) 187 if (MachineFunction *MF = MBB->getParent()) 188 RegInfo = &MF->getRegInfo(); 189 // If this operand is already a register operand, remove it from the 190 // register's use/def lists. 191 bool WasReg = isReg(); 192 if (RegInfo && WasReg) 193 RegInfo->removeRegOperandFromUseList(this); 194 195 // Change this to a register and set the reg#. 196 OpKind = MO_Register; 197 SmallContents.RegNo = Reg; 198 SubReg_TargetFlags = 0; 199 IsDef = isDef; 200 IsImp = isImp; 201 IsKill = isKill; 202 IsDead = isDead; 203 IsUndef = isUndef; 204 IsInternalRead = false; 205 IsEarlyClobber = false; 206 IsDebug = isDebug; 207 // Ensure isOnRegUseList() returns false. 208 Contents.Reg.Prev = nullptr; 209 // Preserve the tie when the operand was already a register. 210 if (!WasReg) 211 TiedTo = 0; 212 213 // If this operand is embedded in a function, add the operand to the 214 // register's use/def list. 215 if (RegInfo) 216 RegInfo->addRegOperandToUseList(this); 217 } 218 219 /// isIdenticalTo - Return true if this operand is identical to the specified 220 /// operand. Note that this should stay in sync with the hash_value overload 221 /// below. 222 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 223 if (getType() != Other.getType() || 224 getTargetFlags() != Other.getTargetFlags()) 225 return false; 226 227 switch (getType()) { 228 case MachineOperand::MO_Register: 229 return getReg() == Other.getReg() && isDef() == Other.isDef() && 230 getSubReg() == Other.getSubReg(); 231 case MachineOperand::MO_Immediate: 232 return getImm() == Other.getImm(); 233 case MachineOperand::MO_CImmediate: 234 return getCImm() == Other.getCImm(); 235 case MachineOperand::MO_FPImmediate: 236 return getFPImm() == Other.getFPImm(); 237 case MachineOperand::MO_MachineBasicBlock: 238 return getMBB() == Other.getMBB(); 239 case MachineOperand::MO_FrameIndex: 240 return getIndex() == Other.getIndex(); 241 case MachineOperand::MO_ConstantPoolIndex: 242 case MachineOperand::MO_TargetIndex: 243 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 244 case MachineOperand::MO_JumpTableIndex: 245 return getIndex() == Other.getIndex(); 246 case MachineOperand::MO_GlobalAddress: 247 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 248 case MachineOperand::MO_ExternalSymbol: 249 return !strcmp(getSymbolName(), Other.getSymbolName()) && 250 getOffset() == Other.getOffset(); 251 case MachineOperand::MO_BlockAddress: 252 return getBlockAddress() == Other.getBlockAddress() && 253 getOffset() == Other.getOffset(); 254 case MachineOperand::MO_RegisterMask: 255 case MachineOperand::MO_RegisterLiveOut: 256 return getRegMask() == Other.getRegMask(); 257 case MachineOperand::MO_MCSymbol: 258 return getMCSymbol() == Other.getMCSymbol(); 259 case MachineOperand::MO_CFIIndex: 260 return getCFIIndex() == Other.getCFIIndex(); 261 case MachineOperand::MO_Metadata: 262 return getMetadata() == Other.getMetadata(); 263 case MachineOperand::MO_IntrinsicID: 264 return getIntrinsicID() == Other.getIntrinsicID(); 265 case MachineOperand::MO_Predicate: 266 return getPredicate() == Other.getPredicate(); 267 } 268 llvm_unreachable("Invalid machine operand type"); 269 } 270 271 // Note: this must stay exactly in sync with isIdenticalTo above. 272 hash_code llvm::hash_value(const MachineOperand &MO) { 273 switch (MO.getType()) { 274 case MachineOperand::MO_Register: 275 // Register operands don't have target flags. 276 return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef()); 277 case MachineOperand::MO_Immediate: 278 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm()); 279 case MachineOperand::MO_CImmediate: 280 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm()); 281 case MachineOperand::MO_FPImmediate: 282 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm()); 283 case MachineOperand::MO_MachineBasicBlock: 284 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB()); 285 case MachineOperand::MO_FrameIndex: 286 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 287 case MachineOperand::MO_ConstantPoolIndex: 288 case MachineOperand::MO_TargetIndex: 289 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(), 290 MO.getOffset()); 291 case MachineOperand::MO_JumpTableIndex: 292 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 293 case MachineOperand::MO_ExternalSymbol: 294 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(), 295 MO.getSymbolName()); 296 case MachineOperand::MO_GlobalAddress: 297 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(), 298 MO.getOffset()); 299 case MachineOperand::MO_BlockAddress: 300 return hash_combine(MO.getType(), MO.getTargetFlags(), 301 MO.getBlockAddress(), MO.getOffset()); 302 case MachineOperand::MO_RegisterMask: 303 case MachineOperand::MO_RegisterLiveOut: 304 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask()); 305 case MachineOperand::MO_Metadata: 306 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata()); 307 case MachineOperand::MO_MCSymbol: 308 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol()); 309 case MachineOperand::MO_CFIIndex: 310 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex()); 311 case MachineOperand::MO_IntrinsicID: 312 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIntrinsicID()); 313 case MachineOperand::MO_Predicate: 314 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getPredicate()); 315 } 316 llvm_unreachable("Invalid machine operand type"); 317 } 318 319 void MachineOperand::print(raw_ostream &OS, const TargetRegisterInfo *TRI, 320 const TargetIntrinsicInfo *IntrinsicInfo) const { 321 ModuleSlotTracker DummyMST(nullptr); 322 print(OS, DummyMST, TRI, IntrinsicInfo); 323 } 324 325 void MachineOperand::print(raw_ostream &OS, ModuleSlotTracker &MST, 326 const TargetRegisterInfo *TRI, 327 const TargetIntrinsicInfo *IntrinsicInfo) const { 328 switch (getType()) { 329 case MachineOperand::MO_Register: 330 OS << PrintReg(getReg(), TRI, getSubReg()); 331 332 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 333 isInternalRead() || isEarlyClobber() || isTied()) { 334 OS << '<'; 335 bool NeedComma = false; 336 if (isDef()) { 337 if (NeedComma) OS << ','; 338 if (isEarlyClobber()) 339 OS << "earlyclobber,"; 340 if (isImplicit()) 341 OS << "imp-"; 342 OS << "def"; 343 NeedComma = true; 344 // <def,read-undef> only makes sense when getSubReg() is set. 345 // Don't clutter the output otherwise. 346 if (isUndef() && getSubReg()) 347 OS << ",read-undef"; 348 } else if (isImplicit()) { 349 OS << "imp-use"; 350 NeedComma = true; 351 } 352 353 if (isKill()) { 354 if (NeedComma) OS << ','; 355 OS << "kill"; 356 NeedComma = true; 357 } 358 if (isDead()) { 359 if (NeedComma) OS << ','; 360 OS << "dead"; 361 NeedComma = true; 362 } 363 if (isUndef() && isUse()) { 364 if (NeedComma) OS << ','; 365 OS << "undef"; 366 NeedComma = true; 367 } 368 if (isInternalRead()) { 369 if (NeedComma) OS << ','; 370 OS << "internal"; 371 NeedComma = true; 372 } 373 if (isTied()) { 374 if (NeedComma) OS << ','; 375 OS << "tied"; 376 if (TiedTo != 15) 377 OS << unsigned(TiedTo - 1); 378 } 379 OS << '>'; 380 } 381 break; 382 case MachineOperand::MO_Immediate: 383 OS << getImm(); 384 break; 385 case MachineOperand::MO_CImmediate: 386 getCImm()->getValue().print(OS, false); 387 break; 388 case MachineOperand::MO_FPImmediate: 389 if (getFPImm()->getType()->isFloatTy()) { 390 OS << getFPImm()->getValueAPF().convertToFloat(); 391 } else if (getFPImm()->getType()->isHalfTy()) { 392 APFloat APF = getFPImm()->getValueAPF(); 393 bool Unused; 394 APF.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &Unused); 395 OS << "half " << APF.convertToFloat(); 396 } else { 397 OS << getFPImm()->getValueAPF().convertToDouble(); 398 } 399 break; 400 case MachineOperand::MO_MachineBasicBlock: 401 OS << "<BB#" << getMBB()->getNumber() << ">"; 402 break; 403 case MachineOperand::MO_FrameIndex: 404 OS << "<fi#" << getIndex() << '>'; 405 break; 406 case MachineOperand::MO_ConstantPoolIndex: 407 OS << "<cp#" << getIndex(); 408 if (getOffset()) OS << "+" << getOffset(); 409 OS << '>'; 410 break; 411 case MachineOperand::MO_TargetIndex: 412 OS << "<ti#" << getIndex(); 413 if (getOffset()) OS << "+" << getOffset(); 414 OS << '>'; 415 break; 416 case MachineOperand::MO_JumpTableIndex: 417 OS << "<jt#" << getIndex() << '>'; 418 break; 419 case MachineOperand::MO_GlobalAddress: 420 OS << "<ga:"; 421 getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST); 422 if (getOffset()) OS << "+" << getOffset(); 423 OS << '>'; 424 break; 425 case MachineOperand::MO_ExternalSymbol: 426 OS << "<es:" << getSymbolName(); 427 if (getOffset()) OS << "+" << getOffset(); 428 OS << '>'; 429 break; 430 case MachineOperand::MO_BlockAddress: 431 OS << '<'; 432 getBlockAddress()->printAsOperand(OS, /*PrintType=*/false, MST); 433 if (getOffset()) OS << "+" << getOffset(); 434 OS << '>'; 435 break; 436 case MachineOperand::MO_RegisterMask: { 437 unsigned NumRegsInMask = 0; 438 unsigned NumRegsEmitted = 0; 439 OS << "<regmask"; 440 for (unsigned i = 0; i < TRI->getNumRegs(); ++i) { 441 unsigned MaskWord = i / 32; 442 unsigned MaskBit = i % 32; 443 if (getRegMask()[MaskWord] & (1 << MaskBit)) { 444 if (PrintWholeRegMask || NumRegsEmitted <= 10) { 445 OS << " " << PrintReg(i, TRI); 446 NumRegsEmitted++; 447 } 448 NumRegsInMask++; 449 } 450 } 451 if (NumRegsEmitted != NumRegsInMask) 452 OS << " and " << (NumRegsInMask - NumRegsEmitted) << " more..."; 453 OS << ">"; 454 break; 455 } 456 case MachineOperand::MO_RegisterLiveOut: 457 OS << "<regliveout>"; 458 break; 459 case MachineOperand::MO_Metadata: 460 OS << '<'; 461 getMetadata()->printAsOperand(OS, MST); 462 OS << '>'; 463 break; 464 case MachineOperand::MO_MCSymbol: 465 OS << "<MCSym=" << *getMCSymbol() << '>'; 466 break; 467 case MachineOperand::MO_CFIIndex: 468 OS << "<call frame instruction>"; 469 break; 470 case MachineOperand::MO_IntrinsicID: { 471 Intrinsic::ID ID = getIntrinsicID(); 472 if (ID < Intrinsic::num_intrinsics) 473 OS << "<intrinsic:@" << Intrinsic::getName(ID, None) << ')'; 474 else if (IntrinsicInfo) 475 OS << "<intrinsic:@" << IntrinsicInfo->getName(ID) << ')'; 476 else 477 OS << "<intrinsic:" << ID << '>'; 478 break; 479 } 480 case MachineOperand::MO_Predicate: { 481 auto Pred = static_cast<CmpInst::Predicate>(getPredicate()); 482 OS << '<' << (CmpInst::isIntPredicate(Pred) ? "intpred" : "floatpred") 483 << CmpInst::getPredicateName(Pred) << '>'; 484 } 485 } 486 if (unsigned TF = getTargetFlags()) 487 OS << "[TF=" << TF << ']'; 488 } 489 490 //===----------------------------------------------------------------------===// 491 // MachineMemOperand Implementation 492 //===----------------------------------------------------------------------===// 493 494 /// getAddrSpace - Return the LLVM IR address space number that this pointer 495 /// points into. 496 unsigned MachinePointerInfo::getAddrSpace() const { 497 if (V.isNull() || V.is<const PseudoSourceValue*>()) return 0; 498 return cast<PointerType>(V.get<const Value*>()->getType())->getAddressSpace(); 499 } 500 501 /// getConstantPool - Return a MachinePointerInfo record that refers to the 502 /// constant pool. 503 MachinePointerInfo MachinePointerInfo::getConstantPool(MachineFunction &MF) { 504 return MachinePointerInfo(MF.getPSVManager().getConstantPool()); 505 } 506 507 /// getFixedStack - Return a MachinePointerInfo record that refers to the 508 /// the specified FrameIndex. 509 MachinePointerInfo MachinePointerInfo::getFixedStack(MachineFunction &MF, 510 int FI, int64_t Offset) { 511 return MachinePointerInfo(MF.getPSVManager().getFixedStack(FI), Offset); 512 } 513 514 MachinePointerInfo MachinePointerInfo::getJumpTable(MachineFunction &MF) { 515 return MachinePointerInfo(MF.getPSVManager().getJumpTable()); 516 } 517 518 MachinePointerInfo MachinePointerInfo::getGOT(MachineFunction &MF) { 519 return MachinePointerInfo(MF.getPSVManager().getGOT()); 520 } 521 522 MachinePointerInfo MachinePointerInfo::getStack(MachineFunction &MF, 523 int64_t Offset) { 524 return MachinePointerInfo(MF.getPSVManager().getStack(), Offset); 525 } 526 527 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, Flags f, 528 uint64_t s, unsigned int a, 529 const AAMDNodes &AAInfo, 530 const MDNode *Ranges) 531 : PtrInfo(ptrinfo), Size(s), FlagVals(f), BaseAlignLog2(Log2_32(a) + 1), 532 AAInfo(AAInfo), Ranges(Ranges) { 533 assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() || 534 isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) && 535 "invalid pointer value"); 536 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 537 assert((isLoad() || isStore()) && "Not a load/store!"); 538 } 539 540 /// Profile - Gather unique data for the object. 541 /// 542 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 543 ID.AddInteger(getOffset()); 544 ID.AddInteger(Size); 545 ID.AddPointer(getOpaqueValue()); 546 ID.AddInteger(getFlags()); 547 ID.AddInteger(getBaseAlignment()); 548 } 549 550 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 551 // The Value and Offset may differ due to CSE. But the flags and size 552 // should be the same. 553 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 554 assert(MMO->getSize() == getSize() && "Size mismatch!"); 555 556 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 557 // Update the alignment value. 558 BaseAlignLog2 = Log2_32(MMO->getBaseAlignment()) + 1; 559 // Also update the base and offset, because the new alignment may 560 // not be applicable with the old ones. 561 PtrInfo = MMO->PtrInfo; 562 } 563 } 564 565 /// getAlignment - Return the minimum known alignment in bytes of the 566 /// actual memory reference. 567 uint64_t MachineMemOperand::getAlignment() const { 568 return MinAlign(getBaseAlignment(), getOffset()); 569 } 570 571 void MachineMemOperand::print(raw_ostream &OS) const { 572 ModuleSlotTracker DummyMST(nullptr); 573 print(OS, DummyMST); 574 } 575 void MachineMemOperand::print(raw_ostream &OS, ModuleSlotTracker &MST) const { 576 assert((isLoad() || isStore()) && 577 "SV has to be a load, store or both."); 578 579 if (isVolatile()) 580 OS << "Volatile "; 581 582 if (isLoad()) 583 OS << "LD"; 584 if (isStore()) 585 OS << "ST"; 586 OS << getSize(); 587 588 // Print the address information. 589 OS << "["; 590 if (const Value *V = getValue()) 591 V->printAsOperand(OS, /*PrintType=*/false, MST); 592 else if (const PseudoSourceValue *PSV = getPseudoValue()) 593 PSV->printCustom(OS); 594 else 595 OS << "<unknown>"; 596 597 unsigned AS = getAddrSpace(); 598 if (AS != 0) 599 OS << "(addrspace=" << AS << ')'; 600 601 // If the alignment of the memory reference itself differs from the alignment 602 // of the base pointer, print the base alignment explicitly, next to the base 603 // pointer. 604 if (getBaseAlignment() != getAlignment()) 605 OS << "(align=" << getBaseAlignment() << ")"; 606 607 if (getOffset() != 0) 608 OS << "+" << getOffset(); 609 OS << "]"; 610 611 // Print the alignment of the reference. 612 if (getBaseAlignment() != getAlignment() || getBaseAlignment() != getSize()) 613 OS << "(align=" << getAlignment() << ")"; 614 615 // Print TBAA info. 616 if (const MDNode *TBAAInfo = getAAInfo().TBAA) { 617 OS << "(tbaa="; 618 if (TBAAInfo->getNumOperands() > 0) 619 TBAAInfo->getOperand(0)->printAsOperand(OS, MST); 620 else 621 OS << "<unknown>"; 622 OS << ")"; 623 } 624 625 // Print AA scope info. 626 if (const MDNode *ScopeInfo = getAAInfo().Scope) { 627 OS << "(alias.scope="; 628 if (ScopeInfo->getNumOperands() > 0) 629 for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) { 630 ScopeInfo->getOperand(i)->printAsOperand(OS, MST); 631 if (i != ie-1) 632 OS << ","; 633 } 634 else 635 OS << "<unknown>"; 636 OS << ")"; 637 } 638 639 // Print AA noalias scope info. 640 if (const MDNode *NoAliasInfo = getAAInfo().NoAlias) { 641 OS << "(noalias="; 642 if (NoAliasInfo->getNumOperands() > 0) 643 for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) { 644 NoAliasInfo->getOperand(i)->printAsOperand(OS, MST); 645 if (i != ie-1) 646 OS << ","; 647 } 648 else 649 OS << "<unknown>"; 650 OS << ")"; 651 } 652 653 if (isNonTemporal()) 654 OS << "(nontemporal)"; 655 if (isDereferenceable()) 656 OS << "(dereferenceable)"; 657 if (isInvariant()) 658 OS << "(invariant)"; 659 } 660 661 //===----------------------------------------------------------------------===// 662 // MachineInstr Implementation 663 //===----------------------------------------------------------------------===// 664 665 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 666 if (MCID->ImplicitDefs) 667 for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; 668 ++ImpDefs) 669 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 670 if (MCID->ImplicitUses) 671 for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses; 672 ++ImpUses) 673 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 674 } 675 676 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 677 /// implicit operands. It reserves space for the number of operands specified by 678 /// the MCInstrDesc. 679 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, 680 DebugLoc dl, bool NoImp) 681 : MCID(&tid), Parent(nullptr), Operands(nullptr), NumOperands(0), Flags(0), 682 AsmPrinterFlags(0), NumMemRefs(0), MemRefs(nullptr), 683 debugLoc(std::move(dl)) { 684 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 685 686 // Reserve space for the expected number of operands. 687 if (unsigned NumOps = MCID->getNumOperands() + 688 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 689 CapOperands = OperandCapacity::get(NumOps); 690 Operands = MF.allocateOperandArray(CapOperands); 691 } 692 693 if (!NoImp) 694 addImplicitDefUseOperands(MF); 695 } 696 697 /// MachineInstr ctor - Copies MachineInstr arg exactly 698 /// 699 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 700 : MCID(&MI.getDesc()), Parent(nullptr), Operands(nullptr), NumOperands(0), 701 Flags(0), AsmPrinterFlags(0), NumMemRefs(MI.NumMemRefs), 702 MemRefs(MI.MemRefs), debugLoc(MI.getDebugLoc()) { 703 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 704 705 CapOperands = OperandCapacity::get(MI.getNumOperands()); 706 Operands = MF.allocateOperandArray(CapOperands); 707 708 // Copy operands. 