1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Methods common to all machine instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MachineInstr.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/Hashing.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallBitVector.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/MemoryLocation.h" 21 #include "llvm/CodeGen/LowLevelType.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineInstrBundle.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/MachineModuleInfo.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/PseudoSourceValue.h" 32 #include "llvm/CodeGen/Register.h" 33 #include "llvm/CodeGen/StackMaps.h" 34 #include "llvm/CodeGen/TargetInstrInfo.h" 35 #include "llvm/CodeGen/TargetRegisterInfo.h" 36 #include "llvm/CodeGen/TargetSubtargetInfo.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/InlineAsm.h" 42 #include "llvm/IR/LLVMContext.h" 43 #include "llvm/IR/Metadata.h" 44 #include "llvm/IR/Module.h" 45 #include "llvm/IR/ModuleSlotTracker.h" 46 #include "llvm/IR/Operator.h" 47 #include "llvm/MC/MCInstrDesc.h" 48 #include "llvm/MC/MCRegisterInfo.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/Compiler.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/FormattedStream.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Target/TargetMachine.h" 56 #include <algorithm> 57 #include <cassert> 58 #include <cstdint> 59 #include <cstring> 60 #include <utility> 61 62 using namespace llvm; 63 64 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) { 65 if (const MachineBasicBlock *MBB = MI.getParent()) 66 if (const MachineFunction *MF = MBB->getParent()) 67 return MF; 68 return nullptr; 69 } 70 71 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from 72 // it. 73 static void tryToGetTargetInfo(const MachineInstr &MI, 74 const TargetRegisterInfo *&TRI, 75 const MachineRegisterInfo *&MRI, 76 const TargetIntrinsicInfo *&IntrinsicInfo, 77 const TargetInstrInfo *&TII) { 78 79 if (const MachineFunction *MF = getMFIfAvailable(MI)) { 80 TRI = MF->getSubtarget().getRegisterInfo(); 81 MRI = &MF->getRegInfo(); 82 IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); 83 TII = MF->getSubtarget().getInstrInfo(); 84 } 85 } 86 87 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 88 for (MCPhysReg ImpDef : MCID->implicit_defs()) 89 addOperand(MF, MachineOperand::CreateReg(ImpDef, true, true)); 90 for (MCPhysReg ImpUse : MCID->implicit_uses()) 91 addOperand(MF, MachineOperand::CreateReg(ImpUse, false, true)); 92 } 93 94 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 95 /// implicit operands. It reserves space for the number of operands specified by 96 /// the MCInstrDesc. 97 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &TID, 98 DebugLoc DL, bool NoImp) 99 : MCID(&TID), NumOperands(0), Flags(0), AsmPrinterFlags(0), 100 DbgLoc(std::move(DL)), DebugInstrNum(0) { 101 assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor"); 102 103 // Reserve space for the expected number of operands. 104 if (unsigned NumOps = MCID->getNumOperands() + MCID->implicit_defs().size() + 105 MCID->implicit_uses().size()) { 106 CapOperands = OperandCapacity::get(NumOps); 107 Operands = MF.allocateOperandArray(CapOperands); 108 } 109 110 if (!NoImp) 111 addImplicitDefUseOperands(MF); 112 } 113 114 /// MachineInstr ctor - Copies MachineInstr arg exactly. 115 /// Does not copy the number from debug instruction numbering, to preserve 116 /// uniqueness. 117 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 118 : MCID(&MI.getDesc()), NumOperands(0), Flags(0), AsmPrinterFlags(0), 119 Info(MI.Info), DbgLoc(MI.getDebugLoc()), DebugInstrNum(0) { 120 assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor"); 121 122 CapOperands = OperandCapacity::get(MI.getNumOperands()); 123 Operands = MF.allocateOperandArray(CapOperands); 124 125 // Copy operands. 126 for (const MachineOperand &MO : MI.operands()) 127 addOperand(MF, MO); 128 129 // Replicate ties between the operands, which addOperand was not 130 // able to do reliably. 131 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { 132 MachineOperand &NewMO = getOperand(i); 133 const MachineOperand &OrigMO = MI.getOperand(i); 134 NewMO.TiedTo = OrigMO.TiedTo; 135 } 136 137 // Copy all the sensible flags. 138 setFlags(MI.Flags); 139 } 140 141 void MachineInstr::setDesc(const MCInstrDesc &TID) { 142 if (getParent()) 143 getMF()->handleChangeDesc(*this, TID); 144 MCID = &TID; 145 } 146 147 void MachineInstr::moveBefore(MachineInstr *MovePos) { 148 MovePos->getParent()->splice(MovePos, getParent(), getIterator()); 149 } 150 151 /// getRegInfo - If this instruction is embedded into a MachineFunction, 152 /// return the MachineRegisterInfo object for the current function, otherwise 153 /// return null. 154 MachineRegisterInfo *MachineInstr::getRegInfo() { 155 if (MachineBasicBlock *MBB = getParent()) 156 return &MBB->getParent()->getRegInfo(); 157 return nullptr; 158 } 159 160 const MachineRegisterInfo *MachineInstr::getRegInfo() const { 161 if (const MachineBasicBlock *MBB = getParent()) 162 return &MBB->getParent()->getRegInfo(); 163 return nullptr; 164 } 165 166 void MachineInstr::removeRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 167 for (MachineOperand &MO : operands()) 168 if (MO.isReg()) 169 MRI.removeRegOperandFromUseList(&MO); 170 } 171 172 void MachineInstr::addRegOperandsToUseLists(MachineRegisterInfo &MRI) { 173 for (MachineOperand &MO : operands()) 174 if (MO.isReg()) 175 MRI.addRegOperandToUseList(&MO); 176 } 177 178 void MachineInstr::addOperand(const MachineOperand &Op) { 179 MachineBasicBlock *MBB = getParent(); 180 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 181 MachineFunction *MF = MBB->getParent(); 182 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 183 addOperand(*MF, Op); 184 } 185 186 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 187 /// ranges. If MRI is non-null also update use-def chains. 188 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 189 unsigned NumOps, MachineRegisterInfo *MRI) { 190 if (MRI) 191 return MRI->moveOperands(Dst, Src, NumOps); 192 // MachineOperand is a trivially copyable type so we can just use memmove. 193 assert(Dst && Src && "Unknown operands"); 194 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 195 } 196 197 /// addOperand - Add the specified operand to the instruction. If it is an 198 /// implicit operand, it is added to the end of the operand list. If it is 199 /// an explicit operand it is added at the end of the explicit operand list 200 /// (before the first implicit operand). 201 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 202 assert(isUInt<LLVM_MI_NUMOPERANDS_BITS>(NumOperands + 1) && 203 "Cannot add more operands."); 204 assert(MCID && "Cannot add operands before providing an instr descriptor"); 205 206 // Check if we're adding one of our existing operands. 207 if (&Op >= Operands && &Op < Operands + NumOperands) { 208 // This is unusual: MI->addOperand(MI->getOperand(i)). 209 // If adding Op requires reallocating or moving existing operands around, 210 // the Op reference could go stale. Support it by copying Op. 211 MachineOperand CopyOp(Op); 212 return addOperand(MF, CopyOp); 213 } 214 215 // Find the insert location for the new operand. Implicit registers go at 216 // the end, everything else goes before the implicit regs. 217 // 218 // FIXME: Allow mixed explicit and implicit operands on inline asm. 219 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 220 // implicit-defs, but they must not be moved around. See the FIXME in 221 // InstrEmitter.cpp. 222 unsigned OpNo = getNumOperands(); 223 bool isImpReg = Op.isReg() && Op.isImplicit(); 224 if (!isImpReg && !isInlineAsm()) { 225 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 226 --OpNo; 227 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 228 } 229 } 230 231 // OpNo now points as the desired insertion point. Unless this is a variadic 232 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 233 // RegMask operands go between the explicit and implicit operands. 234 assert((MCID->isVariadic() || OpNo < MCID->getNumOperands() || 235 Op.isValidExcessOperand()) && 236 "Trying to add an operand to a machine instr that is already done!"); 237 238 MachineRegisterInfo *MRI = getRegInfo(); 239 240 // Determine if the Operands array needs to be reallocated. 241 // Save the old capacity and operand array. 242 OperandCapacity OldCap = CapOperands; 243 MachineOperand *OldOperands = Operands; 244 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 245 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 246 Operands = MF.allocateOperandArray(CapOperands); 247 // Move the operands before the insertion point. 248 if (OpNo) 249 moveOperands(Operands, OldOperands, OpNo, MRI); 250 } 251 252 // Move the operands following the insertion point. 253 if (OpNo != NumOperands) 254 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 255 MRI); 256 ++NumOperands; 257 258 // Deallocate the old operand array. 259 if (OldOperands != Operands && OldOperands) 260 MF.deallocateOperandArray(OldCap, OldOperands); 261 262 // Copy Op into place. It still needs to be inserted into the MRI use lists. 263 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 264 NewMO->ParentMI = this; 265 266 // When adding a register operand, tell MRI about it. 267 if (NewMO->isReg()) { 268 // Ensure isOnRegUseList() returns false, regardless of Op's status. 269 NewMO->Contents.Reg.Prev = nullptr; 270 // Ignore existing ties. This is not a property that can be copied. 271 NewMO->TiedTo = 0; 272 // Add the new operand to MRI, but only for instructions in an MBB. 273 if (MRI) 274 MRI->addRegOperandToUseList(NewMO); 275 // The MCID operand information isn't accurate until we start adding 276 // explicit operands. The implicit operands are added first, then the 277 // explicits are inserted before them. 278 if (!isImpReg) { 279 // Tie uses to defs as indicated in MCInstrDesc. 280 if (NewMO->isUse()) { 281 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 282 if (DefIdx != -1) 283 tieOperands(DefIdx, OpNo); 284 } 285 // If the register operand is flagged as early, mark the operand as such. 286 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 287 NewMO->setIsEarlyClobber(true); 288 } 289 // Ensure debug instructions set debug flag on register uses. 290 if (NewMO->isUse() && isDebugInstr()) 291 NewMO->setIsDebug(); 292 } 293 } 294 295 void MachineInstr::removeOperand(unsigned OpNo) { 296 assert(OpNo < getNumOperands() && "Invalid operand number"); 297 untieRegOperand(OpNo); 298 299 #ifndef NDEBUG 300 // Moving tied operands would break the ties. 301 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 302 if (Operands[i].isReg()) 303 assert(!Operands[i].isTied() && "Cannot move tied operands"); 304 #endif 305 306 MachineRegisterInfo *MRI = getRegInfo(); 307 if (MRI && Operands[OpNo].isReg()) 308 MRI->removeRegOperandFromUseList(Operands + OpNo); 309 310 // Don't call the MachineOperand destructor. A lot of this code depends on 311 // MachineOperand having a trivial destructor anyway, and adding a call here 312 // wouldn't make it 'destructor-correct'. 