1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Methods common to all machine instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MachineInstr.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/Hashing.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallBitVector.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/MemoryLocation.h" 21 #include "llvm/CodeGen/MachineBasicBlock.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineInstrBundle.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineModuleInfo.h" 28 #include "llvm/CodeGen/MachineOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/PseudoSourceValue.h" 31 #include "llvm/CodeGen/Register.h" 32 #include "llvm/CodeGen/StackMaps.h" 33 #include "llvm/CodeGen/TargetInstrInfo.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/CodeGen/TargetSubtargetInfo.h" 36 #include "llvm/CodeGenTypes/LowLevelType.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/InlineAsm.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/LLVMContext.h" 44 #include "llvm/IR/Metadata.h" 45 #include "llvm/IR/Module.h" 46 #include "llvm/IR/ModuleSlotTracker.h" 47 #include "llvm/IR/Operator.h" 48 #include "llvm/MC/MCInstrDesc.h" 49 #include "llvm/MC/MCRegisterInfo.h" 50 #include "llvm/Support/Casting.h" 51 #include "llvm/Support/Compiler.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/ErrorHandling.h" 54 #include "llvm/Support/FormattedStream.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include "llvm/Target/TargetMachine.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <cstdint> 60 #include <cstring> 61 #include <utility> 62 63 using namespace llvm; 64 65 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) { 66 if (const MachineBasicBlock *MBB = MI.getParent()) 67 if (const MachineFunction *MF = MBB->getParent()) 68 return MF; 69 return nullptr; 70 } 71 72 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from 73 // it. 74 static void tryToGetTargetInfo(const MachineInstr &MI, 75 const TargetRegisterInfo *&TRI, 76 const MachineRegisterInfo *&MRI, 77 const TargetIntrinsicInfo *&IntrinsicInfo, 78 const TargetInstrInfo *&TII) { 79 80 if (const MachineFunction *MF = getMFIfAvailable(MI)) { 81 TRI = MF->getSubtarget().getRegisterInfo(); 82 MRI = &MF->getRegInfo(); 83 IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); 84 TII = MF->getSubtarget().getInstrInfo(); 85 } 86 } 87 88 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 89 for (MCPhysReg ImpDef : MCID->implicit_defs()) 90 addOperand(MF, MachineOperand::CreateReg(ImpDef, true, true)); 91 for (MCPhysReg ImpUse : MCID->implicit_uses()) 92 addOperand(MF, MachineOperand::CreateReg(ImpUse, false, true)); 93 } 94 95 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 96 /// implicit operands. It reserves space for the number of operands specified by 97 /// the MCInstrDesc. 98 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &TID, 99 DebugLoc DL, bool NoImp) 100 : MCID(&TID), NumOperands(0), Flags(0), AsmPrinterFlags(0), 101 DbgLoc(std::move(DL)), DebugInstrNum(0), Opcode(TID.Opcode) { 102 assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor"); 103 104 // Reserve space for the expected number of operands. 105 if (unsigned NumOps = MCID->getNumOperands() + MCID->implicit_defs().size() + 106 MCID->implicit_uses().size()) { 107 CapOperands = OperandCapacity::get(NumOps); 108 Operands = MF.allocateOperandArray(CapOperands); 109 } 110 111 if (!NoImp) 112 addImplicitDefUseOperands(MF); 113 } 114 115 /// MachineInstr ctor - Copies MachineInstr arg exactly. 116 /// Does not copy the number from debug instruction numbering, to preserve 117 /// uniqueness. 118 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 119 : MCID(&MI.getDesc()), NumOperands(0), Flags(0), AsmPrinterFlags(0), 120 Info(MI.Info), DbgLoc(MI.getDebugLoc()), DebugInstrNum(0), 121 Opcode(MI.getOpcode()) { 122 assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor"); 123 124 CapOperands = OperandCapacity::get(MI.getNumOperands()); 125 Operands = MF.allocateOperandArray(CapOperands); 126 127 // Copy operands. 128 for (const MachineOperand &MO : MI.operands()) 129 addOperand(MF, MO); 130 131 // Replicate ties between the operands, which addOperand was not 132 // able to do reliably. 133 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { 134 MachineOperand &NewMO = getOperand(i); 135 const MachineOperand &OrigMO = MI.getOperand(i); 136 NewMO.TiedTo = OrigMO.TiedTo; 137 } 138 139 // Copy all the sensible flags. 140 setFlags(MI.Flags); 141 } 142 143 void MachineInstr::setDesc(const MCInstrDesc &TID) { 144 if (getParent()) 145 getMF()->handleChangeDesc(*this, TID); 146 MCID = &TID; 147 Opcode = TID.Opcode; 148 } 149 150 void MachineInstr::moveBefore(MachineInstr *MovePos) { 151 MovePos->getParent()->splice(MovePos, getParent(), getIterator()); 152 } 153 154 /// getRegInfo - If this instruction is embedded into a MachineFunction, 155 /// return the MachineRegisterInfo object for the current function, otherwise 156 /// return null. 157 MachineRegisterInfo *MachineInstr::getRegInfo() { 158 if (MachineBasicBlock *MBB = getParent()) 159 return &MBB->getParent()->getRegInfo(); 160 return nullptr; 161 } 162 163 const MachineRegisterInfo *MachineInstr::getRegInfo() const { 164 if (const MachineBasicBlock *MBB = getParent()) 165 return &MBB->getParent()->getRegInfo(); 166 return nullptr; 167 } 168 169 void MachineInstr::removeRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 170 for (MachineOperand &MO : operands()) 171 if (MO.isReg()) 172 MRI.removeRegOperandFromUseList(&MO); 173 } 174 175 void MachineInstr::addRegOperandsToUseLists(MachineRegisterInfo &MRI) { 176 for (MachineOperand &MO : operands()) 177 if (MO.isReg()) 178 MRI.addRegOperandToUseList(&MO); 179 } 180 181 void MachineInstr::addOperand(const MachineOperand &Op) { 182 MachineBasicBlock *MBB = getParent(); 183 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 184 MachineFunction *MF = MBB->getParent(); 185 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 186 addOperand(*MF, Op); 187 } 188 189 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 190 /// ranges. If MRI is non-null also update use-def chains. 191 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 192 unsigned NumOps, MachineRegisterInfo *MRI) { 193 if (MRI) 194 return MRI->moveOperands(Dst, Src, NumOps); 195 // MachineOperand is a trivially copyable type so we can just use memmove. 196 assert(Dst && Src && "Unknown operands"); 197 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 198 } 199 200 /// addOperand - Add the specified operand to the instruction. If it is an 201 /// implicit operand, it is added to the end of the operand list. If it is 202 /// an explicit operand it is added at the end of the explicit operand list 203 /// (before the first implicit operand). 204 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 205 assert(isUInt<LLVM_MI_NUMOPERANDS_BITS>(NumOperands + 1) && 206 "Cannot add more operands."); 207 assert(MCID && "Cannot add operands before providing an instr descriptor"); 208 209 // Check if we're adding one of our existing operands. 210 if (&Op >= Operands && &Op < Operands + NumOperands) { 211 // This is unusual: MI->addOperand(MI->getOperand(i)). 212 // If adding Op requires reallocating or moving existing operands around, 213 // the Op reference could go stale. Support it by copying Op. 214 MachineOperand CopyOp(Op); 215 return addOperand(MF, CopyOp); 216 } 217 218 // Find the insert location for the new operand. Implicit registers go at 219 // the end, everything else goes before the implicit regs. 220 // 221 // FIXME: Allow mixed explicit and implicit operands on inline asm. 222 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 223 // implicit-defs, but they must not be moved around. See the FIXME in 224 // InstrEmitter.cpp. 225 unsigned OpNo = getNumOperands(); 226 bool isImpReg = Op.isReg() && Op.isImplicit(); 227 if (!isImpReg && !isInlineAsm()) { 228 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 229 --OpNo; 230 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 231 } 232 } 233 234 // OpNo now points as the desired insertion point. Unless this is a variadic 235 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 236 // RegMask operands go between the explicit and implicit operands. 237 MachineRegisterInfo *MRI = getRegInfo(); 238 239 // Determine if the Operands array needs to be reallocated. 240 // Save the old capacity and operand array. 241 OperandCapacity OldCap = CapOperands; 242 MachineOperand *OldOperands = Operands; 243 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 244 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 245 Operands = MF.allocateOperandArray(CapOperands); 246 // Move the operands before the insertion point. 247 if (OpNo) 248 moveOperands(Operands, OldOperands, OpNo, MRI); 249 } 250 251 // Move the operands following the insertion point. 252 if (OpNo != NumOperands) 253 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 254 MRI); 255 ++NumOperands; 256 257 // Deallocate the old operand array. 258 if (OldOperands != Operands && OldOperands) 259 MF.deallocateOperandArray(OldCap, OldOperands); 260 261 // Copy Op into place. It still needs to be inserted into the MRI use lists. 262 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 263 NewMO->ParentMI = this; 264 265 // When adding a register operand, tell MRI about it. 266 if (NewMO->isReg()) { 267 // Ensure isOnRegUseList() returns false, regardless of Op's status. 268 NewMO->Contents.Reg.Prev = nullptr; 269 // Ignore existing ties. This is not a property that can be copied. 270 NewMO->TiedTo = 0; 271 // Add the new operand to MRI, but only for instructions in an MBB. 272 if (MRI) 273 MRI->addRegOperandToUseList(NewMO); 274 // The MCID operand information isn't accurate until we start adding 275 // explicit operands. The implicit operands are added first, then the 276 // explicits are inserted before them. 277 if (!isImpReg) { 278 // Tie uses to defs as indicated in MCInstrDesc. 279 if (NewMO->isUse()) { 280 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 281 if (DefIdx != -1) 282 tieOperands(DefIdx, OpNo); 283 } 284 // If the register operand is flagged as early, mark the operand as such. 285 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 286 NewMO->setIsEarlyClobber(true); 287 } 288 // Ensure debug instructions set debug flag on register uses. 289 if (NewMO->isUse() && isDebugInstr()) 290 NewMO->setIsDebug(); 291 } 292 } 293 294 void MachineInstr::removeOperand(unsigned OpNo) { 295 assert(OpNo < getNumOperands() && "Invalid operand number"); 296 untieRegOperand(OpNo); 297 298 #ifndef NDEBUG 299 // Moving tied operands would break the ties. 300 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 301 if (Operands[i].isReg()) 302 assert(!Operands[i].isTied() && "Cannot move tied operands"); 303 #endif 304 305 MachineRegisterInfo *MRI = getRegInfo(); 306 if (MRI && Operands[OpNo].isReg()) 307 MRI->removeRegOperandFromUseList(Operands + OpNo); 308 309 // Don't call the MachineOperand destructor. A lot of this code depends on 310 // MachineOperand having a trivial destructor anyway, and adding a call here 311 // wouldn't make it 'destructor-correct'. 