709 for (const MachineOperand &MO : MI.operands()) 710 addOperand(MF, MO); 711 712 // Copy all the sensible flags. 713 setFlags(MI.Flags); 714 } 715 716 /// getRegInfo - If this instruction is embedded into a MachineFunction, 717 /// return the MachineRegisterInfo object for the current function, otherwise 718 /// return null. 719 MachineRegisterInfo *MachineInstr::getRegInfo() { 720 if (MachineBasicBlock *MBB = getParent()) 721 return &MBB->getParent()->getRegInfo(); 722 return nullptr; 723 } 724 725 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 726 /// this instruction from their respective use lists. This requires that the 727 /// operands already be on their use lists. 728 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 729 for (MachineOperand &MO : operands()) 730 if (MO.isReg()) 731 MRI.removeRegOperandFromUseList(&MO); 732 } 733 734 /// AddRegOperandsToUseLists - Add all of the register operands in 735 /// this instruction from their respective use lists. This requires that the 736 /// operands not be on their use lists yet. 737 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 738 for (MachineOperand &MO : operands()) 739 if (MO.isReg()) 740 MRI.addRegOperandToUseList(&MO); 741 } 742 743 void MachineInstr::addOperand(const MachineOperand &Op) { 744 MachineBasicBlock *MBB = getParent(); 745 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 746 MachineFunction *MF = MBB->getParent(); 747 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 748 addOperand(*MF, Op); 749 } 750 751 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 752 /// ranges. If MRI is non-null also update use-def chains. 753 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 754 unsigned NumOps, MachineRegisterInfo *MRI) { 755 if (MRI) 756 return MRI->moveOperands(Dst, Src, NumOps); 757 758 // MachineOperand is a trivially copyable type so we can just use memmove. 759 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 760 } 761 762 /// addOperand - Add the specified operand to the instruction. If it is an 763 /// implicit operand, it is added to the end of the operand list. If it is 764 /// an explicit operand it is added at the end of the explicit operand list 765 /// (before the first implicit operand). 766 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 767 assert(MCID && "Cannot add operands before providing an instr descriptor"); 768 769 // Check if we're adding one of our existing operands. 770 if (&Op >= Operands && &Op < Operands + NumOperands) { 771 // This is unusual: MI->addOperand(MI->getOperand(i)). 772 // If adding Op requires reallocating or moving existing operands around, 773 // the Op reference could go stale. Support it by copying Op. 774 MachineOperand CopyOp(Op); 775 return addOperand(MF, CopyOp); 776 } 777 778 // Find the insert location for the new operand. Implicit registers go at 779 // the end, everything else goes before the implicit regs. 780 // 781 // FIXME: Allow mixed explicit and implicit operands on inline asm. 782 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 783 // implicit-defs, but they must not be moved around. See the FIXME in 784 // InstrEmitter.cpp. 785 unsigned OpNo = getNumOperands(); 786 bool isImpReg = Op.isReg() && Op.isImplicit(); 787 if (!isImpReg && !isInlineAsm()) { 788 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 789 --OpNo; 790 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 791 } 792 } 793 794 #ifndef NDEBUG 795 bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata; 796 // OpNo now points as the desired insertion point. Unless this is a variadic 797 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 798 // RegMask operands go between the explicit and implicit operands. 799 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 800 OpNo < MCID->getNumOperands() || isMetaDataOp) && 801 "Trying to add an operand to a machine instr that is already done!"); 802 #endif 803 804 MachineRegisterInfo *MRI = getRegInfo(); 805 806 // Determine if the Operands array needs to be reallocated. 807 // Save the old capacity and operand array. 808 OperandCapacity OldCap = CapOperands; 809 MachineOperand *OldOperands = Operands; 810 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 811 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 812 Operands = MF.allocateOperandArray(CapOperands); 813 // Move the operands before the insertion point. 814 if (OpNo) 815 moveOperands(Operands, OldOperands, OpNo, MRI); 816 } 817 818 // Move the operands following the insertion point. 819 if (OpNo != NumOperands) 820 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 821 MRI); 822 ++NumOperands; 823 824 // Deallocate the old operand array. 825 if (OldOperands != Operands && OldOperands) 826 MF.deallocateOperandArray(OldCap, OldOperands); 827 828 // Copy Op into place. It still needs to be inserted into the MRI use lists. 829 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 830 NewMO->ParentMI = this; 831 832 // When adding a register operand, tell MRI about it. 833 if (NewMO->isReg()) { 834 // Ensure isOnRegUseList() returns false, regardless of Op's status. 835 NewMO->Contents.Reg.Prev = nullptr; 836 // Ignore existing ties. This is not a property that can be copied. 837 NewMO->TiedTo = 0; 838 // Add the new operand to MRI, but only for instructions in an MBB. 839 if (MRI) 840 MRI->addRegOperandToUseList(NewMO); 841 // The MCID operand information isn't accurate until we start adding 842 // explicit operands. The implicit operands are added first, then the 843 // explicits are inserted before them. 844 if (!isImpReg) { 845 // Tie uses to defs as indicated in MCInstrDesc. 846 if (NewMO->isUse()) { 847 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 848 if (DefIdx != -1) 849 tieOperands(DefIdx, OpNo); 850 } 851 // If the register operand is flagged as early, mark the operand as such. 852 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 853 NewMO->setIsEarlyClobber(true); 854 } 855 } 856 } 857 858 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 859 /// fewer operand than it started with. 860 /// 861 void MachineInstr::RemoveOperand(unsigned OpNo) { 862 assert(OpNo < getNumOperands() && "Invalid operand number"); 863 untieRegOperand(OpNo); 864 865 #ifndef NDEBUG 866 // Moving tied operands would break the ties. 867 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 868 if (Operands[i].isReg()) 869 assert(!Operands[i].isTied() && "Cannot move tied operands"); 870 #endif 871 872 MachineRegisterInfo *MRI = getRegInfo(); 873 if (MRI && Operands[OpNo].isReg()) 874 MRI->removeRegOperandFromUseList(Operands + OpNo); 875 876 // Don't call the MachineOperand destructor. A lot of this code depends on 877 // MachineOperand having a trivial destructor anyway, and adding a call here 878 // wouldn't make it 'destructor-correct'. 879 880 if (unsigned N = NumOperands - 1 - OpNo) 881 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 882 --NumOperands; 883 } 884 885 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 886 /// This function should be used only occasionally. The setMemRefs function 887 /// is the primary method for setting up a MachineInstr's MemRefs list. 888 void MachineInstr::addMemOperand(MachineFunction &MF, 889 MachineMemOperand *MO) { 890 mmo_iterator OldMemRefs = MemRefs; 891 unsigned OldNumMemRefs = NumMemRefs; 892 893 unsigned NewNum = NumMemRefs + 1; 894 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 895 896 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs); 897 NewMemRefs[NewNum - 1] = MO; 898 setMemRefs(NewMemRefs, NewMemRefs + NewNum); 899 } 900 901 /// Check to see if the MMOs pointed to by the two MemRefs arrays are 902 /// identical. 903 static bool hasIdenticalMMOs(const MachineInstr &MI1, const MachineInstr &MI2) { 904 auto I1 = MI1.memoperands_begin(), E1 = MI1.memoperands_end(); 905 auto I2 = MI2.memoperands_begin(), E2 = MI2.memoperands_end(); 906 if ((E1 - I1) != (E2 - I2)) 907 return false; 908 for (; I1 != E1; ++I1, ++I2) { 909 if (**I1 != **I2) 910 return false; 911 } 912 return true; 913 } 914 915 std::pair<MachineInstr::mmo_iterator, unsigned> 916 MachineInstr::mergeMemRefsWith(const MachineInstr& Other) { 917 918 // If either of the incoming memrefs are empty, we must be conservative and 919 // treat this as if we've exhausted our space for memrefs and dropped them. 920 if (memoperands_empty() || Other.memoperands_empty()) 921 return std::make_pair(nullptr, 0); 922 923 // If both instructions have identical memrefs, we don't need to merge them. 924 // Since many instructions have a single memref, and we tend to merge things 925 // like pairs of loads from the same location, this catches a large number of 926 // cases in practice. 