313 314 if (unsigned N = NumOperands - 1 - OpNo) 315 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 316 --NumOperands; 317 } 318 319 void MachineInstr::setExtraInfo(MachineFunction &MF, 320 ArrayRef<MachineMemOperand *> MMOs, 321 MCSymbol *PreInstrSymbol, 322 MCSymbol *PostInstrSymbol, 323 MDNode *HeapAllocMarker, MDNode *PCSections, 324 uint32_t CFIType) { 325 bool HasPreInstrSymbol = PreInstrSymbol != nullptr; 326 bool HasPostInstrSymbol = PostInstrSymbol != nullptr; 327 bool HasHeapAllocMarker = HeapAllocMarker != nullptr; 328 bool HasPCSections = PCSections != nullptr; 329 bool HasCFIType = CFIType != 0; 330 int NumPointers = MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + 331 HasHeapAllocMarker + HasPCSections + HasCFIType; 332 333 // Drop all extra info if there is none. 334 if (NumPointers <= 0) { 335 Info.clear(); 336 return; 337 } 338 339 // If more than one pointer, then store out of line. Store heap alloc markers 340 // out of line because PointerSumType cannot hold more than 4 tag types with 341 // 32-bit pointers. 342 // FIXME: Maybe we should make the symbols in the extra info mutable? 343 else if (NumPointers > 1 || HasHeapAllocMarker || HasPCSections || 344 HasCFIType) { 345 Info.set<EIIK_OutOfLine>( 346 MF.createMIExtraInfo(MMOs, PreInstrSymbol, PostInstrSymbol, 347 HeapAllocMarker, PCSections, CFIType)); 348 return; 349 } 350 351 // Otherwise store the single pointer inline. 352 if (HasPreInstrSymbol) 353 Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol); 354 else if (HasPostInstrSymbol) 355 Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol); 356 else 357 Info.set<EIIK_MMO>(MMOs[0]); 358 } 359 360 void MachineInstr::dropMemRefs(MachineFunction &MF) { 361 if (memoperands_empty()) 362 return; 363 364 setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(), 365 getHeapAllocMarker(), getPCSections(), getCFIType()); 366 } 367 368 void MachineInstr::setMemRefs(MachineFunction &MF, 369 ArrayRef<MachineMemOperand *> MMOs) { 370 if (MMOs.empty()) { 371 dropMemRefs(MF); 372 return; 373 } 374 375 setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(), 376 getHeapAllocMarker(), getPCSections(), getCFIType()); 377 } 378 379 void MachineInstr::addMemOperand(MachineFunction &MF, 380 MachineMemOperand *MO) { 381 SmallVector<MachineMemOperand *, 2> MMOs; 382 MMOs.append(memoperands_begin(), memoperands_end()); 383 MMOs.push_back(MO); 384 setMemRefs(MF, MMOs); 385 } 386 387 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) { 388 if (this == &MI) 389 // Nothing to do for a self-clone! 390 return; 391 392 assert(&MF == MI.getMF() && 393 "Invalid machine functions when cloning memory refrences!"); 394 // See if we can just steal the extra info already allocated for the 395 // instruction. We can do this whenever the pre- and post-instruction symbols 396 // are the same (including null). 397 if (getPreInstrSymbol() == MI.getPreInstrSymbol() && 398 getPostInstrSymbol() == MI.getPostInstrSymbol() && 399 getHeapAllocMarker() == MI.getHeapAllocMarker() && 400 getPCSections() == MI.getPCSections()) { 401 Info = MI.Info; 402 return; 403 } 404 405 // Otherwise, fall back on a copy-based clone. 406 setMemRefs(MF, MI.memoperands()); 407 } 408 409 /// Check to see if the MMOs pointed to by the two MemRefs arrays are 410 /// identical. 411 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS, 412 ArrayRef<MachineMemOperand *> RHS) { 413 if (LHS.size() != RHS.size()) 414 return false; 415 416 auto LHSPointees = make_pointee_range(LHS); 417 auto RHSPointees = make_pointee_range(RHS); 418 return std::equal(LHSPointees.begin(), LHSPointees.end(), 419 RHSPointees.begin()); 420 } 421 422 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF, 423 ArrayRef<const MachineInstr *> MIs) { 424 // Try handling easy numbers of MIs with simpler mechanisms. 425 if (MIs.empty()) { 426 dropMemRefs(MF); 427 return; 428 } 429 if (MIs.size() == 1) { 430 cloneMemRefs(MF, *MIs[0]); 431 return; 432 } 433 // Because an empty memoperands list provides *no* information and must be 434 // handled conservatively (assuming the instruction can do anything), the only 435 // way to merge with it is to drop all other memoperands. 436 if (MIs[0]->memoperands_empty()) { 437 dropMemRefs(MF); 438 return; 439 } 440 441 // Handle the general case. 442 SmallVector<MachineMemOperand *, 2> MergedMMOs; 443 // Start with the first instruction. 444 assert(&MF == MIs[0]->getMF() && 445 "Invalid machine functions when cloning memory references!"); 446 MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end()); 447 // Now walk all the other instructions and accumulate any different MMOs. 448 for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) { 449 assert(&MF == MI.getMF() && 450 "Invalid machine functions when cloning memory references!"); 451 452 // Skip MIs with identical operands to the first. This is a somewhat 453 // arbitrary hack but will catch common cases without being quadratic. 454 // TODO: We could fully implement merge semantics here if needed. 455 if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands())) 456 continue; 457 458 // Because an empty memoperands list provides *no* information and must be 459 // handled conservatively (assuming the instruction can do anything), the 460 // only way to merge with it is to drop all other memoperands. 461 if (MI.memoperands_empty()) { 462 dropMemRefs(MF); 463 return; 464 } 465 466 // Otherwise accumulate these into our temporary buffer of the merged state. 467 MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end()); 468 } 469 470 setMemRefs(MF, MergedMMOs); 471 } 472 473 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 474 // Do nothing if old and new symbols are the same. 475 if (Symbol == getPreInstrSymbol()) 476 return; 477 478 // If there was only one symbol and we're removing it, just clear info. 479 if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) { 480 Info.clear(); 481 return; 482 } 483 484 setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(), 485 getHeapAllocMarker(), getPCSections(), getCFIType()); 486 } 487 488 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 489 // Do nothing if old and new symbols are the same. 490 if (Symbol == getPostInstrSymbol()) 491 return; 492 493 // If there was only one symbol and we're removing it, just clear info. 494 if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) { 495 Info.clear(); 496 return; 497 } 498 499 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol, 500 getHeapAllocMarker(), getPCSections(), getCFIType()); 501 } 502 503 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) { 504 // Do nothing if old and new symbols are the same. 505 if (Marker == getHeapAllocMarker()) 506 return; 507 508 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 509 Marker, getPCSections(), getCFIType()); 510 } 511 512 void MachineInstr::setPCSections(MachineFunction &MF, MDNode *PCSections) { 513 // Do nothing if old and new symbols are the same. 514 if (PCSections == getPCSections()) 515 return; 516 517 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 518 getHeapAllocMarker(), PCSections, getCFIType()); 519 } 520 521 void MachineInstr::setCFIType(MachineFunction &MF, uint32_t Type) { 522 // Do nothing if old and new types are the same. 523 if (Type == getCFIType()) 524 return; 525 526 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 527 getHeapAllocMarker(), getPCSections(), Type); 528 } 529 530 void MachineInstr::cloneInstrSymbols(MachineFunction &MF, 531 const MachineInstr &MI) { 532 if (this == &MI) 533 // Nothing to do for a self-clone! 534 return; 535 536 assert(&MF == MI.getMF() && 537 "Invalid machine functions when cloning instruction symbols!"); 538 539 setPreInstrSymbol(MF, MI.getPreInstrSymbol()); 540 setPostInstrSymbol(MF, MI.getPostInstrSymbol()); 541 setHeapAllocMarker(MF, MI.getHeapAllocMarker()); 542 setPCSections(MF, MI.getPCSections()); 543 } 544 545 uint32_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const { 546 // For now, the just return the union of the flags. If the flags get more 547 // complicated over time, we might need more logic here. 548 return getFlags() | Other.getFlags(); 549 } 550 551 uint32_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) { 552 uint32_t MIFlags = 0; 553 // Copy the wrapping flags. 554 if (const OverflowingBinaryOperator *OB = 555 dyn_cast<OverflowingBinaryOperator>(&I)) { 556 if (OB->hasNoSignedWrap()) 557 MIFlags |= MachineInstr::MIFlag::NoSWrap; 558 if (OB->hasNoUnsignedWrap()) 559 MIFlags |= MachineInstr::MIFlag::NoUWrap; 560 } 561 562 // Copy the exact flag. 563 if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I)) 564 if (PE->isExact()) 565 MIFlags |= MachineInstr::MIFlag::IsExact; 566 567 // Copy the fast-math flags. 568 if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) { 569 const FastMathFlags Flags = FP->getFastMathFlags(); 570 if (Flags.noNaNs()) 571 MIFlags |= MachineInstr::MIFlag::FmNoNans; 572 if (Flags.noInfs()) 573 MIFlags |= MachineInstr::MIFlag::FmNoInfs; 574 if (Flags.noSignedZeros()) 575 MIFlags |= MachineInstr::MIFlag::FmNsz; 576 if (Flags.allowReciprocal()) 577 MIFlags |= MachineInstr::MIFlag::FmArcp; 578 if (Flags.allowContract()) 579 MIFlags |= MachineInstr::MIFlag::FmContract; 580 if (Flags.approxFunc()) 581 MIFlags |= MachineInstr::MIFlag::FmAfn; 582 if (Flags.allowReassoc()) 583 MIFlags |= MachineInstr::MIFlag::FmReassoc; 584 } 585 586 if (I.getMetadata(LLVMContext::MD_unpredictable)) 587 MIFlags |= MachineInstr::MIFlag::Unpredictable; 588 589 return MIFlags; 590 } 591 592 void MachineInstr::copyIRFlags(const Instruction &I) { 593 Flags = copyFlagsFromInstruction(I); 594 } 595 596 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const { 597 assert(!isBundledWithPred() && "Must be called on bundle header"); 598 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { 599 if (MII->getDesc().getFlags() & Mask) { 600 if (Type == AnyInBundle) 601 return true; 602 } else { 603 if (Type == AllInBundle && !MII->isBundle()) 604 return false; 605 } 606 // This was the last instruction in the bundle. 607 if (!MII->isBundledWithSucc()) 608 return Type == AllInBundle; 609 } 610 } 611 612 bool MachineInstr::isIdenticalTo(const MachineInstr &Other, 613 MICheckType Check) const { 614 // If opcodes or number of operands are not the same then the two 615 // instructions are obviously not identical. 616 if (Other.getOpcode() != getOpcode() || 617 Other.getNumOperands() != getNumOperands()) 618 return false; 619 620 if (isBundle()) { 621 // We have passed the test above that both instructions have the same 622 // opcode, so we know that both instructions are bundles here. Let's compare 623 // MIs inside the bundle. 