312 313 if (unsigned N = NumOperands - 1 - OpNo) 314 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 315 --NumOperands; 316 } 317 318 void MachineInstr::setExtraInfo(MachineFunction &MF, 319 ArrayRef<MachineMemOperand *> MMOs, 320 MCSymbol *PreInstrSymbol, 321 MCSymbol *PostInstrSymbol, 322 MDNode *HeapAllocMarker, MDNode *PCSections, 323 uint32_t CFIType, MDNode *MMRAs) { 324 bool HasPreInstrSymbol = PreInstrSymbol != nullptr; 325 bool HasPostInstrSymbol = PostInstrSymbol != nullptr; 326 bool HasHeapAllocMarker = HeapAllocMarker != nullptr; 327 bool HasPCSections = PCSections != nullptr; 328 bool HasCFIType = CFIType != 0; 329 bool HasMMRAs = MMRAs != nullptr; 330 int NumPointers = MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + 331 HasHeapAllocMarker + HasPCSections + HasCFIType + HasMMRAs; 332 333 // Drop all extra info if there is none. 334 if (NumPointers <= 0) { 335 Info.clear(); 336 return; 337 } 338 339 // If more than one pointer, then store out of line. Store heap alloc markers 340 // out of line because PointerSumType cannot hold more than 4 tag types with 341 // 32-bit pointers. 342 // FIXME: Maybe we should make the symbols in the extra info mutable? 343 else if (NumPointers > 1 || HasMMRAs || HasHeapAllocMarker || HasPCSections || 344 HasCFIType) { 345 Info.set<EIIK_OutOfLine>( 346 MF.createMIExtraInfo(MMOs, PreInstrSymbol, PostInstrSymbol, 347 HeapAllocMarker, PCSections, CFIType, MMRAs)); 348 return; 349 } 350 351 // Otherwise store the single pointer inline. 352 if (HasPreInstrSymbol) 353 Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol); 354 else if (HasPostInstrSymbol) 355 Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol); 356 else 357 Info.set<EIIK_MMO>(MMOs[0]); 358 } 359 360 void MachineInstr::dropMemRefs(MachineFunction &MF) { 361 if (memoperands_empty()) 362 return; 363 364 setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(), 365 getHeapAllocMarker(), getPCSections(), getCFIType(), 366 getMMRAMetadata()); 367 } 368 369 void MachineInstr::setMemRefs(MachineFunction &MF, 370 ArrayRef<MachineMemOperand *> MMOs) { 371 if (MMOs.empty()) { 372 dropMemRefs(MF); 373 return; 374 } 375 376 setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(), 377 getHeapAllocMarker(), getPCSections(), getCFIType(), 378 getMMRAMetadata()); 379 } 380 381 void MachineInstr::addMemOperand(MachineFunction &MF, 382 MachineMemOperand *MO) { 383 SmallVector<MachineMemOperand *, 2> MMOs; 384 MMOs.append(memoperands_begin(), memoperands_end()); 385 MMOs.push_back(MO); 386 setMemRefs(MF, MMOs); 387 } 388 389 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) { 390 if (this == &MI) 391 // Nothing to do for a self-clone! 392 return; 393 394 assert(&MF == MI.getMF() && 395 "Invalid machine functions when cloning memory refrences!"); 396 // See if we can just steal the extra info already allocated for the 397 // instruction. We can do this whenever the pre- and post-instruction symbols 398 // are the same (including null). 399 if (getPreInstrSymbol() == MI.getPreInstrSymbol() && 400 getPostInstrSymbol() == MI.getPostInstrSymbol() && 401 getHeapAllocMarker() == MI.getHeapAllocMarker() && 402 getPCSections() == MI.getPCSections() && getMMRAMetadata() && 403 MI.getMMRAMetadata()) { 404 Info = MI.Info; 405 return; 406 } 407 408 // Otherwise, fall back on a copy-based clone. 409 setMemRefs(MF, MI.memoperands()); 410 } 411 412 /// Check to see if the MMOs pointed to by the two MemRefs arrays are 413 /// identical. 414 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS, 415 ArrayRef<MachineMemOperand *> RHS) { 416 if (LHS.size() != RHS.size()) 417 return false; 418 419 auto LHSPointees = make_pointee_range(LHS); 420 auto RHSPointees = make_pointee_range(RHS); 421 return std::equal(LHSPointees.begin(), LHSPointees.end(), 422 RHSPointees.begin()); 423 } 424 425 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF, 426 ArrayRef<const MachineInstr *> MIs) { 427 // Try handling easy numbers of MIs with simpler mechanisms. 428 if (MIs.empty()) { 429 dropMemRefs(MF); 430 return; 431 } 432 if (MIs.size() == 1) { 433 cloneMemRefs(MF, *MIs[0]); 434 return; 435 } 436 // Because an empty memoperands list provides *no* information and must be 437 // handled conservatively (assuming the instruction can do anything), the only 438 // way to merge with it is to drop all other memoperands. 439 if (MIs[0]->memoperands_empty()) { 440 dropMemRefs(MF); 441 return; 442 } 443 444 // Handle the general case. 445 SmallVector<MachineMemOperand *, 2> MergedMMOs; 446 // Start with the first instruction. 447 assert(&MF == MIs[0]->getMF() && 448 "Invalid machine functions when cloning memory references!"); 449 MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end()); 450 // Now walk all the other instructions and accumulate any different MMOs. 451 for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) { 452 assert(&MF == MI.getMF() && 453 "Invalid machine functions when cloning memory references!"); 454 455 // Skip MIs with identical operands to the first. This is a somewhat 456 // arbitrary hack but will catch common cases without being quadratic. 457 // TODO: We could fully implement merge semantics here if needed. 458 if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands())) 459 continue; 460 461 // Because an empty memoperands list provides *no* information and must be 462 // handled conservatively (assuming the instruction can do anything), the 463 // only way to merge with it is to drop all other memoperands. 464 if (MI.memoperands_empty()) { 465 dropMemRefs(MF); 466 return; 467 } 468 469 // Otherwise accumulate these into our temporary buffer of the merged state. 470 MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end()); 471 } 472 473 setMemRefs(MF, MergedMMOs); 474 } 475 476 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 477 // Do nothing if old and new symbols are the same. 478 if (Symbol == getPreInstrSymbol()) 479 return; 480 481 // If there was only one symbol and we're removing it, just clear info. 482 if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) { 483 Info.clear(); 484 return; 485 } 486 487 setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(), 488 getHeapAllocMarker(), getPCSections(), getCFIType(), 489 getMMRAMetadata()); 490 } 491 492 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 493 // Do nothing if old and new symbols are the same. 494 if (Symbol == getPostInstrSymbol()) 495 return; 496 497 // If there was only one symbol and we're removing it, just clear info. 498 if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) { 499 Info.clear(); 500 return; 501 } 502 503 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol, 504 getHeapAllocMarker(), getPCSections(), getCFIType(), 505 getMMRAMetadata()); 506 } 507 508 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) { 509 // Do nothing if old and new symbols are the same. 510 if (Marker == getHeapAllocMarker()) 511 return; 512 513 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 514 Marker, getPCSections(), getCFIType(), getMMRAMetadata()); 515 } 516 517 void MachineInstr::setPCSections(MachineFunction &MF, MDNode *PCSections) { 518 // Do nothing if old and new symbols are the same. 519 if (PCSections == getPCSections()) 520 return; 521 522 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 523 getHeapAllocMarker(), PCSections, getCFIType(), 524 getMMRAMetadata()); 525 } 526 527 void MachineInstr::setCFIType(MachineFunction &MF, uint32_t Type) { 528 // Do nothing if old and new types are the same. 529 if (Type == getCFIType()) 530 return; 531 532 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 533 getHeapAllocMarker(), getPCSections(), Type, getMMRAMetadata()); 534 } 535 536 void MachineInstr::setMMRAMetadata(MachineFunction &MF, MDNode *MMRAs) { 537 // Do nothing if old and new symbols are the same. 538 if (MMRAs == getMMRAMetadata()) 539 return; 540 541 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 542 getHeapAllocMarker(), getPCSections(), getCFIType(), MMRAs); 543 } 544 545 void MachineInstr::cloneInstrSymbols(MachineFunction &MF, 546 const MachineInstr &MI) { 547 if (this == &MI) 548 // Nothing to do for a self-clone! 549 return; 550 551 assert(&MF == MI.getMF() && 552 "Invalid machine functions when cloning instruction symbols!"); 553 554 setPreInstrSymbol(MF, MI.getPreInstrSymbol()); 555 setPostInstrSymbol(MF, MI.getPostInstrSymbol()); 556 setHeapAllocMarker(MF, MI.getHeapAllocMarker()); 557 setPCSections(MF, MI.getPCSections()); 558 setMMRAMetadata(MF, MI.getMMRAMetadata()); 559 } 560 561 uint32_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const { 562 // For now, the just return the union of the flags. If the flags get more 563 // complicated over time, we might need more logic here. 564 return getFlags() | Other.getFlags(); 565 } 566 567 uint32_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) { 568 uint32_t MIFlags = 0; 569 // Copy the wrapping flags. 570 if (const OverflowingBinaryOperator *OB = 571 dyn_cast<OverflowingBinaryOperator>(&I)) { 572 if (OB->hasNoSignedWrap()) 573 MIFlags |= MachineInstr::MIFlag::NoSWrap; 574 if (OB->hasNoUnsignedWrap()) 575 MIFlags |= MachineInstr::MIFlag::NoUWrap; 576 } else if (const TruncInst *TI = dyn_cast<TruncInst>(&I)) { 577 if (TI->hasNoSignedWrap()) 578 MIFlags |= MachineInstr::MIFlag::NoSWrap; 579 if (TI->hasNoUnsignedWrap()) 580 MIFlags |= MachineInstr::MIFlag::NoUWrap; 581 } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) { 582 if (GEP->hasNoUnsignedSignedWrap()) 583 MIFlags |= MachineInstr::MIFlag::NoUSWrap; 584 if (GEP->hasNoUnsignedWrap()) 585 MIFlags |= MachineInstr::MIFlag::NoUWrap; 586 } 587 588 // Copy the nonneg flag. 589 if (const PossiblyNonNegInst *PNI = dyn_cast<PossiblyNonNegInst>(&I)) { 590 if (PNI->hasNonNeg()) 591 MIFlags |= MachineInstr::MIFlag::NonNeg; 592 // Copy the disjoint flag. 593 } else if (const PossiblyDisjointInst *PD = 594 dyn_cast<PossiblyDisjointInst>(&I)) { 595 if (PD->isDisjoint()) 596 MIFlags |= MachineInstr::MIFlag::Disjoint; 597 } 598 599 // Copy the exact flag. 600 if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I)) 601 if (PE->isExact()) 602 MIFlags |= MachineInstr::MIFlag::IsExact; 603 604 // Copy the fast-math flags. 605 if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) { 606 const FastMathFlags Flags = FP->getFastMathFlags(); 607 if (Flags.noNaNs()) 608 MIFlags |= MachineInstr::MIFlag::FmNoNans; 609 if (Flags.noInfs()) 610 MIFlags |= MachineInstr::MIFlag::FmNoInfs; 611 if (Flags.noSignedZeros()) 612 MIFlags |= MachineInstr::MIFlag::FmNsz; 613 if (Flags.allowReciprocal()) 614 MIFlags |= MachineInstr::MIFlag::FmArcp; 615 if (Flags.allowContract()) 616 MIFlags |= MachineInstr::MIFlag::FmContract; 617 if (Flags.approxFunc()) 618 MIFlags |= MachineInstr::MIFlag::FmAfn; 619 if (Flags.allowReassoc()) 620 MIFlags |= MachineInstr::MIFlag::FmReassoc; 621 } 622 623 if (I.getMetadata(LLVMContext::MD_unpredictable)) 624 MIFlags |= MachineInstr::MIFlag::Unpredictable; 625 626 return MIFlags; 627 } 628 629 void MachineInstr::copyIRFlags(const Instruction &I) { 630 Flags = copyFlagsFromInstruction(I); 631 } 632 633 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const { 634 assert(!isBundledWithPred() && "Must be called on bundle header"); 635 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { 636 if (MII->getDesc().getFlags() & Mask) { 637 if (Type == AnyInBundle) 638 return true; 639 } else { 640 if (Type == AllInBundle && !MII->isBundle()) 641 return false; 642 } 643 // This was the last instruction in the bundle. 