927 if (hasIdenticalMMOs(*this, Other)) 928 return std::make_pair(MemRefs, NumMemRefs); 929 930 // TODO: consider uniquing elements within the operand lists to reduce 931 // space usage and fall back to conservative information less often. 932 size_t CombinedNumMemRefs = NumMemRefs + Other.NumMemRefs; 933 934 // If we don't have enough room to store this many memrefs, be conservative 935 // and drop them. Otherwise, we'd fail asserts when trying to add them to 936 // the new instruction. 937 if (CombinedNumMemRefs != uint8_t(CombinedNumMemRefs)) 938 return std::make_pair(nullptr, 0); 939 940 MachineFunction *MF = getParent()->getParent(); 941 mmo_iterator MemBegin = MF->allocateMemRefsArray(CombinedNumMemRefs); 942 mmo_iterator MemEnd = std::copy(memoperands_begin(), memoperands_end(), 943 MemBegin); 944 MemEnd = std::copy(Other.memoperands_begin(), Other.memoperands_end(), 945 MemEnd); 946 assert(MemEnd - MemBegin == (ptrdiff_t)CombinedNumMemRefs && 947 "missing memrefs"); 948 949 return std::make_pair(MemBegin, CombinedNumMemRefs); 950 } 951 952 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { 953 assert(!isBundledWithPred() && "Must be called on bundle header"); 954 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { 955 if (MII->getDesc().getFlags() & Mask) { 956 if (Type == AnyInBundle) 957 return true; 958 } else { 959 if (Type == AllInBundle && !MII->isBundle()) 960 return false; 961 } 962 // This was the last instruction in the bundle. 963 if (!MII->isBundledWithSucc()) 964 return Type == AllInBundle; 965 } 966 } 967 968 bool MachineInstr::isIdenticalTo(const MachineInstr &Other, 969 MICheckType Check) const { 970 // If opcodes or number of operands are not the same then the two 971 // instructions are obviously not identical. 972 if (Other.getOpcode() != getOpcode() || 973 Other.getNumOperands() != getNumOperands()) 974 return false; 975 976 if (isBundle()) { 977 // Both instructions are bundles, compare MIs inside the bundle. 978 MachineBasicBlock::const_instr_iterator I1 = getIterator(); 979 MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end(); 980 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); 981 MachineBasicBlock::const_instr_iterator E2 = Other.getParent()->instr_end(); 982 while (++I1 != E1 && I1->isInsideBundle()) { 983 ++I2; 984 if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(*I2, Check)) 985 return false; 986 } 987 } 988 989 // Check operands to make sure they match. 990 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 991 const MachineOperand &MO = getOperand(i); 992 const MachineOperand &OMO = Other.getOperand(i); 993 if (!MO.isReg()) { 994 if (!MO.isIdenticalTo(OMO)) 995 return false; 996 continue; 997 } 998 999 // Clients may or may not want to ignore defs when testing for equality. 1000 // For example, machine CSE pass only cares about finding common 1001 // subexpressions, so it's safe to ignore virtual register defs. 1002 if (MO.isDef()) { 1003 if (Check == IgnoreDefs) 1004 continue; 1005 else if (Check == IgnoreVRegDefs) { 1006 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 1007 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 1008 if (MO.getReg() != OMO.getReg()) 1009 return false; 1010 } else { 1011 if (!MO.isIdenticalTo(OMO)) 1012 return false; 1013 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 1014 return false; 1015 } 1016 } else { 1017 if (!MO.isIdenticalTo(OMO)) 1018 return false; 1019 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 1020 return false; 1021 } 1022 } 1023 // If DebugLoc does not match then two dbg.values are not identical. 1024 if (isDebugValue()) 1025 if (getDebugLoc() && Other.getDebugLoc() && 1026 getDebugLoc() != Other.getDebugLoc()) 1027 return false; 1028 return true; 1029 } 1030 1031 MachineInstr *MachineInstr::removeFromParent() { 1032 assert(getParent() && "Not embedded in a basic block!"); 1033 return getParent()->remove(this); 1034 } 1035 1036 MachineInstr *MachineInstr::removeFromBundle() { 1037 assert(getParent() && "Not embedded in a basic block!"); 1038 return getParent()->remove_instr(this); 1039 } 1040 1041 void MachineInstr::eraseFromParent() { 1042 assert(getParent() && "Not embedded in a basic block!"); 1043 getParent()->erase(this); 1044 } 1045 1046 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() { 1047 assert(getParent() && "Not embedded in a basic block!"); 1048 MachineBasicBlock *MBB = getParent(); 1049 MachineFunction *MF = MBB->getParent(); 1050 assert(MF && "Not embedded in a function!"); 1051 1052 MachineInstr *MI = (MachineInstr *)this; 1053 MachineRegisterInfo &MRI = MF->getRegInfo(); 1054 1055 for (const MachineOperand &MO : MI->operands()) { 1056 if (!MO.isReg() || !MO.isDef()) 1057 continue; 1058 unsigned Reg = MO.getReg(); 1059 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1060 continue; 1061 MRI.markUsesInDebugValueAsUndef(Reg); 1062 } 1063 MI->eraseFromParent(); 1064 } 1065 1066 void MachineInstr::eraseFromBundle() { 1067 assert(getParent() && "Not embedded in a basic block!"); 1068 getParent()->erase_instr(this); 1069 } 1070 1071 /// getNumExplicitOperands - Returns the number of non-implicit operands. 1072 /// 1073 unsigned MachineInstr::getNumExplicitOperands() const { 1074 unsigned NumOperands = MCID->getNumOperands(); 1075 if (!MCID->isVariadic()) 1076 return NumOperands; 1077 1078 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 1079 const MachineOperand &MO = getOperand(i); 1080 if (!MO.isReg() || !MO.isImplicit()) 1081 NumOperands++; 1082 } 1083 return NumOperands; 1084 } 1085 1086 void MachineInstr::bundleWithPred() { 1087 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 1088 setFlag(BundledPred); 1089 MachineBasicBlock::instr_iterator Pred = getIterator(); 1090 --Pred; 1091 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 1092 Pred->setFlag(BundledSucc); 1093 } 1094 1095 void MachineInstr::bundleWithSucc() { 1096 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 1097 setFlag(BundledSucc); 1098 MachineBasicBlock::instr_iterator Succ = getIterator(); 1099 ++Succ; 1100 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 1101 Succ->setFlag(BundledPred); 1102 } 1103 1104 void MachineInstr::unbundleFromPred() { 1105 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 1106 clearFlag(BundledPred); 1107 MachineBasicBlock::instr_iterator Pred = getIterator(); 1108 --Pred; 1109 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 1110 Pred->clearFlag(BundledSucc); 1111 } 1112 1113 void MachineInstr::unbundleFromSucc() { 1114 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 1115 clearFlag(BundledSucc); 1116 MachineBasicBlock::instr_iterator Succ = getIterator(); 1117 ++Succ; 1118 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 1119 Succ->clearFlag(BundledPred); 1120 } 1121 1122 bool MachineInstr::isStackAligningInlineAsm() const { 1123 if (isInlineAsm()) { 1124 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1125 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1126 return true; 1127 } 1128 return false; 1129 } 1130 1131 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 1132 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 1133 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1134 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 1135 } 1136 1137 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 1138 unsigned *GroupNo) const { 1139 assert(isInlineAsm() && "Expected an inline asm instruction"); 1140 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 1141 1142 // Ignore queries about the initial operands. 1143 if (OpIdx < InlineAsm::MIOp_FirstOperand) 1144 return -1; 1145 1146 unsigned Group = 0; 1147 unsigned NumOps; 1148 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1149 i += NumOps) { 1150 const MachineOperand &FlagMO = getOperand(i); 1151 // If we reach the implicit register operands, stop looking. 1152 if (!FlagMO.isImm()) 1153 return -1; 1154 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1155 if (i + NumOps > OpIdx) { 1156 if (GroupNo) 1157 *GroupNo = Group; 1158 return i; 1159 } 1160 ++Group; 1161 } 1162 return -1; 1163 } 1164 1165 const DILocalVariable *MachineInstr::getDebugVariable() const { 1166 assert(isDebugValue() && "not a DBG_VALUE"); 1167 return cast<DILocalVariable>(getOperand(2).getMetadata()); 1168 } 1169 1170 const DIExpression *MachineInstr::getDebugExpression() const { 1171 assert(isDebugValue() && "not a DBG_VALUE"); 1172 return cast<DIExpression>(getOperand(3).getMetadata()); 1173 } 1174 1175 const TargetRegisterClass* 1176 MachineInstr::getRegClassConstraint(unsigned OpIdx, 1177 const TargetInstrInfo *TII, 1178 const TargetRegisterInfo *TRI) const { 1179 assert(getParent() && "Can't have an MBB reference here!"); 1180 assert(getParent()->getParent() && "Can't have an MF reference here!"); 1181 const MachineFunction &MF = *getParent()->getParent(); 1182 1183 // Most opcodes have fixed constraints in their MCInstrDesc. 