624 assert(Other.isBundle() && "Expected that both instructions are bundles."); 625 MachineBasicBlock::const_instr_iterator I1 = getIterator(); 626 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); 627 // Loop until we analysed the last intruction inside at least one of the 628 // bundles. 629 while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) { 630 ++I1; 631 ++I2; 632 if (!I1->isIdenticalTo(*I2, Check)) 633 return false; 634 } 635 // If we've reached the end of just one of the two bundles, but not both, 636 // the instructions are not identical. 637 if (I1->isBundledWithSucc() || I2->isBundledWithSucc()) 638 return false; 639 } 640 641 // Check operands to make sure they match. 642 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 643 const MachineOperand &MO = getOperand(i); 644 const MachineOperand &OMO = Other.getOperand(i); 645 if (!MO.isReg()) { 646 if (!MO.isIdenticalTo(OMO)) 647 return false; 648 continue; 649 } 650 651 // Clients may or may not want to ignore defs when testing for equality. 652 // For example, machine CSE pass only cares about finding common 653 // subexpressions, so it's safe to ignore virtual register defs. 654 if (MO.isDef()) { 655 if (Check == IgnoreDefs) 656 continue; 657 else if (Check == IgnoreVRegDefs) { 658 if (!MO.getReg().isVirtual() || !OMO.getReg().isVirtual()) 659 if (!MO.isIdenticalTo(OMO)) 660 return false; 661 } else { 662 if (!MO.isIdenticalTo(OMO)) 663 return false; 664 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 665 return false; 666 } 667 } else { 668 if (!MO.isIdenticalTo(OMO)) 669 return false; 670 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 671 return false; 672 } 673 } 674 // If DebugLoc does not match then two debug instructions are not identical. 675 if (isDebugInstr()) 676 if (getDebugLoc() && Other.getDebugLoc() && 677 getDebugLoc() != Other.getDebugLoc()) 678 return false; 679 // If pre- or post-instruction symbols do not match then the two instructions 680 // are not identical. 681 if (getPreInstrSymbol() != Other.getPreInstrSymbol() || 682 getPostInstrSymbol() != Other.getPostInstrSymbol()) 683 return false; 684 // Call instructions with different CFI types are not identical. 685 if (isCall() && getCFIType() != Other.getCFIType()) 686 return false; 687 688 return true; 689 } 690 691 bool MachineInstr::isEquivalentDbgInstr(const MachineInstr &Other) const { 692 if (!isDebugValueLike() || !Other.isDebugValueLike()) 693 return false; 694 if (getDebugLoc() != Other.getDebugLoc()) 695 return false; 696 if (getDebugVariable() != Other.getDebugVariable()) 697 return false; 698 if (getNumDebugOperands() != Other.getNumDebugOperands()) 699 return false; 700 for (unsigned OpIdx = 0; OpIdx < getNumDebugOperands(); ++OpIdx) 701 if (!getDebugOperand(OpIdx).isIdenticalTo(Other.getDebugOperand(OpIdx))) 702 return false; 703 if (!DIExpression::isEqualExpression( 704 getDebugExpression(), isIndirectDebugValue(), 705 Other.getDebugExpression(), Other.isIndirectDebugValue())) 706 return false; 707 return true; 708 } 709 710 const MachineFunction *MachineInstr::getMF() const { 711 return getParent()->getParent(); 712 } 713 714 MachineInstr *MachineInstr::removeFromParent() { 715 assert(getParent() && "Not embedded in a basic block!"); 716 return getParent()->remove(this); 717 } 718 719 MachineInstr *MachineInstr::removeFromBundle() { 720 assert(getParent() && "Not embedded in a basic block!"); 721 return getParent()->remove_instr(this); 722 } 723 724 void MachineInstr::eraseFromParent() { 725 assert(getParent() && "Not embedded in a basic block!"); 726 getParent()->erase(this); 727 } 728 729 void MachineInstr::eraseFromBundle() { 730 assert(getParent() && "Not embedded in a basic block!"); 731 getParent()->erase_instr(this); 732 } 733 734 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const { 735 if (!isCall(Type)) 736 return false; 737 switch (getOpcode()) { 738 case TargetOpcode::PATCHPOINT: 739 case TargetOpcode::STACKMAP: 740 case TargetOpcode::STATEPOINT: 741 case TargetOpcode::FENTRY_CALL: 742 return false; 743 } 744 return true; 745 } 746 747 bool MachineInstr::shouldUpdateCallSiteInfo() const { 748 if (isBundle()) 749 return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle); 750 return isCandidateForCallSiteEntry(); 751 } 752 753 unsigned MachineInstr::getNumExplicitOperands() const { 754 unsigned NumOperands = MCID->getNumOperands(); 755 if (!MCID->isVariadic()) 756 return NumOperands; 757 758 for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) { 759 const MachineOperand &MO = getOperand(I); 760 // The operands must always be in the following order: 761 // - explicit reg defs, 762 // - other explicit operands (reg uses, immediates, etc.), 763 // - implicit reg defs 764 // - implicit reg uses 765 if (MO.isReg() && MO.isImplicit()) 766 break; 767 ++NumOperands; 768 } 769 return NumOperands; 770 } 771 772 unsigned MachineInstr::getNumExplicitDefs() const { 773 unsigned NumDefs = MCID->getNumDefs(); 774 if (!MCID->isVariadic()) 775 return NumDefs; 776 777 for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) { 778 const MachineOperand &MO = getOperand(I); 779 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 780 break; 781 ++NumDefs; 782 } 783 return NumDefs; 784 } 785 786 void MachineInstr::bundleWithPred() { 787 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 788 setFlag(BundledPred); 789 MachineBasicBlock::instr_iterator Pred = getIterator(); 790 --Pred; 791 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 792 Pred->setFlag(BundledSucc); 793 } 794 795 void MachineInstr::bundleWithSucc() { 796 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 797 setFlag(BundledSucc); 798 MachineBasicBlock::instr_iterator Succ = getIterator(); 799 ++Succ; 800 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 801 Succ->setFlag(BundledPred); 802 } 803 804 void MachineInstr::unbundleFromPred() { 805 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 806 clearFlag(BundledPred); 807 MachineBasicBlock::instr_iterator Pred = getIterator(); 808 --Pred; 809 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 810 Pred->clearFlag(BundledSucc); 811 } 812 813 void MachineInstr::unbundleFromSucc() { 814 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 815 clearFlag(BundledSucc); 816 MachineBasicBlock::instr_iterator Succ = getIterator(); 817 ++Succ; 818 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 819 Succ->clearFlag(BundledPred); 820 } 821 822 bool MachineInstr::isStackAligningInlineAsm() const { 823 if (isInlineAsm()) { 824 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 825 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 826 return true; 827 } 828 return false; 829 } 830 831 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 832 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 833 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 834 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 835 } 836 837 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 838 unsigned *GroupNo) const { 839 assert(isInlineAsm() && "Expected an inline asm instruction"); 840 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 841 842 // Ignore queries about the initial operands. 843 if (OpIdx < InlineAsm::MIOp_FirstOperand) 844 return -1; 845 846 unsigned Group = 0; 847 unsigned NumOps; 848 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 849 i += NumOps) { 850 const MachineOperand &FlagMO = getOperand(i); 851 // If we reach the implicit register operands, stop looking. 852 if (!FlagMO.isImm()) 853 return -1; 854 const InlineAsm::Flag F(FlagMO.getImm()); 855 NumOps = 1 + F.getNumOperandRegisters(); 856 if (i + NumOps > OpIdx) { 857 if (GroupNo) 858 *GroupNo = Group; 859 return i; 860 } 861 ++Group; 862 } 863 return -1; 864 } 865 866 const DILabel *MachineInstr::getDebugLabel() const { 867 assert(isDebugLabel() && "not a DBG_LABEL"); 868 return cast<DILabel>(getOperand(0).getMetadata()); 869 } 870 871 const MachineOperand &MachineInstr::getDebugVariableOp() const { 872 assert((isDebugValueLike()) && "not a DBG_VALUE*"); 873 unsigned VariableOp = isNonListDebugValue() ? 2 : 0; 874 return getOperand(VariableOp); 875 } 876 877 MachineOperand &MachineInstr::getDebugVariableOp() { 878 assert((isDebugValueLike()) && "not a DBG_VALUE*"); 879 unsigned VariableOp = isNonListDebugValue() ? 2 : 0; 880 return getOperand(VariableOp); 881 } 882 883 const DILocalVariable *MachineInstr::getDebugVariable() const { 884 return cast<DILocalVariable>(getDebugVariableOp().getMetadata()); 885 } 886 887 const MachineOperand &MachineInstr::getDebugExpressionOp() const { 888 assert((isDebugValueLike()) && "not a DBG_VALUE*"); 889 unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1; 890 return getOperand(ExpressionOp); 891 } 892 893 MachineOperand &MachineInstr::getDebugExpressionOp() { 894 assert((isDebugValueLike()) && "not a DBG_VALUE*"); 895 unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1; 896 return getOperand(ExpressionOp); 897 } 898 899 const DIExpression *MachineInstr::getDebugExpression() const { 900 return cast<DIExpression>(getDebugExpressionOp().getMetadata()); 901 } 902 903 bool MachineInstr::isDebugEntryValue() const { 904 return isDebugValue() && getDebugExpression()->isEntryValue(); 905 } 906 907 const TargetRegisterClass* 908 MachineInstr::getRegClassConstraint(unsigned OpIdx, 909 const TargetInstrInfo *TII, 910 const TargetRegisterInfo *TRI) const { 911 assert(getParent() && "Can't have an MBB reference here!"); 912 assert(getMF() && "Can't have an MF reference here!"); 913 const MachineFunction &MF = *getMF(); 914 915 // Most opcodes have fixed constraints in their MCInstrDesc. 916 if (!isInlineAsm()) 917 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 918 919 if (!getOperand(OpIdx).isReg()) 920 return nullptr; 921 922 // For tied uses on inline asm, get the constraint from the def. 923 unsigned DefIdx; 924 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 925 OpIdx = DefIdx; 926 927 // Inline asm stores register class constraints in the flag word. 928 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 929 if (FlagIdx < 0) 930 return nullptr; 931 932 const InlineAsm::Flag F(getOperand(FlagIdx).getImm()); 933 unsigned RCID; 934 if ((F.isRegUseKind() || F.isRegDefKind() || F.isRegDefEarlyClobberKind()) && 935 F.hasRegClassConstraint(RCID)) 936 return TRI->getRegClass(RCID); 937 938 // Assume that all registers in a memory operand are pointers. 939 if (F.isMemKind()) 940 return TRI->getPointerRegClass(MF); 941 942 return nullptr; 943 } 944 945 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 946 Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 947 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 948 // Check every operands inside the bundle if we have 949 // been asked to. 950 if (ExploreBundle) 951 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; 952 ++OpndIt) 953 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 954 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 955 else 956 // Otherwise, just check the current operands. 