644 if (!MII->isBundledWithSucc()) 645 return Type == AllInBundle; 646 } 647 } 648 649 bool MachineInstr::isIdenticalTo(const MachineInstr &Other, 650 MICheckType Check) const { 651 // If opcodes or number of operands are not the same then the two 652 // instructions are obviously not identical. 653 if (Other.getOpcode() != getOpcode() || 654 Other.getNumOperands() != getNumOperands()) 655 return false; 656 657 if (isBundle()) { 658 // We have passed the test above that both instructions have the same 659 // opcode, so we know that both instructions are bundles here. Let's compare 660 // MIs inside the bundle. 661 assert(Other.isBundle() && "Expected that both instructions are bundles."); 662 MachineBasicBlock::const_instr_iterator I1 = getIterator(); 663 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); 664 // Loop until we analysed the last intruction inside at least one of the 665 // bundles. 666 while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) { 667 ++I1; 668 ++I2; 669 if (!I1->isIdenticalTo(*I2, Check)) 670 return false; 671 } 672 // If we've reached the end of just one of the two bundles, but not both, 673 // the instructions are not identical. 674 if (I1->isBundledWithSucc() || I2->isBundledWithSucc()) 675 return false; 676 } 677 678 // Check operands to make sure they match. 679 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 680 const MachineOperand &MO = getOperand(i); 681 const MachineOperand &OMO = Other.getOperand(i); 682 if (!MO.isReg()) { 683 if (!MO.isIdenticalTo(OMO)) 684 return false; 685 continue; 686 } 687 688 // Clients may or may not want to ignore defs when testing for equality. 689 // For example, machine CSE pass only cares about finding common 690 // subexpressions, so it's safe to ignore virtual register defs. 691 if (MO.isDef()) { 692 if (Check == IgnoreDefs) 693 continue; 694 else if (Check == IgnoreVRegDefs) { 695 if (!MO.getReg().isVirtual() || !OMO.getReg().isVirtual()) 696 if (!MO.isIdenticalTo(OMO)) 697 return false; 698 } else { 699 if (!MO.isIdenticalTo(OMO)) 700 return false; 701 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 702 return false; 703 } 704 } else { 705 if (!MO.isIdenticalTo(OMO)) 706 return false; 707 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 708 return false; 709 } 710 } 711 // If DebugLoc does not match then two debug instructions are not identical. 712 if (isDebugInstr()) 713 if (getDebugLoc() && Other.getDebugLoc() && 714 getDebugLoc() != Other.getDebugLoc()) 715 return false; 716 // If pre- or post-instruction symbols do not match then the two instructions 717 // are not identical. 718 if (getPreInstrSymbol() != Other.getPreInstrSymbol() || 719 getPostInstrSymbol() != Other.getPostInstrSymbol()) 720 return false; 721 // Call instructions with different CFI types are not identical. 722 if (isCall() && getCFIType() != Other.getCFIType()) 723 return false; 724 725 return true; 726 } 727 728 bool MachineInstr::isEquivalentDbgInstr(const MachineInstr &Other) const { 729 if (!isDebugValueLike() || !Other.isDebugValueLike()) 730 return false; 731 if (getDebugLoc() != Other.getDebugLoc()) 732 return false; 733 if (getDebugVariable() != Other.getDebugVariable()) 734 return false; 735 if (getNumDebugOperands() != Other.getNumDebugOperands()) 736 return false; 737 for (unsigned OpIdx = 0; OpIdx < getNumDebugOperands(); ++OpIdx) 738 if (!getDebugOperand(OpIdx).isIdenticalTo(Other.getDebugOperand(OpIdx))) 739 return false; 740 if (!DIExpression::isEqualExpression( 741 getDebugExpression(), isIndirectDebugValue(), 742 Other.getDebugExpression(), Other.isIndirectDebugValue())) 743 return false; 744 return true; 745 } 746 747 const MachineFunction *MachineInstr::getMF() const { 748 return getParent()->getParent(); 749 } 750 751 MachineInstr *MachineInstr::removeFromParent() { 752 assert(getParent() && "Not embedded in a basic block!"); 753 return getParent()->remove(this); 754 } 755 756 MachineInstr *MachineInstr::removeFromBundle() { 757 assert(getParent() && "Not embedded in a basic block!"); 758 return getParent()->remove_instr(this); 759 } 760 761 void MachineInstr::eraseFromParent() { 762 assert(getParent() && "Not embedded in a basic block!"); 763 getParent()->erase(this); 764 } 765 766 void MachineInstr::eraseFromBundle() { 767 assert(getParent() && "Not embedded in a basic block!"); 768 getParent()->erase_instr(this); 769 } 770 771 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const { 772 if (!isCall(Type)) 773 return false; 774 switch (getOpcode()) { 775 case TargetOpcode::PATCHPOINT: 776 case TargetOpcode::STACKMAP: 777 case TargetOpcode::STATEPOINT: 778 case TargetOpcode::FENTRY_CALL: 779 return false; 780 } 781 return true; 782 } 783 784 bool MachineInstr::shouldUpdateCallSiteInfo() const { 785 if (isBundle()) 786 return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle); 787 return isCandidateForCallSiteEntry(); 788 } 789 790 unsigned MachineInstr::getNumExplicitOperands() const { 791 unsigned NumOperands = MCID->getNumOperands(); 792 if (!MCID->isVariadic()) 793 return NumOperands; 794 795 for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) { 796 const MachineOperand &MO = getOperand(I); 797 // The operands must always be in the following order: 798 // - explicit reg defs, 799 // - other explicit operands (reg uses, immediates, etc.), 800 // - implicit reg defs 801 // - implicit reg uses 802 if (MO.isReg() && MO.isImplicit()) 803 break; 804 ++NumOperands; 805 } 806 return NumOperands; 807 } 808 809 unsigned MachineInstr::getNumExplicitDefs() const { 810 unsigned NumDefs = MCID->getNumDefs(); 811 if (!MCID->isVariadic()) 812 return NumDefs; 813 814 for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) { 815 const MachineOperand &MO = getOperand(I); 816 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 817 break; 818 ++NumDefs; 819 } 820 return NumDefs; 821 } 822 823 void MachineInstr::bundleWithPred() { 824 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 825 setFlag(BundledPred); 826 MachineBasicBlock::instr_iterator Pred = getIterator(); 827 --Pred; 828 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 829 Pred->setFlag(BundledSucc); 830 } 831 832 void MachineInstr::bundleWithSucc() { 833 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 834 setFlag(BundledSucc); 835 MachineBasicBlock::instr_iterator Succ = getIterator(); 836 ++Succ; 837 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 838 Succ->setFlag(BundledPred); 839 } 840 841 void MachineInstr::unbundleFromPred() { 842 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 843 clearFlag(BundledPred); 844 MachineBasicBlock::instr_iterator Pred = getIterator(); 845 --Pred; 846 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 847 Pred->clearFlag(BundledSucc); 848 } 849 850 void MachineInstr::unbundleFromSucc() { 851 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 852 clearFlag(BundledSucc); 853 MachineBasicBlock::instr_iterator Succ = getIterator(); 854 ++Succ; 855 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 856 Succ->clearFlag(BundledPred); 857 } 858 859 bool MachineInstr::isStackAligningInlineAsm() const { 860 if (isInlineAsm()) { 861 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 862 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 863 return true; 864 } 865 return false; 866 } 867 868 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 869 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 870 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 871 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 872 } 873 874 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 875 unsigned *GroupNo) const { 876 assert(isInlineAsm() && "Expected an inline asm instruction"); 877 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 878 879 // Ignore queries about the initial operands. 880 if (OpIdx < InlineAsm::MIOp_FirstOperand) 881 return -1; 882 883 unsigned Group = 0; 884 unsigned NumOps; 885 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 886 i += NumOps) { 887 const MachineOperand &FlagMO = getOperand(i); 888 // If we reach the implicit register operands, stop looking. 889 if (!FlagMO.isImm()) 890 return -1; 891 const InlineAsm::Flag F(FlagMO.getImm()); 892 NumOps = 1 + F.getNumOperandRegisters(); 893 if (i + NumOps > OpIdx) { 894 if (GroupNo) 895 *GroupNo = Group; 896 return i; 897 } 898 ++Group; 899 } 900 return -1; 901 } 902 903 const DILabel *MachineInstr::getDebugLabel() const { 904 assert(isDebugLabel() && "not a DBG_LABEL"); 905 return cast<DILabel>(getOperand(0).getMetadata()); 906 } 907 908 const MachineOperand &MachineInstr::getDebugVariableOp() const { 909 assert((isDebugValueLike()) && "not a DBG_VALUE*"); 910 unsigned VariableOp = isNonListDebugValue() ? 2 : 0; 911 return getOperand(VariableOp); 912 } 913 914 MachineOperand &MachineInstr::getDebugVariableOp() { 915 assert((isDebugValueLike()) && "not a DBG_VALUE*"); 916 unsigned VariableOp = isNonListDebugValue() ? 2 : 0; 917 return getOperand(VariableOp); 918 } 919 920 const DILocalVariable *MachineInstr::getDebugVariable() const { 921 return cast<DILocalVariable>(getDebugVariableOp().getMetadata()); 922 } 923 924 const MachineOperand &MachineInstr::getDebugExpressionOp() const { 925 assert((isDebugValueLike()) && "not a DBG_VALUE*"); 926 unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1; 927 return getOperand(ExpressionOp); 928 } 929 930 MachineOperand &MachineInstr::getDebugExpressionOp() { 931 assert((isDebugValueLike()) && "not a DBG_VALUE*"); 932 unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1; 933 return getOperand(ExpressionOp); 934 } 935 936 const DIExpression *MachineInstr::getDebugExpression() const { 937 return cast<DIExpression>(getDebugExpressionOp().getMetadata()); 938 } 939 940 bool MachineInstr::isDebugEntryValue() const { 941 return isDebugValue() && getDebugExpression()->isEntryValue(); 942 } 943 944 const TargetRegisterClass* 945 MachineInstr::getRegClassConstraint(unsigned OpIdx, 946 const TargetInstrInfo *TII, 947 const TargetRegisterInfo *TRI) const { 948 assert(getParent() && "Can't have an MBB reference here!"); 949 assert(getMF() && "Can't have an MF reference here!"); 950 const MachineFunction &MF = *getMF(); 951 952 // Most opcodes have fixed constraints in their MCInstrDesc. 953 if (!isInlineAsm()) 954 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 955 956 if (!getOperand(OpIdx).isReg()) 957 return nullptr; 958 959 // For tied uses on inline asm, get the constraint from the def. 960 unsigned DefIdx; 961 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 962 OpIdx = DefIdx; 963 964 // Inline asm stores register class constraints in the flag word. 965 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 966 if (FlagIdx < 0) 967 return nullptr; 968 969 const InlineAsm::Flag F(getOperand(FlagIdx).getImm()); 970 unsigned RCID; 971 if ((F.isRegUseKind() || F.isRegDefKind() || F.isRegDefEarlyClobberKind()) && 972 F.hasRegClassConstraint(RCID)) 973 return TRI->getRegClass(RCID); 974 975 // Assume that all registers in a memory operand are pointers. 