1184 if (!isInlineAsm()) 1185 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 1186 1187 if (!getOperand(OpIdx).isReg()) 1188 return nullptr; 1189 1190 // For tied uses on inline asm, get the constraint from the def. 1191 unsigned DefIdx; 1192 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 1193 OpIdx = DefIdx; 1194 1195 // Inline asm stores register class constraints in the flag word. 1196 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 1197 if (FlagIdx < 0) 1198 return nullptr; 1199 1200 unsigned Flag = getOperand(FlagIdx).getImm(); 1201 unsigned RCID; 1202 if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse || 1203 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef || 1204 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) && 1205 InlineAsm::hasRegClassConstraint(Flag, RCID)) 1206 return TRI->getRegClass(RCID); 1207 1208 // Assume that all registers in a memory operand are pointers. 1209 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 1210 return TRI->getPointerRegClass(MF); 1211 1212 return nullptr; 1213 } 1214 1215 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 1216 unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 1217 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 1218 // Check every operands inside the bundle if we have 1219 // been asked to. 1220 if (ExploreBundle) 1221 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; 1222 ++OpndIt) 1223 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 1224 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 1225 else 1226 // Otherwise, just check the current operands. 1227 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 1228 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 1229 return CurRC; 1230 } 1231 1232 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 1233 unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC, 1234 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1235 assert(CurRC && "Invalid initial register class"); 1236 // Check if Reg is constrained by some of its use/def from MI. 1237 const MachineOperand &MO = getOperand(OpIdx); 1238 if (!MO.isReg() || MO.getReg() != Reg) 1239 return CurRC; 1240 // If yes, accumulate the constraints through the operand. 1241 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 1242 } 1243 1244 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 1245 unsigned OpIdx, const TargetRegisterClass *CurRC, 1246 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1247 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 1248 const MachineOperand &MO = getOperand(OpIdx); 1249 assert(MO.isReg() && 1250 "Cannot get register constraints for non-register operand"); 1251 assert(CurRC && "Invalid initial register class"); 1252 if (unsigned SubIdx = MO.getSubReg()) { 1253 if (OpRC) 1254 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 1255 else 1256 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 1257 } else if (OpRC) 1258 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 1259 return CurRC; 1260 } 1261 1262 /// Return the number of instructions inside the MI bundle, not counting the 1263 /// header instruction. 1264 unsigned MachineInstr::getBundleSize() const { 1265 MachineBasicBlock::const_instr_iterator I = getIterator(); 1266 unsigned Size = 0; 1267 while (I->isBundledWithSucc()) { 1268 ++Size; 1269 ++I; 1270 } 1271 return Size; 1272 } 1273 1274 /// Returns true if the MachineInstr has an implicit-use operand of exactly 1275 /// the given register (not considering sub/super-registers). 1276 bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const { 1277 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1278 const MachineOperand &MO = getOperand(i); 1279 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) 1280 return true; 1281 } 1282 return false; 1283 } 1284 1285 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 1286 /// the specific register or -1 if it is not found. It further tightens 1287 /// the search criteria to a use that kills the register if isKill is true. 1288 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, 1289 const TargetRegisterInfo *TRI) const { 1290 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1291 const MachineOperand &MO = getOperand(i); 1292 if (!MO.isReg() || !MO.isUse()) 1293 continue; 1294 unsigned MOReg = MO.getReg(); 1295 if (!MOReg) 1296 continue; 1297 if (MOReg == Reg || 1298 (TRI && 1299 TargetRegisterInfo::isPhysicalRegister(MOReg) && 1300 TargetRegisterInfo::isPhysicalRegister(Reg) && 1301 TRI->isSubRegister(MOReg, Reg))) 1302 if (!isKill || MO.isKill()) 1303 return i; 1304 } 1305 return -1; 1306 } 1307 1308 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1309 /// indicating if this instruction reads or writes Reg. This also considers 1310 /// partial defines. 1311 std::pair<bool,bool> 1312 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 1313 SmallVectorImpl<unsigned> *Ops) const { 1314 bool PartDef = false; // Partial redefine. 1315 bool FullDef = false; // Full define. 1316 bool Use = false; 1317 1318 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1319 const MachineOperand &MO = getOperand(i); 1320 if (!MO.isReg() || MO.getReg() != Reg) 1321 continue; 1322 if (Ops) 1323 Ops->push_back(i); 1324 if (MO.isUse()) 1325 Use |= !MO.isUndef(); 1326 else if (MO.getSubReg() && !MO.isUndef()) 1327 // A partial <def,undef> doesn't count as reading the register. 1328 PartDef = true; 1329 else 1330 FullDef = true; 1331 } 1332 // A partial redefine uses Reg unless there is also a full define. 1333 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1334 } 1335 1336 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1337 /// the specified register or -1 if it is not found. If isDead is true, defs 1338 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1339 /// also checks if there is a def of a super-register. 1340 int 1341 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 1342 const TargetRegisterInfo *TRI) const { 1343 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 1344 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1345 const MachineOperand &MO = getOperand(i); 1346 // Accept regmask operands when Overlap is set. 1347 // Ignore them when looking for a specific def operand (Overlap == false). 1348 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1349 return i; 1350 if (!MO.isReg() || !MO.isDef()) 1351 continue; 1352 unsigned MOReg = MO.getReg(); 1353 bool Found = (MOReg == Reg); 1354 if (!Found && TRI && isPhys && 1355 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1356 if (Overlap) 1357 Found = TRI->regsOverlap(MOReg, Reg); 1358 else 1359 Found = TRI->isSubRegister(MOReg, Reg); 1360 } 1361 if (Found && (!isDead || MO.isDead())) 1362 return i; 1363 } 1364 return -1; 1365 } 1366 1367 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1368 /// operand list that is used to represent the predicate. It returns -1 if 1369 /// none is found. 1370 int MachineInstr::findFirstPredOperandIdx() const { 1371 // Don't call MCID.findFirstPredOperandIdx() because this variant 1372 // is sometimes called on an instruction that's not yet complete, and 1373 // so the number of operands is less than the MCID indicates. In 1374 // particular, the PTX target does this. 1375 const MCInstrDesc &MCID = getDesc(); 1376 if (MCID.isPredicable()) { 1377 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1378 if (MCID.OpInfo[i].isPredicate()) 1379 return i; 1380 } 1381 1382 return -1; 1383 } 1384 1385 // MachineOperand::TiedTo is 4 bits wide. 1386 const unsigned TiedMax = 15; 1387 1388 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1389 /// 1390 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1391 /// field. TiedTo can have these values: 1392 /// 1393 /// 0: Operand is not tied to anything. 1394 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1395 /// TiedMax: Tied to an operand >= TiedMax-1. 1396 /// 1397 /// The tied def must be one of the first TiedMax operands on a normal 1398 /// instruction. INLINEASM instructions allow more tied defs. 1399 /// 1400 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1401 MachineOperand &DefMO = getOperand(DefIdx); 1402 MachineOperand &UseMO = getOperand(UseIdx); 1403 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1404 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1405 assert(!DefMO.isTied() && "Def is already tied to another use"); 1406 assert(!UseMO.isTied() && "Use is already tied to another def"); 1407 1408 if (DefIdx < TiedMax) 1409 UseMO.TiedTo = DefIdx + 1; 1410 else { 1411 // Inline asm can use the group descriptors to find tied operands, but on 1412 // normal instruction, the tied def must be within the first TiedMax 1413 // operands. 1414 assert(isInlineAsm() && "DefIdx out of range"); 1415 UseMO.TiedTo = TiedMax; 1416 } 1417 1418 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1419 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1420 } 1421 1422 /// Given the index of a tied register operand, find the operand it is tied to. 1423 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1424 /// which must exist. 