957 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 958 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 959 return CurRC; 960 } 961 962 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 963 unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC, 964 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 965 assert(CurRC && "Invalid initial register class"); 966 // Check if Reg is constrained by some of its use/def from MI. 967 const MachineOperand &MO = getOperand(OpIdx); 968 if (!MO.isReg() || MO.getReg() != Reg) 969 return CurRC; 970 // If yes, accumulate the constraints through the operand. 971 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 972 } 973 974 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 975 unsigned OpIdx, const TargetRegisterClass *CurRC, 976 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 977 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 978 const MachineOperand &MO = getOperand(OpIdx); 979 assert(MO.isReg() && 980 "Cannot get register constraints for non-register operand"); 981 assert(CurRC && "Invalid initial register class"); 982 if (unsigned SubIdx = MO.getSubReg()) { 983 if (OpRC) 984 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 985 else 986 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 987 } else if (OpRC) 988 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 989 return CurRC; 990 } 991 992 /// Return the number of instructions inside the MI bundle, not counting the 993 /// header instruction. 994 unsigned MachineInstr::getBundleSize() const { 995 MachineBasicBlock::const_instr_iterator I = getIterator(); 996 unsigned Size = 0; 997 while (I->isBundledWithSucc()) { 998 ++Size; 999 ++I; 1000 } 1001 return Size; 1002 } 1003 1004 /// Returns true if the MachineInstr has an implicit-use operand of exactly 1005 /// the given register (not considering sub/super-registers). 1006 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const { 1007 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1008 const MachineOperand &MO = getOperand(i); 1009 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) 1010 return true; 1011 } 1012 return false; 1013 } 1014 1015 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 1016 /// the specific register or -1 if it is not found. It further tightens 1017 /// the search criteria to a use that kills the register if isKill is true. 1018 int MachineInstr::findRegisterUseOperandIdx( 1019 Register Reg, bool isKill, const TargetRegisterInfo *TRI) const { 1020 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1021 const MachineOperand &MO = getOperand(i); 1022 if (!MO.isReg() || !MO.isUse()) 1023 continue; 1024 Register MOReg = MO.getReg(); 1025 if (!MOReg) 1026 continue; 1027 if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg))) 1028 if (!isKill || MO.isKill()) 1029 return i; 1030 } 1031 return -1; 1032 } 1033 1034 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1035 /// indicating if this instruction reads or writes Reg. This also considers 1036 /// partial defines. 1037 std::pair<bool,bool> 1038 MachineInstr::readsWritesVirtualRegister(Register Reg, 1039 SmallVectorImpl<unsigned> *Ops) const { 1040 bool PartDef = false; // Partial redefine. 1041 bool FullDef = false; // Full define. 1042 bool Use = false; 1043 1044 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1045 const MachineOperand &MO = getOperand(i); 1046 if (!MO.isReg() || MO.getReg() != Reg) 1047 continue; 1048 if (Ops) 1049 Ops->push_back(i); 1050 if (MO.isUse()) 1051 Use |= !MO.isUndef(); 1052 else if (MO.getSubReg() && !MO.isUndef()) 1053 // A partial def undef doesn't count as reading the register. 1054 PartDef = true; 1055 else 1056 FullDef = true; 1057 } 1058 // A partial redefine uses Reg unless there is also a full define. 1059 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1060 } 1061 1062 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1063 /// the specified register or -1 if it is not found. If isDead is true, defs 1064 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1065 /// also checks if there is a def of a super-register. 1066 int 1067 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap, 1068 const TargetRegisterInfo *TRI) const { 1069 bool isPhys = Reg.isPhysical(); 1070 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1071 const MachineOperand &MO = getOperand(i); 1072 // Accept regmask operands when Overlap is set. 1073 // Ignore them when looking for a specific def operand (Overlap == false). 1074 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1075 return i; 1076 if (!MO.isReg() || !MO.isDef()) 1077 continue; 1078 Register MOReg = MO.getReg(); 1079 bool Found = (MOReg == Reg); 1080 if (!Found && TRI && isPhys && MOReg.isPhysical()) { 1081 if (Overlap) 1082 Found = TRI->regsOverlap(MOReg, Reg); 1083 else 1084 Found = TRI->isSubRegister(MOReg, Reg); 1085 } 1086 if (Found && (!isDead || MO.isDead())) 1087 return i; 1088 } 1089 return -1; 1090 } 1091 1092 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1093 /// operand list that is used to represent the predicate. It returns -1 if 1094 /// none is found. 1095 int MachineInstr::findFirstPredOperandIdx() const { 1096 // Don't call MCID.findFirstPredOperandIdx() because this variant 1097 // is sometimes called on an instruction that's not yet complete, and 1098 // so the number of operands is less than the MCID indicates. In 1099 // particular, the PTX target does this. 1100 const MCInstrDesc &MCID = getDesc(); 1101 if (MCID.isPredicable()) { 1102 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1103 if (MCID.operands()[i].isPredicate()) 1104 return i; 1105 } 1106 1107 return -1; 1108 } 1109 1110 // MachineOperand::TiedTo is 4 bits wide. 1111 const unsigned TiedMax = 15; 1112 1113 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1114 /// 1115 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1116 /// field. TiedTo can have these values: 1117 /// 1118 /// 0: Operand is not tied to anything. 1119 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1120 /// TiedMax: Tied to an operand >= TiedMax-1. 1121 /// 1122 /// The tied def must be one of the first TiedMax operands on a normal 1123 /// instruction. INLINEASM instructions allow more tied defs. 1124 /// 1125 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1126 MachineOperand &DefMO = getOperand(DefIdx); 1127 MachineOperand &UseMO = getOperand(UseIdx); 1128 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1129 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1130 assert(!DefMO.isTied() && "Def is already tied to another use"); 1131 assert(!UseMO.isTied() && "Use is already tied to another def"); 1132 1133 if (DefIdx < TiedMax) 1134 UseMO.TiedTo = DefIdx + 1; 1135 else { 1136 // Inline asm can use the group descriptors to find tied operands, 1137 // statepoint tied operands are trivial to match (1-1 reg def with reg use), 1138 // but on normal instruction, the tied def must be within the first TiedMax 1139 // operands. 1140 assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) && 1141 "DefIdx out of range"); 1142 UseMO.TiedTo = TiedMax; 1143 } 1144 1145 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1146 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1147 } 1148 1149 /// Given the index of a tied register operand, find the operand it is tied to. 1150 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1151 /// which must exist. 1152 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1153 const MachineOperand &MO = getOperand(OpIdx); 1154 assert(MO.isTied() && "Operand isn't tied"); 1155 1156 // Normally TiedTo is in range. 1157 if (MO.TiedTo < TiedMax) 1158 return MO.TiedTo - 1; 1159 1160 // Uses on normal instructions can be out of range. 1161 if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) { 1162 // Normal tied defs must be in the 0..TiedMax-1 range. 1163 if (MO.isUse()) 1164 return TiedMax - 1; 1165 // MO is a def. Search for the tied use. 1166 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1167 const MachineOperand &UseMO = getOperand(i); 1168 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1169 return i; 1170 } 1171 llvm_unreachable("Can't find tied use"); 1172 } 1173 1174 if (getOpcode() == TargetOpcode::STATEPOINT) { 1175 // In STATEPOINT defs correspond 1-1 to GC pointer operands passed 1176 // on registers. 1177 StatepointOpers SO(this); 1178 unsigned CurUseIdx = SO.getFirstGCPtrIdx(); 1179 assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied"); 1180 unsigned NumDefs = getNumDefs(); 1181 for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) { 1182 while (!getOperand(CurUseIdx).isReg()) 1183 CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx); 1184 if (OpIdx == CurDefIdx) 1185 return CurUseIdx; 1186 if (OpIdx == CurUseIdx) 1187 return CurDefIdx; 1188 CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx); 1189 } 1190 llvm_unreachable("Can't find tied use"); 1191 } 1192 1193 // Now deal with inline asm by parsing the operand group descriptor flags. 1194 // Find the beginning of each operand group. 1195 SmallVector<unsigned, 8> GroupIdx; 1196 unsigned OpIdxGroup = ~0u; 1197 unsigned NumOps; 1198 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1199 i += NumOps) { 1200 const MachineOperand &FlagMO = getOperand(i); 1201 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1202 unsigned CurGroup = GroupIdx.size(); 1203 GroupIdx.push_back(i); 1204 const InlineAsm::Flag F(FlagMO.getImm()); 1205 NumOps = 1 + F.getNumOperandRegisters(); 1206 // OpIdx belongs to this operand group. 1207 if (OpIdx > i && OpIdx < i + NumOps) 1208 OpIdxGroup = CurGroup; 1209 unsigned TiedGroup; 1210 if (!F.isUseOperandTiedToDef(TiedGroup)) 1211 continue; 1212 // Operands in this group are tied to operands in TiedGroup which must be 1213 // earlier. Find the number of operands between the two groups. 1214 unsigned Delta = i - GroupIdx[TiedGroup]; 1215 1216 // OpIdx is a use tied to TiedGroup. 1217 if (OpIdxGroup == CurGroup) 1218 return OpIdx - Delta; 1219 1220 // OpIdx is a def tied to this use group. 1221 if (OpIdxGroup == TiedGroup) 1222 return OpIdx + Delta; 1223 } 1224 llvm_unreachable("Invalid tied operand on inline asm"); 1225 } 1226 1227 /// clearKillInfo - Clears kill flags on all operands. 1228 /// 1229 void MachineInstr::clearKillInfo() { 1230 for (MachineOperand &MO : operands()) { 1231 if (MO.isReg() && MO.isUse()) 1232 MO.setIsKill(false); 1233 } 1234 } 1235 1236 void MachineInstr::substituteRegister(Register FromReg, Register ToReg, 1237 unsigned SubIdx, 1238 const TargetRegisterInfo &RegInfo) { 1239 if (ToReg.isPhysical()) { 1240 if (SubIdx) 1241 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1242 for (MachineOperand &MO : operands()) { 1243 if (!MO.isReg() || MO.getReg() != FromReg) 1244 continue; 1245 MO.substPhysReg(ToReg, RegInfo); 1246 } 1247 } else { 1248 for (MachineOperand &MO : operands()) { 1249 if (!MO.isReg() || MO.getReg() != FromReg) 1250 continue; 1251 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1252 } 1253 } 1254 } 1255 1256 /// isSafeToMove - Return true if it is safe to move this instruction. If 1257 /// SawStore is set to true, it means that there is a store (or call) between 1258 /// the instruction's location and its intended destination. 