976 if (F.isMemKind()) 977 return TRI->getPointerRegClass(MF); 978 979 return nullptr; 980 } 981 982 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 983 Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 984 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 985 // Check every operands inside the bundle if we have 986 // been asked to. 987 if (ExploreBundle) 988 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; 989 ++OpndIt) 990 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 991 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 992 else 993 // Otherwise, just check the current operands. 994 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 995 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 996 return CurRC; 997 } 998 999 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 1000 unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC, 1001 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1002 assert(CurRC && "Invalid initial register class"); 1003 // Check if Reg is constrained by some of its use/def from MI. 1004 const MachineOperand &MO = getOperand(OpIdx); 1005 if (!MO.isReg() || MO.getReg() != Reg) 1006 return CurRC; 1007 // If yes, accumulate the constraints through the operand. 1008 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 1009 } 1010 1011 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 1012 unsigned OpIdx, const TargetRegisterClass *CurRC, 1013 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1014 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 1015 const MachineOperand &MO = getOperand(OpIdx); 1016 assert(MO.isReg() && 1017 "Cannot get register constraints for non-register operand"); 1018 assert(CurRC && "Invalid initial register class"); 1019 if (unsigned SubIdx = MO.getSubReg()) { 1020 if (OpRC) 1021 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 1022 else 1023 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 1024 } else if (OpRC) 1025 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 1026 return CurRC; 1027 } 1028 1029 /// Return the number of instructions inside the MI bundle, not counting the 1030 /// header instruction. 1031 unsigned MachineInstr::getBundleSize() const { 1032 MachineBasicBlock::const_instr_iterator I = getIterator(); 1033 unsigned Size = 0; 1034 while (I->isBundledWithSucc()) { 1035 ++Size; 1036 ++I; 1037 } 1038 return Size; 1039 } 1040 1041 /// Returns true if the MachineInstr has an implicit-use operand of exactly 1042 /// the given register (not considering sub/super-registers). 1043 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const { 1044 for (const MachineOperand &MO : all_uses()) 1045 if (MO.isImplicit() && MO.getReg() == Reg) 1046 return true; 1047 return false; 1048 } 1049 1050 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 1051 /// the specific register or -1 if it is not found. It further tightens 1052 /// the search criteria to a use that kills the register if isKill is true. 1053 int MachineInstr::findRegisterUseOperandIdx(Register Reg, 1054 const TargetRegisterInfo *TRI, 1055 bool isKill) const { 1056 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1057 const MachineOperand &MO = getOperand(i); 1058 if (!MO.isReg() || !MO.isUse()) 1059 continue; 1060 Register MOReg = MO.getReg(); 1061 if (!MOReg) 1062 continue; 1063 if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg))) 1064 if (!isKill || MO.isKill()) 1065 return i; 1066 } 1067 return -1; 1068 } 1069 1070 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1071 /// indicating if this instruction reads or writes Reg. This also considers 1072 /// partial defines. 1073 std::pair<bool,bool> 1074 MachineInstr::readsWritesVirtualRegister(Register Reg, 1075 SmallVectorImpl<unsigned> *Ops) const { 1076 bool PartDef = false; // Partial redefine. 1077 bool FullDef = false; // Full define. 1078 bool Use = false; 1079 1080 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1081 const MachineOperand &MO = getOperand(i); 1082 if (!MO.isReg() || MO.getReg() != Reg) 1083 continue; 1084 if (Ops) 1085 Ops->push_back(i); 1086 if (MO.isUse()) 1087 Use |= !MO.isUndef(); 1088 else if (MO.getSubReg() && !MO.isUndef()) 1089 // A partial def undef doesn't count as reading the register. 1090 PartDef = true; 1091 else 1092 FullDef = true; 1093 } 1094 // A partial redefine uses Reg unless there is also a full define. 1095 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1096 } 1097 1098 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1099 /// the specified register or -1 if it is not found. If isDead is true, defs 1100 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1101 /// also checks if there is a def of a super-register. 1102 int MachineInstr::findRegisterDefOperandIdx(Register Reg, 1103 const TargetRegisterInfo *TRI, 1104 bool isDead, bool Overlap) const { 1105 bool isPhys = Reg.isPhysical(); 1106 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1107 const MachineOperand &MO = getOperand(i); 1108 // Accept regmask operands when Overlap is set. 1109 // Ignore them when looking for a specific def operand (Overlap == false). 1110 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1111 return i; 1112 if (!MO.isReg() || !MO.isDef()) 1113 continue; 1114 Register MOReg = MO.getReg(); 1115 bool Found = (MOReg == Reg); 1116 if (!Found && TRI && isPhys && MOReg.isPhysical()) { 1117 if (Overlap) 1118 Found = TRI->regsOverlap(MOReg, Reg); 1119 else 1120 Found = TRI->isSubRegister(MOReg, Reg); 1121 } 1122 if (Found && (!isDead || MO.isDead())) 1123 return i; 1124 } 1125 return -1; 1126 } 1127 1128 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1129 /// operand list that is used to represent the predicate. It returns -1 if 1130 /// none is found. 1131 int MachineInstr::findFirstPredOperandIdx() const { 1132 // Don't call MCID.findFirstPredOperandIdx() because this variant 1133 // is sometimes called on an instruction that's not yet complete, and 1134 // so the number of operands is less than the MCID indicates. In 1135 // particular, the PTX target does this. 1136 const MCInstrDesc &MCID = getDesc(); 1137 if (MCID.isPredicable()) { 1138 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1139 if (MCID.operands()[i].isPredicate()) 1140 return i; 1141 } 1142 1143 return -1; 1144 } 1145 1146 // MachineOperand::TiedTo is 4 bits wide. 1147 const unsigned TiedMax = 15; 1148 1149 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1150 /// 1151 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1152 /// field. TiedTo can have these values: 1153 /// 1154 /// 0: Operand is not tied to anything. 1155 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1156 /// TiedMax: Tied to an operand >= TiedMax-1. 1157 /// 1158 /// The tied def must be one of the first TiedMax operands on a normal 1159 /// instruction. INLINEASM instructions allow more tied defs. 1160 /// 1161 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1162 MachineOperand &DefMO = getOperand(DefIdx); 1163 MachineOperand &UseMO = getOperand(UseIdx); 1164 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1165 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1166 assert(!DefMO.isTied() && "Def is already tied to another use"); 1167 assert(!UseMO.isTied() && "Use is already tied to another def"); 1168 1169 if (DefIdx < TiedMax) 1170 UseMO.TiedTo = DefIdx + 1; 1171 else { 1172 // Inline asm can use the group descriptors to find tied operands, 1173 // statepoint tied operands are trivial to match (1-1 reg def with reg use), 1174 // but on normal instruction, the tied def must be within the first TiedMax 1175 // operands. 1176 assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) && 1177 "DefIdx out of range"); 1178 UseMO.TiedTo = TiedMax; 1179 } 1180 1181 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1182 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1183 } 1184 1185 /// Given the index of a tied register operand, find the operand it is tied to. 1186 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1187 /// which must exist. 1188 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1189 const MachineOperand &MO = getOperand(OpIdx); 1190 assert(MO.isTied() && "Operand isn't tied"); 1191 1192 // Normally TiedTo is in range. 1193 if (MO.TiedTo < TiedMax) 1194 return MO.TiedTo - 1; 1195 1196 // Uses on normal instructions can be out of range. 1197 if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) { 1198 // Normal tied defs must be in the 0..TiedMax-1 range. 1199 if (MO.isUse()) 1200 return TiedMax - 1; 1201 // MO is a def. Search for the tied use. 1202 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1203 const MachineOperand &UseMO = getOperand(i); 1204 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1205 return i; 1206 } 1207 llvm_unreachable("Can't find tied use"); 1208 } 1209 1210 if (getOpcode() == TargetOpcode::STATEPOINT) { 1211 // In STATEPOINT defs correspond 1-1 to GC pointer operands passed 1212 // on registers. 1213 StatepointOpers SO(this); 1214 unsigned CurUseIdx = SO.getFirstGCPtrIdx(); 1215 assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied"); 1216 unsigned NumDefs = getNumDefs(); 1217 for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) { 1218 while (!getOperand(CurUseIdx).isReg()) 1219 CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx); 1220 if (OpIdx == CurDefIdx) 1221 return CurUseIdx; 1222 if (OpIdx == CurUseIdx) 1223 return CurDefIdx; 1224 CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx); 1225 } 1226 llvm_unreachable("Can't find tied use"); 1227 } 1228 1229 // Now deal with inline asm by parsing the operand group descriptor flags. 1230 // Find the beginning of each operand group. 1231 SmallVector<unsigned, 8> GroupIdx; 1232 unsigned OpIdxGroup = ~0u; 1233 unsigned NumOps; 1234 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1235 i += NumOps) { 1236 const MachineOperand &FlagMO = getOperand(i); 1237 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1238 unsigned CurGroup = GroupIdx.size(); 1239 GroupIdx.push_back(i); 1240 const InlineAsm::Flag F(FlagMO.getImm()); 1241 NumOps = 1 + F.getNumOperandRegisters(); 1242 // OpIdx belongs to this operand group. 1243 if (OpIdx > i && OpIdx < i + NumOps) 1244 OpIdxGroup = CurGroup; 1245 unsigned TiedGroup; 1246 if (!F.isUseOperandTiedToDef(TiedGroup)) 1247 continue; 1248 // Operands in this group are tied to operands in TiedGroup which must be 1249 // earlier. Find the number of operands between the two groups. 1250 unsigned Delta = i - GroupIdx[TiedGroup]; 1251 1252 // OpIdx is a use tied to TiedGroup. 1253 if (OpIdxGroup == CurGroup) 1254 return OpIdx - Delta; 1255 1256 // OpIdx is a def tied to this use group. 1257 if (OpIdxGroup == TiedGroup) 1258 return OpIdx + Delta; 1259 } 1260 llvm_unreachable("Invalid tied operand on inline asm"); 1261 } 1262 1263 /// clearKillInfo - Clears kill flags on all operands. 1264 /// 1265 void MachineInstr::clearKillInfo() { 1266 for (MachineOperand &MO : all_uses()) 1267 MO.setIsKill(false); 1268 } 1269 1270 void MachineInstr::substituteRegister(Register FromReg, Register ToReg, 1271 unsigned SubIdx, 1272 const TargetRegisterInfo &RegInfo) { 1273 if (ToReg.isPhysical()) { 1274 if (SubIdx) 1275 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1276 for (MachineOperand &MO : operands()) { 1277 if (!MO.isReg() || MO.getReg() != FromReg) 1278 continue; 1279 MO.substPhysReg(ToReg, RegInfo); 1280 } 1281 } else { 1282 for (MachineOperand &MO : operands()) { 1283 if (!MO.isReg() || MO.getReg() != FromReg) 1284 continue; 1285 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1286 } 1287 } 1288 } 1289 1290 /// isSafeToMove - Return true if it is safe to move this instruction. If 1291 /// SawStore is set to true, it means that there is a store (or call) between 1292 /// the instruction's location and its intended destination. 