1425 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1426 const MachineOperand &MO = getOperand(OpIdx); 1427 assert(MO.isTied() && "Operand isn't tied"); 1428 1429 // Normally TiedTo is in range. 1430 if (MO.TiedTo < TiedMax) 1431 return MO.TiedTo - 1; 1432 1433 // Uses on normal instructions can be out of range. 1434 if (!isInlineAsm()) { 1435 // Normal tied defs must be in the 0..TiedMax-1 range. 1436 if (MO.isUse()) 1437 return TiedMax - 1; 1438 // MO is a def. Search for the tied use. 1439 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1440 const MachineOperand &UseMO = getOperand(i); 1441 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1442 return i; 1443 } 1444 llvm_unreachable("Can't find tied use"); 1445 } 1446 1447 // Now deal with inline asm by parsing the operand group descriptor flags. 1448 // Find the beginning of each operand group. 1449 SmallVector<unsigned, 8> GroupIdx; 1450 unsigned OpIdxGroup = ~0u; 1451 unsigned NumOps; 1452 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1453 i += NumOps) { 1454 const MachineOperand &FlagMO = getOperand(i); 1455 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1456 unsigned CurGroup = GroupIdx.size(); 1457 GroupIdx.push_back(i); 1458 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1459 // OpIdx belongs to this operand group. 1460 if (OpIdx > i && OpIdx < i + NumOps) 1461 OpIdxGroup = CurGroup; 1462 unsigned TiedGroup; 1463 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1464 continue; 1465 // Operands in this group are tied to operands in TiedGroup which must be 1466 // earlier. Find the number of operands between the two groups. 1467 unsigned Delta = i - GroupIdx[TiedGroup]; 1468 1469 // OpIdx is a use tied to TiedGroup. 1470 if (OpIdxGroup == CurGroup) 1471 return OpIdx - Delta; 1472 1473 // OpIdx is a def tied to this use group. 1474 if (OpIdxGroup == TiedGroup) 1475 return OpIdx + Delta; 1476 } 1477 llvm_unreachable("Invalid tied operand on inline asm"); 1478 } 1479 1480 /// clearKillInfo - Clears kill flags on all operands. 1481 /// 1482 void MachineInstr::clearKillInfo() { 1483 for (MachineOperand &MO : operands()) { 1484 if (MO.isReg() && MO.isUse()) 1485 MO.setIsKill(false); 1486 } 1487 } 1488 1489 void MachineInstr::substituteRegister(unsigned FromReg, 1490 unsigned ToReg, 1491 unsigned SubIdx, 1492 const TargetRegisterInfo &RegInfo) { 1493 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1494 if (SubIdx) 1495 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1496 for (MachineOperand &MO : operands()) { 1497 if (!MO.isReg() || MO.getReg() != FromReg) 1498 continue; 1499 MO.substPhysReg(ToReg, RegInfo); 1500 } 1501 } else { 1502 for (MachineOperand &MO : operands()) { 1503 if (!MO.isReg() || MO.getReg() != FromReg) 1504 continue; 1505 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1506 } 1507 } 1508 } 1509 1510 /// isSafeToMove - Return true if it is safe to move this instruction. If 1511 /// SawStore is set to true, it means that there is a store (or call) between 1512 /// the instruction's location and its intended destination. 1513 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const { 1514 // Ignore stuff that we obviously can't move. 1515 // 1516 // Treat volatile loads as stores. This is not strictly necessary for 1517 // volatiles, but it is required for atomic loads. It is not allowed to move 1518 // a load across an atomic load with Ordering > Monotonic. 1519 if (mayStore() || isCall() || 1520 (mayLoad() && hasOrderedMemoryRef())) { 1521 SawStore = true; 1522 return false; 1523 } 1524 1525 if (isPosition() || isDebugValue() || isTerminator() || 1526 hasUnmodeledSideEffects()) 1527 return false; 1528 1529 // See if this instruction does a load. If so, we have to guarantee that the 1530 // loaded value doesn't change between the load and the its intended 1531 // destination. The check for isInvariantLoad gives the targe the chance to 1532 // classify the load as always returning a constant, e.g. a constant pool 1533 // load. 1534 if (mayLoad() && !isDereferenceableInvariantLoad(AA)) 1535 // Otherwise, this is a real load. If there is a store between the load and 1536 // end of block, we can't move it. 1537 return !SawStore; 1538 1539 return true; 1540 } 1541 1542 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1543 /// or volatile memory reference, or if the information describing the memory 1544 /// reference is not available. Return false if it is known to have no ordered 1545 /// memory references. 1546 bool MachineInstr::hasOrderedMemoryRef() const { 1547 // An instruction known never to access memory won't have a volatile access. 1548 if (!mayStore() && 1549 !mayLoad() && 1550 !isCall() && 1551 !hasUnmodeledSideEffects()) 1552 return false; 1553 1554 // Otherwise, if the instruction has no memory reference information, 1555 // conservatively assume it wasn't preserved. 1556 if (memoperands_empty()) 1557 return true; 1558 1559 // Check if any of our memory operands are ordered. 1560 return any_of(memoperands(), [](const MachineMemOperand *MMO) { 1561 return !MMO->isUnordered(); 1562 }); 1563 } 1564 1565 /// isDereferenceableInvariantLoad - Return true if this instruction will never 1566 /// trap and is loading from a location whose value is invariant across a run of 1567 /// this function. 1568 bool MachineInstr::isDereferenceableInvariantLoad(AliasAnalysis *AA) const { 1569 // If the instruction doesn't load at all, it isn't an invariant load. 1570 if (!mayLoad()) 1571 return false; 1572 1573 // If the instruction has lost its memoperands, conservatively assume that 1574 // it may not be an invariant load. 1575 if (memoperands_empty()) 1576 return false; 1577 1578 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); 1579 1580 for (MachineMemOperand *MMO : memoperands()) { 1581 if (MMO->isVolatile()) return false; 1582 if (MMO->isStore()) return false; 1583 if (MMO->isInvariant() && MMO->isDereferenceable()) 1584 continue; 1585 1586 // A load from a constant PseudoSourceValue is invariant. 1587 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) 1588 if (PSV->isConstant(&MFI)) 1589 continue; 1590 1591 if (const Value *V = MMO->getValue()) { 1592 // If we have an AliasAnalysis, ask it whether the memory is constant. 1593 if (AA && 1594 AA->pointsToConstantMemory( 1595 MemoryLocation(V, MMO->getSize(), MMO->getAAInfo()))) 1596 continue; 1597 } 1598 1599 // Otherwise assume conservatively. 1600 return false; 1601 } 1602 1603 // Everything checks out. 1604 return true; 1605 } 1606 1607 /// isConstantValuePHI - If the specified instruction is a PHI that always 1608 /// merges together the same virtual register, return the register, otherwise 1609 /// return 0. 1610 unsigned MachineInstr::isConstantValuePHI() const { 1611 if (!isPHI()) 1612 return 0; 1613 assert(getNumOperands() >= 3 && 1614 "It's illegal to have a PHI without source operands"); 1615 1616 unsigned Reg = getOperand(1).getReg(); 1617 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1618 if (getOperand(i).getReg() != Reg) 1619 return 0; 1620 return Reg; 1621 } 1622 1623 bool MachineInstr::hasUnmodeledSideEffects() const { 1624 if (hasProperty(MCID::UnmodeledSideEffects)) 1625 return true; 1626 if (isInlineAsm()) { 1627 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1628 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1629 return true; 1630 } 1631 1632 return false; 1633 } 1634 1635 bool MachineInstr::isLoadFoldBarrier() const { 1636 return mayStore() || isCall() || hasUnmodeledSideEffects(); 1637 } 1638 1639 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1640 /// 1641 bool MachineInstr::allDefsAreDead() const { 1642 for (const MachineOperand &MO : operands()) { 1643 if (!MO.isReg() || MO.isUse()) 1644 continue; 1645 if (!MO.isDead()) 1646 return false; 1647 } 1648 return true; 1649 } 1650 1651 /// copyImplicitOps - Copy implicit register operands from specified 1652 /// instruction to this instruction. 1653 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1654 const MachineInstr &MI) { 1655 for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands(); 1656 i != e; ++i) { 1657 const MachineOperand &MO = MI.getOperand(i); 1658 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1659 addOperand(MF, MO); 1660 } 1661 } 1662 1663 LLVM_DUMP_METHOD void MachineInstr::dump() const { 1664 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1665 dbgs() << " " << *this; 1666 #endif 1667 } 1668 1669 void MachineInstr::print(raw_ostream &OS, bool SkipOpers) const { 1670 const Module *M = nullptr; 1671 if (const MachineBasicBlock *MBB = getParent()) 1672 if (const MachineFunction *MF = MBB->getParent()) 1673 M = MF->getFunction()->getParent(); 1674 1675 ModuleSlotTracker MST(M); 1676 print(OS, MST, SkipOpers); 1677 } 1678 1679 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1680 bool SkipOpers) const { 1681 // We can be a bit tidier if we know the MachineFunction. 