1259 bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const { 1260 // Ignore stuff that we obviously can't move. 1261 // 1262 // Treat volatile loads as stores. This is not strictly necessary for 1263 // volatiles, but it is required for atomic loads. It is not allowed to move 1264 // a load across an atomic load with Ordering > Monotonic. 1265 if (mayStore() || isCall() || isPHI() || 1266 (mayLoad() && hasOrderedMemoryRef())) { 1267 SawStore = true; 1268 return false; 1269 } 1270 1271 if (isPosition() || isDebugInstr() || isTerminator() || 1272 mayRaiseFPException() || hasUnmodeledSideEffects() || 1273 isJumpTableDebugInfo()) 1274 return false; 1275 1276 // See if this instruction does a load. If so, we have to guarantee that the 1277 // loaded value doesn't change between the load and the its intended 1278 // destination. The check for isInvariantLoad gives the target the chance to 1279 // classify the load as always returning a constant, e.g. a constant pool 1280 // load. 1281 if (mayLoad() && !isDereferenceableInvariantLoad()) 1282 // Otherwise, this is a real load. If there is a store between the load and 1283 // end of block, we can't move it. 1284 return !SawStore; 1285 1286 return true; 1287 } 1288 1289 static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, AAResults *AA, 1290 bool UseTBAA, const MachineMemOperand *MMOa, 1291 const MachineMemOperand *MMOb) { 1292 // The following interface to AA is fashioned after DAGCombiner::isAlias and 1293 // operates with MachineMemOperand offset with some important assumptions: 1294 // - LLVM fundamentally assumes flat address spaces. 1295 // - MachineOperand offset can *only* result from legalization and cannot 1296 // affect queries other than the trivial case of overlap checking. 1297 // - These offsets never wrap and never step outside of allocated objects. 1298 // - There should never be any negative offsets here. 1299 // 1300 // FIXME: Modify API to hide this math from "user" 1301 // Even before we go to AA we can reason locally about some memory objects. It 1302 // can save compile time, and possibly catch some corner cases not currently 1303 // covered. 1304 1305 int64_t OffsetA = MMOa->getOffset(); 1306 int64_t OffsetB = MMOb->getOffset(); 1307 int64_t MinOffset = std::min(OffsetA, OffsetB); 1308 1309 uint64_t WidthA = MMOa->getSize(); 1310 uint64_t WidthB = MMOb->getSize(); 1311 bool KnownWidthA = WidthA != MemoryLocation::UnknownSize; 1312 bool KnownWidthB = WidthB != MemoryLocation::UnknownSize; 1313 1314 const Value *ValA = MMOa->getValue(); 1315 const Value *ValB = MMOb->getValue(); 1316 bool SameVal = (ValA && ValB && (ValA == ValB)); 1317 if (!SameVal) { 1318 const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); 1319 const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); 1320 if (PSVa && ValB && !PSVa->mayAlias(&MFI)) 1321 return false; 1322 if (PSVb && ValA && !PSVb->mayAlias(&MFI)) 1323 return false; 1324 if (PSVa && PSVb && (PSVa == PSVb)) 1325 SameVal = true; 1326 } 1327 1328 if (SameVal) { 1329 if (!KnownWidthA || !KnownWidthB) 1330 return true; 1331 int64_t MaxOffset = std::max(OffsetA, OffsetB); 1332 int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB; 1333 return (MinOffset + LowWidth > MaxOffset); 1334 } 1335 1336 if (!AA) 1337 return true; 1338 1339 if (!ValA || !ValB) 1340 return true; 1341 1342 assert((OffsetA >= 0) && "Negative MachineMemOperand offset"); 1343 assert((OffsetB >= 0) && "Negative MachineMemOperand offset"); 1344 1345 int64_t OverlapA = 1346 KnownWidthA ? WidthA + OffsetA - MinOffset : MemoryLocation::UnknownSize; 1347 int64_t OverlapB = 1348 KnownWidthB ? WidthB + OffsetB - MinOffset : MemoryLocation::UnknownSize; 1349 1350 return !AA->isNoAlias( 1351 MemoryLocation(ValA, OverlapA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 1352 MemoryLocation(ValB, OverlapB, 1353 UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 1354 } 1355 1356 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other, 1357 bool UseTBAA) const { 1358 const MachineFunction *MF = getMF(); 1359 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1360 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1361 1362 // Exclude call instruction which may alter the memory but can not be handled 1363 // by this function. 1364 if (isCall() || Other.isCall()) 1365 return true; 1366 1367 // If neither instruction stores to memory, they can't alias in any 1368 // meaningful way, even if they read from the same address. 1369 if (!mayStore() && !Other.mayStore()) 1370 return false; 1371 1372 // Both instructions must be memory operations to be able to alias. 1373 if (!mayLoadOrStore() || !Other.mayLoadOrStore()) 1374 return false; 1375 1376 // Let the target decide if memory accesses cannot possibly overlap. 1377 if (TII->areMemAccessesTriviallyDisjoint(*this, Other)) 1378 return false; 1379 1380 // Memory operations without memory operands may access anything. Be 1381 // conservative and assume `MayAlias`. 1382 if (memoperands_empty() || Other.memoperands_empty()) 1383 return true; 1384 1385 // Skip if there are too many memory operands. 1386 auto NumChecks = getNumMemOperands() * Other.getNumMemOperands(); 1387 if (NumChecks > TII->getMemOperandAACheckLimit()) 1388 return true; 1389 1390 // Check each pair of memory operands from both instructions, which can't 1391 // alias only if all pairs won't alias. 1392 for (auto *MMOa : memoperands()) 1393 for (auto *MMOb : Other.memoperands()) 1394 if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb)) 1395 return true; 1396 1397 return false; 1398 } 1399 1400 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1401 /// or volatile memory reference, or if the information describing the memory 1402 /// reference is not available. Return false if it is known to have no ordered 1403 /// memory references. 1404 bool MachineInstr::hasOrderedMemoryRef() const { 1405 // An instruction known never to access memory won't have a volatile access. 1406 if (!mayStore() && 1407 !mayLoad() && 1408 !isCall() && 1409 !hasUnmodeledSideEffects()) 1410 return false; 1411 1412 // Otherwise, if the instruction has no memory reference information, 1413 // conservatively assume it wasn't preserved. 1414 if (memoperands_empty()) 1415 return true; 1416 1417 // Check if any of our memory operands are ordered. 1418 return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) { 1419 return !MMO->isUnordered(); 1420 }); 1421 } 1422 1423 /// isDereferenceableInvariantLoad - Return true if this instruction will never 1424 /// trap and is loading from a location whose value is invariant across a run of 1425 /// this function. 1426 bool MachineInstr::isDereferenceableInvariantLoad() const { 1427 // If the instruction doesn't load at all, it isn't an invariant load. 1428 if (!mayLoad()) 1429 return false; 1430 1431 // If the instruction has lost its memoperands, conservatively assume that 1432 // it may not be an invariant load. 1433 if (memoperands_empty()) 1434 return false; 1435 1436 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); 1437 1438 for (MachineMemOperand *MMO : memoperands()) { 1439 if (!MMO->isUnordered()) 1440 // If the memory operand has ordering side effects, we can't move the 1441 // instruction. Such an instruction is technically an invariant load, 1442 // but the caller code would need updated to expect that. 1443 return false; 1444 if (MMO->isStore()) return false; 1445 if (MMO->isInvariant() && MMO->isDereferenceable()) 1446 continue; 1447 1448 // A load from a constant PseudoSourceValue is invariant. 1449 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) { 1450 if (PSV->isConstant(&MFI)) 1451 continue; 1452 } 1453 1454 // Otherwise assume conservatively. 1455 return false; 1456 } 1457 1458 // Everything checks out. 1459 return true; 1460 } 1461 1462 /// isConstantValuePHI - If the specified instruction is a PHI that always 1463 /// merges together the same virtual register, return the register, otherwise 1464 /// return 0. 1465 unsigned MachineInstr::isConstantValuePHI() const { 1466 if (!isPHI()) 1467 return 0; 1468 assert(getNumOperands() >= 3 && 1469 "It's illegal to have a PHI without source operands"); 1470 1471 Register Reg = getOperand(1).getReg(); 1472 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1473 if (getOperand(i).getReg() != Reg) 1474 return 0; 1475 return Reg; 1476 } 1477 1478 bool MachineInstr::hasUnmodeledSideEffects() const { 1479 if (hasProperty(MCID::UnmodeledSideEffects)) 1480 return true; 1481 if (isInlineAsm()) { 1482 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1483 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1484 return true; 1485 } 1486 1487 return false; 1488 } 1489 1490 bool MachineInstr::isLoadFoldBarrier() const { 1491 return mayStore() || isCall() || 1492 (hasUnmodeledSideEffects() && !isPseudoProbe()); 1493 } 1494 1495 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1496 /// 1497 bool MachineInstr::allDefsAreDead() const { 1498 for (const MachineOperand &MO : operands()) { 1499 if (!MO.isReg() || MO.isUse()) 1500 continue; 1501 if (!MO.isDead()) 1502 return false; 1503 } 1504 return true; 1505 } 1506 1507 bool MachineInstr::allImplicitDefsAreDead() const { 1508 for (const MachineOperand &MO : implicit_operands()) { 1509 if (!MO.isReg() || MO.isUse()) 1510 continue; 1511 if (!MO.isDead()) 1512 return false; 1513 } 1514 return true; 1515 } 1516 1517 /// copyImplicitOps - Copy implicit register operands from specified 1518 /// instruction to this instruction. 