1293 bool MachineInstr::isSafeToMove(bool &SawStore) const { 1294 // Ignore stuff that we obviously can't move. 1295 // 1296 // Treat volatile loads as stores. This is not strictly necessary for 1297 // volatiles, but it is required for atomic loads. It is not allowed to move 1298 // a load across an atomic load with Ordering > Monotonic. 1299 if (mayStore() || isCall() || isPHI() || 1300 (mayLoad() && hasOrderedMemoryRef())) { 1301 SawStore = true; 1302 return false; 1303 } 1304 1305 if (isPosition() || isDebugInstr() || isTerminator() || 1306 mayRaiseFPException() || hasUnmodeledSideEffects() || 1307 isJumpTableDebugInfo()) 1308 return false; 1309 1310 // See if this instruction does a load. If so, we have to guarantee that the 1311 // loaded value doesn't change between the load and the its intended 1312 // destination. The check for isInvariantLoad gives the target the chance to 1313 // classify the load as always returning a constant, e.g. a constant pool 1314 // load. 1315 if (mayLoad() && !isDereferenceableInvariantLoad()) 1316 // Otherwise, this is a real load. If there is a store between the load and 1317 // end of block, we can't move it. 1318 return !SawStore; 1319 1320 return true; 1321 } 1322 1323 static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, AAResults *AA, 1324 bool UseTBAA, const MachineMemOperand *MMOa, 1325 const MachineMemOperand *MMOb) { 1326 // The following interface to AA is fashioned after DAGCombiner::isAlias and 1327 // operates with MachineMemOperand offset with some important assumptions: 1328 // - LLVM fundamentally assumes flat address spaces. 1329 // - MachineOperand offset can *only* result from legalization and cannot 1330 // affect queries other than the trivial case of overlap checking. 1331 // - These offsets never wrap and never step outside of allocated objects. 1332 // - There should never be any negative offsets here. 1333 // 1334 // FIXME: Modify API to hide this math from "user" 1335 // Even before we go to AA we can reason locally about some memory objects. It 1336 // can save compile time, and possibly catch some corner cases not currently 1337 // covered. 1338 1339 int64_t OffsetA = MMOa->getOffset(); 1340 int64_t OffsetB = MMOb->getOffset(); 1341 int64_t MinOffset = std::min(OffsetA, OffsetB); 1342 1343 LocationSize WidthA = MMOa->getSize(); 1344 LocationSize WidthB = MMOb->getSize(); 1345 bool KnownWidthA = WidthA.hasValue(); 1346 bool KnownWidthB = WidthB.hasValue(); 1347 bool BothMMONonScalable = !WidthA.isScalable() && !WidthB.isScalable(); 1348 1349 const Value *ValA = MMOa->getValue(); 1350 const Value *ValB = MMOb->getValue(); 1351 bool SameVal = (ValA && ValB && (ValA == ValB)); 1352 if (!SameVal) { 1353 const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); 1354 const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); 1355 if (PSVa && ValB && !PSVa->mayAlias(&MFI)) 1356 return false; 1357 if (PSVb && ValA && !PSVb->mayAlias(&MFI)) 1358 return false; 1359 if (PSVa && PSVb && (PSVa == PSVb)) 1360 SameVal = true; 1361 } 1362 1363 if (SameVal && BothMMONonScalable) { 1364 if (!KnownWidthA || !KnownWidthB) 1365 return true; 1366 int64_t MaxOffset = std::max(OffsetA, OffsetB); 1367 int64_t LowWidth = (MinOffset == OffsetA) 1368 ? WidthA.getValue().getKnownMinValue() 1369 : WidthB.getValue().getKnownMinValue(); 1370 return (MinOffset + LowWidth > MaxOffset); 1371 } 1372 1373 if (!AA) 1374 return true; 1375 1376 if (!ValA || !ValB) 1377 return true; 1378 1379 assert((OffsetA >= 0) && "Negative MachineMemOperand offset"); 1380 assert((OffsetB >= 0) && "Negative MachineMemOperand offset"); 1381 1382 // If Scalable Location Size has non-zero offset, Width + Offset does not work 1383 // at the moment 1384 if ((WidthA.isScalable() && OffsetA > 0) || 1385 (WidthB.isScalable() && OffsetB > 0)) 1386 return true; 1387 1388 int64_t OverlapA = 1389 KnownWidthA ? WidthA.getValue().getKnownMinValue() + OffsetA - MinOffset 1390 : MemoryLocation::UnknownSize; 1391 int64_t OverlapB = 1392 KnownWidthB ? WidthB.getValue().getKnownMinValue() + OffsetB - MinOffset 1393 : MemoryLocation::UnknownSize; 1394 1395 LocationSize LocA = (WidthA.isScalable() || !KnownWidthA) 1396 ? WidthA 1397 : LocationSize::precise(OverlapA); 1398 LocationSize LocB = (WidthB.isScalable() || !KnownWidthB) 1399 ? WidthB 1400 : LocationSize::precise(OverlapB); 1401 1402 return !AA->isNoAlias( 1403 MemoryLocation(ValA, LocA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 1404 MemoryLocation(ValB, LocB, UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 1405 } 1406 1407 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other, 1408 bool UseTBAA) const { 1409 const MachineFunction *MF = getMF(); 1410 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1411 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1412 1413 // Exclude call instruction which may alter the memory but can not be handled 1414 // by this function. 1415 if (isCall() || Other.isCall()) 1416 return true; 1417 1418 // If neither instruction stores to memory, they can't alias in any 1419 // meaningful way, even if they read from the same address. 1420 if (!mayStore() && !Other.mayStore()) 1421 return false; 1422 1423 // Both instructions must be memory operations to be able to alias. 1424 if (!mayLoadOrStore() || !Other.mayLoadOrStore()) 1425 return false; 1426 1427 // Let the target decide if memory accesses cannot possibly overlap. 1428 if (TII->areMemAccessesTriviallyDisjoint(*this, Other)) 1429 return false; 1430 1431 // Memory operations without memory operands may access anything. Be 1432 // conservative and assume `MayAlias`. 1433 if (memoperands_empty() || Other.memoperands_empty()) 1434 return true; 1435 1436 // Skip if there are too many memory operands. 1437 auto NumChecks = getNumMemOperands() * Other.getNumMemOperands(); 1438 if (NumChecks > TII->getMemOperandAACheckLimit()) 1439 return true; 1440 1441 // Check each pair of memory operands from both instructions, which can't 1442 // alias only if all pairs won't alias. 1443 for (auto *MMOa : memoperands()) 1444 for (auto *MMOb : Other.memoperands()) 1445 if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb)) 1446 return true; 1447 1448 return false; 1449 } 1450 1451 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1452 /// or volatile memory reference, or if the information describing the memory 1453 /// reference is not available. Return false if it is known to have no ordered 1454 /// memory references. 1455 bool MachineInstr::hasOrderedMemoryRef() const { 1456 // An instruction known never to access memory won't have a volatile access. 1457 if (!mayStore() && 1458 !mayLoad() && 1459 !isCall() && 1460 !hasUnmodeledSideEffects()) 1461 return false; 1462 1463 // Otherwise, if the instruction has no memory reference information, 1464 // conservatively assume it wasn't preserved. 1465 if (memoperands_empty()) 1466 return true; 1467 1468 // Check if any of our memory operands are ordered. 1469 return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) { 1470 return !MMO->isUnordered(); 1471 }); 1472 } 1473 1474 /// isDereferenceableInvariantLoad - Return true if this instruction will never 1475 /// trap and is loading from a location whose value is invariant across a run of 1476 /// this function. 1477 bool MachineInstr::isDereferenceableInvariantLoad() const { 1478 // If the instruction doesn't load at all, it isn't an invariant load. 1479 if (!mayLoad()) 1480 return false; 1481 1482 // If the instruction has lost its memoperands, conservatively assume that 1483 // it may not be an invariant load. 1484 if (memoperands_empty()) 1485 return false; 1486 1487 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); 1488 1489 for (MachineMemOperand *MMO : memoperands()) { 1490 if (!MMO->isUnordered()) 1491 // If the memory operand has ordering side effects, we can't move the 1492 // instruction. Such an instruction is technically an invariant load, 1493 // but the caller code would need updated to expect that. 1494 return false; 1495 if (MMO->isStore()) return false; 1496 if (MMO->isInvariant() && MMO->isDereferenceable()) 1497 continue; 1498 1499 // A load from a constant PseudoSourceValue is invariant. 1500 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) { 1501 if (PSV->isConstant(&MFI)) 1502 continue; 1503 } 1504 1505 // Otherwise assume conservatively. 1506 return false; 1507 } 1508 1509 // Everything checks out. 1510 return true; 1511 } 1512 1513 /// isConstantValuePHI - If the specified instruction is a PHI that always 1514 /// merges together the same virtual register, return the register, otherwise 1515 /// return 0. 1516 unsigned MachineInstr::isConstantValuePHI() const { 1517 if (!isPHI()) 1518 return 0; 1519 assert(getNumOperands() >= 3 && 1520 "It's illegal to have a PHI without source operands"); 1521 1522 Register Reg = getOperand(1).getReg(); 1523 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1524 if (getOperand(i).getReg() != Reg) 1525 return 0; 1526 return Reg; 1527 } 1528 1529 bool MachineInstr::hasUnmodeledSideEffects() const { 1530 if (hasProperty(MCID::UnmodeledSideEffects)) 1531 return true; 1532 if (isInlineAsm()) { 1533 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1534 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1535 return true; 1536 } 1537 1538 return false; 1539 } 1540 1541 bool MachineInstr::isLoadFoldBarrier() const { 1542 return mayStore() || isCall() || 1543 (hasUnmodeledSideEffects() && !isPseudoProbe()); 1544 } 1545 1546 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1547 /// 1548 bool MachineInstr::allDefsAreDead() const { 1549 for (const MachineOperand &MO : all_defs()) 1550 if (!MO.isDead()) 1551 return false; 1552 return true; 1553 } 1554 1555 bool MachineInstr::allImplicitDefsAreDead() const { 1556 for (const MachineOperand &MO : implicit_operands()) { 1557 if (!MO.isReg() || MO.isUse()) 1558 continue; 1559 if (!MO.isDead()) 1560 return false; 1561 } 1562 return true; 1563 } 1564 1565 /// copyImplicitOps - Copy implicit register operands from specified 1566 /// instruction to this instruction. 