1682 const MachineFunction *MF = nullptr; 1683 const TargetRegisterInfo *TRI = nullptr; 1684 const MachineRegisterInfo *MRI = nullptr; 1685 const TargetInstrInfo *TII = nullptr; 1686 const TargetIntrinsicInfo *IntrinsicInfo = nullptr; 1687 1688 if (const MachineBasicBlock *MBB = getParent()) { 1689 MF = MBB->getParent(); 1690 if (MF) { 1691 MRI = &MF->getRegInfo(); 1692 TRI = MF->getSubtarget().getRegisterInfo(); 1693 TII = MF->getSubtarget().getInstrInfo(); 1694 IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); 1695 } 1696 } 1697 1698 // Save a list of virtual registers. 1699 SmallVector<unsigned, 8> VirtRegs; 1700 1701 // Print explicitly defined operands on the left of an assignment syntax. 1702 unsigned StartOp = 0, e = getNumOperands(); 1703 for (; StartOp < e && getOperand(StartOp).isReg() && 1704 getOperand(StartOp).isDef() && 1705 !getOperand(StartOp).isImplicit(); 1706 ++StartOp) { 1707 if (StartOp != 0) OS << ", "; 1708 getOperand(StartOp).print(OS, MST, TRI, IntrinsicInfo); 1709 unsigned Reg = getOperand(StartOp).getReg(); 1710 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1711 VirtRegs.push_back(Reg); 1712 LLT Ty = MRI ? MRI->getType(Reg) : LLT{}; 1713 if (Ty.isValid()) 1714 OS << '(' << Ty << ')'; 1715 } 1716 } 1717 1718 if (StartOp != 0) 1719 OS << " = "; 1720 1721 // Print the opcode name. 1722 if (TII) 1723 OS << TII->getName(getOpcode()); 1724 else 1725 OS << "UNKNOWN"; 1726 1727 if (SkipOpers) 1728 return; 1729 1730 // Print the rest of the operands. 1731 bool OmittedAnyCallClobbers = false; 1732 bool FirstOp = true; 1733 unsigned AsmDescOp = ~0u; 1734 unsigned AsmOpCount = 0; 1735 1736 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1737 // Print asm string. 1738 OS << " "; 1739 getOperand(InlineAsm::MIOp_AsmString).print(OS, MST, TRI); 1740 1741 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1742 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1743 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1744 OS << " [sideeffect]"; 1745 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1746 OS << " [mayload]"; 1747 if (ExtraInfo & InlineAsm::Extra_MayStore) 1748 OS << " [maystore]"; 1749 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 1750 OS << " [isconvergent]"; 1751 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1752 OS << " [alignstack]"; 1753 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1754 OS << " [attdialect]"; 1755 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1756 OS << " [inteldialect]"; 1757 1758 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1759 FirstOp = false; 1760 } 1761 1762 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1763 const MachineOperand &MO = getOperand(i); 1764 1765 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1766 VirtRegs.push_back(MO.getReg()); 1767 1768 // Omit call-clobbered registers which aren't used anywhere. This makes 1769 // call instructions much less noisy on targets where calls clobber lots 1770 // of registers. Don't rely on MO.isDead() because we may be called before 1771 // LiveVariables is run, or we may be looking at a non-allocatable reg. 1772 if (MRI && isCall() && 1773 MO.isReg() && MO.isImplicit() && MO.isDef()) { 1774 unsigned Reg = MO.getReg(); 1775 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1776 if (MRI->use_empty(Reg)) { 1777 bool HasAliasLive = false; 1778 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 1779 unsigned AliasReg = *AI; 1780 if (!MRI->use_empty(AliasReg)) { 1781 HasAliasLive = true; 1782 break; 1783 } 1784 } 1785 if (!HasAliasLive) { 1786 OmittedAnyCallClobbers = true; 1787 continue; 1788 } 1789 } 1790 } 1791 } 1792 1793 if (FirstOp) FirstOp = false; else OS << ","; 1794 OS << " "; 1795 if (i < getDesc().NumOperands) { 1796 const MCOperandInfo &MCOI = getDesc().OpInfo[i]; 1797 if (MCOI.isPredicate()) 1798 OS << "pred:"; 1799 if (MCOI.isOptionalDef()) 1800 OS << "opt:"; 1801 } 1802 if (isDebugValue() && MO.isMetadata()) { 1803 // Pretty print DBG_VALUE instructions. 1804 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1805 if (DIV && !DIV->getName().empty()) 1806 OS << "!\"" << DIV->getName() << '\"'; 1807 else 1808 MO.print(OS, MST, TRI); 1809 } else if (TRI && (isInsertSubreg() || isRegSequence()) && MO.isImm()) { 1810 OS << TRI->getSubRegIndexName(MO.getImm()); 1811 } else if (i == AsmDescOp && MO.isImm()) { 1812 // Pretty print the inline asm operand descriptor. 1813 OS << '$' << AsmOpCount++; 1814 unsigned Flag = MO.getImm(); 1815 switch (InlineAsm::getKind(Flag)) { 1816 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1817 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1818 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1819 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1820 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1821 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1822 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1823 } 1824 1825 unsigned RCID = 0; 1826 if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) && 1827 InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1828 if (TRI) { 1829 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1830 } else 1831 OS << ":RC" << RCID; 1832 } 1833 1834 if (InlineAsm::isMemKind(Flag)) { 1835 unsigned MCID = InlineAsm::getMemoryConstraintID(Flag); 1836 switch (MCID) { 1837 case InlineAsm::Constraint_es: OS << ":es"; break; 1838 case InlineAsm::Constraint_i: OS << ":i"; break; 1839 case InlineAsm::Constraint_m: OS << ":m"; break; 1840 case InlineAsm::Constraint_o: OS << ":o"; break; 1841 case InlineAsm::Constraint_v: OS << ":v"; break; 1842 case InlineAsm::Constraint_Q: OS << ":Q"; break; 1843 case InlineAsm::Constraint_R: OS << ":R"; break; 1844 case InlineAsm::Constraint_S: OS << ":S"; break; 1845 case InlineAsm::Constraint_T: OS << ":T"; break; 1846 case InlineAsm::Constraint_Um: OS << ":Um"; break; 1847 case InlineAsm::Constraint_Un: OS << ":Un"; break; 1848 case InlineAsm::Constraint_Uq: OS << ":Uq"; break; 1849 case InlineAsm::Constraint_Us: OS << ":Us"; break; 1850 case InlineAsm::Constraint_Ut: OS << ":Ut"; break; 1851 case InlineAsm::Constraint_Uv: OS << ":Uv"; break; 1852 case InlineAsm::Constraint_Uy: OS << ":Uy"; break; 1853 case InlineAsm::Constraint_X: OS << ":X"; break; 1854 case InlineAsm::Constraint_Z: OS << ":Z"; break; 1855 case InlineAsm::Constraint_ZC: OS << ":ZC"; break; 1856 case InlineAsm::Constraint_Zy: OS << ":Zy"; break; 1857 default: OS << ":?"; break; 1858 } 1859 } 1860 1861 unsigned TiedTo = 0; 1862 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1863 OS << " tiedto:$" << TiedTo; 1864 1865 OS << ']'; 1866 1867 // Compute the index of the next operand descriptor. 1868 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1869 } else 1870 MO.print(OS, MST, TRI); 1871 } 1872 1873 // Briefly indicate whether any call clobbers were omitted. 1874 if (OmittedAnyCallClobbers) { 1875 if (!FirstOp) OS << ","; 1876 OS << " ..."; 1877 } 1878 1879 bool HaveSemi = false; 1880 const unsigned PrintableFlags = FrameSetup | FrameDestroy; 1881 if (Flags & PrintableFlags) { 1882 if (!HaveSemi) { 1883 OS << ";"; 1884 HaveSemi = true; 1885 } 1886 OS << " flags: "; 1887 1888 if (Flags & FrameSetup) 1889 OS << "FrameSetup"; 1890 1891 if (Flags & FrameDestroy) 1892 OS << "FrameDestroy"; 1893 } 1894 1895 if (!memoperands_empty()) { 1896 if (!HaveSemi) { 1897 OS << ";"; 1898 HaveSemi = true; 1899 } 1900 1901 OS << " mem:"; 1902 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 1903 i != e; ++i) { 1904 (*i)->print(OS, MST); 1905 if (std::next(i) != e) 1906 OS << " "; 1907 } 1908 } 1909 1910 // Print the regclass of any virtual registers encountered. 1911 if (MRI && !VirtRegs.empty()) { 1912 if (!HaveSemi) { 1913 OS << ";"; 1914 HaveSemi = true; 1915 } 1916 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 1917 const RegClassOrRegBank &RC = MRI->getRegClassOrRegBank(VirtRegs[i]); 1918 if (!RC) 1919 continue; 1920 // Generic virtual registers do not have register classes. 1921 if (RC.is<const RegisterBank *>()) 1922 OS << " " << RC.get<const RegisterBank *>()->getName(); 1923 else 1924 OS << " " 1925 << TRI->getRegClassName(RC.get<const TargetRegisterClass *>()); 1926 OS << ':' << PrintReg(VirtRegs[i]); 1927 for (unsigned j = i+1; j != VirtRegs.size();) { 1928 if (MRI->getRegClassOrRegBank(VirtRegs[j]) != RC) { 1929 ++j; 1930 continue; 1931 } 1932 if (VirtRegs[i] != VirtRegs[j]) 1933 OS << "," << PrintReg(VirtRegs[j]); 1934 VirtRegs.erase(VirtRegs.begin()+j); 1935 } 1936 } 1937 } 1938 1939 // Print debug location information. 