1519 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1520 const MachineInstr &MI) { 1521 for (const MachineOperand &MO : 1522 llvm::drop_begin(MI.operands(), MI.getDesc().getNumOperands())) 1523 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1524 addOperand(MF, MO); 1525 } 1526 1527 bool MachineInstr::hasComplexRegisterTies() const { 1528 const MCInstrDesc &MCID = getDesc(); 1529 if (MCID.Opcode == TargetOpcode::STATEPOINT) 1530 return true; 1531 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 1532 const auto &Operand = getOperand(I); 1533 if (!Operand.isReg() || Operand.isDef()) 1534 // Ignore the defined registers as MCID marks only the uses as tied. 1535 continue; 1536 int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO); 1537 int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1; 1538 if (ExpectedTiedIdx != TiedIdx) 1539 return true; 1540 } 1541 return false; 1542 } 1543 1544 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, 1545 const MachineRegisterInfo &MRI) const { 1546 const MachineOperand &Op = getOperand(OpIdx); 1547 if (!Op.isReg()) 1548 return LLT{}; 1549 1550 if (isVariadic() || OpIdx >= getNumExplicitOperands()) 1551 return MRI.getType(Op.getReg()); 1552 1553 auto &OpInfo = getDesc().operands()[OpIdx]; 1554 if (!OpInfo.isGenericType()) 1555 return MRI.getType(Op.getReg()); 1556 1557 if (PrintedTypes[OpInfo.getGenericTypeIndex()]) 1558 return LLT{}; 1559 1560 LLT TypeToPrint = MRI.getType(Op.getReg()); 1561 // Don't mark the type index printed if it wasn't actually printed: maybe 1562 // another operand with the same type index has an actual type attached: 1563 if (TypeToPrint.isValid()) 1564 PrintedTypes.set(OpInfo.getGenericTypeIndex()); 1565 return TypeToPrint; 1566 } 1567 1568 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1569 LLVM_DUMP_METHOD void MachineInstr::dump() const { 1570 dbgs() << " "; 1571 print(dbgs()); 1572 } 1573 1574 LLVM_DUMP_METHOD void MachineInstr::dumprImpl( 1575 const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth, 1576 SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const { 1577 if (Depth >= MaxDepth) 1578 return; 1579 if (!AlreadySeenInstrs.insert(this).second) 1580 return; 1581 // PadToColumn always inserts at least one space. 1582 // Don't mess up the alignment if we don't want any space. 1583 if (Depth) 1584 fdbgs().PadToColumn(Depth * 2); 1585 print(fdbgs()); 1586 for (const MachineOperand &MO : operands()) { 1587 if (!MO.isReg() || MO.isDef()) 1588 continue; 1589 Register Reg = MO.getReg(); 1590 if (Reg.isPhysical()) 1591 continue; 1592 const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg); 1593 if (NewMI == nullptr) 1594 continue; 1595 NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs); 1596 } 1597 } 1598 1599 LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI, 1600 unsigned MaxDepth) const { 1601 SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs; 1602 dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs); 1603 } 1604 #endif 1605 1606 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers, 1607 bool SkipDebugLoc, bool AddNewLine, 1608 const TargetInstrInfo *TII) const { 1609 const Module *M = nullptr; 1610 const Function *F = nullptr; 1611 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1612 F = &MF->getFunction(); 1613 M = F->getParent(); 1614 if (!TII) 1615 TII = MF->getSubtarget().getInstrInfo(); 1616 } 1617 1618 ModuleSlotTracker MST(M); 1619 if (F) 1620 MST.incorporateFunction(*F); 1621 print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII); 1622 } 1623 1624 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1625 bool IsStandalone, bool SkipOpers, bool SkipDebugLoc, 1626 bool AddNewLine, const TargetInstrInfo *TII) const { 1627 // We can be a bit tidier if we know the MachineFunction. 1628 const TargetRegisterInfo *TRI = nullptr; 1629 const MachineRegisterInfo *MRI = nullptr; 1630 const TargetIntrinsicInfo *IntrinsicInfo = nullptr; 1631 tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII); 1632 1633 if (isCFIInstruction()) 1634 assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction"); 1635 1636 SmallBitVector PrintedTypes(8); 1637 bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies(); 1638 auto getTiedOperandIdx = [&](unsigned OpIdx) { 1639 if (!ShouldPrintRegisterTies) 1640 return 0U; 1641 const MachineOperand &MO = getOperand(OpIdx); 1642 if (MO.isReg() && MO.isTied() && !MO.isDef()) 1643 return findTiedOperandIdx(OpIdx); 1644 return 0U; 1645 }; 1646 unsigned StartOp = 0; 1647 unsigned e = getNumOperands(); 1648 1649 // Print explicitly defined operands on the left of an assignment syntax. 1650 while (StartOp < e) { 1651 const MachineOperand &MO = getOperand(StartOp); 1652 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 1653 break; 1654 1655 if (StartOp != 0) 1656 OS << ", "; 1657 1658 LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{}; 1659 unsigned TiedOperandIdx = getTiedOperandIdx(StartOp); 1660 MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone, 1661 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1662 ++StartOp; 1663 } 1664 1665 if (StartOp != 0) 1666 OS << " = "; 1667 1668 if (getFlag(MachineInstr::FrameSetup)) 1669 OS << "frame-setup "; 1670 if (getFlag(MachineInstr::FrameDestroy)) 1671 OS << "frame-destroy "; 1672 if (getFlag(MachineInstr::FmNoNans)) 1673 OS << "nnan "; 1674 if (getFlag(MachineInstr::FmNoInfs)) 1675 OS << "ninf "; 1676 if (getFlag(MachineInstr::FmNsz)) 1677 OS << "nsz "; 1678 if (getFlag(MachineInstr::FmArcp)) 1679 OS << "arcp "; 1680 if (getFlag(MachineInstr::FmContract)) 1681 OS << "contract "; 1682 if (getFlag(MachineInstr::FmAfn)) 1683 OS << "afn "; 1684 if (getFlag(MachineInstr::FmReassoc)) 1685 OS << "reassoc "; 1686 if (getFlag(MachineInstr::NoUWrap)) 1687 OS << "nuw "; 1688 if (getFlag(MachineInstr::NoSWrap)) 1689 OS << "nsw "; 1690 if (getFlag(MachineInstr::IsExact)) 1691 OS << "exact "; 1692 if (getFlag(MachineInstr::NoFPExcept)) 1693 OS << "nofpexcept "; 1694 if (getFlag(MachineInstr::NoMerge)) 1695 OS << "nomerge "; 1696 1697 // Print the opcode name. 1698 if (TII) 1699 OS << TII->getName(getOpcode()); 1700 else 1701 OS << "UNKNOWN"; 1702 1703 if (SkipOpers) 1704 return; 1705 1706 // Print the rest of the operands. 1707 bool FirstOp = true; 1708 unsigned AsmDescOp = ~0u; 1709 unsigned AsmOpCount = 0; 1710 1711 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1712 // Print asm string. 1713 OS << " "; 1714 const unsigned OpIdx = InlineAsm::MIOp_AsmString; 1715 LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{}; 1716 unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx); 1717 getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone, 1718 ShouldPrintRegisterTies, TiedOperandIdx, TRI, 1719 IntrinsicInfo); 1720 1721 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1722 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1723 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1724 OS << " [sideeffect]"; 1725 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1726 OS << " [mayload]"; 1727 if (ExtraInfo & InlineAsm::Extra_MayStore) 1728 OS << " [maystore]"; 1729 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 1730 OS << " [isconvergent]"; 1731 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1732 OS << " [alignstack]"; 1733 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1734 OS << " [attdialect]"; 1735 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1736 OS << " [inteldialect]"; 1737 1738 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1739 FirstOp = false; 1740 } 1741 1742 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1743 const MachineOperand &MO = getOperand(i); 1744 1745 if (FirstOp) FirstOp = false; else OS << ","; 1746 OS << " "; 1747 1748 if (isDebugValueLike() && MO.isMetadata()) { 1749 // Pretty print DBG_VALUE* instructions. 1750 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1751 if (DIV && !DIV->getName().empty()) 1752 OS << "!\"" << DIV->getName() << '\"'; 1753 else { 1754 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1755 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1756 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1757 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1758 } 1759 } else if (isDebugLabel() && MO.isMetadata()) { 1760 // Pretty print DBG_LABEL instructions. 1761 auto *DIL = dyn_cast<DILabel>(MO.getMetadata()); 1762 if (DIL && !DIL->getName().empty()) 1763 OS << "\"" << DIL->getName() << '\"'; 1764 else { 1765 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1766 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1767 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1768 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1769 } 1770 } else if (i == AsmDescOp && MO.isImm()) { 1771 // Pretty print the inline asm operand descriptor. 1772 OS << '$' << AsmOpCount++; 1773 unsigned Flag = MO.getImm(); 1774 const InlineAsm::Flag F(Flag); 1775 OS << ":["; 1776 OS << F.getKindName(); 1777 1778 unsigned RCID; 1779 if (!F.isImmKind() && !F.isMemKind() && F.hasRegClassConstraint(RCID)) { 1780 if (TRI) { 1781 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1782 } else 1783 OS << ":RC" << RCID; 1784 } 1785 1786 if (F.isMemKind()) { 1787 const InlineAsm::ConstraintCode MCID = F.getMemoryConstraintID(); 1788 OS << ":" << InlineAsm::getMemConstraintName(MCID); 1789 } 1790 1791 unsigned TiedTo; 1792 if (F.isUseOperandTiedToDef(TiedTo)) 1793 OS << " tiedto:$" << TiedTo; 1794 1795 OS << ']'; 1796 1797 // Compute the index of the next operand descriptor. 1798 AsmDescOp += 1 + F.getNumOperandRegisters(); 1799 } else { 1800 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1801 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1802 if (MO.isImm() && isOperandSubregIdx(i)) 1803 MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI); 1804 else 1805 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1806 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1807 } 1808 } 1809 1810 // Print any optional symbols attached to this instruction as-if they were 1811 // operands. 1812 if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) { 1813 if (!FirstOp) { 1814 FirstOp = false; 1815 OS << ','; 1816 } 1817 OS << " pre-instr-symbol "; 1818 MachineOperand::printSymbol(OS, *PreInstrSymbol); 1819 } 1820 if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) { 1821 if (!FirstOp) { 1822 FirstOp = false; 1823 OS << ','; 1824 } 1825 OS << " post-instr-symbol "; 1826 MachineOperand::printSymbol(OS, *PostInstrSymbol); 1827 } 1828 if (MDNode *HeapAllocMarker = getHeapAllocMarker()) { 1829 if (!FirstOp) { 1830 FirstOp = false; 1831 OS << ','; 1832 } 1833 OS << " heap-alloc-marker "; 1834 HeapAllocMarker->printAsOperand(OS, MST); 1835 } 1836 if (MDNode *PCSections = getPCSections()) { 1837 if (!FirstOp) { 1838 FirstOp = false; 1839 OS << ','; 1840 } 1841 OS << " pcsections "; 1842 PCSections->printAsOperand(OS, MST); 1843 } 1844 if (uint32_t CFIType = getCFIType()) { 1845 if (!FirstOp) 1846 OS << ','; 1847 OS << " cfi-type " << CFIType; 1848 } 1849 1850 if (DebugInstrNum) { 1851 if (!FirstOp) 1852 OS << ","; 1853 OS << " debug-instr-number " << DebugInstrNum; 1854 } 1855 1856 if (!SkipDebugLoc) { 1857 if (const DebugLoc &DL = getDebugLoc()) { 1858 if (!FirstOp) 1859 OS << ','; 1860 OS << " debug-location "; 1861 DL->printAsOperand(OS, MST); 1862 } 1863 } 1864 1865 if (!memoperands_empty()) { 1866 SmallVector<StringRef, 0> SSNs; 1867 const LLVMContext *Context = nullptr; 1868 std::unique_ptr<LLVMContext> CtxPtr; 1869 const MachineFrameInfo *MFI = nullptr; 1870 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1871 MFI = &MF->getFrameInfo(); 1872 Context = &MF->getFunction().getContext(); 1873 } else { 1874 CtxPtr = std::make_unique<LLVMContext>(); 1875 Context = CtxPtr.get(); 1876 } 1877 1878 OS << " :: "; 1879 bool NeedComma = false; 1880 for (const MachineMemOperand *Op : memoperands()) { 1881 if (NeedComma) 1882 OS << ", "; 1883 Op->print(OS, MST, SSNs, *Context, MFI, TII); 1884 NeedComma = true; 1885 } 1886 } 1887 1888 if (SkipDebugLoc) 1889 return; 1890 1891 bool HaveSemi = false; 1892 1893 // Print debug location information. 