1567 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1568 const MachineInstr &MI) { 1569 for (const MachineOperand &MO : 1570 llvm::drop_begin(MI.operands(), MI.getDesc().getNumOperands())) 1571 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1572 addOperand(MF, MO); 1573 } 1574 1575 bool MachineInstr::hasComplexRegisterTies() const { 1576 const MCInstrDesc &MCID = getDesc(); 1577 if (MCID.Opcode == TargetOpcode::STATEPOINT) 1578 return true; 1579 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 1580 const auto &Operand = getOperand(I); 1581 if (!Operand.isReg() || Operand.isDef()) 1582 // Ignore the defined registers as MCID marks only the uses as tied. 1583 continue; 1584 int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO); 1585 int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1; 1586 if (ExpectedTiedIdx != TiedIdx) 1587 return true; 1588 } 1589 return false; 1590 } 1591 1592 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, 1593 const MachineRegisterInfo &MRI) const { 1594 const MachineOperand &Op = getOperand(OpIdx); 1595 if (!Op.isReg()) 1596 return LLT{}; 1597 1598 if (isVariadic() || OpIdx >= getNumExplicitOperands()) 1599 return MRI.getType(Op.getReg()); 1600 1601 auto &OpInfo = getDesc().operands()[OpIdx]; 1602 if (!OpInfo.isGenericType()) 1603 return MRI.getType(Op.getReg()); 1604 1605 if (PrintedTypes[OpInfo.getGenericTypeIndex()]) 1606 return LLT{}; 1607 1608 LLT TypeToPrint = MRI.getType(Op.getReg()); 1609 // Don't mark the type index printed if it wasn't actually printed: maybe 1610 // another operand with the same type index has an actual type attached: 1611 if (TypeToPrint.isValid()) 1612 PrintedTypes.set(OpInfo.getGenericTypeIndex()); 1613 return TypeToPrint; 1614 } 1615 1616 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1617 LLVM_DUMP_METHOD void MachineInstr::dump() const { 1618 dbgs() << " "; 1619 print(dbgs()); 1620 } 1621 1622 LLVM_DUMP_METHOD void MachineInstr::dumprImpl( 1623 const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth, 1624 SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const { 1625 if (Depth >= MaxDepth) 1626 return; 1627 if (!AlreadySeenInstrs.insert(this).second) 1628 return; 1629 // PadToColumn always inserts at least one space. 1630 // Don't mess up the alignment if we don't want any space. 1631 if (Depth) 1632 fdbgs().PadToColumn(Depth * 2); 1633 print(fdbgs()); 1634 for (const MachineOperand &MO : operands()) { 1635 if (!MO.isReg() || MO.isDef()) 1636 continue; 1637 Register Reg = MO.getReg(); 1638 if (Reg.isPhysical()) 1639 continue; 1640 const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg); 1641 if (NewMI == nullptr) 1642 continue; 1643 NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs); 1644 } 1645 } 1646 1647 LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI, 1648 unsigned MaxDepth) const { 1649 SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs; 1650 dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs); 1651 } 1652 #endif 1653 1654 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers, 1655 bool SkipDebugLoc, bool AddNewLine, 1656 const TargetInstrInfo *TII) const { 1657 const Module *M = nullptr; 1658 const Function *F = nullptr; 1659 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1660 F = &MF->getFunction(); 1661 M = F->getParent(); 1662 if (!TII) 1663 TII = MF->getSubtarget().getInstrInfo(); 1664 } 1665 1666 ModuleSlotTracker MST(M); 1667 if (F) 1668 MST.incorporateFunction(*F); 1669 print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII); 1670 } 1671 1672 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1673 bool IsStandalone, bool SkipOpers, bool SkipDebugLoc, 1674 bool AddNewLine, const TargetInstrInfo *TII) const { 1675 // We can be a bit tidier if we know the MachineFunction. 1676 const TargetRegisterInfo *TRI = nullptr; 1677 const MachineRegisterInfo *MRI = nullptr; 1678 const TargetIntrinsicInfo *IntrinsicInfo = nullptr; 1679 tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII); 1680 1681 if (isCFIInstruction()) 1682 assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction"); 1683 1684 SmallBitVector PrintedTypes(8); 1685 bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies(); 1686 auto getTiedOperandIdx = [&](unsigned OpIdx) { 1687 if (!ShouldPrintRegisterTies) 1688 return 0U; 1689 const MachineOperand &MO = getOperand(OpIdx); 1690 if (MO.isReg() && MO.isTied() && !MO.isDef()) 1691 return findTiedOperandIdx(OpIdx); 1692 return 0U; 1693 }; 1694 unsigned StartOp = 0; 1695 unsigned e = getNumOperands(); 1696 1697 // Print explicitly defined operands on the left of an assignment syntax. 1698 while (StartOp < e) { 1699 const MachineOperand &MO = getOperand(StartOp); 1700 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 1701 break; 1702 1703 if (StartOp != 0) 1704 OS << ", "; 1705 1706 LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{}; 1707 unsigned TiedOperandIdx = getTiedOperandIdx(StartOp); 1708 MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone, 1709 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1710 ++StartOp; 1711 } 1712 1713 if (StartOp != 0) 1714 OS << " = "; 1715 1716 if (getFlag(MachineInstr::FrameSetup)) 1717 OS << "frame-setup "; 1718 if (getFlag(MachineInstr::FrameDestroy)) 1719 OS << "frame-destroy "; 1720 if (getFlag(MachineInstr::FmNoNans)) 1721 OS << "nnan "; 1722 if (getFlag(MachineInstr::FmNoInfs)) 1723 OS << "ninf "; 1724 if (getFlag(MachineInstr::FmNsz)) 1725 OS << "nsz "; 1726 if (getFlag(MachineInstr::FmArcp)) 1727 OS << "arcp "; 1728 if (getFlag(MachineInstr::FmContract)) 1729 OS << "contract "; 1730 if (getFlag(MachineInstr::FmAfn)) 1731 OS << "afn "; 1732 if (getFlag(MachineInstr::FmReassoc)) 1733 OS << "reassoc "; 1734 if (getFlag(MachineInstr::NoUWrap)) 1735 OS << "nuw "; 1736 if (getFlag(MachineInstr::NoSWrap)) 1737 OS << "nsw "; 1738 if (getFlag(MachineInstr::IsExact)) 1739 OS << "exact "; 1740 if (getFlag(MachineInstr::NoFPExcept)) 1741 OS << "nofpexcept "; 1742 if (getFlag(MachineInstr::NoMerge)) 1743 OS << "nomerge "; 1744 if (getFlag(MachineInstr::NonNeg)) 1745 OS << "nneg "; 1746 if (getFlag(MachineInstr::Disjoint)) 1747 OS << "disjoint "; 1748 1749 // Print the opcode name. 1750 if (TII) 1751 OS << TII->getName(getOpcode()); 1752 else 1753 OS << "UNKNOWN"; 1754 1755 if (SkipOpers) 1756 return; 1757 1758 // Print the rest of the operands. 1759 bool FirstOp = true; 1760 unsigned AsmDescOp = ~0u; 1761 unsigned AsmOpCount = 0; 1762 1763 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1764 // Print asm string. 1765 OS << " "; 1766 const unsigned OpIdx = InlineAsm::MIOp_AsmString; 1767 LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{}; 1768 unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx); 1769 getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone, 1770 ShouldPrintRegisterTies, TiedOperandIdx, TRI, 1771 IntrinsicInfo); 1772 1773 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1774 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1775 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1776 OS << " [sideeffect]"; 1777 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1778 OS << " [mayload]"; 1779 if (ExtraInfo & InlineAsm::Extra_MayStore) 1780 OS << " [maystore]"; 1781 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 1782 OS << " [isconvergent]"; 1783 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1784 OS << " [alignstack]"; 1785 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1786 OS << " [attdialect]"; 1787 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1788 OS << " [inteldialect]"; 1789 1790 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1791 FirstOp = false; 1792 } 1793 1794 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1795 const MachineOperand &MO = getOperand(i); 1796 1797 if (FirstOp) FirstOp = false; else OS << ","; 1798 OS << " "; 1799 1800 if (isDebugValueLike() && MO.isMetadata()) { 1801 // Pretty print DBG_VALUE* instructions. 1802 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1803 if (DIV && !DIV->getName().empty()) 1804 OS << "!\"" << DIV->getName() << '\"'; 1805 else { 1806 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1807 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1808 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1809 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1810 } 1811 } else if (isDebugLabel() && MO.isMetadata()) { 1812 // Pretty print DBG_LABEL instructions. 1813 auto *DIL = dyn_cast<DILabel>(MO.getMetadata()); 1814 if (DIL && !DIL->getName().empty()) 1815 OS << "\"" << DIL->getName() << '\"'; 1816 else { 1817 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1818 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1819 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1820 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1821 } 1822 } else if (i == AsmDescOp && MO.isImm()) { 1823 // Pretty print the inline asm operand descriptor. 1824 OS << '$' << AsmOpCount++; 1825 unsigned Flag = MO.getImm(); 1826 const InlineAsm::Flag F(Flag); 1827 OS << ":["; 1828 OS << F.getKindName(); 1829 1830 unsigned RCID; 1831 if (!F.isImmKind() && !F.isMemKind() && F.hasRegClassConstraint(RCID)) { 1832 if (TRI) { 1833 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1834 } else 1835 OS << ":RC" << RCID; 1836 } 1837 1838 if (F.isMemKind()) { 1839 const InlineAsm::ConstraintCode MCID = F.getMemoryConstraintID(); 1840 OS << ":" << InlineAsm::getMemConstraintName(MCID); 1841 } 1842 1843 unsigned TiedTo; 1844 if (F.isUseOperandTiedToDef(TiedTo)) 1845 OS << " tiedto:$" << TiedTo; 1846 1847 if ((F.isRegDefKind() || F.isRegDefEarlyClobberKind() || 1848 F.isRegUseKind()) && 1849 F.getRegMayBeFolded()) { 1850 OS << " foldable"; 1851 } 1852 1853 OS << ']'; 1854 1855 // Compute the index of the next operand descriptor. 1856 AsmDescOp += 1 + F.getNumOperandRegisters(); 1857 } else { 1858 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1859 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1860 if (MO.isImm() && isOperandSubregIdx(i)) 1861 MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI); 1862 else 1863 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1864 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1865 } 1866 } 1867 1868 // Print any optional symbols attached to this instruction as-if they were 1869 // operands. 1870 if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) { 1871 if (!FirstOp) { 1872 FirstOp = false; 1873 OS << ','; 1874 } 1875 OS << " pre-instr-symbol "; 1876 MachineOperand::printSymbol(OS, *PreInstrSymbol); 1877 } 1878 if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) { 1879 if (!FirstOp) { 1880 FirstOp = false; 1881 OS << ','; 1882 } 1883 OS << " post-instr-symbol "; 1884 MachineOperand::printSymbol(OS, *PostInstrSymbol); 1885 } 1886 if (MDNode *HeapAllocMarker = getHeapAllocMarker()) { 1887 if (!FirstOp) { 1888 FirstOp = false; 1889 OS << ','; 1890 } 1891 OS << " heap-alloc-marker "; 1892 HeapAllocMarker->printAsOperand(OS, MST); 1893 } 1894 if (MDNode *PCSections = getPCSections()) { 1895 if (!FirstOp) { 1896 FirstOp = false; 1897 OS << ','; 1898 } 1899 OS << " pcsections "; 1900 PCSections->printAsOperand(OS, MST); 1901 } 1902 if (MDNode *MMRA = getMMRAMetadata()) { 1903 if (!FirstOp) { 1904 FirstOp = false; 1905 OS << ','; 1906 } 1907 OS << " mmra "; 1908 MMRA->printAsOperand(OS, MST); 1909 } 1910 if (uint32_t CFIType = getCFIType()) { 1911 if (!FirstOp) 1912 OS << ','; 1913 OS << " cfi-type " << CFIType; 1914 } 1915 1916 if (DebugInstrNum) { 1917 if (!FirstOp) 1918 OS << ","; 1919 OS << " debug-instr-number " << DebugInstrNum; 1920 } 1921 1922 if (!SkipDebugLoc) { 1923 if (const DebugLoc &DL = getDebugLoc()) { 1924 if (!FirstOp) 1925 OS << ','; 1926 OS << " debug-location "; 1927 DL->printAsOperand(OS, MST); 1928 } 1929 } 1930 1931 if (!memoperands_empty()) { 1932 SmallVector<StringRef, 0> SSNs; 1933 const LLVMContext *Context = nullptr; 1934 std::unique_ptr<LLVMContext> CtxPtr; 1935 const MachineFrameInfo *MFI = nullptr; 1936 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1937 MFI = &MF->getFrameInfo(); 1938 Context = &MF->getFunction().getContext(); 1939 } else { 1940 CtxPtr = std::make_unique<LLVMContext>(); 1941 Context = CtxPtr.get(); 1942 } 1943 1944 OS << " :: "; 1945 bool NeedComma = false; 1946 for (const MachineMemOperand *Op : memoperands()) { 1947 if (NeedComma) 1948 OS << ", "; 1949 Op->print(OS, MST, SSNs, *Context, MFI, TII); 1950 NeedComma = true; 1951 } 1952 } 1953 1954 if (SkipDebugLoc) 1955 return; 1956 1957 bool HaveSemi = false; 1958 1959 // Print debug location information. 