1940 if (isDebugValue() && getOperand(e - 2).isMetadata()) { 1941 if (!HaveSemi) 1942 OS << ";"; 1943 auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata()); 1944 OS << " line no:" << DV->getLine(); 1945 if (auto *InlinedAt = debugLoc->getInlinedAt()) { 1946 DebugLoc InlinedAtDL(InlinedAt); 1947 if (InlinedAtDL && MF) { 1948 OS << " inlined @[ "; 1949 InlinedAtDL.print(OS); 1950 OS << " ]"; 1951 } 1952 } 1953 if (isIndirectDebugValue()) 1954 OS << " indirect"; 1955 } else if (debugLoc && MF) { 1956 if (!HaveSemi) 1957 OS << ";"; 1958 OS << " dbg:"; 1959 debugLoc.print(OS); 1960 } 1961 1962 OS << '\n'; 1963 } 1964 1965 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 1966 const TargetRegisterInfo *RegInfo, 1967 bool AddIfNotFound) { 1968 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1969 bool hasAliases = isPhysReg && 1970 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1971 bool Found = false; 1972 SmallVector<unsigned,4> DeadOps; 1973 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1974 MachineOperand &MO = getOperand(i); 1975 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1976 continue; 1977 1978 // DEBUG_VALUE nodes do not contribute to code generation and should 1979 // always be ignored. Failure to do so may result in trying to modify 1980 // KILL flags on DEBUG_VALUE nodes. 1981 if (MO.isDebug()) 1982 continue; 1983 1984 unsigned Reg = MO.getReg(); 1985 if (!Reg) 1986 continue; 1987 1988 if (Reg == IncomingReg) { 1989 if (!Found) { 1990 if (MO.isKill()) 1991 // The register is already marked kill. 1992 return true; 1993 if (isPhysReg && isRegTiedToDefOperand(i)) 1994 // Two-address uses of physregs must not be marked kill. 1995 return true; 1996 MO.setIsKill(); 1997 Found = true; 1998 } 1999 } else if (hasAliases && MO.isKill() && 2000 TargetRegisterInfo::isPhysicalRegister(Reg)) { 2001 // A super-register kill already exists. 2002 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 2003 return true; 2004 if (RegInfo->isSubRegister(IncomingReg, Reg)) 2005 DeadOps.push_back(i); 2006 } 2007 } 2008 2009 // Trim unneeded kill operands. 2010 while (!DeadOps.empty()) { 2011 unsigned OpIdx = DeadOps.back(); 2012 if (getOperand(OpIdx).isImplicit()) 2013 RemoveOperand(OpIdx); 2014 else 2015 getOperand(OpIdx).setIsKill(false); 2016 DeadOps.pop_back(); 2017 } 2018 2019 // If not found, this means an alias of one of the operands is killed. Add a 2020 // new implicit operand if required. 2021 if (!Found && AddIfNotFound) { 2022 addOperand(MachineOperand::CreateReg(IncomingReg, 2023 false /*IsDef*/, 2024 true /*IsImp*/, 2025 true /*IsKill*/)); 2026 return true; 2027 } 2028 return Found; 2029 } 2030 2031 void MachineInstr::clearRegisterKills(unsigned Reg, 2032 const TargetRegisterInfo *RegInfo) { 2033 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 2034 RegInfo = nullptr; 2035 for (MachineOperand &MO : operands()) { 2036 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 2037 continue; 2038 unsigned OpReg = MO.getReg(); 2039 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) 2040 MO.setIsKill(false); 2041 } 2042 } 2043 2044 bool MachineInstr::addRegisterDead(unsigned Reg, 2045 const TargetRegisterInfo *RegInfo, 2046 bool AddIfNotFound) { 2047 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg); 2048 bool hasAliases = isPhysReg && 2049 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 2050 bool Found = false; 2051 SmallVector<unsigned,4> DeadOps; 2052 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 2053 MachineOperand &MO = getOperand(i); 2054 if (!MO.isReg() || !MO.isDef()) 2055 continue; 2056 unsigned MOReg = MO.getReg(); 2057 if (!MOReg) 2058 continue; 2059 2060 if (MOReg == Reg) { 2061 MO.setIsDead(); 2062 Found = true; 2063 } else if (hasAliases && MO.isDead() && 2064 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 2065 // There exists a super-register that's marked dead. 2066 if (RegInfo->isSuperRegister(Reg, MOReg)) 2067 return true; 2068 if (RegInfo->isSubRegister(Reg, MOReg)) 2069 DeadOps.push_back(i); 2070 } 2071 } 2072 2073 // Trim unneeded dead operands. 2074 while (!DeadOps.empty()) { 2075 unsigned OpIdx = DeadOps.back(); 2076 if (getOperand(OpIdx).isImplicit()) 2077 RemoveOperand(OpIdx); 2078 else 2079 getOperand(OpIdx).setIsDead(false); 2080 DeadOps.pop_back(); 2081 } 2082 2083 // If not found, this means an alias of one of the operands is dead. Add a 2084 // new implicit operand if required. 2085 if (Found || !AddIfNotFound) 2086 return Found; 2087 2088 addOperand(MachineOperand::CreateReg(Reg, 2089 true /*IsDef*/, 2090 true /*IsImp*/, 2091 false /*IsKill*/, 2092 true /*IsDead*/)); 2093 return true; 2094 } 2095 2096 void MachineInstr::clearRegisterDeads(unsigned Reg) { 2097 for (MachineOperand &MO : operands()) { 2098 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) 2099 continue; 2100 MO.setIsDead(false); 2101 } 2102 } 2103 2104 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) { 2105 for (MachineOperand &MO : operands()) { 2106 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) 2107 continue; 2108 MO.setIsUndef(IsUndef); 2109 } 2110 } 2111 2112 void MachineInstr::addRegisterDefined(unsigned Reg, 2113 const TargetRegisterInfo *RegInfo) { 2114 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 2115 MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo); 2116 if (MO) 2117 return; 2118 } else { 2119 for (const MachineOperand &MO : operands()) { 2120 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 2121 MO.getSubReg() == 0) 2122 return; 2123 } 2124 } 2125 addOperand(MachineOperand::CreateReg(Reg, 2126 true /*IsDef*/, 2127 true /*IsImp*/)); 2128 } 2129 2130 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 2131 const TargetRegisterInfo &TRI) { 2132 bool HasRegMask = false; 2133 for (MachineOperand &MO : operands()) { 2134 if (MO.isRegMask()) { 2135 HasRegMask = true; 2136 continue; 2137 } 2138 if (!MO.isReg() || !MO.isDef()) continue; 2139 unsigned Reg = MO.getReg(); 2140 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 2141 // If there are no uses, including partial uses, the def is dead. 2142 if (none_of(UsedRegs, 2143 [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); })) 2144 MO.setIsDead(); 2145 } 2146 2147 // This is a call with a register mask operand. 2148 // Mask clobbers are always dead, so add defs for the non-dead defines. 2149 if (HasRegMask) 2150 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 2151 I != E; ++I) 2152 addRegisterDefined(*I, &TRI); 2153 } 2154 2155 unsigned 2156 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 2157 // Build up a buffer of hash code components. 2158 SmallVector<size_t, 8> HashComponents; 2159 HashComponents.reserve(MI->getNumOperands() + 1); 2160 HashComponents.push_back(MI->getOpcode()); 2161 for (const MachineOperand &MO : MI->operands()) { 2162 if (MO.isReg() && MO.isDef() && 2163 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 2164 continue; // Skip virtual register defs. 2165 2166 HashComponents.push_back(hash_value(MO)); 2167 } 2168 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 2169 } 2170 2171 void MachineInstr::emitError(StringRef Msg) const { 2172 // Find the source location cookie. 2173 unsigned LocCookie = 0; 2174 const MDNode *LocMD = nullptr; 2175 for (unsigned i = getNumOperands(); i != 0; --i) { 2176 if (getOperand(i-1).isMetadata() && 2177 (LocMD = getOperand(i-1).getMetadata()) && 2178 LocMD->getNumOperands() != 0) { 2179 if (const ConstantInt *CI = 2180 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 2181 LocCookie = CI->getZExtValue(); 2182 break; 2183 } 2184 } 2185 } 2186 2187 if (const MachineBasicBlock *MBB = getParent()) 2188 if (const MachineFunction *MF = MBB->getParent()) 2189 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 2190 report_fatal_error(Msg); 2191 } 2192 2193 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2194 const MCInstrDesc &MCID, bool IsIndirect, 2195 unsigned Reg, unsigned Offset, 2196 const MDNode *Variable, const MDNode *Expr) { 2197 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2198 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2199 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2200 "Expected inlined-at fields to agree"); 2201 if (IsIndirect) 2202 return BuildMI(MF, DL, MCID) 2203 .addReg(Reg, RegState::Debug) 2204 .addImm(Offset) 2205 .addMetadata(Variable) 2206 .addMetadata(Expr); 2207 else { 2208 assert(Offset == 0 && "A direct address cannot have an offset."); 2209 return BuildMI(MF, DL, MCID) 2210 .addReg(Reg, RegState::Debug) 2211 .addReg(0U, RegState::Debug) 2212 .addMetadata(Variable) 2213 .addMetadata(Expr); 2214 } 2215 } 2216 2217 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2218 MachineBasicBlock::iterator I, 2219 const DebugLoc &DL, const MCInstrDesc &MCID, 2220 bool IsIndirect, unsigned Reg, 2221 unsigned Offset, const MDNode *Variable, 2222 const MDNode *Expr) { 2223 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2224 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2225 MachineFunction &MF = *BB.getParent(); 2226 MachineInstr *MI = 2227 BuildMI(MF, DL, MCID, IsIndirect, Reg, Offset, Variable, Expr); 2228 BB.insert(I, MI); 2229 return MachineInstrBuilder(MF, MI); 2230 } 2231