1894 if (const DebugLoc &DL = getDebugLoc()) { 1895 if (!HaveSemi) { 1896 OS << ';'; 1897 HaveSemi = true; 1898 } 1899 OS << ' '; 1900 DL.print(OS); 1901 } 1902 1903 // Print extra comments for DEBUG_VALUE and friends if they are well-formed. 1904 if ((isNonListDebugValue() && getNumOperands() >= 4) || 1905 (isDebugValueList() && getNumOperands() >= 2) || 1906 (isDebugRef() && getNumOperands() >= 3)) { 1907 if (getDebugVariableOp().isMetadata()) { 1908 if (!HaveSemi) { 1909 OS << ";"; 1910 HaveSemi = true; 1911 } 1912 auto *DV = getDebugVariable(); 1913 OS << " line no:" << DV->getLine(); 1914 if (isIndirectDebugValue()) 1915 OS << " indirect"; 1916 } 1917 } 1918 // TODO: DBG_LABEL 1919 1920 if (AddNewLine) 1921 OS << '\n'; 1922 } 1923 1924 bool MachineInstr::addRegisterKilled(Register IncomingReg, 1925 const TargetRegisterInfo *RegInfo, 1926 bool AddIfNotFound) { 1927 bool isPhysReg = IncomingReg.isPhysical(); 1928 bool hasAliases = isPhysReg && 1929 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1930 bool Found = false; 1931 SmallVector<unsigned,4> DeadOps; 1932 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1933 MachineOperand &MO = getOperand(i); 1934 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1935 continue; 1936 1937 // DEBUG_VALUE nodes do not contribute to code generation and should 1938 // always be ignored. Failure to do so may result in trying to modify 1939 // KILL flags on DEBUG_VALUE nodes. 1940 if (MO.isDebug()) 1941 continue; 1942 1943 Register Reg = MO.getReg(); 1944 if (!Reg) 1945 continue; 1946 1947 if (Reg == IncomingReg) { 1948 if (!Found) { 1949 if (MO.isKill()) 1950 // The register is already marked kill. 1951 return true; 1952 if (isPhysReg && isRegTiedToDefOperand(i)) 1953 // Two-address uses of physregs must not be marked kill. 1954 return true; 1955 MO.setIsKill(); 1956 Found = true; 1957 } 1958 } else if (hasAliases && MO.isKill() && Reg.isPhysical()) { 1959 // A super-register kill already exists. 1960 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1961 return true; 1962 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1963 DeadOps.push_back(i); 1964 } 1965 } 1966 1967 // Trim unneeded kill operands. 1968 while (!DeadOps.empty()) { 1969 unsigned OpIdx = DeadOps.back(); 1970 if (getOperand(OpIdx).isImplicit() && 1971 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 1972 removeOperand(OpIdx); 1973 else 1974 getOperand(OpIdx).setIsKill(false); 1975 DeadOps.pop_back(); 1976 } 1977 1978 // If not found, this means an alias of one of the operands is killed. Add a 1979 // new implicit operand if required. 1980 if (!Found && AddIfNotFound) { 1981 addOperand(MachineOperand::CreateReg(IncomingReg, 1982 false /*IsDef*/, 1983 true /*IsImp*/, 1984 true /*IsKill*/)); 1985 return true; 1986 } 1987 return Found; 1988 } 1989 1990 void MachineInstr::clearRegisterKills(Register Reg, 1991 const TargetRegisterInfo *RegInfo) { 1992 if (!Reg.isPhysical()) 1993 RegInfo = nullptr; 1994 for (MachineOperand &MO : operands()) { 1995 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1996 continue; 1997 Register OpReg = MO.getReg(); 1998 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) 1999 MO.setIsKill(false); 2000 } 2001 } 2002 2003 bool MachineInstr::addRegisterDead(Register Reg, 2004 const TargetRegisterInfo *RegInfo, 2005 bool AddIfNotFound) { 2006 bool isPhysReg = Reg.isPhysical(); 2007 bool hasAliases = isPhysReg && 2008 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 2009 bool Found = false; 2010 SmallVector<unsigned,4> DeadOps; 2011 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 2012 MachineOperand &MO = getOperand(i); 2013 if (!MO.isReg() || !MO.isDef()) 2014 continue; 2015 Register MOReg = MO.getReg(); 2016 if (!MOReg) 2017 continue; 2018 2019 if (MOReg == Reg) { 2020 MO.setIsDead(); 2021 Found = true; 2022 } else if (hasAliases && MO.isDead() && MOReg.isPhysical()) { 2023 // There exists a super-register that's marked dead. 2024 if (RegInfo->isSuperRegister(Reg, MOReg)) 2025 return true; 2026 if (RegInfo->isSubRegister(Reg, MOReg)) 2027 DeadOps.push_back(i); 2028 } 2029 } 2030 2031 // Trim unneeded dead operands. 2032 while (!DeadOps.empty()) { 2033 unsigned OpIdx = DeadOps.back(); 2034 if (getOperand(OpIdx).isImplicit() && 2035 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 2036 removeOperand(OpIdx); 2037 else 2038 getOperand(OpIdx).setIsDead(false); 2039 DeadOps.pop_back(); 2040 } 2041 2042 // If not found, this means an alias of one of the operands is dead. Add a 2043 // new implicit operand if required. 2044 if (Found || !AddIfNotFound) 2045 return Found; 2046 2047 addOperand(MachineOperand::CreateReg(Reg, 2048 true /*IsDef*/, 2049 true /*IsImp*/, 2050 false /*IsKill*/, 2051 true /*IsDead*/)); 2052 return true; 2053 } 2054 2055 void MachineInstr::clearRegisterDeads(Register Reg) { 2056 for (MachineOperand &MO : operands()) { 2057 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) 2058 continue; 2059 MO.setIsDead(false); 2060 } 2061 } 2062 2063 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) { 2064 for (MachineOperand &MO : operands()) { 2065 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) 2066 continue; 2067 MO.setIsUndef(IsUndef); 2068 } 2069 } 2070 2071 void MachineInstr::addRegisterDefined(Register Reg, 2072 const TargetRegisterInfo *RegInfo) { 2073 if (Reg.isPhysical()) { 2074 MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo); 2075 if (MO) 2076 return; 2077 } else { 2078 for (const MachineOperand &MO : operands()) { 2079 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 2080 MO.getSubReg() == 0) 2081 return; 2082 } 2083 } 2084 addOperand(MachineOperand::CreateReg(Reg, 2085 true /*IsDef*/, 2086 true /*IsImp*/)); 2087 } 2088 2089 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs, 2090 const TargetRegisterInfo &TRI) { 2091 bool HasRegMask = false; 2092 for (MachineOperand &MO : operands()) { 2093 if (MO.isRegMask()) { 2094 HasRegMask = true; 2095 continue; 2096 } 2097 if (!MO.isReg() || !MO.isDef()) continue; 2098 Register Reg = MO.getReg(); 2099 if (!Reg.isPhysical()) 2100 continue; 2101 // If there are no uses, including partial uses, the def is dead. 2102 if (llvm::none_of(UsedRegs, 2103 [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); })) 2104 MO.setIsDead(); 2105 } 2106 2107 // This is a call with a register mask operand. 2108 // Mask clobbers are always dead, so add defs for the non-dead defines. 2109 if (HasRegMask) 2110 for (const Register &UsedReg : UsedRegs) 2111 addRegisterDefined(UsedReg, &TRI); 2112 } 2113 2114 unsigned 2115 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 2116 // Build up a buffer of hash code components. 2117 SmallVector<size_t, 16> HashComponents; 2118 HashComponents.reserve(MI->getNumOperands() + 1); 2119 HashComponents.push_back(MI->getOpcode()); 2120 for (const MachineOperand &MO : MI->operands()) { 2121 if (MO.isReg() && MO.isDef() && MO.getReg().isVirtual()) 2122 continue; // Skip virtual register defs. 2123 2124 HashComponents.push_back(hash_value(MO)); 2125 } 2126 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 2127 } 2128 2129 void MachineInstr::emitError(StringRef Msg) const { 2130 // Find the source location cookie. 2131 uint64_t LocCookie = 0; 2132 const MDNode *LocMD = nullptr; 2133 for (unsigned i = getNumOperands(); i != 0; --i) { 2134 if (getOperand(i-1).isMetadata() && 2135 (LocMD = getOperand(i-1).getMetadata()) && 2136 LocMD->getNumOperands() != 0) { 2137 if (const ConstantInt *CI = 2138 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 2139 LocCookie = CI->getZExtValue(); 2140 break; 2141 } 2142 } 2143 } 2144 2145 if (const MachineBasicBlock *MBB = getParent()) 2146 if (const MachineFunction *MF = MBB->getParent()) 2147 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 2148 report_fatal_error(Msg); 2149 } 2150 2151 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2152 const MCInstrDesc &MCID, bool IsIndirect, 2153 Register Reg, const MDNode *Variable, 2154 const MDNode *Expr) { 2155 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2156 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2157 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2158 "Expected inlined-at fields to agree"); 2159 auto MIB = BuildMI(MF, DL, MCID).addReg(Reg); 2160 if (IsIndirect) 2161 MIB.addImm(0U); 2162 else 2163 MIB.addReg(0U); 2164 return MIB.addMetadata(Variable).addMetadata(Expr); 2165 } 2166 2167 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2168 const MCInstrDesc &MCID, bool IsIndirect, 2169 ArrayRef<MachineOperand> DebugOps, 2170 const MDNode *Variable, const MDNode *Expr) { 2171 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2172 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2173 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2174 "Expected inlined-at fields to agree"); 2175 if (MCID.Opcode == TargetOpcode::DBG_VALUE) { 2176 assert(DebugOps.size() == 1 && 2177 "DBG_VALUE must contain exactly one debug operand"); 2178 MachineOperand DebugOp = DebugOps[0]; 2179 if (DebugOp.isReg()) 2180 return BuildMI(MF, DL, MCID, IsIndirect, DebugOp.getReg(), Variable, 2181 Expr); 2182 2183 auto MIB = BuildMI(MF, DL, MCID).add(DebugOp); 2184 if (IsIndirect) 2185 MIB.addImm(0U); 2186 else 2187 MIB.addReg(0U); 2188 return MIB.addMetadata(Variable).addMetadata(Expr); 2189 } 2190 2191 auto MIB = BuildMI(MF, DL, MCID); 2192 MIB.addMetadata(Variable).addMetadata(Expr); 2193 for (const MachineOperand &DebugOp : DebugOps) 2194 if (DebugOp.isReg()) 2195 MIB.addReg(DebugOp.getReg()); 2196 else 2197 MIB.add(DebugOp); 2198 return MIB; 2199 } 2200 2201 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2202 MachineBasicBlock::iterator I, 2203 const DebugLoc &DL, const MCInstrDesc &MCID, 2204 bool IsIndirect, Register Reg, 2205 const MDNode *Variable, const MDNode *Expr) { 2206 MachineFunction &MF = *BB.getParent(); 2207 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr); 2208 BB.insert(I, MI); 2209 return MachineInstrBuilder(MF, MI); 2210 } 2211 2212 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2213 MachineBasicBlock::iterator I, 2214 const DebugLoc &DL, const MCInstrDesc &MCID, 2215 bool IsIndirect, 2216 ArrayRef<MachineOperand> DebugOps, 2217 const MDNode *Variable, const MDNode *Expr) { 2218 MachineFunction &MF = *BB.getParent(); 2219 MachineInstr *MI = 2220 BuildMI(MF, DL, MCID, IsIndirect, DebugOps, Variable, Expr); 2221 BB.insert(I, MI); 2222 return MachineInstrBuilder(MF, *MI); 2223 } 2224 2225 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot. 2226 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE. 2227 static const DIExpression * 2228 computeExprForSpill(const MachineInstr &MI, 2229 SmallVectorImpl<const MachineOperand *> &SpilledOperands) { 2230 assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) && 2231 "Expected inlined-at fields to agree"); 2232 2233 const DIExpression *Expr = MI.getDebugExpression(); 2234 if (MI.isIndirectDebugValue()) { 2235 assert(MI.getDebugOffset().getImm() == 0 && 2236 "DBG_VALUE with nonzero offset"); 2237 Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore); 2238 } else if (MI.isDebugValueList()) { 2239 // We will replace the spilled register with a frame index, so 2240 // immediately deref all references to the spilled register. 