1960 if (const DebugLoc &DL = getDebugLoc()) { 1961 if (!HaveSemi) { 1962 OS << ';'; 1963 HaveSemi = true; 1964 } 1965 OS << ' '; 1966 DL.print(OS); 1967 } 1968 1969 // Print extra comments for DEBUG_VALUE and friends if they are well-formed. 1970 if ((isNonListDebugValue() && getNumOperands() >= 4) || 1971 (isDebugValueList() && getNumOperands() >= 2) || 1972 (isDebugRef() && getNumOperands() >= 3)) { 1973 if (getDebugVariableOp().isMetadata()) { 1974 if (!HaveSemi) { 1975 OS << ";"; 1976 HaveSemi = true; 1977 } 1978 auto *DV = getDebugVariable(); 1979 OS << " line no:" << DV->getLine(); 1980 if (isIndirectDebugValue()) 1981 OS << " indirect"; 1982 } 1983 } 1984 // TODO: DBG_LABEL 1985 1986 if (AddNewLine) 1987 OS << '\n'; 1988 } 1989 1990 bool MachineInstr::addRegisterKilled(Register IncomingReg, 1991 const TargetRegisterInfo *RegInfo, 1992 bool AddIfNotFound) { 1993 bool isPhysReg = IncomingReg.isPhysical(); 1994 bool hasAliases = isPhysReg && 1995 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1996 bool Found = false; 1997 SmallVector<unsigned,4> DeadOps; 1998 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1999 MachineOperand &MO = getOperand(i); 2000 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 2001 continue; 2002 2003 // DEBUG_VALUE nodes do not contribute to code generation and should 2004 // always be ignored. Failure to do so may result in trying to modify 2005 // KILL flags on DEBUG_VALUE nodes. 2006 if (MO.isDebug()) 2007 continue; 2008 2009 Register Reg = MO.getReg(); 2010 if (!Reg) 2011 continue; 2012 2013 if (Reg == IncomingReg) { 2014 if (!Found) { 2015 if (MO.isKill()) 2016 // The register is already marked kill. 2017 return true; 2018 if (isPhysReg && isRegTiedToDefOperand(i)) 2019 // Two-address uses of physregs must not be marked kill. 2020 return true; 2021 MO.setIsKill(); 2022 Found = true; 2023 } 2024 } else if (hasAliases && MO.isKill() && Reg.isPhysical()) { 2025 // A super-register kill already exists. 2026 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 2027 return true; 2028 if (RegInfo->isSubRegister(IncomingReg, Reg)) 2029 DeadOps.push_back(i); 2030 } 2031 } 2032 2033 // Trim unneeded kill operands. 2034 while (!DeadOps.empty()) { 2035 unsigned OpIdx = DeadOps.back(); 2036 if (getOperand(OpIdx).isImplicit() && 2037 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 2038 removeOperand(OpIdx); 2039 else 2040 getOperand(OpIdx).setIsKill(false); 2041 DeadOps.pop_back(); 2042 } 2043 2044 // If not found, this means an alias of one of the operands is killed. Add a 2045 // new implicit operand if required. 2046 if (!Found && AddIfNotFound) { 2047 addOperand(MachineOperand::CreateReg(IncomingReg, 2048 false /*IsDef*/, 2049 true /*IsImp*/, 2050 true /*IsKill*/)); 2051 return true; 2052 } 2053 return Found; 2054 } 2055 2056 void MachineInstr::clearRegisterKills(Register Reg, 2057 const TargetRegisterInfo *RegInfo) { 2058 if (!Reg.isPhysical()) 2059 RegInfo = nullptr; 2060 for (MachineOperand &MO : all_uses()) { 2061 if (!MO.isKill()) 2062 continue; 2063 Register OpReg = MO.getReg(); 2064 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) 2065 MO.setIsKill(false); 2066 } 2067 } 2068 2069 bool MachineInstr::addRegisterDead(Register Reg, 2070 const TargetRegisterInfo *RegInfo, 2071 bool AddIfNotFound) { 2072 bool isPhysReg = Reg.isPhysical(); 2073 bool hasAliases = isPhysReg && 2074 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 2075 bool Found = false; 2076 SmallVector<unsigned,4> DeadOps; 2077 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 2078 MachineOperand &MO = getOperand(i); 2079 if (!MO.isReg() || !MO.isDef()) 2080 continue; 2081 Register MOReg = MO.getReg(); 2082 if (!MOReg) 2083 continue; 2084 2085 if (MOReg == Reg) { 2086 MO.setIsDead(); 2087 Found = true; 2088 } else if (hasAliases && MO.isDead() && MOReg.isPhysical()) { 2089 // There exists a super-register that's marked dead. 2090 if (RegInfo->isSuperRegister(Reg, MOReg)) 2091 return true; 2092 if (RegInfo->isSubRegister(Reg, MOReg)) 2093 DeadOps.push_back(i); 2094 } 2095 } 2096 2097 // Trim unneeded dead operands. 2098 while (!DeadOps.empty()) { 2099 unsigned OpIdx = DeadOps.back(); 2100 if (getOperand(OpIdx).isImplicit() && 2101 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 2102 removeOperand(OpIdx); 2103 else 2104 getOperand(OpIdx).setIsDead(false); 2105 DeadOps.pop_back(); 2106 } 2107 2108 // If not found, this means an alias of one of the operands is dead. Add a 2109 // new implicit operand if required. 2110 if (Found || !AddIfNotFound) 2111 return Found; 2112 2113 addOperand(MachineOperand::CreateReg(Reg, 2114 true /*IsDef*/, 2115 true /*IsImp*/, 2116 false /*IsKill*/, 2117 true /*IsDead*/)); 2118 return true; 2119 } 2120 2121 void MachineInstr::clearRegisterDeads(Register Reg) { 2122 for (MachineOperand &MO : all_defs()) 2123 if (MO.getReg() == Reg) 2124 MO.setIsDead(false); 2125 } 2126 2127 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) { 2128 for (MachineOperand &MO : all_defs()) 2129 if (MO.getReg() == Reg && MO.getSubReg() != 0) 2130 MO.setIsUndef(IsUndef); 2131 } 2132 2133 void MachineInstr::addRegisterDefined(Register Reg, 2134 const TargetRegisterInfo *RegInfo) { 2135 if (Reg.isPhysical()) { 2136 MachineOperand *MO = findRegisterDefOperand(Reg, RegInfo, false, false); 2137 if (MO) 2138 return; 2139 } else { 2140 for (const MachineOperand &MO : all_defs()) { 2141 if (MO.getReg() == Reg && MO.getSubReg() == 0) 2142 return; 2143 } 2144 } 2145 addOperand(MachineOperand::CreateReg(Reg, 2146 true /*IsDef*/, 2147 true /*IsImp*/)); 2148 } 2149 2150 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs, 2151 const TargetRegisterInfo &TRI) { 2152 bool HasRegMask = false; 2153 for (MachineOperand &MO : operands()) { 2154 if (MO.isRegMask()) { 2155 HasRegMask = true; 2156 continue; 2157 } 2158 if (!MO.isReg() || !MO.isDef()) continue; 2159 Register Reg = MO.getReg(); 2160 if (!Reg.isPhysical()) 2161 continue; 2162 // If there are no uses, including partial uses, the def is dead. 2163 if (llvm::none_of(UsedRegs, 2164 [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); })) 2165 MO.setIsDead(); 2166 } 2167 2168 // This is a call with a register mask operand. 2169 // Mask clobbers are always dead, so add defs for the non-dead defines. 2170 if (HasRegMask) 2171 for (const Register &UsedReg : UsedRegs) 2172 addRegisterDefined(UsedReg, &TRI); 2173 } 2174 2175 unsigned 2176 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 2177 // Build up a buffer of hash code components. 2178 SmallVector<size_t, 16> HashComponents; 2179 HashComponents.reserve(MI->getNumOperands() + 1); 2180 HashComponents.push_back(MI->getOpcode()); 2181 for (const MachineOperand &MO : MI->operands()) { 2182 if (MO.isReg() && MO.isDef() && MO.getReg().isVirtual()) 2183 continue; // Skip virtual register defs. 2184 2185 HashComponents.push_back(hash_value(MO)); 2186 } 2187 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 2188 } 2189 2190 void MachineInstr::emitError(StringRef Msg) const { 2191 // Find the source location cookie. 2192 uint64_t LocCookie = 0; 2193 const MDNode *LocMD = nullptr; 2194 for (unsigned i = getNumOperands(); i != 0; --i) { 2195 if (getOperand(i-1).isMetadata() && 2196 (LocMD = getOperand(i-1).getMetadata()) && 2197 LocMD->getNumOperands() != 0) { 2198 if (const ConstantInt *CI = 2199 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 2200 LocCookie = CI->getZExtValue(); 2201 break; 2202 } 2203 } 2204 } 2205 2206 if (const MachineBasicBlock *MBB = getParent()) 2207 if (const MachineFunction *MF = MBB->getParent()) 2208 return MF->getFunction().getContext().emitError(LocCookie, Msg); 2209 report_fatal_error(Msg); 2210 } 2211 2212 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2213 const MCInstrDesc &MCID, bool IsIndirect, 2214 Register Reg, const MDNode *Variable, 2215 const MDNode *Expr) { 2216 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2217 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2218 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2219 "Expected inlined-at fields to agree"); 2220 auto MIB = BuildMI(MF, DL, MCID).addReg(Reg); 2221 if (IsIndirect) 2222 MIB.addImm(0U); 2223 else 2224 MIB.addReg(0U); 2225 return MIB.addMetadata(Variable).addMetadata(Expr); 2226 } 2227 2228 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2229 const MCInstrDesc &MCID, bool IsIndirect, 2230 ArrayRef<MachineOperand> DebugOps, 2231 const MDNode *Variable, const MDNode *Expr) { 2232 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2233 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2234 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2235 "Expected inlined-at fields to agree"); 2236 if (MCID.Opcode == TargetOpcode::DBG_VALUE) { 2237 assert(DebugOps.size() == 1 && 2238 "DBG_VALUE must contain exactly one debug operand"); 2239 MachineOperand DebugOp = DebugOps[0]; 2240 if (DebugOp.isReg()) 2241 return BuildMI(MF, DL, MCID, IsIndirect, DebugOp.getReg(), Variable, 2242 Expr); 2243 2244 auto MIB = BuildMI(MF, DL, MCID).add(DebugOp); 2245 if (IsIndirect) 2246 MIB.addImm(0U); 2247 else 2248 MIB.addReg(0U); 2249 return MIB.addMetadata(Variable).addMetadata(Expr); 2250 } 2251 2252 auto MIB = BuildMI(MF, DL, MCID); 2253 MIB.addMetadata(Variable).addMetadata(Expr); 2254 for (const MachineOperand &DebugOp : DebugOps) 2255 if (DebugOp.isReg()) 2256 MIB.addReg(DebugOp.getReg()); 2257 else 2258 MIB.add(DebugOp); 2259 return MIB; 2260 } 2261 2262 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2263 MachineBasicBlock::iterator I, 2264 const DebugLoc &DL, const MCInstrDesc &MCID, 2265 bool IsIndirect, Register Reg, 2266 const MDNode *Variable, const MDNode *Expr) { 2267 MachineFunction &MF = *BB.getParent(); 2268 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr); 2269 BB.insert(I, MI); 2270 return MachineInstrBuilder(MF, MI); 2271 } 2272 2273 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2274 MachineBasicBlock::iterator I, 2275 const DebugLoc &DL, const MCInstrDesc &MCID, 2276 bool IsIndirect, 2277 ArrayRef<MachineOperand> DebugOps, 2278 const MDNode *Variable, const MDNode *Expr) { 2279 MachineFunction &MF = *BB.getParent(); 2280 MachineInstr *MI = 2281 BuildMI(MF, DL, MCID, IsIndirect, DebugOps, Variable, Expr); 2282 BB.insert(I, MI); 2283 return MachineInstrBuilder(MF, *MI); 2284 } 2285 2286 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot. 2287 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE. 2288 static const DIExpression *computeExprForSpill( 2289 const MachineInstr &MI, 2290 const SmallVectorImpl<const MachineOperand *> &SpilledOperands) { 2291 assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) && 2292 "Expected inlined-at fields to agree"); 2293 2294 const DIExpression *Expr = MI.getDebugExpression(); 2295 if (MI.isIndirectDebugValue()) { 2296 assert(MI.getDebugOffset().getImm() == 0 && 2297 "DBG_VALUE with nonzero offset"); 2298 Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore); 2299 } else if (MI.isDebugValueList()) { 2300 // We will replace the spilled register with a frame index, so 2301 // immediately deref all references to the spilled register. 