2241 std::array<uint64_t, 1> Ops{{dwarf::DW_OP_deref}}; 2242 for (const MachineOperand *Op : SpilledOperands) { 2243 unsigned OpIdx = MI.getDebugOperandIndex(Op); 2244 Expr = DIExpression::appendOpsToArg(Expr, Ops, OpIdx); 2245 } 2246 } 2247 return Expr; 2248 } 2249 static const DIExpression *computeExprForSpill(const MachineInstr &MI, 2250 Register SpillReg) { 2251 assert(MI.hasDebugOperandForReg(SpillReg) && "Spill Reg is not used in MI."); 2252 SmallVector<const MachineOperand *> SpillOperands; 2253 for (const MachineOperand &Op : MI.getDebugOperandsForReg(SpillReg)) 2254 SpillOperands.push_back(&Op); 2255 return computeExprForSpill(MI, SpillOperands); 2256 } 2257 2258 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB, 2259 MachineBasicBlock::iterator I, 2260 const MachineInstr &Orig, 2261 int FrameIndex, Register SpillReg) { 2262 assert(!Orig.isDebugRef() && 2263 "DBG_INSTR_REF should not reference a virtual register."); 2264 const DIExpression *Expr = computeExprForSpill(Orig, SpillReg); 2265 MachineInstrBuilder NewMI = 2266 BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()); 2267 // Non-Variadic Operands: Location, Offset, Variable, Expression 2268 // Variadic Operands: Variable, Expression, Locations... 2269 if (Orig.isNonListDebugValue()) 2270 NewMI.addFrameIndex(FrameIndex).addImm(0U); 2271 NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr); 2272 if (Orig.isDebugValueList()) { 2273 for (const MachineOperand &Op : Orig.debug_operands()) 2274 if (Op.isReg() && Op.getReg() == SpillReg) 2275 NewMI.addFrameIndex(FrameIndex); 2276 else 2277 NewMI.add(MachineOperand(Op)); 2278 } 2279 return NewMI; 2280 } 2281 MachineInstr *llvm::buildDbgValueForSpill( 2282 MachineBasicBlock &BB, MachineBasicBlock::iterator I, 2283 const MachineInstr &Orig, int FrameIndex, 2284 SmallVectorImpl<const MachineOperand *> &SpilledOperands) { 2285 const DIExpression *Expr = computeExprForSpill(Orig, SpilledOperands); 2286 MachineInstrBuilder NewMI = 2287 BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()); 2288 // Non-Variadic Operands: Location, Offset, Variable, Expression 2289 // Variadic Operands: Variable, Expression, Locations... 2290 if (Orig.isNonListDebugValue()) 2291 NewMI.addFrameIndex(FrameIndex).addImm(0U); 2292 NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr); 2293 if (Orig.isDebugValueList()) { 2294 for (const MachineOperand &Op : Orig.debug_operands()) 2295 if (is_contained(SpilledOperands, &Op)) 2296 NewMI.addFrameIndex(FrameIndex); 2297 else 2298 NewMI.add(MachineOperand(Op)); 2299 } 2300 return NewMI; 2301 } 2302 2303 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex, 2304 Register Reg) { 2305 const DIExpression *Expr = computeExprForSpill(Orig, Reg); 2306 if (Orig.isNonListDebugValue()) 2307 Orig.getDebugOffset().ChangeToImmediate(0U); 2308 for (MachineOperand &Op : Orig.getDebugOperandsForReg(Reg)) 2309 Op.ChangeToFrameIndex(FrameIndex); 2310 Orig.getDebugExpressionOp().setMetadata(Expr); 2311 } 2312 2313 void MachineInstr::collectDebugValues( 2314 SmallVectorImpl<MachineInstr *> &DbgValues) { 2315 MachineInstr &MI = *this; 2316 if (!MI.getOperand(0).isReg()) 2317 return; 2318 2319 MachineBasicBlock::iterator DI = MI; ++DI; 2320 for (MachineBasicBlock::iterator DE = MI.getParent()->end(); 2321 DI != DE; ++DI) { 2322 if (!DI->isDebugValue()) 2323 return; 2324 if (DI->hasDebugOperandForReg(MI.getOperand(0).getReg())) 2325 DbgValues.push_back(&*DI); 2326 } 2327 } 2328 2329 void MachineInstr::changeDebugValuesDefReg(Register Reg) { 2330 // Collect matching debug values. 2331 SmallVector<MachineInstr *, 2> DbgValues; 2332 2333 if (!getOperand(0).isReg()) 2334 return; 2335 2336 Register DefReg = getOperand(0).getReg(); 2337 auto *MRI = getRegInfo(); 2338 for (auto &MO : MRI->use_operands(DefReg)) { 2339 auto *DI = MO.getParent(); 2340 if (!DI->isDebugValue()) 2341 continue; 2342 if (DI->hasDebugOperandForReg(DefReg)) { 2343 DbgValues.push_back(DI); 2344 } 2345 } 2346 2347 // Propagate Reg to debug value instructions. 2348 for (auto *DBI : DbgValues) 2349 for (MachineOperand &Op : DBI->getDebugOperandsForReg(DefReg)) 2350 Op.setReg(Reg); 2351 } 2352 2353 using MMOList = SmallVector<const MachineMemOperand *, 2>; 2354 2355 static unsigned getSpillSlotSize(const MMOList &Accesses, 2356 const MachineFrameInfo &MFI) { 2357 unsigned Size = 0; 2358 for (const auto *A : Accesses) 2359 if (MFI.isSpillSlotObjectIndex( 2360 cast<FixedStackPseudoSourceValue>(A->getPseudoValue()) 2361 ->getFrameIndex())) 2362 Size += A->getSize(); 2363 return Size; 2364 } 2365 2366 std::optional<unsigned> 2367 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const { 2368 int FI; 2369 if (TII->isStoreToStackSlotPostFE(*this, FI)) { 2370 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2371 if (MFI.isSpillSlotObjectIndex(FI)) 2372 return (*memoperands_begin())->getSize(); 2373 } 2374 return std::nullopt; 2375 } 2376 2377 std::optional<unsigned> 2378 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const { 2379 MMOList Accesses; 2380 if (TII->hasStoreToStackSlot(*this, Accesses)) 2381 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2382 return std::nullopt; 2383 } 2384 2385 std::optional<unsigned> 2386 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const { 2387 int FI; 2388 if (TII->isLoadFromStackSlotPostFE(*this, FI)) { 2389 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2390 if (MFI.isSpillSlotObjectIndex(FI)) 2391 return (*memoperands_begin())->getSize(); 2392 } 2393 return std::nullopt; 2394 } 2395 2396 std::optional<unsigned> 2397 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const { 2398 MMOList Accesses; 2399 if (TII->hasLoadFromStackSlot(*this, Accesses)) 2400 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2401 return std::nullopt; 2402 } 2403 2404 unsigned MachineInstr::getDebugInstrNum() { 2405 if (DebugInstrNum == 0) 2406 DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum(); 2407 return DebugInstrNum; 2408 } 2409 2410 unsigned MachineInstr::getDebugInstrNum(MachineFunction &MF) { 2411 if (DebugInstrNum == 0) 2412 DebugInstrNum = MF.getNewDebugInstrNum(); 2413 return DebugInstrNum; 2414 } 2415 2416 std::tuple<LLT, LLT> MachineInstr::getFirst2LLTs() const { 2417 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()), 2418 getRegInfo()->getType(getOperand(1).getReg())); 2419 } 2420 2421 std::tuple<LLT, LLT, LLT> MachineInstr::getFirst3LLTs() const { 2422 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()), 2423 getRegInfo()->getType(getOperand(1).getReg()), 2424 getRegInfo()->getType(getOperand(2).getReg())); 2425 } 2426 2427 std::tuple<LLT, LLT, LLT, LLT> MachineInstr::getFirst4LLTs() const { 2428 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()), 2429 getRegInfo()->getType(getOperand(1).getReg()), 2430 getRegInfo()->getType(getOperand(2).getReg()), 2431 getRegInfo()->getType(getOperand(3).getReg())); 2432 } 2433 2434 std::tuple<LLT, LLT, LLT, LLT, LLT> MachineInstr::getFirst5LLTs() const { 2435 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()), 2436 getRegInfo()->getType(getOperand(1).getReg()), 2437 getRegInfo()->getType(getOperand(2).getReg()), 2438 getRegInfo()->getType(getOperand(3).getReg()), 2439 getRegInfo()->getType(getOperand(4).getReg())); 2440 } 2441 2442 std::tuple<Register, LLT, Register, LLT> 2443 MachineInstr::getFirst2RegLLTs() const { 2444 Register Reg0 = getOperand(0).getReg(); 2445 Register Reg1 = getOperand(1).getReg(); 2446 return std::tuple(Reg0, getRegInfo()->getType(Reg0), Reg1, 2447 getRegInfo()->getType(Reg1)); 2448 } 2449 2450 std::tuple<Register, LLT, Register, LLT, Register, LLT> 2451 MachineInstr::getFirst3RegLLTs() const { 2452 Register Reg0 = getOperand(0).getReg(); 2453 Register Reg1 = getOperand(1).getReg(); 2454 Register Reg2 = getOperand(2).getReg(); 2455 return std::tuple(Reg0, getRegInfo()->getType(Reg0), Reg1, 2456 getRegInfo()->getType(Reg1), Reg2, 2457 getRegInfo()->getType(Reg2)); 2458 } 2459 2460 std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT> 2461 MachineInstr::getFirst4RegLLTs() const { 2462 Register Reg0 = getOperand(0).getReg(); 2463 Register Reg1 = getOperand(1).getReg(); 2464 Register Reg2 = getOperand(2).getReg(); 2465 Register Reg3 = getOperand(3).getReg(); 2466 return std::tuple( 2467 Reg0, getRegInfo()->getType(Reg0), Reg1, getRegInfo()->getType(Reg1), 2468 Reg2, getRegInfo()->getType(Reg2), Reg3, getRegInfo()->getType(Reg3)); 2469 } 2470 2471 std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT, Register, 2472 LLT> 2473 MachineInstr::getFirst5RegLLTs() const { 2474 Register Reg0 = getOperand(0).getReg(); 2475 Register Reg1 = getOperand(1).getReg(); 2476 Register Reg2 = getOperand(2).getReg(); 2477 Register Reg3 = getOperand(3).getReg(); 2478 Register Reg4 = getOperand(4).getReg(); 2479 return std::tuple( 2480 Reg0, getRegInfo()->getType(Reg0), Reg1, getRegInfo()->getType(Reg1), 2481 Reg2, getRegInfo()->getType(Reg2), Reg3, getRegInfo()->getType(Reg3), 2482 Reg4, getRegInfo()->getType(Reg4)); 2483 } 2484 2485 void MachineInstr::insert(mop_iterator InsertBefore, 2486 ArrayRef<MachineOperand> Ops) { 2487 assert(InsertBefore != nullptr && "invalid iterator"); 2488 assert(InsertBefore->getParent() == this && 2489 "iterator points to operand of other inst"); 2490 if (Ops.empty()) 2491 return; 2492 2493 // Do one pass to untie operands. 2494 SmallDenseMap<unsigned, unsigned> TiedOpIndices; 2495 for (const MachineOperand &MO : operands()) { 2496 if (MO.isReg() && MO.isTied()) { 2497 unsigned OpNo = getOperandNo(&MO); 2498 unsigned TiedTo = findTiedOperandIdx(OpNo); 2499 TiedOpIndices[OpNo] = TiedTo; 2500 untieRegOperand(OpNo); 2501 } 2502 } 2503 2504 unsigned OpIdx = getOperandNo(InsertBefore); 2505 unsigned NumOperands = getNumOperands(); 2506 unsigned OpsToMove = NumOperands - OpIdx; 2507 2508 SmallVector<MachineOperand> MovingOps; 2509 MovingOps.reserve(OpsToMove); 2510 2511 for (unsigned I = 0; I < OpsToMove; ++I) { 2512 MovingOps.emplace_back(getOperand(OpIdx)); 2513 removeOperand(OpIdx); 2514 } 2515 for (const MachineOperand &MO : Ops) 2516 addOperand(MO); 2517 for (const MachineOperand &OpMoved : MovingOps) 2518 addOperand(OpMoved); 2519 2520 // Re-tie operands. 2521 for (auto [Tie1, Tie2] : TiedOpIndices) { 2522 if (Tie1 >= OpIdx) 2523 Tie1 += Ops.size(); 2524 if (Tie2 >= OpIdx) 2525 Tie2 += Ops.size(); 2526 tieOperands(Tie1, Tie2); 2527 } 2528 } 2529