2302 std::array<uint64_t, 1> Ops{{dwarf::DW_OP_deref}}; 2303 for (const MachineOperand *Op : SpilledOperands) { 2304 unsigned OpIdx = MI.getDebugOperandIndex(Op); 2305 Expr = DIExpression::appendOpsToArg(Expr, Ops, OpIdx); 2306 } 2307 } 2308 return Expr; 2309 } 2310 static const DIExpression *computeExprForSpill(const MachineInstr &MI, 2311 Register SpillReg) { 2312 assert(MI.hasDebugOperandForReg(SpillReg) && "Spill Reg is not used in MI."); 2313 SmallVector<const MachineOperand *> SpillOperands; 2314 for (const MachineOperand &Op : MI.getDebugOperandsForReg(SpillReg)) 2315 SpillOperands.push_back(&Op); 2316 return computeExprForSpill(MI, SpillOperands); 2317 } 2318 2319 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB, 2320 MachineBasicBlock::iterator I, 2321 const MachineInstr &Orig, 2322 int FrameIndex, Register SpillReg) { 2323 assert(!Orig.isDebugRef() && 2324 "DBG_INSTR_REF should not reference a virtual register."); 2325 const DIExpression *Expr = computeExprForSpill(Orig, SpillReg); 2326 MachineInstrBuilder NewMI = 2327 BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()); 2328 // Non-Variadic Operands: Location, Offset, Variable, Expression 2329 // Variadic Operands: Variable, Expression, Locations... 2330 if (Orig.isNonListDebugValue()) 2331 NewMI.addFrameIndex(FrameIndex).addImm(0U); 2332 NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr); 2333 if (Orig.isDebugValueList()) { 2334 for (const MachineOperand &Op : Orig.debug_operands()) 2335 if (Op.isReg() && Op.getReg() == SpillReg) 2336 NewMI.addFrameIndex(FrameIndex); 2337 else 2338 NewMI.add(MachineOperand(Op)); 2339 } 2340 return NewMI; 2341 } 2342 MachineInstr *llvm::buildDbgValueForSpill( 2343 MachineBasicBlock &BB, MachineBasicBlock::iterator I, 2344 const MachineInstr &Orig, int FrameIndex, 2345 const SmallVectorImpl<const MachineOperand *> &SpilledOperands) { 2346 const DIExpression *Expr = computeExprForSpill(Orig, SpilledOperands); 2347 MachineInstrBuilder NewMI = 2348 BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()); 2349 // Non-Variadic Operands: Location, Offset, Variable, Expression 2350 // Variadic Operands: Variable, Expression, Locations... 2351 if (Orig.isNonListDebugValue()) 2352 NewMI.addFrameIndex(FrameIndex).addImm(0U); 2353 NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr); 2354 if (Orig.isDebugValueList()) { 2355 for (const MachineOperand &Op : Orig.debug_operands()) 2356 if (is_contained(SpilledOperands, &Op)) 2357 NewMI.addFrameIndex(FrameIndex); 2358 else 2359 NewMI.add(MachineOperand(Op)); 2360 } 2361 return NewMI; 2362 } 2363 2364 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex, 2365 Register Reg) { 2366 const DIExpression *Expr = computeExprForSpill(Orig, Reg); 2367 if (Orig.isNonListDebugValue()) 2368 Orig.getDebugOffset().ChangeToImmediate(0U); 2369 for (MachineOperand &Op : Orig.getDebugOperandsForReg(Reg)) 2370 Op.ChangeToFrameIndex(FrameIndex); 2371 Orig.getDebugExpressionOp().setMetadata(Expr); 2372 } 2373 2374 void MachineInstr::collectDebugValues( 2375 SmallVectorImpl<MachineInstr *> &DbgValues) { 2376 MachineInstr &MI = *this; 2377 if (!MI.getOperand(0).isReg()) 2378 return; 2379 2380 MachineBasicBlock::iterator DI = MI; ++DI; 2381 for (MachineBasicBlock::iterator DE = MI.getParent()->end(); 2382 DI != DE; ++DI) { 2383 if (!DI->isDebugValue()) 2384 return; 2385 if (DI->hasDebugOperandForReg(MI.getOperand(0).getReg())) 2386 DbgValues.push_back(&*DI); 2387 } 2388 } 2389 2390 void MachineInstr::changeDebugValuesDefReg(Register Reg) { 2391 // Collect matching debug values. 2392 SmallVector<MachineInstr *, 2> DbgValues; 2393 2394 if (!getOperand(0).isReg()) 2395 return; 2396 2397 Register DefReg = getOperand(0).getReg(); 2398 auto *MRI = getRegInfo(); 2399 for (auto &MO : MRI->use_operands(DefReg)) { 2400 auto *DI = MO.getParent(); 2401 if (!DI->isDebugValue()) 2402 continue; 2403 if (DI->hasDebugOperandForReg(DefReg)) { 2404 DbgValues.push_back(DI); 2405 } 2406 } 2407 2408 // Propagate Reg to debug value instructions. 2409 for (auto *DBI : DbgValues) 2410 for (MachineOperand &Op : DBI->getDebugOperandsForReg(DefReg)) 2411 Op.setReg(Reg); 2412 } 2413 2414 using MMOList = SmallVector<const MachineMemOperand *, 2>; 2415 2416 static LocationSize getSpillSlotSize(const MMOList &Accesses, 2417 const MachineFrameInfo &MFI) { 2418 uint64_t Size = 0; 2419 for (const auto *A : Accesses) { 2420 if (MFI.isSpillSlotObjectIndex( 2421 cast<FixedStackPseudoSourceValue>(A->getPseudoValue()) 2422 ->getFrameIndex())) { 2423 LocationSize S = A->getSize(); 2424 if (!S.hasValue()) 2425 return LocationSize::beforeOrAfterPointer(); 2426 Size += S.getValue(); 2427 } 2428 } 2429 return Size; 2430 } 2431 2432 std::optional<LocationSize> 2433 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const { 2434 int FI; 2435 if (TII->isStoreToStackSlotPostFE(*this, FI)) { 2436 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2437 if (MFI.isSpillSlotObjectIndex(FI)) 2438 return (*memoperands_begin())->getSize(); 2439 } 2440 return std::nullopt; 2441 } 2442 2443 std::optional<LocationSize> 2444 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const { 2445 MMOList Accesses; 2446 if (TII->hasStoreToStackSlot(*this, Accesses)) 2447 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2448 return std::nullopt; 2449 } 2450 2451 std::optional<LocationSize> 2452 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const { 2453 int FI; 2454 if (TII->isLoadFromStackSlotPostFE(*this, FI)) { 2455 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2456 if (MFI.isSpillSlotObjectIndex(FI)) 2457 return (*memoperands_begin())->getSize(); 2458 } 2459 return std::nullopt; 2460 } 2461 2462 std::optional<LocationSize> 2463 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const { 2464 MMOList Accesses; 2465 if (TII->hasLoadFromStackSlot(*this, Accesses)) 2466 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2467 return std::nullopt; 2468 } 2469 2470 unsigned MachineInstr::getDebugInstrNum() { 2471 if (DebugInstrNum == 0) 2472 DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum(); 2473 return DebugInstrNum; 2474 } 2475 2476 unsigned MachineInstr::getDebugInstrNum(MachineFunction &MF) { 2477 if (DebugInstrNum == 0) 2478 DebugInstrNum = MF.getNewDebugInstrNum(); 2479 return DebugInstrNum; 2480 } 2481 2482 std::tuple<LLT, LLT> MachineInstr::getFirst2LLTs() const { 2483 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()), 2484 getRegInfo()->getType(getOperand(1).getReg())); 2485 } 2486 2487 std::tuple<LLT, LLT, LLT> MachineInstr::getFirst3LLTs() const { 2488 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()), 2489 getRegInfo()->getType(getOperand(1).getReg()), 2490 getRegInfo()->getType(getOperand(2).getReg())); 2491 } 2492 2493 std::tuple<LLT, LLT, LLT, LLT> MachineInstr::getFirst4LLTs() const { 2494 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()), 2495 getRegInfo()->getType(getOperand(1).getReg()), 2496 getRegInfo()->getType(getOperand(2).getReg()), 2497 getRegInfo()->getType(getOperand(3).getReg())); 2498 } 2499 2500 std::tuple<LLT, LLT, LLT, LLT, LLT> MachineInstr::getFirst5LLTs() const { 2501 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()), 2502 getRegInfo()->getType(getOperand(1).getReg()), 2503 getRegInfo()->getType(getOperand(2).getReg()), 2504 getRegInfo()->getType(getOperand(3).getReg()), 2505 getRegInfo()->getType(getOperand(4).getReg())); 2506 } 2507 2508 std::tuple<Register, LLT, Register, LLT> 2509 MachineInstr::getFirst2RegLLTs() const { 2510 Register Reg0 = getOperand(0).getReg(); 2511 Register Reg1 = getOperand(1).getReg(); 2512 return std::tuple(Reg0, getRegInfo()->getType(Reg0), Reg1, 2513 getRegInfo()->getType(Reg1)); 2514 } 2515 2516 std::tuple<Register, LLT, Register, LLT, Register, LLT> 2517 MachineInstr::getFirst3RegLLTs() const { 2518 Register Reg0 = getOperand(0).getReg(); 2519 Register Reg1 = getOperand(1).getReg(); 2520 Register Reg2 = getOperand(2).getReg(); 2521 return std::tuple(Reg0, getRegInfo()->getType(Reg0), Reg1, 2522 getRegInfo()->getType(Reg1), Reg2, 2523 getRegInfo()->getType(Reg2)); 2524 } 2525 2526 std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT> 2527 MachineInstr::getFirst4RegLLTs() const { 2528 Register Reg0 = getOperand(0).getReg(); 2529 Register Reg1 = getOperand(1).getReg(); 2530 Register Reg2 = getOperand(2).getReg(); 2531 Register Reg3 = getOperand(3).getReg(); 2532 return std::tuple( 2533 Reg0, getRegInfo()->getType(Reg0), Reg1, getRegInfo()->getType(Reg1), 2534 Reg2, getRegInfo()->getType(Reg2), Reg3, getRegInfo()->getType(Reg3)); 2535 } 2536 2537 std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT, Register, 2538 LLT> 2539 MachineInstr::getFirst5RegLLTs() const { 2540 Register Reg0 = getOperand(0).getReg(); 2541 Register Reg1 = getOperand(1).getReg(); 2542 Register Reg2 = getOperand(2).getReg(); 2543 Register Reg3 = getOperand(3).getReg(); 2544 Register Reg4 = getOperand(4).getReg(); 2545 return std::tuple( 2546 Reg0, getRegInfo()->getType(Reg0), Reg1, getRegInfo()->getType(Reg1), 2547 Reg2, getRegInfo()->getType(Reg2), Reg3, getRegInfo()->getType(Reg3), 2548 Reg4, getRegInfo()->getType(Reg4)); 2549 } 2550 2551 void MachineInstr::insert(mop_iterator InsertBefore, 2552 ArrayRef<MachineOperand> Ops) { 2553 assert(InsertBefore != nullptr && "invalid iterator"); 2554 assert(InsertBefore->getParent() == this && 2555 "iterator points to operand of other inst"); 2556 if (Ops.empty()) 2557 return; 2558 2559 // Do one pass to untie operands. 2560 SmallDenseMap<unsigned, unsigned> TiedOpIndices; 2561 for (const MachineOperand &MO : operands()) { 2562 if (MO.isReg() && MO.isTied()) { 2563 unsigned OpNo = getOperandNo(&MO); 2564 unsigned TiedTo = findTiedOperandIdx(OpNo); 2565 TiedOpIndices[OpNo] = TiedTo; 2566 untieRegOperand(OpNo); 2567 } 2568 } 2569 2570 unsigned OpIdx = getOperandNo(InsertBefore); 2571 unsigned NumOperands = getNumOperands(); 2572 unsigned OpsToMove = NumOperands - OpIdx; 2573 2574 SmallVector<MachineOperand> MovingOps; 2575 MovingOps.reserve(OpsToMove); 2576 2577 for (unsigned I = 0; I < OpsToMove; ++I) { 2578 MovingOps.emplace_back(getOperand(OpIdx)); 2579 removeOperand(OpIdx); 2580 } 2581 for (const MachineOperand &MO : Ops) 2582 addOperand(MO); 2583 for (const MachineOperand &OpMoved : MovingOps) 2584 addOperand(OpMoved); 2585 2586 // Re-tie operands. 2587 for (auto [Tie1, Tie2] : TiedOpIndices) { 2588 if (Tie1 >= OpIdx) 2589 Tie1 += Ops.size(); 2590 if (Tie2 >= OpIdx) 2591 Tie2 += Ops.size(); 2592 tieOperands(Tie1, Tie2); 2593 } 2594 } 2595 2596 bool MachineInstr::mayFoldInlineAsmRegOp(unsigned OpId) const { 2597 assert(OpId && "expected non-zero operand id"); 2598 assert(isInlineAsm() && "should only be used on inline asm"); 2599 2600 if (!getOperand(OpId).isReg()) 2601 return false; 2602 2603 const MachineOperand &MD = getOperand(OpId - 1); 2604 if (!MD.isImm()) 2605 return false; 2606 2607 InlineAsm::Flag F(MD.getImm()); 2608 if (F.isRegUseKind() || F.isRegDefKind() || F.isRegDefEarlyClobberKind()) 2609 return F.getRegMayBeFolded(); 2610 return false; 2611 } 2612